Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2//
  3// helpers.c  --  Voltage/Current Regulator framework helper functions.
  4//
  5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
  6// Copyright 2008 SlimLogic Ltd.
  7
  8#include <linux/kernel.h>
  9#include <linux/err.h>
 10#include <linux/delay.h>
 
 
 
 11#include <linux/regmap.h>
 12#include <linux/regulator/consumer.h>
 13#include <linux/regulator/driver.h>
 14#include <linux/module.h>
 15
 16#include "internal.h"
 17
 18/**
 19 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 20 *
 21 * @rdev: regulator to operate on
 22 *
 23 * Regulators that use regmap for their register I/O can set the
 24 * enable_reg and enable_mask fields in their descriptor and then use
 25 * this as their is_enabled operation, saving some code.
 26 */
 27int regulator_is_enabled_regmap(struct regulator_dev *rdev)
 28{
 29	unsigned int val;
 30	int ret;
 31
 32	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
 33	if (ret != 0)
 34		return ret;
 35
 36	val &= rdev->desc->enable_mask;
 37
 38	if (rdev->desc->enable_is_inverted) {
 39		if (rdev->desc->enable_val)
 40			return val != rdev->desc->enable_val;
 41		return val == 0;
 42	} else {
 43		if (rdev->desc->enable_val)
 44			return val == rdev->desc->enable_val;
 45		return val != 0;
 46	}
 47}
 48EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
 49
 50/**
 51 * regulator_enable_regmap - standard enable() for regmap users
 52 *
 53 * @rdev: regulator to operate on
 54 *
 55 * Regulators that use regmap for their register I/O can set the
 56 * enable_reg and enable_mask fields in their descriptor and then use
 57 * this as their enable() operation, saving some code.
 58 */
 59int regulator_enable_regmap(struct regulator_dev *rdev)
 60{
 61	unsigned int val;
 62
 63	if (rdev->desc->enable_is_inverted) {
 64		val = rdev->desc->disable_val;
 65	} else {
 66		val = rdev->desc->enable_val;
 67		if (!val)
 68			val = rdev->desc->enable_mask;
 69	}
 70
 71	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
 72				  rdev->desc->enable_mask, val);
 73}
 74EXPORT_SYMBOL_GPL(regulator_enable_regmap);
 75
 76/**
 77 * regulator_disable_regmap - standard disable() for regmap users
 78 *
 79 * @rdev: regulator to operate on
 80 *
 81 * Regulators that use regmap for their register I/O can set the
 82 * enable_reg and enable_mask fields in their descriptor and then use
 83 * this as their disable() operation, saving some code.
 84 */
 85int regulator_disable_regmap(struct regulator_dev *rdev)
 86{
 87	unsigned int val;
 88
 89	if (rdev->desc->enable_is_inverted) {
 90		val = rdev->desc->enable_val;
 91		if (!val)
 92			val = rdev->desc->enable_mask;
 93	} else {
 94		val = rdev->desc->disable_val;
 95	}
 96
 97	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
 98				  rdev->desc->enable_mask, val);
 99}
100EXPORT_SYMBOL_GPL(regulator_disable_regmap);
101
102static int regulator_range_selector_to_index(struct regulator_dev *rdev,
103					     unsigned int rval)
104{
105	int i;
106
107	if (!rdev->desc->linear_range_selectors)
108		return -EINVAL;
109
110	rval &= rdev->desc->vsel_range_mask;
 
111
112	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
113		if (rdev->desc->linear_range_selectors[i] == rval)
114			return i;
115	}
116	return -EINVAL;
117}
118
119/**
120 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
121 *
122 * @rdev: regulator to operate on
123 *
124 * Regulators that use regmap for their register I/O and use pickable
125 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
126 * fields in their descriptor and then use this as their get_voltage_vsel
127 * operation, saving some code.
128 */
129int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
130{
131	unsigned int r_val;
132	int range;
133	unsigned int val;
134	int ret;
135	unsigned int voltages = 0;
136	const struct linear_range *r = rdev->desc->linear_ranges;
137
138	if (!r)
139		return -EINVAL;
140
141	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
142	if (ret != 0)
143		return ret;
144
145	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
146	if (ret != 0)
147		return ret;
148
149	val &= rdev->desc->vsel_mask;
150	val >>= ffs(rdev->desc->vsel_mask) - 1;
151
152	range = regulator_range_selector_to_index(rdev, r_val);
153	if (range < 0)
154		return -EINVAL;
155
156	voltages = linear_range_values_in_range_array(r, range);
157
158	return val + voltages;
159}
160EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162/**
163 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
164 *
165 * @rdev: regulator to operate on
166 * @sel: Selector to set
167 *
168 * Regulators that use regmap for their register I/O and use pickable
169 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
170 * fields in their descriptor and then use this as their set_voltage_vsel
171 * operation, saving some code.
172 */
173int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
174					      unsigned int sel)
175{
176	unsigned int range;
177	int ret, i;
178	unsigned int voltages_in_range = 0;
179
180	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
181		const struct linear_range *r;
182
183		r = &rdev->desc->linear_ranges[i];
184		voltages_in_range = linear_range_values_in_range(r);
185
186		if (sel < voltages_in_range)
187			break;
188		sel -= voltages_in_range;
189	}
190
191	if (i == rdev->desc->n_linear_ranges)
192		return -EINVAL;
193
194	sel <<= ffs(rdev->desc->vsel_mask) - 1;
195	sel += rdev->desc->linear_ranges[i].min_sel;
196
197	range = rdev->desc->linear_range_selectors[i];
 
