Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/readpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 * Copyright (C) 2015, Google, Inc.
  7 *
  8 * This was originally taken from fs/mpage.c
  9 *
 10 * The ext4_mpage_readpages() function here is intended to
 11 * replace mpage_readahead() in the general case, not just for
 12 * encrypted files.  It has some limitations (see below), where it
 13 * will fall back to read_block_full_page(), but these limitations
 14 * should only be hit when page_size != block_size.
 15 *
 16 * This will allow us to attach a callback function to support ext4
 17 * encryption.
 18 *
 19 * If anything unusual happens, such as:
 20 *
 21 * - encountering a page which has buffers
 22 * - encountering a page which has a non-hole after a hole
 23 * - encountering a page with non-contiguous blocks
 24 *
 25 * then this code just gives up and calls the buffer_head-based read function.
 26 * It does handle a page which has holes at the end - that is a common case:
 27 * the end-of-file on blocksize < PAGE_SIZE setups.
 28 *
 29 */
 30
 31#include <linux/kernel.h>
 32#include <linux/export.h>
 33#include <linux/mm.h>
 34#include <linux/kdev_t.h>
 35#include <linux/gfp.h>
 36#include <linux/bio.h>
 37#include <linux/fs.h>
 38#include <linux/buffer_head.h>
 39#include <linux/blkdev.h>
 40#include <linux/highmem.h>
 41#include <linux/prefetch.h>
 42#include <linux/mpage.h>
 43#include <linux/writeback.h>
 44#include <linux/backing-dev.h>
 45#include <linux/pagevec.h>
 46#include <linux/cleancache.h>
 47
 48#include "ext4.h"
 49
 50#define NUM_PREALLOC_POST_READ_CTXS	128
 51
 52static struct kmem_cache *bio_post_read_ctx_cache;
 53static mempool_t *bio_post_read_ctx_pool;
 54
 55/* postprocessing steps for read bios */
 56enum bio_post_read_step {
 57	STEP_INITIAL = 0,
 58	STEP_DECRYPT,
 59	STEP_VERITY,
 60	STEP_MAX,
 61};
 62
 63struct bio_post_read_ctx {
 64	struct bio *bio;
 65	struct work_struct work;
 66	unsigned int cur_step;
 67	unsigned int enabled_steps;
 68};
 69
 70static void __read_end_io(struct bio *bio)
 71{
 72	struct page *page;
 73	struct bio_vec *bv;
 74	struct bvec_iter_all iter_all;
 75
 76	bio_for_each_segment_all(bv, bio, iter_all) {
 77		page = bv->bv_page;
 78
 79		/* PG_error was set if any post_read step failed */
 80		if (bio->bi_status || PageError(page)) {
 81			ClearPageUptodate(page);
 82			/* will re-read again later */
 83			ClearPageError(page);
 84		} else {
 85			SetPageUptodate(page);
 86		}
 87		unlock_page(page);
 88	}
 89	if (bio->bi_private)
 90		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
 91	bio_put(bio);
 92}
 93
 94static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
 95
 96static void decrypt_work(struct work_struct *work)
 97{
 98	struct bio_post_read_ctx *ctx =
 99		container_of(work, struct bio_post_read_ctx, work);
 
100
101	fscrypt_decrypt_bio(ctx->bio);
102
103	bio_post_read_processing(ctx);
 
104}
105
106static void verity_work(struct work_struct *work)
107{
108	struct bio_post_read_ctx *ctx =
109		container_of(work, struct bio_post_read_ctx, work);
110	struct bio *bio = ctx->bio;
111
112	/*
113	 * fsverity_verify_bio() may call readpages() again, and although verity
114	 * will be disabled for that, decryption may still be needed, causing
115	 * another bio_post_read_ctx to be allocated.  So to guarantee that
116	 * mempool_alloc() never deadlocks we must free the current ctx first.
117	 * This is safe because verity is the last post-read step.
