Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016-present, Facebook, Inc.
4 * All rights reserved.
5 *
6 */
7
8#include <linux/bio.h>
9#include <linux/bitmap.h>
10#include <linux/err.h>
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/mm.h>
14#include <linux/sched/mm.h>
15#include <linux/pagemap.h>
16#include <linux/refcount.h>
17#include <linux/sched.h>
18#include <linux/slab.h>
19#include <linux/zstd.h>
20#include "misc.h"
21#include "compression.h"
22#include "ctree.h"
23
24#define ZSTD_BTRFS_MAX_WINDOWLOG 17
25#define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
26#define ZSTD_BTRFS_DEFAULT_LEVEL 3
27#define ZSTD_BTRFS_MAX_LEVEL 15
28/* 307s to avoid pathologically clashing with transaction commit */
29#define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
30
31static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level,
32 size_t src_len)
33{
34 ZSTD_parameters params = ZSTD_getParams(level, src_len, 0);
35
36 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
37 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
38 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
39 return params;
40}
41
42struct workspace {
43 void *mem;
44 size_t size;
45 char *buf;
46 unsigned int level;
47 unsigned int req_level;
48 unsigned long last_used; /* jiffies */
49 struct list_head list;
50 struct list_head lru_list;
51 ZSTD_inBuffer in_buf;
52 ZSTD_outBuffer out_buf;
53};
54
55/*
56 * Zstd Workspace Management
57 *
58 * Zstd workspaces have different memory requirements depending on the level.
59 * The zstd workspaces are managed by having individual lists for each level
60 * and a global lru. Forward progress is maintained by protecting a max level
61 * workspace.
62 *
63 * Getting a workspace is done by using the bitmap to identify the levels that
64 * have available workspaces and scans up. This lets us recycle higher level
65 * workspaces because of the monotonic memory guarantee. A workspace's
66 * last_used is only updated if it is being used by the corresponding memory
67 * level. Putting a workspace involves adding it back to the appropriate places
68 * and adding it back to the lru if necessary.
69 *
70 * A timer is used to reclaim workspaces if they have not been used for
71 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around.
72 * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
73 */
74
75struct zstd_workspace_manager {
76 const struct btrfs_compress_op *ops;
77 spinlock_t lock;
78 struct list_head lru_list;
79 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
80 unsigned long active_map;
81 wait_queue_head_t wait;
82 struct timer_list timer;
83};
84
85static struct zstd_workspace_manager wsm;
86
87static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
88
89static inline struct workspace *list_to_workspace(struct list_head *list)
90{
91 return container_of(list, struct workspace, list);
92}
93
94void zstd_free_workspace(struct list_head *ws);
95struct list_head *zstd_alloc_workspace(unsigned int level);
96/*
97 * zstd_reclaim_timer_fn - reclaim timer
98 * @t: timer
99 *
100 * This scans the lru_list and attempts to reclaim any workspace that hasn't
101 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
102 */
103static void zstd_reclaim_timer_fn(struct timer_list *timer)
104{
105 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
106 struct list_head *pos, *next;
107
108 spin_lock_bh(&wsm.lock);
109
110 if (list_empty(&wsm.lru_list)) {
111 spin_unlock_bh(&wsm.lock);
112 return;
113 }
114
115 list_for_each_prev_safe(pos, next, &wsm.lru_list) {
116 struct workspace *victim = container_of(pos, struct workspace,
117 lru_list);
118 unsigned int level;
119
120 if (time_after(victim->last_used, reclaim_threshold))
121 break;
122
123 /* workspace is in use */
124 if (victim->req_level)
125 continue;
126
127 level = victim->level;
128 list_del(&victim->lru_list);
129 list_del(&victim->list);
130 zstd_free_workspace(&victim->list);
131
132 if (list_empty(&wsm.idle_ws[level - 1]))
133 clear_bit(level - 1, &wsm.active_map);
134
135 }
136
137 if (!list_empty(&wsm.lru_list))
138 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
139
140 spin_unlock_bh(&wsm.lock);
141}
142
143/*
144 * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds
145 *
146 * It is possible based on the level configurations that a higher level
147 * workspace uses less memory than a lower level workspace. In order to reuse
148 * workspaces, this must be made a monotonic relationship. This precomputes
149 * the required memory for each level and enforces the monotonicity between
150 * level and memory required.
