Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v5.9
 
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *		Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *		(Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
 
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
 
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/dma-debug.h>
  69#include <linux/debugfs.h>
  70#include <linux/userfaultfd_k.h>
  71#include <linux/dax.h>
  72#include <linux/oom.h>
  73#include <linux/numa.h>
  74#include <linux/perf_event.h>
  75#include <linux/ptrace.h>
  76#include <linux/vmalloc.h>
 
  77
  78#include <trace/events/kmem.h>
  79
  80#include <asm/io.h>
  81#include <asm/mmu_context.h>
  82#include <asm/pgalloc.h>
  83#include <linux/uaccess.h>
  84#include <asm/tlb.h>
  85#include <asm/tlbflush.h>
  86
  87#include "pgalloc-track.h"
  88#include "internal.h"
 
  89
  90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  92#endif
  93
  94#ifndef CONFIG_NEED_MULTIPLE_NODES
  95/* use the per-pgdat data instead for discontigmem - mbligh */
  96unsigned long max_mapnr;
  97EXPORT_SYMBOL(max_mapnr);
  98
  99struct page *mem_map;
 100EXPORT_SYMBOL(mem_map);
 101#endif
 102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103/*
 104 * A number of key systems in x86 including ioremap() rely on the assumption
 105 * that high_memory defines the upper bound on direct map memory, then end
 106 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 108 * and ZONE_HIGHMEM.
 109 */
 110void *high_memory;
 111EXPORT_SYMBOL(high_memory);
 112
 113/*
 114 * Randomize the address space (stacks, mmaps, brk, etc.).
 115 *
 116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 117 *   as ancient (libc5 based) binaries can segfault. )
 118 */
 119int randomize_va_space __read_mostly =
 120#ifdef CONFIG_COMPAT_BRK
 121					1;
 122#else
 123					2;
 124#endif
 125
 126#ifndef arch_faults_on_old_pte
 127static inline bool arch_faults_on_old_pte(void)
 128{
 129	/*
 130	 * Those arches which don't have hw access flag feature need to
 131	 * implement their own helper. By default, "true" means pagefault
 132	 * will be hit on old pte.
 133	 */
 134	return true;
 135}
 136#endif
 137
 138static int __init disable_randmaps(char *s)
 139{
 140	randomize_va_space = 0;
 141	return 1;
 142}
 143__setup("norandmaps", disable_randmaps);
 144
 145unsigned long zero_pfn __read_mostly;
 146EXPORT_SYMBOL(zero_pfn);
 147
 148unsigned long highest_memmap_pfn __read_mostly;
 149
 150/*
 151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 152 */
 153static int __init init_zero_pfn(void)
 154{
 155	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 156	return 0;
 157}
 158core_initcall(init_zero_pfn);
 159
 160void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
 161{
 162	trace_rss_stat(mm, member, count);
 163}
 164
 165#if defined(SPLIT_RSS_COUNTING)
 166
 167void sync_mm_rss(struct mm_struct *mm)
 168{
 169	int i;
 170
 171	for (i = 0; i < NR_MM_COUNTERS; i++) {
 172		if (current->rss_stat.count[i]) {
 173			add_mm_counter(mm, i, current->rss_stat.count[i]);
 174			current->rss_stat.count[i] = 0;
 175		}
 176	}
 177	current->rss_stat.events = 0;
 178}
 179
 180static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 181{
 182	struct task_struct *task = current;
 183
 184	if (likely(task->mm == mm))
 185		task->rss_stat.count[member] += val;
 186	else
 187		add_mm_counter(mm, member, val);
 188}
 189#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 190#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 191
 192/* sync counter once per 64 page faults */
 193#define TASK_RSS_EVENTS_THRESH	(64)
 194static void check_sync_rss_stat(struct task_struct *task)
 195{
 196	if (unlikely(task != current))
 197		return;
 198	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 199		sync_mm_rss(task->mm);
 200}
 201#else /* SPLIT_RSS_COUNTING */
 202
 203#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 204#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 205
 206static void check_sync_rss_stat(struct task_struct *task)
 207{
 208}
 209
 210#endif /* SPLIT_RSS_COUNTING */
 211
 212/*
 213 * Note: this doesn't free the actual pages themselves. That
 214 * has been handled earlier when unmapping all the memory regions.
 215 */
 216static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 217			   unsigned long addr)
 218{
 219	pgtable_t token = pmd_pgtable(*pmd);
 220	pmd_clear(pmd);
 221	pte_free_tlb(tlb, token, addr);
 222	mm_dec_nr_ptes(tlb->mm);
 223}
 224
 225static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 226				unsigned long addr, unsigned long end,
 227				unsigned long floor, unsigned long ceiling)
 228{
 229	pmd_t *pmd;
 230	unsigned long next;
 231	unsigned long start;
 232
 233	start = addr;
 234	pmd = pmd_offset(pud, addr);
 235	do {
 236		next = pmd_addr_end(addr, end);
 237		if (pmd_none_or_clear_bad(pmd))
 238			continue;
 239		free_pte_range(tlb, pmd, addr);
 240	} while (pmd++, addr = next, addr != end);
 241
 242	start &= PUD_MASK;
 243	if (start < floor)
 244		return;
 245	if (ceiling) {
 246		ceiling &= PUD_MASK;
 247		if (!ceiling)
 248			return;
 249	}
 250	if (end - 1 > ceiling - 1)
 251		return;
 252
 253	pmd = pmd_offset(pud, start);
 254	pud_clear(pud);
 255	pmd_free_tlb(tlb, pmd, start);
 256	mm_dec_nr_pmds(tlb->mm);
 257}
 258
 259static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 260				unsigned long addr, unsigned long end,
 261				unsigned long floor, unsigned long ceiling)
 262{
 263	pud_t *pud;
 264	unsigned long next;
 265	unsigned long start;
 266
 267	start = addr;
 268	pud = pud_offset(p4d, addr);
 269	do {
 270		next = pud_addr_end(addr, end);
 271		if (pud_none_or_clear_bad(pud))
 272			continue;
 273		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 274	} while (pud++, addr = next, addr != end);
 275
 276	start &= P4D_MASK;
 277	if (start < floor)
 278		return;
 279	if (ceiling) {
 280		ceiling &= P4D_MASK;
 281		if (!ceiling)
 282			return;
 283	}
 284	if (end - 1 > ceiling - 1)
 285		return;
 286
 287	pud = pud_offset(p4d, start);
 288	p4d_clear(p4d);
 289	pud_free_tlb(tlb, pud, start);
 290	mm_dec_nr_puds(tlb->mm);
 291}
 292
 293static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 294				unsigned long addr, unsigned long end,
 295				unsigned long floor, unsigned long ceiling)
 296{
 297	p4d_t *p4d;
 298	unsigned long next;
 299	unsigned long start;
 300
 301	start = addr;
 302	p4d = p4d_offset(pgd, addr);
 303	do {
 304		next = p4d_addr_end(addr, end);
 305		if (p4d_none_or_clear_bad(p4d))
 306			continue;
 307		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 308	} while (p4d++, addr = next, addr != end);
 309
 310	start &= PGDIR_MASK;
 311	if (start < floor)
 312		return;
 313	if (ceiling) {
 314		ceiling &= PGDIR_MASK;
 315		if (!ceiling)
 316			return;
 317	}
 318	if (end - 1 > ceiling - 1)
 319		return;
 320
 321	p4d = p4d_offset(pgd, start);
 322	pgd_clear(pgd);
 323	p4d_free_tlb(tlb, p4d, start);
 324}
 325
 326/*
 327 * This function frees user-level page tables of a process.
 328 */
 329void free_pgd_range(struct mmu_gather *tlb,
 330			unsigned long addr, unsigned long end,
 331			unsigned long floor, unsigned long ceiling)
 332{
 333	pgd_t *pgd;
 334	unsigned long next;
 335
 336	/*
 337	 * The next few lines have given us lots of grief...
 338	 *
 339	 * Why are we testing PMD* at this top level?  Because often
 340	 * there will be no work to do at all, and we'd prefer not to
 341	 * go all the way down to the bottom just to discover that.
 342	 *
 343	 * Why all these "- 1"s?  Because 0 represents both the bottom
 344	 * of the address space and the top of it (using -1 for the
 345	 * top wouldn't help much: the masks would do the wrong thing).
 346	 * The rule is that addr 0 and floor 0 refer to the bottom of
 347	 * the address space, but end 0 and ceiling 0 refer to the top
 348	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 349	 * that end 0 case should be mythical).
 350	 *
 351	 * Wherever addr is brought up or ceiling brought down, we must
 352	 * be careful to reject "the opposite 0" before it confuses the
 353	 * subsequent tests.  But what about where end is brought down
 354	 * by PMD_SIZE below? no, end can't go down to 0 there.
 355	 *
 356	 * Whereas we round start (addr) and ceiling down, by different
 357	 * masks at different levels, in order to test whether a table
 358	 * now has no other vmas using it, so can be freed, we don't
 359	 * bother to round floor or end up - the tests don't need that.
 360	 */
 361
 362	addr &= PMD_MASK;
 363	if (addr < floor) {
 364		addr += PMD_SIZE;
 365		if (!addr)
 366			return;
 367	}
 368	if (ceiling) {
 369		ceiling &= PMD_MASK;
 370		if (!ceiling)
 371			return;
 372	}
 373	if (end - 1 > ceiling - 1)
 374		end -= PMD_SIZE;
 375	if (addr > end - 1)
 376		return;
 377	/*
 378	 * We add page table cache pages with PAGE_SIZE,
 379	 * (see pte_free_tlb()), flush the tlb if we need
 380	 */
 381	tlb_change_page_size(tlb, PAGE_SIZE);
 382	pgd = pgd_offset(tlb->mm, addr);
 383	do {
 384		next = pgd_addr_end(addr, end);
 385		if (pgd_none_or_clear_bad(pgd))
 386			continue;
 387		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 388	} while (pgd++, addr = next, addr != end);
 389}
 390
 391void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 392		unsigned long floor, unsigned long ceiling)
 
 393{
 394	while (vma) {
 395		struct vm_area_struct *next = vma->vm_next;
 396		unsigned long addr = vma->vm_start;
 
 
 
 
 
 
 
 
 
 397
 398		/*
 399		 * Hide vma from rmap and truncate_pagecache before freeing
 400		 * pgtables
 401		 */
 
 
 402		unlink_anon_vmas(vma);
 403		unlink_file_vma(vma);
 404
 405		if (is_vm_hugetlb_page(vma)) {
 406			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 407				floor, next ? next->vm_start : ceiling);
 408		} else {
 409			/*
 410			 * Optimization: gather nearby vmas into one call down
 411			 */
 412			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 413			       && !is_vm_hugetlb_page(next)) {
 414				vma = next;
 415				next = vma->vm_next;
 
 
 
 
 416				unlink_anon_vmas(vma);
 417				unlink_file_vma(vma);
 418			}
 419			free_pgd_range(tlb, addr, vma->vm_end,
 420				floor, next ? next->vm_start : ceiling);
 421		}
 422		vma = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423	}
 
 424}
 425
 426int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 427{
 428	spinlock_t *ptl;
 429	pgtable_t new = pte_alloc_one(mm);
 430	if (!new)
 431		return -ENOMEM;
 432
 433	/*
 434	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 435	 * visible before the pte is made visible to other CPUs by being
 436	 * put into page tables.
 437	 *
 438	 * The other side of the story is the pointer chasing in the page
 439	 * table walking code (when walking the page table without locking;
 440	 * ie. most of the time). Fortunately, these data accesses consist
 441	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 442	 * being the notable exception) will already guarantee loads are
 443	 * seen in-order. See the alpha page table accessors for the
 444	 * smp_rmb() barriers in page table walking code.
 445	 */
 446	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 447
 448	ptl = pmd_lock(mm, pmd);
 449	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 450		mm_inc_nr_ptes(mm);
 451		pmd_populate(mm, pmd, new);
 452		new = NULL;
 453	}
 454	spin_unlock(ptl);
 455	if (new)
 456		pte_free(mm, new);
 457	return 0;
 458}
 459
 460int __pte_alloc_kernel(pmd_t *pmd)
 461{
 462	pte_t *new = pte_alloc_one_kernel(&init_mm);
 463	if (!new)
 464		return -ENOMEM;
 465
 466	smp_wmb(); /* See comment in __pte_alloc */
 467
 468	spin_lock(&init_mm.page_table_lock);
 469	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 
 470		pmd_populate_kernel(&init_mm, pmd, new);
 471		new = NULL;
 472	}
 473	spin_unlock(&init_mm.page_table_lock);
 474	if (new)
 475		pte_free_kernel(&init_mm, new);
 476	return 0;
 477}
 478
 479static inline void init_rss_vec(int *rss)
 480{
 481	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 482}
 483
 484static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 485{
 486	int i;
 487
 488	if (current->mm == mm)
 489		sync_mm_rss(mm);
 490	for (i = 0; i < NR_MM_COUNTERS; i++)
 491		if (rss[i])
 492			add_mm_counter(mm, i, rss[i]);
 493}
 494
 495/*
 496 * This function is called to print an error when a bad pte
 497 * is found. For example, we might have a PFN-mapped pte in
 498 * a region that doesn't allow it.
 499 *
 500 * The calling function must still handle the error.
 501 */
 502static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 503			  pte_t pte, struct page *page)
 504{
 505	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 506	p4d_t *p4d = p4d_offset(pgd, addr);
 507	pud_t *pud = pud_offset(p4d, addr);
 508	pmd_t *pmd = pmd_offset(pud, addr);
 509	struct address_space *mapping;
 510	pgoff_t index;
 511	static unsigned long resume;
 512	static unsigned long nr_shown;
 513	static unsigned long nr_unshown;
 514
 515	/*
 516	 * Allow a burst of 60 reports, then keep quiet for that minute;
 517	 * or allow a steady drip of one report per second.
 518	 */
 519	if (nr_shown == 60) {
 520		if (time_before(jiffies, resume)) {
 521			nr_unshown++;
 522			return;
 523		}
 524		if (nr_unshown) {
 525			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 526				 nr_unshown);
 527			nr_unshown = 0;
 528		}
 529		nr_shown = 0;
 530	}
 531	if (nr_shown++ == 0)
 532		resume = jiffies + 60 * HZ;
 533
 534	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 535	index = linear_page_index(vma, addr);
 536
 537	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 538		 current->comm,
 539		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 540	if (page)
 541		dump_page(page, "bad pte");
 542	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 543		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 544	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 545		 vma->vm_file,
 546		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 547		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 548		 mapping ? mapping->a_ops->readpage : NULL);
 549	dump_stack();
 550	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 551}
 552
 553/*
 554 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 555 *
 556 * "Special" mappings do not wish to be associated with a "struct page" (either
 557 * it doesn't exist, or it exists but they don't want to touch it). In this
 558 * case, NULL is returned here. "Normal" mappings do have a struct page.
 559 *
 560 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 561 * pte bit, in which case this function is trivial. Secondly, an architecture
 562 * may not have a spare pte bit, which requires a more complicated scheme,
 563 * described below.
 564 *
 565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 566 * special mapping (even if there are underlying and valid "struct pages").
 567 * COWed pages of a VM_PFNMAP are always normal.
 568 *
 569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 572 * mapping will always honor the rule
 573 *
 574 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 575 *
 576 * And for normal mappings this is false.
 577 *
 578 * This restricts such mappings to be a linear translation from virtual address
 579 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 580 * as the vma is not a COW mapping; in that case, we know that all ptes are
 581 * special (because none can have been COWed).
 582 *
 583 *
 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 585 *
 586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 587 * page" backing, however the difference is that _all_ pages with a struct
 588 * page (that is, those where pfn_valid is true) are refcounted and considered
 589 * normal pages by the VM. The disadvantage is that pages are refcounted
 590 * (which can be slower and simply not an option for some PFNMAP users). The
 591 * advantage is that we don't have to follow the strict linearity rule of
 592 * PFNMAP mappings in order to support COWable mappings.
 593 *
 594 */
 595struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 596			    pte_t pte)
 597{
 598	unsigned long pfn = pte_pfn(pte);
 599
 600	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 601		if (likely(!pte_special(pte)))
 602			goto check_pfn;
 603		if (vma->vm_ops && vma->vm_ops->find_special_page)
 604			return vma->vm_ops->find_special_page(vma, addr);
 605		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 606			return NULL;
 607		if (is_zero_pfn(pfn))
 608			return NULL;
 609		if (pte_devmap(pte))
 
 
 
 
 
 
 
 
 610			return NULL;
 611
 612		print_bad_pte(vma, addr, pte, NULL);
 613		return NULL;
 614	}
 615
 616	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 617
 618	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 619		if (vma->vm_flags & VM_MIXEDMAP) {
 620			if (!pfn_valid(pfn))
 621				return NULL;
 622			goto out;
 623		} else {
 624			unsigned long off;
 625			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 626			if (pfn == vma->vm_pgoff + off)
 627				return NULL;
 628			if (!is_cow_mapping(vma->vm_flags))
 629				return NULL;
 630		}
 631	}
 632
 633	if (is_zero_pfn(pfn))
 634		return NULL;
 635
 636check_pfn:
 637	if (unlikely(pfn > highest_memmap_pfn)) {
 638		print_bad_pte(vma, addr, pte, NULL);
 639		return NULL;
 640	}
 641
 642	/*
 643	 * NOTE! We still have PageReserved() pages in the page tables.
 644	 * eg. VDSO mappings can cause them to exist.
 645	 */
 646out:
 647	return pfn_to_page(pfn);
 648}
 649
 
 
 
 
 
 
 
 
 
 
 650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 652				pmd_t pmd)
 653{
 654	unsigned long pfn = pmd_pfn(pmd);
 655
 656	/*
 657	 * There is no pmd_special() but there may be special pmds, e.g.
 658	 * in a direct-access (dax) mapping, so let's just replicate the
 659	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 660	 */
 661	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 662		if (vma->vm_flags & VM_MIXEDMAP) {
 663			if (!pfn_valid(pfn))
 664				return NULL;
 665			goto out;
 666		} else {
 667			unsigned long off;
 668			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 669			if (pfn == vma->vm_pgoff + off)
 670				return NULL;
 671			if (!is_cow_mapping(vma->vm_flags))
 672				return NULL;
 673		}
 674	}
 675
 676	if (pmd_devmap(pmd))
 677		return NULL;
 678	if (is_huge_zero_pmd(pmd))
 679		return NULL;
 680	if (unlikely(pfn > highest_memmap_pfn))
 681		return NULL;
 682
 683	/*
 684	 * NOTE! We still have PageReserved() pages in the page tables.
 685	 * eg. VDSO mappings can cause them to exist.
 686	 */
 687out:
 688	return pfn_to_page(pfn);
 689}
 
 
 
 
 
 
 
 
 
 
 690#endif
 691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692/*
 693 * copy one vm_area from one task to the other. Assumes the page tables
 694 * already present in the new task to be cleared in the whole range
 695 * covered by this vma.
 696 */
 697
 698static unsigned long
 699copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 700		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 701		unsigned long addr, int *rss)
 702{
 703	unsigned long vm_flags = vma->vm_flags;
 704	pte_t pte = *src_pte;
 
 
 705	struct page *page;
 706	swp_entry_t entry = pte_to_swp_entry(pte);
 707
 708	if (likely(!non_swap_entry(entry))) {
 709		if (swap_duplicate(entry) < 0)
 710			return entry.val;
 711
 712		/* make sure dst_mm is on swapoff's mmlist. */
 713		if (unlikely(list_empty(&dst_mm->mmlist))) {
 714			spin_lock(&mmlist_lock);
 715			if (list_empty(&dst_mm->mmlist))
 716				list_add(&dst_mm->mmlist,
 717						&src_mm->mmlist);
 718			spin_unlock(&mmlist_lock);
 719		}
 
 
 
 
 
 720		rss[MM_SWAPENTS]++;
 721	} else if (is_migration_entry(entry)) {
 722		page = migration_entry_to_page(entry);
 723
 724		rss[mm_counter(page)]++;
 725
 726		if (is_write_migration_entry(entry) &&
 727				is_cow_mapping(vm_flags)) {
 728			/*
 729			 * COW mappings require pages in both
 730			 * parent and child to be set to read.
 
 731			 */
 732			make_migration_entry_read(&entry);
 
 733			pte = swp_entry_to_pte(entry);
 734			if (pte_swp_soft_dirty(*src_pte))
 735				pte = pte_swp_mksoft_dirty(pte);
 736			if (pte_swp_uffd_wp(*src_pte))
 737				pte = pte_swp_mkuffd_wp(pte);
 738			set_pte_at(src_mm, addr, src_pte, pte);
 739		}
 740	} else if (is_device_private_entry(entry)) {
 741		page = device_private_entry_to_page(entry);
 
 742
 743		/*
 744		 * Update rss count even for unaddressable pages, as
 745		 * they should treated just like normal pages in this
 746		 * respect.
 747		 *
 748		 * We will likely want to have some new rss counters
 749		 * for unaddressable pages, at some point. But for now
 750		 * keep things as they are.
 751		 */
 752		get_page(page);
 753		rss[mm_counter(page)]++;
 754		page_dup_rmap(page, false);
 
 755
 756		/*
 757		 * We do not preserve soft-dirty information, because so
 758		 * far, checkpoint/restore is the only feature that
 759		 * requires that. And checkpoint/restore does not work
 760		 * when a device driver is involved (you cannot easily
 761		 * save and restore device driver state).
 762		 */
 763		if (is_write_device_private_entry(entry) &&
 764		    is_cow_mapping(vm_flags)) {
 765			make_device_private_entry_read(&entry);
 
 766			pte = swp_entry_to_pte(entry);
 767			if (pte_swp_uffd_wp(*src_pte))
 768				pte = pte_swp_mkuffd_wp(pte);
 769			set_pte_at(src_mm, addr, src_pte, pte);
 770		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771	}
 
 
 772	set_pte_at(dst_mm, addr, dst_pte, pte);
 773	return 0;
 774}
 775
 776/*
 777 * Copy a present and normal page if necessary.
 778 *
 779 * NOTE! The usual case is that this doesn't need to do
 780 * anything, and can just return a positive value. That
 781 * will let the caller know that it can just increase
 782 * the page refcount and re-use the pte the traditional
 783 * way.
 784 *
 785 * But _if_ we need to copy it because it needs to be
 786 * pinned in the parent (and the child should get its own
 787 * copy rather than just a reference to the same page),
 788 * we'll do that here and return zero to let the caller
 789 * know we're done.
 790 *
 791 * And if we need a pre-allocated page but don't yet have
 792 * one, return a negative error to let the preallocation
 793 * code know so that it can do so outside the page table
 794 * lock.
 795 */
 796static inline int
 797copy_present_page(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 798		pte_t *dst_pte, pte_t *src_pte,
 799		struct vm_area_struct *vma, struct vm_area_struct *new,
 800		unsigned long addr, int *rss, struct page **prealloc,
 801		pte_t pte, struct page *page)
 802{
 803	struct page *new_page;
 804
 805	if (!is_cow_mapping(vma->vm_flags))
 806		return 1;
 807
 808	/*
 809	 * What we want to do is to check whether this page may
 810	 * have been pinned by the parent process.  If so,
 811	 * instead of wrprotect the pte on both sides, we copy
 812	 * the page immediately so that we'll always guarantee
 813	 * the pinned page won't be randomly replaced in the
 814	 * future.
 815	 *
 816	 * The page pinning checks are just "has this mm ever
 817	 * seen pinning", along with the (inexact) check of
 818	 * the page count. That might give false positives for
 819	 * for pinning, but it will work correctly.
 820	 */
 821	if (likely(!atomic_read(&src_mm->has_pinned)))
 822		return 1;
 823	if (likely(!page_maybe_dma_pinned(page)))
 824		return 1;
 825
 826	new_page = *prealloc;
 827	if (!new_page)
 828		return -EAGAIN;
 829
 830	/*
 831	 * We have a prealloc page, all good!  Take it
 832	 * over and copy the page & arm it.
 833	 */
 834	*prealloc = NULL;
 835	copy_user_highpage(new_page, page, addr, vma);
 836	__SetPageUptodate(new_page);
 837	page_add_new_anon_rmap(new_page, new, addr, false);
 838	lru_cache_add_inactive_or_unevictable(new_page, new);
 839	rss[mm_counter(new_page)]++;
 840
 841	/* All done, just insert the new page copy in the child */
 842	pte = mk_pte(new_page, new->vm_page_prot);
 843	pte = maybe_mkwrite(pte_mkdirty(pte), new);
 844	set_pte_at(dst_mm, addr, dst_pte, pte);
 
 
 
 845	return 0;
 846}
 847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848/*
 849 * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
 850 * is required to copy this pte.
 
 
 
 851 */
 852static inline int
 853copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 854		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 855		struct vm_area_struct *new,
 856		unsigned long addr, int *rss, struct page **prealloc)
 857{
 858	unsigned long vm_flags = vma->vm_flags;
 859	pte_t pte = *src_pte;
 860	struct page *page;
 861
 862	page = vm_normal_page(vma, addr, pte);
 863	if (page) {
 864		int retval;
 865
 866		retval = copy_present_page(dst_mm, src_mm,
 867			dst_pte, src_pte,
 868			vma, new,
 869			addr, rss, prealloc,
 870			pte, page);
 871		if (retval <= 0)
 872			return retval;
 873
 874		get_page(page);
 875		page_dup_rmap(page, false);
 876		rss[mm_counter(page)]++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877	}
 878
 879	/*
 880	 * If it's a COW mapping, write protect it both
 881	 * in the parent and the child
 882	 */
 883	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 884		ptep_set_wrprotect(src_mm, addr, src_pte);
 885		pte = pte_wrprotect(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 886	}
 887
 888	/*
 889	 * If it's a shared mapping, mark it clean in
 890	 * the child
 891	 */
 892	if (vm_flags & VM_SHARED)
 893		pte = pte_mkclean(pte);
 894	pte = pte_mkold(pte);
 895
 896	/*
 897	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
 898	 * does not have the VM_UFFD_WP, which means that the uffd
 899	 * fork event is not enabled.
 900	 */
 901	if (!(vm_flags & VM_UFFD_WP))
 902		pte = pte_clear_uffd_wp(pte);
 903
 904	set_pte_at(dst_mm, addr, dst_pte, pte);
 905	return 0;
 906}
 907
 908static inline struct page *
 909page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
 910		   unsigned long addr)
 911{
 912	struct page *new_page;
 913
 914	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
 915	if (!new_page)
 
 
 
 
 
 916		return NULL;
 917
 918	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
 919		put_page(new_page);
 920		return NULL;
 921	}
 922	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
 923
 924	return new_page;
 925}
 926
 927static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 928		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 929		   struct vm_area_struct *new,
 930		   unsigned long addr, unsigned long end)
 931{
 
 
 932	pte_t *orig_src_pte, *orig_dst_pte;
 933	pte_t *src_pte, *dst_pte;
 
 934	spinlock_t *src_ptl, *dst_ptl;
 935	int progress, ret = 0;
 936	int rss[NR_MM_COUNTERS];
 937	swp_entry_t entry = (swp_entry_t){0};
 938	struct page *prealloc = NULL;
 
 939
 940again:
 941	progress = 0;
 942	init_rss_vec(rss);
 943
 
 
 
 
 
 
 
 
 944	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 945	if (!dst_pte) {
 946		ret = -ENOMEM;
 947		goto out;
 948	}
 949	src_pte = pte_offset_map(src_pmd, addr);
 950	src_ptl = pte_lockptr(src_mm, src_pmd);
 
 
 
 
 951	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 952	orig_src_pte = src_pte;
 953	orig_dst_pte = dst_pte;
 954	arch_enter_lazy_mmu_mode();
 955
 956	do {
 
 
 957		/*
 958		 * We are holding two locks at this point - either of them
 959		 * could generate latencies in another task on another CPU.
 960		 */
 961		if (progress >= 32) {
 962			progress = 0;
 963			if (need_resched() ||
 964			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 965				break;
 966		}
 967		if (pte_none(*src_pte)) {
 
 968			progress++;
 969			continue;
 970		}
 971		if (unlikely(!pte_present(*src_pte))) {
 972			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
 973							dst_pte, src_pte,
 974							vma, addr, rss);
 975			if (entry.val)
 
 
 976				break;
 977			progress += 8;
 978			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 979		}
 980		/* copy_present_pte() will clear `*prealloc' if consumed */
 981		ret = copy_present_pte(dst_mm, src_mm, dst_pte, src_pte,
 982				       vma, new, addr, rss, &prealloc);
 
 983		/*
 984		 * If we need a pre-allocated page for this pte, drop the
 985		 * locks, allocate, and try again.
 986		 */
 987		if (unlikely(ret == -EAGAIN))
 988			break;
 989		if (unlikely(prealloc)) {
 990			/*
 991			 * pre-alloc page cannot be reused by next time so as
 992			 * to strictly follow mempolicy (e.g., alloc_page_vma()
 993			 * will allocate page according to address).  This
 994			 * could only happen if one pinned pte changed.
 995			 */
 996			put_page(prealloc);
 997			prealloc = NULL;
 998		}
 999		progress += 8;
1000	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 
 
1001
1002	arch_leave_lazy_mmu_mode();
1003	spin_unlock(src_ptl);
1004	pte_unmap(orig_src_pte);
1005	add_mm_rss_vec(dst_mm, rss);
1006	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1007	cond_resched();
1008
1009	if (entry.val) {
 
1010		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1011			ret = -ENOMEM;
1012			goto out;
1013		}
1014		entry.val = 0;
1015	} else if (ret) {
1016		WARN_ON_ONCE(ret != -EAGAIN);
1017		prealloc = page_copy_prealloc(src_mm, vma, addr);
 
1018		if (!prealloc)
1019			return -ENOMEM;
1020		/* We've captured and resolved the error. Reset, try again. */
1021		ret = 0;
1022	}
 
 
 
 
1023	if (addr != end)
1024		goto again;
1025out:
1026	if (unlikely(prealloc))
1027		put_page(prealloc);
1028	return ret;
1029}
1030
1031static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1033		struct vm_area_struct *new,
1034		unsigned long addr, unsigned long end)
1035{
 
 
1036	pmd_t *src_pmd, *dst_pmd;
1037	unsigned long next;
1038
1039	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040	if (!dst_pmd)
1041		return -ENOMEM;
1042	src_pmd = pmd_offset(src_pud, addr);
1043	do {
1044		next = pmd_addr_end(addr, end);
1045		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046			|| pmd_devmap(*src_pmd)) {
1047			int err;
1048			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1049			err = copy_huge_pmd(dst_mm, src_mm,
1050					    dst_pmd, src_pmd, addr, vma);
1051			if (err == -ENOMEM)
1052				return -ENOMEM;
1053			if (!err)
1054				continue;
1055			/* fall through */
1056		}
1057		if (pmd_none_or_clear_bad(src_pmd))
1058			continue;
1059		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1060				   vma, new, addr, next))
1061			return -ENOMEM;
1062	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063	return 0;
1064}
1065
1066static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1067		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1068		struct vm_area_struct *new,
1069		unsigned long addr, unsigned long end)
1070{
 
 
1071	pud_t *src_pud, *dst_pud;
1072	unsigned long next;
1073
1074	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1075	if (!dst_pud)
1076		return -ENOMEM;
1077	src_pud = pud_offset(src_p4d, addr);
1078	do {
1079		next = pud_addr_end(addr, end);
1080		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1081			int err;
1082
1083			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1084			err = copy_huge_pud(dst_mm, src_mm,
1085					    dst_pud, src_pud, addr, vma);
1086			if (err == -ENOMEM)
1087				return -ENOMEM;
1088			if (!err)
1089				continue;
1090			/* fall through */
1091		}
1092		if (pud_none_or_clear_bad(src_pud))
1093			continue;
1094		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1095				   vma, new, addr, next))
1096			return -ENOMEM;
1097	} while (dst_pud++, src_pud++, addr = next, addr != end);
1098	return 0;
1099}
1100
1101static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1102		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1103		struct vm_area_struct *new,
1104		unsigned long addr, unsigned long end)
1105{
 
1106	p4d_t *src_p4d, *dst_p4d;
1107	unsigned long next;
1108
1109	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1110	if (!dst_p4d)
1111		return -ENOMEM;
1112	src_p4d = p4d_offset(src_pgd, addr);
1113	do {
1114		next = p4d_addr_end(addr, end);
1115		if (p4d_none_or_clear_bad(src_p4d))
1116			continue;
1117		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1118				   vma, new, addr, next))
1119			return -ENOMEM;
1120	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1121	return 0;
1122}
1123
1124int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1125		    struct vm_area_struct *vma, struct vm_area_struct *new)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126{
1127	pgd_t *src_pgd, *dst_pgd;
1128	unsigned long next;
1129	unsigned long addr = vma->vm_start;
1130	unsigned long end = vma->vm_end;
 
 
1131	struct mmu_notifier_range range;
1132	bool is_cow;
1133	int ret;
1134
1135	/*
1136	 * Don't copy ptes where a page fault will fill them correctly.
1137	 * Fork becomes much lighter when there are big shared or private
1138	 * readonly mappings. The tradeoff is that copy_page_range is more
1139	 * efficient than faulting.
1140	 */
1141	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1142			!vma->anon_vma)
1143		return 0;
1144
1145	if (is_vm_hugetlb_page(vma))
1146		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1147
1148	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1149		/*
1150		 * We do not free on error cases below as remove_vma
1151		 * gets called on error from higher level routine
1152		 */
1153		ret = track_pfn_copy(vma);
1154		if (ret)
1155			return ret;
1156	}
1157
1158	/*
1159	 * We need to invalidate the secondary MMU mappings only when
1160	 * there could be a permission downgrade on the ptes of the
1161	 * parent mm. And a permission downgrade will only happen if
1162	 * is_cow_mapping() returns true.
1163	 */
1164	is_cow = is_cow_mapping(vma->vm_flags);
1165
1166	if (is_cow) {
1167		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1168					0, vma, src_mm, addr, end);
1169		mmu_notifier_invalidate_range_start(&range);
 
 
 
 
 
 
 
 
 
1170	}
1171
1172	ret = 0;
1173	dst_pgd = pgd_offset(dst_mm, addr);
1174	src_pgd = pgd_offset(src_mm, addr);
1175	do {
1176		next = pgd_addr_end(addr, end);
1177		if (pgd_none_or_clear_bad(src_pgd))
1178			continue;
1179		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1180					    vma, new, addr, next))) {
 
1181			ret = -ENOMEM;
1182			break;
1183		}
1184	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1185
1186	if (is_cow)
 
1187		mmu_notifier_invalidate_range_end(&range);
 
1188	return ret;
1189}
1190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191static unsigned long zap_pte_range(struct mmu_gather *tlb,
1192				struct vm_area_struct *vma, pmd_t *pmd,
1193				unsigned long addr, unsigned long end,
1194				struct zap_details *details)
1195{
 
1196	struct mm_struct *mm = tlb->mm;
1197	int force_flush = 0;
1198	int rss[NR_MM_COUNTERS];
1199	spinlock_t *ptl;
1200	pte_t *start_pte;
1201	pte_t *pte;
1202	swp_entry_t entry;
 
1203
1204	tlb_change_page_size(tlb, PAGE_SIZE);
1205again:
1206	init_rss_vec(rss);
1207	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1208	pte = start_pte;
 
 
1209	flush_tlb_batched_pending(mm);
1210	arch_enter_lazy_mmu_mode();
1211	do {
1212		pte_t ptent = *pte;
 
 
 
 
 
1213		if (pte_none(ptent))
1214			continue;
1215
1216		if (need_resched())
1217			break;
1218
1219		if (pte_present(ptent)) {
1220			struct page *page;
1221
1222			page = vm_normal_page(vma, addr, ptent);
1223			if (unlikely(details) && page) {
1224				/*
1225				 * unmap_shared_mapping_pages() wants to
1226				 * invalidate cache without truncating:
1227				 * unmap shared but keep private pages.
1228				 */
1229				if (details->check_mapping &&
1230				    details->check_mapping != page_rmapping(page))
1231					continue;
1232			}
1233			ptent = ptep_get_and_clear_full(mm, addr, pte,
1234							tlb->fullmm);
1235			tlb_remove_tlb_entry(tlb, pte, addr);
1236			if (unlikely(!page))
1237				continue;
1238
1239			if (!PageAnon(page)) {
1240				if (pte_dirty(ptent)) {
1241					force_flush = 1;
1242					set_page_dirty(page);
1243				}
1244				if (pte_young(ptent) &&
1245				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1246					mark_page_accessed(page);
1247			}
1248			rss[mm_counter(page)]--;
1249			page_remove_rmap(page, false);
1250			if (unlikely(page_mapcount(page) < 0))
1251				print_bad_pte(vma, addr, ptent, page);
1252			if (unlikely(__tlb_remove_page(tlb, page))) {
1253				force_flush = 1;
1254				addr += PAGE_SIZE;
1255				break;
1256			}
1257			continue;
1258		}
1259
1260		entry = pte_to_swp_entry(ptent);
1261		if (is_device_private_entry(entry)) {
1262			struct page *page = device_private_entry_to_page(entry);
1263
1264			if (unlikely(details && details->check_mapping)) {
1265				/*
1266				 * unmap_shared_mapping_pages() wants to
1267				 * invalidate cache without truncating:
1268				 * unmap shared but keep private pages.
1269				 */
1270				if (details->check_mapping !=
1271				    page_rmapping(page))
1272					continue;
1273			}
1274
1275			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1276			rss[mm_counter(page)]--;
1277			page_remove_rmap(page, false);
1278			put_page(page);
1279			continue;
1280		}
1281
1282		/* If details->check_mapping, we leave swap entries. */
1283		if (unlikely(details))
1284			continue;
1285
1286		if (!non_swap_entry(entry))
1287			rss[MM_SWAPENTS]--;
1288		else if (is_migration_entry(entry)) {
1289			struct page *page;
1290
1291			page = migration_entry_to_page(entry);
1292			rss[mm_counter(page)]--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293		}
1294		if (unlikely(!free_swap_and_cache(entry)))
1295			print_bad_pte(vma, addr, ptent, NULL);
1296		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297	} while (pte++, addr += PAGE_SIZE, addr != end);
 
1298
1299	add_mm_rss_vec(mm, rss);
1300	arch_leave_lazy_mmu_mode();
1301
1302	/* Do the actual TLB flush before dropping ptl */
1303	if (force_flush)
1304		tlb_flush_mmu_tlbonly(tlb);
 
 
1305	pte_unmap_unlock(start_pte, ptl);
1306
1307	/*
1308	 * If we forced a TLB flush (either due to running out of
1309	 * batch buffers or because we needed to flush dirty TLB
1310	 * entries before releasing the ptl), free the batched
1311	 * memory too. Restart if we didn't do everything.
1312	 */
1313	if (force_flush) {
1314		force_flush = 0;
1315		tlb_flush_mmu(tlb);
1316	}
1317
1318	if (addr != end) {
1319		cond_resched();
1320		goto again;
1321	}
1322
1323	return addr;
1324}
1325
1326static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1327				struct vm_area_struct *vma, pud_t *pud,
1328				unsigned long addr, unsigned long end,
1329				struct zap_details *details)
1330{
1331	pmd_t *pmd;
1332	unsigned long next;
1333
1334	pmd = pmd_offset(pud, addr);
1335	do {
1336		next = pmd_addr_end(addr, end);
1337		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1338			if (next - addr != HPAGE_PMD_SIZE)
1339				__split_huge_pmd(vma, pmd, addr, false, NULL);
1340			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1341				goto next;
 
 
1342			/* fall through */
 
 
 
 
 
 
 
 
 
 
1343		}
1344		/*
1345		 * Here there can be other concurrent MADV_DONTNEED or
1346		 * trans huge page faults running, and if the pmd is
1347		 * none or trans huge it can change under us. This is
1348		 * because MADV_DONTNEED holds the mmap_lock in read
1349		 * mode.
1350		 */
1351		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1352			goto next;
1353		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1354next:
1355		cond_resched();
1356	} while (pmd++, addr = next, addr != end);
1357
1358	return addr;
1359}
1360
1361static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1362				struct vm_area_struct *vma, p4d_t *p4d,
1363				unsigned long addr, unsigned long end,
1364				struct zap_details *details)
1365{
1366	pud_t *pud;
1367	unsigned long next;
1368
1369	pud = pud_offset(p4d, addr);
1370	do {
1371		next = pud_addr_end(addr, end);
1372		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1373			if (next - addr != HPAGE_PUD_SIZE) {
1374				mmap_assert_locked(tlb->mm);
1375				split_huge_pud(vma, pud, addr);
1376			} else if (zap_huge_pud(tlb, vma, pud, addr))
1377				goto next;
1378			/* fall through */
1379		}
1380		if (pud_none_or_clear_bad(pud))
1381			continue;
1382		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1383next:
1384		cond_resched();
1385	} while (pud++, addr = next, addr != end);
1386
1387	return addr;
1388}
1389
1390static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1391				struct vm_area_struct *vma, pgd_t *pgd,
1392				unsigned long addr, unsigned long end,
1393				struct zap_details *details)
1394{
1395	p4d_t *p4d;
1396	unsigned long next;
1397
1398	p4d = p4d_offset(pgd, addr);
1399	do {
1400		next = p4d_addr_end(addr, end);
1401		if (p4d_none_or_clear_bad(p4d))
1402			continue;
1403		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1404	} while (p4d++, addr = next, addr != end);
1405
1406	return addr;
1407}
1408
1409void unmap_page_range(struct mmu_gather *tlb,
1410			     struct vm_area_struct *vma,
1411			     unsigned long addr, unsigned long end,
1412			     struct zap_details *details)
1413{
1414	pgd_t *pgd;
1415	unsigned long next;
1416
1417	BUG_ON(addr >= end);
1418	tlb_start_vma(tlb, vma);
1419	pgd = pgd_offset(vma->vm_mm, addr);
1420	do {
1421		next = pgd_addr_end(addr, end);
1422		if (pgd_none_or_clear_bad(pgd))
1423			continue;
1424		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1425	} while (pgd++, addr = next, addr != end);
1426	tlb_end_vma(tlb, vma);
1427}
1428
1429
1430static void unmap_single_vma(struct mmu_gather *tlb,
1431		struct vm_area_struct *vma, unsigned long start_addr,
1432		unsigned long end_addr,
1433		struct zap_details *details)
1434{
1435	unsigned long start = max(vma->vm_start, start_addr);
1436	unsigned long end;
1437
1438	if (start >= vma->vm_end)
1439		return;
1440	end = min(vma->vm_end, end_addr);
1441	if (end <= vma->vm_start)
1442		return;
1443
1444	if (vma->vm_file)
1445		uprobe_munmap(vma, start, end);
1446
1447	if (unlikely(vma->vm_flags & VM_PFNMAP))
1448		untrack_pfn(vma, 0, 0);
1449
1450	if (start != end) {
1451		if (unlikely(is_vm_hugetlb_page(vma))) {
1452			/*
1453			 * It is undesirable to test vma->vm_file as it
1454			 * should be non-null for valid hugetlb area.
1455			 * However, vm_file will be NULL in the error
1456			 * cleanup path of mmap_region. When
1457			 * hugetlbfs ->mmap method fails,
1458			 * mmap_region() nullifies vma->vm_file
1459			 * before calling this function to clean up.
1460			 * Since no pte has actually been setup, it is
1461			 * safe to do nothing in this case.
1462			 */
1463			if (vma->vm_file) {
1464				i_mmap_lock_write(vma->vm_file->f_mapping);
1465				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1466				i_mmap_unlock_write(vma->vm_file->f_mapping);
 
1467			}
1468		} else
1469			unmap_page_range(tlb, vma, start, end, details);
1470	}
1471}
1472
1473/**
1474 * unmap_vmas - unmap a range of memory covered by a list of vma's
1475 * @tlb: address of the caller's struct mmu_gather
 
1476 * @vma: the starting vma
1477 * @start_addr: virtual address at which to start unmapping
1478 * @end_addr: virtual address at which to end unmapping
 
 
1479 *
1480 * Unmap all pages in the vma list.
1481 *
1482 * Only addresses between `start' and `end' will be unmapped.
1483 *
1484 * The VMA list must be sorted in ascending virtual address order.
1485 *
1486 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1487 * range after unmap_vmas() returns.  So the only responsibility here is to
1488 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1489 * drops the lock and schedules.
1490 */
1491void unmap_vmas(struct mmu_gather *tlb,
1492		struct vm_area_struct *vma, unsigned long start_addr,
1493		unsigned long end_addr)
 
1494{
1495	struct mmu_notifier_range range;
 
 
 
 
 