118	 */
119	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
120	mempool_free(ctx, bio_post_read_ctx_pool);
121	bio->bi_private = NULL;
122
123	fsverity_verify_bio(bio);
124
125	__read_end_io(bio);
126}
127
128static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
129{
130	/*
131	 * We use different work queues for decryption and for verity because
132	 * verity may require reading metadata pages that need decryption, and
133	 * we shouldn't recurse to the same workqueue.
134	 */
135	switch (++ctx->cur_step) {
136	case STEP_DECRYPT:
137		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
138			INIT_WORK(&ctx->work, decrypt_work);
139			fscrypt_enqueue_decrypt_work(&ctx->work);
140			return;
141		}
142		ctx->cur_step++;
143		fallthrough;
144	case STEP_VERITY:
145		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
146			INIT_WORK(&ctx->work, verity_work);
147			fsverity_enqueue_verify_work(&ctx->work);
148			return;
149		}
150		ctx->cur_step++;
151		fallthrough;
152	default:
153		__read_end_io(ctx->bio);
154	}
155}
156
157static bool bio_post_read_required(struct bio *bio)
158{
159	return bio->bi_private && !bio->bi_status;
160}
161
162/*
163 * I/O completion handler for multipage BIOs.
164 *
165 * The mpage code never puts partial pages into a BIO (except for end-of-file).
166 * If a page does not map to a contiguous run of blocks then it simply falls
167 * back to block_read_full_page().
168 *
169 * Why is this?  If a page's completion depends on a number of different BIOs
170 * which can complete in any order (or at the same time) then determining the
171 * status of that page is hard.  See end_buffer_async_read() for the details.
172 * There is no point in duplicating all that complexity.
173 */
174static void mpage_end_io(struct bio *bio)
175{
176	if (bio_post_read_required(bio)) {
177		struct bio_post_read_ctx *ctx = bio->bi_private;
178
179		ctx->cur_step = STEP_INITIAL;
180		bio_post_read_processing(ctx);
181		return;
182	}
183	__read_end_io(bio);
184}
185
186static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
187{
188	return fsverity_active(inode) &&
189	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
190}
191
192static void ext4_set_bio_post_read_ctx(struct bio *bio,
193				       const struct inode *inode,
194				       pgoff_t first_idx)
195{
196	unsigned int post_read_steps = 0;
197
198	if (fscrypt_inode_uses_fs_layer_crypto(inode))
199		post_read_steps |= 1 << STEP_DECRYPT;
200
201	if (ext4_need_verity(inode, first_idx))
202		post_read_steps |= 1 << STEP_VERITY;
203
204	if (post_read_steps) {
205		/* Due to the mempool, this never fails. */
206		struct bio_post_read_ctx *ctx =
207			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
208
209		ctx->bio = bio;
210		ctx->enabled_steps = post_read_steps;
211		bio->bi_private = ctx;
212	}
213}
214
215static inline loff_t ext4_readpage_limit(struct inode *inode)
216{
217	if (IS_ENABLED(CONFIG_FS_VERITY) &&
218	    (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
219		return inode->i_sb->s_maxbytes;
220
221	return i_size_read(inode);
222}
223
224int ext4_mpage_readpages(struct inode *inode,
225		struct readahead_control *rac, struct page *page)
226{
227	struct bio *bio = NULL;
228	sector_t last_block_in_bio = 0;
229
230	const unsigned blkbits = inode->i_blkbits;
231	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
232	const unsigned blocksize = 1 << blkbits;
233	sector_t next_block;
234	sector_t block_in_file;
235	sector_t last_block;
236	sector_t last_block_in_file;
237	sector_t blocks[MAX_BUF_PER_PAGE];
238	unsigned page_block;
239	struct block_device *bdev = inode->i_sb->s_bdev;
240	int length;
241	unsigned relative_block = 0;
242	struct ext4_map_blocks map;
243	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
244
245	map.m_pblk = 0;
246	map.m_lblk = 0;
247	map.m_len = 0;
248	map.m_flags = 0;
249
250	for (; nr_pages; nr_pages--) {
251		int fully_mapped = 1;
252		unsigned first_hole = blocks_per_page;
253
254		if (rac) {
255			page = readahead_page(rac);
256			prefetchw(&page->flags);
257		}
258
259		if (page_has_buffers(page))
260			goto confused;
261
262		block_in_file = next_block =
263			(sector_t)page->index << (PAGE_SHIFT - blkbits);
264		last_block = block_in_file + nr_pages * blocks_per_page;
265		last_block_in_file = (ext4_readpage_limit(inode) +
266				      blocksize - 1) >> blkbits;
267		if (last_block > last_block_in_file)
268			last_block = last_block_in_file;
269		page_block = 0;
270
271		/*
272		 * Map blocks using the previous result first.