151 */
152static void zstd_calc_ws_mem_sizes(void)
153{
154 size_t max_size = 0;
155 unsigned int level;
156
157 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
158 ZSTD_parameters params =
159 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
160 size_t level_size =
161 max_t(size_t,
162 ZSTD_CStreamWorkspaceBound(params.cParams),
163 ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT));
164
165 max_size = max_t(size_t, max_size, level_size);
166 zstd_ws_mem_sizes[level - 1] = max_size;
167 }
168}
169
170void zstd_init_workspace_manager(void)
171{
172 struct list_head *ws;
173 int i;
174
175 zstd_calc_ws_mem_sizes();
176
177 wsm.ops = &btrfs_zstd_compress;
178 spin_lock_init(&wsm.lock);
179 init_waitqueue_head(&wsm.wait);
180 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
181
182 INIT_LIST_HEAD(&wsm.lru_list);
183 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
184 INIT_LIST_HEAD(&wsm.idle_ws[i]);
185
186 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
187 if (IS_ERR(ws)) {
188 pr_warn(
189 "BTRFS: cannot preallocate zstd compression workspace\n");
190 } else {
191 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
192 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
193 }
194}
195
196void zstd_cleanup_workspace_manager(void)
197{
198 struct workspace *workspace;
199 int i;
200
201 spin_lock_bh(&wsm.lock);
202 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
203 while (!list_empty(&wsm.idle_ws[i])) {
204 workspace = container_of(wsm.idle_ws[i].next,
205 struct workspace, list);
206 list_del(&workspace->list);
207 list_del(&workspace->lru_list);
208 zstd_free_workspace(&workspace->list);
209 }
210 }
211 spin_unlock_bh(&wsm.lock);
212
213 del_timer_sync(&wsm.timer);
214}
215
216/*
217 * zstd_find_workspace - find workspace
218 * @level: compression level
219 *
220 * This iterates over the set bits in the active_map beginning at the requested
221 * compression level. This lets us utilize already allocated workspaces before
222 * allocating a new one. If the workspace is of a larger size, it is used, but
223 * the place in the lru_list and last_used times are not updated. This is to
224 * offer the opportunity to reclaim the workspace in favor of allocating an
225 * appropriately sized one in the future.
226 */
227static struct list_head *zstd_find_workspace(unsigned int level)
228{
229 struct list_head *ws;
230 struct workspace *workspace;
231 int i = level - 1;
232
233 spin_lock_bh(&wsm.lock);
234 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
235 if (!list_empty(&wsm.idle_ws[i])) {
236 ws = wsm.idle_ws[i].next;
237 workspace = list_to_workspace(ws);
238 list_del_init(ws);
239 /* keep its place if it's a lower level using this */
240 workspace->req_level = level;
241 if (level == workspace->level)
242 list_del(&workspace->lru_list);
243 if (list_empty(&wsm.idle_ws[i]))
244 clear_bit(i, &wsm.active_map);
245 spin_unlock_bh(&wsm.lock);
246 return ws;
247 }
248 }
249 spin_unlock_bh(&wsm.lock);
250
251 return NULL;
252}
253
254/*
255 * zstd_get_workspace - zstd's get_workspace
256 * @level: compression level
257 *
258 * If @level is 0, then any compression level can be used. Therefore, we begin
259 * scanning from 1. We first scan through possible workspaces and then after
260 * attempt to allocate a new workspace. If we fail to allocate one due to
261 * memory pressure, go to sleep waiting for the max level workspace to free up.
262 */
263struct list_head *zstd_get_workspace(unsigned int level)
264{
265 struct list_head *ws;
266 unsigned int nofs_flag;
267
268 /* level == 0 means we can use any workspace */
269 if (!level)
270 level = 1;
271
272again:
273 ws = zstd_find_workspace(level);
274 if (ws)
275 return ws;
276
277 nofs_flag = memalloc_nofs_save();
278 ws = zstd_alloc_workspace(level);
279 memalloc_nofs_restore(nofs_flag);
280
281 if (IS_ERR(ws)) {
282 DEFINE_WAIT(wait);
283
284 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
285 schedule();
286 finish_wait(&wsm.wait, &wait);
287
288 goto again;
289 }
290
291 return ws;
292}
293
294/*
295 * zstd_put_workspace - zstd put_workspace
296 * @ws: list_head for the workspace
297 *
298 * When putting back a workspace, we only need to update the LRU if we are of
299 * the requested compression level. Here is where we continue to protect the
300 * max level workspace or update last_used accordingly. If the reclaim timer
301 * isn't set, it is also set here. Only the max level workspace tries and wakes
302 * up waiting workspaces.
303 */
304void zstd_put_workspace(struct list_head *ws)
305{
306 struct workspace *workspace = list_to_workspace(ws);
307
308 spin_lock_bh(&wsm.lock);
309
310 /* A node is only taken off the lru if we are the corresponding level */
311 if (workspace->req_level == workspace->level) {
312 /* Hide a max level workspace from reclaim */
313 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
314 INIT_LIST_HEAD(&workspace->lru_list);
315 } else {
316 workspace->last_used = jiffies;
317 list_add(&workspace->lru_list, &wsm.lru_list);
318 if (!timer_pending(&wsm.timer))
319 mod_timer(&wsm.timer,
320 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
321 }
322 }
323
324 set_bit(workspace->level - 1, &wsm.active_map);
325 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