198
199	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
200		ret = regmap_update_bits(rdev->regmap,
201					 rdev->desc->vsel_reg,
202					 rdev->desc->vsel_range_mask |
203					 rdev->desc->vsel_mask, sel | range);
204	} else {
205		ret = regmap_update_bits(rdev->regmap,
206					 rdev->desc->vsel_range_reg,
207					 rdev->desc->vsel_range_mask, range);
208		if (ret)
209			return ret;
210
211		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
212				  rdev->desc->vsel_mask, sel);
213	}
214
215	if (ret)
216		return ret;
217
218	if (rdev->desc->apply_bit)
219		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
220					 rdev->desc->apply_bit,
221					 rdev->desc->apply_bit);
222	return ret;
223}
224EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
225
226/**
227 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
228 *
229 * @rdev: regulator to operate on
230 *
231 * Regulators that use regmap for their register I/O can set the
232 * vsel_reg and vsel_mask fields in their descriptor and then use this
233 * as their get_voltage_vsel operation, saving some code.
234 */
235int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
236{
237	unsigned int val;
238	int ret;
239
240	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
241	if (ret != 0)
242		return ret;
243
244	val &= rdev->desc->vsel_mask;
245	val >>= ffs(rdev->desc->vsel_mask) - 1;
246
247	return val;
248}
249EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
250
251/**
252 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
253 *
254 * @rdev: regulator to operate on
255 * @sel: Selector to set
256 *
257 * Regulators that use regmap for their register I/O can set the
258 * vsel_reg and vsel_mask fields in their descriptor and then use this
259 * as their set_voltage_vsel operation, saving some code.
260 */
261int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
262{
263	int ret;
264
265	sel <<= ffs(rdev->desc->vsel_mask) - 1;
266
267	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
268				  rdev->desc->vsel_mask, sel);
269	if (ret)
270		return ret;
271
272	if (rdev->desc->apply_bit)
273		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
274					 rdev->desc->apply_bit,
275					 rdev->desc->apply_bit);
276	return ret;
277}
278EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
279
280/**
281 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
282 *
283 * @rdev: Regulator to operate on
284 * @min_uV: Lower bound for voltage
285 * @max_uV: Upper bound for voltage
286 *
287 * Drivers implementing set_voltage_sel() and list_voltage() can use
288 * this as their map_voltage() operation.  It will find a suitable
289 * voltage by calling list_voltage() until it gets something in bounds
290 * for the requested voltages.
291 */
292int regulator_map_voltage_iterate(struct regulator_dev *rdev,
293				  int min_uV, int max_uV)
294{
295	int best_val = INT_MAX;
296	int selector = 0;
297	int i, ret;
298
299	/* Find the smallest voltage that falls within the specified
300	 * range.
301	 */
302	for (i = 0; i < rdev->desc->n_voltages; i++) {
303		ret = rdev->desc->ops->list_voltage(rdev, i);
304		if (ret < 0)
305			continue;
306
307		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
308			best_val = ret;
309			selector = i;
310		}
311	}
312
313	if (best_val != INT_MAX)
314		return selector;
315	else
316		return -EINVAL;
317}
318EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
319
320/**
321 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
322 *
323 * @rdev: Regulator to operate on
324 * @min_uV: Lower bound for voltage
325 * @max_uV: Upper bound for voltage
326 *
327 * Drivers that have ascendant voltage list can use this as their
328 * map_voltage() operation.
329 */
330int regulator_map_voltage_ascend(struct regulator_dev *rdev,
331				 int min_uV, int max_uV)
332{
333	int i, ret;
334
335	for (i = 0; i < rdev->desc->n_voltages; i++) {
336		ret = rdev->desc->ops->list_voltage(rdev, i);
337		if (ret < 0)
338			continue;
339
340		if (ret > max_uV)
341			break;
342
343		if (ret >= min_uV && ret <= max_uV)
344			return i;
345	}
346
347	return -EINVAL;
348}
349EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
350
351/**
352 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
353 *
354 * @rdev: Regulator to operate on
355 * @min_uV: Lower bound for voltage
356 * @max_uV: Upper bound for voltage
357 *
358 * Drivers providing min_uV and uV_step in their regulator_desc can
359 * use this as their map_voltage() operation.
360 */
361int regulator_map_voltage_linear(struct regulator_dev *rdev,
362				 int min_uV, int max_uV)
363{
364	int ret, voltage;
365
366	/* Allow uV_step to be 0 for fixed voltage */
367	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
368		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
369			return 0;
370		else
371			return -EINVAL;
372	}
373
374	if (!rdev->desc->uV_step) {
375		BUG_ON(!rdev->desc->uV_step);
376		return -EINVAL;
377	}
378
379	if (min_uV < rdev->desc->min_uV)
380		min_uV = rdev->desc->min_uV;
381
382	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
383	if (ret < 0)
384		return ret;
385
386	ret += rdev->desc->linear_min_sel;
387
388	/* Map back into a voltage to verify we're still in bounds */
389	voltage = rdev->desc->ops->list_voltage(rdev, ret);
390	if (voltage < min_uV || voltage > max_uV)
391		return -EINVAL;
392
393	return ret;
394}
395EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
396
397/**
398 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
399 *
400 * @rdev: Regulator to operate on
401 * @min_uV: Lower bound for voltage
402 * @max_uV: Upper bound for voltage
403 *
404 * Drivers providing linear_ranges in their descriptor can use this as
405 * their map_voltage() callback.
406 */
407int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
408				       int min_uV, int max_uV)
409{
410	const struct linear_range *range;
411	int ret = -EINVAL;
412	unsigned int sel;
413	bool found;
414	int voltage, i;
415
416	if (!rdev->desc->n_linear_ranges) {
417		BUG_ON(!rdev->desc->n_linear_ranges);
418		return -EINVAL;
419	}
420
421	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
422		range = &rdev->desc->linear_ranges[i];
423
424		ret = linear_range_get_selector_high(range, min_uV, &sel,
425						     &found);
426		if (ret)
427			continue;
428		ret = sel;
429
430		/*
431		 * Map back into a voltage to verify we're still in bounds.
432		 * If we are not, then continue checking rest of the ranges.
433		 */
434		voltage = rdev->desc->ops->list_voltage(rdev, sel);
