Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4 *
5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/iopoll.h>
11#include <linux/clk-provider.h>
12#include <linux/delay.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/of_device.h>
16#include <linux/platform_device.h>
17#include <linux/reset.h>
18#include <linux/phy/phy.h>
19#include <linux/phy/phy-mipi-dphy.h>
20#include <linux/pm_runtime.h>
21#include <linux/mfd/syscon.h>
22
23#define PSEC_PER_SEC 1000000000000LL
24
25#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
26
27/*
28 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
29 * is the first address, the other from the bit4 to bit0 is the second address.
30 * when you configure the registers, you must set both of them. The Clock Lane
31 * and Data Lane use the same registers with the same second address, but the
32 * first address is different.
33 */
34#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
35#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
36#define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
37 SECOND_ADDRESS(second))
38
39/* Analog Register Part: reg00 */
40#define BANDGAP_POWER_MASK BIT(7)
41#define BANDGAP_POWER_DOWN BIT(7)
42#define BANDGAP_POWER_ON 0
43#define LANE_EN_MASK GENMASK(6, 2)
44#define LANE_EN_CK BIT(6)
45#define LANE_EN_3 BIT(5)
46#define LANE_EN_2 BIT(4)
47#define LANE_EN_1 BIT(3)
48#define LANE_EN_0 BIT(2)
49#define POWER_WORK_MASK GENMASK(1, 0)
50#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
51#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
52/* Analog Register Part: reg01 */
53#define REG_SYNCRST_MASK BIT(2)
54#define REG_SYNCRST_RESET BIT(2)
55#define REG_SYNCRST_NORMAL 0
56#define REG_LDOPD_MASK BIT(1)
57#define REG_LDOPD_POWER_DOWN BIT(1)
58#define REG_LDOPD_POWER_ON 0
59#define REG_PLLPD_MASK BIT(0)
60#define REG_PLLPD_POWER_DOWN BIT(0)
61#define REG_PLLPD_POWER_ON 0
62/* Analog Register Part: reg03 */
63#define REG_FBDIV_HI_MASK BIT(5)
64#define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
65#define REG_PREDIV_MASK GENMASK(4, 0)
66#define REG_PREDIV(x) UPDATE(x, 4, 0)
67/* Analog Register Part: reg04 */
68#define REG_FBDIV_LO_MASK GENMASK(7, 0)
69#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
70/* Analog Register Part: reg05 */
71#define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
72#define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
73#define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
74#define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
75/* Analog Register Part: reg06 */
76#define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
77#define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
78#define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
79#define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
80/* Analog Register Part: reg07 */
81#define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
82#define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
83#define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
84#define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
85/* Analog Register Part: reg08 */
86#define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
87#define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
88#define SAMPLE_CLOCK_DIRECTION_FORWARD 0
89/* Digital Register Part: reg00 */
90#define REG_DIG_RSTN_MASK BIT(0)
91#define REG_DIG_RSTN_NORMAL BIT(0)
92#define REG_DIG_RSTN_RESET 0
93/* Digital Register Part: reg01 */
94#define INVERT_TXCLKESC_MASK BIT(1)
95#define INVERT_TXCLKESC_ENABLE BIT(1)
96#define INVERT_TXCLKESC_DISABLE 0
97#define INVERT_TXBYTECLKHS_MASK BIT(0)
98#define INVERT_TXBYTECLKHS_ENABLE BIT(0)
99#define INVERT_TXBYTECLKHS_DISABLE 0
100/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
101#define T_LPX_CNT_MASK GENMASK(5, 0)
102#define T_LPX_CNT(x) UPDATE(x, 5, 0)
103/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
104#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
105#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
106/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
107#define T_HS_ZERO_CNT_MASK GENMASK(5, 0)
108#define T_HS_ZERO_CNT(x) UPDATE(x, 5, 0)
109/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
110#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
111#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
112/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
113#define T_HS_EXIT_CNT_MASK GENMASK(4, 0)
114#define T_HS_EXIT_CNT(x) UPDATE(x, 4, 0)
115/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
116#define T_CLK_POST_CNT_MASK GENMASK(3, 0)
117#define T_CLK_POST_CNT(x) UPDATE(x, 3, 0)
118/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
119#define LPDT_TX_PPI_SYNC_MASK BIT(2)
120#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
121#define LPDT_TX_PPI_SYNC_DISABLE 0
122#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
123#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
124/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
125#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
126#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
127/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
128#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
129#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
130/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
131#define T_TA_GO_CNT_MASK GENMASK(5, 0)
132#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
133/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
134#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
135#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
136/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
137#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
138#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
139/* LVDS Register Part: reg00 */
140#define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