273		 */
274		if ((map.m_flags & EXT4_MAP_MAPPED) &&
275		    block_in_file > map.m_lblk &&
276		    block_in_file < (map.m_lblk + map.m_len)) {
277			unsigned map_offset = block_in_file - map.m_lblk;
278			unsigned last = map.m_len - map_offset;
279
280			for (relative_block = 0; ; relative_block++) {
281				if (relative_block == last) {
282					/* needed? */
283					map.m_flags &= ~EXT4_MAP_MAPPED;
284					break;
285				}
286				if (page_block == blocks_per_page)
287					break;
288				blocks[page_block] = map.m_pblk + map_offset +
289					relative_block;
290				page_block++;
291				block_in_file++;
292			}
293		}
294
295		/*
296		 * Then do more ext4_map_blocks() calls until we are
297		 * done with this page.
298		 */
299		while (page_block < blocks_per_page) {
300			if (block_in_file < last_block) {
301				map.m_lblk = block_in_file;
302				map.m_len = last_block - block_in_file;
303
304				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
305				set_error_page:
306					SetPageError(page);
307					zero_user_segment(page, 0,
308							  PAGE_SIZE);
309					unlock_page(page);
310					goto next_page;
311				}
312			}
313			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
314				fully_mapped = 0;
315				if (first_hole == blocks_per_page)
316					first_hole = page_block;
317				page_block++;
318				block_in_file++;
319				continue;
320			}
321			if (first_hole != blocks_per_page)
322				goto confused;		/* hole -> non-hole */
323
324			/* Contiguous blocks? */
325			if (page_block && blocks[page_block-1] != map.m_pblk-1)
326				goto confused;
327			for (relative_block = 0; ; relative_block++) {
328				if (relative_block == map.m_len) {
329					/* needed? */
330					map.m_flags &= ~EXT4_MAP_MAPPED;
331					break;
332				} else if (page_block == blocks_per_page)
333					break;
334				blocks[page_block] = map.m_pblk+relative_block;
335				page_block++;
336				block_in_file++;
337			}
338		}
339		if (first_hole != blocks_per_page) {
340			zero_user_segment(page, first_hole << blkbits,
341					  PAGE_SIZE);
342			if (first_hole == 0) {
343				if (ext4_need_verity(inode, page->index) &&
344				    !fsverity_verify_page(page))
345					goto set_error_page;
346				SetPageUptodate(page);
347				unlock_page(page);
348				goto next_page;
349			}
350		} else if (fully_mapped) {
351			SetPageMappedToDisk(page);
352		}
353		if (fully_mapped && blocks_per_page == 1 &&
354		    !PageUptodate(page) && cleancache_get_page(page) == 0) {
355			SetPageUptodate(page);
356			goto confused;
357		}
358
359		/*
360		 * This page will go to BIO.  Do we need to send this
361		 * BIO off first?