1496
1497	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1498				start_addr, end_addr);
1499	mmu_notifier_invalidate_range_start(&range);
1500	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1501		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1502	mmu_notifier_invalidate_range_end(&range);
1503}
1504
1505/**
1506 * zap_page_range - remove user pages in a given range
1507 * @vma: vm_area_struct holding the applicable pages
1508 * @start: starting address of pages to zap
1509 * @size: number of bytes to zap
1510 *
1511 * Caller must protect the VMA list
1512 */
1513void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1514		unsigned long size)
1515{
1516	struct mmu_notifier_range range;
1517	struct mmu_gather tlb;
1518
1519	lru_add_drain();
1520	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1521				start, start + size);
1522	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1523	update_hiwater_rss(vma->vm_mm);
1524	mmu_notifier_invalidate_range_start(&range);
1525	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1526		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1527	mmu_notifier_invalidate_range_end(&range);
1528	tlb_finish_mmu(&tlb, start, range.end);
1529}
1530
1531/**
1532 * zap_page_range_single - remove user pages in a given range
1533 * @vma: vm_area_struct holding the applicable pages
1534 * @address: starting address of pages to zap
1535 * @size: number of bytes to zap
1536 * @details: details of shared cache invalidation
1537 *
1538 * The range must fit into one VMA.
1539 */
1540static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1541		unsigned long size, struct zap_details *details)
1542{
 
1543	struct mmu_notifier_range range;
1544	struct mmu_gather tlb;
1545
1546	lru_add_drain();
1547	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1548				address, address + size);
1549	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
 
1550	update_hiwater_rss(vma->vm_mm);
1551	mmu_notifier_invalidate_range_start(&range);
1552	unmap_single_vma(&tlb, vma, address, range.end, details);
 
 
 
 
1553	mmu_notifier_invalidate_range_end(&range);
1554	tlb_finish_mmu(&tlb, address, range.end);
 
1555}
1556
1557/**
1558 * zap_vma_ptes - remove ptes mapping the vma
1559 * @vma: vm_area_struct holding ptes to be zapped
1560 * @address: starting address of pages to zap
1561 * @size: number of bytes to zap
1562 *
1563 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1564 *
1565 * The entire address range must be fully contained within the vma.
1566 *
1567 */
1568void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1569		unsigned long size)
1570{
1571	if (address < vma->vm_start || address + size > vma->vm_end ||
1572	    		!(vma->vm_flags & VM_PFNMAP))
1573		return;
1574
1575	zap_page_range_single(vma, address, size, NULL);
1576}
1577EXPORT_SYMBOL_GPL(zap_vma_ptes);
1578
1579static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1580{
1581	pgd_t *pgd;
1582	p4d_t *p4d;
1583	pud_t *pud;
1584	pmd_t *pmd;
1585
1586	pgd = pgd_offset(mm, addr);
1587	p4d = p4d_alloc(mm, pgd, addr);
1588	if (!p4d)
1589		return NULL;
1590	pud = pud_alloc(mm, p4d, addr);
1591	if (!pud)
1592		return NULL;
1593	pmd = pmd_alloc(mm, pud, addr);
1594	if (!pmd)
1595		return NULL;
1596
1597	VM_BUG_ON(pmd_trans_huge(*pmd));
1598	return pmd;
1599}
1600
1601pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1602			spinlock_t **ptl)
1603{
1604	pmd_t *pmd = walk_to_pmd(mm, addr);
1605
1606	if (!pmd)
1607		return NULL;
1608	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1609}
1610
1611static int validate_page_before_insert(struct page *page)
1612{
1613	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
 
 
 
1614		return -EINVAL;
1615	flush_dcache_page(page);
1616	return 0;
1617}
1618
1619static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1620			unsigned long addr, struct page *page, pgprot_t prot)
1621{
1622	if (!pte_none(*pte))
 
 
1623		return -EBUSY;
1624	/* Ok, finally just insert the thing.. */
1625	get_page(page);
1626	inc_mm_counter_fast(mm, mm_counter_file(page));
1627	page_add_file_rmap(page, false);
1628	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1629	return 0;
1630}
1631
1632/*
1633 * This is the old fallback for page remapping.
1634 *
1635 * For historical reasons, it only allows reserved pages. Only
1636 * old drivers should use this, and they needed to mark their
1637 * pages reserved for the old functions anyway.
1638 */
1639static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1640			struct page *page, pgprot_t prot)
1641{
1642	struct mm_struct *mm = vma->vm_mm;
1643	int retval;
1644	pte_t *pte;
1645	spinlock_t *ptl;
1646
1647	retval = validate_page_before_insert(page);
1648	if (retval)
1649		goto out;
1650	retval = -ENOMEM;
1651	pte = get_locked_pte(mm, addr, &ptl);
1652	if (!pte)
1653		goto out;
1654	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1655	pte_unmap_unlock(pte, ptl);
1656out:
1657	return retval;
1658}
1659
1660#ifdef pte_index
1661static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1662			unsigned long addr, struct page *page, pgprot_t prot)
1663{
1664	int err;
1665
1666	if (!page_count(page))
1667		return -EINVAL;
1668	err = validate_page_before_insert(page);
1669	if (err)
1670		return err;
1671	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1672}
1673
1674/* insert_pages() amortizes the cost of spinlock operations
1675 * when inserting pages in a loop. Arch *must* define pte_index.
1676 */
1677static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1678			struct page **pages, unsigned long *num, pgprot_t prot)
1679{
1680	pmd_t *pmd = NULL;
1681	pte_t *start_pte, *pte;
1682	spinlock_t *pte_lock;
1683	struct mm_struct *const mm = vma->vm_mm;
1684	unsigned long curr_page_idx = 0;
1685	unsigned long remaining_pages_total = *num;
1686	unsigned long pages_to_write_in_pmd;
1687	int ret;
1688more:
1689	ret = -EFAULT;
1690	pmd = walk_to_pmd(mm, addr);
1691	if (!pmd)
1692		goto out;
1693
1694	pages_to_write_in_pmd = min_t(unsigned long,
1695		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1696
1697	/* Allocate the PTE if necessary; takes PMD lock once only. */
1698	ret = -ENOMEM;
1699	if (pte_alloc(mm, pmd))
1700		goto out;
1701
1702	while (pages_to_write_in_pmd) {
1703		int pte_idx = 0;
1704		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1705
1706		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
 
 
 
 
1707		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1708			int err = insert_page_in_batch_locked(mm, pte,
1709				addr, pages[curr_page_idx], prot);
1710			if (unlikely(err)) {
1711				pte_unmap_unlock(start_pte, pte_lock);
1712				ret = err;
1713				remaining_pages_total -= pte_idx;
1714				goto out;
1715			}
1716			addr += PAGE_SIZE;
1717			++curr_page_idx;
1718		}
1719		pte_unmap_unlock(start_pte, pte_lock);
1720		pages_to_write_in_pmd -= batch_size;
1721		remaining_pages_total -= batch_size;
1722	}
1723	if (remaining_pages_total)
1724		goto more;
1725	ret = 0;
1726out:
1727	*num = remaining_pages_total;
1728	return ret;
1729}
1730#endif  /* ifdef pte_index */
1731
1732/**
1733 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1734 * @vma: user vma to map to
1735 * @addr: target start user address of these pages
1736 * @pages: source kernel pages
1737 * @num: in: number of pages to map. out: number of pages that were *not*
1738 * mapped. (0 means all pages were successfully mapped).
1739 *
1740 * Preferred over vm_insert_page() when inserting multiple pages.
1741 *
1742 * In case of error, we may have mapped a subset of the provided
1743 * pages. It is the caller's responsibility to account for this case.
1744 *
1745 * The same restrictions apply as in vm_insert_page().
1746 */
1747int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1748			struct page **pages, unsigned long *num)
1749{
1750#ifdef pte_index
1751	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1752
1753	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1754		return -EFAULT;
1755	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1756		BUG_ON(mmap_read_trylock(vma->vm_mm));
1757		BUG_ON(vma->vm_flags & VM_PFNMAP);
1758		vma->vm_flags |= VM_MIXEDMAP;
1759	}
1760	/* Defer page refcount checking till we're about to map that page. */
1761	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1762#else
1763	unsigned long idx = 0, pgcount = *num;
1764	int err = -EINVAL;
1765
1766	for (; idx < pgcount; ++idx) {
1767		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1768		if (err)
1769			break;
1770	}
1771	*num = pgcount - idx;
1772	return err;
1773#endif  /* ifdef pte_index */
1774}
1775EXPORT_SYMBOL(vm_insert_pages);
1776
1777/**
1778 * vm_insert_page - insert single page into user vma
1779 * @vma: user vma to map to
1780 * @addr: target user address of this page
1781 * @page: source kernel page
1782 *
1783 * This allows drivers to insert individual pages they've allocated
1784 * into a user vma.
1785 *
1786 * The page has to be a nice clean _individual_ kernel allocation.
1787 * If you allocate a compound page, you need to have marked it as
1788 * such (__GFP_COMP), or manually just split the page up yourself
1789 * (see split_page()).
1790 *
1791 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1792 * took an arbitrary page protection parameter. This doesn't allow
1793 * that. Your vma protection will have to be set up correctly, which
1794 * means that if you want a shared writable mapping, you'd better
1795 * ask for a shared writable mapping!
1796 *
1797 * The page does not need to be reserved.
1798 *
1799 * Usually this function is called from f_op->mmap() handler
1800 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1801 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1802 * function from other places, for example from page-fault handler.
1803 *
1804 * Return: %0 on success, negative error code otherwise.
1805 */
1806int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1807			struct page *page)
1808{
1809	if (addr < vma->vm_start || addr >= vma->vm_end)
1810		return -EFAULT;
1811	if (!page_count(page))
1812		return -EINVAL;
1813	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1814		BUG_ON(mmap_read_trylock(vma->vm_mm));
1815		BUG_ON(vma->vm_flags & VM_PFNMAP);
1816		vma->vm_flags |= VM_MIXEDMAP;
1817	}
1818	return insert_page(vma, addr, page, vma->vm_page_prot);
1819}
1820EXPORT_SYMBOL(vm_insert_page);
1821
1822/*
1823 * __vm_map_pages - maps range of kernel pages into user vma
1824 * @vma: user vma to map to
1825 * @pages: pointer to array of source kernel pages
1826 * @num: number of pages in page array
1827 * @offset: user's requested vm_pgoff
1828 *
1829 * This allows drivers to map range of kernel pages into a user vma.
1830 *
1831 * Return: 0 on success and error code otherwise.
1832 */
1833static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1834				unsigned long num, unsigned long offset)
1835{
1836	unsigned long count = vma_pages(vma);
1837	unsigned long uaddr = vma->vm_start;
1838	int ret, i;
1839
1840	/* Fail if the user requested offset is beyond the end of the object */
1841	if (offset >= num)
1842		return -ENXIO;
1843
1844	/* Fail if the user requested size exceeds available object size */
1845	if (count > num - offset)
1846		return -ENXIO;
1847
1848	for (i = 0; i < count; i++) {
1849		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1850		if (ret < 0)
1851			return ret;
1852		uaddr += PAGE_SIZE;
1853	}
1854
1855	return 0;
1856}
1857
1858/**
1859 * vm_map_pages - maps range of kernel pages starts with non zero offset
1860 * @vma: user vma to map to
1861 * @pages: pointer to array of source kernel pages
1862 * @num: number of pages in page array
1863 *
1864 * Maps an object consisting of @num pages, catering for the user's
1865 * requested vm_pgoff
1866 *
1867 * If we fail to insert any page into the vma, the function will return
1868 * immediately leaving any previously inserted pages present.  Callers
1869 * from the mmap handler may immediately return the error as their caller
1870 * will destroy the vma, removing any successfully inserted pages. Other
1871 * callers should make their own arrangements for calling unmap_region().
1872 *
1873 * Context: Process context. Called by mmap handlers.
1874 * Return: 0 on success and error code otherwise.
1875 */
1876int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1877				unsigned long num)
1878{
1879	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1880}
1881EXPORT_SYMBOL(vm_map_pages);
1882
1883/**
1884 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1885 * @vma: user vma to map to
1886 * @pages: pointer to array of source kernel pages
1887 * @num: number of pages in page array
1888 *
1889 * Similar to vm_map_pages(), except that it explicitly sets the offset
1890 * to 0. This function is intended for the drivers that did not consider
1891 * vm_pgoff.
1892 *
1893 * Context: Process context. Called by mmap handlers.
1894 * Return: 0 on success and error code otherwise.
1895 */
1896int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1897				unsigned long num)
1898{
1899	return __vm_map_pages(vma, pages, num, 0);
1900}
1901EXPORT_SYMBOL(vm_map_pages_zero);
1902
1903static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1904			pfn_t pfn, pgprot_t prot, bool mkwrite)
1905{
1906	struct mm_struct *mm = vma->vm_mm;
1907	pte_t *pte, entry;
1908	spinlock_t *ptl;
1909
1910	pte = get_locked_pte(mm, addr, &ptl);
1911	if (!pte)
1912		return VM_FAULT_OOM;
1913	if (!pte_none(*pte)) {
 
1914		if (mkwrite) {
1915			/*
1916			 * For read faults on private mappings the PFN passed
1917			 * in may not match the PFN we have mapped if the
1918			 * mapped PFN is a writeable COW page.  In the mkwrite
1919			 * case we are creating a writable PTE for a shared
1920			 * mapping and we expect the PFNs to match. If they
1921			 * don't match, we are likely racing with block
1922			 * allocation and mapping invalidation so just skip the
1923			 * update.
1924			 */
1925			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1926				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1927				goto out_unlock;
1928			}
1929			entry = pte_mkyoung(*pte);
1930			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1931			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1932				update_mmu_cache(vma, addr, pte);
1933		}
1934		goto out_unlock;
1935	}
1936
1937	/* Ok, finally just insert the thing.. */
1938	if (pfn_t_devmap(pfn))
1939		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1940	else
1941		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1942
1943	if (mkwrite) {
1944		entry = pte_mkyoung(entry);
1945		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1946	}
1947
1948	set_pte_at(mm, addr, pte, entry);
1949	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1950
1951out_unlock:
1952	pte_unmap_unlock(pte, ptl);
1953	return VM_FAULT_NOPAGE;
1954}
1955
1956/**
1957 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1958 * @vma: user vma to map to
1959 * @addr: target user address of this page
1960 * @pfn: source kernel pfn
1961 * @pgprot: pgprot flags for the inserted page
1962 *
1963 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1964 * to override pgprot on a per-page basis.
1965 *
1966 * This only makes sense for IO mappings, and it makes no sense for
1967 * COW mappings.  In general, using multiple vmas is preferable;
1968 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1969 * impractical.
1970 *
1971 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1972 * a value of @pgprot different from that of @vma->vm_page_prot.
 
 
 
 
 
 
 
 
 
 
 
 
1973 *
1974 * Context: Process context.  May allocate using %GFP_KERNEL.
1975 * Return: vm_fault_t value.
1976 */
1977vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1978			unsigned long pfn, pgprot_t pgprot)
1979{
1980	/*
1981	 * Technically, architectures with pte_special can avoid all these
1982	 * restrictions (same for remap_pfn_range).  However we would like
1983	 * consistency in testing and feature parity among all, so we should
1984	 * try to keep these invariants in place for everybody.
1985	 */
1986	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1987	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1988						(VM_PFNMAP|VM_MIXEDMAP));
1989	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1990	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1991
1992	if (addr < vma->vm_start || addr >= vma->vm_end)
1993		return VM_FAULT_SIGBUS;
1994
1995	if (!pfn_modify_allowed(pfn, pgprot))
1996		return VM_FAULT_SIGBUS;
1997
1998	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1999
2000	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2001			false);
2002}
2003EXPORT_SYMBOL(vmf_insert_pfn_prot);
2004
2005/**
2006 * vmf_insert_pfn - insert single pfn into user vma
2007 * @vma: user vma to map to
2008 * @addr: target user address of this page
2009 * @pfn: source kernel pfn
2010 *
2011 * Similar to vm_insert_page, this allows drivers to insert individual pages
2012 * they've allocated into a user vma. Same comments apply.
2013 *
2014 * This function should only be called from a vm_ops->fault handler, and
2015 * in that case the handler should return the result of this function.
2016 *
2017 * vma cannot be a COW mapping.
2018 *
2019 * As this is called only for pages that do not currently exist, we
2020 * do not need to flush old virtual caches or the TLB.
2021 *
2022 * Context: Process context.  May allocate using %GFP_KERNEL.
2023 * Return: vm_fault_t value.
2024 */
2025vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2026			unsigned long pfn)
2027{
2028	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2029}
2030EXPORT_SYMBOL(vmf_insert_pfn);
2031
2032static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2033{
2034	/* these checks mirror the abort conditions in vm_normal_page */
2035	if (vma->vm_flags & VM_MIXEDMAP)
2036		return true;
2037	if (pfn_t_devmap(pfn))
2038		return true;
2039	if (pfn_t_special(pfn))
2040		return true;
2041	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2042		return true;
2043	return false;
2044}
2045
2046static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2047		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2048		bool mkwrite)
2049{
 
2050	int err;
2051
2052	BUG_ON(!vm_mixed_ok(vma, pfn));
2053
2054	if (addr < vma->vm_start || addr >= vma->vm_end)
2055		return VM_FAULT_SIGBUS;
2056
2057	track_pfn_insert(vma, &pgprot, pfn);
2058
2059	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2060		return VM_FAULT_SIGBUS;
2061
2062	/*
2063	 * If we don't have pte special, then we have to use the pfn_valid()
2064	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2065	 * refcount the page if pfn_valid is true (hence insert_page rather
2066	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2067	 * without pte special, it would there be refcounted as a normal page.
2068	 */
2069	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2070	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2071		struct page *page;
2072
2073		/*
2074		 * At this point we are committed to insert_page()
2075		 * regardless of whether the caller specified flags that
2076		 * result in pfn_t_has_page() == false.
2077		 */
2078		page = pfn_to_page(pfn_t_to_pfn(pfn));
2079		err = insert_page(vma, addr, page, pgprot);
2080	} else {
2081		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2082	}
2083
2084	if (err == -ENOMEM)
2085		return VM_FAULT_OOM;
2086	if (err < 0 && err != -EBUSY)
2087		return VM_FAULT_SIGBUS;
2088
2089	return VM_FAULT_NOPAGE;
2090}
2091
2092/**
2093 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2094 * @vma: user vma to map to
2095 * @addr: target user address of this page
2096 * @pfn: source kernel pfn
2097 * @pgprot: pgprot flags for the inserted page
2098 *
2099 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2100 * to override pgprot on a per-page basis.
2101 *
2102 * Typically this function should be used by drivers to set caching- and
2103 * encryption bits different than those of @vma->vm_page_prot, because
2104 * the caching- or encryption mode may not be known at mmap() time.
2105 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2106 * to set caching and encryption bits for those vmas (except for COW pages).
2107 * This is ensured by core vm only modifying these page table entries using
2108 * functions that don't touch caching- or encryption bits, using pte_modify()
2109 * if needed. (See for example mprotect()).
2110 * Also when new page-table entries are created, this is only done using the
2111 * fault() callback, and never using the value of vma->vm_page_prot,
2112 * except for page-table entries that point to anonymous pages as the result
2113 * of COW.
2114 *
2115 * Context: Process context.  May allocate using %GFP_KERNEL.
2116 * Return: vm_fault_t value.
2117 */
2118vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2119				 pfn_t pfn, pgprot_t pgprot)
2120{
2121	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2122}
2123EXPORT_SYMBOL(vmf_insert_mixed_prot);
2124
2125vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2126		pfn_t pfn)
2127{
2128	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2129}
2130EXPORT_SYMBOL(vmf_insert_mixed);
2131
2132/*
2133 *  If the insertion of PTE failed because someone else already added a
2134 *  different entry in the mean time, we treat that as success as we assume
2135 *  the same entry was actually inserted.
2136 */
2137vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2138		unsigned long addr, pfn_t pfn)
2139{
2140	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2141}
2142EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2143
2144/*
2145 * maps a range of physical memory into the requested pages. the old
2146 * mappings are removed. any references to nonexistent pages results
2147 * in null mappings (currently treated as "copy-on-access")
2148 */
2149static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2150			unsigned long addr, unsigned long end,
2151			unsigned long pfn, pgprot_t prot)
2152{
2153	pte_t *pte;
2154	spinlock_t *ptl;
2155	int err = 0;
2156
2157	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2158	if (!pte)
2159		return -ENOMEM;
2160	arch_enter_lazy_mmu_mode();
2161	do {
2162		BUG_ON(!pte_none(*pte));
2163		if (!pfn_modify_allowed(pfn, prot)) {
2164			err = -EACCES;
2165			break;
2166		}
2167		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2168		pfn++;
2169	} while (pte++, addr += PAGE_SIZE, addr != end);
2170	arch_leave_lazy_mmu_mode();
2171	pte_unmap_unlock(pte - 1, ptl);
2172	return err;
2173}
2174
2175static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2176			unsigned long addr, unsigned long end,
2177			unsigned long pfn, pgprot_t prot)
2178{
2179	pmd_t *pmd;
2180	unsigned long next;
2181	int err;
2182
2183	pfn -= addr >> PAGE_SHIFT;
2184	pmd = pmd_alloc(mm, pud, addr);
2185	if (!pmd)
2186		return -ENOMEM;
2187	VM_BUG_ON(pmd_trans_huge(*pmd));
2188	do {
2189		next = pmd_addr_end(addr, end);
2190		err = remap_pte_range(mm, pmd, addr, next,
2191				pfn + (addr >> PAGE_SHIFT), prot);
2192		if (err)
2193			return err;
2194	} while (pmd++, addr = next, addr != end);
2195	return 0;
2196}
2197
2198static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2199			unsigned long addr, unsigned long end,
2200			unsigned long pfn, pgprot_t prot)
2201{
2202	pud_t *pud;
2203	unsigned long next;
2204	int err;
2205
2206	pfn -= addr >> PAGE_SHIFT;
2207	pud = pud_alloc(mm, p4d, addr);
2208	if (!pud)
2209		return -ENOMEM;
2210	do {
2211		next = pud_addr_end(addr, end);
2212		err = remap_pmd_range(mm, pud, addr, next,
2213				pfn + (addr >> PAGE_SHIFT), prot);
2214		if (err)
2215			return err;
2216	} while (pud++, addr = next, addr != end);
2217	return 0;
2218}
2219
2220static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2221			unsigned long addr, unsigned long end,
2222			unsigned long pfn, pgprot_t prot)
2223{
2224	p4d_t *p4d;
2225	unsigned long next;
2226	int err;
2227
2228	pfn -= addr >> PAGE_SHIFT;
2229	p4d = p4d_alloc(mm, pgd, addr);
2230	if (!p4d)
2231		return -ENOMEM;
2232	do {
2233		next = p4d_addr_end(addr, end);
2234		err = remap_pud_range(mm, p4d, addr, next,
2235				pfn + (addr >> PAGE_SHIFT), prot);
2236		if (err)
2237			return err;
2238	} while (p4d++, addr = next, addr != end);
2239	return 0;
2240}
2241
2242/**
2243 * remap_pfn_range - remap kernel memory to userspace
2244 * @vma: user vma to map to
2245 * @addr: target page aligned user address to start at
2246 * @pfn: page frame number of kernel physical memory address
2247 * @size: size of mapping area
2248 * @prot: page protection flags for this mapping
2249 *
2250 * Note: this is only safe if the mm semaphore is held when called.
2251 *
2252 * Return: %0 on success, negative error code otherwise.
2253 */
2254int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2255		    unsigned long pfn, unsigned long size, pgprot_t prot)
2256{
2257	pgd_t *pgd;
2258	unsigned long next;
2259	unsigned long end = addr + PAGE_ALIGN(size);
2260	struct mm_struct *mm = vma->vm_mm;
2261	unsigned long remap_pfn = pfn;
2262	int err;
2263
2264	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2265		return -EINVAL;
2266
2267	/*
2268	 * Physically remapped pages are special. Tell the
2269	 * rest of the world about it:
2270	 *   VM_IO tells people not to look at these pages
2271	 *	(accesses can have side effects).
2272	 *   VM_PFNMAP tells the core MM that the base pages are just
2273	 *	raw PFN mappings, and do not have a "struct page" associated
2274	 *	with them.
2275	 *   VM_DONTEXPAND
2276	 *      Disable vma merging and expanding with mremap().
2277	 *   VM_DONTDUMP
2278	 *      Omit vma from core dump, even when VM_IO turned off.
2279	 *
2280	 * There's a horrible special case to handle copy-on-write
2281	 * behaviour that some programs depend on. We mark the "original"
2282	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2283	 * See vm_normal_page() for details.
2284	 */
2285	if (is_cow_mapping(vma->vm_flags)) {
2286		if (addr != vma->vm_start || end != vma->vm_end)
2287			return -EINVAL;
2288		vma->vm_pgoff = pfn;
2289	}
2290
2291	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2292	if (err)
2293		return -EINVAL;
2294
2295	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2296
2297	BUG_ON(addr >= end);
2298	pfn -= addr >> PAGE_SHIFT;
2299	pgd = pgd_offset(mm, addr);
2300	flush_cache_range(vma, addr, end);
2301	do {
2302		next = pgd_addr_end(addr, end);
2303		err = remap_p4d_range(mm, pgd, addr, next,
2304				pfn + (addr >> PAGE_SHIFT), prot);
2305		if (err)
2306			break;
2307	} while (pgd++, addr = next, addr != end);
2308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2309	if (err)
2310		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2311
 
 
 
2312	return err;
2313}
2314EXPORT_SYMBOL(remap_pfn_range);
2315
2316/**
2317 * vm_iomap_memory - remap memory to userspace
2318 * @vma: user vma to map to
2319 * @start: start of the physical memory to be mapped
2320 * @len: size of area
2321 *
2322 * This is a simplified io_remap_pfn_range() for common driver use. The
2323 * driver just needs to give us the physical memory range to be mapped,
2324 * we'll figure out the rest from the vma information.
2325 *
2326 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2327 * whatever write-combining details or similar.
2328 *
2329 * Return: %0 on success, negative error code otherwise.
2330 */
2331int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2332{
2333	unsigned long vm_len, pfn, pages;
2334
2335	/* Check that the physical memory area passed in looks valid */
2336	if (start + len < start)
2337		return -EINVAL;
2338	/*
2339	 * You *really* shouldn't map things that aren't page-aligned,
2340	 * but we've historically allowed it because IO memory might
2341	 * just have smaller alignment.
2342	 */
2343	len += start & ~PAGE_MASK;
2344	pfn = start >> PAGE_SHIFT;
2345	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2346	if (pfn + pages < pfn)
2347		return -EINVAL;
2348
2349	/* We start the mapping 'vm_pgoff' pages into the area */
2350	if (vma->vm_pgoff > pages)
2351		return -EINVAL;
2352	pfn += vma->vm_pgoff;
2353	pages -= vma->vm_pgoff;
2354
2355	/* Can we fit all of the mapping? */
2356	vm_len = vma->vm_end - vma->vm_start;
2357	if (vm_len >> PAGE_SHIFT > pages)
2358		return -EINVAL;
2359
2360	/* Ok, let it rip */
2361	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2362}
2363EXPORT_SYMBOL(vm_iomap_memory);
2364
2365static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2366				     unsigned long addr, unsigned long end,
2367				     pte_fn_t fn, void *data, bool create,
2368				     pgtbl_mod_mask *mask)
2369{
2370	pte_t *pte;
2371	int err = 0;
2372	spinlock_t *ptl;
2373
2374	if (create) {
2375		pte = (mm == &init_mm) ?
2376			pte_alloc_kernel_track(pmd, addr, mask) :
2377			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2378		if (!pte)
2379			return -ENOMEM;
2380	} else {
2381		pte = (mm == &init_mm) ?
2382			pte_offset_kernel(pmd, addr) :
2383			pte_offset_map_lock(mm, pmd, addr, &ptl);
 
 
2384	}
2385
2386	BUG_ON(pmd_huge(*pmd));
2387
2388	arch_enter_lazy_mmu_mode();
2389
2390	do {
2391		if (create || !pte_none(*pte)) {
2392			err = fn(pte++, addr, data);
2393			if (err)
2394				break;
2395		}
2396	} while (addr += PAGE_SIZE, addr != end);
 
 
2397	*mask |= PGTBL_PTE_MODIFIED;
2398
2399	arch_leave_lazy_mmu_mode();
2400
2401	if (mm != &init_mm)
2402		pte_unmap_unlock(pte-1, ptl);
2403	return err;
2404}
2405
2406static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2407				     unsigned long addr, unsigned long end,
2408				     pte_fn_t fn, void *data, bool create,
2409				     pgtbl_mod_mask *mask)
2410{
2411	pmd_t *pmd;
2412	unsigned long next;
2413	int err = 0;
2414
2415	BUG_ON(pud_huge(*pud));
2416
2417	if (create) {
2418		pmd = pmd_alloc_track(mm, pud, addr, mask);
2419		if (!pmd)
2420			return -ENOMEM;
2421	} else {
2422		pmd = pmd_offset(pud, addr);
2423	}
2424	do {
2425		next = pmd_addr_end(addr, end);
2426		if (create || !pmd_none_or_clear_bad(pmd)) {
2427			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2428						 create, mask);
2429			if (err)
2430				break;
 
 
 
2431		}
 
 
 
 
2432	} while (pmd++, addr = next, addr != end);
 
2433	return err;
2434}
2435
2436static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2437				     unsigned long addr, unsigned long end,
2438				     pte_fn_t fn, void *data, bool create,
2439				     pgtbl_mod_mask *mask)
2440{
2441	pud_t *pud;
2442	unsigned long next;
2443	int err = 0;
2444
2445	if (create) {
2446		pud = pud_alloc_track(mm, p4d, addr, mask);
2447		if (!pud)
2448			return -ENOMEM;
2449	} else {
2450		pud = pud_offset(p4d, addr);
2451	}
2452	do {
2453		next = pud_addr_end(addr, end);
2454		if (create || !pud_none_or_clear_bad(pud)) {
2455			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2456						 create, mask);
2457			if (err)
2458				break;
 
 
 
2459		}
 
 
 
 
2460	} while (pud++, addr = next, addr != end);
 
2461	return err;
2462}
2463
2464static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2465				     unsigned long addr, unsigned long end,
2466				     pte_fn_t fn, void *data, bool create,
2467				     pgtbl_mod_mask *mask)
2468{
2469	p4d_t *p4d;
2470	unsigned long next;
2471	int err = 0;
2472
2473	if (create) {
2474		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2475		if (!p4d)
2476			return -ENOMEM;
2477	} else {
2478		p4d = p4d_offset(pgd, addr);
2479	}
2480	do {
2481		next = p4d_addr_end(addr, end);
2482		if (create || !p4d_none_or_clear_bad(p4d)) {
2483			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2484						 create, mask);
2485			if (err)
2486				break;
 
 
 
2487		}
 
 
 
 
2488	} while (p4d++, addr = next, addr != end);
 
2489	return err;
2490}
2491
2492static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2493				 unsigned long size, pte_fn_t fn,
2494				 void *data, bool create)
2495{
2496	pgd_t *pgd;
2497	unsigned long start = addr, next;
2498	unsigned long end = addr + size;
2499	pgtbl_mod_mask mask = 0;
2500	int err = 0;
2501
2502	if (WARN_ON(addr >= end))
2503		return -EINVAL;
2504
2505	pgd = pgd_offset(mm, addr);
2506	do {
2507		next = pgd_addr_end(addr, end);
2508		if (!create && pgd_none_or_clear_bad(pgd))
2509			continue;
2510		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
 
 
 
 
 
 
 
 
2511		if (err)
2512			break;
2513	} while (pgd++, addr = next, addr != end);
2514
2515	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2516		arch_sync_kernel_mappings(start, start + size);
2517
2518	return err;
2519}
2520
2521/*
2522 * Scan a region of virtual memory, filling in page tables as necessary
2523 * and calling a provided function on each leaf page table.
2524 */
2525int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2526			unsigned long size, pte_fn_t fn, void *data)
2527{
2528	return __apply_to_page_range(mm, addr, size, fn, data, true);
2529}
2530EXPORT_SYMBOL_GPL(apply_to_page_range);
2531
2532/*
2533 * Scan a region of virtual memory, calling a provided function on
2534 * each leaf page table where it exists.
2535 *
2536 * Unlike apply_to_page_range, this does _not_ fill in page tables
2537 * where they are absent.
2538 */
2539int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2540				 unsigned long size, pte_fn_t fn, void *data)
2541{
2542	return __apply_to_page_range(mm, addr, size, fn, data, false);
2543}
2544EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2545
2546/*
2547 * handle_pte_fault chooses page fault handler according to an entry which was
2548 * read non-atomically.  Before making any commitment, on those architectures
2549 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2550 * parts, do_swap_page must check under lock before unmapping the pte and
2551 * proceeding (but do_wp_page is only called after already making such a check;
2552 * and do_anonymous_page can safely check later on).
2553 */
2554static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2555				pte_t *page_table, pte_t orig_pte)
2556{
2557	int same = 1;
2558#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2559	if (sizeof(pte_t) > sizeof(unsigned long)) {
2560		spinlock_t *ptl = pte_lockptr(mm, pmd);
2561		spin_lock(ptl);
2562		same = pte_same(*page_table, orig_pte);
2563		spin_unlock(ptl);
2564	}
2565#endif
2566	pte_unmap(page_table);
 
2567	return same;
2568}
2569
2570static inline bool cow_user_page(struct page *dst, struct page *src,
2571				 struct vm_fault *vmf)
 
 
 
 
 
 
2572{
2573	bool ret;
2574	void *kaddr;
2575	void __user *uaddr;
2576	bool locked = false;
2577	struct vm_area_struct *vma = vmf->vma;
2578	struct mm_struct *mm = vma->vm_mm;
2579	unsigned long addr = vmf->address;
2580
2581	if (likely(src)) {
2582		copy_user_highpage(dst, src, addr, vma);
2583		return true;
 
 
 
2584	}
2585
2586	/*
2587	 * If the source page was a PFN mapping, we don't have
2588	 * a "struct page" for it. We do a best-effort copy by
2589	 * just copying from the original user address. If that
2590	 * fails, we just zero-fill it. Live with it.
2591	 */
2592	kaddr = kmap_atomic(dst);
 
2593	uaddr = (void __user *)(addr & PAGE_MASK);
2594
2595	/*
2596	 * On architectures with software "accessed" bits, we would
2597	 * take a double page fault, so mark it accessed here.
2598	 */
2599	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
 
2600		pte_t entry;
2601
2602		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2603		locked = true;
2604		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2605			/*
2606			 * Other thread has already handled the fault
2607			 * and update local tlb only
2608			 */
2609			update_mmu_tlb(vma, addr, vmf->pte);
2610			ret = false;
 
2611			goto pte_unlock;
2612		}
2613
2614		entry = pte_mkyoung(vmf->orig_pte);
2615		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2616			update_mmu_cache(vma, addr, vmf->pte);
2617	}
2618
2619	/*
2620	 * This really shouldn't fail, because the page is there
2621	 * in the page tables. But it might just be unreadable,
2622	 * in which case we just give up and fill the result with
2623	 * zeroes.
2624	 */
2625	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2626		if (locked)
2627			goto warn;
2628
2629		/* Re-validate under PTL if the page is still mapped */
2630		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2631		locked = true;
2632		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2633			/* The PTE changed under us, update local tlb */
2634			update_mmu_tlb(vma, addr, vmf->pte);
2635			ret = false;
 
2636			goto pte_unlock;
2637		}
2638
2639		/*
2640		 * The same page can be mapped back since last copy attempt.
2641		 * Try to copy again under PTL.
2642		 */
2643		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2644			/*
2645			 * Give a warn in case there can be some obscure
2646			 * use-case
2647			 */
2648warn:
2649			WARN_ON_ONCE(1);
2650			clear_page(kaddr);
2651		}
2652	}
2653
2654	ret = true;
2655
2656pte_unlock:
2657	if (locked)
2658		pte_unmap_unlock(vmf->pte, vmf->ptl);
2659	kunmap_atomic(kaddr);
 
2660	flush_dcache_page(dst);
2661
2662	return ret;
2663}
2664
2665static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2666{
2667	struct file *vm_file = vma->vm_file;
2668
2669	if (vm_file)
2670		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2671
2672	/*
2673	 * Special mappings (e.g. VDSO) do not have any file so fake
2674	 * a default GFP_KERNEL for them.
2675	 */
2676	return GFP_KERNEL;
2677}
2678
2679/*
2680 * Notify the address space that the page is about to become writable so that
2681 * it can prohibit this or wait for the page to get into an appropriate state.
2682 *
2683 * We do this without the lock held, so that it can sleep if it needs to.
2684 */
2685static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2686{
2687	vm_fault_t ret;
2688	struct page *page = vmf->page;
2689	unsigned int old_flags = vmf->flags;
2690
2691	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2692
2693	if (vmf->vma->vm_file &&
2694	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2695		return VM_FAULT_SIGBUS;
2696
2697	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2698	/* Restore original flags so that caller is not surprised */
2699	vmf->flags = old_flags;
2700	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2701		return ret;
2702	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2703		lock_page(page);
2704		if (!page->mapping) {
2705			unlock_page(page);
2706			return 0; /* retry */
2707		}
2708		ret |= VM_FAULT_LOCKED;
2709	} else
2710		VM_BUG_ON_PAGE(!PageLocked(page), page);
2711	return ret;
2712}
2713
2714/*
2715 * Handle dirtying of a page in shared file mapping on a write fault.
2716 *
2717 * The function expects the page to be locked and unlocks it.
2718 */
2719static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2720{
2721	struct vm_area_struct *vma = vmf->vma;
2722	struct address_space *mapping;
2723	struct page *page = vmf->page;
2724	bool dirtied;
2725	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2726
2727	dirtied = set_page_dirty(page);
2728	VM_BUG_ON_PAGE(PageAnon(page), page);
2729	/*
2730	 * Take a local copy of the address_space - page.mapping may be zeroed
2731	 * by truncate after unlock_page().   The address_space itself remains
2732	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2733	 * release semantics to prevent the compiler from undoing this copying.
2734	 */
2735	mapping = page_rmapping(page);
2736	unlock_page(page);
2737
2738	if (!page_mkwrite)
2739		file_update_time(vma->vm_file);
2740
2741	/*
2742	 * Throttle page dirtying rate down to writeback speed.
2743	 *
2744	 * mapping may be NULL here because some device drivers do not
2745	 * set page.mapping but still dirty their pages
2746	 *
2747	 * Drop the mmap_lock before waiting on IO, if we can. The file
2748	 * is pinning the mapping, as per above.
2749	 */
2750	if ((dirtied || page_mkwrite) && mapping) {
2751		struct file *fpin;
2752
2753		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2754		balance_dirty_pages_ratelimited(mapping);
2755		if (fpin) {
2756			fput(fpin);
2757			return VM_FAULT_RETRY;
2758		}
2759	}
2760
2761	return 0;
2762}
2763
2764/*
2765 * Handle write page faults for pages that can be reused in the current vma
2766 *
2767 * This can happen either due to the mapping being with the VM_SHARED flag,
2768 * or due to us being the last reference standing to the page. In either
2769 * case, all we need to do here is to mark the page as writable and update
2770 * any related book-keeping.
2771 */
2772static inline void wp_page_reuse(struct vm_fault *vmf)
2773	__releases(vmf->ptl)
2774{
2775	struct vm_area_struct *vma = vmf->vma;
2776	struct page *page = vmf->page;
2777	pte_t entry;
2778	/*
2779	 * Clear the pages cpupid information as the existing
2780	 * information potentially belongs to a now completely
2781	 * unrelated process.
2782	 */
2783	if (page)
2784		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
 
 
 
 
 
 
2785
2786	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2787	entry = pte_mkyoung(vmf->orig_pte);
2788	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2789	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2790		update_mmu_cache(vma, vmf->address, vmf->pte);
2791	pte_unmap_unlock(vmf->pte, vmf->ptl);
2792	count_vm_event(PGREUSE);
2793}
2794
2795/*
2796 * Handle the case of a page which we actually need to copy to a new page.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797 *
2798 * Called with mmap_lock locked and the old page referenced, but
2799 * without the ptl held.
2800 *
2801 * High level logic flow:
2802 *
2803 * - Allocate a page, copy the content of the old page to the new one.
2804 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2805 * - Take the PTL. If the pte changed, bail out and release the allocated page
2806 * - If the pte is still the way we remember it, update the page table and all
2807 *   relevant references. This includes dropping the reference the page-table
2808 *   held to the old page, as well as updating the rmap.
2809 * - In any case, unlock the PTL and drop the reference we took to the old page.
2810 */
2811static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2812{
 
2813	struct vm_area_struct *vma = vmf->vma;
2814	struct mm_struct *mm = vma->vm_mm;
2815	struct page *old_page = vmf->page;
2816	struct page *new_page = NULL;
2817	pte_t entry;
2818	int page_copied = 0;
2819	struct mmu_notifier_range range;
 
 
2820
2821	if (unlikely(anon_vma_prepare(vma)))
 
 
 
 
 
 
 
 
 
 
2822		goto oom;
2823
2824	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2825		new_page = alloc_zeroed_user_highpage_movable(vma,
2826							      vmf->address);
2827		if (!new_page)
2828			goto oom;
2829	} else {
2830		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2831				vmf->address);
2832		if (!new_page)
2833			goto oom;
2834
2835		if (!cow_user_page(new_page, old_page, vmf)) {
 
2836			/*
2837			 * COW failed, if the fault was solved by other,
2838			 * it's fine. If not, userspace would re-fault on
2839			 * the same address and we will handle the fault
2840			 * from the second attempt.
 
2841			 */
2842			put_page(new_page);
2843			if (old_page)
2844				put_page(old_page);
2845			return 0;
 
 
2846		}
 
2847	}
2848
2849	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2850		goto oom_free_new;
2851	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2852
2853	__SetPageUptodate(new_page);
2854
2855	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2856				vmf->address & PAGE_MASK,
2857				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2858	mmu_notifier_invalidate_range_start(&range);
2859
2860	/*
2861	 * Re-check the pte - we dropped the lock
2862	 */
2863	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2864	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2865		if (old_page) {
2866			if (!PageAnon(old_page)) {
2867				dec_mm_counter_fast(mm,
2868						mm_counter_file(old_page));
2869				inc_mm_counter_fast(mm, MM_ANONPAGES);
2870			}
2871		} else {
2872			inc_mm_counter_fast(mm, MM_ANONPAGES);
 
2873		}
2874		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2875		entry = mk_pte(new_page, vma->vm_page_prot);
2876		entry = pte_sw_mkyoung(entry);
2877		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 
 
 
 
 
 
 
 
2878		/*
2879		 * Clear the pte entry and flush it first, before updating the
2880		 * pte with the new entry. This will avoid a race condition
2881		 * seen in the presence of one thread doing SMC and another
2882		 * thread doing COW.
 