141#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
142#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
143/* LVDS Register Part: reg01 */
144#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
145#define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
146#define LVDS_DIGITAL_INTERNAL_DISABLE 0
147/* LVDS Register Part: reg03 */
148#define MODE_ENABLE_MASK GENMASK(2, 0)
149#define TTL_MODE_ENABLE BIT(2)
150#define LVDS_MODE_ENABLE BIT(1)
151#define MIPI_MODE_ENABLE BIT(0)
152/* LVDS Register Part: reg0b */
153#define LVDS_LANE_EN_MASK GENMASK(7, 3)
154#define LVDS_DATA_LANE0_EN BIT(7)
155#define LVDS_DATA_LANE1_EN BIT(6)
156#define LVDS_DATA_LANE2_EN BIT(5)
157#define LVDS_DATA_LANE3_EN BIT(4)
158#define LVDS_CLK_LANE_EN BIT(3)
159#define LVDS_PLL_POWER_MASK BIT(2)
160#define LVDS_PLL_POWER_OFF BIT(2)
161#define LVDS_PLL_POWER_ON 0
162#define LVDS_BANDGAP_POWER_MASK BIT(0)
163#define LVDS_BANDGAP_POWER_DOWN BIT(0)
164#define LVDS_BANDGAP_POWER_ON 0
165
166#define DSI_PHY_RSTZ 0xa0
167#define PHY_ENABLECLK BIT(2)
168#define DSI_PHY_STATUS 0xb0
169#define PHY_LOCK BIT(0)
170
171struct inno_dsidphy {
172 struct device *dev;
173 struct clk *ref_clk;
174 struct clk *pclk_phy;
175 struct clk *pclk_host;
176 void __iomem *phy_base;
177 void __iomem *host_base;
178 struct reset_control *rst;
179 enum phy_mode mode;
180 struct phy_configure_opts_mipi_dphy dphy_cfg;
181
182 struct clk *pll_clk;
183 struct {
184 struct clk_hw hw;
185 u8 prediv;
186 u16 fbdiv;
187 unsigned long rate;
188 } pll;
189};
190
191enum {
192 REGISTER_PART_ANALOG,
193 REGISTER_PART_DIGITAL,
194 REGISTER_PART_CLOCK_LANE,
195 REGISTER_PART_DATA0_LANE,
196 REGISTER_PART_DATA1_LANE,
197 REGISTER_PART_DATA2_LANE,
198 REGISTER_PART_DATA3_LANE,
199 REGISTER_PART_LVDS,
200};
201
202static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
203{
204 return container_of(hw, struct inno_dsidphy, pll.hw);
205}
206
207static void phy_update_bits(struct inno_dsidphy *inno,
208 u8 first, u8 second, u8 mask, u8 val)
209{
210 u32 reg = PHY_REG(first, second) << 2;
211 unsigned int tmp, orig;
212
213 orig = readl(inno->phy_base + reg);
214 tmp = orig & ~mask;
215 tmp |= val & mask;
216 writel(tmp, inno->phy_base + reg);
217}
218
219static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
220 unsigned long rate)
221{
222 unsigned long prate = clk_get_rate(inno->ref_clk);
223 unsigned long best_freq = 0;
224 unsigned long fref, fout;
225 u8 min_prediv, max_prediv;
226 u8 _prediv, best_prediv = 1;
227 u16 _fbdiv, best_fbdiv = 1;
228 u32 min_delta = UINT_MAX;
229
230 /*
231 * The PLL output frequency can be calculated using a simple formula:
232 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
233 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
234 */
235 fref = prate / 2;
236 if (rate > 1000000000UL)
237 fout = 1000000000UL;
238 else
239 fout = rate;
240
241 /* 5Mhz < Fref / prediv < 40MHz */
242 min_prediv = DIV_ROUND_UP(fref, 40000000);
243 max_prediv = fref / 5000000;
244
245 for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
246 u64 tmp;
247 u32 delta;
248
249 tmp = (u64)fout * _prediv;
250 do_div(tmp, fref);
251 _fbdiv = tmp;
252
253 /*
254 * The possible settings of feedback divider are
255 * 12, 13, 14, 16, ~ 511
256 */
257 if (_fbdiv == 15)
258 continue;
259
260 if (_fbdiv < 12 || _fbdiv > 511)
261 continue;
262
263 tmp = (u64)_fbdiv * fref;
264 do_div(tmp, _prediv);
265
266 delta = abs(fout - tmp);
267 if (!delta) {
268 best_prediv = _prediv;
269 best_fbdiv = _fbdiv;
270 best_freq = tmp;
271 break;
272 } else if (delta < min_delta) {
273 best_prediv = _prediv;
274 best_fbdiv = _fbdiv;
275 best_freq = tmp;
276 min_delta = delta;
277 }
278 }
279
280 if (best_freq) {
281 inno->pll.prediv = best_prediv;
282 inno->pll.fbdiv = best_fbdiv;
283 inno->pll.rate = best_freq;
284 }
285
286 return best_freq;
287}
288
289static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
290{
291 struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
292 const struct {
293 unsigned long rate;
294 u8 hs_prepare;
295 u8 clk_lane_hs_zero;
296 u8 data_lane_hs_zero;
297 u8 hs_trail;
298 } timings[] = {
299 { 110000000, 0x20, 0x16, 0x02, 0x22},
300 { 150000000, 0x06, 0x16, 0x03, 0x45},
301 { 200000000, 0x18, 0x17, 0x04, 0x0b},
302 { 250000000, 0x05, 0x17, 0x05, 0x16},
303 { 300000000, 0x51, 0x18, 0x06, 0x2c},
304 { 400000000, 0x64, 0x19, 0x07, 0x33},
305 { 500000000, 0x20, 0x1b, 0x07, 0x4e},
306 { 600000000, 0x6a, 0x1d, 0x08, 0x3a},
307 { 700000000, 0x3e, 0x1e, 0x08, 0x6a},
308 { 800000000, 0x21, 0x1f, 0x09, 0x29},
309 {1000000000, 0x09, 0x20, 0x09, 0x27},
310 };
311 u32 t_txbyteclkhs, t_txclkesc;
312 u32 txbyteclkhs, txclkesc, esc_clk_div;
313 u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
314 u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
315 unsigned int i;
316
317 inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
318
319 /* Select MIPI mode */
320 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
321 MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
322 /* Configure PLL */
323 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
324 REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
325 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
326 REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
327 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
328 REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
329 /* Enable PLL and LDO */
330 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
331 REG_LDOPD_MASK | REG_PLLPD_MASK,
332 REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
333 /* Reset analog */
334 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
335 REG_SYNCRST_MASK, REG_SYNCRST_RESET);
336 udelay(1);
337 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
338 REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
