Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include "builtin.h"
3#include "perf.h"
4#include "perf-sys.h"
5
6#include "util/cpumap.h"
7#include "util/evlist.h"
8#include "util/evsel.h"
9#include "util/evsel_fprintf.h"
10#include "util/symbol.h"
11#include "util/thread.h"
12#include "util/header.h"
13#include "util/session.h"
14#include "util/tool.h"
15#include "util/cloexec.h"
16#include "util/thread_map.h"
17#include "util/color.h"
18#include "util/stat.h"
19#include "util/string2.h"
20#include "util/callchain.h"
21#include "util/time-utils.h"
22
23#include <subcmd/pager.h>
24#include <subcmd/parse-options.h>
25#include "util/trace-event.h"
26
27#include "util/debug.h"
28#include "util/event.h"
29
30#include <linux/kernel.h>
31#include <linux/log2.h>
32#include <linux/zalloc.h>
33#include <sys/prctl.h>
34#include <sys/resource.h>
35#include <inttypes.h>
36
37#include <errno.h>
38#include <semaphore.h>
39#include <pthread.h>
40#include <math.h>
41#include <api/fs/fs.h>
42#include <perf/cpumap.h>
43#include <linux/time64.h>
44#include <linux/err.h>
45
46#include <linux/ctype.h>
47
48#define PR_SET_NAME 15 /* Set process name */
49#define MAX_CPUS 4096
50#define COMM_LEN 20
51#define SYM_LEN 129
52#define MAX_PID 1024000
53
54static const char *cpu_list;
55static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
56
57struct sched_atom;
58
59struct task_desc {
60 unsigned long nr;
61 unsigned long pid;
62 char comm[COMM_LEN];
63
64 unsigned long nr_events;
65 unsigned long curr_event;
66 struct sched_atom **atoms;
67
68 pthread_t thread;
69 sem_t sleep_sem;
70
71 sem_t ready_for_work;
72 sem_t work_done_sem;
73
74 u64 cpu_usage;
75};
76
77enum sched_event_type {
78 SCHED_EVENT_RUN,
79 SCHED_EVENT_SLEEP,
80 SCHED_EVENT_WAKEUP,
81 SCHED_EVENT_MIGRATION,
82};
83
84struct sched_atom {
85 enum sched_event_type type;
86 int specific_wait;
87 u64 timestamp;
88 u64 duration;
89 unsigned long nr;
90 sem_t *wait_sem;
91 struct task_desc *wakee;
92};
93
94#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
95
96/* task state bitmask, copied from include/linux/sched.h */
97#define TASK_RUNNING 0
98#define TASK_INTERRUPTIBLE 1
99#define TASK_UNINTERRUPTIBLE 2
100#define __TASK_STOPPED 4
101#define __TASK_TRACED 8
102/* in tsk->exit_state */
103#define EXIT_DEAD 16
104#define EXIT_ZOMBIE 32
105#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
106/* in tsk->state again */
107#define TASK_DEAD 64
108#define TASK_WAKEKILL 128
109#define TASK_WAKING 256
110#define TASK_PARKED 512
111
112enum thread_state {
113 THREAD_SLEEPING = 0,
114 THREAD_WAIT_CPU,
115 THREAD_SCHED_IN,
116 THREAD_IGNORE
117};
118
119struct work_atom {
120 struct list_head list;
121 enum thread_state state;
122 u64 sched_out_time;
123 u64 wake_up_time;
124 u64 sched_in_time;
125 u64 runtime;
126};
127
128struct work_atoms {
129 struct list_head work_list;
130 struct thread *thread;
131 struct rb_node node;
132 u64 max_lat;
133 u64 max_lat_at;
134 u64 total_lat;
135 u64 nb_atoms;
136 u64 total_runtime;
137 int num_merged;
138};
139
140typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
141
142struct perf_sched;
143
144struct trace_sched_handler {
145 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
146 struct perf_sample *sample, struct machine *machine);
147
148 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
149 struct perf_sample *sample, struct machine *machine);
150
151 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
152 struct perf_sample *sample, struct machine *machine);
153
154 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
