Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * OpenRISC process.c
  4 *
  5 * Linux architectural port borrowing liberally from similar works of
  6 * others.  All original copyrights apply as per the original source
  7 * declaration.
  8 *
  9 * Modifications for the OpenRISC architecture:
 10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 12 *
 13 * This file handles the architecture-dependent parts of process handling...
 14 */
 15
 16#define __KERNEL_SYSCALLS__
 17#include <stdarg.h>
 18
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/debug.h>
 22#include <linux/sched/task.h>
 23#include <linux/sched/task_stack.h>
 24#include <linux/kernel.h>
 25#include <linux/export.h>
 26#include <linux/mm.h>
 27#include <linux/stddef.h>
 28#include <linux/unistd.h>
 29#include <linux/ptrace.h>
 30#include <linux/slab.h>
 31#include <linux/elfcore.h>
 32#include <linux/interrupt.h>
 33#include <linux/delay.h>
 34#include <linux/init_task.h>
 35#include <linux/mqueue.h>
 36#include <linux/fs.h>
 
 37
 38#include <linux/uaccess.h>
 39#include <asm/io.h>
 40#include <asm/processor.h>
 41#include <asm/spr_defs.h>
 
 42
 43#include <linux/smp.h>
 44
 45/*
 46 * Pointer to Current thread info structure.
 47 *
 48 * Used at user space -> kernel transitions.
 49 */
 50struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
 51
 52void machine_restart(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53{
 54	printk(KERN_INFO "*** MACHINE RESTART ***\n");
 55	__asm__("l.nop 1");
 56}
 57
 58/*
 59 * Similar to machine_power_off, but don't shut off power.  Add code
 60 * here to freeze the system for e.g. post-mortem debug purpose when
 61 * possible.  This halt has nothing to do with the idle halt.
 62 */
 63void machine_halt(void)
 64{
 65	printk(KERN_INFO "*** MACHINE HALT ***\n");
 66	__asm__("l.nop 1");
 67}
 68
 69/* If or when software power-off is implemented, add code here.  */
 70void machine_power_off(void)
 71{
 72	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
 73	__asm__("l.nop 1");
 
 74}
 75
 76/*
 77 * Send the doze signal to the cpu if available.
 78 * Make sure, that all interrupts are enabled
 79 */
 80void arch_cpu_idle(void)
 81{
 82	local_irq_enable();
 83	if (mfspr(SPR_UPR) & SPR_UPR_PMP)
 84		mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
 
 85}
 86
 87void (*pm_power_off) (void) = machine_power_off;
 88EXPORT_SYMBOL(pm_power_off);
 89
 90/*
 91 * When a process does an "exec", machine state like FPU and debug
 92 * registers need to be reset.  This is a hook function for that.
 93 * Currently we don't have any such state to reset, so this is empty.
 94 */
 95void flush_thread(void)
 96{
 97}
 98
 99void show_regs(struct pt_regs *regs)
100{
101	extern void show_registers(struct pt_regs *regs);
102
103	show_regs_print_info(KERN_DEFAULT);
104	/* __PHX__ cleanup this mess */
105	show_registers(regs);
106}
107
108void release_thread(struct task_struct *dead_task)
109{
110}
111
112/*
113 * Copy the thread-specific (arch specific) info from the current
114 * process to the new one p
115 */
116extern asmlinkage void ret_from_fork(void);
117
118/*
119 * copy_thread
120 * @clone_flags: flags
121 * @usp: user stack pointer or fn for kernel thread
122 * @arg: arg to fn for kernel thread; always NULL for userspace thread
123 * @p: the newly created task
124 * @tls: the Thread Local Storage pointer for the new process
125 *
126 * At the top of a newly initialized kernel stack are two stacked pt_reg
127 * structures.  The first (topmost) is the userspace context of the thread.
128 * The second is the kernelspace context of the thread.
129 *
130 * A kernel thread will not be returning to userspace, so the topmost pt_regs
131 * struct can be uninitialized; it _does_ need to exist, though, because
132 * a kernel thread can become a userspace thread by doing a kernel_execve, in
133 * which case the topmost context will be initialized and used for 'returning'
134 * to userspace.
135 *
136 * The second pt_reg struct needs to be initialized to 'return' to
137 * ret_from_fork.  A kernel thread will need to set r20 to the address of
138 * a function to call into (with arg in r22); userspace threads need to set
139 * r20 to NULL in which case ret_from_fork will just continue a return to
140 * userspace.
141 *
142 * A kernel thread 'fn' may return; this is effectively what happens when
143 * kernel_execve is called.  In that case, the userspace pt_regs must have
144 * been initialized (which kernel_execve takes care of, see start_thread
145 * below); ret_from_fork will then continue its execution causing the
146 * 'kernel thread' to return to userspace as a userspace thread.
147 */
148
149int
150copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long arg,
151	    struct task_struct *p, unsigned long tls)
152{
 