2883		 */
2884		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2885		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2886		lru_cache_add_inactive_or_unevictable(new_page, vma);
2887		/*
2888		 * We call the notify macro here because, when using secondary
2889		 * mmu page tables (such as kvm shadow page tables), we want the
2890		 * new page to be mapped directly into the secondary page table.
2891		 */
 
2892		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2893		update_mmu_cache(vma, vmf->address, vmf->pte);
2894		if (old_page) {
2895			/*
2896			 * Only after switching the pte to the new page may
2897			 * we remove the mapcount here. Otherwise another
2898			 * process may come and find the rmap count decremented
2899			 * before the pte is switched to the new page, and
2900			 * "reuse" the old page writing into it while our pte
2901			 * here still points into it and can be read by other
2902			 * threads.
2903			 *
2904			 * The critical issue is to order this
2905			 * page_remove_rmap with the ptp_clear_flush above.
2906			 * Those stores are ordered by (if nothing else,)
2907			 * the barrier present in the atomic_add_negative
2908			 * in page_remove_rmap.
2909			 *
2910			 * Then the TLB flush in ptep_clear_flush ensures that
2911			 * no process can access the old page before the
2912			 * decremented mapcount is visible. And the old page
2913			 * cannot be reused until after the decremented
2914			 * mapcount is visible. So transitively, TLBs to
2915			 * old page will be flushed before it can be reused.
2916			 */
2917			page_remove_rmap(old_page, false);
2918		}
2919
2920		/* Free the old page.. */
2921		new_page = old_page;
2922		page_copied = 1;
2923	} else {
 
2924		update_mmu_tlb(vma, vmf->address, vmf->pte);
 
2925	}
2926
2927	if (new_page)
2928		put_page(new_page);
2929
2930	pte_unmap_unlock(vmf->pte, vmf->ptl);
2931	/*
2932	 * No need to double call mmu_notifier->invalidate_range() callback as
2933	 * the above ptep_clear_flush_notify() did already call it.
2934	 */
2935	mmu_notifier_invalidate_range_only_end(&range);
2936	if (old_page) {
2937		/*
2938		 * Don't let another task, with possibly unlocked vma,
2939		 * keep the mlocked page.
2940		 */
2941		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2942			lock_page(old_page);	/* LRU manipulation */
2943			if (PageMlocked(old_page))
2944				munlock_vma_page(old_page);
2945			unlock_page(old_page);
2946		}
2947		put_page(old_page);
2948	}
2949	return page_copied ? VM_FAULT_WRITE : 0;
2950oom_free_new:
2951	put_page(new_page);
2952oom:
2953	if (old_page)
2954		put_page(old_page);
2955	return VM_FAULT_OOM;
 
 
 
 
2956}
2957
2958/**
2959 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2960 *			  writeable once the page is prepared
2961 *
2962 * @vmf: structure describing the fault
 
2963 *
2964 * This function handles all that is needed to finish a write page fault in a
2965 * shared mapping due to PTE being read-only once the mapped page is prepared.
2966 * It handles locking of PTE and modifying it.
2967 *
2968 * The function expects the page to be locked or other protection against
2969 * concurrent faults / writeback (such as DAX radix tree locks).
2970 *
2971 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2972 * we acquired PTE lock.
2973 */
2974vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2975{
2976	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2977	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2978				       &vmf->ptl);
 
 
2979	/*
2980	 * We might have raced with another page fault while we released the
2981	 * pte_offset_map_lock.
2982	 */
2983	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2984		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2985		pte_unmap_unlock(vmf->pte, vmf->ptl);
2986		return VM_FAULT_NOPAGE;
2987	}
2988	wp_page_reuse(vmf);
2989	return 0;
2990}
2991
2992/*
2993 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2994 * mapping
2995 */
2996static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2997{
2998	struct vm_area_struct *vma = vmf->vma;
2999
3000	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3001		vm_fault_t ret;
3002
3003		pte_unmap_unlock(vmf->pte, vmf->ptl);
 
 
 
 
3004		vmf->flags |= FAULT_FLAG_MKWRITE;
3005		ret = vma->vm_ops->pfn_mkwrite(vmf);
3006		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3007			return ret;
3008		return finish_mkwrite_fault(vmf);
3009	}
3010	wp_page_reuse(vmf);
3011	return VM_FAULT_WRITE;
3012}
3013
3014static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3015	__releases(vmf->ptl)
3016{
3017	struct vm_area_struct *vma = vmf->vma;
3018	vm_fault_t ret = VM_FAULT_WRITE;
3019
3020	get_page(vmf->page);
3021
3022	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3023		vm_fault_t tmp;
3024
3025		pte_unmap_unlock(vmf->pte, vmf->ptl);
3026		tmp = do_page_mkwrite(vmf);
 
 
 
 
 
 
3027		if (unlikely(!tmp || (tmp &
3028				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3029			put_page(vmf->page);
3030			return tmp;
3031		}
3032		tmp = finish_mkwrite_fault(vmf);
3033		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3034			unlock_page(vmf->page);
3035			put_page(vmf->page);
3036			return tmp;
3037		}
3038	} else {
3039		wp_page_reuse(vmf);
3040		lock_page(vmf->page);
3041	}
3042	ret |= fault_dirty_shared_page(vmf);
3043	put_page(vmf->page);
3044
3045	return ret;
3046}
3047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048/*
3049 * This routine handles present pages, when users try to write
3050 * to a shared page. It is done by copying the page to a new address
3051 * and decrementing the shared-page counter for the old page.
 
 
 
 
3052 *
3053 * Note that this routine assumes that the protection checks have been
3054 * done by the caller (the low-level page fault routine in most cases).
3055 * Thus we can safely just mark it writable once we've done any necessary
3056 * COW.
3057 *
3058 * We also mark the page dirty at this point even though the page will
3059 * change only once the write actually happens. This avoids a few races,
3060 * and potentially makes it more efficient.
3061 *
3062 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3063 * but allow concurrent faults), with pte both mapped and locked.
3064 * We return with mmap_lock still held, but pte unmapped and unlocked.
3065 */
3066static vm_fault_t do_wp_page(struct vm_fault *vmf)
3067	__releases(vmf->ptl)
3068{
 
3069	struct vm_area_struct *vma = vmf->vma;
 
 
3070
3071	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3072		pte_unmap_unlock(vmf->pte, vmf->ptl);
3073		return handle_userfault(vmf, VM_UFFD_WP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3074	}
3075
3076	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3077	if (!vmf->page) {
 
 
 
 
 
 
 
 
3078		/*
3079		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3080		 * VM_PFNMAP VMA.
3081		 *
3082		 * We should not cow pages in a shared writeable mapping.
3083		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3084		 */
3085		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3086				     (VM_WRITE|VM_SHARED))
3087			return wp_pfn_shared(vmf);
3088
3089		pte_unmap_unlock(vmf->pte, vmf->ptl);
3090		return wp_page_copy(vmf);
3091	}
3092
3093	/*
3094	 * Take out anonymous pages first, anonymous shared vmas are
3095	 * not dirty accountable.
 
 
 
3096	 */
3097	if (PageAnon(vmf->page)) {
3098		struct page *page = vmf->page;
3099
3100		/* PageKsm() doesn't necessarily raise the page refcount */
3101		if (PageKsm(page) || page_count(page) != 1)
3102			goto copy;
3103		if (!trylock_page(page))
3104			goto copy;
3105		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3106			unlock_page(page);
3107			goto copy;
3108		}
3109		/*
3110		 * Ok, we've got the only map reference, and the only
3111		 * page count reference, and the page is locked,
3112		 * it's dark out, and we're wearing sunglasses. Hit it.
3113		 */
3114		unlock_page(page);
3115		wp_page_reuse(vmf);
3116		return VM_FAULT_WRITE;
3117	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3118					(VM_WRITE|VM_SHARED))) {
3119		return wp_page_shared(vmf);
3120	}
3121copy:
3122	/*
3123	 * Ok, we need to copy. Oh, well..
3124	 */
3125	get_page(vmf->page);
 
3126
3127	pte_unmap_unlock(vmf->pte, vmf->ptl);
 
 
 
 
3128	return wp_page_copy(vmf);
3129}
3130
3131static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3132		unsigned long start_addr, unsigned long end_addr,
3133		struct zap_details *details)
3134{
3135	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3136}
3137
3138static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
 
 
3139					    struct zap_details *details)
3140{
3141	struct vm_area_struct *vma;
3142	pgoff_t vba, vea, zba, zea;
3143
3144	vma_interval_tree_foreach(vma, root,
3145			details->first_index, details->last_index) {
3146
3147		vba = vma->vm_pgoff;
3148		vea = vba + vma_pages(vma) - 1;
3149		zba = details->first_index;
3150		if (zba < vba)
3151			zba = vba;
3152		zea = details->last_index;
3153		if (zea > vea)
3154			zea = vea;
3155
3156		unmap_mapping_range_vma(vma,
3157			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3158			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3159				details);
3160	}
3161}
3162
3163/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3164 * unmap_mapping_pages() - Unmap pages from processes.
3165 * @mapping: The address space containing pages to be unmapped.
3166 * @start: Index of first page to be unmapped.
3167 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3168 * @even_cows: Whether to unmap even private COWed pages.
3169 *
3170 * Unmap the pages in this address space from any userspace process which
3171 * has them mmaped.  Generally, you want to remove COWed pages as well when
3172 * a file is being truncated, but not when invalidating pages from the page
3173 * cache.
3174 */
3175void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3176		pgoff_t nr, bool even_cows)
3177{
3178	struct zap_details details = { };
 
 
3179
3180	details.check_mapping = even_cows ? NULL : mapping;
3181	details.first_index = start;
3182	details.last_index = start + nr - 1;
3183	if (details.last_index < details.first_index)
3184		details.last_index = ULONG_MAX;
3185
3186	i_mmap_lock_write(mapping);
3187	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3188		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3189	i_mmap_unlock_write(mapping);
 
3190}
 
3191
3192/**
3193 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3194 * address_space corresponding to the specified byte range in the underlying
3195 * file.
3196 *
3197 * @mapping: the address space containing mmaps to be unmapped.
3198 * @holebegin: byte in first page to unmap, relative to the start of
3199 * the underlying file.  This will be rounded down to a PAGE_SIZE
3200 * boundary.  Note that this is different from truncate_pagecache(), which
3201 * must keep the partial page.  In contrast, we must get rid of
3202 * partial pages.
3203 * @holelen: size of prospective hole in bytes.  This will be rounded
3204 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3205 * end of the file.
3206 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3207 * but 0 when invalidating pagecache, don't throw away private data.
3208 */
3209void unmap_mapping_range(struct address_space *mapping,
3210		loff_t const holebegin, loff_t const holelen, int even_cows)
3211{
3212	pgoff_t hba = holebegin >> PAGE_SHIFT;
3213	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3214
3215	/* Check for overflow. */
3216	if (sizeof(holelen) > sizeof(hlen)) {
3217		long long holeend =
3218			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3219		if (holeend & ~(long long)ULONG_MAX)
3220			hlen = ULONG_MAX - hba + 1;
3221	}
3222
3223	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3224}
3225EXPORT_SYMBOL(unmap_mapping_range);
3226
3227/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3228 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3229 * but allow concurrent faults), and pte mapped but not yet locked.
3230 * We return with pte unmapped and unlocked.
3231 *
3232 * We return with the mmap_lock locked or unlocked in the same cases
3233 * as does filemap_fault().
3234 */
3235vm_fault_t do_swap_page(struct vm_fault *vmf)
3236{
3237	struct vm_area_struct *vma = vmf->vma;
3238	struct page *page = NULL, *swapcache;
 
 
 
 
 
3239	swp_entry_t entry;
3240	pte_t pte;
3241	int locked;
3242	int exclusive = 0;
3243	vm_fault_t ret = 0;
3244	void *shadow = NULL;
3245
3246	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3247		goto out;
3248
3249	entry = pte_to_swp_entry(vmf->orig_pte);
3250	if (unlikely(non_swap_entry(entry))) {
3251		if (is_migration_entry(entry)) {
3252			migration_entry_wait(vma->vm_mm, vmf->pmd,
3253					     vmf->address);
 
 
 
3254		} else if (is_device_private_entry(entry)) {
3255			vmf->page = device_private_entry_to_page(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3256			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
 
3257		} else if (is_hwpoison_entry(entry)) {
3258			ret = VM_FAULT_HWPOISON;
 
 
3259		} else {
3260			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3261			ret = VM_FAULT_SIGBUS;
3262		}
3263		goto out;
3264	}
3265
 
 
 
 
3266
3267	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3268	page = lookup_swap_cache(entry, vma, vmf->address);
3269	swapcache = page;
3270
3271	if (!page) {
3272		struct swap_info_struct *si = swp_swap_info(entry);
3273
 
3274		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3275		    __swap_count(entry) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3276			/* skip swapcache */
3277			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3278							vmf->address);
3279			if (page) {
3280				int err;
3281
3282				__SetPageLocked(page);
3283				__SetPageSwapBacked(page);
3284				set_page_private(page, entry.val);
3285
3286				/* Tell memcg to use swap ownership records */
3287				SetPageSwapCache(page);
3288				err = mem_cgroup_charge(page, vma->vm_mm,
3289							GFP_KERNEL);
3290				ClearPageSwapCache(page);
3291				if (err) {
3292					ret = VM_FAULT_OOM;
3293					goto out_page;
3294				}
 
3295
3296				shadow = get_shadow_from_swap_cache(entry);
3297				if (shadow)
3298					workingset_refault(page, shadow);
 
 
3299
3300				lru_cache_add(page);
3301				swap_readpage(page, true);
 
 
3302			}
3303		} else {
3304			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3305						vmf);
3306			swapcache = page;
 
 
3307		}
3308
3309		if (!page) {
3310			/*
3311			 * Back out if somebody else faulted in this pte
3312			 * while we released the pte lock.
3313			 */
3314			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3315					vmf->address, &vmf->ptl);
3316			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
 
3317				ret = VM_FAULT_OOM;
3318			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3319			goto unlock;
3320		}
3321
3322		/* Had to read the page from swap area: Major fault */
3323		ret = VM_FAULT_MAJOR;
3324		count_vm_event(PGMAJFAULT);
3325		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3326	} else if (PageHWPoison(page)) {
3327		/*
3328		 * hwpoisoned dirty swapcache pages are kept for killing
3329		 * owner processes (which may be unknown at hwpoison time)
3330		 */
3331		ret = VM_FAULT_HWPOISON;
3332		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3333		goto out_release;
3334	}
3335
3336	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3337
3338	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3339	if (!locked) {
3340		ret |= VM_FAULT_RETRY;
3341		goto out_release;
3342	}
3343
3344	/*
3345	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3346	 * release the swapcache from under us.  The page pin, and pte_same
3347	 * test below, are not enough to exclude that.  Even if it is still
3348	 * swapcache, we need to check that the page's swap has not changed.
3349	 */
3350	if (unlikely((!PageSwapCache(page) ||
3351			page_private(page) != entry.val)) && swapcache)
3352		goto out_page;
3353
3354	page = ksm_might_need_to_copy(page, vma, vmf->address);
3355	if (unlikely(!page)) {
3356		ret = VM_FAULT_OOM;
3357		page = swapcache;
3358		goto out_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359	}
3360
3361	cgroup_throttle_swaprate(page, GFP_KERNEL);
3362
3363	/*
3364	 * Back out if somebody else already faulted in this pte.
3365	 */
3366	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3367			&vmf->ptl);
3368	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3369		goto out_nomap;
3370
3371	if (unlikely(!PageUptodate(page))) {
3372		ret = VM_FAULT_SIGBUS;
3373		goto out_nomap;
3374	}
3375
3376	/*
3377	 * The page isn't present yet, go ahead with the fault.
3378	 *
3379	 * Be careful about the sequence of operations here.
3380	 * To get its accounting right, reuse_swap_page() must be called
3381	 * while the page is counted on swap but not yet in mapcount i.e.
3382	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3383	 * must be called after the swap_free(), or it will never succeed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3384	 */
 
3385
3386	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3387	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
 
 
 
 
 
 
 
 
 
3388	pte = mk_pte(page, vma->vm_page_prot);
3389	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3390		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3391		vmf->flags &= ~FAULT_FLAG_WRITE;
3392		ret |= VM_FAULT_WRITE;
3393		exclusive = RMAP_EXCLUSIVE;
 
 
 
 
 
 
 
 
 
3394	}
3395	flush_icache_page(vma, page);
3396	if (pte_swp_soft_dirty(vmf->orig_pte))
3397		pte = pte_mksoft_dirty(pte);
3398	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3399		pte = pte_mkuffd_wp(pte);
3400		pte = pte_wrprotect(pte);
3401	}
3402	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3403	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3404	vmf->orig_pte = pte;
3405
3406	/* ksm created a completely new copy */
3407	if (unlikely(page != swapcache && swapcache)) {
3408		page_add_new_anon_rmap(page, vma, vmf->address, false);
3409		lru_cache_add_inactive_or_unevictable(page, vma);
3410	} else {
3411		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
 
3412	}
3413
3414	swap_free(entry);
3415	if (mem_cgroup_swap_full(page) ||
3416	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3417		try_to_free_swap(page);
3418	unlock_page(page);
3419	if (page != swapcache && swapcache) {
 
3420		/*
3421		 * Hold the lock to avoid the swap entry to be reused
3422		 * until we take the PT lock for the pte_same() check
3423		 * (to avoid false positives from pte_same). For
3424		 * further safety release the lock after the swap_free
3425		 * so that the swap count won't change under a
3426		 * parallel locked swapcache.
3427		 */
3428		unlock_page(swapcache);
3429		put_page(swapcache);
3430	}
3431
3432	if (vmf->flags & FAULT_FLAG_WRITE) {
3433		ret |= do_wp_page(vmf);
3434		if (ret & VM_FAULT_ERROR)
3435			ret &= VM_FAULT_ERROR;
3436		goto out;
3437	}
3438
3439	/* No need to invalidate - it was non-present before */
3440	update_mmu_cache(vma, vmf->address, vmf->pte);
3441unlock:
3442	pte_unmap_unlock(vmf->pte, vmf->ptl);
 
3443out:
 
 
 
 
 
3444	return ret;
3445out_nomap:
3446	pte_unmap_unlock(vmf->pte, vmf->ptl);
 
3447out_page:
3448	unlock_page(page);
3449out_release:
3450	put_page(page);
3451	if (page != swapcache && swapcache) {
3452		unlock_page(swapcache);
3453		put_page(swapcache);
3454	}
 
 
 
 
3455	return ret;
3456}
3457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3458/*
3459 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3460 * but allow concurrent faults), and pte mapped but not yet locked.
3461 * We return with mmap_lock still held, but pte unmapped and unlocked.
3462 */
3463static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3464{
 
3465	struct vm_area_struct *vma = vmf->vma;
3466	struct page *page;
 
3467	vm_fault_t ret = 0;
 
3468	pte_t entry;
 
3469
3470	/* File mapping without ->vm_ops ? */
3471	if (vma->vm_flags & VM_SHARED)
3472		return VM_FAULT_SIGBUS;
3473
3474	/*
3475	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3476	 * pte_offset_map() on pmds where a huge pmd might be created
3477	 * from a different thread.
3478	 *
3479	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3480	 * parallel threads are excluded by other means.
3481	 *
3482	 * Here we only have mmap_read_lock(mm).
3483	 */
3484	if (pte_alloc(vma->vm_mm, vmf->pmd))
3485		return VM_FAULT_OOM;
3486
3487	/* See the comment in pte_alloc_one_map() */
3488	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3489		return 0;
3490
3491	/* Use the zero-page for reads */
3492	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3493			!mm_forbids_zeropage(vma->vm_mm)) {
3494		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3495						vma->vm_page_prot));
3496		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3497				vmf->address, &vmf->ptl);
3498		if (!pte_none(*vmf->pte)) {
 
 
3499			update_mmu_tlb(vma, vmf->address, vmf->pte);
3500			goto unlock;
3501		}
3502		ret = check_stable_address_space(vma->vm_mm);
3503		if (ret)
3504			goto unlock;
3505		/* Deliver the page fault to userland, check inside PT lock */
3506		if (userfaultfd_missing(vma)) {
3507			pte_unmap_unlock(vmf->pte, vmf->ptl);
3508			return handle_userfault(vmf, VM_UFFD_MISSING);
3509		}
3510		goto setpte;
3511	}
3512
3513	/* Allocate our own private page. */
3514	if (unlikely(anon_vma_prepare(vma)))
3515		goto oom;
3516	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3517	if (!page)
 
 
 
3518		goto oom;
3519
3520	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3521		goto oom_free_page;
3522	cgroup_throttle_swaprate(page, GFP_KERNEL);
3523
3524	/*
3525	 * The memory barrier inside __SetPageUptodate makes sure that
3526	 * preceding stores to the page contents become visible before
3527	 * the set_pte_at() write.
3528	 */
3529	__SetPageUptodate(page);
3530
3531	entry = mk_pte(page, vma->vm_page_prot);
3532	entry = pte_sw_mkyoung(entry);
3533	if (vma->vm_flags & VM_WRITE)
3534		entry = pte_mkwrite(pte_mkdirty(entry));
3535
3536	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3537			&vmf->ptl);
3538	if (!pte_none(*vmf->pte)) {
3539		update_mmu_cache(vma, vmf->address, vmf->pte);
 
 
 
 
 
3540		goto release;
3541	}
3542
3543	ret = check_stable_address_space(vma->vm_mm);
3544	if (ret)
3545		goto release;
3546
3547	/* Deliver the page fault to userland, check inside PT lock */
3548	if (userfaultfd_missing(vma)) {
3549		pte_unmap_unlock(vmf->pte, vmf->ptl);
3550		put_page(page);
3551		return handle_userfault(vmf, VM_UFFD_MISSING);
3552	}
3553
3554	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3555	page_add_new_anon_rmap(page, vma, vmf->address, false);
3556	lru_cache_add_inactive_or_unevictable(page, vma);
 
3557setpte:
3558	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
 
 
3559
3560	/* No need to invalidate - it was non-present before */
3561	update_mmu_cache(vma, vmf->address, vmf->pte);
3562unlock:
3563	pte_unmap_unlock(vmf->pte, vmf->ptl);
 
3564	return ret;
3565release:
3566	put_page(page);
3567	goto unlock;
3568oom_free_page:
3569	put_page(page);
3570oom:
3571	return VM_FAULT_OOM;
3572}
3573
3574/*
3575 * The mmap_lock must have been held on entry, and may have been
3576 * released depending on flags and vma->vm_ops->fault() return value.
3577 * See filemap_fault() and __lock_page_retry().
3578 */
3579static vm_fault_t __do_fault(struct vm_fault *vmf)
3580{
3581	struct vm_area_struct *vma = vmf->vma;
 
3582	vm_fault_t ret;
3583
3584	/*
3585	 * Preallocate pte before we take page_lock because this might lead to
3586	 * deadlocks for memcg reclaim which waits for pages under writeback:
3587	 *				lock_page(A)
3588	 *				SetPageWriteback(A)
3589	 *				unlock_page(A)
3590	 * lock_page(B)
3591	 *				lock_page(B)
3592	 * pte_alloc_pne
3593	 *   shrink_page_list
3594	 *     wait_on_page_writeback(A)
3595	 *				SetPageWriteback(B)
3596	 *				unlock_page(B)
3597	 *				# flush A, B to clear the writeback
3598	 */
3599	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3600		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3601		if (!vmf->prealloc_pte)
3602			return VM_FAULT_OOM;
3603		smp_wmb(); /* See comment in __pte_alloc() */
3604	}
3605
3606	ret = vma->vm_ops->fault(vmf);
3607	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3608			    VM_FAULT_DONE_COW)))
3609		return ret;
3610
 
3611	if (unlikely(PageHWPoison(vmf->page))) {
3612		if (ret & VM_FAULT_LOCKED)
3613			unlock_page(vmf->page);
3614		put_page(vmf->page);
 
 
 
 
 
 
 
3615		vmf->page = NULL;
3616		return VM_FAULT_HWPOISON;
3617	}
3618
3619	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3620		lock_page(vmf->page);
3621	else
3622		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3623
3624	return ret;
3625}
3626
3627/*
3628 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3629 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3630 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3631 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3632 */
3633static int pmd_devmap_trans_unstable(pmd_t *pmd)
3634{
3635	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3636}
3637
3638static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3639{
3640	struct vm_area_struct *vma = vmf->vma;
3641
3642	if (!pmd_none(*vmf->pmd))
3643		goto map_pte;
3644	if (vmf->prealloc_pte) {
3645		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3646		if (unlikely(!pmd_none(*vmf->pmd))) {
3647			spin_unlock(vmf->ptl);
3648			goto map_pte;
3649		}
3650
3651		mm_inc_nr_ptes(vma->vm_mm);
3652		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3653		spin_unlock(vmf->ptl);
3654		vmf->prealloc_pte = NULL;
3655	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3656		return VM_FAULT_OOM;
3657	}
3658map_pte:
3659	/*
3660	 * If a huge pmd materialized under us just retry later.  Use
3661	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3662	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3663	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3664	 * running immediately after a huge pmd fault in a different thread of
3665	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3666	 * All we have to ensure is that it is a regular pmd that we can walk
3667	 * with pte_offset_map() and we can do that through an atomic read in
3668	 * C, which is what pmd_trans_unstable() provides.
3669	 */
3670	if (pmd_devmap_trans_unstable(vmf->pmd))
3671		return VM_FAULT_NOPAGE;
3672
3673	/*
3674	 * At this point we know that our vmf->pmd points to a page of ptes
3675	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3676	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3677	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3678	 * be valid and we will re-check to make sure the vmf->pte isn't
3679	 * pte_none() under vmf->ptl protection when we return to
3680	 * alloc_set_pte().
3681	 */
3682	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3683			&vmf->ptl);
3684	return 0;
3685}
3686
3687#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3688static void deposit_prealloc_pte(struct vm_fault *vmf)
3689{
3690	struct vm_area_struct *vma = vmf->vma;
3691
3692	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3693	/*
3694	 * We are going to consume the prealloc table,
3695	 * count that as nr_ptes.
3696	 */
3697	mm_inc_nr_ptes(vma->vm_mm);
3698	vmf->prealloc_pte = NULL;
3699}
3700
3701static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3702{
 
3703	struct vm_area_struct *vma = vmf->vma;
3704	bool write = vmf->flags & FAULT_FLAG_WRITE;
3705	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3706	pmd_t entry;
3707	int i;
3708	vm_fault_t ret;
3709
3710	if (!transhuge_vma_suitable(vma, haddr))
3711		return VM_FAULT_FALLBACK;
3712
3713	ret = VM_FAULT_FALLBACK;
3714	page = compound_head(page);
3715
3716	/*
3717	 * Archs like ppc64 need additonal space to store information
 
 
 
 
 
 
 
 
 
3718	 * related to pte entry. Use the preallocated table for that.
3719	 */
3720	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3721		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3722		if (!vmf->prealloc_pte)
3723			return VM_FAULT_OOM;
3724		smp_wmb(); /* See comment in __pte_alloc() */
3725	}
3726
3727	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3728	if (unlikely(!pmd_none(*vmf->pmd)))
3729		goto out;
3730
3731	for (i = 0; i < HPAGE_PMD_NR; i++)
3732		flush_icache_page(vma, page + i);
3733
3734	entry = mk_huge_pmd(page, vma->vm_page_prot);
3735	if (write)
3736		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3737
3738	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3739	page_add_file_rmap(page, true);
 
3740	/*
3741	 * deposit and withdraw with pmd lock held
3742	 */
3743	if (arch_needs_pgtable_deposit())
3744		deposit_prealloc_pte(vmf);
3745
3746	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3747
3748	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3749
3750	/* fault is handled */
3751	ret = 0;
3752	count_vm_event(THP_FILE_MAPPED);
3753out:
3754	spin_unlock(vmf->ptl);
3755	return ret;
3756}
3757#else
3758static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3759{
3760	BUILD_BUG();
3761	return 0;
3762}
3763#endif
3764
3765/**
3766 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3767 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3768 *
3769 * @vmf: fault environment
3770 * @page: page to map
3771 *
3772 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3773 * return.
3774 *
3775 * Target users are page handler itself and implementations of
3776 * vm_ops->map_pages.
3777 *
3778 * Return: %0 on success, %VM_FAULT_ code in case of error.
3779 */
3780vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
 
3781{
3782	struct vm_area_struct *vma = vmf->vma;
 
3783	bool write = vmf->flags & FAULT_FLAG_WRITE;
 
3784	pte_t entry;
3785	vm_fault_t ret;
3786
3787	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3788		ret = do_set_pmd(vmf, page);
3789		if (ret != VM_FAULT_FALLBACK)
3790			return ret;
3791	}
3792
3793	if (!vmf->pte) {
3794		ret = pte_alloc_one_map(vmf);
3795		if (ret)
3796			return ret;
3797	}
3798
3799	/* Re-check under ptl */
3800	if (unlikely(!pte_none(*vmf->pte))) {
3801		update_mmu_tlb(vma, vmf->address, vmf->pte);
3802		return VM_FAULT_NOPAGE;
3803	}
3804
3805	flush_icache_page(vma, page);
3806	entry = mk_pte(page, vma->vm_page_prot);
3807	entry = pte_sw_mkyoung(entry);
3808	if (write)
3809		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 
 
3810	/* copy-on-write page */
3811	if (write && !(vma->vm_flags & VM_SHARED)) {
3812		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3813		page_add_new_anon_rmap(page, vma, vmf->address, false);
3814		lru_cache_add_inactive_or_unevictable(page, vma);
 
3815	} else {
3816		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3817		page_add_file_rmap(page, false);
3818	}
3819	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3820
3821	/* no need to invalidate: a not-present page won't be cached */
3822	update_mmu_cache(vma, vmf->address, vmf->pte);
3823
3824	return 0;
3825}
3826
 
 
 
 
 
 
 
3827
3828/**
3829 * finish_fault - finish page fault once we have prepared the page to fault
3830 *
3831 * @vmf: structure describing the fault
3832 *
3833 * This function handles all that is needed to finish a page fault once the
3834 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3835 * given page, adds reverse page mapping, handles memcg charges and LRU
3836 * addition.
3837 *
3838 * The function expects the page to be locked and on success it consumes a
3839 * reference of a page being mapped (for the PTE which maps it).
3840 *
3841 * Return: %0 on success, %VM_FAULT_ code in case of error.
3842 */
3843vm_fault_t finish_fault(struct vm_fault *vmf)
3844{
 
3845	struct page *page;
3846	vm_fault_t ret = 0;
3847
3848	/* Did we COW the page? */
3849	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3850	    !(vmf->vma->vm_flags & VM_SHARED))
3851		page = vmf->cow_page;
3852	else
3853		page = vmf->page;
3854
3855	/*
3856	 * check even for read faults because we might have lost our CoWed
3857	 * page
3858	 */
3859	if (!(vmf->vma->vm_flags & VM_SHARED))
3860		ret = check_stable_address_space(vmf->vma->vm_mm);
3861	if (!ret)
3862		ret = alloc_set_pte(vmf, page);
3863	if (vmf->pte)
3864		pte_unmap_unlock(vmf->pte, vmf->ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3865	return ret;
3866}
3867
3868static unsigned long fault_around_bytes __read_mostly =
3869	rounddown_pow_of_two(65536);
3870
3871#ifdef CONFIG_DEBUG_FS
3872static int fault_around_bytes_get(void *data, u64 *val)
3873{
3874	*val = fault_around_bytes;
3875	return 0;
3876}
3877
3878/*
3879 * fault_around_bytes must be rounded down to the nearest page order as it's
3880 * what do_fault_around() expects to see.
3881 */
3882static int fault_around_bytes_set(void *data, u64 val)
3883{
3884	if (val / PAGE_SIZE > PTRS_PER_PTE)
3885		return -EINVAL;
3886	if (val > PAGE_SIZE)
3887		fault_around_bytes = rounddown_pow_of_two(val);
3888	else
3889		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
 
 
 
 
3890	return 0;
3891}
3892DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3893		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3894
3895static int __init fault_around_debugfs(void)
3896{
3897	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3898				   &fault_around_bytes_fops);
3899	return 0;
3900}
3901late_initcall(fault_around_debugfs);
3902#endif
3903
3904/*
3905 * do_fault_around() tries to map few pages around the fault address. The hope
3906 * is that the pages will be needed soon and this will lower the number of
3907 * faults to handle.
3908 *
3909 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3910 * not ready to be mapped: not up-to-date, locked, etc.
3911 *
3912 * This function is called with the page table lock taken. In the split ptlock
3913 * case the page table lock only protects only those entries which belong to
3914 * the page table corresponding to the fault address.
3915 *
3916 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3917 * only once.
3918 *
3919 * fault_around_bytes defines how many bytes we'll try to map.
3920 * do_fault_around() expects it to be set to a power of two less than or equal
3921 * to PTRS_PER_PTE.
3922 *
3923 * The virtual address of the area that we map is naturally aligned to
3924 * fault_around_bytes rounded down to the machine page size
3925 * (and therefore to page order).  This way it's easier to guarantee
3926 * that we don't cross page table boundaries.
3927 */
3928static vm_fault_t do_fault_around(struct vm_fault *vmf)
3929{
3930	unsigned long address = vmf->address, nr_pages, mask;
3931	pgoff_t start_pgoff = vmf->pgoff;
3932	pgoff_t end_pgoff;
3933	int off;
3934	vm_fault_t ret = 0;
3935
3936	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3937	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3938
3939	vmf->address = max(address & mask, vmf->vma->vm_start);
3940	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3941	start_pgoff -= off;
3942
3943	/*
3944	 *  end_pgoff is either the end of the page table, the end of
3945	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3946	 */
3947	end_pgoff = start_pgoff -
3948		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3949		PTRS_PER_PTE - 1;
3950	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3951			start_pgoff + nr_pages - 1);
3952
3953	if (pmd_none(*vmf->pmd)) {
3954		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3955		if (!vmf->prealloc_pte)
3956			goto out;
3957		smp_wmb(); /* See comment in __pte_alloc() */
3958	}
3959
3960	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
 
 
 
 
3961
3962	/* Huge page is mapped? Page fault is solved */
3963	if (pmd_trans_huge(*vmf->pmd)) {
3964		ret = VM_FAULT_NOPAGE;
3965		goto out;
3966	}
3967
3968	/* ->map_pages() haven't done anything useful. Cold page cache? */
3969	if (!vmf->pte)
3970		goto out;
 
 
 
3971
3972	/* check if the page fault is solved */
3973	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3974	if (!pte_none(*vmf->pte))
3975		ret = VM_FAULT_NOPAGE;
3976	pte_unmap_unlock(vmf->pte, vmf->ptl);
3977out:
3978	vmf->address = address;
3979	vmf->pte = NULL;
3980	return ret;
3981}
3982
3983static vm_fault_t do_read_fault(struct vm_fault *vmf)
3984{
3985	struct vm_area_struct *vma = vmf->vma;
3986	vm_fault_t ret = 0;
 
3987
3988	/*
3989	 * Let's call ->map_pages() first and use ->fault() as fallback
3990	 * if page by the offset is not ready to be mapped (cold cache or
3991	 * something).
3992	 */
3993	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3994		ret = do_fault_around(vmf);
3995		if (ret)
3996			return ret;
3997	}
3998
 
 
 
 
3999	ret = __do_fault(vmf);
4000	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4001		return ret;
4002
4003	ret |= finish_fault(vmf);
4004	unlock_page(vmf->page);
 
4005	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4006		put_page(vmf->page);
4007	return ret;
4008}
4009
4010static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4011{
4012	struct vm_area_struct *vma = vmf->vma;
 
4013	vm_fault_t ret;
4014
4015	if (unlikely(anon_vma_prepare(vma)))
4016		return VM_FAULT_OOM;
 
 
 
4017
4018	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4019	if (!vmf->cow_page)
4020		return VM_FAULT_OOM;
4021
4022	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4023		put_page(vmf->cow_page);
4024		return VM_FAULT_OOM;
4025	}
4026	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4027
4028	ret = __do_fault(vmf);
4029	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4030		goto uncharge_out;
4031	if (ret & VM_FAULT_DONE_COW)
4032		return ret;
4033
4034	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4035	__SetPageUptodate(vmf->cow_page);
4036
4037	ret |= finish_fault(vmf);
4038	unlock_page(vmf->page);
4039	put_page(vmf->page);
4040	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4041		goto uncharge_out;
4042	return ret;
4043uncharge_out:
4044	put_page(vmf->cow_page);
4045	return ret;
4046}
4047
4048static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4049{
4050	struct vm_area_struct *vma = vmf->vma;
4051	vm_fault_t ret, tmp;
 
 
 
 
 
4052
4053	ret = __do_fault(vmf);
4054	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4055		return ret;
4056
 
 
4057	/*
4058	 * Check if the backing address space wants to know that the page is
4059	 * about to become writable
4060	 */
4061	if (vma->vm_ops->page_mkwrite) {
4062		unlock_page(vmf->page);
4063		tmp = do_page_mkwrite(vmf);
4064		if (unlikely(!tmp ||
4065				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4066			put_page(vmf->page);
4067			return tmp;
4068		}
4069	}
4070
4071	ret |= finish_fault(vmf);
4072	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4073					VM_FAULT_RETRY))) {
4074		unlock_page(vmf->page);
4075		put_page(vmf->page);
4076		return ret;
4077	}
4078
4079	ret |= fault_dirty_shared_page(vmf);
4080	return ret;
4081}
4082
4083/*
4084 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4085 * but allow concurrent faults).
4086 * The mmap_lock may have been released depending on flags and our
4087 * return value.  See filemap_fault() and __lock_page_or_retry().
4088 * If mmap_lock is released, vma may become invalid (for example
4089 * by other thread calling munmap()).
4090 */
4091static vm_fault_t do_fault(struct vm_fault *vmf)
4092{
4093	struct vm_area_struct *vma = vmf->vma;
4094	struct mm_struct *vm_mm = vma->vm_mm;
4095	vm_fault_t ret;
4096
4097	/*
4098	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4099	 */
4100	if (!vma->vm_ops->fault) {
4101		/*
4102		 * If we find a migration pmd entry or a none pmd entry, which
4103		 * should never happen, return SIGBUS
4104		 */
4105		if (unlikely(!pmd_present(*vmf->pmd)))
4106			ret = VM_FAULT_SIGBUS;
4107		else {
4108			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4109						       vmf->pmd,
4110						       vmf->address,
4111						       &vmf->ptl);
4112			/*
4113			 * Make sure this is not a temporary clearing of pte
4114			 * by holding ptl and checking again. A R/M/W update
4115			 * of pte involves: take ptl, clearing the pte so that
4116			 * we don't have concurrent modification by hardware
4117			 * followed by an update.
4118			 */
4119			if (unlikely(pte_none(*vmf->pte)))
4120				ret = VM_FAULT_SIGBUS;
4121			else
4122				ret = VM_FAULT_NOPAGE;
4123
4124			pte_unmap_unlock(vmf->pte, vmf->ptl);
4125		}
4126	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4127		ret = do_read_fault(vmf);
4128	else if (!(vma->vm_flags & VM_SHARED))
4129		ret = do_cow_fault(vmf);
4130	else
4131		ret = do_shared_fault(vmf);
4132
4133	/* preallocated pagetable is unused: free it */
4134	if (vmf->prealloc_pte) {
4135		pte_free(vm_mm, vmf->prealloc_pte);
4136		vmf->prealloc_pte = NULL;
4137	}
4138	return ret;
4139}
4140
4141static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4142				unsigned long addr, int page_nid,
4143				int *flags)
4144{
4145	get_page(page);
 
 
 
4146
4147	count_vm_numa_event(NUMA_HINT_FAULTS);
4148	if (page_nid == numa_node_id()) {
4149		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4150		*flags |= TNF_FAULT_LOCAL;
4151	}
4152
4153	return mpol_misplaced(page, vma, addr);
4154}
4155
4156static vm_fault_t do_numa_page(struct vm_fault *vmf)
4157{
4158	struct vm_area_struct *vma = vmf->vma;
4159	struct page *page = NULL;
4160	int page_nid = NUMA_NO_NODE;
 
4161	int last_cpupid;
4162	int target_nid;
4163	bool migrated = false;
4164	pte_t pte, old_pte;
4165	bool was_writable = pte_savedwrite(vmf->orig_pte);
4166	int flags = 0;
4167
4168	/*
4169	 * The "pte" at this point cannot be used safely without
4170	 * validation through pte_unmap_same(). It's of NUMA type but
4171	 * the pfn may be screwed if the read is non atomic.
4172	 */
4173	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4174	spin_lock(vmf->ptl);
4175	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
 
 
 
4176		pte_unmap_unlock(vmf->pte, vmf->ptl);
4177		goto out;
4178	}
4179
4180	/*
4181	 * Make it present again, Depending on how arch implementes non
4182	 * accessible ptes, some can allow access by kernel mode.
4183	 */
4184	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4185	pte = pte_modify(old_pte, vma->vm_page_prot);
4186	pte = pte_mkyoung(pte);
4187	if (was_writable)
4188		pte = pte_mkwrite(pte);
4189	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4190	update_mmu_cache(vma, vmf->address, vmf->pte);
4191
4192	page = vm_normal_page(vma, vmf->address, pte);
4193	if (!page) {
4194		pte_unmap_unlock(vmf->pte, vmf->ptl);
4195		return 0;
4196	}
 
 
 
 
 
 
 
4197
4198	/* TODO: handle PTE-mapped THP */
4199	if (PageCompound(page)) {
4200		pte_unmap_unlock(vmf->pte, vmf->ptl);
4201		return 0;
4202	}
4203
4204	/*
4205	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4206	 * much anyway since they can be in shared cache state. This misses
4207	 * the case where a mapping is writable but the process never writes
4208	 * to it but pte_write gets cleared during protection updates and
4209	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4210	 * background writeback, dirty balancing and application behaviour.
4211	 */
4212	if (!pte_write(pte))
4213		flags |= TNF_NO_GROUP;
4214
4215	/*
4216	 * Flag if the page is shared between multiple address spaces. This
4217	 * is later used when determining whether to group tasks together
4218	 */
4219	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4220		flags |= TNF_SHARED;
4221
4222	last_cpupid = page_cpupid_last(page);
4223	page_nid = page_to_nid(page);
4224	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4225			&flags);
4226	pte_unmap_unlock(vmf->pte, vmf->ptl);
 
 
 
 
 
 
4227	if (target_nid == NUMA_NO_NODE) {
4228		put_page(page);
4229		goto out;
4230	}
 
 
4231
4232	/* Migrate to the requested node */
4233	migrated = migrate_misplaced_page(page, vma, target_nid);
4234	if (migrated) {
4235		page_nid = target_nid;
4236		flags |= TNF_MIGRATED;
4237	} else
4238		flags |= TNF_MIGRATE_FAIL;
 
 
 
 
 
 
 
 
 
 
4239
4240out:
4241	if (page_nid != NUMA_NO_NODE)
4242		task_numa_fault(last_cpupid, page_nid, 1, flags);
4243	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4244}
4245
4246static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4247{
4248	if (vma_is_anonymous(vmf->vma))
 
4249		return do_huge_pmd_anonymous_page(vmf);
4250	if (vmf->vma->vm_ops->huge_fault)
4251		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4252	return VM_FAULT_FALLBACK;
4253}
4254
4255/* `inline' is required to avoid gcc 4.1.2 build error */
4256static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4257{
4258	if (vma_is_anonymous(vmf->vma)) {
4259		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
 
 
 
 
 
 
 
4260			return handle_userfault(vmf, VM_UFFD_WP);
4261		return do_huge_pmd_wp_page(vmf, orig_pmd);
 
4262	}
4263	if (vmf->vma->vm_ops->huge_fault) {
4264		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4265
4266		if (!(ret & VM_FAULT_FALLBACK))
4267			return ret;
 
 
 
 
4268	}
4269
 
4270	/* COW or write-notify handled on pte level: split pmd. */
4271	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4272
4273	return VM_FAULT_FALLBACK;
4274}
4275
4276static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4277{
4278#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4279	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 
4280	/* No support for anonymous transparent PUD pages yet */
4281	if (vma_is_anonymous(vmf->vma))
4282		goto split;
4283	if (vmf->vma->vm_ops->huge_fault) {
4284		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4285
4286		if (!(ret & VM_FAULT_FALLBACK))
4287			return ret;
4288	}
4289split:
4290	/* COW or write-notify not handled on PUD level: split pud.*/
4291	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4292#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4293	return VM_FAULT_FALLBACK;
4294}
4295
4296static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4297{
4298#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 
 
 
 
4299	/* No support for anonymous transparent PUD pages yet */
4300	if (vma_is_anonymous(vmf->vma))
4301		return VM_FAULT_FALLBACK;
4302	if (vmf->vma->vm_ops->huge_fault)
4303		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4304#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
 
 
 
 
 
 
 
4305	return VM_FAULT_FALLBACK;
4306}
4307
4308/*
4309 * These routines also need to handle stuff like marking pages dirty
4310 * and/or accessed for architectures that don't do it in hardware (most
4311 * RISC architectures).  The early dirtying is also good on the i386.
4312 *
4313 * There is also a hook called "update_mmu_cache()" that architectures
4314 * with external mmu caches can use to update those (ie the Sparc or
4315 * PowerPC hashed page tables that act as extended TLBs).
4316 *
4317 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4318 * concurrent faults).
4319 *
4320 * The mmap_lock may have been released depending on flags and our return value.
4321 * See filemap_fault() and __lock_page_or_retry().
4322 */
4323static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4324{
4325	pte_t entry;
4326
4327	if (unlikely(pmd_none(*vmf->pmd))) {
4328		/*
4329		 * Leave __pte_alloc() until later: because vm_ops->fault may
4330		 * want to allocate huge page, and if we expose page table
4331		 * for an instant, it will be difficult to retract from
4332		 * concurrent faults and from rmap lookups.
4333		 */
4334		vmf->pte = NULL;
 
4335	} else {
4336		/* See comment in pte_alloc_one_map() */
4337		if (pmd_devmap_trans_unstable(vmf->pmd))
4338			return 0;
4339		/*
4340		 * A regular pmd is established and it can't morph into a huge
4341		 * pmd from under us anymore at this point because we hold the
4342		 * mmap_lock read mode and khugepaged takes it in write mode.
4343		 * So now it's safe to run pte_offset_map().
4344		 */
4345		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4346		vmf->orig_pte = *vmf->pte;
 
 
 