362		 */
363		if (bio && (last_block_in_bio != blocks[0] - 1 ||
364			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
365		submit_and_realloc:
366			submit_bio(bio);
367			bio = NULL;
368		}
369		if (bio == NULL) {
370			/*
371			 * bio_alloc will _always_ be able to allocate a bio if
372			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
373			 */
374			bio = bio_alloc(GFP_KERNEL,
375				min_t(int, nr_pages, BIO_MAX_PAGES));
376			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
377						  GFP_KERNEL);
378			ext4_set_bio_post_read_ctx(bio, inode, page->index);
379			bio_set_dev(bio, bdev);
380			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
381			bio->bi_end_io = mpage_end_io;
382			bio_set_op_attrs(bio, REQ_OP_READ,
383						rac ? REQ_RAHEAD : 0);
384		}
385
386		length = first_hole << blkbits;
387		if (bio_add_page(bio, page, length, 0) < length)
388			goto submit_and_realloc;
389
390		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
391		     (relative_block == map.m_len)) ||
392		    (first_hole != blocks_per_page)) {
393			submit_bio(bio);
394			bio = NULL;
395		} else
396			last_block_in_bio = blocks[blocks_per_page - 1];
397		goto next_page;
398	confused:
399		if (bio) {
400			submit_bio(bio);
401			bio = NULL;
402		}
403		if (!PageUptodate(page))
404			block_read_full_page(page, ext4_get_block);
405		else
406			unlock_page(page);
407	next_page:
408		if (rac)
409			put_page(page);
410	}
411	if (bio)
412		submit_bio(bio);
413	return 0;
414}
415
416int __init ext4_init_post_read_processing(void)
417{
418	bio_post_read_ctx_cache =
419		kmem_cache_create("ext4_bio_post_read_ctx",
420				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
421	if (!bio_post_read_ctx_cache)
422		goto fail;
423	bio_post_read_ctx_pool =
424		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
425					 bio_post_read_ctx_cache);
426	if (!bio_post_read_ctx_pool)
427		goto fail_free_cache;
428	return 0;
429
430fail_free_cache:
431	kmem_cache_destroy(bio_post_read_ctx_cache);
432fail:
433	return -ENOMEM;
434}
435
436void ext4_exit_post_read_processing(void)
437{
438	mempool_destroy(bio_post_read_ctx_pool);
439	kmem_cache_destroy(bio_post_read_ctx_cache);
440}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/readpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 * Copyright (C) 2015, Google, Inc.
  7 *
  8 * This was originally taken from fs/mpage.c
  9 *
 10 * The ext4_mpage_readpages() function here is intended to
 11 * replace mpage_readahead() in the general case, not just for
 12 * encrypted files.  It has some limitations (see below), where it
 13 * will fall back to read_block_full_page(), but these limitations
 14 * should only be hit when page_size != block_size.
 15 *
 16 * This will allow us to attach a callback function to support ext4
 17 * encryption.
 18 *
 19 * If anything unusual happens, such as:
 20 *
 21 * - encountering a page which has buffers
 22 * - encountering a page which has a non-hole after a hole
 23 * - encountering a page with non-contiguous blocks
 24 *
 25 * then this code just gives up and calls the buffer_head-based read function.
 26 * It does handle a page which has holes at the end - that is a common case:
 27 * the end-of-file on blocksize < PAGE_SIZE setups.