155 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
156 struct machine *machine);
157
158 int (*migrate_task_event)(struct perf_sched *sched,
159 struct evsel *evsel,
160 struct perf_sample *sample,
161 struct machine *machine);
162};
163
164#define COLOR_PIDS PERF_COLOR_BLUE
165#define COLOR_CPUS PERF_COLOR_BG_RED
166
167struct perf_sched_map {
168 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
169 int *comp_cpus;
170 bool comp;
171 struct perf_thread_map *color_pids;
172 const char *color_pids_str;
173 struct perf_cpu_map *color_cpus;
174 const char *color_cpus_str;
175 struct perf_cpu_map *cpus;
176 const char *cpus_str;
177};
178
179struct perf_sched {
180 struct perf_tool tool;
181 const char *sort_order;
182 unsigned long nr_tasks;
183 struct task_desc **pid_to_task;
184 struct task_desc **tasks;
185 const struct trace_sched_handler *tp_handler;
186 pthread_mutex_t start_work_mutex;
187 pthread_mutex_t work_done_wait_mutex;
188 int profile_cpu;
189/*
190 * Track the current task - that way we can know whether there's any
191 * weird events, such as a task being switched away that is not current.
192 */
193 int max_cpu;
194 u32 curr_pid[MAX_CPUS];
195 struct thread *curr_thread[MAX_CPUS];
196 char next_shortname1;
197 char next_shortname2;
198 unsigned int replay_repeat;
199 unsigned long nr_run_events;
200 unsigned long nr_sleep_events;
201 unsigned long nr_wakeup_events;
202 unsigned long nr_sleep_corrections;
203 unsigned long nr_run_events_optimized;
204 unsigned long targetless_wakeups;
205 unsigned long multitarget_wakeups;
206 unsigned long nr_runs;
207 unsigned long nr_timestamps;
208 unsigned long nr_unordered_timestamps;
209 unsigned long nr_context_switch_bugs;
210 unsigned long nr_events;
211 unsigned long nr_lost_chunks;
212 unsigned long nr_lost_events;
213 u64 run_measurement_overhead;
214 u64 sleep_measurement_overhead;
215 u64 start_time;
216 u64 cpu_usage;
217 u64 runavg_cpu_usage;
218 u64 parent_cpu_usage;
219 u64 runavg_parent_cpu_usage;
220 u64 sum_runtime;
221 u64 sum_fluct;
222 u64 run_avg;
223 u64 all_runtime;
224 u64 all_count;
225 u64 cpu_last_switched[MAX_CPUS];
226 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
227 struct list_head sort_list, cmp_pid;
228 bool force;
229 bool skip_merge;
230 struct perf_sched_map map;
231
232 /* options for timehist command */
233 bool summary;
234 bool summary_only;
235 bool idle_hist;
236 bool show_callchain;
237 unsigned int max_stack;
238 bool show_cpu_visual;
239 bool show_wakeups;
240 bool show_next;
241 bool show_migrations;
242 bool show_state;
243 u64 skipped_samples;
244 const char *time_str;
245 struct perf_time_interval ptime;
246 struct perf_time_interval hist_time;
247};
248
249/* per thread run time data */
250struct thread_runtime {
251 u64 last_time; /* time of previous sched in/out event */
252 u64 dt_run; /* run time */
253 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
254 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
255 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
256 u64 dt_delay; /* time between wakeup and sched-in */
257 u64 ready_to_run; /* time of wakeup */
258
259 struct stats run_stats;
260 u64 total_run_time;
261 u64 total_sleep_time;
262 u64 total_iowait_time;
263 u64 total_preempt_time;
264 u64 total_delay_time;
265
266 int last_state;
267
268 char shortname[3];
269 bool comm_changed;
270
271 u64 migrations;
272};
273
274/* per event run time data */
275struct evsel_runtime {
276 u64 *last_time; /* time this event was last seen per cpu */
277 u32 ncpu; /* highest cpu slot allocated */
278};
279
280/* per cpu idle time data */