326 workspace->req_level = 0;
327
328 spin_unlock_bh(&wsm.lock);
329
330 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
331 cond_wake_up(&wsm.wait);
332}
333
334void zstd_free_workspace(struct list_head *ws)
335{
336 struct workspace *workspace = list_entry(ws, struct workspace, list);
337
338 kvfree(workspace->mem);
339 kfree(workspace->buf);
340 kfree(workspace);
341}
342
343struct list_head *zstd_alloc_workspace(unsigned int level)
344{
345 struct workspace *workspace;
346
347 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
348 if (!workspace)
349 return ERR_PTR(-ENOMEM);
350
351 workspace->size = zstd_ws_mem_sizes[level - 1];
352 workspace->level = level;
353 workspace->req_level = level;
354 workspace->last_used = jiffies;
355 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL);
356 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
357 if (!workspace->mem || !workspace->buf)
358 goto fail;
359
360 INIT_LIST_HEAD(&workspace->list);
361 INIT_LIST_HEAD(&workspace->lru_list);
362
363 return &workspace->list;
364fail:
365 zstd_free_workspace(&workspace->list);
366 return ERR_PTR(-ENOMEM);
367}
368
369int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
370 u64 start, struct page **pages, unsigned long *out_pages,
371 unsigned long *total_in, unsigned long *total_out)
372{
373 struct workspace *workspace = list_entry(ws, struct workspace, list);
374 ZSTD_CStream *stream;
375 int ret = 0;
376 int nr_pages = 0;
377 struct page *in_page = NULL; /* The current page to read */
378 struct page *out_page = NULL; /* The current page to write to */
379 unsigned long tot_in = 0;
380 unsigned long tot_out = 0;
381 unsigned long len = *total_out;
382 const unsigned long nr_dest_pages = *out_pages;
383 unsigned long max_out = nr_dest_pages * PAGE_SIZE;
384 ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
385 len);
386
387 *out_pages = 0;
388 *total_out = 0;
389 *total_in = 0;
390
391 /* Initialize the stream */
392 stream = ZSTD_initCStream(params, len, workspace->mem,
393 workspace->size);
394 if (!stream) {
395 pr_warn("BTRFS: ZSTD_initCStream failed\n");
396 ret = -EIO;
397 goto out;
398 }
399
400 /* map in the first page of input data */
401 in_page = find_get_page(mapping, start >> PAGE_SHIFT);
402 workspace->in_buf.src = kmap(in_page);
403 workspace->in_buf.pos = 0;
404 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
405
406
407 /* Allocate and map in the output buffer */
408 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
409 if (out_page == NULL) {
410 ret = -ENOMEM;
411 goto out;
412 }
413 pages[nr_pages++] = out_page;
414 workspace->out_buf.dst = kmap(out_page);
415 workspace->out_buf.pos = 0;
416 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
417
418 while (1) {
419 size_t ret2;
420
421 ret2 = ZSTD_compressStream(stream, &workspace->out_buf,
422 &workspace->in_buf);
423 if (ZSTD_isError(ret2)) {
424 pr_debug("BTRFS: ZSTD_compressStream returned %d\n",
425 ZSTD_getErrorCode(ret2));
426 ret = -EIO;
427 goto out;
428 }
429
430 /* Check to see if we are making it bigger */
431 if (tot_in + workspace->in_buf.pos > 8192 &&
432 tot_in + workspace->in_buf.pos <
433 tot_out + workspace->out_buf.pos) {
434 ret = -E2BIG;
435 goto out;
436 }
437
438 /* We've reached the end of our output range */
439 if (workspace->out_buf.pos >= max_out) {
440 tot_out += workspace->out_buf.pos;
441 ret = -E2BIG;
442 goto out;
443 }
444
445 /* Check if we need more output space */
446 if (workspace->out_buf.pos == workspace->out_buf.size) {
447 tot_out += PAGE_SIZE;
448 max_out -= PAGE_SIZE;
449 kunmap(out_page);
450 if (nr_pages == nr_dest_pages) {
451 out_page = NULL;
452 ret = -E2BIG;
453 goto out;
454 }
455 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
456 if (out_page == NULL) {
457 ret = -ENOMEM;
458 goto out;
459 }
460 pages[nr_pages++] = out_page;
461 workspace->out_buf.dst = kmap(out_page);
462 workspace->out_buf.pos = 0;
463 workspace->out_buf.size = min_t(size_t, max_out,
464 PAGE_SIZE);
465 }
466
467 /* We've reached the end of the input */
468 if (workspace->in_buf.pos >= len) {
469 tot_in += workspace->in_buf.pos;
470 break;
471 }
472
473 /* Check if we need more input */
474 if (workspace->in_buf.pos == workspace->in_buf.size) {
475 tot_in += PAGE_SIZE;
476 kunmap(in_page);
477 put_page(in_page);
478
479 start += PAGE_SIZE;
480 len -= PAGE_SIZE;
481 in_page = find_get_page(mapping, start >> PAGE_SHIFT);
482 workspace->in_buf.src = kmap(in_page);
483 workspace->in_buf.pos = 0;
484 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
485 }
486 }
487 while (1) {
488 size_t ret2;
489
490 ret2 = ZSTD_endStream(stream, &workspace->out_buf);
491 if (ZSTD_isError(ret2)) {
492 pr_debug("BTRFS: ZSTD_endStream returned %d\n",
493 ZSTD_getErrorCode(ret2));
494 ret = -EIO;
495 goto out;
496 }
497 if (ret2 == 0) {
498 tot_out += workspace->out_buf.pos;
499 break;
500 }
501 if (workspace->out_buf.pos >= max_out) {
502 tot_out += workspace->out_buf.pos;
503 ret = -E2BIG;
504 goto out;
505 }
506
507 tot_out += PAGE_SIZE;
508 max_out -= PAGE_SIZE;
509 kunmap(out_page);
510 if (nr_pages == nr_dest_pages) {
511 out_page = NULL;
512 ret = -E2BIG;
513 goto out;
514 }
515 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
516 if (out_page == NULL) {