339 /* Reset digital */
340 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
341 REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
342 udelay(1);
343 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
344 REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
345
346 txbyteclkhs = inno->pll.rate / 8;
347 t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
348
349 esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
350 txclkesc = txbyteclkhs / esc_clk_div;
351 t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
352
353 /*
354 * The value of counter for HS Ths-exit
355 * Ths-exit = Tpin_txbyteclkhs * value
356 */
357 hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
358 /*
359 * The value of counter for HS Tclk-post
360 * Tclk-post = Tpin_txbyteclkhs * value
361 */
362 clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
363 /*
364 * The value of counter for HS Tclk-pre
365 * Tclk-pre = Tpin_txbyteclkhs * value
366 */
367 clk_pre = DIV_ROUND_UP(cfg->clk_pre, t_txbyteclkhs);
368
369 /*
370 * The value of counter for HS Tlpx Time
371 * Tlpx = Tpin_txbyteclkhs * (2 + value)
372 */
373 lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
374 if (lpx >= 2)
375 lpx -= 2;
376
377 /*
378 * The value of counter for HS Tta-go
379 * Tta-go for turnaround
380 * Tta-go = Ttxclkesc * value
381 */
382 ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
383 /*
384 * The value of counter for HS Tta-sure
385 * Tta-sure for turnaround
386 * Tta-sure = Ttxclkesc * value
387 */
388 ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
389 /*
390 * The value of counter for HS Tta-wait
391 * Tta-wait for turnaround
392 * Tta-wait = Ttxclkesc * value
393 */
394 ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
395
396 for (i = 0; i < ARRAY_SIZE(timings); i++)
397 if (inno->pll.rate <= timings[i].rate)
398 break;
399
400 if (i == ARRAY_SIZE(timings))
401 --i;
402
403 hs_prepare = timings[i].hs_prepare;
404 hs_trail = timings[i].hs_trail;
405 clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
406 data_lane_hs_zero = timings[i].data_lane_hs_zero;
407 wakeup = 0x3ff;
408
409 for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
410 if (i == REGISTER_PART_CLOCK_LANE)
411 hs_zero = clk_lane_hs_zero;
412 else
413 hs_zero = data_lane_hs_zero;
414
415 phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
416 T_LPX_CNT(lpx));
417 phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
418 T_HS_PREPARE_CNT(hs_prepare));
419 phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
420 T_HS_ZERO_CNT(hs_zero));
421 phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
422 T_HS_TRAIL_CNT(hs_trail));
423 phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
424 T_HS_EXIT_CNT(hs_exit));
425 phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
426 T_CLK_POST_CNT(clk_post));
427 phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
428 T_CLK_PRE_CNT(clk_pre));
429 phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
430 T_WAKEUP_CNT_HI(wakeup >> 8));
431 phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
432 T_WAKEUP_CNT_LO(wakeup));
433 phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
434 T_TA_GO_CNT(ta_go));
435 phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
436 T_TA_SURE_CNT(ta_sure));
437 phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
438 T_TA_WAIT_CNT(ta_wait));
439 }
440
441 /* Enable all lanes on analog part */
442 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
443 LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
444 LANE_EN_1 | LANE_EN_0);
445}
446
447static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
448{
449 u8 prediv = 2;
450 u16 fbdiv = 28;
451
452 /* Sample clock reverse direction */
453 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
454 SAMPLE_CLOCK_DIRECTION_MASK,
455 SAMPLE_CLOCK_DIRECTION_REVERSE);
456
457 /* Select LVDS mode */
458 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
459 MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
460 /* Configure PLL */
461 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
462 REG_PREDIV_MASK, REG_PREDIV(prediv));
463 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
464 REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
465 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
466 REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
467 phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
468 /* Enable PLL and Bandgap */
469 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
470 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
471 LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
472
473 msleep(20);
474
475 /* Reset LVDS digital logic */
476 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
477 LVDS_DIGITAL_INTERNAL_RESET_MASK,
478 LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
479 udelay(1);
480 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
481 LVDS_DIGITAL_INTERNAL_RESET_MASK,
482 LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
483 /* Enable LVDS digital logic */
484 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
485 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
486 LVDS_DIGITAL_INTERNAL_ENABLE);
487 /* Enable LVDS analog driver */
488 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
489 LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
490 LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
491 LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
492}
493
494static int inno_dsidphy_power_on(struct phy *phy)
495{
496 struct inno_dsidphy *inno = phy_get_drvdata(phy);
497
498 clk_prepare_enable(inno->pclk_phy);
499 clk_prepare_enable(inno->ref_clk);
500 pm_runtime_get_sync(inno->dev);
501
502 /* Bandgap power on */
503 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
504 BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
505 /* Enable power work */