 
 
153	struct pt_regs *userregs;
154	struct pt_regs *kregs;
155	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
156	unsigned long top_of_kernel_stack;
157
158	top_of_kernel_stack = sp;
159
160	/* Locate userspace context on stack... */
161	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
162	sp -= sizeof(struct pt_regs);
163	userregs = (struct pt_regs *) sp;
164
165	/* ...and kernel context */
166	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
167	sp -= sizeof(struct pt_regs);
168	kregs = (struct pt_regs *)sp;
169
170	if (unlikely(p->flags & PF_KTHREAD)) {
171		memset(kregs, 0, sizeof(struct pt_regs));
172		kregs->gpr[20] = usp; /* fn, kernel thread */
173		kregs->gpr[22] = arg;
174	} else {
175		*userregs = *current_pt_regs();
176
177		if (usp)
178			userregs->sp = usp;
179
180		/*
181		 * For CLONE_SETTLS set "tp" (r10) to the TLS pointer.
182		 */
183		if (clone_flags & CLONE_SETTLS)
184			userregs->gpr[10] = tls;
185
186		userregs->gpr[11] = 0;	/* Result from fork() */
187
188		kregs->gpr[20] = 0;	/* Userspace thread */
189	}
190
191	/*
192	 * _switch wants the kernel stack page in pt_regs->sp so that it
193	 * can restore it to thread_info->ksp... see _switch for details.
194	 */
195	kregs->sp = top_of_kernel_stack;
196	kregs->gpr[9] = (unsigned long)ret_from_fork;
197
198	task_thread_info(p)->ksp = (unsigned long)kregs;
199
200	return 0;
201}
202
203/*
204 * Set up a thread for executing a new program
205 */
206void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
207{
208	unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
209
210	memset(regs, 0, sizeof(struct pt_regs));
211
212	regs->pc = pc;
213	regs->sr = sr;
214	regs->sp = sp;
215}
216
217extern struct thread_info *_switch(struct thread_info *old_ti,
218				   struct thread_info *new_ti);
219extern int lwa_flag;
220
221struct task_struct *__switch_to(struct task_struct *old,
222				struct task_struct *new)
223{
224	struct task_struct *last;
225	struct thread_info *new_ti, *old_ti;
226	unsigned long flags;
227
228	local_irq_save(flags);
229
230	/* current_set is an array of saved current pointers
231	 * (one for each cpu). we need them at user->kernel transition,
232	 * while we save them at kernel->user transition
233	 */
234	new_ti = new->stack;
235	old_ti = old->stack;
236
237	lwa_flag = 0;
238
239	current_thread_info_set[smp_processor_id()] = new_ti;
240	last = (_switch(old_ti, new_ti))->task;
241
242	local_irq_restore(flags);
243
244	return last;
245}
246
247/*
248 * Write out registers in core dump format, as defined by the
249 * struct user_regs_struct
250 */
251void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
252{
253	dest[0] = 0; /* r0 */
254	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
255	dest[32] = regs->pc;
256	dest[33] = regs->sr;
257	dest[34] = 0;
258	dest[35] = 0;
259}
260
261unsigned long get_wchan(struct task_struct *p)
262{
263	/* TODO */
264
265	return 0;
266}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * OpenRISC process.c
  4 *
  5 * Linux architectural port borrowing liberally from similar works of
  6 * others.  All original copyrights apply as per the original source
  7 * declaration.
  8 *
  9 * Modifications for the OpenRISC architecture:
 10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 12 *
 13 * This file handles the architecture-dependent parts of process handling...
 14 */
 15
 16#define __KERNEL_SYSCALLS__
 17#include <linux/cpu.h>
 