435		if (voltage >= min_uV && voltage <= max_uV)
436			break;
437	}
438
439	if (i == rdev->desc->n_linear_ranges)
440		return -EINVAL;
441
442	return ret;
443}
444EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
445
446/**
447 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
448 *
449 * @rdev: Regulator to operate on
450 * @min_uV: Lower bound for voltage
451 * @max_uV: Upper bound for voltage
452 *
453 * Drivers providing pickable linear_ranges in their descriptor can use
454 * this as their map_voltage() callback.
455 */
456int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
457						int min_uV, int max_uV)
458{
459	const struct linear_range *range;
460	int ret = -EINVAL;
461	int voltage, i;
462	unsigned int selector = 0;
463
464	if (!rdev->desc->n_linear_ranges) {
465		BUG_ON(!rdev->desc->n_linear_ranges);
466		return -EINVAL;
467	}
468
469	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
470		int linear_max_uV;
471		bool found;
472		unsigned int sel;
473
474		range = &rdev->desc->linear_ranges[i];
475		linear_max_uV = linear_range_get_max_value(range);
476
477		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
478			selector += linear_range_values_in_range(range);
479			continue;
480		}
481
482		ret = linear_range_get_selector_high(range, min_uV, &sel,
483						     &found);
484		if (ret) {
485			selector += linear_range_values_in_range(range);
486			continue;
487		}
488
489		ret = selector + sel - range->min_sel;
490
491		voltage = rdev->desc->ops->list_voltage(rdev, ret);
492
493		/*
494		 * Map back into a voltage to verify we're still in bounds.
495		 * We may have overlapping voltage ranges. Hence we don't
496		 * exit but retry until we have checked all ranges.
497		 */
498		if (voltage < min_uV || voltage > max_uV)
499			selector += linear_range_values_in_range(range);
500		else
501			break;
502	}
503
504	if (i == rdev->desc->n_linear_ranges)
505		return -EINVAL;
506
507	return ret;
508}
509EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
510
511/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512 * regulator_list_voltage_linear - List voltages with simple calculation
513 *
514 * @rdev: Regulator device
515 * @selector: Selector to convert into a voltage
516 *
517 * Regulators with a simple linear mapping between voltages and
518 * selectors can set min_uV and uV_step in the regulator descriptor
519 * and then use this function as their list_voltage() operation,
520 */
521int regulator_list_voltage_linear(struct regulator_dev *rdev,
522				  unsigned int selector)
523{
524	if (selector >= rdev->desc->n_voltages)
525		return -EINVAL;
526	if (selector < rdev->desc->linear_min_sel)
527		return 0;
528
529	selector -= rdev->desc->linear_min_sel;
530
531	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
532}
533EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
534
535/**
536 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
537 *
538 * @rdev: Regulator device
539 * @selector: Selector to convert into a voltage
540 *
541 * list_voltage() operation, intended to be used by drivers utilizing pickable
542 * ranges helpers.
543 */
544int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
545						 unsigned int selector)
546{
547	const struct linear_range *range;
548	int i;
549	unsigned int all_sels = 0;
550
551	if (!rdev->desc->n_linear_ranges) {
552		BUG_ON(!rdev->desc->n_linear_ranges);
553		return -EINVAL;
554	}
555
556	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
557		unsigned int sel_indexes;
558
559		range = &rdev->desc->linear_ranges[i];
560
561		sel_indexes = linear_range_values_in_range(range) - 1;
562
563		if (all_sels + sel_indexes >= selector) {
564			selector -= all_sels;
565			/*
566			 * As we see here, pickable ranges work only as
567			 * long as the first selector for each pickable
568			 * range is 0, and the each subsequent range for
569			 * this 'pick' follow immediately at next unused
570			 * selector (Eg. there is no gaps between ranges).
571			 * I think this is fine but it probably should be
572			 * documented. OTOH, whole pickable range stuff
573			 * might benefit from some documentation
574			 */
575			return range->min + (range->step * selector);
576		}
577
578		all_sels += (sel_indexes + 1);
579	}
580
581	return -EINVAL;
582}
583EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
584
585/**
586 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
587 *
588 * @desc: Regulator desc for regulator which volatges are to be listed
589 * @selector: Selector to convert into a voltage
590 *
591 * Regulators with a series of simple linear mappings between voltages
592 * and selectors who have set linear_ranges in the regulator descriptor
593 * can use this function prior regulator registration to list voltages.
594 * This is useful when voltages need to be listed during device-tree
595 * parsing.
596 */
597int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
598					     unsigned int selector)
599{
600	unsigned int val;
601	int ret;
602
603	BUG_ON(!desc->n_linear_ranges);
604
605	ret = linear_range_get_value_array(desc->linear_ranges,
606					   desc->n_linear_ranges, selector,
607					   &val);
608	if (ret)
609		return ret;
610
611	return val;
612}
613EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
614
615/**
616 * regulator_list_voltage_linear_range - List voltages for linear ranges
617 *
618 * @rdev: Regulator device
619 * @selector: Selector to convert into a voltage
620 *
621 * Regulators with a series of simple linear mappings between voltages
622 * and selectors can set linear_ranges in the regulator descriptor and
623 * then use this function as their list_voltage() operation,
624 */
625int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
626					unsigned int selector)
627{
628	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
629}
630EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
631
632/**
633 * regulator_list_voltage_table - List voltages with table based mapping
634 *
635 * @rdev: Regulator device
636 * @selector: Selector to convert into a voltage
637 *
638 * Regulators with table based mapping between voltages and
639 * selectors can set volt_table in the regulator descriptor
640 * and then use this function as their list_voltage() operation.
641 */
642int regulator_list_voltage_table(struct regulator_dev *rdev,
643				 unsigned int selector)
644{
645	if (!rdev->desc->volt_table) {
646		BUG_ON(!rdev->desc->volt_table);
647		return -EINVAL;
648	}
649
650	if (selector >= rdev->desc->n_voltages)
651		return -EINVAL;
 