 
4347
4348		/*
4349		 * some architectures can have larger ptes than wordsize,
4350		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4351		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4352		 * accesses.  The code below just needs a consistent view
4353		 * for the ifs and we later double check anyway with the
4354		 * ptl lock held. So here a barrier will do.
4355		 */
4356		barrier();
4357		if (pte_none(vmf->orig_pte)) {
4358			pte_unmap(vmf->pte);
4359			vmf->pte = NULL;
4360		}
4361	}
4362
4363	if (!vmf->pte) {
4364		if (vma_is_anonymous(vmf->vma))
4365			return do_anonymous_page(vmf);
4366		else
4367			return do_fault(vmf);
4368	}
4369
4370	if (!pte_present(vmf->orig_pte))
4371		return do_swap_page(vmf);
4372
4373	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4374		return do_numa_page(vmf);
4375
4376	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4377	spin_lock(vmf->ptl);
4378	entry = vmf->orig_pte;
4379	if (unlikely(!pte_same(*vmf->pte, entry))) {
4380		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4381		goto unlock;
4382	}
4383	if (vmf->flags & FAULT_FLAG_WRITE) {
4384		if (!pte_write(entry))
4385			return do_wp_page(vmf);
4386		entry = pte_mkdirty(entry);
 
4387	}
4388	entry = pte_mkyoung(entry);
4389	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4390				vmf->flags & FAULT_FLAG_WRITE)) {
4391		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
 
4392	} else {
4393		/* Skip spurious TLB flush for retried page fault */
4394		if (vmf->flags & FAULT_FLAG_TRIED)
4395			goto unlock;
4396		/*
4397		 * This is needed only for protection faults but the arch code
4398		 * is not yet telling us if this is a protection fault or not.
4399		 * This still avoids useless tlb flushes for .text page faults
4400		 * with threads.
4401		 */
4402		if (vmf->flags & FAULT_FLAG_WRITE)
4403			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
 
4404	}
4405unlock:
4406	pte_unmap_unlock(vmf->pte, vmf->ptl);
4407	return 0;
4408}
4409
4410/*
4411 * By the time we get here, we already hold the mm semaphore
4412 *
4413 * The mmap_lock may have been released depending on flags and our
4414 * return value.  See filemap_fault() and __lock_page_or_retry().
4415 */
4416static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4417		unsigned long address, unsigned int flags)
4418{
4419	struct vm_fault vmf = {
4420		.vma = vma,
4421		.address = address & PAGE_MASK,
 
4422		.flags = flags,
4423		.pgoff = linear_page_index(vma, address),
4424		.gfp_mask = __get_fault_gfp_mask(vma),
4425	};
4426	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4427	struct mm_struct *mm = vma->vm_mm;
 
4428	pgd_t *pgd;
4429	p4d_t *p4d;
4430	vm_fault_t ret;
4431
4432	pgd = pgd_offset(mm, address);
4433	p4d = p4d_alloc(mm, pgd, address);
4434	if (!p4d)
4435		return VM_FAULT_OOM;
4436
4437	vmf.pud = pud_alloc(mm, p4d, address);
4438	if (!vmf.pud)
4439		return VM_FAULT_OOM;
4440retry_pud:
4441	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
 
4442		ret = create_huge_pud(&vmf);
4443		if (!(ret & VM_FAULT_FALLBACK))
4444			return ret;
4445	} else {
4446		pud_t orig_pud = *vmf.pud;
4447
4448		barrier();
4449		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4450
4451			/* NUMA case for anonymous PUDs would go here */
4452
4453			if (dirty && !pud_write(orig_pud)) {
 
 
4454				ret = wp_huge_pud(&vmf, orig_pud);
4455				if (!(ret & VM_FAULT_FALLBACK))
4456					return ret;
4457			} else {
4458				huge_pud_set_accessed(&vmf, orig_pud);
4459				return 0;
4460			}
4461		}
4462	}
4463
4464	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4465	if (!vmf.pmd)
4466		return VM_FAULT_OOM;
4467
4468	/* Huge pud page fault raced with pmd_alloc? */
4469	if (pud_trans_unstable(vmf.pud))
4470		goto retry_pud;
4471
4472	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
 
4473		ret = create_huge_pmd(&vmf);
4474		if (!(ret & VM_FAULT_FALLBACK))
4475			return ret;
4476	} else {
4477		pmd_t orig_pmd = *vmf.pmd;
4478
4479		barrier();
4480		if (unlikely(is_swap_pmd(orig_pmd))) {
4481			VM_BUG_ON(thp_migration_supported() &&
4482					  !is_pmd_migration_entry(orig_pmd));
4483			if (is_pmd_migration_entry(orig_pmd))
4484				pmd_migration_entry_wait(mm, vmf.pmd);
4485			return 0;
4486		}
4487		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4488			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4489				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4490
4491			if (dirty && !pmd_write(orig_pmd)) {
4492				ret = wp_huge_pmd(&vmf, orig_pmd);
 
4493				if (!(ret & VM_FAULT_FALLBACK))
4494					return ret;
4495			} else {
4496				huge_pmd_set_accessed(&vmf, orig_pmd);
4497				return 0;
4498			}
4499		}
4500	}
4501
4502	return handle_pte_fault(&vmf);
4503}
4504
4505/**
4506 * mm_account_fault - Do page fault accountings
4507 *
4508 * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4509 *        of perf event counters, but we'll still do the per-task accounting to
4510 *        the task who triggered this page fault.
4511 * @address: the faulted address.
4512 * @flags: the fault flags.
4513 * @ret: the fault retcode.
4514 *
4515 * This will take care of most of the page fault accountings.  Meanwhile, it
4516 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4517 * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4518 * still be in per-arch page fault handlers at the entry of page fault.
4519 */
4520static inline void mm_account_fault(struct pt_regs *regs,
4521				    unsigned long address, unsigned int flags,
4522				    vm_fault_t ret)
4523{
4524	bool major;
4525
 
 
 
 
4526	/*
4527	 * We don't do accounting for some specific faults:
4528	 *
4529	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4530	 *   includes arch_vma_access_permitted() failing before reaching here.
4531	 *   So this is not a "this many hardware page faults" counter.  We
4532	 *   should use the hw profiling for that.
4533	 *
4534	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4535	 *   once they're completed.
4536	 */
4537	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
 
 
 
 
 
 
 
 
 
4538		return;
4539
4540	/*
4541	 * We define the fault as a major fault when the final successful fault
4542	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4543	 * handle it immediately previously).
4544	 */
4545	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4546
4547	if (major)
4548		current->maj_flt++;
4549	else
4550		current->min_flt++;
4551
4552	/*
4553	 * If the fault is done for GUP, regs will be NULL.  We only do the
4554	 * accounting for the per thread fault counters who triggered the
4555	 * fault, and we skip the perf event updates.
4556	 */
4557	if (!regs)
4558		return;
4559
4560	if (major)
4561		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4562	else
4563		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4564}
4565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4566/*
4567 * By the time we get here, we already hold the mm semaphore
4568 *
4569 * The mmap_lock may have been released depending on flags and our
4570 * return value.  See filemap_fault() and __lock_page_or_retry().
4571 */
4572vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4573			   unsigned int flags, struct pt_regs *regs)
4574{
 
 
4575	vm_fault_t ret;
4576
4577	__set_current_state(TASK_RUNNING);
4578
4579	count_vm_event(PGFAULT);
4580	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4581
4582	/* do counter updates before entering really critical section. */
4583	check_sync_rss_stat(current);
4584
4585	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4586					    flags & FAULT_FLAG_INSTRUCTION,
4587					    flags & FAULT_FLAG_REMOTE))
4588		return VM_FAULT_SIGSEGV;
 
 
4589
4590	/*
4591	 * Enable the memcg OOM handling for faults triggered in user
4592	 * space.  Kernel faults are handled more gracefully.
4593	 */
4594	if (flags & FAULT_FLAG_USER)
4595		mem_cgroup_enter_user_fault();
4596
 
 
4597	if (unlikely(is_vm_hugetlb_page(vma)))
4598		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4599	else
4600		ret = __handle_mm_fault(vma, address, flags);
4601
 
 
4602	if (flags & FAULT_FLAG_USER) {
4603		mem_cgroup_exit_user_fault();
4604		/*
4605		 * The task may have entered a memcg OOM situation but
4606		 * if the allocation error was handled gracefully (no
4607		 * VM_FAULT_OOM), there is no need to kill anything.
4608		 * Just clean up the OOM state peacefully.
4609		 */
4610		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4611			mem_cgroup_oom_synchronize(false);
4612	}
4613
4614	mm_account_fault(regs, address, flags, ret);
4615
4616	return ret;
4617}
4618EXPORT_SYMBOL_GPL(handle_mm_fault);
4619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4620#ifndef __PAGETABLE_P4D_FOLDED
4621/*
4622 * Allocate p4d page table.
4623 * We've already handled the fast-path in-line.
4624 */
4625int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4626{
4627	p4d_t *new = p4d_alloc_one(mm, address);
4628	if (!new)
4629		return -ENOMEM;
4630
4631	smp_wmb(); /* See comment in __pte_alloc */
4632
4633	spin_lock(&mm->page_table_lock);
4634	if (pgd_present(*pgd))		/* Another has populated it */
4635		p4d_free(mm, new);
4636	else
 
4637		pgd_populate(mm, pgd, new);
 
4638	spin_unlock(&mm->page_table_lock);
4639	return 0;
4640}
4641#endif /* __PAGETABLE_P4D_FOLDED */
4642
4643#ifndef __PAGETABLE_PUD_FOLDED
4644/*
4645 * Allocate page upper directory.
4646 * We've already handled the fast-path in-line.
4647 */
4648int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4649{
4650	pud_t *new = pud_alloc_one(mm, address);
4651	if (!new)
4652		return -ENOMEM;
4653
4654	smp_wmb(); /* See comment in __pte_alloc */
4655
4656	spin_lock(&mm->page_table_lock);
4657	if (!p4d_present(*p4d)) {
4658		mm_inc_nr_puds(mm);
 
4659		p4d_populate(mm, p4d, new);
4660	} else	/* Another has populated it */
4661		pud_free(mm, new);
4662	spin_unlock(&mm->page_table_lock);
4663	return 0;
4664}
4665#endif /* __PAGETABLE_PUD_FOLDED */
4666
4667#ifndef __PAGETABLE_PMD_FOLDED
4668/*
4669 * Allocate page middle directory.
4670 * We've already handled the fast-path in-line.
4671 */
4672int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4673{
4674	spinlock_t *ptl;
4675	pmd_t *new = pmd_alloc_one(mm, address);
4676	if (!new)
4677		return -ENOMEM;
4678
4679	smp_wmb(); /* See comment in __pte_alloc */
4680
4681	ptl = pud_lock(mm, pud);
4682	if (!pud_present(*pud)) {
4683		mm_inc_nr_pmds(mm);
 
4684		pud_populate(mm, pud, new);
4685	} else	/* Another has populated it */
4686		pmd_free(mm, new);
 
4687	spin_unlock(ptl);
4688	return 0;
4689}
4690#endif /* __PAGETABLE_PMD_FOLDED */
4691
4692static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4693			    struct mmu_notifier_range *range,
4694			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4695{
4696	pgd_t *pgd;
4697	p4d_t *p4d;
4698	pud_t *pud;
4699	pmd_t *pmd;
4700	pte_t *ptep;
4701
4702	pgd = pgd_offset(mm, address);
4703	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4704		goto out;
4705
4706	p4d = p4d_offset(pgd, address);
4707	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4708		goto out;
4709
4710	pud = pud_offset(p4d, address);
4711	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4712		goto out;
4713
4714	pmd = pmd_offset(pud, address);
4715	VM_BUG_ON(pmd_trans_huge(*pmd));
4716
4717	if (pmd_huge(*pmd)) {
4718		if (!pmdpp)
4719			goto out;
4720
4721		if (range) {
4722			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4723						NULL, mm, address & PMD_MASK,
4724						(address & PMD_MASK) + PMD_SIZE);
4725			mmu_notifier_invalidate_range_start(range);
4726		}
4727		*ptlp = pmd_lock(mm, pmd);
4728		if (pmd_huge(*pmd)) {
4729			*pmdpp = pmd;
4730			return 0;
4731		}
4732		spin_unlock(*ptlp);
4733		if (range)
4734			mmu_notifier_invalidate_range_end(range);
4735	}
4736
4737	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4738		goto out;
4739
4740	if (range) {
4741		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4742					address & PAGE_MASK,
4743					(address & PAGE_MASK) + PAGE_SIZE);
4744		mmu_notifier_invalidate_range_start(range);
4745	}
4746	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4747	if (!pte_present(*ptep))
 
 
4748		goto unlock;
4749	*ptepp = ptep;
4750	return 0;
4751unlock:
4752	pte_unmap_unlock(ptep, *ptlp);
4753	if (range)
4754		mmu_notifier_invalidate_range_end(range);
4755out:
4756	return -EINVAL;
4757}
4758
4759static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4760			     pte_t **ptepp, spinlock_t **ptlp)
4761{
4762	int res;
4763
4764	/* (void) is needed to make gcc happy */
4765	(void) __cond_lock(*ptlp,
4766			   !(res = __follow_pte_pmd(mm, address, NULL,
4767						    ptepp, NULL, ptlp)));
4768	return res;
4769}
4770
4771int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4772		   struct mmu_notifier_range *range,
4773		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4774{
4775	int res;
4776
4777	/* (void) is needed to make gcc happy */
4778	(void) __cond_lock(*ptlp,
4779			   !(res = __follow_pte_pmd(mm, address, range,
4780						    ptepp, pmdpp, ptlp)));
4781	return res;
4782}
4783EXPORT_SYMBOL(follow_pte_pmd);
4784
4785/**
4786 * follow_pfn - look up PFN at a user virtual address
4787 * @vma: memory mapping
4788 * @address: user virtual address
4789 * @pfn: location to store found PFN
4790 *
4791 * Only IO mappings and raw PFN mappings are allowed.
4792 *
 
 
 
4793 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4794 */
4795int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4796	unsigned long *pfn)
4797{
4798	int ret = -EINVAL;
4799	spinlock_t *ptl;
4800	pte_t *ptep;
4801
4802	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4803		return ret;
4804
4805	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4806	if (ret)
4807		return ret;
4808	*pfn = pte_pfn(*ptep);
4809	pte_unmap_unlock(ptep, ptl);
4810	return 0;
4811}
4812EXPORT_SYMBOL(follow_pfn);
4813
4814#ifdef CONFIG_HAVE_IOREMAP_PROT
4815int follow_phys(struct vm_area_struct *vma,
4816		unsigned long address, unsigned int flags,
4817		unsigned long *prot, resource_size_t *phys)
4818{
4819	int ret = -EINVAL;
4820	pte_t *ptep, pte;
4821	spinlock_t *ptl;
4822
4823	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4824		goto out;
4825
4826	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4827		goto out;
4828	pte = *ptep;
 
 
 
 
4829
4830	if ((flags & FOLL_WRITE) && !pte_write(pte))
4831		goto unlock;
4832
4833	*prot = pgprot_val(pte_pgprot(pte));
4834	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4835
4836	ret = 0;
4837unlock:
4838	pte_unmap_unlock(ptep, ptl);
4839out:
4840	return ret;
4841}
4842
 
 
 
 
 
 
 
 
 
 
 
 
4843int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4844			void *buf, int len, int write)
4845{
4846	resource_size_t phys_addr;
4847	unsigned long prot = 0;
4848	void __iomem *maddr;
4849	int offset = addr & (PAGE_SIZE-1);
 
 
 
4850
4851	if (follow_phys(vma, addr, write, &prot, &phys_addr))
 
 
 
 
 
 
 
 
 
 
 
 
4852		return -EINVAL;
4853
4854	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4855	if (!maddr)
4856		return -ENOMEM;
4857
 
 
 
 
 
 
 
 
 
 
4858	if (write)
4859		memcpy_toio(maddr + offset, buf, len);
4860	else
4861		memcpy_fromio(buf, maddr + offset, len);
 
 
 
4862	iounmap(maddr);
4863
4864	return len;
4865}
4866EXPORT_SYMBOL_GPL(generic_access_phys);
4867#endif
4868
4869/*
4870 * Access another process' address space as given in mm.  If non-NULL, use the
4871 * given task for page fault accounting.
4872 */
4873int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4874		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4875{
4876	struct vm_area_struct *vma;
4877	void *old_buf = buf;
4878	int write = gup_flags & FOLL_WRITE;
4879
4880	if (mmap_read_lock_killable(mm))
4881		return 0;
4882
 
 
 
 
 
 
 
4883	/* ignore errors, just check how much was successfully transferred */
4884	while (len) {
4885		int bytes, ret, offset;
4886		void *maddr;
4887		struct page *page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4888
4889		ret = get_user_pages_remote(mm, addr, 1,
4890				gup_flags, &page, &vma, NULL);
4891		if (ret <= 0) {
4892#ifndef CONFIG_HAVE_IOREMAP_PROT
4893			break;
4894#else
4895			/*
4896			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4897			 * we can access using slightly different code.
4898			 */
4899			vma = find_vma(mm, addr);
4900			if (!vma || vma->vm_start > addr)
4901				break;
4902			if (vma->vm_ops && vma->vm_ops->access)
4903				ret = vma->vm_ops->access(vma, addr, buf,
4904							  len, write);
4905			if (ret <= 0)
4906				break;
4907			bytes = ret;
4908#endif
 
 
4909		} else {
4910			bytes = len;
4911			offset = addr & (PAGE_SIZE-1);
4912			if (bytes > PAGE_SIZE-offset)
4913				bytes = PAGE_SIZE-offset;
4914
4915			maddr = kmap(page);
4916			if (write) {
4917				copy_to_user_page(vma, page, addr,
4918						  maddr + offset, buf, bytes);
4919				set_page_dirty_lock(page);
4920			} else {
4921				copy_from_user_page(vma, page, addr,
4922						    buf, maddr + offset, bytes);
4923			}
4924			kunmap(page);
4925			put_page(page);
4926		}
4927		len -= bytes;
4928		buf += bytes;
4929		addr += bytes;
4930	}
4931	mmap_read_unlock(mm);
4932
4933	return buf - old_buf;
4934}
4935
4936/**
4937 * access_remote_vm - access another process' address space
4938 * @mm:		the mm_struct of the target address space
4939 * @addr:	start address to access
4940 * @buf:	source or destination buffer
4941 * @len:	number of bytes to transfer
4942 * @gup_flags:	flags modifying lookup behaviour
4943 *
4944 * The caller must hold a reference on @mm.
4945 *
4946 * Return: number of bytes copied from source to destination.
4947 */
4948int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4949		void *buf, int len, unsigned int gup_flags)
4950{
4951	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4952}
4953
4954/*
4955 * Access another process' address space.
4956 * Source/target buffer must be kernel space,
4957 * Do not walk the page table directly, use get_user_pages
4958 */
4959int access_process_vm(struct task_struct *tsk, unsigned long addr,
4960		void *buf, int len, unsigned int gup_flags)
4961{
4962	struct mm_struct *mm;
4963	int ret;
4964
4965	mm = get_task_mm(tsk);
4966	if (!mm)
4967		return 0;
4968
4969	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4970
4971	mmput(mm);
4972
4973	return ret;
4974}
4975EXPORT_SYMBOL_GPL(access_process_vm);
4976
4977/*
4978 * Print the name of a VMA.
4979 */
4980void print_vma_addr(char *prefix, unsigned long ip)
4981{
4982	struct mm_struct *mm = current->mm;
4983	struct vm_area_struct *vma;
4984
4985	/*
4986	 * we might be running from an atomic context so we cannot sleep
4987	 */
4988	if (!mmap_read_trylock(mm))
4989		return;
4990
4991	vma = find_vma(mm, ip);
4992	if (vma && vma->vm_file) {
4993		struct file *f = vma->vm_file;
4994		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4995		if (buf) {
4996			char *p;
4997
4998			p = file_path(f, buf, PAGE_SIZE);
4999			if (IS_ERR(p))
5000				p = "?";
5001			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5002					vma->vm_start,
5003					vma->vm_end - vma->vm_start);
5004			free_page((unsigned long)buf);
5005		}
5006	}
5007	mmap_read_unlock(mm);
5008}
5009
5010#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5011void __might_fault(const char *file, int line)
5012{
5013	/*
5014	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5015	 * holding the mmap_lock, this is safe because kernel memory doesn't
5016	 * get paged out, therefore we'll never actually fault, and the
5017	 * below annotations will generate false positives.
5018	 */
5019	if (uaccess_kernel())
5020		return;
5021	if (pagefault_disabled())
5022		return;
5023	__might_sleep(file, line, 0);
5024#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5025	if (current->mm)
5026		might_lock_read(&current->mm->mmap_lock);
5027#endif
5028}
5029EXPORT_SYMBOL(__might_fault);
5030#endif
5031
5032#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5033/*
5034 * Process all subpages of the specified huge page with the specified
5035 * operation.  The target subpage will be processed last to keep its
5036 * cache lines hot.
5037 */
5038static inline void process_huge_page(
5039	unsigned long addr_hint, unsigned int pages_per_huge_page,
5040	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5041	void *arg)
5042{
5043	int i, n, base, l;
5044	unsigned long addr = addr_hint &
5045		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5046
5047	/* Process target subpage last to keep its cache lines hot */
5048	might_sleep();
5049	n = (addr_hint - addr) / PAGE_SIZE;
5050	if (2 * n <= pages_per_huge_page) {
5051		/* If target subpage in first half of huge page */
5052		base = 0;
5053		l = n;
5054		/* Process subpages at the end of huge page */
5055		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5056			cond_resched();
5057			process_subpage(addr + i * PAGE_SIZE, i, arg);
 
 
5058		}
5059	} else {
5060		/* If target subpage in second half of huge page */
5061		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5062		l = pages_per_huge_page - n;
5063		/* Process subpages at the begin of huge page */
5064		for (i = 0; i < base; i++) {
5065			cond_resched();
5066			process_subpage(addr + i * PAGE_SIZE, i, arg);
 
 
5067		}
5068	}
5069	/*
5070	 * Process remaining subpages in left-right-left-right pattern
5071	 * towards the target subpage
5072	 */
5073	for (i = 0; i < l; i++) {
5074		int left_idx = base + i;
5075		int right_idx = base + 2 * l - 1 - i;
5076
5077		cond_resched();
5078		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
 
 
5079		cond_resched();
5080		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
 
 
5081	}
 
5082}
5083
5084static void clear_gigantic_page(struct page *page,
5085				unsigned long addr,
5086				unsigned int pages_per_huge_page)
5087{
5088	int i;
5089	struct page *p = page;
5090
5091	might_sleep();
5092	for (i = 0; i < pages_per_huge_page;
5093	     i++, p = mem_map_next(p, page, i)) {
5094		cond_resched();
5095		clear_user_highpage(p, addr + i * PAGE_SIZE);
5096	}
5097}
5098
5099static void clear_subpage(unsigned long addr, int idx, void *arg)
5100{
5101	struct page *page = arg;
5102
5103	clear_user_highpage(page + idx, addr);
 
5104}
5105
5106void clear_huge_page(struct page *page,
5107		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5108{
5109	unsigned long addr = addr_hint &
5110		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5111
5112	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5113		clear_gigantic_page(page, addr, pages_per_huge_page);
5114		return;
5115	}
5116
5117	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5118}
5119
5120static void copy_user_gigantic_page(struct page *dst, struct page *src,
5121				    unsigned long addr,
5122				    struct vm_area_struct *vma,
5123				    unsigned int pages_per_huge_page)
5124{
5125	int i;
5126	struct page *dst_base = dst;
5127	struct page *src_base = src;
5128
5129	for (i = 0; i < pages_per_huge_page; ) {
5130		cond_resched();
5131		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5132
5133		i++;
5134		dst = mem_map_next(dst, dst_base, i);
5135		src = mem_map_next(src, src_base, i);
 
 
 
5136	}
 
5137}
5138
5139struct copy_subpage_arg {
5140	struct page *dst;
5141	struct page *src;
5142	struct vm_area_struct *vma;
5143};
5144
5145static void copy_subpage(unsigned long addr, int idx, void *arg)
5146{
5147	struct copy_subpage_arg *copy_arg = arg;
 
 
5148
5149	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5150			   addr, copy_arg->vma);
 
 
 
5151}
5152
5153void copy_user_huge_page(struct page *dst, struct page *src,
5154			 unsigned long addr_hint, struct vm_area_struct *vma,
5155			 unsigned int pages_per_huge_page)
5156{
 
5157	unsigned long addr = addr_hint &
5158		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5159	struct copy_subpage_arg arg = {
5160		.dst = dst,
5161		.src = src,
5162		.vma = vma,
5163	};
5164
5165	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5166		copy_user_gigantic_page(dst, src, addr, vma,
5167					pages_per_huge_page);
5168		return;
5169	}
5170
5171	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5172}
5173
5174long copy_huge_page_from_user(struct page *dst_page,
5175				const void __user *usr_src,
5176				unsigned int pages_per_huge_page,
5177				bool allow_pagefault)
5178{
5179	void *src = (void *)usr_src;
5180	void *page_kaddr;
5181	unsigned long i, rc = 0;
5182	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5183
5184	for (i = 0; i < pages_per_huge_page; i++) {
5185		if (allow_pagefault)
5186			page_kaddr = kmap(dst_page + i);
5187		else
5188			page_kaddr = kmap_atomic(dst_page + i);
5189		rc = copy_from_user(page_kaddr,
5190				(const void __user *)(src + i * PAGE_SIZE),
5191				PAGE_SIZE);
5192		if (allow_pagefault)
5193			kunmap(dst_page + i);
5194		else
5195			kunmap_atomic(page_kaddr);
5196
5197		ret_val -= (PAGE_SIZE - rc);
5198		if (rc)
5199			break;
5200
 
 
5201		cond_resched();
5202	}
5203	return ret_val;
5204}
5205#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5206
5207#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5208
5209static struct kmem_cache *page_ptl_cachep;
5210
5211void __init ptlock_cache_init(void)
5212{
5213	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5214			SLAB_PANIC, NULL);
5215}
5216
5217bool ptlock_alloc(struct page *page)
5218{
5219	spinlock_t *ptl;
5220
5221	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5222	if (!ptl)
5223		return false;
5224	page->ptl = ptl;
5225	return true;
5226}
5227
5228void ptlock_free(struct page *page)
5229{
5230	kmem_cache_free(page_ptl_cachep, page->ptl);
5231}
5232#endif
v6.9.4
   1
   2// SPDX-License-Identifier: GPL-2.0-only
   3/*
   4 *  linux/mm/memory.c
   5 *
   6 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   7 */
   8
   9/*
  10 * demand-loading started 01.12.91 - seems it is high on the list of
  11 * things wanted, and it should be easy to implement. - Linus
  12 */
  13
  14/*
  15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  16 * pages started 02.12.91, seems to work. - Linus.
  17 *
  18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  19 * would have taken more than the 6M I have free, but it worked well as
  20 * far as I could see.
  21 *
  22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  23 */
  24
  25/*
  26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  27 * thought has to go into this. Oh, well..
  28 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  29 *		Found it. Everything seems to work now.
  30 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  31 */
  32
  33/*
  34 * 05.04.94  -  Multi-page memory management added for v1.1.
  35 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  36 *
  37 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  38 *		(Gerhard.Wichert@pdb.siemens.de)
  39 *
  40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  41 */
  42
  43#include <linux/kernel_stat.h>
  44#include <linux/mm.h>
  45#include <linux/mm_inline.h>
  46#include <linux/sched/mm.h>
  47#include <linux/sched/coredump.h>
  48#include <linux/sched/numa_balancing.h>
  49#include <linux/sched/task.h>
  50#include <linux/hugetlb.h>
  51#include <linux/mman.h>
  52#include <linux/swap.h>
  53#include <linux/highmem.h>
  54#include <linux/pagemap.h>
  55#include <linux/memremap.h>
  56#include <linux/kmsan.h>
  57#include <linux/ksm.h>
  58#include <linux/rmap.h>
  59#include <linux/export.h>
  60#include <linux/delayacct.h>
  61#include <linux/init.h>
  62#include <linux/pfn_t.h>
  63#include <linux/writeback.h>
  64#include <linux/memcontrol.h>
  65#include <linux/mmu_notifier.h>
  66#include <linux/swapops.h>
  67#include <linux/elf.h>
  68#include <linux/gfp.h>
  69#include <linux/migrate.h>
  70#include <linux/string.h>
  71#include <linux/memory-tiers.h>
  72#include <linux/debugfs.h>
  73#include <linux/userfaultfd_k.h>
  74#include <linux/dax.h>
  75#include <linux/oom.h>
  76#include <linux/numa.h>
  77#include <linux/perf_event.h>
  78#include <linux/ptrace.h>
  79#include <linux/vmalloc.h>
  80#include <linux/sched/sysctl.h>
  81
  82#include <trace/events/kmem.h>
  83
  84#include <asm/io.h>
  85#include <asm/mmu_context.h>
  86#include <asm/pgalloc.h>
  87#include <linux/uaccess.h>
  88#include <asm/tlb.h>
  89#include <asm/tlbflush.h>
  90
  91#include "pgalloc-track.h"
  92#include "internal.h"
  93#include "swap.h"
  94
  95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  97#endif
  98
  99#ifndef CONFIG_NUMA
 
 100unsigned long max_mapnr;
 101EXPORT_SYMBOL(max_mapnr);
 102
 103struct page *mem_map;
 104EXPORT_SYMBOL(mem_map);
 105#endif
 106
 107static vm_fault_t do_fault(struct vm_fault *vmf);
 108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
 109static bool vmf_pte_changed(struct vm_fault *vmf);
 110
 111/*
 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
 113 * wr-protected).
 114 */
 115static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
 116{
 117	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
 118		return false;
 119
 120	return pte_marker_uffd_wp(vmf->orig_pte);
 121}
 122
 123/*
 124 * A number of key systems in x86 including ioremap() rely on the assumption
 125 * that high_memory defines the upper bound on direct map memory, then end
 126 * of ZONE_NORMAL.
 
 
 127 */
 128void *high_memory;
 129EXPORT_SYMBOL(high_memory);
 130
 131/*
 132 * Randomize the address space (stacks, mmaps, brk, etc.).
 133 *
 134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 135 *   as ancient (libc5 based) binaries can segfault. )
 136 */
 137int randomize_va_space __read_mostly =
 138#ifdef CONFIG_COMPAT_BRK
 139					1;
 140#else
 141					2;
 142#endif
 143
 144#ifndef arch_wants_old_prefaulted_pte
 145static inline bool arch_wants_old_prefaulted_pte(void)
 146{
 147	/*
 148	 * Transitioning a PTE from 'old' to 'young' can be expensive on
 149	 * some architectures, even if it's performed in hardware. By
 150	 * default, "false" means prefaulted entries will be 'young'.
 151	 */
 152	return false;
 153}
 154#endif
 155
 156static int __init disable_randmaps(char *s)
 157{
 158	randomize_va_space = 0;
 159	return 1;
 160}
 161__setup("norandmaps", disable_randmaps);
 162
 163unsigned long zero_pfn __read_mostly;
 164EXPORT_SYMBOL(zero_pfn);
 165
 166unsigned long highest_memmap_pfn __read_mostly;
 167
 168/*
 169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 170 */
 171static int __init init_zero_pfn(void)
 172{
 173	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 174	return 0;
 175}
 176early_initcall(init_zero_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177
 178void mm_trace_rss_stat(struct mm_struct *mm, int member)
 
 
 179{
 180	trace_rss_stat(mm, member);
 
 
 
 181}
 
 
 
 
 
 
 
 
 
 
 182
 183/*
 184 * Note: this doesn't free the actual pages themselves. That
 185 * has been handled earlier when unmapping all the memory regions.
 186 */
 187static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 188			   unsigned long addr)
 189{
 190	pgtable_t token = pmd_pgtable(*pmd);
 191	pmd_clear(pmd);
 192	pte_free_tlb(tlb, token, addr);
 193	mm_dec_nr_ptes(tlb->mm);
 194}
 195
 196static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 197				unsigned long addr, unsigned long end,
 198				unsigned long floor, unsigned long ceiling)
 199{
 200	pmd_t *pmd;
 201	unsigned long next;
 202	unsigned long start;
 203
 204	start = addr;
 205	pmd = pmd_offset(pud, addr);
 206	do {
 207		next = pmd_addr_end(addr, end);
 208		if (pmd_none_or_clear_bad(pmd))
 209			continue;
 210		free_pte_range(tlb, pmd, addr);
 211	} while (pmd++, addr = next, addr != end);
 212
 213	start &= PUD_MASK;
 214	if (start < floor)
 215		return;
 216	if (ceiling) {
 217		ceiling &= PUD_MASK;
 218		if (!ceiling)
 219			return;
 220	}
 221	if (end - 1 > ceiling - 1)
 222		return;
 223
 224	pmd = pmd_offset(pud, start);
 225	pud_clear(pud);
 226	pmd_free_tlb(tlb, pmd, start);
 227	mm_dec_nr_pmds(tlb->mm);
 228}
 229
 230static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 231				unsigned long addr, unsigned long end,
 232				unsigned long floor, unsigned long ceiling)
 233{
 234	pud_t *pud;
 235	unsigned long next;
 236	unsigned long start;
 237
 238	start = addr;
 239	pud = pud_offset(p4d, addr);
 240	do {
 241		next = pud_addr_end(addr, end);
 242		if (pud_none_or_clear_bad(pud))
 243			continue;
 244		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 245	} while (pud++, addr = next, addr != end);
 246
 247	start &= P4D_MASK;
 248	if (start < floor)
 249		return;
 250	if (ceiling) {
 251		ceiling &= P4D_MASK;
 252		if (!ceiling)
 253			return;
 254	}
 255	if (end - 1 > ceiling - 1)
 256		return;
 257
 258	pud = pud_offset(p4d, start);
 259	p4d_clear(p4d);
 260	pud_free_tlb(tlb, pud, start);
 261	mm_dec_nr_puds(tlb->mm);
 262}
 263
 264static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 265				unsigned long addr, unsigned long end,
 266				unsigned long floor, unsigned long ceiling)
 267{
 268	p4d_t *p4d;
 269	unsigned long next;
 270	unsigned long start;
 271
 272	start = addr;
 273	p4d = p4d_offset(pgd, addr);
 274	do {
 275		next = p4d_addr_end(addr, end);
 276		if (p4d_none_or_clear_bad(p4d))
 277			continue;
 278		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 279	} while (p4d++, addr = next, addr != end);
 280
 281	start &= PGDIR_MASK;
 282	if (start < floor)
 283		return;
 284	if (ceiling) {
 285		ceiling &= PGDIR_MASK;
 286		if (!ceiling)
 287			return;
 288	}
 289	if (end - 1 > ceiling - 1)
 290		return;
 291
 292	p4d = p4d_offset(pgd, start);
 293	pgd_clear(pgd);
 294	p4d_free_tlb(tlb, p4d, start);
 295}
 296
 297/*
 298 * This function frees user-level page tables of a process.
 299 */
 300void free_pgd_range(struct mmu_gather *tlb,
 301			unsigned long addr, unsigned long end,
 302			unsigned long floor, unsigned long ceiling)
 303{
 304	pgd_t *pgd;
 305	unsigned long next;
 306
 307	/*
 308	 * The next few lines have given us lots of grief...
 309	 *
 310	 * Why are we testing PMD* at this top level?  Because often
 311	 * there will be no work to do at all, and we'd prefer not to
 312	 * go all the way down to the bottom just to discover that.
 313	 *
 314	 * Why all these "- 1"s?  Because 0 represents both the bottom
 315	 * of the address space and the top of it (using -1 for the
 316	 * top wouldn't help much: the masks would do the wrong thing).
 317	 * The rule is that addr 0 and floor 0 refer to the bottom of
 318	 * the address space, but end 0 and ceiling 0 refer to the top
 319	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 320	 * that end 0 case should be mythical).
 321	 *
 322	 * Wherever addr is brought up or ceiling brought down, we must
 323	 * be careful to reject "the opposite 0" before it confuses the
 324	 * subsequent tests.  But what about where end is brought down
 325	 * by PMD_SIZE below? no, end can't go down to 0 there.
 326	 *
 327	 * Whereas we round start (addr) and ceiling down, by different
 328	 * masks at different levels, in order to test whether a table
 329	 * now has no other vmas using it, so can be freed, we don't
 330	 * bother to round floor or end up - the tests don't need that.
 331	 */
 332
 333	addr &= PMD_MASK;
 334	if (addr < floor) {
 335		addr += PMD_SIZE;
 336		if (!addr)
 337			return;
 338	}
 339	if (ceiling) {
 340		ceiling &= PMD_MASK;
 341		if (!ceiling)
 342			return;
 343	}
 344	if (end - 1 > ceiling - 1)
 345		end -= PMD_SIZE;
 346	if (addr > end - 1)
 347		return;
 348	/*
 349	 * We add page table cache pages with PAGE_SIZE,
 350	 * (see pte_free_tlb()), flush the tlb if we need
 351	 */
 352	tlb_change_page_size(tlb, PAGE_SIZE);
 353	pgd = pgd_offset(tlb->mm, addr);
 354	do {
 355		next = pgd_addr_end(addr, end);
 356		if (pgd_none_or_clear_bad(pgd))
 357			continue;
 358		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 359	} while (pgd++, addr = next, addr != end);
 360}
 361
 362void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
 363		   struct vm_area_struct *vma, unsigned long floor,
 364		   unsigned long ceiling, bool mm_wr_locked)
 365{
 366	do {
 
 367		unsigned long addr = vma->vm_start;
 368		struct vm_area_struct *next;
 369
 370		/*
 371		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
 372		 * be 0.  This will underflow and is okay.
 373		 */
 374		next = mas_find(mas, ceiling - 1);
 375		if (unlikely(xa_is_zero(next)))
 376			next = NULL;
 377
 378		/*
 379		 * Hide vma from rmap and truncate_pagecache before freeing
 380		 * pgtables
 381		 */
 382		if (mm_wr_locked)
 383			vma_start_write(vma);
 384		unlink_anon_vmas(vma);
 385		unlink_file_vma(vma);
 386
 387		if (is_vm_hugetlb_page(vma)) {
 388			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 389				floor, next ? next->vm_start : ceiling);
 390		} else {
 391			/*
 392			 * Optimization: gather nearby vmas into one call down
 393			 */
 394			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 395			       && !is_vm_hugetlb_page(next)) {
 396				vma = next;
 397				next = mas_find(mas, ceiling - 1);
 398				if (unlikely(xa_is_zero(next)))
 399					next = NULL;
 400				if (mm_wr_locked)
 401					vma_start_write(vma);
 402				unlink_anon_vmas(vma);
 403				unlink_file_vma(vma);
 404			}
 405			free_pgd_range(tlb, addr, vma->vm_end,
 406				floor, next ? next->vm_start : ceiling);
 407		}
 408		vma = next;
 409	} while (vma);
 410}
 411
 412void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
 413{
 414	spinlock_t *ptl = pmd_lock(mm, pmd);
 415
 416	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 417		mm_inc_nr_ptes(mm);
 418		/*
 419		 * Ensure all pte setup (eg. pte page lock and page clearing) are
 420		 * visible before the pte is made visible to other CPUs by being
 421		 * put into page tables.
 422		 *
 423		 * The other side of the story is the pointer chasing in the page
 424		 * table walking code (when walking the page table without locking;
 425		 * ie. most of the time). Fortunately, these data accesses consist
 426		 * of a chain of data-dependent loads, meaning most CPUs (alpha
 427		 * being the notable exception) will already guarantee loads are
 428		 * seen in-order. See the alpha page table accessors for the
 429		 * smp_rmb() barriers in page table walking code.
 430		 */
 431		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 432		pmd_populate(mm, pmd, *pte);
 433		*pte = NULL;
 434	}
 435	spin_unlock(ptl);
 436}
 437
 438int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 439{
 
 440	pgtable_t new = pte_alloc_one(mm);
 441	if (!new)
 442		return -ENOMEM;
 443
 444	pmd_install(mm, pmd, &new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445	if (new)
 446		pte_free(mm, new);
 447	return 0;
 448}
 449
 450int __pte_alloc_kernel(pmd_t *pmd)
 451{
 452	pte_t *new = pte_alloc_one_kernel(&init_mm);
 453	if (!new)
 454		return -ENOMEM;
 455
 
 
 456	spin_lock(&init_mm.page_table_lock);
 457	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 458		smp_wmb(); /* See comment in pmd_install() */
 459		pmd_populate_kernel(&init_mm, pmd, new);
 460		new = NULL;
 461	}
 462	spin_unlock(&init_mm.page_table_lock);
 463	if (new)
 464		pte_free_kernel(&init_mm, new);
 465	return 0;
 466}
 467
 468static inline void init_rss_vec(int *rss)
 469{
 470	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 471}
 472
 473static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 474{
 475	int i;
 476
 