506 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
507 POWER_WORK_MASK, POWER_WORK_ENABLE);
508
509 switch (inno->mode) {
510 case PHY_MODE_MIPI_DPHY:
511 inno_dsidphy_mipi_mode_enable(inno);
512 break;
513 case PHY_MODE_LVDS:
514 inno_dsidphy_lvds_mode_enable(inno);
515 break;
516 default:
517 return -EINVAL;
518 }
519
520 return 0;
521}
522
523static int inno_dsidphy_power_off(struct phy *phy)
524{
525 struct inno_dsidphy *inno = phy_get_drvdata(phy);
526
527 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
528 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
529 REG_LDOPD_MASK | REG_PLLPD_MASK,
530 REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
531 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
532 POWER_WORK_MASK, POWER_WORK_DISABLE);
533 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
534 BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
535
536 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
537 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
538 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
539 LVDS_DIGITAL_INTERNAL_DISABLE);
540 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
541 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
542 LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
543
544 pm_runtime_put(inno->dev);
545 clk_disable_unprepare(inno->ref_clk);
546 clk_disable_unprepare(inno->pclk_phy);
547
548 return 0;
549}
550
551static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
552 int submode)
553{
554 struct inno_dsidphy *inno = phy_get_drvdata(phy);
555
556 switch (mode) {
557 case PHY_MODE_MIPI_DPHY:
558 case PHY_MODE_LVDS:
559 inno->mode = mode;
560 break;
561 default:
562 return -EINVAL;
563 }
564
565 return 0;
566}
567
568static int inno_dsidphy_configure(struct phy *phy,
569 union phy_configure_opts *opts)
570{
571 struct inno_dsidphy *inno = phy_get_drvdata(phy);
572 int ret;
573
574 if (inno->mode != PHY_MODE_MIPI_DPHY)
575 return -EINVAL;
576
577 ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
578 if (ret)
579 return ret;
580
581 memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
582
583 return 0;
584}
585
586static const struct phy_ops inno_dsidphy_ops = {
587 .configure = inno_dsidphy_configure,
588 .set_mode = inno_dsidphy_set_mode,
589 .power_on = inno_dsidphy_power_on,
590 .power_off = inno_dsidphy_power_off,
591 .owner = THIS_MODULE,
592};
593
594static int inno_dsidphy_probe(struct platform_device *pdev)
595{
596 struct device *dev = &pdev->dev;
597 struct inno_dsidphy *inno;
598 struct phy_provider *phy_provider;
599 struct phy *phy;
600 int ret;
601
602 inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
603 if (!inno)
604 return -ENOMEM;
605
606 inno->dev = dev;
607 platform_set_drvdata(pdev, inno);
608
609 inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
610 if (IS_ERR(inno->phy_base))
611 return PTR_ERR(inno->phy_base);
612
613 inno->ref_clk = devm_clk_get(dev, "ref");
614 if (IS_ERR(inno->ref_clk)) {
615 ret = PTR_ERR(inno->ref_clk);
616 dev_err(dev, "failed to get ref clock: %d\n", ret);
617 return ret;
618 }
619
620 inno->pclk_phy = devm_clk_get(dev, "pclk");
621 if (IS_ERR(inno->pclk_phy)) {
622 ret = PTR_ERR(inno->pclk_phy);
623 dev_err(dev, "failed to get phy pclk: %d\n", ret);
624 return ret;
625 }
626
627 inno->rst = devm_reset_control_get(dev, "apb");
628 if (IS_ERR(inno->rst)) {
629 ret = PTR_ERR(inno->rst);
630 dev_err(dev, "failed to get system reset control: %d\n", ret);
631 return ret;
632 }
633
634 phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
635 if (IS_ERR(phy)) {
636 ret = PTR_ERR(phy);
637 dev_err(dev, "failed to create phy: %d\n", ret);
638 return ret;
639 }
640
641 phy_set_drvdata(phy, inno);
642
643 phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
644 if (IS_ERR(phy_provider)) {
645 ret = PTR_ERR(phy_provider);
646 dev_err(dev, "failed to register phy provider: %d\n", ret);
647 return ret;
648 }
649
650 pm_runtime_enable(dev);
651
652 return 0;
653}
654
655static int inno_dsidphy_remove(struct platform_device *pdev)
656{
657 struct inno_dsidphy *inno = platform_get_drvdata(pdev);
658
659 pm_runtime_disable(inno->dev);
660
661 return 0;
662}
663
664static const struct of_device_id inno_dsidphy_of_match[] = {
665 { .compatible = "rockchip,px30-dsi-dphy", },
666 { .compatible = "rockchip,rk3128-dsi-dphy", },
667 { .compatible = "rockchip,rk3368-dsi-dphy", },
668 {}
669};
670MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
671
672static struct platform_driver inno_dsidphy_driver = {
673 .driver = {
674 .name = "inno-dsidphy",
675 .of_match_table = of_match_ptr(inno_dsidphy_of_match),
676 },
677 .probe = inno_dsidphy_probe,
678 .remove = inno_dsidphy_remove,
679};
680module_platform_driver(inno_dsidphy_driver);
681
682MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
683MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
684MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4 *
5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6 */
7
8#include <linux/bits.h>
9#include <linux/kernel.h>
10#include <linux/clk.h>
11#include <linux/iopoll.h>
12#include <linux/clk-provider.h>
13#include <linux/delay.h>
14#include <linux/init.h>
15#include <linux/mfd/syscon.h>
16#include <linux/module.h>
17#include <linux/of.h>
18#include <linux/platform_device.h>
19#include <linux/pm_runtime.h>
20#include <linux/reset.h>
21#include <linux/time64.h>
22
23#include <linux/phy/phy.h>
24#include <linux/phy/phy-mipi-dphy.h>
25
26#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
27
28/*
29 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
30 * is the first address, the other from the bit4 to bit0 is the second address.
31 * when you configure the registers, you must set both of them. The Clock Lane
32 * and Data Lane use the same registers with the same second address, but the
33 * first address is different.