 
652
653	return rdev->desc->volt_table[selector];
654}
655EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
656
657/**
658 * regulator_set_bypass_regmap - Default set_bypass() using regmap
659 *
660 * @rdev: device to operate on.
661 * @enable: state to set.
662 */
663int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
664{
665	unsigned int val;
666
667	if (enable) {
668		val = rdev->desc->bypass_val_on;
669		if (!val)
670			val = rdev->desc->bypass_mask;
671	} else {
672		val = rdev->desc->bypass_val_off;
673	}
674
675	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
676				  rdev->desc->bypass_mask, val);
677}
678EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
679
680/**
681 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
682 *
683 * @rdev: device to operate on.
684 */
685int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
686{
687	unsigned int val;
688
689	val = rdev->desc->soft_start_val_on;
690	if (!val)
691		val = rdev->desc->soft_start_mask;
692
693	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
694				  rdev->desc->soft_start_mask, val);
695}
696EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
697
698/**
699 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
700 *
701 * @rdev: device to operate on.
702 */
703int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
704{
705	unsigned int val;
706
707	val = rdev->desc->pull_down_val_on;
708	if (!val)
709		val = rdev->desc->pull_down_mask;
710
711	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
712				  rdev->desc->pull_down_mask, val);
713}
714EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
715
716/**
717 * regulator_get_bypass_regmap - Default get_bypass() using regmap
718 *
719 * @rdev: device to operate on.
720 * @enable: current state.
721 */
722int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
723{
724	unsigned int val;
725	unsigned int val_on = rdev->desc->bypass_val_on;
726	int ret;
727
728	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
729	if (ret != 0)
730		return ret;
731
732	if (!val_on)
733		val_on = rdev->desc->bypass_mask;
734
735	*enable = (val & rdev->desc->bypass_mask) == val_on;
736
737	return 0;
738}
739EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
740
741/**
742 * regulator_set_active_discharge_regmap - Default set_active_discharge()
743 *					   using regmap
744 *
745 * @rdev: device to operate on.
746 * @enable: state to set, 0 to disable and 1 to enable.
747 */
748int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
749					  bool enable)
750{
751	unsigned int val;
752
753	if (enable)
754		val = rdev->desc->active_discharge_on;
755	else
756		val = rdev->desc->active_discharge_off;
757
758	return regmap_update_bits(rdev->regmap,
759				  rdev->desc->active_discharge_reg,
760				  rdev->desc->active_discharge_mask, val);
761}
762EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
763
764/**
765 * regulator_set_current_limit_regmap - set_current_limit for regmap users
766 *
767 * @rdev: regulator to operate on
768 * @min_uA: Lower bound for current limit
769 * @max_uA: Upper bound for current limit
770 *
771 * Regulators that use regmap for their register I/O can set curr_table,
772 * csel_reg and csel_mask fields in their descriptor and then use this
773 * as their set_current_limit operation, saving some code.
774 */
775int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
776				       int min_uA, int max_uA)
777{
778	unsigned int n_currents = rdev->desc->n_current_limits;
779	int i, sel = -1;
780
781	if (n_currents == 0)
782		return -EINVAL;
783
784	if (rdev->desc->curr_table) {
785		const unsigned int *curr_table = rdev->desc->curr_table;
786		bool ascend = curr_table[n_currents - 1] > curr_table[0];
787
788		/* search for closest to maximum */
789		if (ascend) {
790			for (i = n_currents - 1; i >= 0; i--) {
791				if (min_uA <= curr_table[i] &&
792				    curr_table[i] <= max_uA) {
793					sel = i;
794					break;
795				}
796			}
797		} else {
798			for (i = 0; i < n_currents; i++) {
799				if (min_uA <= curr_table[i] &&
800				    curr_table[i] <= max_uA) {
801					sel = i;
802					break;
803				}
804			}
805		}
806	}
807
808	if (sel < 0)
809		return -EINVAL;
810
811	sel <<= ffs(rdev->desc->csel_mask) - 1;
812
813	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
814				  rdev->desc->csel_mask, sel);
815}
816EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
817
818/**
819 * regulator_get_current_limit_regmap - get_current_limit for regmap users
820 *
821 * @rdev: regulator to operate on
822 *
823 * Regulators that use regmap for their register I/O can set the
824 * csel_reg and csel_mask fields in their descriptor and then use this
825 * as their get_current_limit operation, saving some code.
826 */
827int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
828{
829	unsigned int val;
830	int ret;
831
832	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
833	if (ret != 0)
834		return ret;
835
836	val &= rdev->desc->csel_mask;
837	val >>= ffs(rdev->desc->csel_mask) - 1;
838
839	if (rdev->desc->curr_table) {
840		if (val >= rdev->desc->n_current_limits)
841			return -EINVAL;
842
843		return rdev->desc->curr_table[val];
844	}
845
846	return -EINVAL;
847}
848EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
849
850/**
851 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
852 *                                   of regulator_bulk_data structs
853 *
854 * @consumers: array of regulator_bulk_data entries to initialize
855 * @supply_names: array of supply name strings
856 * @num_supplies: number of supply names to initialize
857 *
858 * Note: the 'consumers' array must be the size of 'num_supplies'.
859 */
860void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
861				     const char *const *supply_names,
862				     unsigned int num_supplies)
863{
864	unsigned int i;
865
866	for (i = 0; i < num_supplies; i++)
867		consumers[i].supply = supply_names[i];
868}
869EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
870
871/**
872 * regulator_is_equal - test whether two regulators are the same
873 *
874 * @reg1: first regulator to operate on
875 * @reg2: second regulator to operate on
876 */
877bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
878{
879	return reg1->rdev == reg2->rdev;
880}
881EXPORT_SYMBOL_GPL(regulator_is_equal);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// helpers.c  --  Voltage/Current Regulator framework helper functions.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7
   8#include <linux/bitops.h>
 