 18#include <linux/errno.h>
 19#include <linux/sched.h>
 20#include <linux/sched/debug.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/kernel.h>
 24#include <linux/export.h>
 25#include <linux/mm.h>
 26#include <linux/stddef.h>
 27#include <linux/unistd.h>
 28#include <linux/ptrace.h>
 29#include <linux/slab.h>
 30#include <linux/elfcore.h>
 31#include <linux/interrupt.h>
 32#include <linux/delay.h>
 33#include <linux/init_task.h>
 34#include <linux/mqueue.h>
 35#include <linux/fs.h>
 36#include <linux/reboot.h>
 37
 38#include <linux/uaccess.h>
 39#include <asm/io.h>
 40#include <asm/processor.h>
 41#include <asm/spr_defs.h>
 42#include <asm/switch_to.h>
 43
 44#include <linux/smp.h>
 45
 46/*
 47 * Pointer to Current thread info structure.
 48 *
 49 * Used at user space -> kernel transitions.
 50 */
 51struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
 52
 53void machine_restart(char *cmd)
 54{
 55	do_kernel_restart(cmd);
 56
 57	__asm__("l.nop 13");
 58
 59	/* Give a grace period for failure to restart of 1s */
 60	mdelay(1000);
 61
 62	/* Whoops - the platform was unable to reboot. Tell the user! */
 63	pr_emerg("Reboot failed -- System halted\n");
 64	while (1);
 65}
 66
 67/*
 68 * This is used if a sys-off handler was not set by a power management
 69 * driver, in this case we can assume we are on a simulator.  On
 70 * OpenRISC simulators l.nop 1 will trigger the simulator exit.
 71 */
 72static void default_power_off(void)
 73{
 
 74	__asm__("l.nop 1");
 75}
 76
 77/*
 78 * Similar to machine_power_off, but don't shut off power.  Add code
 79 * here to freeze the system for e.g. post-mortem debug purpose when
 80 * possible.  This halt has nothing to do with the idle halt.
 81 */
 82void machine_halt(void)
 83{
 84	printk(KERN_INFO "*** MACHINE HALT ***\n");
 85	__asm__("l.nop 1");
 86}
 87
 88/* If or when software power-off is implemented, add code here.  */
 89void machine_power_off(void)
 90{
 91	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
 92	do_kernel_power_off();
 93	default_power_off();
 94}
 95
 96/*
 97 * Send the doze signal to the cpu if available.
 98 * Make sure, that all interrupts are enabled
 99 */
100void arch_cpu_idle(void)
101{
102	raw_local_irq_enable();
103	if (mfspr(SPR_UPR) & SPR_UPR_PMP)
104		mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
105	raw_local_irq_disable();
106}
107
108void (*pm_power_off)(void) = NULL;
109EXPORT_SYMBOL(pm_power_off);
110
111/*
112 * When a process does an "exec", machine state like FPU and debug
113 * registers need to be reset.  This is a hook function for that.
114 * Currently we don't have any such state to reset, so this is empty.
115 */
116void flush_thread(void)
117{
118}
119
120void show_regs(struct pt_regs *regs)
121{
 
 
122	show_regs_print_info(KERN_DEFAULT);
123	/* __PHX__ cleanup this mess */
124	show_registers(regs);
125}
126
 
 
 