34 */
35#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
36#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
37#define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
38 SECOND_ADDRESS(second))
39
40/* Analog Register Part: reg00 */
41#define BANDGAP_POWER_MASK BIT(7)
42#define BANDGAP_POWER_DOWN BIT(7)
43#define BANDGAP_POWER_ON 0
44#define LANE_EN_MASK GENMASK(6, 2)
45#define LANE_EN_CK BIT(6)
46#define LANE_EN_3 BIT(5)
47#define LANE_EN_2 BIT(4)
48#define LANE_EN_1 BIT(3)
49#define LANE_EN_0 BIT(2)
50#define POWER_WORK_MASK GENMASK(1, 0)
51#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
52#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
53/* Analog Register Part: reg01 */
54#define REG_SYNCRST_MASK BIT(2)
55#define REG_SYNCRST_RESET BIT(2)
56#define REG_SYNCRST_NORMAL 0
57#define REG_LDOPD_MASK BIT(1)
58#define REG_LDOPD_POWER_DOWN BIT(1)
59#define REG_LDOPD_POWER_ON 0
60#define REG_PLLPD_MASK BIT(0)
61#define REG_PLLPD_POWER_DOWN BIT(0)
62#define REG_PLLPD_POWER_ON 0
63/* Analog Register Part: reg03 */
64#define REG_FBDIV_HI_MASK BIT(5)
65#define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
66#define REG_PREDIV_MASK GENMASK(4, 0)
67#define REG_PREDIV(x) UPDATE(x, 4, 0)
68/* Analog Register Part: reg04 */
69#define REG_FBDIV_LO_MASK GENMASK(7, 0)
70#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
71/* Analog Register Part: reg05 */
72#define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
73#define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
74#define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
75#define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
76/* Analog Register Part: reg06 */
77#define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
78#define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
79#define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
80#define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
81/* Analog Register Part: reg07 */
82#define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
83#define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
84#define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
85#define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
86/* Analog Register Part: reg08 */
87#define PLL_POST_DIV_ENABLE_MASK BIT(5)
88#define PLL_POST_DIV_ENABLE BIT(5)
89#define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
90#define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
91#define SAMPLE_CLOCK_DIRECTION_FORWARD 0
92#define LOWFRE_EN_MASK BIT(5)
93#define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0
94#define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1
95/* Analog Register Part: reg0b */
96#define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
97#define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
98#define VOD_MIN_RANGE 0x1
99#define VOD_MID_RANGE 0x3
100#define VOD_BIG_RANGE 0x7
101#define VOD_MAX_RANGE 0xf
102/* Analog Register Part: reg1E */
103#define PLL_MODE_SEL_MASK GENMASK(6, 5)
104#define PLL_MODE_SEL_LVDS_MODE 0
105#define PLL_MODE_SEL_MIPI_MODE BIT(5)
106/* Digital Register Part: reg00 */
107#define REG_DIG_RSTN_MASK BIT(0)
108#define REG_DIG_RSTN_NORMAL BIT(0)
109#define REG_DIG_RSTN_RESET 0
110/* Digital Register Part: reg01 */
111#define INVERT_TXCLKESC_MASK BIT(1)
112#define INVERT_TXCLKESC_ENABLE BIT(1)
113#define INVERT_TXCLKESC_DISABLE 0
114#define INVERT_TXBYTECLKHS_MASK BIT(0)
115#define INVERT_TXBYTECLKHS_ENABLE BIT(0)
116#define INVERT_TXBYTECLKHS_DISABLE 0
117/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
118#define T_LPX_CNT_MASK GENMASK(5, 0)
119#define T_LPX_CNT(x) UPDATE(x, 5, 0)
120/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
121#define T_HS_ZERO_CNT_HI_MASK BIT(7)
122#define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7)
123#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
124#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
125/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
126#define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0)
127#define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0)
128/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
129#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
130#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
131/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
132#define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0)
133#define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0)
134/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
135#define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0)
136#define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0)
137/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
138#define LPDT_TX_PPI_SYNC_MASK BIT(2)
139#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
140#define LPDT_TX_PPI_SYNC_DISABLE 0
141#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
142#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
143/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
144#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
145#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
146/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
147#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
148#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
149/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
150#define T_CLK_POST_CNT_HI_MASK GENMASK(7, 6)
151#define T_CLK_POST_CNT_HI(x) UPDATE(x, 7, 6)
152#define T_TA_GO_CNT_MASK GENMASK(5, 0)
153#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
154/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
155#define T_HS_EXIT_CNT_HI_MASK BIT(6)
156#define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6)
157#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
158#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
159/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
160#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
161#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
162/* LVDS Register Part: reg00 */
163#define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
164#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
165#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
166/* LVDS Register Part: reg01 */
167#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
168#define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
169#define LVDS_DIGITAL_INTERNAL_DISABLE 0
170/* LVDS Register Part: reg03 */
171#define MODE_ENABLE_MASK GENMASK(2, 0)
172#define TTL_MODE_ENABLE BIT(2)
173#define LVDS_MODE_ENABLE BIT(1)