 
 477	for (i = 0; i < NR_MM_COUNTERS; i++)
 478		if (rss[i])
 479			add_mm_counter(mm, i, rss[i]);
 480}
 481
 482/*
 483 * This function is called to print an error when a bad pte
 484 * is found. For example, we might have a PFN-mapped pte in
 485 * a region that doesn't allow it.
 486 *
 487 * The calling function must still handle the error.
 488 */
 489static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 490			  pte_t pte, struct page *page)
 491{
 492	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 493	p4d_t *p4d = p4d_offset(pgd, addr);
 494	pud_t *pud = pud_offset(p4d, addr);
 495	pmd_t *pmd = pmd_offset(pud, addr);
 496	struct address_space *mapping;
 497	pgoff_t index;
 498	static unsigned long resume;
 499	static unsigned long nr_shown;
 500	static unsigned long nr_unshown;
 501
 502	/*
 503	 * Allow a burst of 60 reports, then keep quiet for that minute;
 504	 * or allow a steady drip of one report per second.
 505	 */
 506	if (nr_shown == 60) {
 507		if (time_before(jiffies, resume)) {
 508			nr_unshown++;
 509			return;
 510		}
 511		if (nr_unshown) {
 512			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 513				 nr_unshown);
 514			nr_unshown = 0;
 515		}
 516		nr_shown = 0;
 517	}
 518	if (nr_shown++ == 0)
 519		resume = jiffies + 60 * HZ;
 520
 521	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 522	index = linear_page_index(vma, addr);
 523
 524	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 525		 current->comm,
 526		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 527	if (page)
 528		dump_page(page, "bad pte");
 529	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 530		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 531	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
 532		 vma->vm_file,
 533		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 534		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 535		 mapping ? mapping->a_ops->read_folio : NULL);
 536	dump_stack();
 537	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 538}
 539
 540/*
 541 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 542 *
 543 * "Special" mappings do not wish to be associated with a "struct page" (either
 544 * it doesn't exist, or it exists but they don't want to touch it). In this
 545 * case, NULL is returned here. "Normal" mappings do have a struct page.
 546 *
 547 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 548 * pte bit, in which case this function is trivial. Secondly, an architecture
 549 * may not have a spare pte bit, which requires a more complicated scheme,
 550 * described below.
 551 *
 552 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 553 * special mapping (even if there are underlying and valid "struct pages").
 554 * COWed pages of a VM_PFNMAP are always normal.
 555 *
 556 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 557 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 558 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 559 * mapping will always honor the rule
 560 *
 561 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 562 *
 563 * And for normal mappings this is false.
 564 *
 565 * This restricts such mappings to be a linear translation from virtual address
 566 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 567 * as the vma is not a COW mapping; in that case, we know that all ptes are
 568 * special (because none can have been COWed).
 569 *
 570 *
 571 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 572 *
 573 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 574 * page" backing, however the difference is that _all_ pages with a struct
 575 * page (that is, those where pfn_valid is true) are refcounted and considered
 576 * normal pages by the VM. The disadvantage is that pages are refcounted
 577 * (which can be slower and simply not an option for some PFNMAP users). The
 578 * advantage is that we don't have to follow the strict linearity rule of
 579 * PFNMAP mappings in order to support COWable mappings.
 580 *
 581 */
 582struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 583			    pte_t pte)
 584{
 585	unsigned long pfn = pte_pfn(pte);
 586
 587	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 588		if (likely(!pte_special(pte)))
 589			goto check_pfn;
 590		if (vma->vm_ops && vma->vm_ops->find_special_page)
 591			return vma->vm_ops->find_special_page(vma, addr);
 592		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 593			return NULL;
 594		if (is_zero_pfn(pfn))
 595			return NULL;
 596		if (pte_devmap(pte))
 597		/*
 598		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
 599		 * and will have refcounts incremented on their struct pages
 600		 * when they are inserted into PTEs, thus they are safe to
 601		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
 602		 * do not have refcounts. Example of legacy ZONE_DEVICE is
 603		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
 604		 */
 605			return NULL;
 606
 607		print_bad_pte(vma, addr, pte, NULL);
 608		return NULL;
 609	}
 610
 611	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 612
 613	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 614		if (vma->vm_flags & VM_MIXEDMAP) {
 615			if (!pfn_valid(pfn))
 616				return NULL;
 617			goto out;
 618		} else {
 619			unsigned long off;
 620			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 621			if (pfn == vma->vm_pgoff + off)
 622				return NULL;
 623			if (!is_cow_mapping(vma->vm_flags))
 624				return NULL;
 625		}
 626	}
 627
 628	if (is_zero_pfn(pfn))
 629		return NULL;
 630
 631check_pfn:
 632	if (unlikely(pfn > highest_memmap_pfn)) {
 633		print_bad_pte(vma, addr, pte, NULL);
 634		return NULL;
 635	}
 636
 637	/*
 638	 * NOTE! We still have PageReserved() pages in the page tables.
 639	 * eg. VDSO mappings can cause them to exist.
 640	 */
 641out:
 642	return pfn_to_page(pfn);
 643}
 644
 645struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
 646			    pte_t pte)
 647{
 648	struct page *page = vm_normal_page(vma, addr, pte);
 649
 650	if (page)
 651		return page_folio(page);
 652	return NULL;
 653}
 654
 655#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 656struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 657				pmd_t pmd)
 658{
 659	unsigned long pfn = pmd_pfn(pmd);
 660
 661	/*
 662	 * There is no pmd_special() but there may be special pmds, e.g.
 663	 * in a direct-access (dax) mapping, so let's just replicate the
 664	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 665	 */
 666	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 667		if (vma->vm_flags & VM_MIXEDMAP) {
 668			if (!pfn_valid(pfn))
 669				return NULL;
 670			goto out;
 671		} else {
 672			unsigned long off;
 673			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 674			if (pfn == vma->vm_pgoff + off)
 675				return NULL;
 676			if (!is_cow_mapping(vma->vm_flags))
 677				return NULL;
 678		}
 679	}
 680
 681	if (pmd_devmap(pmd))
 682		return NULL;
 683	if (is_huge_zero_pmd(pmd))
 684		return NULL;
 685	if (unlikely(pfn > highest_memmap_pfn))
 686		return NULL;
 687
 688	/*
 689	 * NOTE! We still have PageReserved() pages in the page tables.
 690	 * eg. VDSO mappings can cause them to exist.
 691	 */
 692out:
 693	return pfn_to_page(pfn);
 694}
 695
 696struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
 697				  unsigned long addr, pmd_t pmd)
 698{
 699	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
 700
 701	if (page)
 702		return page_folio(page);
 703	return NULL;
 704}
 705#endif
 706
 707static void restore_exclusive_pte(struct vm_area_struct *vma,
 708				  struct page *page, unsigned long address,
 709				  pte_t *ptep)
 710{
 711	struct folio *folio = page_folio(page);
 712	pte_t orig_pte;
 713	pte_t pte;
 714	swp_entry_t entry;
 715
 716	orig_pte = ptep_get(ptep);
 717	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
 718	if (pte_swp_soft_dirty(orig_pte))
 719		pte = pte_mksoft_dirty(pte);
 720
 721	entry = pte_to_swp_entry(orig_pte);
 722	if (pte_swp_uffd_wp(orig_pte))
 723		pte = pte_mkuffd_wp(pte);
 724	else if (is_writable_device_exclusive_entry(entry))
 725		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
 726
 727	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
 728					   PageAnonExclusive(page)), folio);
 729
 730	/*
 731	 * No need to take a page reference as one was already
 732	 * created when the swap entry was made.
 733	 */
 734	if (folio_test_anon(folio))
 735		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
 736	else
 737		/*
 738		 * Currently device exclusive access only supports anonymous
 739		 * memory so the entry shouldn't point to a filebacked page.
 740		 */
 741		WARN_ON_ONCE(1);
 742
 743	set_pte_at(vma->vm_mm, address, ptep, pte);
 744
 745	/*
 746	 * No need to invalidate - it was non-present before. However
 747	 * secondary CPUs may have mappings that need invalidating.
 748	 */
 749	update_mmu_cache(vma, address, ptep);
 750}
 751
 752/*
 753 * Tries to restore an exclusive pte if the page lock can be acquired without
 754 * sleeping.
 755 */
 756static int
 757try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
 758			unsigned long addr)
 759{
 760	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
 761	struct page *page = pfn_swap_entry_to_page(entry);
 762
 763	if (trylock_page(page)) {
 764		restore_exclusive_pte(vma, page, addr, src_pte);
 765		unlock_page(page);
 766		return 0;
 767	}
 768
 769	return -EBUSY;
 770}
 771
 772/*
 773 * copy one vm_area from one task to the other. Assumes the page tables
 774 * already present in the new task to be cleared in the whole range
 775 * covered by this vma.
 776 */
 777
 778static unsigned long
 779copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 780		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
 781		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
 782{
 783	unsigned long vm_flags = dst_vma->vm_flags;
 784	pte_t orig_pte = ptep_get(src_pte);
 785	pte_t pte = orig_pte;
 786	struct folio *folio;
 787	struct page *page;
 788	swp_entry_t entry = pte_to_swp_entry(orig_pte);
 789
 790	if (likely(!non_swap_entry(entry))) {
 791		if (swap_duplicate(entry) < 0)
 792			return -EIO;
 793
 794		/* make sure dst_mm is on swapoff's mmlist. */
 795		if (unlikely(list_empty(&dst_mm->mmlist))) {
 796			spin_lock(&mmlist_lock);
 797			if (list_empty(&dst_mm->mmlist))
 798				list_add(&dst_mm->mmlist,
 799						&src_mm->mmlist);
 800			spin_unlock(&mmlist_lock);
 801		}
 802		/* Mark the swap entry as shared. */
 803		if (pte_swp_exclusive(orig_pte)) {
 804			pte = pte_swp_clear_exclusive(orig_pte);
 805			set_pte_at(src_mm, addr, src_pte, pte);
 806		}
 807		rss[MM_SWAPENTS]++;
 808	} else if (is_migration_entry(entry)) {
 809		folio = pfn_swap_entry_folio(entry);
 810
 811		rss[mm_counter(folio)]++;
 812
 813		if (!is_readable_migration_entry(entry) &&
 814				is_cow_mapping(vm_flags)) {
 815			/*
 816			 * COW mappings require pages in both parent and child
 817			 * to be set to read. A previously exclusive entry is
 818			 * now shared.
 819			 */
 820			entry = make_readable_migration_entry(
 821							swp_offset(entry));
 822			pte = swp_entry_to_pte(entry);
 823			if (pte_swp_soft_dirty(orig_pte))
 824				pte = pte_swp_mksoft_dirty(pte);
 825			if (pte_swp_uffd_wp(orig_pte))
 826				pte = pte_swp_mkuffd_wp(pte);
 827			set_pte_at(src_mm, addr, src_pte, pte);
 828		}
 829	} else if (is_device_private_entry(entry)) {
 830		page = pfn_swap_entry_to_page(entry);
 831		folio = page_folio(page);
 832
 833		/*
 834		 * Update rss count even for unaddressable pages, as
 835		 * they should treated just like normal pages in this
 836		 * respect.
 837		 *
 838		 * We will likely want to have some new rss counters
 839		 * for unaddressable pages, at some point. But for now
 840		 * keep things as they are.
 841		 */
 842		folio_get(folio);
 843		rss[mm_counter(folio)]++;
 844		/* Cannot fail as these pages cannot get pinned. */
 845		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
 846
 847		/*
 848		 * We do not preserve soft-dirty information, because so
 849		 * far, checkpoint/restore is the only feature that
 850		 * requires that. And checkpoint/restore does not work
 851		 * when a device driver is involved (you cannot easily
 852		 * save and restore device driver state).
 853		 */
 854		if (is_writable_device_private_entry(entry) &&
 855		    is_cow_mapping(vm_flags)) {
 856			entry = make_readable_device_private_entry(
 857							swp_offset(entry));
 858			pte = swp_entry_to_pte(entry);
 859			if (pte_swp_uffd_wp(orig_pte))
 860				pte = pte_swp_mkuffd_wp(pte);
 861			set_pte_at(src_mm, addr, src_pte, pte);
 862		}
 863	} else if (is_device_exclusive_entry(entry)) {
 864		/*
 865		 * Make device exclusive entries present by restoring the
 866		 * original entry then copying as for a present pte. Device
 867		 * exclusive entries currently only support private writable
 868		 * (ie. COW) mappings.
 869		 */
 870		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
 871		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
 872			return -EBUSY;
 873		return -ENOENT;
 874	} else if (is_pte_marker_entry(entry)) {
 875		pte_marker marker = copy_pte_marker(entry, dst_vma);
 876
 877		if (marker)
 878			set_pte_at(dst_mm, addr, dst_pte,
 879				   make_pte_marker(marker));
 880		return 0;
 881	}
 882	if (!userfaultfd_wp(dst_vma))
 883		pte = pte_swp_clear_uffd_wp(pte);
 884	set_pte_at(dst_mm, addr, dst_pte, pte);
 885	return 0;
 886}
 887
 888/*
 889 * Copy a present and normal page.
 890 *
 891 * NOTE! The usual case is that this isn't required;
 892 * instead, the caller can just increase the page refcount
 893 * and re-use the pte the traditional way.
 
 
 
 
 
 
 
 
 894 *
 895 * And if we need a pre-allocated page but don't yet have
 896 * one, return a negative error to let the preallocation
 897 * code know so that it can do so outside the page table
 898 * lock.
 899 */
 900static inline int
 901copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 902		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
 903		  struct folio **prealloc, struct page *page)
 
 
 904{
 905	struct folio *new_folio;
 906	pte_t pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907
 908	new_folio = *prealloc;
 909	if (!new_folio)
 910		return -EAGAIN;
 911
 912	/*
 913	 * We have a prealloc page, all good!  Take it
 914	 * over and copy the page & arm it.
 915	 */
 916	*prealloc = NULL;
 917	copy_user_highpage(&new_folio->page, page, addr, src_vma);
 918	__folio_mark_uptodate(new_folio);
 919	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
 920	folio_add_lru_vma(new_folio, dst_vma);
 921	rss[MM_ANONPAGES]++;
 922
 923	/* All done, just insert the new page copy in the child */
 924	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
 925	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
 926	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
 927		/* Uffd-wp needs to be delivered to dest pte as well */
 928		pte = pte_mkuffd_wp(pte);
 929	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 930	return 0;
 931}
 932
 933static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
 934		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
 935		pte_t pte, unsigned long addr, int nr)
 936{
 937	struct mm_struct *src_mm = src_vma->vm_mm;
 938
 939	/* If it's a COW mapping, write protect it both processes. */
 940	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
 941		wrprotect_ptes(src_mm, addr, src_pte, nr);
 942		pte = pte_wrprotect(pte);
 943	}
 944
 945	/* If it's a shared mapping, mark it clean in the child. */
 946	if (src_vma->vm_flags & VM_SHARED)
 947		pte = pte_mkclean(pte);
 948	pte = pte_mkold(pte);
 949
 950	if (!userfaultfd_wp(dst_vma))
 951		pte = pte_clear_uffd_wp(pte);
 952
 953	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
 954}
 955
 956/*
 957 * Copy one present PTE, trying to batch-process subsequent PTEs that map
 958 * consecutive pages of the same folio by copying them as well.
 959 *
 960 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
 961 * Otherwise, returns the number of copied PTEs (at least 1).
 962 */
 963static inline int
 964copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 965		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
 966		 int max_nr, int *rss, struct folio **prealloc)
 
 967{
 
 
 968	struct page *page;
 969	struct folio *folio;
 970	bool any_writable;
 971	fpb_t flags = 0;
 972	int err, nr;
 973
 974	page = vm_normal_page(src_vma, addr, pte);
 975	if (unlikely(!page))
 976		goto copy_pte;
 977
 978	folio = page_folio(page);
 979
 980	/*
 981	 * If we likely have to copy, just don't bother with batching. Make
 982	 * sure that the common "small folio" case is as fast as possible
 983	 * by keeping the batching logic separate.
 984	 */
 985	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
 986		if (src_vma->vm_flags & VM_SHARED)
 987			flags |= FPB_IGNORE_DIRTY;
 988		if (!vma_soft_dirty_enabled(src_vma))
 989			flags |= FPB_IGNORE_SOFT_DIRTY;
 990
 991		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
 992				     &any_writable);
 993		folio_ref_add(folio, nr);
 994		if (folio_test_anon(folio)) {
 995			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
 996								  nr, src_vma))) {
 997				folio_ref_sub(folio, nr);
 998				return -EAGAIN;
 999			}
1000			rss[MM_ANONPAGES] += nr;
1001			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1002		} else {
1003			folio_dup_file_rmap_ptes(folio, page, nr);
1004			rss[mm_counter_file(folio)] += nr;
1005		}
1006		if (any_writable)
1007			pte = pte_mkwrite(pte, src_vma);
1008		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1009				    addr, nr);
1010		return nr;
1011	}
1012
1013	folio_get(folio);
1014	if (folio_test_anon(folio)) {
1015		/*
1016		 * If this page may have been pinned by the parent process,
1017		 * copy the page immediately for the child so that we'll always
1018		 * guarantee the pinned page won't be randomly replaced in the
1019		 * future.
1020		 */
1021		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1022			/* Page may be pinned, we have to copy. */
1023			folio_put(folio);
1024			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1025						addr, rss, prealloc, page);
1026			return err ? err : 1;
1027		}
1028		rss[MM_ANONPAGES]++;
1029		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1030	} else {
1031		folio_dup_file_rmap_pte(folio, page);
1032		rss[mm_counter_file(folio)]++;
1033	}
1034
1035copy_pte:
1036	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1037	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038}
1039
1040static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1041		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
 
1042{
1043	struct folio *new_folio;
1044
1045	if (need_zero)
1046		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1047	else
1048		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1049					    addr, false);
1050
1051	if (!new_folio)
1052		return NULL;
1053
1054	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1055		folio_put(new_folio);
1056		return NULL;
1057	}
1058	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1059
1060	return new_folio;
1061}
1062
1063static int
1064copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1065	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066	       unsigned long end)
1067{
1068	struct mm_struct *dst_mm = dst_vma->vm_mm;
1069	struct mm_struct *src_mm = src_vma->vm_mm;
1070	pte_t *orig_src_pte, *orig_dst_pte;
1071	pte_t *src_pte, *dst_pte;
1072	pte_t ptent;
1073	spinlock_t *src_ptl, *dst_ptl;
1074	int progress, max_nr, ret = 0;
1075	int rss[NR_MM_COUNTERS];
1076	swp_entry_t entry = (swp_entry_t){0};
1077	struct folio *prealloc = NULL;
1078	int nr;
1079
1080again:
1081	progress = 0;
1082	init_rss_vec(rss);
1083
1084	/*
1085	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1086	 * error handling here, assume that exclusive mmap_lock on dst and src
1087	 * protects anon from unexpected THP transitions; with shmem and file
1088	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1089	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1090	 * can remove such assumptions later, but this is good enough for now.
1091	 */
1092	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1093	if (!dst_pte) {
1094		ret = -ENOMEM;
1095		goto out;
1096	}
1097	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1098	if (!src_pte) {
1099		pte_unmap_unlock(dst_pte, dst_ptl);
1100		/* ret == 0 */
1101		goto out;
1102	}
1103	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1104	orig_src_pte = src_pte;
1105	orig_dst_pte = dst_pte;
1106	arch_enter_lazy_mmu_mode();
1107
1108	do {
1109		nr = 1;
1110
1111		/*
1112		 * We are holding two locks at this point - either of them
1113		 * could generate latencies in another task on another CPU.
1114		 */
1115		if (progress >= 32) {
1116			progress = 0;
1117			if (need_resched() ||
1118			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1119				break;
1120		}
1121		ptent = ptep_get(src_pte);
1122		if (pte_none(ptent)) {
1123			progress++;
1124			continue;
1125		}
1126		if (unlikely(!pte_present(ptent))) {
1127			ret = copy_nonpresent_pte(dst_mm, src_mm,
1128						  dst_pte, src_pte,
1129						  dst_vma, src_vma,
1130						  addr, rss);
1131			if (ret == -EIO) {
1132				entry = pte_to_swp_entry(ptep_get(src_pte));
1133				break;
1134			} else if (ret == -EBUSY) {
1135				break;
1136			} else if (!ret) {
1137				progress += 8;
1138				continue;
1139			}
1140			ptent = ptep_get(src_pte);
1141			VM_WARN_ON_ONCE(!pte_present(ptent));
1142
1143			/*
1144			 * Device exclusive entry restored, continue by copying
1145			 * the now present pte.
1146			 */
1147			WARN_ON_ONCE(ret != -ENOENT);
1148		}
1149		/* copy_present_ptes() will clear `*prealloc' if consumed */
1150		max_nr = (end - addr) / PAGE_SIZE;
1151		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1152					ptent, addr, max_nr, rss, &prealloc);
1153		/*
1154		 * If we need a pre-allocated page for this pte, drop the
1155		 * locks, allocate, and try again.
1156		 */
1157		if (unlikely(ret == -EAGAIN))
1158			break;
1159		if (unlikely(prealloc)) {
1160			/*
1161			 * pre-alloc page cannot be reused by next time so as
1162			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1163			 * will allocate page according to address).  This
1164			 * could only happen if one pinned pte changed.
1165			 */
1166			folio_put(prealloc);
1167			prealloc = NULL;
1168		}
1169		nr = ret;
1170		progress += 8 * nr;
1171	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1172		 addr != end);
1173
1174	arch_leave_lazy_mmu_mode();
1175	pte_unmap_unlock(orig_src_pte, src_ptl);
 
1176	add_mm_rss_vec(dst_mm, rss);
1177	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1178	cond_resched();
1179
1180	if (ret == -EIO) {
1181		VM_WARN_ON_ONCE(!entry.val);
1182		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1183			ret = -ENOMEM;
1184			goto out;
1185		}
1186		entry.val = 0;
1187	} else if (ret == -EBUSY) {
1188		goto out;
1189	} else if (ret ==  -EAGAIN) {
1190		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1191		if (!prealloc)
1192			return -ENOMEM;
1193	} else if (ret < 0) {
1194		VM_WARN_ON_ONCE(1);
1195	}
1196
1197	/* We've captured and resolved the error. Reset, try again. */
1198	ret = 0;
1199
1200	if (addr != end)
1201		goto again;
1202out:
1203	if (unlikely(prealloc))
1204		folio_put(prealloc);
1205	return ret;
1206}
1207
1208static inline int
1209copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1210	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1211	       unsigned long end)
1212{
1213	struct mm_struct *dst_mm = dst_vma->vm_mm;
1214	struct mm_struct *src_mm = src_vma->vm_mm;
1215	pmd_t *src_pmd, *dst_pmd;
1216	unsigned long next;
1217
1218	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1219	if (!dst_pmd)
1220		return -ENOMEM;
1221	src_pmd = pmd_offset(src_pud, addr);
1222	do {
1223		next = pmd_addr_end(addr, end);
1224		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1225			|| pmd_devmap(*src_pmd)) {
1226			int err;
1227			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1228			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1229					    addr, dst_vma, src_vma);
1230			if (err == -ENOMEM)
1231				return -ENOMEM;
1232			if (!err)
1233				continue;
1234			/* fall through */
1235		}
1236		if (pmd_none_or_clear_bad(src_pmd))
1237			continue;
1238		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1239				   addr, next))
1240			return -ENOMEM;
1241	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1242	return 0;
1243}
1244
1245static inline int
1246copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1247	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1248	       unsigned long end)
1249{
1250	struct mm_struct *dst_mm = dst_vma->vm_mm;
1251	struct mm_struct *src_mm = src_vma->vm_mm;
1252	pud_t *src_pud, *dst_pud;
1253	unsigned long next;
1254
1255	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1256	if (!dst_pud)
1257		return -ENOMEM;
1258	src_pud = pud_offset(src_p4d, addr);
1259	do {
1260		next = pud_addr_end(addr, end);
1261		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1262			int err;
1263
1264			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1265			err = copy_huge_pud(dst_mm, src_mm,
1266					    dst_pud, src_pud, addr, src_vma);
1267			if (err == -ENOMEM)
1268				return -ENOMEM;
1269			if (!err)
1270				continue;
1271			/* fall through */
1272		}
1273		if (pud_none_or_clear_bad(src_pud))
1274			continue;
1275		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1276				   addr, next))
1277			return -ENOMEM;
1278	} while (dst_pud++, src_pud++, addr = next, addr != end);
1279	return 0;
1280}
1281
1282static inline int
1283copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1284	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1285	       unsigned long end)
1286{
1287	struct mm_struct *dst_mm = dst_vma->vm_mm;
1288	p4d_t *src_p4d, *dst_p4d;
1289	unsigned long next;
1290
1291	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1292	if (!dst_p4d)
1293		return -ENOMEM;
1294	src_p4d = p4d_offset(src_pgd, addr);
1295	do {
1296		next = p4d_addr_end(addr, end);
1297		if (p4d_none_or_clear_bad(src_p4d))
1298			continue;
1299		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1300				   addr, next))
1301			return -ENOMEM;
1302	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1303	return 0;
1304}
1305
1306/*
1307 * Return true if the vma needs to copy the pgtable during this fork().  Return
1308 * false when we can speed up fork() by allowing lazy page faults later until
1309 * when the child accesses the memory range.
1310 */
1311static bool
1312vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1313{
1314	/*
1315	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1316	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1317	 * contains uffd-wp protection information, that's something we can't
1318	 * retrieve from page cache, and skip copying will lose those info.
1319	 */
1320	if (userfaultfd_wp(dst_vma))
1321		return true;
1322
1323	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1324		return true;
1325
1326	if (src_vma->anon_vma)
1327		return true;
1328
1329	/*
1330	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1331	 * becomes much lighter when there are big shared or private readonly
1332	 * mappings. The tradeoff is that copy_page_range is more efficient
1333	 * than faulting.
1334	 */
1335	return false;
1336}
1337
1338int
1339copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1340{
1341	pgd_t *src_pgd, *dst_pgd;
1342	unsigned long next;
1343	unsigned long addr = src_vma->vm_start;
1344	unsigned long end = src_vma->vm_end;
1345	struct mm_struct *dst_mm = dst_vma->vm_mm;
1346	struct mm_struct *src_mm = src_vma->vm_mm;
1347	struct mmu_notifier_range range;
1348	bool is_cow;
1349	int ret;
1350
1351	if (!vma_needs_copy(dst_vma, src_vma))
 
 
 
 
 
 
 
1352		return 0;
1353
1354	if (is_vm_hugetlb_page(src_vma))
1355		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1356
1357	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1358		/*
1359		 * We do not free on error cases below as remove_vma
1360		 * gets called on error from higher level routine
1361		 */
1362		ret = track_pfn_copy(src_vma);
1363		if (ret)
1364			return ret;
1365	}
1366
1367	/*
1368	 * We need to invalidate the secondary MMU mappings only when
1369	 * there could be a permission downgrade on the ptes of the
1370	 * parent mm. And a permission downgrade will only happen if
1371	 * is_cow_mapping() returns true.
1372	 */
1373	is_cow = is_cow_mapping(src_vma->vm_flags);
1374
1375	if (is_cow) {
1376		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1377					0, src_mm, addr, end);
1378		mmu_notifier_invalidate_range_start(&range);
1379		/*
1380		 * Disabling preemption is not needed for the write side, as
1381		 * the read side doesn't spin, but goes to the mmap_lock.
1382		 *
1383		 * Use the raw variant of the seqcount_t write API to avoid
1384		 * lockdep complaining about preemptibility.
1385		 */
1386		vma_assert_write_locked(src_vma);
1387		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1388	}
1389
1390	ret = 0;
1391	dst_pgd = pgd_offset(dst_mm, addr);
1392	src_pgd = pgd_offset(src_mm, addr);
1393	do {
1394		next = pgd_addr_end(addr, end);
1395		if (pgd_none_or_clear_bad(src_pgd))
1396			continue;
1397		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1398					    addr, next))) {
1399			untrack_pfn_clear(dst_vma);
1400			ret = -ENOMEM;
1401			break;
1402		}
1403	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1404
1405	if (is_cow) {
1406		raw_write_seqcount_end(&src_mm->write_protect_seq);
1407		mmu_notifier_invalidate_range_end(&range);
1408	}
1409	return ret;
1410}
1411
1412/* Whether we should zap all COWed (private) pages too */
1413static inline bool should_zap_cows(struct zap_details *details)
1414{
1415	/* By default, zap all pages */
1416	if (!details)
1417		return true;
1418
1419	/* Or, we zap COWed pages only if the caller wants to */
1420	return details->even_cows;
1421}
1422
1423/* Decides whether we should zap this folio with the folio pointer specified */
1424static inline bool should_zap_folio(struct zap_details *details,
1425				    struct folio *folio)
1426{
1427	/* If we can make a decision without *folio.. */
1428	if (should_zap_cows(details))
1429		return true;
1430
1431	/* Otherwise we should only zap non-anon folios */
1432	return !folio_test_anon(folio);
1433}
1434
1435static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1436{
1437	if (!details)
1438		return false;
1439
1440	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1441}
1442
1443/*
1444 * This function makes sure that we'll replace the none pte with an uffd-wp
1445 * swap special pte marker when necessary. Must be with the pgtable lock held.
1446 */
1447static inline void
1448zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1449			      unsigned long addr, pte_t *pte, int nr,
1450			      struct zap_details *details, pte_t pteval)
1451{
1452	/* Zap on anonymous always means dropping everything */
1453	if (vma_is_anonymous(vma))
1454		return;
1455
1456	if (zap_drop_file_uffd_wp(details))
1457		return;
1458
1459	for (;;) {
1460		/* the PFN in the PTE is irrelevant. */
1461		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1462		if (--nr == 0)
1463			break;
1464		pte++;
1465		addr += PAGE_SIZE;
1466	}
1467}
1468
1469static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1470		struct vm_area_struct *vma, struct folio *folio,
1471		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1472		unsigned long addr, struct zap_details *details, int *rss,
1473		bool *force_flush, bool *force_break)
1474{
1475	struct mm_struct *mm = tlb->mm;
1476	bool delay_rmap = false;
1477
1478	if (!folio_test_anon(folio)) {
1479		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1480		if (pte_dirty(ptent)) {
1481			folio_mark_dirty(folio);
1482			if (tlb_delay_rmap(tlb)) {
1483				delay_rmap = true;
1484				*force_flush = true;
1485			}
1486		}
1487		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1488			folio_mark_accessed(folio);
1489		rss[mm_counter(folio)] -= nr;
1490	} else {
1491		/* We don't need up-to-date accessed/dirty bits. */
1492		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1493		rss[MM_ANONPAGES] -= nr;
1494	}
1495	/* Checking a single PTE in a batch is sufficient. */
1496	arch_check_zapped_pte(vma, ptent);
1497	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1498	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1499		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1500					      ptent);
1501
1502	if (!delay_rmap) {
1503		folio_remove_rmap_ptes(folio, page, nr, vma);
1504
1505		/* Only sanity-check the first page in a batch. */
1506		if (unlikely(page_mapcount(page) < 0))
1507			print_bad_pte(vma, addr, ptent, page);
1508	}
1509	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1510		*force_flush = true;
1511		*force_break = true;
1512	}
1513}
1514
1515/*
1516 * Zap or skip at least one present PTE, trying to batch-process subsequent
1517 * PTEs that map consecutive pages of the same folio.
1518 *
1519 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1520 */
1521static inline int zap_present_ptes(struct mmu_gather *tlb,
1522		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1523		unsigned int max_nr, unsigned long addr,
1524		struct zap_details *details, int *rss, bool *force_flush,
1525		bool *force_break)
1526{
1527	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1528	struct mm_struct *mm = tlb->mm;
1529	struct folio *folio;
1530	struct page *page;
1531	int nr;
1532
1533	page = vm_normal_page(vma, addr, ptent);
1534	if (!page) {
1535		/* We don't need up-to-date accessed/dirty bits. */
1536		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1537		arch_check_zapped_pte(vma, ptent);
1538		tlb_remove_tlb_entry(tlb, pte, addr);
1539		if (userfaultfd_pte_wp(vma, ptent))
1540			zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1541						      details, ptent);
1542		ksm_might_unmap_zero_page(mm, ptent);
1543		return 1;
1544	}
1545
1546	folio = page_folio(page);
1547	if (unlikely(!should_zap_folio(details, folio)))
1548		return 1;
1549
1550	/*
1551	 * Make sure that the common "small folio" case is as fast as possible
1552	 * by keeping the batching logic separate.
1553	 */
1554	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1555		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1556				     NULL);
1557
1558		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1559				       addr, details, rss, force_flush,
1560				       force_break);
1561		return nr;
1562	}
1563	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1564			       details, rss, force_flush, force_break);
1565	return 1;
1566}
1567
1568static unsigned long zap_pte_range(struct mmu_gather *tlb,
1569				struct vm_area_struct *vma, pmd_t *pmd,
1570				unsigned long addr, unsigned long end,
1571				struct zap_details *details)
1572{
1573	bool force_flush = false, force_break = false;
1574	struct mm_struct *mm = tlb->mm;
 
1575	int rss[NR_MM_COUNTERS];
1576	spinlock_t *ptl;
1577	pte_t *start_pte;
1578	pte_t *pte;
1579	swp_entry_t entry;
1580	int nr;
1581
1582	tlb_change_page_size(tlb, PAGE_SIZE);
 
1583	init_rss_vec(rss);
1584	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1585	if (!pte)
1586		return addr;
1587
1588	flush_tlb_batched_pending(mm);
1589	arch_enter_lazy_mmu_mode();
1590	do {
1591		pte_t ptent = ptep_get(pte);
1592		struct folio *folio;
1593		struct page *page;
1594		int max_nr;
1595
1596		nr = 1;
1597		if (pte_none(ptent))
1598			continue;
1599
1600		if (need_resched())
1601			break;
1602
1603		if (pte_present(ptent)) {
1604			max_nr = (end - addr) / PAGE_SIZE;
1605			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1606					      addr, details, rss, &force_flush,
1607					      &force_break);
1608			if (unlikely(force_break)) {
1609				addr += nr * PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1610				break;
1611			}
1612			continue;
1613		}
1614
1615		entry = pte_to_swp_entry(ptent);
1616		if (is_device_private_entry(entry) ||
1617		    is_device_exclusive_entry(entry)) {
1618			page = pfn_swap_entry_to_page(entry);
1619			folio = page_folio(page);
1620			if (unlikely(!should_zap_folio(details, folio)))
1621				continue;
1622			/*
1623			 * Both device private/exclusive mappings should only
1624			 * work with anonymous page so far, so we don't need to
1625			 * consider uffd-wp bit when zap. For more information,
1626			 * see zap_install_uffd_wp_if_needed().
1627			 */
1628			WARN_ON_ONCE(!vma_is_anonymous(vma));
1629			rss[mm_counter(folio)]--;
1630			if (is_device_private_entry(entry))
1631				folio_remove_rmap_pte(folio, page, vma);
1632			folio_put(folio);
1633		} else if (!non_swap_entry(entry)) {
1634			/* Genuine swap entry, hence a private anon page */
1635			if (!should_zap_cows(details))
1636				continue;
 
 
 
 
 
1637			rss[MM_SWAPENTS]--;
1638			if (unlikely(!free_swap_and_cache(entry)))
1639				print_bad_pte(vma, addr, ptent, NULL);
1640		} else if (is_migration_entry(entry)) {
1641			folio = pfn_swap_entry_folio(entry);
1642			if (!should_zap_folio(details, folio))
1643				continue;
1644			rss[mm_counter(folio)]--;
1645		} else if (pte_marker_entry_uffd_wp(entry)) {
1646			/*
1647			 * For anon: always drop the marker; for file: only
1648			 * drop the marker if explicitly requested.
1649			 */
1650			if (!vma_is_anonymous(vma) &&
1651			    !zap_drop_file_uffd_wp(details))
1652				continue;
1653		} else if (is_hwpoison_entry(entry) ||
1654			   is_poisoned_swp_entry(entry)) {
1655			if (!should_zap_cows(details))
1656				continue;
1657		} else {
1658			/* We should have covered all the swap entry types */
1659			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1660			WARN_ON_ONCE(1);
1661		}
 
 
1662		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1663		zap_install_uffd_wp_if_needed(vma, addr, pte, 1, details, ptent);
1664	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1665
1666	add_mm_rss_vec(mm, rss);
1667	arch_leave_lazy_mmu_mode();
1668
1669	/* Do the actual TLB flush before dropping ptl */
1670	if (force_flush) {
1671		tlb_flush_mmu_tlbonly(tlb);
1672		tlb_flush_rmaps(tlb, vma);
1673	}
1674	pte_unmap_unlock(start_pte, ptl);
1675
1676	/*
1677	 * If we forced a TLB flush (either due to running out of
1678	 * batch buffers or because we needed to flush dirty TLB
1679	 * entries before releasing the ptl), free the batched
1680	 * memory too. Come back again if we didn't do everything.
1681	 */
1682	if (force_flush)
 
1683		tlb_flush_mmu(tlb);
 
 
 
 
 
 
1684
1685	return addr;
1686}
1687
1688static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1689				struct vm_area_struct *vma, pud_t *pud,
1690				unsigned long addr, unsigned long end,
1691				struct zap_details *details)
1692{
1693	pmd_t *pmd;
1694	unsigned long next;
1695
1696	pmd = pmd_offset(pud, addr);
1697	do {
1698		next = pmd_addr_end(addr, end);
1699		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1700			if (next - addr != HPAGE_PMD_SIZE)
1701				__split_huge_pmd(vma, pmd, addr, false, NULL);
1702			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1703				addr = next;
1704				continue;
1705			}
1706			/* fall through */
1707		} else if (details && details->single_folio &&
1708			   folio_test_pmd_mappable(details->single_folio) &&
1709			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1710			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1711			/*
1712			 * Take and drop THP pmd lock so that we cannot return
1713			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1714			 * but not yet decremented compound_mapcount().
1715			 */
1716			spin_unlock(ptl);
1717		}
1718		if (pmd_none(*pmd)) {
1719			addr = next;
1720			continue;
1721		}
1722		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1723		if (addr != next)
1724			pmd--;
1725	} while (pmd++, cond_resched(), addr != end);
 
 
 
 
 
1726
1727	return addr;
1728}
1729
1730static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1731				struct vm_area_struct *vma, p4d_t *p4d,
1732				unsigned long addr, unsigned long end,
1733				struct zap_details *details)
1734{
1735	pud_t *pud;
1736	unsigned long next;
1737
1738	pud = pud_offset(p4d, addr);
1739	do {
1740		next = pud_addr_end(addr, end);
1741		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1742			if (next - addr != HPAGE_PUD_SIZE) {
1743				mmap_assert_locked(tlb->mm);
1744				split_huge_pud(vma, pud, addr);
1745			} else if (zap_huge_pud(tlb, vma, pud, addr))
1746				goto next;
1747			/* fall through */
1748		}
1749		if (pud_none_or_clear_bad(pud))
1750			continue;
1751		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1752next:
1753		cond_resched();
1754	} while (pud++, addr = next, addr != end);
1755
1756	return addr;
1757}
1758
1759static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1760				struct vm_area_struct *vma, pgd_t *pgd,
1761				unsigned long addr, unsigned long end,
1762				struct zap_details *details)
1763{
1764	p4d_t *p4d;
1765	unsigned long next;
1766
1767	p4d = p4d_offset(pgd, addr);
1768	do {
1769		next = p4d_addr_end(addr, end);
1770		if (p4d_none_or_clear_bad(p4d))
1771			continue;
1772		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1773	} while (p4d++, addr = next, addr != end);
1774
1775	return addr;
1776}
1777
1778void unmap_page_range(struct mmu_gather *tlb,
1779			     struct vm_area_struct *vma,
1780			     unsigned long addr, unsigned long end,
1781			     struct zap_details *details)
1782{
1783	pgd_t *pgd;
1784	unsigned long next;
1785
1786	BUG_ON(addr >= end);
1787	tlb_start_vma(tlb, vma);
1788	pgd = pgd_offset(vma->vm_mm, addr);
1789	do {
1790		next = pgd_addr_end(addr, end);
1791		if (pgd_none_or_clear_bad(pgd))
1792			continue;
1793		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1794	} while (pgd++, addr = next, addr != end);
1795	tlb_end_vma(tlb, vma);
1796}
1797
1798
1799static void unmap_single_vma(struct mmu_gather *tlb,
1800		struct vm_area_struct *vma, unsigned long start_addr,
1801		unsigned long end_addr,
1802		struct zap_details *details, bool mm_wr_locked)
1803{
1804	unsigned long start = max(vma->vm_start, start_addr);
1805	unsigned long end;
1806
1807	if (start >= vma->vm_end)
1808		return;
1809	end = min(vma->vm_end, end_addr);
1810	if (end <= vma->vm_start)
1811		return;
1812
1813	if (vma->vm_file)
1814		uprobe_munmap(vma, start, end);
1815
1816	if (unlikely(vma->vm_flags & VM_PFNMAP))
1817		untrack_pfn(vma, 0, 0, mm_wr_locked);
1818
1819	if (start != end) {
1820		if (unlikely(is_vm_hugetlb_page(vma))) {
1821			/*
1822			 * It is undesirable to test vma->vm_file as it
1823			 * should be non-null for valid hugetlb area.
1824			 * However, vm_file will be NULL in the error
1825			 * cleanup path of mmap_region. When
1826			 * hugetlbfs ->mmap method fails,
1827			 * mmap_region() nullifies vma->vm_file
1828			 * before calling this function to clean up.
1829			 * Since no pte has actually been setup, it is
1830			 * safe to do nothing in this case.
1831			 */
1832			if (vma->vm_file) {
1833				zap_flags_t zap_flags = details ?
1834				    details->zap_flags : 0;
1835				__unmap_hugepage_range(tlb, vma, start, end,
1836							     NULL, zap_flags);
1837			}
1838		} else
1839			unmap_page_range(tlb, vma, start, end, details);
1840	}
1841}
1842
1843/**
1844 * unmap_vmas - unmap a range of memory covered by a list of vma's
1845 * @tlb: address of the caller's struct mmu_gather
1846 * @mas: the maple state
1847 * @vma: the starting vma
1848 * @start_addr: virtual address at which to start unmapping
1849 * @end_addr: virtual address at which to end unmapping
1850 * @tree_end: The maximum index to check
1851 * @mm_wr_locked: lock flag
1852 *
1853 * Unmap all pages in the vma list.
1854 *
1855 * Only addresses between `start' and `end' will be unmapped.
1856 *
1857 * The VMA list must be sorted in ascending virtual address order.
1858 *
1859 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1860 * range after unmap_vmas() returns.  So the only responsibility here is to
1861 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1862 * drops the lock and schedules.
1863 */
1864void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1865		struct vm_area_struct *vma, unsigned long start_addr,
1866		unsigned long end_addr, unsigned long tree_end,
1867		bool mm_wr_locked)
1868{
1869	struct mmu_notifier_range range;
1870	struct zap_details details = {
1871		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1872		/* Careful - we need to zap private pages too! */
1873		.even_cows = true,
1874	};
1875
1876	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1877				start_addr, end_addr);
1878	mmu_notifier_invalidate_range_start(&range);
1879	do {
1880		unsigned long start = start_addr;
1881		unsigned long end = end_addr;
1882		hugetlb_zap_begin(vma, &start, &end);
1883		unmap_single_vma(tlb, vma, start, end, &details,
1884				 mm_wr_locked);
1885		hugetlb_zap_end(vma, &details);
1886		vma = mas_find(mas, tree_end - 1);
1887	} while (vma && likely(!xa_is_zero(vma)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888	mmu_notifier_invalidate_range_end(&range);
 
1889}
1890
1891/**
1892 * zap_page_range_single - remove user pages in a given range
1893 * @vma: vm_area_struct holding the applicable pages
1894 * @address: starting address of pages to zap
1895 * @size: number of bytes to zap
1896 * @details: details of shared cache invalidation
1897 *
1898 * The range must fit into one VMA.
1899 */
1900void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1901		unsigned long size, struct zap_details *details)
1902{
1903	const unsigned long end = address + size;
1904	struct mmu_notifier_range range;
1905	struct mmu_gather tlb;
1906
1907	lru_add_drain();
1908	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1909				address, end);
1910	hugetlb_zap_begin(vma, &range.start, &range.end);
1911	tlb_gather_mmu(&tlb, vma->vm_mm);
1912	update_hiwater_rss(vma->vm_mm);
1913	mmu_notifier_invalidate_range_start(&range);
1914	/*
1915	 * unmap 'address-end' not 'range.start-range.end' as range
1916	 * could have been expanded for hugetlb pmd sharing.
1917	 */
1918	unmap_single_vma(&tlb, vma, address, end, details, false);
1919	mmu_notifier_invalidate_range_end(&range);
1920	tlb_finish_mmu(&tlb);
1921	hugetlb_zap_end(vma, details);
1922}
1923
1924/**
1925 * zap_vma_ptes - remove ptes mapping the vma
1926 * @vma: vm_area_struct holding ptes to be zapped
1927 * @address: starting address of pages to zap
1928 * @size: number of bytes to zap
1929 *
1930 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1931 *
1932 * The entire address range must be fully contained within the vma.
1933 *
1934 */
1935void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1936		unsigned long size)
1937{
1938	if (!range_in_vma(vma, address, address + size) ||
1939	    		!(vma->vm_flags & VM_PFNMAP))
1940		return;
1941
1942	zap_page_range_single(vma, address, size, NULL);
1943}
1944EXPORT_SYMBOL_GPL(zap_vma_ptes);
1945
1946static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1947{
1948	pgd_t *pgd;
1949	p4d_t *p4d;
1950	pud_t *pud;
1951	pmd_t *pmd;
1952
1953	pgd = pgd_offset(mm, addr);
1954	p4d = p4d_alloc(mm, pgd, addr);
1955	if (!p4d)
1956		return NULL;
1957	pud = pud_alloc(mm, p4d, addr);
1958	if (!pud)
1959		return NULL;
1960	pmd = pmd_alloc(mm, pud, addr);
1961	if (!pmd)
1962		return NULL;
1963
1964	VM_BUG_ON(pmd_trans_huge(*pmd));
1965	return pmd;
1966}
1967
1968pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1969			spinlock_t **ptl)
1970{
1971	pmd_t *pmd = walk_to_pmd(mm, addr);
1972
1973	if (!pmd)
1974		return NULL;
1975	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1976}
1977
1978static int validate_page_before_insert(struct page *page)
1979{
1980	struct folio *folio = page_folio(page);
1981
1982	if (folio_test_anon(folio) || folio_test_slab(folio) ||
1983	    page_has_type(page))
1984		return -EINVAL;
1985	flush_dcache_folio(folio);
1986	return 0;
1987}
1988
1989static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1990			unsigned long addr, struct page *page, pgprot_t prot)
1991{
1992	struct folio *folio = page_folio(page);
1993
1994	if (!pte_none(ptep_get(pte)))
1995		return -EBUSY;
1996	/* Ok, finally just insert the thing.. */
1997	folio_get(folio);
1998	inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
1999	folio_add_file_rmap_pte(folio, page, vma);
2000	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
2001	return 0;
2002}
2003
2004/*
2005 * This is the old fallback for page remapping.
2006 *
2007 * For historical reasons, it only allows reserved pages. Only
2008 * old drivers should use this, and they needed to mark their
2009 * pages reserved for the old functions anyway.
2010 */
2011static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2012			struct page *page, pgprot_t prot)
2013{
 
2014	int retval;
2015	pte_t *pte;
2016	spinlock_t *ptl;
2017
2018	retval = validate_page_before_insert(page);
2019	if (retval)
2020		goto out;
2021	retval = -ENOMEM;
2022	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2023	if (!pte)
2024		goto out;
2025	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2026	pte_unmap_unlock(pte, ptl);
2027out:
2028	return retval;
2029}
2030
2031static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
 
2032			unsigned long addr, struct page *page, pgprot_t prot)
2033{
2034	int err;
2035
2036	if (!page_count(page))
2037		return -EINVAL;
2038	err = validate_page_before_insert(page);
2039	if (err)
2040		return err;
2041	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2042}
2043
2044/* insert_pages() amortizes the cost of spinlock operations
2045 * when inserting pages in a loop.
2046 */
2047static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2048			struct page **pages, unsigned long *num, pgprot_t prot)
2049{
2050	pmd_t *pmd = NULL;
2051	pte_t *start_pte, *pte;
2052	spinlock_t *pte_lock;
2053	struct mm_struct *const mm = vma->vm_mm;
2054	unsigned long curr_page_idx = 0;
2055	unsigned long remaining_pages_total = *num;
2056	unsigned long pages_to_write_in_pmd;
2057	int ret;
2058more:
2059	ret = -EFAULT;
2060	pmd = walk_to_pmd(mm, addr);
2061	if (!pmd)
2062		goto out;
2063
2064	pages_to_write_in_pmd = min_t(unsigned long,
2065		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2066
2067	/* Allocate the PTE if necessary; takes PMD lock once only. */
2068	ret = -ENOMEM;
2069	if (pte_alloc(mm, pmd))
2070		goto out;
2071
2072	while (pages_to_write_in_pmd) {
2073		int pte_idx = 0;
2074		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2075
2076		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2077		if (!start_pte) {
2078			ret = -EFAULT;
2079			goto out;
2080		}
2081		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2082			int err = insert_page_in_batch_locked(vma, pte,
2083				addr, pages[curr_page_idx], prot);
2084			if (unlikely(err)) {
2085				pte_unmap_unlock(start_pte, pte_lock);
2086				ret = err;
2087				remaining_pages_total -= pte_idx;
2088				goto out;
2089			}
2090			addr += PAGE_SIZE;
2091			++curr_page_idx;
2092		}
2093		pte_unmap_unlock(start_pte, pte_lock);
2094		pages_to_write_in_pmd -= batch_size;
2095		remaining_pages_total -= batch_size;
2096	}
2097	if (remaining_pages_total)
2098		goto more;
2099	ret = 0;
2100out:
2101	*num = remaining_pages_total;
2102	return ret;
2103}
 