281struct idle_thread_runtime {
282 struct thread_runtime tr;
283 struct thread *last_thread;
284 struct rb_root_cached sorted_root;
285 struct callchain_root callchain;
286 struct callchain_cursor cursor;
287};
288
289/* track idle times per cpu */
290static struct thread **idle_threads;
291static int idle_max_cpu;
292static char idle_comm[] = "<idle>";
293
294static u64 get_nsecs(void)
295{
296 struct timespec ts;
297
298 clock_gettime(CLOCK_MONOTONIC, &ts);
299
300 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
301}
302
303static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
304{
305 u64 T0 = get_nsecs(), T1;
306
307 do {
308 T1 = get_nsecs();
309 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
310}
311
312static void sleep_nsecs(u64 nsecs)
313{
314 struct timespec ts;
315
316 ts.tv_nsec = nsecs % 999999999;
317 ts.tv_sec = nsecs / 999999999;
318
319 nanosleep(&ts, NULL);
320}
321
322static void calibrate_run_measurement_overhead(struct perf_sched *sched)
323{
324 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
325 int i;
326
327 for (i = 0; i < 10; i++) {
328 T0 = get_nsecs();
329 burn_nsecs(sched, 0);
330 T1 = get_nsecs();
331 delta = T1-T0;
332 min_delta = min(min_delta, delta);
333 }
334 sched->run_measurement_overhead = min_delta;
335
336 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
337}
338
339static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
340{
341 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
342 int i;
343
344 for (i = 0; i < 10; i++) {
345 T0 = get_nsecs();
346 sleep_nsecs(10000);
347 T1 = get_nsecs();
348 delta = T1-T0;
349 min_delta = min(min_delta, delta);
350 }
351 min_delta -= 10000;
352 sched->sleep_measurement_overhead = min_delta;
353
354 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
355}
356
357static struct sched_atom *
358get_new_event(struct task_desc *task, u64 timestamp)
359{
360 struct sched_atom *event = zalloc(sizeof(*event));
361 unsigned long idx = task->nr_events;
362 size_t size;
363
364 event->timestamp = timestamp;
365 event->nr = idx;
366
367 task->nr_events++;
368 size = sizeof(struct sched_atom *) * task->nr_events;
369 task->atoms = realloc(task->atoms, size);
370 BUG_ON(!task->atoms);
371
372 task->atoms[idx] = event;
373
374 return event;
375}
376
377static struct sched_atom *last_event(struct task_desc *task)
378{
379 if (!task->nr_events)
380 return NULL;
381
382 return task->atoms[task->nr_events - 1];
383}
384
385static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
386 u64 timestamp, u64 duration)
387{
388 struct sched_atom *event, *curr_event = last_event(task);
389
390 /*
391 * optimize an existing RUN event by merging this one
392 * to it:
393 */
394 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
395 sched->nr_run_events_optimized++;
396 curr_event->duration += duration;
397 return;
398 }
399
400 event = get_new_event(task, timestamp);
401
402 event->type = SCHED_EVENT_RUN;
403 event->duration = duration;
404
405 sched->nr_run_events++;
406}
407
408static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
409 u64 timestamp, struct task_desc *wakee)
410{
411 struct sched_atom *event, *wakee_event;
412
413 event = get_new_event(task, timestamp);
414 event->type = SCHED_EVENT_WAKEUP;
415 event->wakee = wakee;
416
417 wakee_event = last_event(wakee);
418 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
419 sched->targetless_wakeups++;
420 return;
421 }
422 if (wakee_event->wait_sem) {
423 sched->multitarget_wakeups++;
424 return;
425 }
426
427 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