174#define MIPI_MODE_ENABLE BIT(0)
175/* LVDS Register Part: reg0b */
176#define LVDS_LANE_EN_MASK GENMASK(7, 3)
177#define LVDS_DATA_LANE0_EN BIT(7)
178#define LVDS_DATA_LANE1_EN BIT(6)
179#define LVDS_DATA_LANE2_EN BIT(5)
180#define LVDS_DATA_LANE3_EN BIT(4)
181#define LVDS_CLK_LANE_EN BIT(3)
182#define LVDS_PLL_POWER_MASK BIT(2)
183#define LVDS_PLL_POWER_OFF BIT(2)
184#define LVDS_PLL_POWER_ON 0
185#define LVDS_BANDGAP_POWER_MASK BIT(0)
186#define LVDS_BANDGAP_POWER_DOWN BIT(0)
187#define LVDS_BANDGAP_POWER_ON 0
188
189#define DSI_PHY_RSTZ 0xa0
190#define PHY_ENABLECLK BIT(2)
191#define DSI_PHY_STATUS 0xb0
192#define PHY_LOCK BIT(0)
193
194enum phy_max_rate {
195 MAX_1GHZ,
196 MAX_2_5GHZ,
197};
198
199struct inno_video_phy_plat_data {
200 const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
201 const unsigned int num_timings;
202 enum phy_max_rate max_rate;
203};
204
205struct inno_dsidphy {
206 struct device *dev;
207 struct clk *ref_clk;
208 struct clk *pclk_phy;
209 struct clk *pclk_host;
210 const struct inno_video_phy_plat_data *pdata;
211 void __iomem *phy_base;
212 void __iomem *host_base;
213 struct reset_control *rst;
214 enum phy_mode mode;
215 struct phy_configure_opts_mipi_dphy dphy_cfg;
216
217 struct clk *pll_clk;
218 struct {
219 struct clk_hw hw;
220 u8 prediv;
221 u16 fbdiv;
222 unsigned long rate;
223 } pll;
224};
225
226enum {
227 REGISTER_PART_ANALOG,
228 REGISTER_PART_DIGITAL,
229 REGISTER_PART_CLOCK_LANE,
230 REGISTER_PART_DATA0_LANE,
231 REGISTER_PART_DATA1_LANE,
232 REGISTER_PART_DATA2_LANE,
233 REGISTER_PART_DATA3_LANE,
234 REGISTER_PART_LVDS,
235};
236
237struct inno_mipi_dphy_timing {
238 unsigned long rate;
239 u8 lpx;
240 u8 hs_prepare;
241 u8 clk_lane_hs_zero;
242 u8 data_lane_hs_zero;
243 u8 hs_trail;
244};
245
246static const
247struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
248 { 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
249 { 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
250 { 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
251 { 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
252 { 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
253 { 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
254 { 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
255 { 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
256 { 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
257 { 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
258 {1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
259};
260
261static const
262struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
263 { 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
264 { 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
265 { 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
266 { 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
267 { 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
268 { 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
269 { 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
270 { 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
271 { 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
272 { 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
273 {1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
274 {1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
275 {1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
276 {1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
277 {1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
278 {2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
279 {2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
280 {2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
281 {2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
282};
283
284static void phy_update_bits(struct inno_dsidphy *inno,
285 u8 first, u8 second, u8 mask, u8 val)
286{
287 u32 reg = PHY_REG(first, second) << 2;
288 unsigned int tmp, orig;
289
290 orig = readl(inno->phy_base + reg);
291 tmp = orig & ~mask;
292 tmp |= val & mask;
293 writel(tmp, inno->phy_base + reg);
294}
295
296static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
297 unsigned long rate)
298{
299 unsigned long prate = clk_get_rate(inno->ref_clk);
300 unsigned long best_freq = 0;
301 unsigned long fref, fout;
302 u8 min_prediv, max_prediv;
303 u8 _prediv, best_prediv = 1;
304 u16 _fbdiv, best_fbdiv = 1;
305 u32 min_delta = UINT_MAX;
306
307 /*
308 * The PLL output frequency can be calculated using a simple formula:
309 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
310 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
311 */
312 fref = prate / 2;
313 if (rate > 1000000000UL)
314 fout = 1000000000UL;
315 else
316 fout = rate;
317
318 /* 5Mhz < Fref / prediv < 40MHz */
319 min_prediv = DIV_ROUND_UP(fref, 40000000);
320 max_prediv = fref / 5000000;
321
322 for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
323 u64 tmp;
324 u32 delta;
325
326 tmp = (u64)fout * _prediv;
327 do_div(tmp, fref);
328 _fbdiv = tmp;
329
330 /*
331 * The possible settings of feedback divider are
332 * 12, 13, 14, 16, ~ 511
333 */
334 if (_fbdiv == 15)
335 continue;
336
337 if (_fbdiv < 12 || _fbdiv > 511)
338 continue;
339
340 tmp = (u64)_fbdiv * fref;
341 do_div(tmp, _prediv);
342
343 delta = abs(fout - tmp);
344 if (!delta) {
345 best_prediv = _prediv;
346 best_fbdiv = _fbdiv;
347 best_freq = tmp;
348 break;
349 } else if (delta < min_delta) {
350 best_prediv = _prediv;
351 best_fbdiv = _fbdiv;
352 best_freq = tmp;
353 min_delta = delta;
354 }
355 }
356
357 if (best_freq) {
358 inno->pll.prediv = best_prediv;
359 inno->pll.fbdiv = best_fbdiv;
360 inno->pll.rate = best_freq;
361 }
362
363 return best_freq;
364}
365
366static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
367{
368 struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
369 const struct inno_mipi_dphy_timing *timings;
370 u32 t_txbyteclkhs, t_txclkesc;
371 u32 txbyteclkhs, txclkesc, esc_clk_div;
372 u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
373 u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
374 unsigned int i;
375
376 timings = inno->pdata->inno_mipi_dphy_timing_table;
377
378 inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
379
380 /* Select MIPI mode */
381 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
382 MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
383 /* Configure PLL */
384 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
385 REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
386 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
387 REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