2104
2105/**
2106 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2107 * @vma: user vma to map to
2108 * @addr: target start user address of these pages
2109 * @pages: source kernel pages
2110 * @num: in: number of pages to map. out: number of pages that were *not*
2111 * mapped. (0 means all pages were successfully mapped).
2112 *
2113 * Preferred over vm_insert_page() when inserting multiple pages.
2114 *
2115 * In case of error, we may have mapped a subset of the provided
2116 * pages. It is the caller's responsibility to account for this case.
2117 *
2118 * The same restrictions apply as in vm_insert_page().
2119 */
2120int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2121			struct page **pages, unsigned long *num)
2122{
 
2123	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2124
2125	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2126		return -EFAULT;
2127	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2128		BUG_ON(mmap_read_trylock(vma->vm_mm));
2129		BUG_ON(vma->vm_flags & VM_PFNMAP);
2130		vm_flags_set(vma, VM_MIXEDMAP);
2131	}
2132	/* Defer page refcount checking till we're about to map that page. */
2133	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
2134}
2135EXPORT_SYMBOL(vm_insert_pages);
2136
2137/**
2138 * vm_insert_page - insert single page into user vma
2139 * @vma: user vma to map to
2140 * @addr: target user address of this page
2141 * @page: source kernel page
2142 *
2143 * This allows drivers to insert individual pages they've allocated
2144 * into a user vma.
2145 *
2146 * The page has to be a nice clean _individual_ kernel allocation.
2147 * If you allocate a compound page, you need to have marked it as
2148 * such (__GFP_COMP), or manually just split the page up yourself
2149 * (see split_page()).
2150 *
2151 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2152 * took an arbitrary page protection parameter. This doesn't allow
2153 * that. Your vma protection will have to be set up correctly, which
2154 * means that if you want a shared writable mapping, you'd better
2155 * ask for a shared writable mapping!
2156 *
2157 * The page does not need to be reserved.
2158 *
2159 * Usually this function is called from f_op->mmap() handler
2160 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2161 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2162 * function from other places, for example from page-fault handler.
2163 *
2164 * Return: %0 on success, negative error code otherwise.
2165 */
2166int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2167			struct page *page)
2168{
2169	if (addr < vma->vm_start || addr >= vma->vm_end)
2170		return -EFAULT;
2171	if (!page_count(page))
2172		return -EINVAL;
2173	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2174		BUG_ON(mmap_read_trylock(vma->vm_mm));
2175		BUG_ON(vma->vm_flags & VM_PFNMAP);
2176		vm_flags_set(vma, VM_MIXEDMAP);
2177	}
2178	return insert_page(vma, addr, page, vma->vm_page_prot);
2179}
2180EXPORT_SYMBOL(vm_insert_page);
2181
2182/*
2183 * __vm_map_pages - maps range of kernel pages into user vma
2184 * @vma: user vma to map to
2185 * @pages: pointer to array of source kernel pages
2186 * @num: number of pages in page array
2187 * @offset: user's requested vm_pgoff
2188 *
2189 * This allows drivers to map range of kernel pages into a user vma.
2190 *
2191 * Return: 0 on success and error code otherwise.
2192 */
2193static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2194				unsigned long num, unsigned long offset)
2195{
2196	unsigned long count = vma_pages(vma);
2197	unsigned long uaddr = vma->vm_start;
2198	int ret, i;
2199
2200	/* Fail if the user requested offset is beyond the end of the object */
2201	if (offset >= num)
2202		return -ENXIO;
2203
2204	/* Fail if the user requested size exceeds available object size */
2205	if (count > num - offset)
2206		return -ENXIO;
2207
2208	for (i = 0; i < count; i++) {
2209		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2210		if (ret < 0)
2211			return ret;
2212		uaddr += PAGE_SIZE;
2213	}
2214
2215	return 0;
2216}
2217
2218/**
2219 * vm_map_pages - maps range of kernel pages starts with non zero offset
2220 * @vma: user vma to map to
2221 * @pages: pointer to array of source kernel pages
2222 * @num: number of pages in page array
2223 *
2224 * Maps an object consisting of @num pages, catering for the user's
2225 * requested vm_pgoff
2226 *
2227 * If we fail to insert any page into the vma, the function will return
2228 * immediately leaving any previously inserted pages present.  Callers
2229 * from the mmap handler may immediately return the error as their caller
2230 * will destroy the vma, removing any successfully inserted pages. Other
2231 * callers should make their own arrangements for calling unmap_region().
2232 *
2233 * Context: Process context. Called by mmap handlers.
2234 * Return: 0 on success and error code otherwise.
2235 */
2236int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2237				unsigned long num)
2238{
2239	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2240}
2241EXPORT_SYMBOL(vm_map_pages);
2242
2243/**
2244 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2245 * @vma: user vma to map to
2246 * @pages: pointer to array of source kernel pages
2247 * @num: number of pages in page array
2248 *
2249 * Similar to vm_map_pages(), except that it explicitly sets the offset
2250 * to 0. This function is intended for the drivers that did not consider
2251 * vm_pgoff.
2252 *
2253 * Context: Process context. Called by mmap handlers.
2254 * Return: 0 on success and error code otherwise.
2255 */
2256int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2257				unsigned long num)
2258{
2259	return __vm_map_pages(vma, pages, num, 0);
2260}
2261EXPORT_SYMBOL(vm_map_pages_zero);
2262
2263static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2264			pfn_t pfn, pgprot_t prot, bool mkwrite)
2265{
2266	struct mm_struct *mm = vma->vm_mm;
2267	pte_t *pte, entry;
2268	spinlock_t *ptl;
2269
2270	pte = get_locked_pte(mm, addr, &ptl);
2271	if (!pte)
2272		return VM_FAULT_OOM;
2273	entry = ptep_get(pte);
2274	if (!pte_none(entry)) {
2275		if (mkwrite) {
2276			/*
2277			 * For read faults on private mappings the PFN passed
2278			 * in may not match the PFN we have mapped if the
2279			 * mapped PFN is a writeable COW page.  In the mkwrite
2280			 * case we are creating a writable PTE for a shared
2281			 * mapping and we expect the PFNs to match. If they
2282			 * don't match, we are likely racing with block
2283			 * allocation and mapping invalidation so just skip the
2284			 * update.
2285			 */
2286			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2287				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2288				goto out_unlock;
2289			}
2290			entry = pte_mkyoung(entry);
2291			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2292			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2293				update_mmu_cache(vma, addr, pte);
2294		}
2295		goto out_unlock;
2296	}
2297
2298	/* Ok, finally just insert the thing.. */
2299	if (pfn_t_devmap(pfn))
2300		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2301	else
2302		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2303
2304	if (mkwrite) {
2305		entry = pte_mkyoung(entry);
2306		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2307	}
2308
2309	set_pte_at(mm, addr, pte, entry);
2310	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2311
2312out_unlock:
2313	pte_unmap_unlock(pte, ptl);
2314	return VM_FAULT_NOPAGE;
2315}
2316
2317/**
2318 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2319 * @vma: user vma to map to
2320 * @addr: target user address of this page
2321 * @pfn: source kernel pfn
2322 * @pgprot: pgprot flags for the inserted page
2323 *
2324 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2325 * to override pgprot on a per-page basis.
2326 *
2327 * This only makes sense for IO mappings, and it makes no sense for
2328 * COW mappings.  In general, using multiple vmas is preferable;
2329 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2330 * impractical.
2331 *
2332 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2333 * caching- and encryption bits different than those of @vma->vm_page_prot,
2334 * because the caching- or encryption mode may not be known at mmap() time.
2335 *
2336 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2337 * to set caching and encryption bits for those vmas (except for COW pages).
2338 * This is ensured by core vm only modifying these page table entries using
2339 * functions that don't touch caching- or encryption bits, using pte_modify()
2340 * if needed. (See for example mprotect()).
2341 *
2342 * Also when new page-table entries are created, this is only done using the
2343 * fault() callback, and never using the value of vma->vm_page_prot,
2344 * except for page-table entries that point to anonymous pages as the result
2345 * of COW.
2346 *
2347 * Context: Process context.  May allocate using %GFP_KERNEL.
2348 * Return: vm_fault_t value.
2349 */
2350vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2351			unsigned long pfn, pgprot_t pgprot)
2352{
2353	/*
2354	 * Technically, architectures with pte_special can avoid all these
2355	 * restrictions (same for remap_pfn_range).  However we would like
2356	 * consistency in testing and feature parity among all, so we should
2357	 * try to keep these invariants in place for everybody.
2358	 */
2359	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2360	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2361						(VM_PFNMAP|VM_MIXEDMAP));
2362	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2363	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2364
2365	if (addr < vma->vm_start || addr >= vma->vm_end)
2366		return VM_FAULT_SIGBUS;
2367
2368	if (!pfn_modify_allowed(pfn, pgprot))
2369		return VM_FAULT_SIGBUS;
2370
2371	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2372
2373	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2374			false);
2375}
2376EXPORT_SYMBOL(vmf_insert_pfn_prot);
2377
2378/**
2379 * vmf_insert_pfn - insert single pfn into user vma
2380 * @vma: user vma to map to
2381 * @addr: target user address of this page
2382 * @pfn: source kernel pfn
2383 *
2384 * Similar to vm_insert_page, this allows drivers to insert individual pages
2385 * they've allocated into a user vma. Same comments apply.
2386 *
2387 * This function should only be called from a vm_ops->fault handler, and
2388 * in that case the handler should return the result of this function.
2389 *
2390 * vma cannot be a COW mapping.
2391 *
2392 * As this is called only for pages that do not currently exist, we
2393 * do not need to flush old virtual caches or the TLB.
2394 *
2395 * Context: Process context.  May allocate using %GFP_KERNEL.
2396 * Return: vm_fault_t value.
2397 */
2398vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2399			unsigned long pfn)
2400{
2401	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2402}
2403EXPORT_SYMBOL(vmf_insert_pfn);
2404
2405static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2406{
2407	/* these checks mirror the abort conditions in vm_normal_page */
2408	if (vma->vm_flags & VM_MIXEDMAP)
2409		return true;
2410	if (pfn_t_devmap(pfn))
2411		return true;
2412	if (pfn_t_special(pfn))
2413		return true;
2414	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2415		return true;
2416	return false;
2417}
2418
2419static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2420		unsigned long addr, pfn_t pfn, bool mkwrite)
 
2421{
2422	pgprot_t pgprot = vma->vm_page_prot;
2423	int err;
2424
2425	BUG_ON(!vm_mixed_ok(vma, pfn));
2426
2427	if (addr < vma->vm_start || addr >= vma->vm_end)
2428		return VM_FAULT_SIGBUS;
2429
2430	track_pfn_insert(vma, &pgprot, pfn);
2431
2432	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2433		return VM_FAULT_SIGBUS;
2434
2435	/*
2436	 * If we don't have pte special, then we have to use the pfn_valid()
2437	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2438	 * refcount the page if pfn_valid is true (hence insert_page rather
2439	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2440	 * without pte special, it would there be refcounted as a normal page.
2441	 */
2442	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2443	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2444		struct page *page;
2445
2446		/*
2447		 * At this point we are committed to insert_page()
2448		 * regardless of whether the caller specified flags that
2449		 * result in pfn_t_has_page() == false.
2450		 */
2451		page = pfn_to_page(pfn_t_to_pfn(pfn));
2452		err = insert_page(vma, addr, page, pgprot);
2453	} else {
2454		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2455	}
2456
2457	if (err == -ENOMEM)
2458		return VM_FAULT_OOM;
2459	if (err < 0 && err != -EBUSY)
2460		return VM_FAULT_SIGBUS;
2461
2462	return VM_FAULT_NOPAGE;
2463}
2464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2466		pfn_t pfn)
2467{
2468	return __vm_insert_mixed(vma, addr, pfn, false);
2469}
2470EXPORT_SYMBOL(vmf_insert_mixed);
2471
2472/*
2473 *  If the insertion of PTE failed because someone else already added a
2474 *  different entry in the mean time, we treat that as success as we assume
2475 *  the same entry was actually inserted.
2476 */
2477vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2478		unsigned long addr, pfn_t pfn)
2479{
2480	return __vm_insert_mixed(vma, addr, pfn, true);
2481}
2482EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2483
2484/*
2485 * maps a range of physical memory into the requested pages. the old
2486 * mappings are removed. any references to nonexistent pages results
2487 * in null mappings (currently treated as "copy-on-access")
2488 */
2489static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2490			unsigned long addr, unsigned long end,
2491			unsigned long pfn, pgprot_t prot)
2492{
2493	pte_t *pte, *mapped_pte;
2494	spinlock_t *ptl;
2495	int err = 0;
2496
2497	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2498	if (!pte)
2499		return -ENOMEM;
2500	arch_enter_lazy_mmu_mode();
2501	do {
2502		BUG_ON(!pte_none(ptep_get(pte)));
2503		if (!pfn_modify_allowed(pfn, prot)) {
2504			err = -EACCES;
2505			break;
2506		}
2507		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2508		pfn++;
2509	} while (pte++, addr += PAGE_SIZE, addr != end);
2510	arch_leave_lazy_mmu_mode();
2511	pte_unmap_unlock(mapped_pte, ptl);
2512	return err;
2513}
2514
2515static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2516			unsigned long addr, unsigned long end,
2517			unsigned long pfn, pgprot_t prot)
2518{
2519	pmd_t *pmd;
2520	unsigned long next;
2521	int err;
2522
2523	pfn -= addr >> PAGE_SHIFT;
2524	pmd = pmd_alloc(mm, pud, addr);
2525	if (!pmd)
2526		return -ENOMEM;
2527	VM_BUG_ON(pmd_trans_huge(*pmd));
2528	do {
2529		next = pmd_addr_end(addr, end);
2530		err = remap_pte_range(mm, pmd, addr, next,
2531				pfn + (addr >> PAGE_SHIFT), prot);
2532		if (err)
2533			return err;
2534	} while (pmd++, addr = next, addr != end);
2535	return 0;
2536}
2537
2538static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2539			unsigned long addr, unsigned long end,
2540			unsigned long pfn, pgprot_t prot)
2541{
2542	pud_t *pud;
2543	unsigned long next;
2544	int err;
2545
2546	pfn -= addr >> PAGE_SHIFT;
2547	pud = pud_alloc(mm, p4d, addr);
2548	if (!pud)
2549		return -ENOMEM;
2550	do {
2551		next = pud_addr_end(addr, end);
2552		err = remap_pmd_range(mm, pud, addr, next,
2553				pfn + (addr >> PAGE_SHIFT), prot);
2554		if (err)
2555			return err;
2556	} while (pud++, addr = next, addr != end);
2557	return 0;
2558}
2559
2560static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2561			unsigned long addr, unsigned long end,
2562			unsigned long pfn, pgprot_t prot)
2563{
2564	p4d_t *p4d;
2565	unsigned long next;
2566	int err;
2567
2568	pfn -= addr >> PAGE_SHIFT;
2569	p4d = p4d_alloc(mm, pgd, addr);
2570	if (!p4d)
2571		return -ENOMEM;
2572	do {
2573		next = p4d_addr_end(addr, end);
2574		err = remap_pud_range(mm, p4d, addr, next,
2575				pfn + (addr >> PAGE_SHIFT), prot);
2576		if (err)
2577			return err;
2578	} while (p4d++, addr = next, addr != end);
2579	return 0;
2580}
2581
2582/*
2583 * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2584 * must have pre-validated the caching bits of the pgprot_t.
 
 
 
 
 
 
 
 
2585 */
2586int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2587		unsigned long pfn, unsigned long size, pgprot_t prot)
2588{
2589	pgd_t *pgd;
2590	unsigned long next;
2591	unsigned long end = addr + PAGE_ALIGN(size);
2592	struct mm_struct *mm = vma->vm_mm;
 
2593	int err;
2594
2595	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2596		return -EINVAL;
2597
2598	/*
2599	 * Physically remapped pages are special. Tell the
2600	 * rest of the world about it:
2601	 *   VM_IO tells people not to look at these pages
2602	 *	(accesses can have side effects).
2603	 *   VM_PFNMAP tells the core MM that the base pages are just
2604	 *	raw PFN mappings, and do not have a "struct page" associated
2605	 *	with them.
2606	 *   VM_DONTEXPAND
2607	 *      Disable vma merging and expanding with mremap().
2608	 *   VM_DONTDUMP
2609	 *      Omit vma from core dump, even when VM_IO turned off.
2610	 *
2611	 * There's a horrible special case to handle copy-on-write
2612	 * behaviour that some programs depend on. We mark the "original"
2613	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2614	 * See vm_normal_page() for details.
2615	 */
2616	if (is_cow_mapping(vma->vm_flags)) {
2617		if (addr != vma->vm_start || end != vma->vm_end)
2618			return -EINVAL;
2619		vma->vm_pgoff = pfn;
2620	}
2621
2622	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
 
 
 
 
2623
2624	BUG_ON(addr >= end);
2625	pfn -= addr >> PAGE_SHIFT;
2626	pgd = pgd_offset(mm, addr);
2627	flush_cache_range(vma, addr, end);
2628	do {
2629		next = pgd_addr_end(addr, end);
2630		err = remap_p4d_range(mm, pgd, addr, next,
2631				pfn + (addr >> PAGE_SHIFT), prot);
2632		if (err)
2633			return err;
2634	} while (pgd++, addr = next, addr != end);
2635
2636	return 0;
2637}
2638
2639/**
2640 * remap_pfn_range - remap kernel memory to userspace
2641 * @vma: user vma to map to
2642 * @addr: target page aligned user address to start at
2643 * @pfn: page frame number of kernel physical memory address
2644 * @size: size of mapping area
2645 * @prot: page protection flags for this mapping
2646 *
2647 * Note: this is only safe if the mm semaphore is held when called.
2648 *
2649 * Return: %0 on success, negative error code otherwise.
2650 */
2651int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2652		    unsigned long pfn, unsigned long size, pgprot_t prot)
2653{
2654	int err;
2655
2656	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2657	if (err)
2658		return -EINVAL;
2659
2660	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2661	if (err)
2662		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2663	return err;
2664}
2665EXPORT_SYMBOL(remap_pfn_range);
2666
2667/**
2668 * vm_iomap_memory - remap memory to userspace
2669 * @vma: user vma to map to
2670 * @start: start of the physical memory to be mapped
2671 * @len: size of area
2672 *
2673 * This is a simplified io_remap_pfn_range() for common driver use. The
2674 * driver just needs to give us the physical memory range to be mapped,
2675 * we'll figure out the rest from the vma information.
2676 *
2677 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2678 * whatever write-combining details or similar.
2679 *
2680 * Return: %0 on success, negative error code otherwise.
2681 */
2682int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2683{
2684	unsigned long vm_len, pfn, pages;
2685
2686	/* Check that the physical memory area passed in looks valid */
2687	if (start + len < start)
2688		return -EINVAL;
2689	/*
2690	 * You *really* shouldn't map things that aren't page-aligned,
2691	 * but we've historically allowed it because IO memory might
2692	 * just have smaller alignment.
2693	 */
2694	len += start & ~PAGE_MASK;
2695	pfn = start >> PAGE_SHIFT;
2696	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2697	if (pfn + pages < pfn)
2698		return -EINVAL;
2699
2700	/* We start the mapping 'vm_pgoff' pages into the area */
2701	if (vma->vm_pgoff > pages)
2702		return -EINVAL;
2703	pfn += vma->vm_pgoff;
2704	pages -= vma->vm_pgoff;
2705
2706	/* Can we fit all of the mapping? */
2707	vm_len = vma->vm_end - vma->vm_start;
2708	if (vm_len >> PAGE_SHIFT > pages)
2709		return -EINVAL;
2710
2711	/* Ok, let it rip */
2712	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2713}
2714EXPORT_SYMBOL(vm_iomap_memory);
2715
2716static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2717				     unsigned long addr, unsigned long end,
2718				     pte_fn_t fn, void *data, bool create,
2719				     pgtbl_mod_mask *mask)
2720{
2721	pte_t *pte, *mapped_pte;
2722	int err = 0;
2723	spinlock_t *ptl;
2724
2725	if (create) {
2726		mapped_pte = pte = (mm == &init_mm) ?
2727			pte_alloc_kernel_track(pmd, addr, mask) :
2728			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2729		if (!pte)
2730			return -ENOMEM;
2731	} else {
2732		mapped_pte = pte = (mm == &init_mm) ?
2733			pte_offset_kernel(pmd, addr) :
2734			pte_offset_map_lock(mm, pmd, addr, &ptl);
2735		if (!pte)
2736			return -EINVAL;
2737	}
2738
 
 
2739	arch_enter_lazy_mmu_mode();
2740
2741	if (fn) {
2742		do {
2743			if (create || !pte_none(ptep_get(pte))) {
2744				err = fn(pte++, addr, data);
2745				if (err)
2746					break;
2747			}
2748		} while (addr += PAGE_SIZE, addr != end);
2749	}
2750	*mask |= PGTBL_PTE_MODIFIED;
2751
2752	arch_leave_lazy_mmu_mode();
2753
2754	if (mm != &init_mm)
2755		pte_unmap_unlock(mapped_pte, ptl);
2756	return err;
2757}
2758
2759static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2760				     unsigned long addr, unsigned long end,
2761				     pte_fn_t fn, void *data, bool create,
2762				     pgtbl_mod_mask *mask)
2763{
2764	pmd_t *pmd;
2765	unsigned long next;
2766	int err = 0;
2767
2768	BUG_ON(pud_huge(*pud));
2769
2770	if (create) {
2771		pmd = pmd_alloc_track(mm, pud, addr, mask);
2772		if (!pmd)
2773			return -ENOMEM;
2774	} else {
2775		pmd = pmd_offset(pud, addr);
2776	}
2777	do {
2778		next = pmd_addr_end(addr, end);
2779		if (pmd_none(*pmd) && !create)
2780			continue;
2781		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2782			return -EINVAL;
2783		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2784			if (!create)
2785				continue;
2786			pmd_clear_bad(pmd);
2787		}
2788		err = apply_to_pte_range(mm, pmd, addr, next,
2789					 fn, data, create, mask);
2790		if (err)
2791			break;
2792	} while (pmd++, addr = next, addr != end);
2793
2794	return err;
2795}
2796
2797static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2798				     unsigned long addr, unsigned long end,
2799				     pte_fn_t fn, void *data, bool create,
2800				     pgtbl_mod_mask *mask)
2801{
2802	pud_t *pud;
2803	unsigned long next;
2804	int err = 0;
2805
2806	if (create) {
2807		pud = pud_alloc_track(mm, p4d, addr, mask);
2808		if (!pud)
2809			return -ENOMEM;
2810	} else {
2811		pud = pud_offset(p4d, addr);
2812	}
2813	do {
2814		next = pud_addr_end(addr, end);
2815		if (pud_none(*pud) && !create)
2816			continue;
2817		if (WARN_ON_ONCE(pud_leaf(*pud)))
2818			return -EINVAL;
2819		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2820			if (!create)
2821				continue;
2822			pud_clear_bad(pud);
2823		}
2824		err = apply_to_pmd_range(mm, pud, addr, next,
2825					 fn, data, create, mask);
2826		if (err)
2827			break;
2828	} while (pud++, addr = next, addr != end);
2829
2830	return err;
2831}
2832
2833static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2834				     unsigned long addr, unsigned long end,
2835				     pte_fn_t fn, void *data, bool create,
2836				     pgtbl_mod_mask *mask)
2837{
2838	p4d_t *p4d;
2839	unsigned long next;
2840	int err = 0;
2841
2842	if (create) {
2843		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2844		if (!p4d)
2845			return -ENOMEM;
2846	} else {
2847		p4d = p4d_offset(pgd, addr);
2848	}
2849	do {
2850		next = p4d_addr_end(addr, end);
2851		if (p4d_none(*p4d) && !create)
2852			continue;
2853		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2854			return -EINVAL;
2855		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2856			if (!create)
2857				continue;
2858			p4d_clear_bad(p4d);
2859		}
2860		err = apply_to_pud_range(mm, p4d, addr, next,
2861					 fn, data, create, mask);
2862		if (err)
2863			break;
2864	} while (p4d++, addr = next, addr != end);
2865
2866	return err;
2867}
2868
2869static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2870				 unsigned long size, pte_fn_t fn,
2871				 void *data, bool create)
2872{
2873	pgd_t *pgd;
2874	unsigned long start = addr, next;
2875	unsigned long end = addr + size;
2876	pgtbl_mod_mask mask = 0;
2877	int err = 0;
2878
2879	if (WARN_ON(addr >= end))
2880		return -EINVAL;
2881
2882	pgd = pgd_offset(mm, addr);
2883	do {
2884		next = pgd_addr_end(addr, end);
2885		if (pgd_none(*pgd) && !create)
2886			continue;
2887		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2888			return -EINVAL;
2889		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2890			if (!create)
2891				continue;
2892			pgd_clear_bad(pgd);
2893		}
2894		err = apply_to_p4d_range(mm, pgd, addr, next,
2895					 fn, data, create, &mask);
2896		if (err)
2897			break;
2898	} while (pgd++, addr = next, addr != end);
2899
2900	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2901		arch_sync_kernel_mappings(start, start + size);
2902
2903	return err;
2904}
2905
2906/*
2907 * Scan a region of virtual memory, filling in page tables as necessary
2908 * and calling a provided function on each leaf page table.
2909 */
2910int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2911			unsigned long size, pte_fn_t fn, void *data)
2912{
2913	return __apply_to_page_range(mm, addr, size, fn, data, true);
2914}
2915EXPORT_SYMBOL_GPL(apply_to_page_range);
2916
2917/*
2918 * Scan a region of virtual memory, calling a provided function on
2919 * each leaf page table where it exists.
2920 *
2921 * Unlike apply_to_page_range, this does _not_ fill in page tables
2922 * where they are absent.
2923 */
2924int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2925				 unsigned long size, pte_fn_t fn, void *data)
2926{
2927	return __apply_to_page_range(mm, addr, size, fn, data, false);
2928}
2929EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2930
2931/*
2932 * handle_pte_fault chooses page fault handler according to an entry which was
2933 * read non-atomically.  Before making any commitment, on those architectures
2934 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2935 * parts, do_swap_page must check under lock before unmapping the pte and
2936 * proceeding (but do_wp_page is only called after already making such a check;
2937 * and do_anonymous_page can safely check later on).
2938 */
2939static inline int pte_unmap_same(struct vm_fault *vmf)
 
2940{
2941	int same = 1;
2942#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2943	if (sizeof(pte_t) > sizeof(unsigned long)) {
2944		spin_lock(vmf->ptl);
2945		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2946		spin_unlock(vmf->ptl);
 
2947	}
2948#endif
2949	pte_unmap(vmf->pte);
2950	vmf->pte = NULL;
2951	return same;
2952}
2953
2954/*
2955 * Return:
2956 *	0:		copied succeeded
2957 *	-EHWPOISON:	copy failed due to hwpoison in source page
2958 *	-EAGAIN:	copied failed (some other reason)
2959 */
2960static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2961				      struct vm_fault *vmf)
2962{
2963	int ret;
2964	void *kaddr;
2965	void __user *uaddr;
 
2966	struct vm_area_struct *vma = vmf->vma;
2967	struct mm_struct *mm = vma->vm_mm;
2968	unsigned long addr = vmf->address;
2969
2970	if (likely(src)) {
2971		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2972			memory_failure_queue(page_to_pfn(src), 0);
2973			return -EHWPOISON;
2974		}
2975		return 0;
2976	}
2977
2978	/*
2979	 * If the source page was a PFN mapping, we don't have
2980	 * a "struct page" for it. We do a best-effort copy by
2981	 * just copying from the original user address. If that
2982	 * fails, we just zero-fill it. Live with it.
2983	 */
2984	kaddr = kmap_local_page(dst);
2985	pagefault_disable();
2986	uaddr = (void __user *)(addr & PAGE_MASK);
2987
2988	/*
2989	 * On architectures with software "accessed" bits, we would
2990	 * take a double page fault, so mark it accessed here.
2991	 */
2992	vmf->pte = NULL;
2993	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2994		pte_t entry;
2995
2996		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2997		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
 
2998			/*
2999			 * Other thread has already handled the fault
3000			 * and update local tlb only
3001			 */
3002			if (vmf->pte)
3003				update_mmu_tlb(vma, addr, vmf->pte);
3004			ret = -EAGAIN;
3005			goto pte_unlock;
3006		}
3007
3008		entry = pte_mkyoung(vmf->orig_pte);
3009		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3010			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3011	}
3012
3013	/*
3014	 * This really shouldn't fail, because the page is there
3015	 * in the page tables. But it might just be unreadable,
3016	 * in which case we just give up and fill the result with
3017	 * zeroes.
3018	 */
3019	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3020		if (vmf->pte)
3021			goto warn;
3022
3023		/* Re-validate under PTL if the page is still mapped */
3024		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3025		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
 
3026			/* The PTE changed under us, update local tlb */
3027			if (vmf->pte)
3028				update_mmu_tlb(vma, addr, vmf->pte);
3029			ret = -EAGAIN;
3030			goto pte_unlock;
3031		}
3032
3033		/*
3034		 * The same page can be mapped back since last copy attempt.
3035		 * Try to copy again under PTL.
3036		 */
3037		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3038			/*
3039			 * Give a warn in case there can be some obscure
3040			 * use-case
3041			 */
3042warn:
3043			WARN_ON_ONCE(1);
3044			clear_page(kaddr);
3045		}
3046	}
3047
3048	ret = 0;
3049
3050pte_unlock:
3051	if (vmf->pte)
3052		pte_unmap_unlock(vmf->pte, vmf->ptl);
3053	pagefault_enable();
3054	kunmap_local(kaddr);
3055	flush_dcache_page(dst);
3056
3057	return ret;
3058}
3059
3060static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3061{
3062	struct file *vm_file = vma->vm_file;
3063
3064	if (vm_file)
3065		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3066
3067	/*
3068	 * Special mappings (e.g. VDSO) do not have any file so fake
3069	 * a default GFP_KERNEL for them.
3070	 */
3071	return GFP_KERNEL;
3072}
3073
3074/*
3075 * Notify the address space that the page is about to become writable so that
3076 * it can prohibit this or wait for the page to get into an appropriate state.
3077 *
3078 * We do this without the lock held, so that it can sleep if it needs to.
3079 */
3080static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3081{
3082	vm_fault_t ret;
 
3083	unsigned int old_flags = vmf->flags;
3084
3085	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3086
3087	if (vmf->vma->vm_file &&
3088	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3089		return VM_FAULT_SIGBUS;
3090
3091	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3092	/* Restore original flags so that caller is not surprised */
3093	vmf->flags = old_flags;
3094	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3095		return ret;
3096	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3097		folio_lock(folio);
3098		if (!folio->mapping) {
3099			folio_unlock(folio);
3100			return 0; /* retry */
3101		}
3102		ret |= VM_FAULT_LOCKED;
3103	} else
3104		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3105	return ret;
3106}
3107
3108/*
3109 * Handle dirtying of a page in shared file mapping on a write fault.
3110 *
3111 * The function expects the page to be locked and unlocks it.
3112 */
3113static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3114{
3115	struct vm_area_struct *vma = vmf->vma;
3116	struct address_space *mapping;
3117	struct folio *folio = page_folio(vmf->page);
3118	bool dirtied;
3119	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3120
3121	dirtied = folio_mark_dirty(folio);
3122	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3123	/*
3124	 * Take a local copy of the address_space - folio.mapping may be zeroed
3125	 * by truncate after folio_unlock().   The address_space itself remains
3126	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3127	 * release semantics to prevent the compiler from undoing this copying.
3128	 */
3129	mapping = folio_raw_mapping(folio);
3130	folio_unlock(folio);
3131
3132	if (!page_mkwrite)
3133		file_update_time(vma->vm_file);
3134
3135	/*
3136	 * Throttle page dirtying rate down to writeback speed.
3137	 *
3138	 * mapping may be NULL here because some device drivers do not
3139	 * set page.mapping but still dirty their pages
3140	 *
3141	 * Drop the mmap_lock before waiting on IO, if we can. The file
3142	 * is pinning the mapping, as per above.
3143	 */
3144	if ((dirtied || page_mkwrite) && mapping) {
3145		struct file *fpin;
3146
3147		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3148		balance_dirty_pages_ratelimited(mapping);
3149		if (fpin) {
3150			fput(fpin);
3151			return VM_FAULT_COMPLETED;
3152		}
3153	}
3154
3155	return 0;
3156}
3157
3158/*
3159 * Handle write page faults for pages that can be reused in the current vma
3160 *
3161 * This can happen either due to the mapping being with the VM_SHARED flag,
3162 * or due to us being the last reference standing to the page. In either
3163 * case, all we need to do here is to mark the page as writable and update
3164 * any related book-keeping.
3165 */
3166static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3167	__releases(vmf->ptl)
3168{
3169	struct vm_area_struct *vma = vmf->vma;
 
3170	pte_t entry;
3171
3172	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3173
3174	if (folio) {
3175		VM_BUG_ON(folio_test_anon(folio) &&
3176			  !PageAnonExclusive(vmf->page));
3177		/*
3178		 * Clear the folio's cpupid information as the existing
3179		 * information potentially belongs to a now completely
3180		 * unrelated process.
3181		 */
3182		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3183	}
3184
3185	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3186	entry = pte_mkyoung(vmf->orig_pte);
3187	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3188	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3189		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3190	pte_unmap_unlock(vmf->pte, vmf->ptl);
3191	count_vm_event(PGREUSE);
3192}
3193
3194/*
3195 * We could add a bitflag somewhere, but for now, we know that all
3196 * vm_ops that have a ->map_pages have been audited and don't need
3197 * the mmap_lock to be held.
3198 */
3199static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3200{
3201	struct vm_area_struct *vma = vmf->vma;
3202
3203	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3204		return 0;
3205	vma_end_read(vma);
3206	return VM_FAULT_RETRY;
3207}
3208
3209vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3210{
3211	struct vm_area_struct *vma = vmf->vma;
3212
3213	if (likely(vma->anon_vma))
3214		return 0;
3215	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3216		vma_end_read(vma);
3217		return VM_FAULT_RETRY;
3218	}
3219	if (__anon_vma_prepare(vma))
3220		return VM_FAULT_OOM;
3221	return 0;
3222}
3223
3224/*
3225 * Handle the case of a page which we actually need to copy to a new page,
3226 * either due to COW or unsharing.
3227 *
3228 * Called with mmap_lock locked and the old page referenced, but
3229 * without the ptl held.
3230 *
3231 * High level logic flow:
3232 *
3233 * - Allocate a page, copy the content of the old page to the new one.
3234 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3235 * - Take the PTL. If the pte changed, bail out and release the allocated page
3236 * - If the pte is still the way we remember it, update the page table and all
3237 *   relevant references. This includes dropping the reference the page-table
3238 *   held to the old page, as well as updating the rmap.
3239 * - In any case, unlock the PTL and drop the reference we took to the old page.
3240 */
3241static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3242{
3243	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3244	struct vm_area_struct *vma = vmf->vma;
3245	struct mm_struct *mm = vma->vm_mm;
3246	struct folio *old_folio = NULL;
3247	struct folio *new_folio = NULL;
3248	pte_t entry;
3249	int page_copied = 0;
3250	struct mmu_notifier_range range;
3251	vm_fault_t ret;
3252	bool pfn_is_zero;
3253
3254	delayacct_wpcopy_start();
3255
3256	if (vmf->page)
3257		old_folio = page_folio(vmf->page);
3258	ret = vmf_anon_prepare(vmf);
3259	if (unlikely(ret))
3260		goto out;
3261
3262	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3263	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3264	if (!new_folio)
3265		goto oom;
3266
3267	if (!pfn_is_zero) {
3268		int err;
 
 
 
 
 
 
 
 
3269
3270		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3271		if (err) {
3272			/*
3273			 * COW failed, if the fault was solved by other,
3274			 * it's fine. If not, userspace would re-fault on
3275			 * the same address and we will handle the fault
3276			 * from the second attempt.
3277			 * The -EHWPOISON case will not be retried.
3278			 */
3279			folio_put(new_folio);
3280			if (old_folio)
3281				folio_put(old_folio);
3282
3283			delayacct_wpcopy_end();
3284			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3285		}
3286		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3287	}
3288
3289	__folio_mark_uptodate(new_folio);
 
 
3290
3291	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
 
 
3292				vmf->address & PAGE_MASK,
3293				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3294	mmu_notifier_invalidate_range_start(&range);
3295
3296	/*
3297	 * Re-check the pte - we dropped the lock
3298	 */
3299	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3300	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3301		if (old_folio) {
3302			if (!folio_test_anon(old_folio)) {
3303				dec_mm_counter(mm, mm_counter_file(old_folio));
3304				inc_mm_counter(mm, MM_ANONPAGES);
 
3305			}
3306		} else {
3307			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3308			inc_mm_counter(mm, MM_ANONPAGES);
3309		}
3310		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3311		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3312		entry = pte_sw_mkyoung(entry);
3313		if (unlikely(unshare)) {
3314			if (pte_soft_dirty(vmf->orig_pte))
3315				entry = pte_mksoft_dirty(entry);
3316			if (pte_uffd_wp(vmf->orig_pte))
3317				entry = pte_mkuffd_wp(entry);
3318		} else {
3319			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3320		}
3321
3322		/*
3323		 * Clear the pte entry and flush it first, before updating the
3324		 * pte with the new entry, to keep TLBs on different CPUs in
3325		 * sync. This code used to set the new PTE then flush TLBs, but
3326		 * that left a window where the new PTE could be loaded into
3327		 * some TLBs while the old PTE remains in others.
3328		 */
3329		ptep_clear_flush(vma, vmf->address, vmf->pte);
3330		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3331		folio_add_lru_vma(new_folio, vma);
3332		/*
3333		 * We call the notify macro here because, when using secondary
3334		 * mmu page tables (such as kvm shadow page tables), we want the
3335		 * new page to be mapped directly into the secondary page table.
3336		 */
3337		BUG_ON(unshare && pte_write(entry));
3338		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3339		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3340		if (old_folio) {
3341			/*
3342			 * Only after switching the pte to the new page may
3343			 * we remove the mapcount here. Otherwise another
3344			 * process may come and find the rmap count decremented
3345			 * before the pte is switched to the new page, and
3346			 * "reuse" the old page writing into it while our pte
3347			 * here still points into it and can be read by other
3348			 * threads.
3349			 *
3350			 * The critical issue is to order this
3351			 * folio_remove_rmap_pte() with the ptp_clear_flush
3352			 * above. Those stores are ordered by (if nothing else,)
3353			 * the barrier present in the atomic_add_negative
3354			 * in folio_remove_rmap_pte();
3355			 *
3356			 * Then the TLB flush in ptep_clear_flush ensures that
3357			 * no process can access the old page before the
3358			 * decremented mapcount is visible. And the old page
3359			 * cannot be reused until after the decremented
3360			 * mapcount is visible. So transitively, TLBs to
3361			 * old page will be flushed before it can be reused.
3362			 */
3363			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3364		}
3365
3366		/* Free the old page.. */
3367		new_folio = old_folio;
3368		page_copied = 1;
3369		pte_unmap_unlock(vmf->pte, vmf->ptl);
3370	} else if (vmf->pte) {
3371		update_mmu_tlb(vma, vmf->address, vmf->pte);
3372		pte_unmap_unlock(vmf->pte, vmf->ptl);
3373	}
3374
3375	mmu_notifier_invalidate_range_end(&range);
 
3376
3377	if (new_folio)
3378		folio_put(new_folio);
3379	if (old_folio) {
3380		if (page_copied)
3381			free_swap_cache(old_folio);
3382		folio_put(old_folio);
3383	}
3384
3385	delayacct_wpcopy_end();
3386	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3387oom:
3388	ret = VM_FAULT_OOM;
3389out:
3390	if (old_folio)
3391		folio_put(old_folio);
3392
3393	delayacct_wpcopy_end();
3394	return ret;
3395}
3396
3397/**
3398 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3399 *			  writeable once the page is prepared
3400 *
3401 * @vmf: structure describing the fault
3402 * @folio: the folio of vmf->page
3403 *
3404 * This function handles all that is needed to finish a write page fault in a
3405 * shared mapping due to PTE being read-only once the mapped page is prepared.
3406 * It handles locking of PTE and modifying it.
3407 *
3408 * The function expects the page to be locked or other protection against
3409 * concurrent faults / writeback (such as DAX radix tree locks).
3410 *
3411 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3412 * we acquired PTE lock.
3413 */
3414static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3415{
3416	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3417	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3418				       &vmf->ptl);
3419	if (!vmf->pte)
3420		return VM_FAULT_NOPAGE;
3421	/*
3422	 * We might have raced with another page fault while we released the
3423	 * pte_offset_map_lock.
3424	 */
3425	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3426		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3427		pte_unmap_unlock(vmf->pte, vmf->ptl);
3428		return VM_FAULT_NOPAGE;
3429	}
3430	wp_page_reuse(vmf, folio);
3431	return 0;
3432}
3433
3434/*
3435 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3436 * mapping
3437 */
3438static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3439{
3440	struct vm_area_struct *vma = vmf->vma;
3441
3442	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3443		vm_fault_t ret;
3444
3445		pte_unmap_unlock(vmf->pte, vmf->ptl);
3446		ret = vmf_can_call_fault(vmf);
3447		if (ret)
3448			return ret;
3449
3450		vmf->flags |= FAULT_FLAG_MKWRITE;
3451		ret = vma->vm_ops->pfn_mkwrite(vmf);
3452		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3453			return ret;
3454		return finish_mkwrite_fault(vmf, NULL);
3455	}
3456	wp_page_reuse(vmf, NULL);
3457	return 0;
3458}
3459
3460static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3461	__releases(vmf->ptl)
3462{
3463	struct vm_area_struct *vma = vmf->vma;
3464	vm_fault_t ret = 0;
3465
3466	folio_get(folio);
3467
3468	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3469		vm_fault_t tmp;
3470
3471		pte_unmap_unlock(vmf->pte, vmf->ptl);
3472		tmp = vmf_can_call_fault(vmf);
3473		if (tmp) {
3474			folio_put(folio);
3475			return tmp;
3476		}
3477
3478		tmp = do_page_mkwrite(vmf, folio);
3479		if (unlikely(!tmp || (tmp &
3480				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3481			folio_put(folio);
3482			return tmp;
3483		}
3484		tmp = finish_mkwrite_fault(vmf, folio);
3485		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3486			folio_unlock(folio);
3487			folio_put(folio);
3488			return tmp;
3489		}
3490	} else {
3491		wp_page_reuse(vmf, folio);
3492		folio_lock(folio);
3493	}
3494	ret |= fault_dirty_shared_page(vmf);
3495	folio_put(folio);
3496
3497	return ret;
3498}
3499
3500static bool wp_can_reuse_anon_folio(struct folio *folio,
3501				    struct vm_area_struct *vma)
3502{
3503	/*
3504	 * We could currently only reuse a subpage of a large folio if no
3505	 * other subpages of the large folios are still mapped. However,
3506	 * let's just consistently not reuse subpages even if we could
3507	 * reuse in that scenario, and give back a large folio a bit
3508	 * sooner.
3509	 */
3510	if (folio_test_large(folio))
3511		return false;
3512
3513	/*
3514	 * We have to verify under folio lock: these early checks are
3515	 * just an optimization to avoid locking the folio and freeing
3516	 * the swapcache if there is little hope that we can reuse.
3517	 *
3518	 * KSM doesn't necessarily raise the folio refcount.
3519	 */
3520	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3521		return false;
3522	if (!folio_test_lru(folio))
3523		/*
3524		 * We cannot easily detect+handle references from
3525		 * remote LRU caches or references to LRU folios.
3526		 */
3527		lru_add_drain();
3528	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3529		return false;
3530	if (!folio_trylock(folio))
3531		return false;
3532	if (folio_test_swapcache(folio))
3533		folio_free_swap(folio);
3534	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3535		folio_unlock(folio);
3536		return false;
3537	}
3538	/*
3539	 * Ok, we've got the only folio reference from our mapping
3540	 * and the folio is locked, it's dark out, and we're wearing
3541	 * sunglasses. Hit it.
3542	 */
3543	folio_move_anon_rmap(folio, vma);
3544	folio_unlock(folio);
3545	return true;
3546}
3547
3548/*
3549 * This routine handles present pages, when
3550 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3551 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3552 *   (FAULT_FLAG_UNSHARE)
3553 *
3554 * It is done by copying the page to a new address and decrementing the
3555 * shared-page counter for the old page.
3556 *
3557 * Note that this routine assumes that the protection checks have been
3558 * done by the caller (the low-level page fault routine in most cases).
3559 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3560 * done any necessary COW.
3561 *
3562 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3563 * though the page will change only once the write actually happens. This
3564 * avoids a few races, and potentially makes it more efficient.
3565 *
3566 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3567 * but allow concurrent faults), with pte both mapped and locked.
3568 * We return with mmap_lock still held, but pte unmapped and unlocked.
3569 */
3570static vm_fault_t do_wp_page(struct vm_fault *vmf)
3571	__releases(vmf->ptl)
3572{
3573	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3574	struct vm_area_struct *vma = vmf->vma;
3575	struct folio *folio = NULL;
3576	pte_t pte;
3577
3578	if (likely(!unshare)) {
3579		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3580			if (!userfaultfd_wp_async(vma)) {
3581				pte_unmap_unlock(vmf->pte, vmf->ptl);
3582				return handle_userfault(vmf, VM_UFFD_WP);
3583			}
3584
3585			/*
3586			 * Nothing needed (cache flush, TLB invalidations,
3587			 * etc.) because we're only removing the uffd-wp bit,
3588			 * which is completely invisible to the user.
3589			 */
3590			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3591
3592			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3593			/*
3594			 * Update this to be prepared for following up CoW
3595			 * handling
3596			 */
3597			vmf->orig_pte = pte;
3598		}
3599
3600		/*
3601		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3602		 * is flushed in this case before copying.
3603		 */
3604		if (unlikely(userfaultfd_wp(vmf->vma) &&
3605			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3606			flush_tlb_page(vmf->vma, vmf->address);
3607	}
3608
3609	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3610
3611	if (vmf->page)
3612		folio = page_folio(vmf->page);
3613
3614	/*
3615	 * Shared mapping: we are guaranteed to have VM_WRITE and
3616	 * FAULT_FLAG_WRITE set at this point.
3617	 */
3618	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3619		/*
3620		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3621		 * VM_PFNMAP VMA.
3622		 *
3623		 * We should not cow pages in a shared writeable mapping.
3624		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3625		 */
3626		if (!vmf->page)
 