   9#include <linux/delay.h>
  10#include <linux/err.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/regmap.h>
  14#include <linux/regulator/consumer.h>
  15#include <linux/regulator/driver.h>
 
  16
  17#include "internal.h"
  18
  19/**
  20 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
  21 *
  22 * @rdev: regulator to operate on
  23 *
  24 * Regulators that use regmap for their register I/O can set the
  25 * enable_reg and enable_mask fields in their descriptor and then use
  26 * this as their is_enabled operation, saving some code.
  27 */
  28int regulator_is_enabled_regmap(struct regulator_dev *rdev)
  29{
  30	unsigned int val;
  31	int ret;
  32
  33	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
  34	if (ret != 0)
  35		return ret;
  36
  37	val &= rdev->desc->enable_mask;
  38
  39	if (rdev->desc->enable_is_inverted) {
  40		if (rdev->desc->enable_val)
  41			return val != rdev->desc->enable_val;
  42		return val == 0;
  43	} else {
  44		if (rdev->desc->enable_val)
  45			return val == rdev->desc->enable_val;
  46		return val != 0;
  47	}
  48}
  49EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
  50
  51/**
  52 * regulator_enable_regmap - standard enable() for regmap users
  53 *
  54 * @rdev: regulator to operate on
  55 *
  56 * Regulators that use regmap for their register I/O can set the
  57 * enable_reg and enable_mask fields in their descriptor and then use
  58 * this as their enable() operation, saving some code.
  59 */
  60int regulator_enable_regmap(struct regulator_dev *rdev)
  61{
  62	unsigned int val;
  63
  64	if (rdev->desc->enable_is_inverted) {
  65		val = rdev->desc->disable_val;
  66	} else {
  67		val = rdev->desc->enable_val;
  68		if (!val)
  69			val = rdev->desc->enable_mask;
  70	}
  71
  72	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
  73				  rdev->desc->enable_mask, val);
  74}
  75EXPORT_SYMBOL_GPL(regulator_enable_regmap);
  76
  77/**
  78 * regulator_disable_regmap - standard disable() for regmap users
  79 *
  80 * @rdev: regulator to operate on
  81 *
  82 * Regulators that use regmap for their register I/O can set the
  83 * enable_reg and enable_mask fields in their descriptor and then use
  84 * this as their disable() operation, saving some code.
  85 */
  86int regulator_disable_regmap(struct regulator_dev *rdev)
  87{
  88	unsigned int val;
  89
  90	if (rdev->desc->enable_is_inverted) {
  91		val = rdev->desc->enable_val;
  92		if (!val)
  93			val = rdev->desc->enable_mask;
  94	} else {
  95		val = rdev->desc->disable_val;
  96	}
  97
  98	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
  99				  rdev->desc->enable_mask, val);
 100}
 101EXPORT_SYMBOL_GPL(regulator_disable_regmap);
 102
 103static int regulator_range_selector_to_index(struct regulator_dev *rdev,
 104					     unsigned int rval)
 105{
 106	int i;
 107
 108	if (!rdev->desc->linear_range_selectors_bitfield)
 109		return -EINVAL;
 110
 111	rval &= rdev->desc->vsel_range_mask;
 112	rval >>= ffs(rdev->desc->vsel_range_mask) - 1;
 113
 114	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 115		if (rdev->desc->linear_range_selectors_bitfield[i] == rval)
 116			return i;
 117	}
 118	return -EINVAL;
 119}
 120
 121/**
 122 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
 123 *
 124 * @rdev: regulator to operate on
 125 *
 126 * Regulators that use regmap for their register I/O and use pickable
 127 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
 128 * fields in their descriptor and then use this as their get_voltage_vsel
 129 * operation, saving some code.
 130 */
 131int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
 132{
 133	unsigned int r_val;
 134	int range;
 135	unsigned int val;
 136	int ret;
 137	unsigned int voltages = 0;
 138	const struct linear_range *r = rdev->desc->linear_ranges;
 139
 140	if (!r)
 141		return -EINVAL;
 142
 143	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
 144	if (ret != 0)
 145		return ret;
 146
 147	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
 148	if (ret != 0)
 149		return ret;
 150
 151	val &= rdev->desc->vsel_mask;
 152	val >>= ffs(rdev->desc->vsel_mask) - 1;
 153
 154	range = regulator_range_selector_to_index(rdev, r_val);
 155	if (range < 0)
 156		return -EINVAL;
 157
 158	voltages = linear_range_values_in_range_array(r, range);
 159
 160	return val + voltages;
 161}
 162EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
 163
 164static int write_separate_vsel_and_range(struct regulator_dev *rdev,
 165					 unsigned int sel, unsigned int range)
 166{
 167	bool range_updated;
 168	int ret;
 169
 170	ret = regmap_update_bits_base(rdev->regmap, rdev->desc->vsel_range_reg,
 171				      rdev->desc->vsel_range_mask,
 172				      range, &range_updated, false, false);
 173	if (ret)
 174		return ret;
 175
 176	/*
 177	 * Some PMICs treat the vsel_reg same as apply-bit. Force it to be
 178	 * written if the range changed, even if the old selector was same as
 179	 * the new one
 180	 */
 181	if (rdev->desc->range_applied_by_vsel && range_updated)
 182		return regmap_write_bits(rdev->regmap,
 183					rdev->desc->vsel_reg,
 184					rdev->desc->vsel_mask, sel);
 185
 186	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
 187				  rdev->desc->vsel_mask, sel);
 188}
 189
 190/**
 191 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
 192 *
 193 * @rdev: regulator to operate on
 194 * @sel: Selector to set
 195 *
 196 * Regulators that use regmap for their register I/O and use pickable
 197 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
 198 * fields in their descriptor and then use this as their set_voltage_vsel
 199 * operation, saving some code.
 200 */
 201int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
 202					      unsigned int sel)
 203{
 204	unsigned int range;
 205	int ret, i;
 206	unsigned int voltages_in_range = 0;
 207
 208	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 209		const struct linear_range *r;
 210
 211		r = &rdev->desc->linear_ranges[i];
 212		voltages_in_range = linear_range_values_in_range(r);
 213
 214		if (sel < voltages_in_range)
 215			break;
 216		sel -= voltages_in_range;
 217	}
 218
 219	if (i == rdev->desc->n_linear_ranges)
 220		return -EINVAL;
 221
 222	sel <<= ffs(rdev->desc->vsel_mask) - 1;
 223	sel += rdev->desc->linear_ranges[i].min_sel;
 224
 225	range = rdev->desc->linear_range_selectors_bitfield[i];
 226	range <<= ffs(rdev->desc->vsel_range_mask) - 1;
 227
 228	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg)
 229		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
 
 230					 rdev->desc->vsel_range_mask |
 231					 rdev->desc->vsel_mask, sel | range);
 232	else
 233		ret = write_separate_vsel_and_range(rdev, sel, range);
 
 
 
 
 
 
 