428 sem_init(wakee_event->wait_sem, 0, 0);
429 wakee_event->specific_wait = 1;
430 event->wait_sem = wakee_event->wait_sem;
431
432 sched->nr_wakeup_events++;
433}
434
435static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
436 u64 timestamp, u64 task_state __maybe_unused)
437{
438 struct sched_atom *event = get_new_event(task, timestamp);
439
440 event->type = SCHED_EVENT_SLEEP;
441
442 sched->nr_sleep_events++;
443}
444
445static struct task_desc *register_pid(struct perf_sched *sched,
446 unsigned long pid, const char *comm)
447{
448 struct task_desc *task;
449 static int pid_max;
450
451 if (sched->pid_to_task == NULL) {
452 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
453 pid_max = MAX_PID;
454 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
455 }
456 if (pid >= (unsigned long)pid_max) {
457 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
458 sizeof(struct task_desc *))) == NULL);
459 while (pid >= (unsigned long)pid_max)
460 sched->pid_to_task[pid_max++] = NULL;
461 }
462
463 task = sched->pid_to_task[pid];
464
465 if (task)
466 return task;
467
468 task = zalloc(sizeof(*task));
469 task->pid = pid;
470 task->nr = sched->nr_tasks;
471 strcpy(task->comm, comm);
472 /*
473 * every task starts in sleeping state - this gets ignored
474 * if there's no wakeup pointing to this sleep state:
475 */
476 add_sched_event_sleep(sched, task, 0, 0);
477
478 sched->pid_to_task[pid] = task;
479 sched->nr_tasks++;
480 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
481 BUG_ON(!sched->tasks);
482 sched->tasks[task->nr] = task;
483
484 if (verbose > 0)
485 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
486
487 return task;
488}
489
490
491static void print_task_traces(struct perf_sched *sched)
492{
493 struct task_desc *task;
494 unsigned long i;
495
496 for (i = 0; i < sched->nr_tasks; i++) {
497 task = sched->tasks[i];
498 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
499 task->nr, task->comm, task->pid, task->nr_events);
500 }
501}
502
503static void add_cross_task_wakeups(struct perf_sched *sched)
504{
505 struct task_desc *task1, *task2;
506 unsigned long i, j;
507
508 for (i = 0; i < sched->nr_tasks; i++) {
509 task1 = sched->tasks[i];
510 j = i + 1;
511 if (j == sched->nr_tasks)
512 j = 0;
513 task2 = sched->tasks[j];
514 add_sched_event_wakeup(sched, task1, 0, task2);
515 }
516}
517
518static void perf_sched__process_event(struct perf_sched *sched,
519 struct sched_atom *atom)
520{
521 int ret = 0;
522
523 switch (atom->type) {
524 case SCHED_EVENT_RUN:
525 burn_nsecs(sched, atom->duration);
526 break;
527 case SCHED_EVENT_SLEEP:
528 if (atom->wait_sem)
529 ret = sem_wait(atom->wait_sem);
530 BUG_ON(ret);
531 break;
532 case SCHED_EVENT_WAKEUP:
533 if (atom->wait_sem)
534 ret = sem_post(atom->wait_sem);
535 BUG_ON(ret);
536 break;
537 case SCHED_EVENT_MIGRATION:
538 break;
539 default:
540 BUG_ON(1);
541 }
542}
543
544static u64 get_cpu_usage_nsec_parent(void)
545{
546 struct rusage ru;
547 u64 sum;
548 int err;
549
550 err = getrusage(RUSAGE_SELF, &ru);
551 BUG_ON(err);
552
553 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
554 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
555
556 return sum;
557}
558
559static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
560{
561 struct perf_event_attr attr;
562 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
563 int fd;
564 struct rlimit limit;
565 bool need_privilege = false;
566
567 memset(&attr, 0, sizeof(attr));
568
569 attr.type = PERF_TYPE_SOFTWARE;
570 attr.config = PERF_COUNT_SW_TASK_CLOCK;
571
572force_again:
573 fd = sys_perf_event_open(&attr, 0, -1, -1,
574 perf_event_open_cloexec_flag());
575
576 if (fd < 0) {
577 if (errno == EMFILE) {
578 if (sched->force) {
579 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
580 limit.rlim_cur += sched->nr_tasks - cur_task;
581 if (limit.rlim_cur > limit.rlim_max) {
582 limit.rlim_max = limit.rlim_cur;
583 need_privilege = true;
584 }
585 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
586 if (need_privilege && errno == EPERM)
587 strcpy(info, "Need privilege\n");
588 } else
589 goto force_again;
590 } else
591 strcpy(info, "Have a try with -f option\n");
592 }
593 pr_err("Error: sys_perf_event_open() syscall returned "
594 "with %d (%s)\n%s", fd,
595 str_error_r(errno, sbuf, sizeof(sbuf)), info);
596 exit(EXIT_FAILURE);
597 }
598 return fd;
599}
600
601static u64 get_cpu_usage_nsec_self(int fd)
602{
603 u64 runtime;
604 int ret;
605
606 ret = read(fd, &runtime, sizeof(runtime));
607 BUG_ON(ret != sizeof(runtime));
608
609 return runtime;
610}
611
612struct sched_thread_parms {
613 struct task_desc *task;
614 struct perf_sched *sched;
615 int fd;
616};
617
618static void *thread_func(void *ctx)
619{
620 struct sched_thread_parms *parms = ctx;
621 struct task_desc *this_task = parms->task;
622 struct perf_sched *sched = parms->sched;
623 u64 cpu_usage_0, cpu_usage_1;
624 unsigned long i, ret;
625 char comm2[22];
626 int fd = parms->fd;
627
628 zfree(&parms);
629
630 sprintf(comm2, ":%s", this_task->comm);
631 prctl(PR_SET_NAME, comm2);
632 if (fd < 0)
633 return NULL;
634again:
635 ret = sem_post(&this_task->ready_for_work);
636 BUG_ON(ret);
637 ret = pthread_mutex_lock(&sched->start_work_mutex);
638 BUG_ON(ret);
639 ret = pthread_mutex_unlock(&sched->start_work_mutex);
640 BUG_ON(ret);
641
642 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
643
644 for (i = 0; i < this_task->nr_events; i++) {
645 this_task->curr_event = i;
646 perf_sched__process_event(sched, this_task->atoms[i]);
647 }
648
649 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
650 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
651 ret = sem_post(&this_task->work_done_sem);
652 BUG_ON(ret);
653
654 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
655 BUG_ON(ret);
656 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
657 BUG_ON(ret);
658
659 goto again;
660}
661
662static void create_tasks(struct perf_sched *sched)
663{
664 struct task_desc *task;
665 pthread_attr_t attr;
666 unsigned long i;
667 int err;
668
669 err = pthread_attr_init(&attr);
670 BUG_ON(err);
671 err = pthread_attr_setstacksize(&attr,
672 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
673 BUG_ON(err);
674 err = pthread_mutex_lock(&sched->start_work_mutex);
675 BUG_ON(err);
676 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
677 BUG_ON(err);
678 for (i = 0; i < sched->nr_tasks; i++) {
679 struct sched_thread_parms *parms = malloc(sizeof(*parms));
680 BUG_ON(parms == NULL);
681 parms->task = task = sched->tasks[i];
682 parms->sched = sched;
683 parms->fd = self_open_counters(sched, i);
684 sem_init(&task->sleep_sem, 0, 0);
685 sem_init(&task->ready_for_work, 0, 0);
686 sem_init(&task->work_done_sem, 0, 0);
687 task->curr_event = 0;
688 err = pthread_create(&task->thread, &attr, thread_func, parms);
689 BUG_ON(err);
690 }
691}
692
693static void wait_for_tasks(struct perf_sched *sched)
694{
695 u64 cpu_usage_0, cpu_usage_1;
696 struct task_desc *task;
697 unsigned long i, ret;
698
699 sched->start_time = get_nsecs();
700 sched->cpu_usage = 0;
701 pthread_mutex_unlock(&sched->work_done_wait_mutex);
702
703 for (i = 0; i < sched->nr_tasks; i++) {