517 ret = -ENOMEM;
518 goto out;
519 }
520 pages[nr_pages++] = out_page;
521 workspace->out_buf.dst = kmap(out_page);
522 workspace->out_buf.pos = 0;
523 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
524 }
525
526 if (tot_out >= tot_in) {
527 ret = -E2BIG;
528 goto out;
529 }
530
531 ret = 0;
532 *total_in = tot_in;
533 *total_out = tot_out;
534out:
535 *out_pages = nr_pages;
536 /* Cleanup */
537 if (in_page) {
538 kunmap(in_page);
539 put_page(in_page);
540 }
541 if (out_page)
542 kunmap(out_page);
543 return ret;
544}
545
546int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
547{
548 struct workspace *workspace = list_entry(ws, struct workspace, list);
549 struct page **pages_in = cb->compressed_pages;
550 u64 disk_start = cb->start;
551 struct bio *orig_bio = cb->orig_bio;
552 size_t srclen = cb->compressed_len;
553 ZSTD_DStream *stream;
554 int ret = 0;
555 unsigned long page_in_index = 0;
556 unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
557 unsigned long buf_start;
558 unsigned long total_out = 0;
559
560 stream = ZSTD_initDStream(
561 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
562 if (!stream) {
563 pr_debug("BTRFS: ZSTD_initDStream failed\n");
564 ret = -EIO;
565 goto done;
566 }
567
568 workspace->in_buf.src = kmap(pages_in[page_in_index]);
569 workspace->in_buf.pos = 0;
570 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
571
572 workspace->out_buf.dst = workspace->buf;
573 workspace->out_buf.pos = 0;
574 workspace->out_buf.size = PAGE_SIZE;
575
576 while (1) {
577 size_t ret2;
578
579 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
580 &workspace->in_buf);
581 if (ZSTD_isError(ret2)) {
582 pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
583 ZSTD_getErrorCode(ret2));
584 ret = -EIO;
585 goto done;
586 }
587 buf_start = total_out;
588 total_out += workspace->out_buf.pos;
589 workspace->out_buf.pos = 0;
590
591 ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
592 buf_start, total_out, disk_start, orig_bio);
593 if (ret == 0)
594 break;
595
596 if (workspace->in_buf.pos >= srclen)
597 break;
598
599 /* Check if we've hit the end of a frame */
600 if (ret2 == 0)
601 break;
602
603 if (workspace->in_buf.pos == workspace->in_buf.size) {
604 kunmap(pages_in[page_in_index++]);
605 if (page_in_index >= total_pages_in) {
606 workspace->in_buf.src = NULL;
607 ret = -EIO;
608 goto done;
609 }
610 srclen -= PAGE_SIZE;
611 workspace->in_buf.src = kmap(pages_in[page_in_index]);
612 workspace->in_buf.pos = 0;
613 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
614 }
615 }
616 ret = 0;
617 zero_fill_bio(orig_bio);
618done:
619 if (workspace->in_buf.src)
620 kunmap(pages_in[page_in_index]);
621 return ret;
622}
623
624int zstd_decompress(struct list_head *ws, unsigned char *data_in,
625 struct page *dest_page, unsigned long start_byte, size_t srclen,
626 size_t destlen)
627{
628 struct workspace *workspace = list_entry(ws, struct workspace, list);
629 ZSTD_DStream *stream;
630 int ret = 0;
631 size_t ret2;
632 unsigned long total_out = 0;
633 unsigned long pg_offset = 0;
634 char *kaddr;
635
636 stream = ZSTD_initDStream(
637 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
638 if (!stream) {
639 pr_warn("BTRFS: ZSTD_initDStream failed\n");
640 ret = -EIO;
641 goto finish;
642 }
643
644 destlen = min_t(size_t, destlen, PAGE_SIZE);
645
646 workspace->in_buf.src = data_in;
647 workspace->in_buf.pos = 0;
648 workspace->in_buf.size = srclen;
649
650 workspace->out_buf.dst = workspace->buf;
651 workspace->out_buf.pos = 0;
652 workspace->out_buf.size = PAGE_SIZE;
653
654 ret2 = 1;
655 while (pg_offset < destlen
656 && workspace->in_buf.pos < workspace->in_buf.size) {
657 unsigned long buf_start;
658 unsigned long buf_offset;
659 unsigned long bytes;
660
661 /* Check if the frame is over and we still need more input */
662 if (ret2 == 0) {
663 pr_debug("BTRFS: ZSTD_decompressStream ended early\n");
664 ret = -EIO;
665 goto finish;
666 }
667 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
668 &workspace->in_buf);
669 if (ZSTD_isError(ret2)) {
670 pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
671 ZSTD_getErrorCode(ret2));
672 ret = -EIO;
673 goto finish;
674 }
675
676 buf_start = total_out;
677 total_out += workspace->out_buf.pos;
678 workspace->out_buf.pos = 0;
679
680 if (total_out <= start_byte)
681 continue;
682
683 if (total_out > start_byte && buf_start < start_byte)
684 buf_offset = start_byte - buf_start;
685 else
686 buf_offset = 0;
687
688 bytes = min_t(unsigned long, destlen - pg_offset,
689 workspace->out_buf.size - buf_offset);
690
691 kaddr = kmap_atomic(dest_page);
692 memcpy(kaddr + pg_offset, workspace->out_buf.dst + buf_offset,
693 bytes);
694 kunmap_atomic(kaddr);
695
696 pg_offset += bytes;
697 }
698 ret = 0;
699finish:
700 if (pg_offset < destlen) {
701 kaddr = kmap_atomic(dest_page);
702 memset(kaddr + pg_offset, 0, destlen - pg_offset);
703 kunmap_atomic(kaddr);
704 }
705 return ret;
706}
707
708const struct btrfs_compress_op btrfs_zstd_compress = {
709 /* ZSTD uses own workspace manager */
710 .workspace_manager = NULL,
711 .max_level = ZSTD_BTRFS_MAX_LEVEL,
712 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL,
713};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016-present, Facebook, Inc.