388 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
389 REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
390 if (inno->pdata->max_rate == MAX_2_5GHZ) {
391 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
392 PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
393 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
394 CLOCK_LANE_VOD_RANGE_SET_MASK,
395 CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
396 }
397 /* Enable PLL and LDO */
398 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
399 REG_LDOPD_MASK | REG_PLLPD_MASK,
400 REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
401 /* Reset analog */
402 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
403 REG_SYNCRST_MASK, REG_SYNCRST_RESET);
404 udelay(1);
405 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
406 REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
407 /* Reset digital */
408 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
409 REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
410 udelay(1);
411 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
412 REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
413
414 txbyteclkhs = inno->pll.rate / 8;
415 t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
416
417 esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
418 txclkesc = txbyteclkhs / esc_clk_div;
419 t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
420
421 /*
422 * The value of counter for HS Ths-exit
423 * Ths-exit = Tpin_txbyteclkhs * value
424 */
425 hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
426 /*
427 * The value of counter for HS Tclk-post
428 * Tclk-post = Tpin_txbyteclkhs * value
429 */
430 clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
431 /*
432 * The value of counter for HS Tclk-pre
433 * Tclk-pre = Tpin_txbyteclkhs * value
434 */
435 clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
436
437 /*
438 * The value of counter for HS Tta-go
439 * Tta-go for turnaround
440 * Tta-go = Ttxclkesc * value
441 */
442 ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
443 /*
444 * The value of counter for HS Tta-sure
445 * Tta-sure for turnaround
446 * Tta-sure = Ttxclkesc * value
447 */
448 ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
449 /*
450 * The value of counter for HS Tta-wait
451 * Tta-wait for turnaround
452 * Tta-wait = Ttxclkesc * value
453 */
454 ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
455
456 for (i = 0; i < inno->pdata->num_timings; i++)
457 if (inno->pll.rate <= timings[i].rate)
458 break;
459
460 if (i == inno->pdata->num_timings)
461 --i;
462
463 /*
464 * The value of counter for HS Tlpx Time
465 * Tlpx = Tpin_txbyteclkhs * (2 + value)
466 */
467 if (inno->pdata->max_rate == MAX_1GHZ) {
468 lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
469 if (lpx >= 2)
470 lpx -= 2;
471 } else
472 lpx = timings[i].lpx;
473
474 hs_prepare = timings[i].hs_prepare;
475 hs_trail = timings[i].hs_trail;
476 clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
477 data_lane_hs_zero = timings[i].data_lane_hs_zero;
478 wakeup = 0x3ff;
479
480 for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
481 if (i == REGISTER_PART_CLOCK_LANE)
482 hs_zero = clk_lane_hs_zero;
483 else
484 hs_zero = data_lane_hs_zero;
485
486 phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
487 T_LPX_CNT(lpx));
488 phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
489 T_HS_PREPARE_CNT(hs_prepare));
490 if (inno->pdata->max_rate == MAX_2_5GHZ)
491 phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
492 T_HS_ZERO_CNT_HI(hs_zero >> 6));
493 phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
494 T_HS_ZERO_CNT_LO(hs_zero));
495 phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
496 T_HS_TRAIL_CNT(hs_trail));
497 if (inno->pdata->max_rate == MAX_2_5GHZ)
498 phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
499 T_HS_EXIT_CNT_HI(hs_exit >> 5));
500 phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
501 T_HS_EXIT_CNT_LO(hs_exit));
502 if (inno->pdata->max_rate == MAX_2_5GHZ)
503 phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
504 T_CLK_POST_CNT_HI(clk_post >> 4));
505 phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
506 T_CLK_POST_CNT_LO(clk_post));
507 phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
508 T_CLK_PRE_CNT(clk_pre));
509 phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
510 T_WAKEUP_CNT_HI(wakeup >> 8));
511 phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
512 T_WAKEUP_CNT_LO(wakeup));
513 phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
514 T_TA_GO_CNT(ta_go));
515 phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
516 T_TA_SURE_CNT(ta_sure));
517 phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
518 T_TA_WAIT_CNT(ta_wait));
519 }
520
521 /* Enable all lanes on analog part */
522 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
523 LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
524 LANE_EN_1 | LANE_EN_0);
525}
526
527static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
528{
529 u8 prediv = 2;
530 u16 fbdiv = 28;
531
532 /* Sample clock reverse direction */
533 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
534 SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
535 SAMPLE_CLOCK_DIRECTION_REVERSE |
536 PLL_OUTPUT_FREQUENCY_DIV_BY_1);
537
538 /* Select LVDS mode */
539 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
540 MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
541 /* Configure PLL */
542 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
543 REG_PREDIV_MASK, REG_PREDIV(prediv));
544 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
545 REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
546 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
547 REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
548 phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
549 /* Enable PLL and Bandgap */
550 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
551 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
552 LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
553
554 msleep(20);
555
556 /* Select PLL mode */
557 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
558 PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
559
560 /* Reset LVDS digital logic */
561 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
562 LVDS_DIGITAL_INTERNAL_RESET_MASK,
563 LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
564 udelay(1);
565 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
566 LVDS_DIGITAL_INTERNAL_RESET_MASK,
567 LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