 
 234
 235	if (ret)
 236		return ret;
 237
 238	if (rdev->desc->apply_bit)
 239		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
 240					 rdev->desc->apply_bit,
 241					 rdev->desc->apply_bit);
 242	return ret;
 243}
 244EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
 245
 246/**
 247 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 248 *
 249 * @rdev: regulator to operate on
 250 *
 251 * Regulators that use regmap for their register I/O can set the
 252 * vsel_reg and vsel_mask fields in their descriptor and then use this
 253 * as their get_voltage_vsel operation, saving some code.
 254 */
 255int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
 256{
 257	unsigned int val;
 258	int ret;
 259
 260	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
 261	if (ret != 0)
 262		return ret;
 263
 264	val &= rdev->desc->vsel_mask;
 265	val >>= ffs(rdev->desc->vsel_mask) - 1;
 266
 267	return val;
 268}
 269EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
 270
 271/**
 272 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 273 *
 274 * @rdev: regulator to operate on
 275 * @sel: Selector to set
 276 *
 277 * Regulators that use regmap for their register I/O can set the
 278 * vsel_reg and vsel_mask fields in their descriptor and then use this
 279 * as their set_voltage_vsel operation, saving some code.
 280 */
 281int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
 282{
 283	int ret;
 284
 285	sel <<= ffs(rdev->desc->vsel_mask) - 1;
 286
 287	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
 288				  rdev->desc->vsel_mask, sel);
 289	if (ret)
 290		return ret;
 291
 292	if (rdev->desc->apply_bit)
 293		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
 294					 rdev->desc->apply_bit,
 295					 rdev->desc->apply_bit);
 296	return ret;
 297}
 298EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
 299
 300/**
 301 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 302 *
 303 * @rdev: Regulator to operate on
 304 * @min_uV: Lower bound for voltage
 305 * @max_uV: Upper bound for voltage
 306 *
 307 * Drivers implementing set_voltage_sel() and list_voltage() can use
 308 * this as their map_voltage() operation.  It will find a suitable
 309 * voltage by calling list_voltage() until it gets something in bounds
 310 * for the requested voltages.
 311 */
 312int regulator_map_voltage_iterate(struct regulator_dev *rdev,
 313				  int min_uV, int max_uV)
 314{
 315	int best_val = INT_MAX;
 316	int selector = 0;
 317	int i, ret;
 318
 319	/* Find the smallest voltage that falls within the specified
 320	 * range.
 321	 */
 322	for (i = 0; i < rdev->desc->n_voltages; i++) {
 323		ret = rdev->desc->ops->list_voltage(rdev, i);
 324		if (ret < 0)
 325			continue;
 326
 327		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
 328			best_val = ret;
 329			selector = i;
 330		}
 331	}
 332
 333	if (best_val != INT_MAX)
 334		return selector;
 335	else
 336		return -EINVAL;
 337}
 338EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
 339
 340/**
 341 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
 342 *
 343 * @rdev: Regulator to operate on
 344 * @min_uV: Lower bound for voltage
 345 * @max_uV: Upper bound for voltage
 346 *
 347 * Drivers that have ascendant voltage list can use this as their
 348 * map_voltage() operation.
 349 */
 350int regulator_map_voltage_ascend(struct regulator_dev *rdev,
 351				 int min_uV, int max_uV)
 352{
 353	int i, ret;
 354
 355	for (i = 0; i < rdev->desc->n_voltages; i++) {
 356		ret = rdev->desc->ops->list_voltage(rdev, i);
 357		if (ret < 0)
 358			continue;
 359
 360		if (ret > max_uV)
 361			break;
 362
 363		if (ret >= min_uV && ret <= max_uV)
 364			return i;
 365	}
 366
 367	return -EINVAL;
 368}
 369EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
 370
 371/**
 372 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 373 *
 374 * @rdev: Regulator to operate on
 375 * @min_uV: Lower bound for voltage
 376 * @max_uV: Upper bound for voltage
 377 *
 378 * Drivers providing min_uV and uV_step in their regulator_desc can
 379 * use this as their map_voltage() operation.
 380 */
 381int regulator_map_voltage_linear(struct regulator_dev *rdev,
 382				 int min_uV, int max_uV)
 383{
 384	int ret, voltage;
 385
 386	/* Allow uV_step to be 0 for fixed voltage */
 387	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
 388		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
 389			return 0;
 390		else
 391			return -EINVAL;
 392	}
 393
 394	if (!rdev->desc->uV_step) {
 395		BUG_ON(!rdev->desc->uV_step);
 396		return -EINVAL;
 397	}
 398
 399	if (min_uV < rdev->desc->min_uV)
 400		min_uV = rdev->desc->min_uV;
 401
 402	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
 403	if (ret < 0)
 404		return ret;
 405
 406	ret += rdev->desc->linear_min_sel;
 407
 408	/* Map back into a voltage to verify we're still in bounds */
 409	voltage = rdev->desc->ops->list_voltage(rdev, ret);
 410	if (voltage < min_uV || voltage > max_uV)
 411		return -EINVAL;
 412
 413	return ret;
 414}
 415EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
 416
 417/**
 418 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
 419 *
 420 * @rdev: Regulator to operate on
 421 * @min_uV: Lower bound for voltage
 422 * @max_uV: Upper bound for voltage
 423 *
 424 * Drivers providing linear_ranges in their descriptor can use this as
 425 * their map_voltage() callback.
 426 */
 427int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
 428				       int min_uV, int max_uV)
 429{
 430	const struct linear_range *range;
 431	int ret = -EINVAL;
 432	unsigned int sel;
 433	bool found;
 434	int voltage, i;
 435
 436	if (!rdev->desc->n_linear_ranges) {
 437		BUG_ON(!rdev->desc->n_linear_ranges);
 438		return -EINVAL;
 439	}
 440
 441	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 442		range = &rdev->desc->linear_ranges[i];
 443
 444		ret = linear_range_get_selector_high(range, min_uV, &sel,
 445						     &found);
 446		if (ret)
 447			continue;
 448		ret = sel;
 449
 450		/*
 451		 * Map back into a voltage to verify we're still in bounds.
 452		 * If we are not, then continue checking rest of the ranges.
 453		 */
 454		voltage = rdev->desc->ops->list_voltage(rdev, sel);
 455		if (voltage >= min_uV && voltage <= max_uV)
 456			break;
 457	}
 458
 459	if (i == rdev->desc->n_linear_ranges)
 460		return -EINVAL;
 461
 462	return ret;
 463}
 464EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
 465
 466/**
 467 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
 468 *
 469 * @rdev: Regulator to operate on
 470 * @min_uV: Lower bound for voltage
 471 * @max_uV: Upper bound for voltage
 472 *
 473 * Drivers providing pickable linear_ranges in their descriptor can use
 474 * this as their map_voltage() callback.
 475 */
 476int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
 477						int min_uV, int max_uV)
 478{
 479	const struct linear_range *range;
 480	int ret = -EINVAL;
 481	int voltage, i;
 482	unsigned int selector = 0;
 483
 484	if (!rdev->desc->n_linear_ranges) {
 485		BUG_ON(!rdev->desc->n_linear_ranges);
 486		return -EINVAL;
 487	}
 488
 489	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 490		int linear_max_uV;
 491		bool found;
 492		unsigned int sel;
 493
 494		range = &rdev->desc->linear_ranges[i];
 495		linear_max_uV = linear_range_get_max_value(range);
 496
 497		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
 498			selector += linear_range_values_in_range(range);
 499			continue;
 500		}
 501
 502		ret = linear_range_get_selector_high(range, min_uV, &sel,
 503						     &found);
 504		if (ret) {
 505			selector += linear_range_values_in_range(range);
 506			continue;
 507		}
 508
 509		ret = selector + sel - range->min_sel;
 510
 511		voltage = rdev->desc->ops->list_voltage(rdev, ret);
 512
 513		/*
 514		 * Map back into a voltage to verify we're still in bounds.
 515		 * We may have overlapping voltage ranges. Hence we don't
 516		 * exit but retry until we have checked all ranges.
 517		 */
 518		if (voltage < min_uV || voltage > max_uV)
 519			selector += linear_range_values_in_range(range);
 520		else
 521			break;
 522	}
 523
 524	if (i == rdev->desc->n_linear_ranges)
 525		return -EINVAL;
 526
 527	return ret;
 528}
 529EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
 530
 531/**
 532 * regulator_desc_list_voltage_linear - List voltages with simple calculation
 533 *
 534 * @desc: Regulator desc for regulator which volatges are to be listed
 535 * @selector: Selector to convert into a voltage
 536 *
 537 * Regulators with a simple linear mapping between voltages and
 538 * selectors can set min_uV and uV_step in the regulator descriptor
 539 * and then use this function prior regulator registration to list
 540 * the voltages. This is useful when voltages need to be listed during
 541 * device-tree parsing.
 542 */
 543int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
 544				       unsigned int selector)
 545{
 546	if (selector >= desc->n_voltages)
 547		return -EINVAL;
 548
 549	if (selector < desc->linear_min_sel)
 550		return 0;
 551
 552	selector -= desc->linear_min_sel;
 553
 554	return desc->min_uV + (desc->uV_step * selector);
 555}
 556EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
 557
 558/**
 559 * regulator_list_voltage_linear - List voltages with simple calculation
 560 *
 561 * @rdev: Regulator device
 562 * @selector: Selector to convert into a voltage
 563 *
 564 * Regulators with a simple linear mapping between voltages and
 565 * selectors can set min_uV and uV_step in the regulator descriptor
 566 * and then use this function as their list_voltage() operation,
 567 */
 568int regulator_list_voltage_linear(struct regulator_dev *rdev,
 569				  unsigned int selector)
 570{
 571	return regulator_desc_list_voltage_linear(rdev->desc, selector);
 