3627			return wp_pfn_shared(vmf);
3628		return wp_page_shared(vmf, folio);
 
 
3629	}
3630
3631	/*
3632	 * Private mapping: create an exclusive anonymous page copy if reuse
3633	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3634	 *
3635	 * If we encounter a page that is marked exclusive, we must reuse
3636	 * the page without further checks.
3637	 */
3638	if (folio && folio_test_anon(folio) &&
3639	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3640		if (!PageAnonExclusive(vmf->page))
3641			SetPageAnonExclusive(vmf->page);
3642		if (unlikely(unshare)) {
3643			pte_unmap_unlock(vmf->pte, vmf->ptl);
3644			return 0;
 
 
 
 
3645		}
3646		wp_page_reuse(vmf, folio);
3647		return 0;
 
 
 
 
 
 
 
 
 
3648	}
 
3649	/*
3650	 * Ok, we need to copy. Oh, well..
3651	 */
3652	if (folio)
3653		folio_get(folio);
3654
3655	pte_unmap_unlock(vmf->pte, vmf->ptl);
3656#ifdef CONFIG_KSM
3657	if (folio && folio_test_ksm(folio))
3658		count_vm_event(COW_KSM);
3659#endif
3660	return wp_page_copy(vmf);
3661}
3662
3663static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3664		unsigned long start_addr, unsigned long end_addr,
3665		struct zap_details *details)
3666{
3667	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3668}
3669
3670static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3671					    pgoff_t first_index,
3672					    pgoff_t last_index,
3673					    struct zap_details *details)
3674{
3675	struct vm_area_struct *vma;
3676	pgoff_t vba, vea, zba, zea;
3677
3678	vma_interval_tree_foreach(vma, root, first_index, last_index) {
 
 
3679		vba = vma->vm_pgoff;
3680		vea = vba + vma_pages(vma) - 1;
3681		zba = max(first_index, vba);
3682		zea = min(last_index, vea);
 
 
 
 
3683
3684		unmap_mapping_range_vma(vma,
3685			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3686			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3687				details);
3688	}
3689}
3690
3691/**
3692 * unmap_mapping_folio() - Unmap single folio from processes.
3693 * @folio: The locked folio to be unmapped.
3694 *
3695 * Unmap this folio from any userspace process which still has it mmaped.
3696 * Typically, for efficiency, the range of nearby pages has already been
3697 * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3698 * truncation or invalidation holds the lock on a folio, it may find that
3699 * the page has been remapped again: and then uses unmap_mapping_folio()
3700 * to unmap it finally.
3701 */
3702void unmap_mapping_folio(struct folio *folio)
3703{
3704	struct address_space *mapping = folio->mapping;
3705	struct zap_details details = { };
3706	pgoff_t	first_index;
3707	pgoff_t	last_index;
3708
3709	VM_BUG_ON(!folio_test_locked(folio));
3710
3711	first_index = folio->index;
3712	last_index = folio_next_index(folio) - 1;
3713
3714	details.even_cows = false;
3715	details.single_folio = folio;
3716	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3717
3718	i_mmap_lock_read(mapping);
3719	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3720		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3721					 last_index, &details);
3722	i_mmap_unlock_read(mapping);
3723}
3724
3725/**
3726 * unmap_mapping_pages() - Unmap pages from processes.
3727 * @mapping: The address space containing pages to be unmapped.
3728 * @start: Index of first page to be unmapped.
3729 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3730 * @even_cows: Whether to unmap even private COWed pages.
3731 *
3732 * Unmap the pages in this address space from any userspace process which
3733 * has them mmaped.  Generally, you want to remove COWed pages as well when
3734 * a file is being truncated, but not when invalidating pages from the page
3735 * cache.
3736 */
3737void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3738		pgoff_t nr, bool even_cows)
3739{
3740	struct zap_details details = { };
3741	pgoff_t	first_index = start;
3742	pgoff_t	last_index = start + nr - 1;
3743
3744	details.even_cows = even_cows;
3745	if (last_index < first_index)
3746		last_index = ULONG_MAX;
 
 
3747
3748	i_mmap_lock_read(mapping);
3749	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3750		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3751					 last_index, &details);
3752	i_mmap_unlock_read(mapping);
3753}
3754EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3755
3756/**
3757 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3758 * address_space corresponding to the specified byte range in the underlying
3759 * file.
3760 *
3761 * @mapping: the address space containing mmaps to be unmapped.
3762 * @holebegin: byte in first page to unmap, relative to the start of
3763 * the underlying file.  This will be rounded down to a PAGE_SIZE
3764 * boundary.  Note that this is different from truncate_pagecache(), which
3765 * must keep the partial page.  In contrast, we must get rid of
3766 * partial pages.
3767 * @holelen: size of prospective hole in bytes.  This will be rounded
3768 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3769 * end of the file.
3770 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3771 * but 0 when invalidating pagecache, don't throw away private data.
3772 */
3773void unmap_mapping_range(struct address_space *mapping,
3774		loff_t const holebegin, loff_t const holelen, int even_cows)
3775{
3776	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3777	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3778
3779	/* Check for overflow. */
3780	if (sizeof(holelen) > sizeof(hlen)) {
3781		long long holeend =
3782			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3783		if (holeend & ~(long long)ULONG_MAX)
3784			hlen = ULONG_MAX - hba + 1;
3785	}
3786
3787	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3788}
3789EXPORT_SYMBOL(unmap_mapping_range);
3790
3791/*
3792 * Restore a potential device exclusive pte to a working pte entry
3793 */
3794static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3795{
3796	struct folio *folio = page_folio(vmf->page);
3797	struct vm_area_struct *vma = vmf->vma;
3798	struct mmu_notifier_range range;
3799	vm_fault_t ret;
3800
3801	/*
3802	 * We need a reference to lock the folio because we don't hold
3803	 * the PTL so a racing thread can remove the device-exclusive
3804	 * entry and unmap it. If the folio is free the entry must
3805	 * have been removed already. If it happens to have already
3806	 * been re-allocated after being freed all we do is lock and
3807	 * unlock it.
3808	 */
3809	if (!folio_try_get(folio))
3810		return 0;
3811
3812	ret = folio_lock_or_retry(folio, vmf);
3813	if (ret) {
3814		folio_put(folio);
3815		return ret;
3816	}
3817	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3818				vma->vm_mm, vmf->address & PAGE_MASK,
3819				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3820	mmu_notifier_invalidate_range_start(&range);
3821
3822	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3823				&vmf->ptl);
3824	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3825		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3826
3827	if (vmf->pte)
3828		pte_unmap_unlock(vmf->pte, vmf->ptl);
3829	folio_unlock(folio);
3830	folio_put(folio);
3831
3832	mmu_notifier_invalidate_range_end(&range);
3833	return 0;
3834}
3835
3836static inline bool should_try_to_free_swap(struct folio *folio,
3837					   struct vm_area_struct *vma,
3838					   unsigned int fault_flags)
3839{
3840	if (!folio_test_swapcache(folio))
3841		return false;
3842	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3843	    folio_test_mlocked(folio))
3844		return true;
3845	/*
3846	 * If we want to map a page that's in the swapcache writable, we
3847	 * have to detect via the refcount if we're really the exclusive
3848	 * user. Try freeing the swapcache to get rid of the swapcache
3849	 * reference only in case it's likely that we'll be the exlusive user.
3850	 */
3851	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3852		folio_ref_count(folio) == 2;
3853}
3854
3855static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3856{
3857	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3858				       vmf->address, &vmf->ptl);
3859	if (!vmf->pte)
3860		return 0;
3861	/*
3862	 * Be careful so that we will only recover a special uffd-wp pte into a
3863	 * none pte.  Otherwise it means the pte could have changed, so retry.
3864	 *
3865	 * This should also cover the case where e.g. the pte changed
3866	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3867	 * So is_pte_marker() check is not enough to safely drop the pte.
3868	 */
3869	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3870		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3871	pte_unmap_unlock(vmf->pte, vmf->ptl);
3872	return 0;
3873}
3874
3875static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3876{
3877	if (vma_is_anonymous(vmf->vma))
3878		return do_anonymous_page(vmf);
3879	else
3880		return do_fault(vmf);
3881}
3882
3883/*
3884 * This is actually a page-missing access, but with uffd-wp special pte
3885 * installed.  It means this pte was wr-protected before being unmapped.
3886 */
3887static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3888{
3889	/*
3890	 * Just in case there're leftover special ptes even after the region
3891	 * got unregistered - we can simply clear them.
3892	 */
3893	if (unlikely(!userfaultfd_wp(vmf->vma)))
3894		return pte_marker_clear(vmf);
3895
3896	return do_pte_missing(vmf);
3897}
3898
3899static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3900{
3901	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3902	unsigned long marker = pte_marker_get(entry);
3903
3904	/*
3905	 * PTE markers should never be empty.  If anything weird happened,
3906	 * the best thing to do is to kill the process along with its mm.
3907	 */
3908	if (WARN_ON_ONCE(!marker))
3909		return VM_FAULT_SIGBUS;
3910
3911	/* Higher priority than uffd-wp when data corrupted */
3912	if (marker & PTE_MARKER_POISONED)
3913		return VM_FAULT_HWPOISON;
3914
3915	if (pte_marker_entry_uffd_wp(entry))
3916		return pte_marker_handle_uffd_wp(vmf);
3917
3918	/* This is an unknown pte marker */
3919	return VM_FAULT_SIGBUS;
3920}
3921
3922/*
3923 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3924 * but allow concurrent faults), and pte mapped but not yet locked.
3925 * We return with pte unmapped and unlocked.
3926 *
3927 * We return with the mmap_lock locked or unlocked in the same cases
3928 * as does filemap_fault().
3929 */
3930vm_fault_t do_swap_page(struct vm_fault *vmf)
3931{
3932	struct vm_area_struct *vma = vmf->vma;
3933	struct folio *swapcache, *folio = NULL;
3934	struct page *page;
3935	struct swap_info_struct *si = NULL;
3936	rmap_t rmap_flags = RMAP_NONE;
3937	bool need_clear_cache = false;
3938	bool exclusive = false;
3939	swp_entry_t entry;
3940	pte_t pte;
 
 
3941	vm_fault_t ret = 0;
3942	void *shadow = NULL;
3943
3944	if (!pte_unmap_same(vmf))
3945		goto out;
3946
3947	entry = pte_to_swp_entry(vmf->orig_pte);
3948	if (unlikely(non_swap_entry(entry))) {
3949		if (is_migration_entry(entry)) {
3950			migration_entry_wait(vma->vm_mm, vmf->pmd,
3951					     vmf->address);
3952		} else if (is_device_exclusive_entry(entry)) {
3953			vmf->page = pfn_swap_entry_to_page(entry);
3954			ret = remove_device_exclusive_entry(vmf);
3955		} else if (is_device_private_entry(entry)) {
3956			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3957				/*
3958				 * migrate_to_ram is not yet ready to operate
3959				 * under VMA lock.
3960				 */
3961				vma_end_read(vma);
3962				ret = VM_FAULT_RETRY;
3963				goto out;
3964			}
3965
3966			vmf->page = pfn_swap_entry_to_page(entry);
3967			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3968					vmf->address, &vmf->ptl);
3969			if (unlikely(!vmf->pte ||
3970				     !pte_same(ptep_get(vmf->pte),
3971							vmf->orig_pte)))
3972				goto unlock;
3973
3974			/*
3975			 * Get a page reference while we know the page can't be
3976			 * freed.
3977			 */
3978			get_page(vmf->page);
3979			pte_unmap_unlock(vmf->pte, vmf->ptl);
3980			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3981			put_page(vmf->page);
3982		} else if (is_hwpoison_entry(entry)) {
3983			ret = VM_FAULT_HWPOISON;
3984		} else if (is_pte_marker_entry(entry)) {
3985			ret = handle_pte_marker(vmf);
3986		} else {
3987			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3988			ret = VM_FAULT_SIGBUS;
3989		}
3990		goto out;
3991	}
3992
3993	/* Prevent swapoff from happening to us. */
3994	si = get_swap_device(entry);
3995	if (unlikely(!si))
3996		goto out;
3997
3998	folio = swap_cache_get_folio(entry, vma, vmf->address);
3999	if (folio)
4000		page = folio_file_page(folio, swp_offset(entry));
4001	swapcache = folio;
 
 
4002
4003	if (!folio) {
4004		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4005		    __swap_count(entry) == 1) {
4006			/*
4007			 * Prevent parallel swapin from proceeding with
4008			 * the cache flag. Otherwise, another thread may
4009			 * finish swapin first, free the entry, and swapout
4010			 * reusing the same entry. It's undetectable as
4011			 * pte_same() returns true due to entry reuse.
4012			 */
4013			if (swapcache_prepare(entry)) {
4014				/* Relax a bit to prevent rapid repeated page faults */
4015				schedule_timeout_uninterruptible(1);
4016				goto out;
4017			}
4018			need_clear_cache = true;
4019
4020			/* skip swapcache */
4021			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4022						vma, vmf->address, false);
4023			page = &folio->page;
4024			if (folio) {
4025				__folio_set_locked(folio);
4026				__folio_set_swapbacked(folio);
4027
4028				if (mem_cgroup_swapin_charge_folio(folio,
4029							vma->vm_mm, GFP_KERNEL,
4030							entry)) {
 
 
 
 
 
4031					ret = VM_FAULT_OOM;
4032					goto out_page;
4033				}
4034				mem_cgroup_swapin_uncharge_swap(entry);
4035
4036				shadow = get_shadow_from_swap_cache(entry);
4037				if (shadow)
4038					workingset_refault(folio, shadow);
4039
4040				folio_add_lru(folio);
4041
4042				/* To provide entry to swap_read_folio() */
4043				folio->swap = entry;
4044				swap_read_folio(folio, true, NULL);
4045				folio->private = NULL;
4046			}
4047		} else {
4048			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4049						vmf);
4050			if (page)
4051				folio = page_folio(page);
4052			swapcache = folio;
4053		}
4054
4055		if (!folio) {
4056			/*
4057			 * Back out if somebody else faulted in this pte
4058			 * while we released the pte lock.
4059			 */
4060			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4061					vmf->address, &vmf->ptl);
4062			if (likely(vmf->pte &&
4063				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4064				ret = VM_FAULT_OOM;
 
4065			goto unlock;
4066		}
4067
4068		/* Had to read the page from swap area: Major fault */
4069		ret = VM_FAULT_MAJOR;
4070		count_vm_event(PGMAJFAULT);
4071		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4072	} else if (PageHWPoison(page)) {
4073		/*
4074		 * hwpoisoned dirty swapcache pages are kept for killing
4075		 * owner processes (which may be unknown at hwpoison time)
4076		 */
4077		ret = VM_FAULT_HWPOISON;
 
4078		goto out_release;
4079	}
4080
4081	ret |= folio_lock_or_retry(folio, vmf);
4082	if (ret & VM_FAULT_RETRY)
 
 
 
4083		goto out_release;
 
4084
4085	if (swapcache) {
4086		/*
4087		 * Make sure folio_free_swap() or swapoff did not release the
4088		 * swapcache from under us.  The page pin, and pte_same test
4089		 * below, are not enough to exclude that.  Even if it is still
4090		 * swapcache, we need to check that the page's swap has not
4091		 * changed.
4092		 */
4093		if (unlikely(!folio_test_swapcache(folio) ||
4094			     page_swap_entry(page).val != entry.val))
4095			goto out_page;
4096
4097		/*
4098		 * KSM sometimes has to copy on read faults, for example, if
4099		 * page->index of !PageKSM() pages would be nonlinear inside the
4100		 * anon VMA -- PageKSM() is lost on actual swapout.
4101		 */
4102		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4103		if (unlikely(!folio)) {
4104			ret = VM_FAULT_OOM;
4105			folio = swapcache;
4106			goto out_page;
4107		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4108			ret = VM_FAULT_HWPOISON;
4109			folio = swapcache;
4110			goto out_page;
4111		}
4112		if (folio != swapcache)
4113			page = folio_page(folio, 0);
4114
4115		/*
4116		 * If we want to map a page that's in the swapcache writable, we
4117		 * have to detect via the refcount if we're really the exclusive
4118		 * owner. Try removing the extra reference from the local LRU
4119		 * caches if required.
4120		 */
4121		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4122		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4123			lru_add_drain();
4124	}
4125
4126	folio_throttle_swaprate(folio, GFP_KERNEL);
4127
4128	/*
4129	 * Back out if somebody else already faulted in this pte.
4130	 */
4131	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4132			&vmf->ptl);
4133	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4134		goto out_nomap;
4135
4136	if (unlikely(!folio_test_uptodate(folio))) {
4137		ret = VM_FAULT_SIGBUS;
4138		goto out_nomap;
4139	}
4140
4141	/*
4142	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4143	 * must never point at an anonymous page in the swapcache that is
4144	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4145	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4146	 * check after taking the PT lock and making sure that nobody
4147	 * concurrently faulted in this page and set PG_anon_exclusive.
4148	 */
4149	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4150	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4151
4152	/*
4153	 * Check under PT lock (to protect against concurrent fork() sharing
4154	 * the swap entry concurrently) for certainly exclusive pages.
4155	 */
4156	if (!folio_test_ksm(folio)) {
4157		exclusive = pte_swp_exclusive(vmf->orig_pte);
4158		if (folio != swapcache) {
4159			/*
4160			 * We have a fresh page that is not exposed to the
4161			 * swapcache -> certainly exclusive.
4162			 */
4163			exclusive = true;
4164		} else if (exclusive && folio_test_writeback(folio) &&
4165			  data_race(si->flags & SWP_STABLE_WRITES)) {
4166			/*
4167			 * This is tricky: not all swap backends support
4168			 * concurrent page modifications while under writeback.
4169			 *
4170			 * So if we stumble over such a page in the swapcache
4171			 * we must not set the page exclusive, otherwise we can
4172			 * map it writable without further checks and modify it
4173			 * while still under writeback.
4174			 *
4175			 * For these problematic swap backends, simply drop the
4176			 * exclusive marker: this is perfectly fine as we start
4177			 * writeback only if we fully unmapped the page and
4178			 * there are no unexpected references on the page after
4179			 * unmapping succeeded. After fully unmapped, no
4180			 * further GUP references (FOLL_GET and FOLL_PIN) can
4181			 * appear, so dropping the exclusive marker and mapping
4182			 * it only R/O is fine.
4183			 */
4184			exclusive = false;
4185		}
4186	}
4187
4188	/*
4189	 * Some architectures may have to restore extra metadata to the page
4190	 * when reading from swap. This metadata may be indexed by swap entry
4191	 * so this must be called before swap_free().
4192	 */
4193	arch_swap_restore(entry, folio);
4194
4195	/*
4196	 * Remove the swap entry and conditionally try to free up the swapcache.
4197	 * We're already holding a reference on the page but haven't mapped it
4198	 * yet.
4199	 */
4200	swap_free(entry);
4201	if (should_try_to_free_swap(folio, vma, vmf->flags))
4202		folio_free_swap(folio);
4203
4204	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4205	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4206	pte = mk_pte(page, vma->vm_page_prot);
4207
4208	/*
4209	 * Same logic as in do_wp_page(); however, optimize for pages that are
4210	 * certainly not shared either because we just allocated them without
4211	 * exposing them to the swapcache or because the swap entry indicates
4212	 * exclusivity.
4213	 */
4214	if (!folio_test_ksm(folio) &&
4215	    (exclusive || folio_ref_count(folio) == 1)) {
4216		if (vmf->flags & FAULT_FLAG_WRITE) {
4217			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4218			vmf->flags &= ~FAULT_FLAG_WRITE;
4219		}
4220		rmap_flags |= RMAP_EXCLUSIVE;
4221	}
4222	flush_icache_page(vma, page);
4223	if (pte_swp_soft_dirty(vmf->orig_pte))
4224		pte = pte_mksoft_dirty(pte);
4225	if (pte_swp_uffd_wp(vmf->orig_pte))
4226		pte = pte_mkuffd_wp(pte);
 
 
 
 
4227	vmf->orig_pte = pte;
4228
4229	/* ksm created a completely new copy */
4230	if (unlikely(folio != swapcache && swapcache)) {
4231		folio_add_new_anon_rmap(folio, vma, vmf->address);
4232		folio_add_lru_vma(folio, vma);
4233	} else {
4234		folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4235					rmap_flags);
4236	}
4237
4238	VM_BUG_ON(!folio_test_anon(folio) ||
4239			(pte_write(pte) && !PageAnonExclusive(page)));
4240	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4241	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4242
4243	folio_unlock(folio);
4244	if (folio != swapcache && swapcache) {
4245		/*
4246		 * Hold the lock to avoid the swap entry to be reused
4247		 * until we take the PT lock for the pte_same() check
4248		 * (to avoid false positives from pte_same). For
4249		 * further safety release the lock after the swap_free
4250		 * so that the swap count won't change under a
4251		 * parallel locked swapcache.
4252		 */
4253		folio_unlock(swapcache);
4254		folio_put(swapcache);
4255	}
4256
4257	if (vmf->flags & FAULT_FLAG_WRITE) {
4258		ret |= do_wp_page(vmf);
4259		if (ret & VM_FAULT_ERROR)
4260			ret &= VM_FAULT_ERROR;
4261		goto out;
4262	}
4263
4264	/* No need to invalidate - it was non-present before */
4265	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4266unlock:
4267	if (vmf->pte)
4268		pte_unmap_unlock(vmf->pte, vmf->ptl);
4269out:
4270	/* Clear the swap cache pin for direct swapin after PTL unlock */
4271	if (need_clear_cache)
4272		swapcache_clear(si, entry);
4273	if (si)
4274		put_swap_device(si);
4275	return ret;
4276out_nomap:
4277	if (vmf->pte)
4278		pte_unmap_unlock(vmf->pte, vmf->ptl);
4279out_page:
4280	folio_unlock(folio);
4281out_release:
4282	folio_put(folio);
4283	if (folio != swapcache && swapcache) {
4284		folio_unlock(swapcache);
4285		folio_put(swapcache);
4286	}
4287	if (need_clear_cache)
4288		swapcache_clear(si, entry);
4289	if (si)
4290		put_swap_device(si);
4291	return ret;
4292}
4293
4294static bool pte_range_none(pte_t *pte, int nr_pages)
4295{
4296	int i;
4297
4298	for (i = 0; i < nr_pages; i++) {
4299		if (!pte_none(ptep_get_lockless(pte + i)))
4300			return false;
4301	}
4302
4303	return true;
4304}
4305
4306static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4307{
4308	struct vm_area_struct *vma = vmf->vma;
4309#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4310	unsigned long orders;
4311	struct folio *folio;
4312	unsigned long addr;
4313	pte_t *pte;
4314	gfp_t gfp;
4315	int order;
4316
4317	/*
4318	 * If uffd is active for the vma we need per-page fault fidelity to
4319	 * maintain the uffd semantics.
4320	 */
4321	if (unlikely(userfaultfd_armed(vma)))
4322		goto fallback;
4323
4324	/*
4325	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4326	 * for this vma. Then filter out the orders that can't be allocated over
4327	 * the faulting address and still be fully contained in the vma.
4328	 */
4329	orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
4330					  BIT(PMD_ORDER) - 1);
4331	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4332
4333	if (!orders)
4334		goto fallback;
4335
4336	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4337	if (!pte)
4338		return ERR_PTR(-EAGAIN);
4339
4340	/*
4341	 * Find the highest order where the aligned range is completely
4342	 * pte_none(). Note that all remaining orders will be completely
4343	 * pte_none().
4344	 */
4345	order = highest_order(orders);
4346	while (orders) {
4347		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4348		if (pte_range_none(pte + pte_index(addr), 1 << order))
4349			break;
4350		order = next_order(&orders, order);
4351	}
4352
4353	pte_unmap(pte);
4354
4355	/* Try allocating the highest of the remaining orders. */
4356	gfp = vma_thp_gfp_mask(vma);
4357	while (orders) {
4358		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4359		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4360		if (folio) {
4361			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4362				folio_put(folio);
4363				goto next;
4364			}
4365			folio_throttle_swaprate(folio, gfp);
4366			clear_huge_page(&folio->page, vmf->address, 1 << order);
4367			return folio;
4368		}
4369next:
4370		order = next_order(&orders, order);
4371	}
4372
4373fallback:
4374#endif
4375	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4376}
4377
4378/*
4379 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4380 * but allow concurrent faults), and pte mapped but not yet locked.
4381 * We return with mmap_lock still held, but pte unmapped and unlocked.
4382 */
4383static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4384{
4385	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4386	struct vm_area_struct *vma = vmf->vma;
4387	unsigned long addr = vmf->address;
4388	struct folio *folio;
4389	vm_fault_t ret = 0;
4390	int nr_pages = 1;
4391	pte_t entry;
4392	int i;
4393
4394	/* File mapping without ->vm_ops ? */
4395	if (vma->vm_flags & VM_SHARED)
4396		return VM_FAULT_SIGBUS;
4397
4398	/*
4399	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4400	 * be distinguished from a transient failure of pte_offset_map().
 
 
 
 
 
 
4401	 */
4402	if (pte_alloc(vma->vm_mm, vmf->pmd))
4403		return VM_FAULT_OOM;
4404
 
 
 
 
4405	/* Use the zero-page for reads */
4406	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4407			!mm_forbids_zeropage(vma->vm_mm)) {
4408		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4409						vma->vm_page_prot));
4410		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4411				vmf->address, &vmf->ptl);
4412		if (!vmf->pte)
4413			goto unlock;
4414		if (vmf_pte_changed(vmf)) {
4415			update_mmu_tlb(vma, vmf->address, vmf->pte);
4416			goto unlock;
4417		}
4418		ret = check_stable_address_space(vma->vm_mm);
4419		if (ret)
4420			goto unlock;
4421		/* Deliver the page fault to userland, check inside PT lock */
4422		if (userfaultfd_missing(vma)) {
4423			pte_unmap_unlock(vmf->pte, vmf->ptl);
4424			return handle_userfault(vmf, VM_UFFD_MISSING);
4425		}
4426		goto setpte;
4427	}
4428
4429	/* Allocate our own private page. */
4430	if (unlikely(anon_vma_prepare(vma)))
4431		goto oom;
4432	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4433	folio = alloc_anon_folio(vmf);
4434	if (IS_ERR(folio))
4435		return 0;
4436	if (!folio)
4437		goto oom;
4438
4439	nr_pages = folio_nr_pages(folio);
4440	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
 
4441
4442	/*
4443	 * The memory barrier inside __folio_mark_uptodate makes sure that
4444	 * preceding stores to the page contents become visible before
4445	 * the set_pte_at() write.
4446	 */
4447	__folio_mark_uptodate(folio);
4448
4449	entry = mk_pte(&folio->page, vma->vm_page_prot);
4450	entry = pte_sw_mkyoung(entry);
4451	if (vma->vm_flags & VM_WRITE)
4452		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4453
4454	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4455	if (!vmf->pte)
4456		goto release;
4457	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4458		update_mmu_tlb(vma, addr, vmf->pte);
4459		goto release;
4460	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4461		for (i = 0; i < nr_pages; i++)
4462			update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4463		goto release;
4464	}
4465
4466	ret = check_stable_address_space(vma->vm_mm);
4467	if (ret)
4468		goto release;
4469
4470	/* Deliver the page fault to userland, check inside PT lock */
4471	if (userfaultfd_missing(vma)) {
4472		pte_unmap_unlock(vmf->pte, vmf->ptl);
4473		folio_put(folio);
4474		return handle_userfault(vmf, VM_UFFD_MISSING);
4475	}
4476
4477	folio_ref_add(folio, nr_pages - 1);
4478	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4479	folio_add_new_anon_rmap(folio, vma, addr);
4480	folio_add_lru_vma(folio, vma);
4481setpte:
4482	if (uffd_wp)
4483		entry = pte_mkuffd_wp(entry);
4484	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4485
4486	/* No need to invalidate - it was non-present before */
4487	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4488unlock:
4489	if (vmf->pte)
4490		pte_unmap_unlock(vmf->pte, vmf->ptl);
4491	return ret;
4492release:
4493	folio_put(folio);
4494	goto unlock;
 
 
4495oom:
4496	return VM_FAULT_OOM;
4497}
4498
4499/*
4500 * The mmap_lock must have been held on entry, and may have been
4501 * released depending on flags and vma->vm_ops->fault() return value.
4502 * See filemap_fault() and __lock_page_retry().
4503 */
4504static vm_fault_t __do_fault(struct vm_fault *vmf)
4505{
4506	struct vm_area_struct *vma = vmf->vma;
4507	struct folio *folio;
4508	vm_fault_t ret;
4509
4510	/*
4511	 * Preallocate pte before we take page_lock because this might lead to
4512	 * deadlocks for memcg reclaim which waits for pages under writeback:
4513	 *				lock_page(A)
4514	 *				SetPageWriteback(A)
4515	 *				unlock_page(A)
4516	 * lock_page(B)
4517	 *				lock_page(B)
4518	 * pte_alloc_one
4519	 *   shrink_page_list
4520	 *     wait_on_page_writeback(A)
4521	 *				SetPageWriteback(B)
4522	 *				unlock_page(B)
4523	 *				# flush A, B to clear the writeback
4524	 */
4525	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4526		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4527		if (!vmf->prealloc_pte)
4528			return VM_FAULT_OOM;
 
4529	}
4530
4531	ret = vma->vm_ops->fault(vmf);
4532	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4533			    VM_FAULT_DONE_COW)))
4534		return ret;
4535
4536	folio = page_folio(vmf->page);
4537	if (unlikely(PageHWPoison(vmf->page))) {
4538		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4539		if (ret & VM_FAULT_LOCKED) {
4540			if (page_mapped(vmf->page))
4541				unmap_mapping_folio(folio);
4542			/* Retry if a clean folio was removed from the cache. */
4543			if (mapping_evict_folio(folio->mapping, folio))
4544				poisonret = VM_FAULT_NOPAGE;
4545			folio_unlock(folio);
4546		}
4547		folio_put(folio);
4548		vmf->page = NULL;
4549		return poisonret;
4550	}
4551
4552	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4553		folio_lock(folio);
4554	else
4555		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4556
4557	return ret;
4558}
4559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4560#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4561static void deposit_prealloc_pte(struct vm_fault *vmf)
4562{
4563	struct vm_area_struct *vma = vmf->vma;
4564
4565	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4566	/*
4567	 * We are going to consume the prealloc table,
4568	 * count that as nr_ptes.
4569	 */
4570	mm_inc_nr_ptes(vma->vm_mm);
4571	vmf->prealloc_pte = NULL;
4572}
4573
4574vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4575{
4576	struct folio *folio = page_folio(page);
4577	struct vm_area_struct *vma = vmf->vma;
4578	bool write = vmf->flags & FAULT_FLAG_WRITE;
4579	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4580	pmd_t entry;
4581	vm_fault_t ret = VM_FAULT_FALLBACK;
 
4582
4583	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4584		return ret;
4585
4586	if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4587		return ret;
4588
4589	/*
4590	 * Just backoff if any subpage of a THP is corrupted otherwise
4591	 * the corrupted page may mapped by PMD silently to escape the
4592	 * check.  This kind of THP just can be PTE mapped.  Access to
4593	 * the corrupted subpage should trigger SIGBUS as expected.
4594	 */
4595	if (unlikely(folio_test_has_hwpoisoned(folio)))
4596		return ret;
4597
4598	/*
4599	 * Archs like ppc64 need additional space to store information
4600	 * related to pte entry. Use the preallocated table for that.
4601	 */
4602	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4603		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4604		if (!vmf->prealloc_pte)
4605			return VM_FAULT_OOM;
 
4606	}
4607
4608	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4609	if (unlikely(!pmd_none(*vmf->pmd)))
4610		goto out;
4611
4612	flush_icache_pages(vma, page, HPAGE_PMD_NR);
 
4613
4614	entry = mk_huge_pmd(page, vma->vm_page_prot);
4615	if (write)
4616		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4617
4618	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4619	folio_add_file_rmap_pmd(folio, page, vma);
4620
4621	/*
4622	 * deposit and withdraw with pmd lock held
4623	 */
4624	if (arch_needs_pgtable_deposit())
4625		deposit_prealloc_pte(vmf);
4626
4627	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4628
4629	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4630
4631	/* fault is handled */
4632	ret = 0;
4633	count_vm_event(THP_FILE_MAPPED);
4634out:
4635	spin_unlock(vmf->ptl);
4636	return ret;
4637}
4638#else
4639vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4640{
4641	return VM_FAULT_FALLBACK;
 
4642}
4643#endif
4644
4645/**
4646 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4647 * @vmf: Fault decription.
4648 * @folio: The folio that contains @page.
4649 * @page: The first page to create a PTE for.
4650 * @nr: The number of PTEs to create.
4651 * @addr: The first address to create a PTE for.
 
 
 
 
 
 
 
4652 */
4653void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4654		struct page *page, unsigned int nr, unsigned long addr)
4655{
4656	struct vm_area_struct *vma = vmf->vma;
4657	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4658	bool write = vmf->flags & FAULT_FLAG_WRITE;
4659	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4660	pte_t entry;
 
 
 
 
 
 
 
4661
4662	flush_icache_pages(vma, page, nr);
4663	entry = mk_pte(page, vma->vm_page_prot);
 
 
 
4664
4665	if (prefault && arch_wants_old_prefaulted_pte())
4666		entry = pte_mkold(entry);
4667	else
4668		entry = pte_sw_mkyoung(entry);
 
4669
 
 
 
4670	if (write)
4671		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4672	if (unlikely(uffd_wp))
4673		entry = pte_mkuffd_wp(entry);
4674	/* copy-on-write page */
4675	if (write && !(vma->vm_flags & VM_SHARED)) {
4676		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4677		VM_BUG_ON_FOLIO(nr != 1, folio);
4678		folio_add_new_anon_rmap(folio, vma, addr);
4679		folio_add_lru_vma(folio, vma);
4680	} else {
4681		add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr);
4682		folio_add_file_rmap_ptes(folio, page, nr, vma);
4683	}
4684	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4685
4686	/* no need to invalidate: a not-present page won't be cached */
4687	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
 
 
4688}
4689
4690static bool vmf_pte_changed(struct vm_fault *vmf)
4691{
4692	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4693		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4694
4695	return !pte_none(ptep_get(vmf->pte));
4696}
4697
4698/**
4699 * finish_fault - finish page fault once we have prepared the page to fault
4700 *
4701 * @vmf: structure describing the fault
4702 *
4703 * This function handles all that is needed to finish a page fault once the
4704 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4705 * given page, adds reverse page mapping, handles memcg charges and LRU
4706 * addition.
4707 *
4708 * The function expects the page to be locked and on success it consumes a
4709 * reference of a page being mapped (for the PTE which maps it).
4710 *
4711 * Return: %0 on success, %VM_FAULT_ code in case of error.
4712 */
4713vm_fault_t finish_fault(struct vm_fault *vmf)
4714{
4715	struct vm_area_struct *vma = vmf->vma;
4716	struct page *page;
4717	vm_fault_t ret;
4718
4719	/* Did we COW the page? */
4720	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
 
4721		page = vmf->cow_page;
4722	else
4723		page = vmf->page;
4724
4725	/*
4726	 * check even for read faults because we might have lost our CoWed
4727	 * page
4728	 */
4729	if (!(vma->vm_flags & VM_SHARED)) {
4730		ret = check_stable_address_space(vma->vm_mm);
4731		if (ret)
4732			return ret;
4733	}
4734
4735	if (pmd_none(*vmf->pmd)) {
4736		if (PageTransCompound(page)) {
4737			ret = do_set_pmd(vmf, page);
4738			if (ret != VM_FAULT_FALLBACK)
4739				return ret;
4740		}
4741
4742		if (vmf->prealloc_pte)
4743			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4744		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4745			return VM_FAULT_OOM;
4746	}
4747
4748	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4749				      vmf->address, &vmf->ptl);
4750	if (!vmf->pte)
4751		return VM_FAULT_NOPAGE;
4752
4753	/* Re-check under ptl */
4754	if (likely(!vmf_pte_changed(vmf))) {
4755		struct folio *folio = page_folio(page);
4756
4757		set_pte_range(vmf, folio, page, 1, vmf->address);
4758		ret = 0;
4759	} else {
4760		update_mmu_tlb(vma, vmf->address, vmf->pte);
4761		ret = VM_FAULT_NOPAGE;
4762	}
4763
4764	pte_unmap_unlock(vmf->pte, vmf->ptl);
4765	return ret;
4766}
4767
4768static unsigned long fault_around_pages __read_mostly =
4769	65536 >> PAGE_SHIFT;
4770
4771#ifdef CONFIG_DEBUG_FS
4772static int fault_around_bytes_get(void *data, u64 *val)
4773{
4774	*val = fault_around_pages << PAGE_SHIFT;
4775	return 0;
4776}
4777
4778/*
4779 * fault_around_bytes must be rounded down to the nearest page order as it's
4780 * what do_fault_around() expects to see.
4781 */
4782static int fault_around_bytes_set(void *data, u64 val)
4783{
4784	if (val / PAGE_SIZE > PTRS_PER_PTE)
4785		return -EINVAL;
4786
4787	/*
4788	 * The minimum value is 1 page, however this results in no fault-around
4789	 * at all. See should_fault_around().
4790	 */
4791	val = max(val, PAGE_SIZE);
4792	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4793
4794	return 0;
4795}
4796DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4797		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4798
4799static int __init fault_around_debugfs(void)
4800{
4801	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4802				   &fault_around_bytes_fops);
4803	return 0;
4804}
4805late_initcall(fault_around_debugfs);
4806#endif
4807
4808/*
4809 * do_fault_around() tries to map few pages around the fault address. The hope
4810 * is that the pages will be needed soon and this will lower the number of
4811 * faults to handle.
4812 *
4813 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4814 * not ready to be mapped: not up-to-date, locked, etc.
4815 *
4816 * This function doesn't cross VMA or page table boundaries, in order to call
4817 * map_pages() and acquire a PTE lock only once.
 
4818 *
4819 * fault_around_pages defines how many pages we'll try to map.
 
 
 
4820 * do_fault_around() expects it to be set to a power of two less than or equal
4821 * to PTRS_PER_PTE.
4822 *
4823 * The virtual address of the area that we map is naturally aligned to
4824 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4825 * (and therefore to page order).  This way it's easier to guarantee
4826 * that we don't cross page table boundaries.
4827 */
4828static vm_fault_t do_fault_around(struct vm_fault *vmf)
4829{
4830	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4831	pgoff_t pte_off = pte_index(vmf->address);
4832	/* The page offset of vmf->address within the VMA. */
4833	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4834	pgoff_t from_pte, to_pte;
4835	vm_fault_t ret;
 
 
4836
4837	/* The PTE offset of the start address, clamped to the VMA. */
4838	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4839		       pte_off - min(pte_off, vma_off));
4840
4841	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4842	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4843		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
 
 
 
 
 
 
4844
4845	if (pmd_none(*vmf->pmd)) {
4846		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4847		if (!vmf->prealloc_pte)
4848			return VM_FAULT_OOM;
 
4849	}
4850
4851	rcu_read_lock();
4852	ret = vmf->vma->vm_ops->map_pages(vmf,
4853			vmf->pgoff + from_pte - pte_off,
4854			vmf->pgoff + to_pte - pte_off);
4855	rcu_read_unlock();
4856
4857	return ret;
4858}
 
 
 
4859
4860/* Return true if we should do read fault-around, false otherwise */
4861static inline bool should_fault_around(struct vm_fault *vmf)
4862{
4863	/* No ->map_pages?  No way to fault around... */
4864	if (!vmf->vma->vm_ops->map_pages)
4865		return false;
4866
4867	if (uffd_disable_fault_around(vmf->vma))
4868		return false;
4869
4870	/* A single page implies no faulting 'around' at all. */
4871	return fault_around_pages > 1;
 
 
 
 
4872}
4873
4874static vm_fault_t do_read_fault(struct vm_fault *vmf)
4875{
 
4876	vm_fault_t ret = 0;
4877	struct folio *folio;
4878
4879	/*
4880	 * Let's call ->map_pages() first and use ->fault() as fallback
4881	 * if page by the offset is not ready to be mapped (cold cache or
4882	 * something).
4883	 */
4884	if (should_fault_around(vmf)) {
4885		ret = do_fault_around(vmf);
4886		if (ret)
4887			return ret;
4888	}
4889
4890	ret = vmf_can_call_fault(vmf);
4891	if (ret)
4892		return ret;
4893
4894	ret = __do_fault(vmf);
4895	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4896		return ret;
4897
4898	ret |= finish_fault(vmf);
4899	folio = page_folio(vmf->page);
4900	folio_unlock(folio);
4901	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4902		folio_put(folio);
4903	return ret;
4904}
4905
4906static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4907{
4908	struct vm_area_struct *vma = vmf->vma;
4909	struct folio *folio;
4910	vm_fault_t ret;
4911
4912	ret = vmf_can_call_fault(vmf);
4913	if (!ret)
4914		ret = vmf_anon_prepare(vmf);
4915	if (ret)
4916		return ret;
4917
4918	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4919	if (!folio)
4920		return VM_FAULT_OOM;
4921
4922	vmf->cow_page = &folio->page;
 
 
 
 
4923
4924	ret = __do_fault(vmf);
4925	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4926		goto uncharge_out;
4927	if (ret & VM_FAULT_DONE_COW)
4928		return ret;
4929
4930	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4931	__folio_mark_uptodate(folio);
4932
4933	ret |= finish_fault(vmf);
4934	unlock_page(vmf->page);
4935	put_page(vmf->page);
4936	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4937		goto uncharge_out;
4938	return ret;
4939uncharge_out:
4940	folio_put(folio);
4941	return ret;
4942}
4943
4944static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4945{
4946	struct vm_area_struct *vma = vmf->vma;
4947	vm_fault_t ret, tmp;
4948	struct folio *folio;
4949
4950	ret = vmf_can_call_fault(vmf);
4951	if (ret)
4952		return ret;
4953
4954	ret = __do_fault(vmf);
4955	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4956		return ret;
4957
4958	folio = page_folio(vmf->page);
4959
4960	/*
4961	 * Check if the backing address space wants to know that the page is
4962	 * about to become writable
4963	 */
4964	if (vma->vm_ops->page_mkwrite) {
4965		folio_unlock(folio);
4966		tmp = do_page_mkwrite(vmf, folio);
4967		if (unlikely(!tmp ||
4968				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4969			folio_put(folio);
4970			return tmp;
4971		}
4972	}
4973
4974	ret |= finish_fault(vmf);
4975	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4976					VM_FAULT_RETRY))) {
4977		folio_unlock(folio);
4978		folio_put(folio);
4979		return ret;
4980	}
4981
4982	ret |= fault_dirty_shared_page(vmf);
4983	return ret;
4984}
4985
4986/*
4987 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4988 * but allow concurrent faults).
4989 * The mmap_lock may have been released depending on flags and our
4990 * return value.  See filemap_fault() and __folio_lock_or_retry().
4991 * If mmap_lock is released, vma may become invalid (for example
4992 * by other thread calling munmap()).
4993 */
4994static vm_fault_t do_fault(struct vm_fault *vmf)
4995{
4996	struct vm_area_struct *vma = vmf->vma;
4997	struct mm_struct *vm_mm = vma->vm_mm;
4998	vm_fault_t ret;
4999
5000	/*
5001	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5002	 */
5003	if (!vma->vm_ops->fault) {
5004		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5005					       vmf->address, &vmf->ptl);
5006		if (unlikely(!vmf->pte))
 
 
5007			ret = VM_FAULT_SIGBUS;
5008		else {
 
 
 
 
5009			/*
5010			 * Make sure this is not a temporary clearing of pte
5011			 * by holding ptl and checking again. A R/M/W update
5012			 * of pte involves: take ptl, clearing the pte so that
5013			 * we don't have concurrent modification by hardware
5014			 * followed by an update.
5015			 */
5016			if (unlikely(pte_none(ptep_get(vmf->pte))))
5017				ret = VM_FAULT_SIGBUS;
5018			else
5019				ret = VM_FAULT_NOPAGE;
5020
5021			pte_unmap_unlock(vmf->pte, vmf->ptl);
5022		}
5023	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5024		ret = do_read_fault(vmf);
5025	else if (!(vma->vm_flags & VM_SHARED))
5026		ret = do_cow_fault(vmf);
5027	else
5028		ret = do_shared_fault(vmf);
5029
5030	/* preallocated pagetable is unused: free it */
5031	if (vmf->prealloc_pte) {
5032		pte_free(vm_mm, vmf->prealloc_pte);
5033		vmf->prealloc_pte = NULL;
5034	}
5035	return ret;
5036}
5037
5038int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
5039		      unsigned long addr, int page_nid, int *flags)
 
5040{
5041	folio_get(folio);
5042
5043	/* Record the current PID acceesing VMA */
5044	vma_set_access_pid_bit(vma);
5045
5046	count_vm_numa_event(NUMA_HINT_FAULTS);
5047	if (page_nid == numa_node_id()) {
5048		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5049		*flags |= TNF_FAULT_LOCAL;
5050	}
5051
5052	return mpol_misplaced(folio, vma, addr);
5053}
5054
5055static vm_fault_t do_numa_page(struct vm_fault *vmf)
5056{
5057	struct vm_area_struct *vma = vmf->vma;
5058	struct folio *folio = NULL;
5059	int nid = NUMA_NO_NODE;
5060	bool writable = false;
5061	int last_cpupid;
5062	int target_nid;
 
5063	pte_t pte, old_pte;
 
5064	int flags = 0;
5065
5066	/*
5067	 * The pte cannot be used safely until we verify, while holding the page
5068	 * table lock, that its contents have not changed during fault handling.
 