 28 *
 29 */
 30
 31#include <linux/kernel.h>
 32#include <linux/export.h>
 33#include <linux/mm.h>
 34#include <linux/kdev_t.h>
 35#include <linux/gfp.h>
 36#include <linux/bio.h>
 37#include <linux/fs.h>
 38#include <linux/buffer_head.h>
 39#include <linux/blkdev.h>
 40#include <linux/highmem.h>
 41#include <linux/prefetch.h>
 42#include <linux/mpage.h>
 43#include <linux/writeback.h>
 44#include <linux/backing-dev.h>
 45#include <linux/pagevec.h>
 
 46
 47#include "ext4.h"
 48
 49#define NUM_PREALLOC_POST_READ_CTXS	128
 50
 51static struct kmem_cache *bio_post_read_ctx_cache;
 52static mempool_t *bio_post_read_ctx_pool;
 53
 54/* postprocessing steps for read bios */
 55enum bio_post_read_step {
 56	STEP_INITIAL = 0,
 57	STEP_DECRYPT,
 58	STEP_VERITY,
 59	STEP_MAX,
 60};
 61
 62struct bio_post_read_ctx {
 63	struct bio *bio;
 64	struct work_struct work;
 65	unsigned int cur_step;
 66	unsigned int enabled_steps;
 67};
 68
 69static void __read_end_io(struct bio *bio)
 70{
 71	struct folio_iter fi;
 72
 73	bio_for_each_folio_all(fi, bio)
 74		folio_end_read(fi.folio, bio->bi_status == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 75	if (bio->bi_private)
 76		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
 77	bio_put(bio);
 78}
 79
 80static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
 81
 82static void decrypt_work(struct work_struct *work)
 83{
 84	struct bio_post_read_ctx *ctx =
 85		container_of(work, struct bio_post_read_ctx, work);
 86	struct bio *bio = ctx->bio;
 87
 88	if (fscrypt_decrypt_bio(bio))
 89		bio_post_read_processing(ctx);
 90	else
 91		__read_end_io(bio);
 92}
 93
 94static void verity_work(struct work_struct *work)
 95{
 96	struct bio_post_read_ctx *ctx =
 97		container_of(work, struct bio_post_read_ctx, work);
 98	struct bio *bio = ctx->bio;
 99
100	/*
101	 * fsverity_verify_bio() may call readahead() again, and although verity
102	 * will be disabled for that, decryption may still be needed, causing
103	 * another bio_post_read_ctx to be allocated.  So to guarantee that
104	 * mempool_alloc() never deadlocks we must free the current ctx first.
105	 * This is safe because verity is the last post-read step.
106	 */
107	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
108	mempool_free(ctx, bio_post_read_ctx_pool);
109	bio->bi_private = NULL;
110
111	fsverity_verify_bio(bio);
112
113	__read_end_io(bio);
114}
115
116static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
117{
118	/*
119	 * We use different work queues for decryption and for verity because
120	 * verity may require reading metadata pages that need decryption, and
121	 * we shouldn't recurse to the same workqueue.
122	 */
123	switch (++ctx->cur_step) {
124	case STEP_DECRYPT:
125		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
126			INIT_WORK(&ctx->work, decrypt_work);
127			fscrypt_enqueue_decrypt_work(&ctx->work);
128			return;
129		}
130		ctx->cur_step++;
131		fallthrough;
132	case STEP_VERITY:
133		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
134			INIT_WORK(&ctx->work, verity_work);
135			fsverity_enqueue_verify_work(&ctx->work);
136			return;
137		}
138		ctx->cur_step++;
139		fallthrough;
140	default:
141		__read_end_io(ctx->bio);
142	}
143}
144
145static bool bio_post_read_required(struct bio *bio)
146{
147	return bio->bi_private && !bio->bi_status;
148}
149
150/*
151 * I/O completion handler for multipage BIOs.
152 *
153 * The mpage code never puts partial pages into a BIO (except for end-of-file).
154 * If a page does not map to a contiguous run of blocks then it simply falls
155 * back to block_read_full_folio().
156 *
157 * Why is this?  If a page's completion depends on a number of different BIOs
158 * which can complete in any order (or at the same time) then determining the
159 * status of that page is hard.  See end_buffer_async_read() for the details.
160 * There is no point in duplicating all that complexity.