4 * All rights reserved.
5 *
6 */
7
8#include <linux/bio.h>
9#include <linux/bitmap.h>
10#include <linux/err.h>
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/mm.h>
14#include <linux/sched/mm.h>
15#include <linux/pagemap.h>
16#include <linux/refcount.h>
17#include <linux/sched.h>
18#include <linux/slab.h>
19#include <linux/zstd.h>
20#include "misc.h"
21#include "fs.h"
22#include "compression.h"
23#include "super.h"
24
25#define ZSTD_BTRFS_MAX_WINDOWLOG 17
26#define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
27#define ZSTD_BTRFS_DEFAULT_LEVEL 3
28#define ZSTD_BTRFS_MAX_LEVEL 15
29/* 307s to avoid pathologically clashing with transaction commit */
30#define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
31
32static zstd_parameters zstd_get_btrfs_parameters(unsigned int level,
33 size_t src_len)
34{
35 zstd_parameters params = zstd_get_params(level, src_len);
36
37 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
38 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
39 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
40 return params;
41}
42
43struct workspace {
44 void *mem;
45 size_t size;
46 char *buf;
47 unsigned int level;
48 unsigned int req_level;
49 unsigned long last_used; /* jiffies */
50 struct list_head list;
51 struct list_head lru_list;
52 zstd_in_buffer in_buf;
53 zstd_out_buffer out_buf;
54};
55
56/*
57 * Zstd Workspace Management
58 *
59 * Zstd workspaces have different memory requirements depending on the level.
60 * The zstd workspaces are managed by having individual lists for each level
61 * and a global lru. Forward progress is maintained by protecting a max level
62 * workspace.
63 *
64 * Getting a workspace is done by using the bitmap to identify the levels that
65 * have available workspaces and scans up. This lets us recycle higher level
66 * workspaces because of the monotonic memory guarantee. A workspace's
67 * last_used is only updated if it is being used by the corresponding memory
68 * level. Putting a workspace involves adding it back to the appropriate places
69 * and adding it back to the lru if necessary.
70 *
71 * A timer is used to reclaim workspaces if they have not been used for
72 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around.
73 * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
74 */
75
76struct zstd_workspace_manager {
77 const struct btrfs_compress_op *ops;
78 spinlock_t lock;
79 struct list_head lru_list;
80 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
81 unsigned long active_map;
82 wait_queue_head_t wait;
83 struct timer_list timer;
84};
85
86static struct zstd_workspace_manager wsm;
87
88static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
89
90static inline struct workspace *list_to_workspace(struct list_head *list)
91{
92 return container_of(list, struct workspace, list);
93}
94
95void zstd_free_workspace(struct list_head *ws);
96struct list_head *zstd_alloc_workspace(unsigned int level);
97
98/*
99 * Timer callback to free unused workspaces.
100 *
101 * @t: timer
102 *
103 * This scans the lru_list and attempts to reclaim any workspace that hasn't
104 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
105 *
106 * The context is softirq and does not need the _bh locking primitives.
107 */
108static void zstd_reclaim_timer_fn(struct timer_list *timer)
109{
110 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
111 struct list_head *pos, *next;
112
113 spin_lock(&wsm.lock);
114
115 if (list_empty(&wsm.lru_list)) {
116 spin_unlock(&wsm.lock);
117 return;
118 }
119
120 list_for_each_prev_safe(pos, next, &wsm.lru_list) {
121 struct workspace *victim = container_of(pos, struct workspace,
122 lru_list);
123 unsigned int level;
124
125 if (time_after(victim->last_used, reclaim_threshold))
126 break;
127
128 /* workspace is in use */
129 if (victim->req_level)
130 continue;
131
132 level = victim->level;
133 list_del(&victim->lru_list);
134 list_del(&victim->list);
135 zstd_free_workspace(&victim->list);
136
137 if (list_empty(&wsm.idle_ws[level - 1]))
138 clear_bit(level - 1, &wsm.active_map);
139
140 }
141
142 if (!list_empty(&wsm.lru_list))
143 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
144
145 spin_unlock(&wsm.lock);
146}
147
148/*
149 * Calculate monotonic memory bounds.
150 *
151 * It is possible based on the level configurations that a higher level
152 * workspace uses less memory than a lower level workspace. In order to reuse
153 * workspaces, this must be made a monotonic relationship. This precomputes
154 * the required memory for each level and enforces the monotonicity between
155 * level and memory required.