5069	 */
 
5070	spin_lock(vmf->ptl);
5071	/* Read the live PTE from the page tables: */
5072	old_pte = ptep_get(vmf->pte);
5073
5074	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5075		pte_unmap_unlock(vmf->pte, vmf->ptl);
5076		goto out;
5077	}
5078
 
 
 
 
 
5079	pte = pte_modify(old_pte, vma->vm_page_prot);
 
 
 
 
 
5080
5081	/*
5082	 * Detect now whether the PTE could be writable; this information
5083	 * is only valid while holding the PT lock.
5084	 */
5085	writable = pte_write(pte);
5086	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
5087	    can_change_pte_writable(vma, vmf->address, pte))
5088		writable = true;
5089
5090	folio = vm_normal_folio(vma, vmf->address, pte);
5091	if (!folio || folio_is_zone_device(folio))
5092		goto out_map;
5093
5094	/* TODO: handle PTE-mapped THP */
5095	if (folio_test_large(folio))
5096		goto out_map;
 
 
5097
5098	/*
5099	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5100	 * much anyway since they can be in shared cache state. This misses
5101	 * the case where a mapping is writable but the process never writes
5102	 * to it but pte_write gets cleared during protection updates and
5103	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5104	 * background writeback, dirty balancing and application behaviour.
5105	 */
5106	if (!writable)
5107		flags |= TNF_NO_GROUP;
5108
5109	/*
5110	 * Flag if the folio is shared between multiple address spaces. This
5111	 * is later used when determining whether to group tasks together
5112	 */
5113	if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
5114		flags |= TNF_SHARED;
5115
5116	nid = folio_nid(folio);
5117	/*
5118	 * For memory tiering mode, cpupid of slow memory page is used
5119	 * to record page access time.  So use default value.
5120	 */
5121	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5122	    !node_is_toptier(nid))
5123		last_cpupid = (-1 & LAST_CPUPID_MASK);
5124	else
5125		last_cpupid = folio_last_cpupid(folio);
5126	target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
5127	if (target_nid == NUMA_NO_NODE) {
5128		folio_put(folio);
5129		goto out_map;
5130	}
5131	pte_unmap_unlock(vmf->pte, vmf->ptl);
5132	writable = false;
5133
5134	/* Migrate to the requested node */
5135	if (migrate_misplaced_folio(folio, vma, target_nid)) {
5136		nid = target_nid;
 
5137		flags |= TNF_MIGRATED;
5138	} else {
5139		flags |= TNF_MIGRATE_FAIL;
5140		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5141					       vmf->address, &vmf->ptl);
5142		if (unlikely(!vmf->pte))
5143			goto out;
5144		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5145			pte_unmap_unlock(vmf->pte, vmf->ptl);
5146			goto out;
5147		}
5148		goto out_map;
5149	}
5150
5151out:
5152	if (nid != NUMA_NO_NODE)
5153		task_numa_fault(last_cpupid, nid, 1, flags);
5154	return 0;
5155out_map:
5156	/*
5157	 * Make it present again, depending on how arch implements
5158	 * non-accessible ptes, some can allow access by kernel mode.
5159	 */
5160	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
5161	pte = pte_modify(old_pte, vma->vm_page_prot);
5162	pte = pte_mkyoung(pte);
5163	if (writable)
5164		pte = pte_mkwrite(pte, vma);
5165	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5166	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
5167	pte_unmap_unlock(vmf->pte, vmf->ptl);
5168	goto out;
5169}
5170
5171static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5172{
5173	struct vm_area_struct *vma = vmf->vma;
5174	if (vma_is_anonymous(vma))
5175		return do_huge_pmd_anonymous_page(vmf);
5176	if (vma->vm_ops->huge_fault)
5177		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5178	return VM_FAULT_FALLBACK;
5179}
5180
5181/* `inline' is required to avoid gcc 4.1.2 build error */
5182static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5183{
5184	struct vm_area_struct *vma = vmf->vma;
5185	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5186	vm_fault_t ret;
5187
5188	if (vma_is_anonymous(vma)) {
5189		if (likely(!unshare) &&
5190		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5191			if (userfaultfd_wp_async(vmf->vma))
5192				goto split;
5193			return handle_userfault(vmf, VM_UFFD_WP);
5194		}
5195		return do_huge_pmd_wp_page(vmf);
5196	}
 
 
5197
5198	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5199		if (vma->vm_ops->huge_fault) {
5200			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5201			if (!(ret & VM_FAULT_FALLBACK))
5202				return ret;
5203		}
5204	}
5205
5206split:
5207	/* COW or write-notify handled on pte level: split pmd. */
5208	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5209
5210	return VM_FAULT_FALLBACK;
5211}
5212
5213static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5214{
5215#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5216	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5217	struct vm_area_struct *vma = vmf->vma;
5218	/* No support for anonymous transparent PUD pages yet */
5219	if (vma_is_anonymous(vma))
5220		return VM_FAULT_FALLBACK;
5221	if (vma->vm_ops->huge_fault)
5222		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
 
 
 
 
 
 
 
5223#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5224	return VM_FAULT_FALLBACK;
5225}
5226
5227static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5228{
5229#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5230	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5231	struct vm_area_struct *vma = vmf->vma;
5232	vm_fault_t ret;
5233
5234	/* No support for anonymous transparent PUD pages yet */
5235	if (vma_is_anonymous(vma))
5236		goto split;
5237	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5238		if (vma->vm_ops->huge_fault) {
5239			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5240			if (!(ret & VM_FAULT_FALLBACK))
5241				return ret;
5242		}
5243	}
5244split:
5245	/* COW or write-notify not handled on PUD level: split pud.*/
5246	__split_huge_pud(vma, vmf->pud, vmf->address);
5247#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5248	return VM_FAULT_FALLBACK;
5249}
5250
5251/*
5252 * These routines also need to handle stuff like marking pages dirty
5253 * and/or accessed for architectures that don't do it in hardware (most
5254 * RISC architectures).  The early dirtying is also good on the i386.
5255 *
5256 * There is also a hook called "update_mmu_cache()" that architectures
5257 * with external mmu caches can use to update those (ie the Sparc or
5258 * PowerPC hashed page tables that act as extended TLBs).
5259 *
5260 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5261 * concurrent faults).
5262 *
5263 * The mmap_lock may have been released depending on flags and our return value.
5264 * See filemap_fault() and __folio_lock_or_retry().
5265 */
5266static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5267{
5268	pte_t entry;
5269
5270	if (unlikely(pmd_none(*vmf->pmd))) {
5271		/*
5272		 * Leave __pte_alloc() until later: because vm_ops->fault may
5273		 * want to allocate huge page, and if we expose page table
5274		 * for an instant, it will be difficult to retract from
5275		 * concurrent faults and from rmap lookups.
5276		 */
5277		vmf->pte = NULL;
5278		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5279	} else {
 
 
 
5280		/*
5281		 * A regular pmd is established and it can't morph into a huge
5282		 * pmd by anon khugepaged, since that takes mmap_lock in write
5283		 * mode; but shmem or file collapse to THP could still morph
5284		 * it into a huge pmd: just retry later if so.
5285		 */
5286		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5287						 vmf->address, &vmf->ptl);
5288		if (unlikely(!vmf->pte))
5289			return 0;
5290		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5291		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5292
 
 
 
 
 
 
 
 
 
5293		if (pte_none(vmf->orig_pte)) {
5294			pte_unmap(vmf->pte);
5295			vmf->pte = NULL;
5296		}
5297	}
5298
5299	if (!vmf->pte)
5300		return do_pte_missing(vmf);
 
 
 
 
5301
5302	if (!pte_present(vmf->orig_pte))
5303		return do_swap_page(vmf);
5304
5305	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5306		return do_numa_page(vmf);
5307
 
5308	spin_lock(vmf->ptl);
5309	entry = vmf->orig_pte;
5310	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5311		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5312		goto unlock;
5313	}
5314	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5315		if (!pte_write(entry))
5316			return do_wp_page(vmf);
5317		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5318			entry = pte_mkdirty(entry);
5319	}
5320	entry = pte_mkyoung(entry);
5321	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5322				vmf->flags & FAULT_FLAG_WRITE)) {
5323		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5324				vmf->pte, 1);
5325	} else {
5326		/* Skip spurious TLB flush for retried page fault */
5327		if (vmf->flags & FAULT_FLAG_TRIED)
5328			goto unlock;
5329		/*
5330		 * This is needed only for protection faults but the arch code
5331		 * is not yet telling us if this is a protection fault or not.
5332		 * This still avoids useless tlb flushes for .text page faults
5333		 * with threads.
5334		 */
5335		if (vmf->flags & FAULT_FLAG_WRITE)
5336			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5337						     vmf->pte);
5338	}
5339unlock:
5340	pte_unmap_unlock(vmf->pte, vmf->ptl);
5341	return 0;
5342}
5343
5344/*
5345 * On entry, we hold either the VMA lock or the mmap_lock
5346 * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5347 * the result, the mmap_lock is not held on exit.  See filemap_fault()
5348 * and __folio_lock_or_retry().
5349 */
5350static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5351		unsigned long address, unsigned int flags)
5352{
5353	struct vm_fault vmf = {
5354		.vma = vma,
5355		.address = address & PAGE_MASK,
5356		.real_address = address,
5357		.flags = flags,
5358		.pgoff = linear_page_index(vma, address),
5359		.gfp_mask = __get_fault_gfp_mask(vma),
5360	};
 
5361	struct mm_struct *mm = vma->vm_mm;
5362	unsigned long vm_flags = vma->vm_flags;
5363	pgd_t *pgd;
5364	p4d_t *p4d;
5365	vm_fault_t ret;
5366
5367	pgd = pgd_offset(mm, address);
5368	p4d = p4d_alloc(mm, pgd, address);
5369	if (!p4d)
5370		return VM_FAULT_OOM;
5371
5372	vmf.pud = pud_alloc(mm, p4d, address);
5373	if (!vmf.pud)
5374		return VM_FAULT_OOM;
5375retry_pud:
5376	if (pud_none(*vmf.pud) &&
5377	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
5378		ret = create_huge_pud(&vmf);
5379		if (!(ret & VM_FAULT_FALLBACK))
5380			return ret;
5381	} else {
5382		pud_t orig_pud = *vmf.pud;
5383
5384		barrier();
5385		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5386
5387			/*
5388			 * TODO once we support anonymous PUDs: NUMA case and
5389			 * FAULT_FLAG_UNSHARE handling.
5390			 */
5391			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5392				ret = wp_huge_pud(&vmf, orig_pud);
5393				if (!(ret & VM_FAULT_FALLBACK))
5394					return ret;
5395			} else {
5396				huge_pud_set_accessed(&vmf, orig_pud);
5397				return 0;
5398			}
5399		}
5400	}
5401
5402	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5403	if (!vmf.pmd)
5404		return VM_FAULT_OOM;
5405
5406	/* Huge pud page fault raced with pmd_alloc? */
5407	if (pud_trans_unstable(vmf.pud))
5408		goto retry_pud;
5409
5410	if (pmd_none(*vmf.pmd) &&
5411	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
5412		ret = create_huge_pmd(&vmf);
5413		if (!(ret & VM_FAULT_FALLBACK))
5414			return ret;
5415	} else {
5416		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5417
5418		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
 
5419			VM_BUG_ON(thp_migration_supported() &&
5420					  !is_pmd_migration_entry(vmf.orig_pmd));
5421			if (is_pmd_migration_entry(vmf.orig_pmd))
5422				pmd_migration_entry_wait(mm, vmf.pmd);
5423			return 0;
5424		}
5425		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5426			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5427				return do_huge_pmd_numa_page(&vmf);
5428
5429			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5430			    !pmd_write(vmf.orig_pmd)) {
5431				ret = wp_huge_pmd(&vmf);
5432				if (!(ret & VM_FAULT_FALLBACK))
5433					return ret;
5434			} else {
5435				huge_pmd_set_accessed(&vmf);
5436				return 0;
5437			}
5438		}
5439	}
5440
5441	return handle_pte_fault(&vmf);
5442}
5443
5444/**
5445 * mm_account_fault - Do page fault accounting
5446 * @mm: mm from which memcg should be extracted. It can be NULL.
5447 * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5448 *        of perf event counters, but we'll still do the per-task accounting to
5449 *        the task who triggered this page fault.
5450 * @address: the faulted address.
5451 * @flags: the fault flags.
5452 * @ret: the fault retcode.
5453 *
5454 * This will take care of most of the page fault accounting.  Meanwhile, it
5455 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5456 * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5457 * still be in per-arch page fault handlers at the entry of page fault.
5458 */
5459static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5460				    unsigned long address, unsigned int flags,
5461				    vm_fault_t ret)
5462{
5463	bool major;
5464
5465	/* Incomplete faults will be accounted upon completion. */
5466	if (ret & VM_FAULT_RETRY)
5467		return;
5468
5469	/*
5470	 * To preserve the behavior of older kernels, PGFAULT counters record
5471	 * both successful and failed faults, as opposed to perf counters,
5472	 * which ignore failed cases.
 
 
 
 
 
 
5473	 */
5474	count_vm_event(PGFAULT);
5475	count_memcg_event_mm(mm, PGFAULT);
5476
5477	/*
5478	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5479	 * valid).  That includes arch_vma_access_permitted() failing before
5480	 * reaching here. So this is not a "this many hardware page faults"
5481	 * counter.  We should use the hw profiling for that.
5482	 */
5483	if (ret & VM_FAULT_ERROR)
5484		return;
5485
5486	/*
5487	 * We define the fault as a major fault when the final successful fault
5488	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5489	 * handle it immediately previously).
5490	 */
5491	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5492
5493	if (major)
5494		current->maj_flt++;
5495	else
5496		current->min_flt++;
5497
5498	/*
5499	 * If the fault is done for GUP, regs will be NULL.  We only do the
5500	 * accounting for the per thread fault counters who triggered the
5501	 * fault, and we skip the perf event updates.
5502	 */
5503	if (!regs)
5504		return;
5505
5506	if (major)
5507		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5508	else
5509		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5510}
5511
5512#ifdef CONFIG_LRU_GEN
5513static void lru_gen_enter_fault(struct vm_area_struct *vma)
5514{
5515	/* the LRU algorithm only applies to accesses with recency */
5516	current->in_lru_fault = vma_has_recency(vma);
5517}
5518
5519static void lru_gen_exit_fault(void)
5520{
5521	current->in_lru_fault = false;
5522}
5523#else
5524static void lru_gen_enter_fault(struct vm_area_struct *vma)
5525{
5526}
5527
5528static void lru_gen_exit_fault(void)
5529{
5530}
5531#endif /* CONFIG_LRU_GEN */
5532
5533static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5534				       unsigned int *flags)
5535{
5536	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5537		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5538			return VM_FAULT_SIGSEGV;
5539		/*
5540		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5541		 * just treat it like an ordinary read-fault otherwise.
5542		 */
5543		if (!is_cow_mapping(vma->vm_flags))
5544			*flags &= ~FAULT_FLAG_UNSHARE;
5545	} else if (*flags & FAULT_FLAG_WRITE) {
5546		/* Write faults on read-only mappings are impossible ... */
5547		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5548			return VM_FAULT_SIGSEGV;
5549		/* ... and FOLL_FORCE only applies to COW mappings. */
5550		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5551				 !is_cow_mapping(vma->vm_flags)))
5552			return VM_FAULT_SIGSEGV;
5553	}
5554#ifdef CONFIG_PER_VMA_LOCK
5555	/*
5556	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5557	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5558	 */
5559	if (WARN_ON_ONCE((*flags &
5560			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5561			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5562		return VM_FAULT_SIGSEGV;
5563#endif
5564
5565	return 0;
5566}
5567
5568/*
5569 * By the time we get here, we already hold the mm semaphore
5570 *
5571 * The mmap_lock may have been released depending on flags and our
5572 * return value.  See filemap_fault() and __folio_lock_or_retry().
5573 */
5574vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5575			   unsigned int flags, struct pt_regs *regs)
5576{
5577	/* If the fault handler drops the mmap_lock, vma may be freed */
5578	struct mm_struct *mm = vma->vm_mm;
5579	vm_fault_t ret;
5580
5581	__set_current_state(TASK_RUNNING);
5582
5583	ret = sanitize_fault_flags(vma, &flags);
5584	if (ret)
5585		goto out;
 
 
5586
5587	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5588					    flags & FAULT_FLAG_INSTRUCTION,
5589					    flags & FAULT_FLAG_REMOTE)) {
5590		ret = VM_FAULT_SIGSEGV;
5591		goto out;
5592	}
5593
5594	/*
5595	 * Enable the memcg OOM handling for faults triggered in user
5596	 * space.  Kernel faults are handled more gracefully.
5597	 */
5598	if (flags & FAULT_FLAG_USER)
5599		mem_cgroup_enter_user_fault();
5600
5601	lru_gen_enter_fault(vma);
5602
5603	if (unlikely(is_vm_hugetlb_page(vma)))
5604		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5605	else
5606		ret = __handle_mm_fault(vma, address, flags);
5607
5608	lru_gen_exit_fault();
5609
5610	if (flags & FAULT_FLAG_USER) {
5611		mem_cgroup_exit_user_fault();
5612		/*
5613		 * The task may have entered a memcg OOM situation but
5614		 * if the allocation error was handled gracefully (no
5615		 * VM_FAULT_OOM), there is no need to kill anything.
5616		 * Just clean up the OOM state peacefully.
5617		 */
5618		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5619			mem_cgroup_oom_synchronize(false);
5620	}
5621out:
5622	mm_account_fault(mm, regs, address, flags, ret);
5623
5624	return ret;
5625}
5626EXPORT_SYMBOL_GPL(handle_mm_fault);
5627
5628#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5629#include <linux/extable.h>
5630
5631static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5632{
5633	if (likely(mmap_read_trylock(mm)))
5634		return true;
5635
5636	if (regs && !user_mode(regs)) {
5637		unsigned long ip = exception_ip(regs);
5638		if (!search_exception_tables(ip))
5639			return false;
5640	}
5641
5642	return !mmap_read_lock_killable(mm);
5643}
5644
5645static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5646{
5647	/*
5648	 * We don't have this operation yet.
5649	 *
5650	 * It should be easy enough to do: it's basically a
5651	 *    atomic_long_try_cmpxchg_acquire()
5652	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5653	 * it also needs the proper lockdep magic etc.
5654	 */
5655	return false;
5656}
5657
5658static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5659{
5660	mmap_read_unlock(mm);
5661	if (regs && !user_mode(regs)) {
5662		unsigned long ip = exception_ip(regs);
5663		if (!search_exception_tables(ip))
5664			return false;
5665	}
5666	return !mmap_write_lock_killable(mm);
5667}
5668
5669/*
5670 * Helper for page fault handling.
5671 *
5672 * This is kind of equivalend to "mmap_read_lock()" followed
5673 * by "find_extend_vma()", except it's a lot more careful about
5674 * the locking (and will drop the lock on failure).
5675 *
5676 * For example, if we have a kernel bug that causes a page
5677 * fault, we don't want to just use mmap_read_lock() to get
5678 * the mm lock, because that would deadlock if the bug were
5679 * to happen while we're holding the mm lock for writing.
5680 *
5681 * So this checks the exception tables on kernel faults in
5682 * order to only do this all for instructions that are actually
5683 * expected to fault.
5684 *
5685 * We can also actually take the mm lock for writing if we
5686 * need to extend the vma, which helps the VM layer a lot.
5687 */
5688struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5689			unsigned long addr, struct pt_regs *regs)
5690{
5691	struct vm_area_struct *vma;
5692
5693	if (!get_mmap_lock_carefully(mm, regs))
5694		return NULL;
5695
5696	vma = find_vma(mm, addr);
5697	if (likely(vma && (vma->vm_start <= addr)))
5698		return vma;
5699
5700	/*
5701	 * Well, dang. We might still be successful, but only
5702	 * if we can extend a vma to do so.
5703	 */
5704	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5705		mmap_read_unlock(mm);
5706		return NULL;
5707	}
5708
5709	/*
5710	 * We can try to upgrade the mmap lock atomically,
5711	 * in which case we can continue to use the vma
5712	 * we already looked up.
5713	 *
5714	 * Otherwise we'll have to drop the mmap lock and
5715	 * re-take it, and also look up the vma again,
5716	 * re-checking it.
5717	 */
5718	if (!mmap_upgrade_trylock(mm)) {
5719		if (!upgrade_mmap_lock_carefully(mm, regs))
5720			return NULL;
5721
5722		vma = find_vma(mm, addr);
5723		if (!vma)
5724			goto fail;
5725		if (vma->vm_start <= addr)
5726			goto success;
5727		if (!(vma->vm_flags & VM_GROWSDOWN))
5728			goto fail;
5729	}
5730
5731	if (expand_stack_locked(vma, addr))
5732		goto fail;
5733
5734success:
5735	mmap_write_downgrade(mm);
5736	return vma;
5737
5738fail:
5739	mmap_write_unlock(mm);
5740	return NULL;
5741}
5742#endif
5743
5744#ifdef CONFIG_PER_VMA_LOCK
5745/*
5746 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5747 * stable and not isolated. If the VMA is not found or is being modified the
5748 * function returns NULL.
5749 */
5750struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5751					  unsigned long address)
5752{
5753	MA_STATE(mas, &mm->mm_mt, address, address);
5754	struct vm_area_struct *vma;
5755
5756	rcu_read_lock();
5757retry:
5758	vma = mas_walk(&mas);
5759	if (!vma)
5760		goto inval;
5761
5762	if (!vma_start_read(vma))
5763		goto inval;
5764
5765	/*
5766	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5767	 * This check must happen after vma_start_read(); otherwise, a
5768	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5769	 * from its anon_vma.
5770	 */
5771	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5772		goto inval_end_read;
5773
5774	/* Check since vm_start/vm_end might change before we lock the VMA */
5775	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5776		goto inval_end_read;
5777
5778	/* Check if the VMA got isolated after we found it */
5779	if (vma->detached) {
5780		vma_end_read(vma);
5781		count_vm_vma_lock_event(VMA_LOCK_MISS);
5782		/* The area was replaced with another one */
5783		goto retry;
5784	}
5785
5786	rcu_read_unlock();
5787	return vma;
5788
5789inval_end_read:
5790	vma_end_read(vma);
5791inval:
5792	rcu_read_unlock();
5793	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5794	return NULL;
5795}
5796#endif /* CONFIG_PER_VMA_LOCK */
5797
5798#ifndef __PAGETABLE_P4D_FOLDED
5799/*
5800 * Allocate p4d page table.
5801 * We've already handled the fast-path in-line.
5802 */
5803int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5804{
5805	p4d_t *new = p4d_alloc_one(mm, address);
5806	if (!new)
5807		return -ENOMEM;
5808
 
 
5809	spin_lock(&mm->page_table_lock);
5810	if (pgd_present(*pgd)) {	/* Another has populated it */
5811		p4d_free(mm, new);
5812	} else {
5813		smp_wmb(); /* See comment in pmd_install() */
5814		pgd_populate(mm, pgd, new);
5815	}
5816	spin_unlock(&mm->page_table_lock);
5817	return 0;
5818}
5819#endif /* __PAGETABLE_P4D_FOLDED */
5820
5821#ifndef __PAGETABLE_PUD_FOLDED
5822/*
5823 * Allocate page upper directory.
5824 * We've already handled the fast-path in-line.
5825 */
5826int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5827{
5828	pud_t *new = pud_alloc_one(mm, address);
5829	if (!new)
5830		return -ENOMEM;
5831
 
 
5832	spin_lock(&mm->page_table_lock);
5833	if (!p4d_present(*p4d)) {
5834		mm_inc_nr_puds(mm);
5835		smp_wmb(); /* See comment in pmd_install() */
5836		p4d_populate(mm, p4d, new);
5837	} else	/* Another has populated it */
5838		pud_free(mm, new);
5839	spin_unlock(&mm->page_table_lock);
5840	return 0;
5841}
5842#endif /* __PAGETABLE_PUD_FOLDED */
5843
5844#ifndef __PAGETABLE_PMD_FOLDED
5845/*
5846 * Allocate page middle directory.
5847 * We've already handled the fast-path in-line.
5848 */
5849int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5850{
5851	spinlock_t *ptl;
5852	pmd_t *new = pmd_alloc_one(mm, address);
5853	if (!new)
5854		return -ENOMEM;
5855
 
 
5856	ptl = pud_lock(mm, pud);
5857	if (!pud_present(*pud)) {
5858		mm_inc_nr_pmds(mm);
5859		smp_wmb(); /* See comment in pmd_install() */
5860		pud_populate(mm, pud, new);
5861	} else {	/* Another has populated it */
5862		pmd_free(mm, new);
5863	}
5864	spin_unlock(ptl);
5865	return 0;
5866}
5867#endif /* __PAGETABLE_PMD_FOLDED */
5868
5869/**
5870 * follow_pte - look up PTE at a user virtual address
5871 * @mm: the mm_struct of the target address space
5872 * @address: user virtual address
5873 * @ptepp: location to store found PTE
5874 * @ptlp: location to store the lock for the PTE
5875 *
5876 * On a successful return, the pointer to the PTE is stored in @ptepp;
5877 * the corresponding lock is taken and its location is stored in @ptlp.
5878 * The contents of the PTE are only stable until @ptlp is released;
5879 * any further use, if any, must be protected against invalidation
5880 * with MMU notifiers.
5881 *
5882 * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5883 * should be taken for read.
5884 *
5885 * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5886 * it is not a good general-purpose API.
5887 *
5888 * Return: zero on success, -ve otherwise.
5889 */
5890int follow_pte(struct mm_struct *mm, unsigned long address,
5891	       pte_t **ptepp, spinlock_t **ptlp)
5892{
5893	pgd_t *pgd;
5894	p4d_t *p4d;
5895	pud_t *pud;
5896	pmd_t *pmd;
5897	pte_t *ptep;
5898
5899	pgd = pgd_offset(mm, address);
5900	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5901		goto out;
5902
5903	p4d = p4d_offset(pgd, address);
5904	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5905		goto out;
5906
5907	pud = pud_offset(p4d, address);
5908	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5909		goto out;
5910
5911	pmd = pmd_offset(pud, address);
5912	VM_BUG_ON(pmd_trans_huge(*pmd));
5913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5914	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5915	if (!ptep)
5916		goto out;
5917	if (!pte_present(ptep_get(ptep)))
5918		goto unlock;
5919	*ptepp = ptep;
5920	return 0;
5921unlock:
5922	pte_unmap_unlock(ptep, *ptlp);
 
 
5923out:
5924	return -EINVAL;
5925}
5926EXPORT_SYMBOL_GPL(follow_pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5927
5928/**
5929 * follow_pfn - look up PFN at a user virtual address
5930 * @vma: memory mapping
5931 * @address: user virtual address
5932 * @pfn: location to store found PFN
5933 *
5934 * Only IO mappings and raw PFN mappings are allowed.
5935 *
5936 * This function does not allow the caller to read the permissions
5937 * of the PTE.  Do not use it.
5938 *
5939 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5940 */
5941int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5942	unsigned long *pfn)
5943{
5944	int ret = -EINVAL;
5945	spinlock_t *ptl;
5946	pte_t *ptep;
5947
5948	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5949		return ret;
5950
5951	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5952	if (ret)
5953		return ret;
5954	*pfn = pte_pfn(ptep_get(ptep));
5955	pte_unmap_unlock(ptep, ptl);
5956	return 0;
5957}
5958EXPORT_SYMBOL(follow_pfn);
5959
5960#ifdef CONFIG_HAVE_IOREMAP_PROT
5961int follow_phys(struct vm_area_struct *vma,
5962		unsigned long address, unsigned int flags,
5963		unsigned long *prot, resource_size_t *phys)
5964{
5965	int ret = -EINVAL;
5966	pte_t *ptep, pte;
5967	spinlock_t *ptl;
5968
5969	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5970		goto out;
5971
5972	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5973		goto out;
5974	pte = ptep_get(ptep);
5975
5976	/* Never return PFNs of anon folios in COW mappings. */
5977	if (vm_normal_folio(vma, address, pte))
5978		goto unlock;
5979
5980	if ((flags & FOLL_WRITE) && !pte_write(pte))
5981		goto unlock;
5982
5983	*prot = pgprot_val(pte_pgprot(pte));
5984	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5985
5986	ret = 0;
5987unlock:
5988	pte_unmap_unlock(ptep, ptl);
5989out:
5990	return ret;
5991}
5992
5993/**
5994 * generic_access_phys - generic implementation for iomem mmap access
5995 * @vma: the vma to access
5996 * @addr: userspace address, not relative offset within @vma
5997 * @buf: buffer to read/write
5998 * @len: length of transfer
5999 * @write: set to FOLL_WRITE when writing, otherwise reading
6000 *
6001 * This is a generic implementation for &vm_operations_struct.access for an
6002 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6003 * not page based.
6004 */
6005int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6006			void *buf, int len, int write)
6007{
6008	resource_size_t phys_addr;
6009	unsigned long prot = 0;
6010	void __iomem *maddr;
6011	pte_t *ptep, pte;
6012	spinlock_t *ptl;
6013	int offset = offset_in_page(addr);
6014	int ret = -EINVAL;
6015
6016	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6017		return -EINVAL;
6018
6019retry:
6020	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
6021		return -EINVAL;
6022	pte = ptep_get(ptep);
6023	pte_unmap_unlock(ptep, ptl);
6024
6025	prot = pgprot_val(pte_pgprot(pte));
6026	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6027
6028	if ((write & FOLL_WRITE) && !pte_write(pte))
6029		return -EINVAL;
6030
6031	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6032	if (!maddr)
6033		return -ENOMEM;
6034
6035	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
6036		goto out_unmap;
6037
6038	if (!pte_same(pte, ptep_get(ptep))) {
6039		pte_unmap_unlock(ptep, ptl);
6040		iounmap(maddr);
6041
6042		goto retry;
6043	}
6044
6045	if (write)
6046		memcpy_toio(maddr + offset, buf, len);
6047	else
6048		memcpy_fromio(buf, maddr + offset, len);
6049	ret = len;
6050	pte_unmap_unlock(ptep, ptl);
6051out_unmap:
6052	iounmap(maddr);
6053
6054	return ret;
6055}
6056EXPORT_SYMBOL_GPL(generic_access_phys);
6057#endif
6058
6059/*
6060 * Access another process' address space as given in mm.
 
6061 */
6062static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6063			      void *buf, int len, unsigned int gup_flags)
6064{
 
6065	void *old_buf = buf;
6066	int write = gup_flags & FOLL_WRITE;
6067
6068	if (mmap_read_lock_killable(mm))
6069		return 0;
6070
6071	/* Untag the address before looking up the VMA */
6072	addr = untagged_addr_remote(mm, addr);
6073
6074	/* Avoid triggering the temporary warning in __get_user_pages */
6075	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6076		return 0;
6077
6078	/* ignore errors, just check how much was successfully transferred */
6079	while (len) {
6080		int bytes, offset;
6081		void *maddr;
6082		struct vm_area_struct *vma = NULL;
6083		struct page *page = get_user_page_vma_remote(mm, addr,
6084							     gup_flags, &vma);
6085
6086		if (IS_ERR(page)) {
6087			/* We might need to expand the stack to access it */
6088			vma = vma_lookup(mm, addr);
6089			if (!vma) {
6090				vma = expand_stack(mm, addr);
6091
6092				/* mmap_lock was dropped on failure */
6093				if (!vma)
6094					return buf - old_buf;
6095
6096				/* Try again if stack expansion worked */
6097				continue;
6098			}
6099
 
 
 
 
 
 
6100			/*
6101			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6102			 * we can access using slightly different code.
6103			 */
6104			bytes = 0;
6105#ifdef CONFIG_HAVE_IOREMAP_PROT
 
6106			if (vma->vm_ops && vma->vm_ops->access)
6107				bytes = vma->vm_ops->access(vma, addr, buf,
6108							    len, write);
 
 
 
6109#endif
6110			if (bytes <= 0)
6111				break;
6112		} else {
6113			bytes = len;
6114			offset = addr & (PAGE_SIZE-1);
6115			if (bytes > PAGE_SIZE-offset)
6116				bytes = PAGE_SIZE-offset;
6117
6118			maddr = kmap_local_page(page);
6119			if (write) {
6120				copy_to_user_page(vma, page, addr,
6121						  maddr + offset, buf, bytes);
6122				set_page_dirty_lock(page);
6123			} else {
6124				copy_from_user_page(vma, page, addr,
6125						    buf, maddr + offset, bytes);
6126			}
6127			unmap_and_put_page(page, maddr);
 
6128		}
6129		len -= bytes;
6130		buf += bytes;
6131		addr += bytes;
6132	}
6133	mmap_read_unlock(mm);
6134
6135	return buf - old_buf;
6136}
6137
6138/**
6139 * access_remote_vm - access another process' address space
6140 * @mm:		the mm_struct of the target address space
6141 * @addr:	start address to access
6142 * @buf:	source or destination buffer
6143 * @len:	number of bytes to transfer
6144 * @gup_flags:	flags modifying lookup behaviour
6145 *
6146 * The caller must hold a reference on @mm.
6147 *
6148 * Return: number of bytes copied from source to destination.
6149 */
6150int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6151		void *buf, int len, unsigned int gup_flags)
6152{
6153	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6154}
6155
6156/*
6157 * Access another process' address space.
6158 * Source/target buffer must be kernel space,
6159 * Do not walk the page table directly, use get_user_pages
6160 */
6161int access_process_vm(struct task_struct *tsk, unsigned long addr,
6162		void *buf, int len, unsigned int gup_flags)
6163{
6164	struct mm_struct *mm;
6165	int ret;
6166
6167	mm = get_task_mm(tsk);
6168	if (!mm)
6169		return 0;
6170
6171	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6172
6173	mmput(mm);
6174
6175	return ret;
6176}
6177EXPORT_SYMBOL_GPL(access_process_vm);
6178
6179/*
6180 * Print the name of a VMA.
6181 */
6182void print_vma_addr(char *prefix, unsigned long ip)
6183{
6184	struct mm_struct *mm = current->mm;
6185	struct vm_area_struct *vma;
6186
6187	/*
6188	 * we might be running from an atomic context so we cannot sleep
6189	 */
6190	if (!mmap_read_trylock(mm))
6191		return;
6192
6193	vma = find_vma(mm, ip);
6194	if (vma && vma->vm_file) {
6195		struct file *f = vma->vm_file;
6196		char *buf = (char *)__get_free_page(GFP_NOWAIT);
6197		if (buf) {
6198			char *p;
6199
6200			p = file_path(f, buf, PAGE_SIZE);
6201			if (IS_ERR(p))
6202				p = "?";
6203			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
6204					vma->vm_start,
6205					vma->vm_end - vma->vm_start);
6206			free_page((unsigned long)buf);
6207		}
6208	}
6209	mmap_read_unlock(mm);
6210}
6211
6212#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6213void __might_fault(const char *file, int line)
6214{
 
 
 
 
 
 
 
 
6215	if (pagefault_disabled())
6216		return;
6217	__might_sleep(file, line);
6218#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6219	if (current->mm)
6220		might_lock_read(&current->mm->mmap_lock);
6221#endif
6222}
6223EXPORT_SYMBOL(__might_fault);
6224#endif
6225
6226#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6227/*
6228 * Process all subpages of the specified huge page with the specified
6229 * operation.  The target subpage will be processed last to keep its
6230 * cache lines hot.
6231 */
6232static inline int process_huge_page(
6233	unsigned long addr_hint, unsigned int pages_per_huge_page,
6234	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6235	void *arg)
6236{
6237	int i, n, base, l, ret;
6238	unsigned long addr = addr_hint &
6239		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6240
6241	/* Process target subpage last to keep its cache lines hot */
6242	might_sleep();
6243	n = (addr_hint - addr) / PAGE_SIZE;
6244	if (2 * n <= pages_per_huge_page) {
6245		/* If target subpage in first half of huge page */
6246		base = 0;
6247		l = n;
6248		/* Process subpages at the end of huge page */
6249		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6250			cond_resched();
6251			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6252			if (ret)
6253				return ret;
6254		}
6255	} else {
6256		/* If target subpage in second half of huge page */
6257		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6258		l = pages_per_huge_page - n;
6259		/* Process subpages at the begin of huge page */
6260		for (i = 0; i < base; i++) {
6261			cond_resched();
6262			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6263			if (ret)
6264				return ret;
6265		}
6266	}
6267	/*
6268	 * Process remaining subpages in left-right-left-right pattern
6269	 * towards the target subpage
6270	 */
6271	for (i = 0; i < l; i++) {
6272		int left_idx = base + i;
6273		int right_idx = base + 2 * l - 1 - i;
6274
6275		cond_resched();
6276		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6277		if (ret)
6278			return ret;
6279		cond_resched();
6280		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6281		if (ret)
6282			return ret;
6283	}
6284	return 0;
6285}
6286
6287static void clear_gigantic_page(struct page *page,
6288				unsigned long addr,
6289				unsigned int pages_per_huge_page)
6290{
6291	int i;
6292	struct page *p;
6293
6294	might_sleep();
6295	for (i = 0; i < pages_per_huge_page; i++) {
6296		p = nth_page(page, i);
6297		cond_resched();
6298		clear_user_highpage(p, addr + i * PAGE_SIZE);
6299	}
6300}
6301
6302static int clear_subpage(unsigned long addr, int idx, void *arg)
6303{
6304	struct page *page = arg;
6305
6306	clear_user_highpage(nth_page(page, idx), addr);
6307	return 0;
6308}
6309
6310void clear_huge_page(struct page *page,
6311		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6312{
6313	unsigned long addr = addr_hint &
6314		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6315
6316	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6317		clear_gigantic_page(page, addr, pages_per_huge_page);
6318		return;
6319	}
6320
6321	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6322}
6323
6324static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6325				     unsigned long addr,
6326				     struct vm_area_struct *vma,
6327				     unsigned int pages_per_huge_page)
6328{
6329	int i;
6330	struct page *dst_page;
6331	struct page *src_page;
6332
6333	for (i = 0; i < pages_per_huge_page; i++) {
6334		dst_page = folio_page(dst, i);
6335		src_page = folio_page(src, i);
6336
6337		cond_resched();
6338		if (copy_mc_user_highpage(dst_page, src_page,
6339					  addr + i*PAGE_SIZE, vma)) {
6340			memory_failure_queue(page_to_pfn(src_page), 0);
6341			return -EHWPOISON;
6342		}
6343	}
6344	return 0;
6345}
6346
6347struct copy_subpage_arg {
6348	struct page *dst;
6349	struct page *src;
6350	struct vm_area_struct *vma;
6351};
6352
6353static int copy_subpage(unsigned long addr, int idx, void *arg)
6354{
6355	struct copy_subpage_arg *copy_arg = arg;
6356	struct page *dst = nth_page(copy_arg->dst, idx);
6357	struct page *src = nth_page(copy_arg->src, idx);
6358
6359	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6360		memory_failure_queue(page_to_pfn(src), 0);
6361		return -EHWPOISON;
6362	}
6363	return 0;
6364}
6365
6366int copy_user_large_folio(struct folio *dst, struct folio *src,
6367			  unsigned long addr_hint, struct vm_area_struct *vma)
 
6368{
6369	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6370	unsigned long addr = addr_hint &
6371		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6372	struct copy_subpage_arg arg = {
6373		.dst = &dst->page,
6374		.src = &src->page,
6375		.vma = vma,
6376	};
6377
6378	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6379		return copy_user_gigantic_page(dst, src, addr, vma,
6380					       pages_per_huge_page);
 
 
6381
6382	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6383}
6384
6385long copy_folio_from_user(struct folio *dst_folio,
6386			   const void __user *usr_src,
6387			   bool allow_pagefault)
 
6388{
6389	void *kaddr;
 
6390	unsigned long i, rc = 0;
6391	unsigned int nr_pages = folio_nr_pages(dst_folio);
6392	unsigned long ret_val = nr_pages * PAGE_SIZE;
6393	struct page *subpage;
6394
6395	for (i = 0; i < nr_pages; i++) {
6396		subpage = folio_page(dst_folio, i);
6397		kaddr = kmap_local_page(subpage);
6398		if (!allow_pagefault)
6399			pagefault_disable();
6400		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6401		if (!allow_pagefault)
6402			pagefault_enable();
6403		kunmap_local(kaddr);
 
6404
6405		ret_val -= (PAGE_SIZE - rc);
6406		if (rc)
6407			break;
6408
6409		flush_dcache_page(subpage);
6410
6411		cond_resched();
6412	}
6413	return ret_val;
6414}
6415#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6416
6417#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6418
6419static struct kmem_cache *page_ptl_cachep;
6420
6421void __init ptlock_cache_init(void)
6422{
6423	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6424			SLAB_PANIC, NULL);
6425}
6426
6427bool ptlock_alloc(struct ptdesc *ptdesc)
6428{
6429	spinlock_t *ptl;
6430
6431	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6432	if (!ptl)
6433		return false;
6434	ptdesc->ptl = ptl;
6435	return true;
6436}
6437
6438void ptlock_free(struct ptdesc *ptdesc)
6439{
6440	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6441}
6442#endif