568 /* Enable LVDS digital logic */
569 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
570 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
571 LVDS_DIGITAL_INTERNAL_ENABLE);
572 /* Enable LVDS analog driver */
573 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
574 LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
575 LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
576 LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
577}
578
579static int inno_dsidphy_power_on(struct phy *phy)
580{
581 struct inno_dsidphy *inno = phy_get_drvdata(phy);
582
583 clk_prepare_enable(inno->pclk_phy);
584 clk_prepare_enable(inno->ref_clk);
585 pm_runtime_get_sync(inno->dev);
586
587 /* Bandgap power on */
588 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
589 BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
590 /* Enable power work */
591 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
592 POWER_WORK_MASK, POWER_WORK_ENABLE);
593
594 switch (inno->mode) {
595 case PHY_MODE_MIPI_DPHY:
596 inno_dsidphy_mipi_mode_enable(inno);
597 break;
598 case PHY_MODE_LVDS:
599 inno_dsidphy_lvds_mode_enable(inno);
600 break;
601 default:
602 return -EINVAL;
603 }
604
605 return 0;
606}
607
608static int inno_dsidphy_power_off(struct phy *phy)
609{
610 struct inno_dsidphy *inno = phy_get_drvdata(phy);
611
612 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
613 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
614 REG_LDOPD_MASK | REG_PLLPD_MASK,
615 REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
616 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
617 POWER_WORK_MASK, POWER_WORK_DISABLE);
618 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
619 BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
620
621 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
622 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
623 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
624 LVDS_DIGITAL_INTERNAL_DISABLE);
625 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
626 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
627 LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
628
629 pm_runtime_put(inno->dev);
630 clk_disable_unprepare(inno->ref_clk);
631 clk_disable_unprepare(inno->pclk_phy);
632
633 return 0;
634}
635
636static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
637 int submode)
638{
639 struct inno_dsidphy *inno = phy_get_drvdata(phy);
640
641 switch (mode) {
642 case PHY_MODE_MIPI_DPHY:
643 case PHY_MODE_LVDS:
644 inno->mode = mode;
645 break;
646 default:
647 return -EINVAL;
648 }
649
650 return 0;
651}
652
653static int inno_dsidphy_configure(struct phy *phy,
654 union phy_configure_opts *opts)
655{
656 struct inno_dsidphy *inno = phy_get_drvdata(phy);
657 int ret;
658
659 if (inno->mode != PHY_MODE_MIPI_DPHY)
660 return -EINVAL;
661
662 ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
663 if (ret)
664 return ret;
665
666 memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
667
668 return 0;
669}
670
671static const struct phy_ops inno_dsidphy_ops = {
672 .configure = inno_dsidphy_configure,
673 .set_mode = inno_dsidphy_set_mode,
674 .power_on = inno_dsidphy_power_on,
675 .power_off = inno_dsidphy_power_off,
676 .owner = THIS_MODULE,
677};
678
679static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
680 .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
681 .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
682 .max_rate = MAX_1GHZ,
683};
684
685static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
686 .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
687 .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
688 .max_rate = MAX_2_5GHZ,
689};
690
691static int inno_dsidphy_probe(struct platform_device *pdev)
692{
693 struct device *dev = &pdev->dev;
694 struct inno_dsidphy *inno;
695 struct phy_provider *phy_provider;
696 struct phy *phy;
697 int ret;
698
699 inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
700 if (!inno)
701 return -ENOMEM;
702
703 inno->dev = dev;
704 inno->pdata = of_device_get_match_data(inno->dev);
705 platform_set_drvdata(pdev, inno);
706
707 inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
708 if (IS_ERR(inno->phy_base))
709 return PTR_ERR(inno->phy_base);
710
711 inno->ref_clk = devm_clk_get(dev, "ref");
712 if (IS_ERR(inno->ref_clk)) {
713 ret = PTR_ERR(inno->ref_clk);
714 dev_err(dev, "failed to get ref clock: %d\n", ret);
715 return ret;
716 }
717
718 inno->pclk_phy = devm_clk_get(dev, "pclk");
719 if (IS_ERR(inno->pclk_phy)) {
720 ret = PTR_ERR(inno->pclk_phy);
721 dev_err(dev, "failed to get phy pclk: %d\n", ret);
722 return ret;
723 }
724
725 inno->rst = devm_reset_control_get(dev, "apb");
726 if (IS_ERR(inno->rst)) {
727 ret = PTR_ERR(inno->rst);
728 dev_err(dev, "failed to get system reset control: %d\n", ret);
729 return ret;
730 }
731
732 phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
733 if (IS_ERR(phy)) {
734 ret = PTR_ERR(phy);
735 dev_err(dev, "failed to create phy: %d\n", ret);
736 return ret;
737 }
738
739 phy_set_drvdata(phy, inno);
740
741 phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
742 if (IS_ERR(phy_provider)) {
743 ret = PTR_ERR(phy_provider);
744 dev_err(dev, "failed to register phy provider: %d\n", ret);
745 return ret;
746 }
747
748 pm_runtime_enable(dev);
749
750 return 0;
751}
752
753static void inno_dsidphy_remove(struct platform_device *pdev)
754{
755 struct inno_dsidphy *inno = platform_get_drvdata(pdev);
756
757 pm_runtime_disable(inno->dev);
758}
759
760static const struct of_device_id inno_dsidphy_of_match[] = {
761 {
762 .compatible = "rockchip,px30-dsi-dphy",
763 .data = &max_1ghz_video_phy_plat_data,
764 }, {
765 .compatible = "rockchip,rk3128-dsi-dphy",
766 .data = &max_1ghz_video_phy_plat_data,
767 }, {
768 .compatible = "rockchip,rk3368-dsi-dphy",
769 .data = &max_1ghz_video_phy_plat_data,
770 }, {
771 .compatible = "rockchip,rk3568-dsi-dphy",
772 .data = &max_2_5ghz_video_phy_plat_data,
773 }, {
774 .compatible = "rockchip,rv1126-dsi-dphy",
775 .data = &max_2_5ghz_video_phy_plat_data,
776 },
777 {}
778};
779MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
780
781static struct platform_driver inno_dsidphy_driver = {
782 .driver = {
783 .name = "inno-dsidphy",
784 .of_match_table = of_match_ptr(inno_dsidphy_of_match),
785 },
786 .probe = inno_dsidphy_probe,
787 .remove_new = inno_dsidphy_remove,
788};
789module_platform_driver(inno_dsidphy_driver);
790
791MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
792MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
793MODULE_LICENSE("GPL v2");