156 */
157static void zstd_calc_ws_mem_sizes(void)
158{
159 size_t max_size = 0;
160 unsigned int level;
161
162 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
163 zstd_parameters params =
164 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
165 size_t level_size =
166 max_t(size_t,
167 zstd_cstream_workspace_bound(¶ms.cParams),
168 zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT));
169
170 max_size = max_t(size_t, max_size, level_size);
171 zstd_ws_mem_sizes[level - 1] = max_size;
172 }
173}
174
175void zstd_init_workspace_manager(void)
176{
177 struct list_head *ws;
178 int i;
179
180 zstd_calc_ws_mem_sizes();
181
182 wsm.ops = &btrfs_zstd_compress;
183 spin_lock_init(&wsm.lock);
184 init_waitqueue_head(&wsm.wait);
185 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
186
187 INIT_LIST_HEAD(&wsm.lru_list);
188 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
189 INIT_LIST_HEAD(&wsm.idle_ws[i]);
190
191 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
192 if (IS_ERR(ws)) {
193 pr_warn(
194 "BTRFS: cannot preallocate zstd compression workspace\n");
195 } else {
196 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
197 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
198 }
199}
200
201void zstd_cleanup_workspace_manager(void)
202{
203 struct workspace *workspace;
204 int i;
205
206 spin_lock_bh(&wsm.lock);
207 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
208 while (!list_empty(&wsm.idle_ws[i])) {
209 workspace = container_of(wsm.idle_ws[i].next,
210 struct workspace, list);
211 list_del(&workspace->list);
212 list_del(&workspace->lru_list);
213 zstd_free_workspace(&workspace->list);
214 }
215 }
216 spin_unlock_bh(&wsm.lock);
217
218 del_timer_sync(&wsm.timer);
219}
220
221/*
222 * Find workspace for given level.
223 *
224 * @level: compression level
225 *
226 * This iterates over the set bits in the active_map beginning at the requested
227 * compression level. This lets us utilize already allocated workspaces before
228 * allocating a new one. If the workspace is of a larger size, it is used, but
229 * the place in the lru_list and last_used times are not updated. This is to
230 * offer the opportunity to reclaim the workspace in favor of allocating an
231 * appropriately sized one in the future.
232 */
233static struct list_head *zstd_find_workspace(unsigned int level)
234{
235 struct list_head *ws;
236 struct workspace *workspace;
237 int i = level - 1;
238
239 spin_lock_bh(&wsm.lock);
240 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
241 if (!list_empty(&wsm.idle_ws[i])) {
242 ws = wsm.idle_ws[i].next;
243 workspace = list_to_workspace(ws);
244 list_del_init(ws);
245 /* keep its place if it's a lower level using this */
246 workspace->req_level = level;
247 if (level == workspace->level)
248 list_del(&workspace->lru_list);
249 if (list_empty(&wsm.idle_ws[i]))
250 clear_bit(i, &wsm.active_map);
251 spin_unlock_bh(&wsm.lock);
252 return ws;
253 }
254 }
255 spin_unlock_bh(&wsm.lock);
256
257 return NULL;
258}
259
260/*
261 * Zstd get_workspace for level.
262 *
263 * @level: compression level
264 *
265 * If @level is 0, then any compression level can be used. Therefore, we begin
266 * scanning from 1. We first scan through possible workspaces and then after
267 * attempt to allocate a new workspace. If we fail to allocate one due to
268 * memory pressure, go to sleep waiting for the max level workspace to free up.
269 */
270struct list_head *zstd_get_workspace(unsigned int level)
271{
272 struct list_head *ws;
273 unsigned int nofs_flag;
274
275 /* level == 0 means we can use any workspace */
276 if (!level)
277 level = 1;
278
279again:
280 ws = zstd_find_workspace(level);
281 if (ws)
282 return ws;
283
284 nofs_flag = memalloc_nofs_save();
285 ws = zstd_alloc_workspace(level);
286 memalloc_nofs_restore(nofs_flag);
287
288 if (IS_ERR(ws)) {
289 DEFINE_WAIT(wait);
290
291 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
292 schedule();
293 finish_wait(&wsm.wait, &wait);
294
295 goto again;
296 }
297
298 return ws;
299}
300
301/*
302 * Zstd put_workspace.
303 *
304 * @ws: list_head for the workspace
305 *
306 * When putting back a workspace, we only need to update the LRU if we are of
307 * the requested compression level. Here is where we continue to protect the
308 * max level workspace or update last_used accordingly. If the reclaim timer
309 * isn't set, it is also set here. Only the max level workspace tries and wakes
310 * up waiting workspaces.