 
 
 
 
 
 
 572}
 573EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
 574
 575/**
 576 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
 577 *
 578 * @rdev: Regulator device
 579 * @selector: Selector to convert into a voltage
 580 *
 581 * list_voltage() operation, intended to be used by drivers utilizing pickable
 582 * ranges helpers.
 583 */
 584int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
 585						 unsigned int selector)
 586{
 587	const struct linear_range *range;
 588	int i;
 589	unsigned int all_sels = 0;
 590
 591	if (!rdev->desc->n_linear_ranges) {
 592		BUG_ON(!rdev->desc->n_linear_ranges);
 593		return -EINVAL;
 594	}
 595
 596	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 597		unsigned int sel_indexes;
 598
 599		range = &rdev->desc->linear_ranges[i];
 600
 601		sel_indexes = linear_range_values_in_range(range) - 1;
 602
 603		if (all_sels + sel_indexes >= selector) {
 604			selector -= all_sels;
 605			/*
 606			 * As we see here, pickable ranges work only as
 607			 * long as the first selector for each pickable
 608			 * range is 0, and the each subsequent range for
 609			 * this 'pick' follow immediately at next unused
 610			 * selector (Eg. there is no gaps between ranges).
 611			 * I think this is fine but it probably should be
 612			 * documented. OTOH, whole pickable range stuff
 613			 * might benefit from some documentation
 614			 */
 615			return range->min + (range->step * selector);
 616		}
 617
 618		all_sels += (sel_indexes + 1);
 619	}
 620
 621	return -EINVAL;
 622}
 623EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
 624
 625/**
 626 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
 627 *
 628 * @desc: Regulator desc for regulator which volatges are to be listed
 629 * @selector: Selector to convert into a voltage
 630 *
 631 * Regulators with a series of simple linear mappings between voltages
 632 * and selectors who have set linear_ranges in the regulator descriptor
 633 * can use this function prior regulator registration to list voltages.
 634 * This is useful when voltages need to be listed during device-tree
 635 * parsing.
 636 */
 637int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
 638					     unsigned int selector)
 639{
 640	unsigned int val;
 641	int ret;
 642
 643	BUG_ON(!desc->n_linear_ranges);
 644
 645	ret = linear_range_get_value_array(desc->linear_ranges,
 646					   desc->n_linear_ranges, selector,
 647					   &val);
 648	if (ret)
 649		return ret;
 650
 651	return val;
 652}
 653EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
 654
 655/**
 656 * regulator_list_voltage_linear_range - List voltages for linear ranges
 657 *
 658 * @rdev: Regulator device
 659 * @selector: Selector to convert into a voltage
 660 *
 661 * Regulators with a series of simple linear mappings between voltages
 662 * and selectors can set linear_ranges in the regulator descriptor and
 663 * then use this function as their list_voltage() operation,
 664 */
 665int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
 666					unsigned int selector)
 667{
 668	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
 669}
 670EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
 671
 672/**
 673 * regulator_list_voltage_table - List voltages with table based mapping
 674 *
 675 * @rdev: Regulator device
 676 * @selector: Selector to convert into a voltage
 677 *
 678 * Regulators with table based mapping between voltages and
 679 * selectors can set volt_table in the regulator descriptor
 680 * and then use this function as their list_voltage() operation.
 681 */
 682int regulator_list_voltage_table(struct regulator_dev *rdev,
 683				 unsigned int selector)
 684{
 685	if (!rdev->desc->volt_table) {
 686		BUG_ON(!rdev->desc->volt_table);
 687		return -EINVAL;
 688	}
 689
 690	if (selector >= rdev->desc->n_voltages)
 691		return -EINVAL;
 692	if (selector < rdev->desc->linear_min_sel)
 693		return 0;
 694
 695	return rdev->desc->volt_table[selector];
 696}
 697EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
 698
 699/**
 700 * regulator_set_bypass_regmap - Default set_bypass() using regmap
 701 *
 702 * @rdev: device to operate on.
 703 * @enable: state to set.
 704 */
 705int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
 706{
 707	unsigned int val;
 708
 709	if (enable) {
 710		val = rdev->desc->bypass_val_on;
 711		if (!val)
 712			val = rdev->desc->bypass_mask;
 713	} else {
 714		val = rdev->desc->bypass_val_off;
 715	}
 716
 717	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
 718				  rdev->desc->bypass_mask, val);
 719}
 720EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
 721
 722/**
 723 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
 724 *
 725 * @rdev: device to operate on.
 726 */
 727int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
 728{
 729	unsigned int val;
 730
 731	val = rdev->desc->soft_start_val_on;
 732	if (!val)
 733		val = rdev->desc->soft_start_mask;
 734
 735	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
 736				  rdev->desc->soft_start_mask, val);
 737}
 738EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
 739
 740/**
 741 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
 742 *
 743 * @rdev: device to operate on.
 744 */
 745int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
 746{
 747	unsigned int val;
 748
 749	val = rdev->desc->pull_down_val_on;
 750	if (!val)
 751		val = rdev->desc->pull_down_mask;
 752
 753	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
 754				  rdev->desc->pull_down_mask, val);
 755}
 756EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
 757
 758/**
 759 * regulator_get_bypass_regmap - Default get_bypass() using regmap
 760 *
 761 * @rdev: device to operate on.
 762 * @enable: current state.
 763 */
 764int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
 765{
 766	unsigned int val;
 767	unsigned int val_on = rdev->desc->bypass_val_on;
 768	int ret;
 769
 770	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
 771	if (ret != 0)
 772		return ret;
 773
 774	if (!val_on)
 775		val_on = rdev->desc->bypass_mask;
 776
 777	*enable = (val & rdev->desc->bypass_mask) == val_on;
 778
 779	return 0;
 780}
 781EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
 782
 783/**
 784 * regulator_set_active_discharge_regmap - Default set_active_discharge()
 785 *					   using regmap
 786 *
 787 * @rdev: device to operate on.