161 */
162static void mpage_end_io(struct bio *bio)
163{
164	if (bio_post_read_required(bio)) {
165		struct bio_post_read_ctx *ctx = bio->bi_private;
166
167		ctx->cur_step = STEP_INITIAL;
168		bio_post_read_processing(ctx);
169		return;
170	}
171	__read_end_io(bio);
172}
173
174static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
175{
176	return fsverity_active(inode) &&
177	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
178}
179
180static void ext4_set_bio_post_read_ctx(struct bio *bio,
181				       const struct inode *inode,
182				       pgoff_t first_idx)
183{
184	unsigned int post_read_steps = 0;
185
186	if (fscrypt_inode_uses_fs_layer_crypto(inode))
187		post_read_steps |= 1 << STEP_DECRYPT;
188
189	if (ext4_need_verity(inode, first_idx))
190		post_read_steps |= 1 << STEP_VERITY;
191
192	if (post_read_steps) {
193		/* Due to the mempool, this never fails. */
194		struct bio_post_read_ctx *ctx =
195			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
196
197		ctx->bio = bio;
198		ctx->enabled_steps = post_read_steps;
199		bio->bi_private = ctx;
200	}
201}
202
203static inline loff_t ext4_readpage_limit(struct inode *inode)
204{
205	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
 
206		return inode->i_sb->s_maxbytes;
207
208	return i_size_read(inode);
209}
210
211int ext4_mpage_readpages(struct inode *inode,
212		struct readahead_control *rac, struct folio *folio)
213{
214	struct bio *bio = NULL;
215	sector_t last_block_in_bio = 0;
216
217	const unsigned blkbits = inode->i_blkbits;
218	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
219	const unsigned blocksize = 1 << blkbits;
220	sector_t next_block;
221	sector_t block_in_file;
222	sector_t last_block;
223	sector_t last_block_in_file;
224	sector_t blocks[MAX_BUF_PER_PAGE];
225	unsigned page_block;
226	struct block_device *bdev = inode->i_sb->s_bdev;
227	int length;
228	unsigned relative_block = 0;
229	struct ext4_map_blocks map;
230	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
231
232	map.m_pblk = 0;
233	map.m_lblk = 0;
234	map.m_len = 0;
235	map.m_flags = 0;
236
237	for (; nr_pages; nr_pages--) {
238		int fully_mapped = 1;
239		unsigned first_hole = blocks_per_page;
240
241		if (rac)
242			folio = readahead_folio(rac);
243		prefetchw(&folio->flags);
 
244
245		if (folio_buffers(folio))
246			goto confused;
247
248		block_in_file = next_block =
249			(sector_t)folio->index << (PAGE_SHIFT - blkbits);
250		last_block = block_in_file + nr_pages * blocks_per_page;
251		last_block_in_file = (ext4_readpage_limit(inode) +
252				      blocksize - 1) >> blkbits;
253		if (last_block > last_block_in_file)
254			last_block = last_block_in_file;
255		page_block = 0;
256
257		/*
258		 * Map blocks using the previous result first.
259		 */
260		if ((map.m_flags & EXT4_MAP_MAPPED) &&
261		    block_in_file > map.m_lblk &&
262		    block_in_file < (map.m_lblk + map.m_len)) {
263			unsigned map_offset = block_in_file - map.m_lblk;
264			unsigned last = map.m_len - map_offset;
265
266			for (relative_block = 0; ; relative_block++) {
267				if (relative_block == last) {
268					/* needed? */
269					map.m_flags &= ~EXT4_MAP_MAPPED;
270					break;
271				}
272				if (page_block == blocks_per_page)
273					break;
274				blocks[page_block] = map.m_pblk + map_offset +
275					relative_block;
276				page_block++;
277				block_in_file++;
278			}
279		}
280
281		/*
282		 * Then do more ext4_map_blocks() calls until we are
283		 * done with this folio.