311 */
312void zstd_put_workspace(struct list_head *ws)
313{
314 struct workspace *workspace = list_to_workspace(ws);
315
316 spin_lock_bh(&wsm.lock);
317
318 /* A node is only taken off the lru if we are the corresponding level */
319 if (workspace->req_level == workspace->level) {
320 /* Hide a max level workspace from reclaim */
321 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
322 INIT_LIST_HEAD(&workspace->lru_list);
323 } else {
324 workspace->last_used = jiffies;
325 list_add(&workspace->lru_list, &wsm.lru_list);
326 if (!timer_pending(&wsm.timer))
327 mod_timer(&wsm.timer,
328 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
329 }
330 }
331
332 set_bit(workspace->level - 1, &wsm.active_map);
333 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
334 workspace->req_level = 0;
335
336 spin_unlock_bh(&wsm.lock);
337
338 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
339 cond_wake_up(&wsm.wait);
340}
341
342void zstd_free_workspace(struct list_head *ws)
343{
344 struct workspace *workspace = list_entry(ws, struct workspace, list);
345
346 kvfree(workspace->mem);
347 kfree(workspace->buf);
348 kfree(workspace);
349}
350
351struct list_head *zstd_alloc_workspace(unsigned int level)
352{
353 struct workspace *workspace;
354
355 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
356 if (!workspace)
357 return ERR_PTR(-ENOMEM);
358
359 workspace->size = zstd_ws_mem_sizes[level - 1];
360 workspace->level = level;
361 workspace->req_level = level;
362 workspace->last_used = jiffies;
363 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN);
364 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
365 if (!workspace->mem || !workspace->buf)
366 goto fail;
367
368 INIT_LIST_HEAD(&workspace->list);
369 INIT_LIST_HEAD(&workspace->lru_list);
370
371 return &workspace->list;
372fail:
373 zstd_free_workspace(&workspace->list);
374 return ERR_PTR(-ENOMEM);
375}
376
377int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
378 u64 start, struct page **pages, unsigned long *out_pages,
379 unsigned long *total_in, unsigned long *total_out)
380{
381 struct workspace *workspace = list_entry(ws, struct workspace, list);
382 zstd_cstream *stream;
383 int ret = 0;
384 int nr_pages = 0;
385 struct page *in_page = NULL; /* The current page to read */
386 struct page *out_page = NULL; /* The current page to write to */
387 unsigned long tot_in = 0;
388 unsigned long tot_out = 0;
389 unsigned long len = *total_out;
390 const unsigned long nr_dest_pages = *out_pages;
391 unsigned long max_out = nr_dest_pages * PAGE_SIZE;
392 zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
393 len);
394
395 *out_pages = 0;
396 *total_out = 0;
397 *total_in = 0;
398
399 /* Initialize the stream */
400 stream = zstd_init_cstream(¶ms, len, workspace->mem,
401 workspace->size);
402 if (!stream) {
403 pr_warn("BTRFS: zstd_init_cstream failed\n");
404 ret = -EIO;
405 goto out;
406 }
407
408 /* map in the first page of input data */
409 in_page = find_get_page(mapping, start >> PAGE_SHIFT);
410 workspace->in_buf.src = kmap_local_page(in_page);
411 workspace->in_buf.pos = 0;
412 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
413
414 /* Allocate and map in the output buffer */
415 out_page = btrfs_alloc_compr_page();
416 if (out_page == NULL) {
417 ret = -ENOMEM;
418 goto out;
419 }
420 pages[nr_pages++] = out_page;
421 workspace->out_buf.dst = page_address(out_page);
422 workspace->out_buf.pos = 0;
423 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
424
425 while (1) {
426 size_t ret2;
427
428 ret2 = zstd_compress_stream(stream, &workspace->out_buf,
429 &workspace->in_buf);
430 if (zstd_is_error(ret2)) {
431 pr_debug("BTRFS: zstd_compress_stream returned %d\n",
432 zstd_get_error_code(ret2));
433 ret = -EIO;
434 goto out;
435 }
436
437 /* Check to see if we are making it bigger */
438 if (tot_in + workspace->in_buf.pos > 8192 &&
439 tot_in + workspace->in_buf.pos <
440 tot_out + workspace->out_buf.pos) {
441 ret = -E2BIG;
442 goto out;
443 }
444
445 /* We've reached the end of our output range */
446 if (workspace->out_buf.pos >= max_out) {
447 tot_out += workspace->out_buf.pos;
448 ret = -E2BIG;
449 goto out;
450 }
451
452 /* Check if we need more output space */
453 if (workspace->out_buf.pos == workspace->out_buf.size) {
454 tot_out += PAGE_SIZE;
455 max_out -= PAGE_SIZE;
456 if (nr_pages == nr_dest_pages) {
457 ret = -E2BIG;
458 goto out;
459 }
460 out_page = btrfs_alloc_compr_page();
461 if (out_page == NULL) {
462 ret = -ENOMEM;
463 goto out;
464 }
465 pages[nr_pages++] = out_page;
466 workspace->out_buf.dst = page_address(out_page);
467 workspace->out_buf.pos = 0;
468 workspace->out_buf.size = min_t(size_t, max_out,
469 PAGE_SIZE);
470 }
471
472 /* We've reached the end of the input */
473 if (workspace->in_buf.pos >= len) {
474 tot_in += workspace->in_buf.pos;
475 break;
476 }
477
478 /* Check if we need more input */
479 if (workspace->in_buf.pos == workspace->in_buf.size) {
480 tot_in += PAGE_SIZE;
481 kunmap_local(workspace->in_buf.src);
482 put_page(in_page);
483 start += PAGE_SIZE;
484 len -= PAGE_SIZE;
485 in_page = find_get_page(mapping, start >> PAGE_SHIFT);