 788 * @enable: state to set, 0 to disable and 1 to enable.
 789 */
 790int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
 791					  bool enable)
 792{
 793	unsigned int val;
 794
 795	if (enable)
 796		val = rdev->desc->active_discharge_on;
 797	else
 798		val = rdev->desc->active_discharge_off;
 799
 800	return regmap_update_bits(rdev->regmap,
 801				  rdev->desc->active_discharge_reg,
 802				  rdev->desc->active_discharge_mask, val);
 803}
 804EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
 805
 806/**
 807 * regulator_set_current_limit_regmap - set_current_limit for regmap users
 808 *
 809 * @rdev: regulator to operate on
 810 * @min_uA: Lower bound for current limit
 811 * @max_uA: Upper bound for current limit
 812 *
 813 * Regulators that use regmap for their register I/O can set curr_table,
 814 * csel_reg and csel_mask fields in their descriptor and then use this
 815 * as their set_current_limit operation, saving some code.
 816 */
 817int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
 818				       int min_uA, int max_uA)
 819{
 820	unsigned int n_currents = rdev->desc->n_current_limits;
 821	int i, sel = -1;
 822
 823	if (n_currents == 0)
 824		return -EINVAL;
 825
 826	if (rdev->desc->curr_table) {
 827		const unsigned int *curr_table = rdev->desc->curr_table;
 828		bool ascend = curr_table[n_currents - 1] > curr_table[0];
 829
 830		/* search for closest to maximum */
 831		if (ascend) {
 832			for (i = n_currents - 1; i >= 0; i--) {
 833				if (min_uA <= curr_table[i] &&
 834				    curr_table[i] <= max_uA) {
 835					sel = i;
 836					break;
 837				}
 838			}
 839		} else {
 840			for (i = 0; i < n_currents; i++) {
 841				if (min_uA <= curr_table[i] &&
 842				    curr_table[i] <= max_uA) {
 843					sel = i;
 844					break;
 845				}
 846			}
 847		}
 848	}
 849
 850	if (sel < 0)
 851		return -EINVAL;
 852
 853	sel <<= ffs(rdev->desc->csel_mask) - 1;
 854
 855	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
 856				  rdev->desc->csel_mask, sel);
 857}
 858EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
 859
 860/**
 861 * regulator_get_current_limit_regmap - get_current_limit for regmap users
 862 *
 863 * @rdev: regulator to operate on
 864 *
 865 * Regulators that use regmap for their register I/O can set the
 866 * csel_reg and csel_mask fields in their descriptor and then use this
 867 * as their get_current_limit operation, saving some code.
 868 */
 869int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
 870{
 871	unsigned int val;
 872	int ret;
 873
 874	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
 875	if (ret != 0)
 876		return ret;
 877
 878	val &= rdev->desc->csel_mask;
 879	val >>= ffs(rdev->desc->csel_mask) - 1;
 880
 881	if (rdev->desc->curr_table) {
 882		if (val >= rdev->desc->n_current_limits)
 883			return -EINVAL;
 884
 885		return rdev->desc->curr_table[val];
 886	}
 887
 888	return -EINVAL;
 889}
 890EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
 891
 892/**
 893 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
 894 *                                   of regulator_bulk_data structs
 895 *
 896 * @consumers: array of regulator_bulk_data entries to initialize
 897 * @supply_names: array of supply name strings
 898 * @num_supplies: number of supply names to initialize
 899 *
 900 * Note: the 'consumers' array must be the size of 'num_supplies'.
 901 */
 902void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
 903				     const char *const *supply_names,
 904				     unsigned int num_supplies)
 905{
 906	unsigned int i;
 907
 908	for (i = 0; i < num_supplies; i++)
 909		consumers[i].supply = supply_names[i];
 910}
 911EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
 912
 913/**
 914 * regulator_is_equal - test whether two regulators are the same
 915 *
 916 * @reg1: first regulator to operate on
 917 * @reg2: second regulator to operate on
 918 */
 919bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
 920{
 921	return reg1->rdev == reg2->rdev;
 922}
 923EXPORT_SYMBOL_GPL(regulator_is_equal);
 924
 925/**
 926 * regulator_find_closest_bigger - helper to find offset in ramp delay table
 927 *
 928 * @target: targeted ramp_delay
 929 * @table: table with supported ramp delays
 930 * @num_sel: number of entries in the table
 931 * @sel: Pointer to store table offset
 932 *
 933 * This is the internal helper used by regulator_set_ramp_delay_regmap to
 934 * map ramp delay to register value. It should only be used directly if
 935 * regulator_set_ramp_delay_regmap cannot handle a specific device setup
 936 * (e.g. because the value is split over multiple registers).
 937 */
 938int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
 939				  unsigned int num_sel, unsigned int *sel)
 940{
 941	unsigned int s, tmp, max, maxsel = 0;
 942	bool found = false;
 943
 944	max = table[0];
 945
 946	for (s = 0; s < num_sel; s++) {
 947		if (table[s] > max) {
 948			max = table[s];
 949			maxsel = s;
 950		}
 951		if (table[s] >= target) {
 952			if (!found || table[s] - target < tmp - target) {
 953				tmp = table[s];
 954				*sel = s;
 955				found = true;
 956				if (tmp == target)
 957					break;
 958			}
 959		}
 960	}
 961
 962	if (!found) {
 963		*sel = maxsel;
 964		return -EINVAL;
 965	}
 966
 967	return 0;
 968}
 969EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
 970
 971/**
 972 * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
 973 *
 974 * @rdev: regulator to operate on
 975 * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
 976 *
 977 * Regulators that use regmap for their register I/O can set the ramp_reg
 978 * and ramp_mask fields in their descriptor and then use this as their
 979 * set_ramp_delay operation, saving some code.
 980 */
 981int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
 982{
 983	int ret;
 984	unsigned int sel;
 985
 986	if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
 987		return -EINVAL;
 988
 989	ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
 990					    rdev->desc->n_ramp_values, &sel);
 991
 992	if (ret) {
 993		dev_warn(rdev_get_dev(rdev),
 994			 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
 995			 rdev->desc->ramp_delay_table[sel]);
 996	}
 997
 998	sel <<= ffs(rdev->desc->ramp_mask) - 1;
 999
1000	return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
1001				  rdev->desc->ramp_mask, sel);
1002}
1003EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);