284		 */
285		while (page_block < blocks_per_page) {
286			if (block_in_file < last_block) {
287				map.m_lblk = block_in_file;
288				map.m_len = last_block - block_in_file;
289
290				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
291				set_error_page:
292					folio_set_error(folio);
293					folio_zero_segment(folio, 0,
294							  folio_size(folio));
295					folio_unlock(folio);
296					goto next_page;
297				}
298			}
299			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
300				fully_mapped = 0;
301				if (first_hole == blocks_per_page)
302					first_hole = page_block;
303				page_block++;
304				block_in_file++;
305				continue;
306			}
307			if (first_hole != blocks_per_page)
308				goto confused;		/* hole -> non-hole */
309
310			/* Contiguous blocks? */
311			if (page_block && blocks[page_block-1] != map.m_pblk-1)
312				goto confused;
313			for (relative_block = 0; ; relative_block++) {
314				if (relative_block == map.m_len) {
315					/* needed? */
316					map.m_flags &= ~EXT4_MAP_MAPPED;
317					break;
318				} else if (page_block == blocks_per_page)
319					break;
320				blocks[page_block] = map.m_pblk+relative_block;
321				page_block++;
322				block_in_file++;
323			}
324		}
325		if (first_hole != blocks_per_page) {
326			folio_zero_segment(folio, first_hole << blkbits,
327					  folio_size(folio));
328			if (first_hole == 0) {
329				if (ext4_need_verity(inode, folio->index) &&
330				    !fsverity_verify_folio(folio))
331					goto set_error_page;
332				folio_end_read(folio, true);
333				continue;
 
334			}
335		} else if (fully_mapped) {
336			folio_set_mappedtodisk(folio);
 
 
 
 
 
337		}
338
339		/*
340		 * This folio will go to BIO.  Do we need to send this
341		 * BIO off first?
342		 */
343		if (bio && (last_block_in_bio != blocks[0] - 1 ||
344			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
345		submit_and_realloc:
346			submit_bio(bio);
347			bio = NULL;
348		}
349		if (bio == NULL) {
350			/*
351			 * bio_alloc will _always_ be able to allocate a bio if
352			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
353			 */
354			bio = bio_alloc(bdev, bio_max_segs(nr_pages),
355					REQ_OP_READ, GFP_KERNEL);
356			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
357						  GFP_KERNEL);
358			ext4_set_bio_post_read_ctx(bio, inode, folio->index);
 
359			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
360			bio->bi_end_io = mpage_end_io;
361			if (rac)
362				bio->bi_opf |= REQ_RAHEAD;
363		}
364
365		length = first_hole << blkbits;
366		if (!bio_add_folio(bio, folio, length, 0))
367			goto submit_and_realloc;
368
369		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
370		     (relative_block == map.m_len)) ||
371		    (first_hole != blocks_per_page)) {
372			submit_bio(bio);
373			bio = NULL;
374		} else
375			last_block_in_bio = blocks[blocks_per_page - 1];
376		continue;
377	confused:
378		if (bio) {
379			submit_bio(bio);
380			bio = NULL;
381		}
382		if (!folio_test_uptodate(folio))
383			block_read_full_folio(folio, ext4_get_block);
384		else
385			folio_unlock(folio);
386next_page:
387		; /* A label shall be followed by a statement until C23 */
 
388	}
389	if (bio)
390		submit_bio(bio);
391	return 0;
392}
393
394int __init ext4_init_post_read_processing(void)
395{
396	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
397
 
398	if (!bio_post_read_ctx_cache)
399		goto fail;
400	bio_post_read_ctx_pool =
401		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
402					 bio_post_read_ctx_cache);
403	if (!bio_post_read_ctx_pool)
404		goto fail_free_cache;
405	return 0;
406
407fail_free_cache:
408	kmem_cache_destroy(bio_post_read_ctx_cache);
409fail:
410	return -ENOMEM;
411}
412
413void ext4_exit_post_read_processing(void)
414{
415	mempool_destroy(bio_post_read_ctx_pool);
416	kmem_cache_destroy(bio_post_read_ctx_cache);
417}