486 workspace->in_buf.src = kmap_local_page(in_page);
487 workspace->in_buf.pos = 0;
488 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
489 }
490 }
491 while (1) {
492 size_t ret2;
493
494 ret2 = zstd_end_stream(stream, &workspace->out_buf);
495 if (zstd_is_error(ret2)) {
496 pr_debug("BTRFS: zstd_end_stream returned %d\n",
497 zstd_get_error_code(ret2));
498 ret = -EIO;
499 goto out;
500 }
501 if (ret2 == 0) {
502 tot_out += workspace->out_buf.pos;
503 break;
504 }
505 if (workspace->out_buf.pos >= max_out) {
506 tot_out += workspace->out_buf.pos;
507 ret = -E2BIG;
508 goto out;
509 }
510
511 tot_out += PAGE_SIZE;
512 max_out -= PAGE_SIZE;
513 if (nr_pages == nr_dest_pages) {
514 ret = -E2BIG;
515 goto out;
516 }
517 out_page = btrfs_alloc_compr_page();
518 if (out_page == NULL) {
519 ret = -ENOMEM;
520 goto out;
521 }
522 pages[nr_pages++] = out_page;
523 workspace->out_buf.dst = page_address(out_page);
524 workspace->out_buf.pos = 0;
525 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
526 }
527
528 if (tot_out >= tot_in) {
529 ret = -E2BIG;
530 goto out;
531 }
532
533 ret = 0;
534 *total_in = tot_in;
535 *total_out = tot_out;
536out:
537 *out_pages = nr_pages;
538 if (workspace->in_buf.src) {
539 kunmap_local(workspace->in_buf.src);
540 put_page(in_page);
541 }
542 return ret;
543}
544
545int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
546{
547 struct workspace *workspace = list_entry(ws, struct workspace, list);
548 struct page **pages_in = cb->compressed_pages;
549 size_t srclen = cb->compressed_len;
550 zstd_dstream *stream;
551 int ret = 0;
552 unsigned long page_in_index = 0;
553 unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
554 unsigned long buf_start;
555 unsigned long total_out = 0;
556
557 stream = zstd_init_dstream(
558 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
559 if (!stream) {
560 pr_debug("BTRFS: zstd_init_dstream failed\n");
561 ret = -EIO;
562 goto done;
563 }
564
565 workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
566 workspace->in_buf.pos = 0;
567 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
568
569 workspace->out_buf.dst = workspace->buf;
570 workspace->out_buf.pos = 0;
571 workspace->out_buf.size = PAGE_SIZE;
572
573 while (1) {
574 size_t ret2;
575
576 ret2 = zstd_decompress_stream(stream, &workspace->out_buf,
577 &workspace->in_buf);
578 if (zstd_is_error(ret2)) {
579 pr_debug("BTRFS: zstd_decompress_stream returned %d\n",
580 zstd_get_error_code(ret2));
581 ret = -EIO;
582 goto done;
583 }
584 buf_start = total_out;
585 total_out += workspace->out_buf.pos;
586 workspace->out_buf.pos = 0;
587
588 ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
589 total_out - buf_start, cb, buf_start);
590 if (ret == 0)
591 break;
592
593 if (workspace->in_buf.pos >= srclen)
594 break;
595
596 /* Check if we've hit the end of a frame */
597 if (ret2 == 0)
598 break;
599
600 if (workspace->in_buf.pos == workspace->in_buf.size) {
601 kunmap_local(workspace->in_buf.src);
602 page_in_index++;
603 if (page_in_index >= total_pages_in) {
604 workspace->in_buf.src = NULL;
605 ret = -EIO;
606 goto done;
607 }
608 srclen -= PAGE_SIZE;
609 workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
610 workspace->in_buf.pos = 0;
611 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
612 }
613 }
614 ret = 0;
615done:
616 if (workspace->in_buf.src)
617 kunmap_local(workspace->in_buf.src);
618 return ret;
619}
620
621int zstd_decompress(struct list_head *ws, const u8 *data_in,
622 struct page *dest_page, unsigned long dest_pgoff, size_t srclen,
623 size_t destlen)
624{
625 struct workspace *workspace = list_entry(ws, struct workspace, list);
626 struct btrfs_fs_info *fs_info = btrfs_sb(dest_page->mapping->host->i_sb);
627 const u32 sectorsize = fs_info->sectorsize;
628 zstd_dstream *stream;
629 int ret = 0;
630 unsigned long to_copy = 0;
631
632 stream = zstd_init_dstream(
633 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
634 if (!stream) {
635 pr_warn("BTRFS: zstd_init_dstream failed\n");
636 goto finish;
637 }
638
639 workspace->in_buf.src = data_in;
640 workspace->in_buf.pos = 0;
641 workspace->in_buf.size = srclen;
642
643 workspace->out_buf.dst = workspace->buf;
644 workspace->out_buf.pos = 0;
645 workspace->out_buf.size = sectorsize;
646
647 /*
648 * Since both input and output buffers should not exceed one sector,
649 * one call should end the decompression.
650 */
651 ret = zstd_decompress_stream(stream, &workspace->out_buf, &workspace->in_buf);
652 if (zstd_is_error(ret)) {
653 pr_warn_ratelimited("BTRFS: zstd_decompress_stream return %d\n",
654 zstd_get_error_code(ret));
655 goto finish;
656 }
657 to_copy = workspace->out_buf.pos;
658 memcpy_to_page(dest_page, dest_pgoff, workspace->out_buf.dst, to_copy);
659finish:
660 /* Error or early end. */
661 if (unlikely(to_copy < destlen)) {
662 ret = -EIO;
663 memzero_page(dest_page, dest_pgoff + to_copy, destlen - to_copy);
664 }
665 return ret;
666}
667
668const struct btrfs_compress_op btrfs_zstd_compress = {
669 /* ZSTD uses own workspace manager */
670 .workspace_manager = NULL,
671 .max_level = ZSTD_BTRFS_MAX_LEVEL,
672 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL,
673};