 
127/*
128 * Copy the thread-specific (arch specific) info from the current
129 * process to the new one p
130 */
131extern asmlinkage void ret_from_fork(void);
132
133/*
134 * copy_thread
135 * @clone_flags: flags
136 * @usp: user stack pointer or fn for kernel thread
137 * @arg: arg to fn for kernel thread; always NULL for userspace thread
138 * @p: the newly created task
139 * @tls: the Thread Local Storage pointer for the new process
140 *
141 * At the top of a newly initialized kernel stack are two stacked pt_reg
142 * structures.  The first (topmost) is the userspace context of the thread.
143 * The second is the kernelspace context of the thread.
144 *
145 * A kernel thread will not be returning to userspace, so the topmost pt_regs
146 * struct can be uninitialized; it _does_ need to exist, though, because
147 * a kernel thread can become a userspace thread by doing a kernel_execve, in
148 * which case the topmost context will be initialized and used for 'returning'
149 * to userspace.
150 *
151 * The second pt_reg struct needs to be initialized to 'return' to
152 * ret_from_fork.  A kernel thread will need to set r20 to the address of
153 * a function to call into (with arg in r22); userspace threads need to set
154 * r20 to NULL in which case ret_from_fork will just continue a return to
155 * userspace.
156 *
157 * A kernel thread 'fn' may return; this is effectively what happens when
158 * kernel_execve is called.  In that case, the userspace pt_regs must have
159 * been initialized (which kernel_execve takes care of, see start_thread
160 * below); ret_from_fork will then continue its execution causing the
161 * 'kernel thread' to return to userspace as a userspace thread.
162 */
163
164int
165copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
166{
167	unsigned long clone_flags = args->flags;
168	unsigned long usp = args->stack;
169	unsigned long tls = args->tls;
170	struct pt_regs *userregs;
171	struct pt_regs *kregs;
172	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
173	unsigned long top_of_kernel_stack;
174
175	top_of_kernel_stack = sp;
176
177	/* Locate userspace context on stack... */
178	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
179	sp -= sizeof(struct pt_regs);
180	userregs = (struct pt_regs *) sp;
181
182	/* ...and kernel context */
183	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
184	sp -= sizeof(struct pt_regs);
185	kregs = (struct pt_regs *)sp;
186
187	if (unlikely(args->fn)) {
188		memset(kregs, 0, sizeof(struct pt_regs));
189		kregs->gpr[20] = (unsigned long)args->fn;
190		kregs->gpr[22] = (unsigned long)args->fn_arg;
191	} else {
192		*userregs = *current_pt_regs();
193
194		if (usp)
195			userregs->sp = usp;
196
197		/*
198		 * For CLONE_SETTLS set "tp" (r10) to the TLS pointer.
199		 */
200		if (clone_flags & CLONE_SETTLS)
201			userregs->gpr[10] = tls;
202
203		userregs->gpr[11] = 0;	/* Result from fork() */
204
205		kregs->gpr[20] = 0;	/* Userspace thread */
206	}
207
208	/*
209	 * _switch wants the kernel stack page in pt_regs->sp so that it
210	 * can restore it to thread_info->ksp... see _switch for details.
211	 */
212	kregs->sp = top_of_kernel_stack;
213	kregs->gpr[9] = (unsigned long)ret_from_fork;
214
215	task_thread_info(p)->ksp = (unsigned long)kregs;
216
217	return 0;
218}
219
220/*
221 * Set up a thread for executing a new program
222 */
223void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
224{
225	unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
226
227	memset(regs, 0, sizeof(struct pt_regs));
228
229	regs->pc = pc;
230	regs->sr = sr;
231	regs->sp = sp;
232}
233
234extern struct thread_info *_switch(struct thread_info *old_ti,
235				   struct thread_info *new_ti);
236extern int lwa_flag;
237
238struct task_struct *__switch_to(struct task_struct *old,
239				struct task_struct *new)
240{
241	struct task_struct *last;
242	struct thread_info *new_ti, *old_ti;
243	unsigned long flags;
244
245	local_irq_save(flags);
246
247	/* current_set is an array of saved current pointers
248	 * (one for each cpu). we need them at user->kernel transition,
249	 * while we save them at kernel->user transition
250	 */
251	new_ti = new->stack;
252	old_ti = old->stack;
253
254	lwa_flag = 0;
255
256	current_thread_info_set[smp_processor_id()] = new_ti;
257	last = (_switch(old_ti, new_ti))->task;
258
259	local_irq_restore(flags);
260
261	return last;
262}
263
264/*
265 * Write out registers in core dump format, as defined by the
266 * struct user_regs_struct
267 */
268void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
269{
270	dest[0] = 0; /* r0 */
271	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
272	dest[32] = regs->pc;
273	dest[33] = regs->sr;
274	dest[34] = 0;
275	dest[35] = 0;
276}
277
278unsigned long __get_wchan(struct task_struct *p)
279{
280	/* TODO */
281
282	return 0;
283}