704 task = sched->tasks[i];
705 ret = sem_wait(&task->ready_for_work);
706 BUG_ON(ret);
707 sem_init(&task->ready_for_work, 0, 0);
708 }
709 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
710 BUG_ON(ret);
711
712 cpu_usage_0 = get_cpu_usage_nsec_parent();
713
714 pthread_mutex_unlock(&sched->start_work_mutex);
715
716 for (i = 0; i < sched->nr_tasks; i++) {
717 task = sched->tasks[i];
718 ret = sem_wait(&task->work_done_sem);
719 BUG_ON(ret);
720 sem_init(&task->work_done_sem, 0, 0);
721 sched->cpu_usage += task->cpu_usage;
722 task->cpu_usage = 0;
723 }
724
725 cpu_usage_1 = get_cpu_usage_nsec_parent();
726 if (!sched->runavg_cpu_usage)
727 sched->runavg_cpu_usage = sched->cpu_usage;
728 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
729
730 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
731 if (!sched->runavg_parent_cpu_usage)
732 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
733 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
734 sched->parent_cpu_usage)/sched->replay_repeat;
735
736 ret = pthread_mutex_lock(&sched->start_work_mutex);
737 BUG_ON(ret);
738
739 for (i = 0; i < sched->nr_tasks; i++) {
740 task = sched->tasks[i];
741 sem_init(&task->sleep_sem, 0, 0);
742 task->curr_event = 0;
743 }
744}
745
746static void run_one_test(struct perf_sched *sched)
747{
748 u64 T0, T1, delta, avg_delta, fluct;
749
750 T0 = get_nsecs();
751 wait_for_tasks(sched);
752 T1 = get_nsecs();
753
754 delta = T1 - T0;
755 sched->sum_runtime += delta;
756 sched->nr_runs++;
757
758 avg_delta = sched->sum_runtime / sched->nr_runs;
759 if (delta < avg_delta)
760 fluct = avg_delta - delta;
761 else
762 fluct = delta - avg_delta;
763 sched->sum_fluct += fluct;
764 if (!sched->run_avg)
765 sched->run_avg = delta;
766 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
767
768 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
769
770 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
771
772 printf("cpu: %0.2f / %0.2f",
773 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
774
775#if 0
776 /*
777 * rusage statistics done by the parent, these are less
778 * accurate than the sched->sum_exec_runtime based statistics:
779 */
780 printf(" [%0.2f / %0.2f]",
781 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
782 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
783#endif
784
785 printf("\n");
786
787 if (sched->nr_sleep_corrections)
788 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
789 sched->nr_sleep_corrections = 0;
790}
791
792static void test_calibrations(struct perf_sched *sched)
793{
794 u64 T0, T1;
795
796 T0 = get_nsecs();
797 burn_nsecs(sched, NSEC_PER_MSEC);
798 T1 = get_nsecs();
799
800 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
801
802 T0 = get_nsecs();
803 sleep_nsecs(NSEC_PER_MSEC);
804 T1 = get_nsecs();
805
806 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
807}
808
809static int
810replay_wakeup_event(struct perf_sched *sched,
811 struct evsel *evsel, struct perf_sample *sample,
812 struct machine *machine __maybe_unused)
813{
814 const char *comm = evsel__strval(evsel, sample, "comm");
815 const u32 pid = evsel__intval(evsel, sample, "pid");
816 struct task_desc *waker, *wakee;
817
818 if (verbose > 0) {
819 printf("sched_wakeup event %p\n", evsel);
820
821 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
822 }
823
824 waker = register_pid(sched, sample->tid, "<unknown>");
825 wakee = register_pid(sched, pid, comm);
826
827 add_sched_event_wakeup(sched, waker, sample->time, wakee);
828 return 0;
829}
830
831static int replay_switch_event(struct perf_sched *sched,
832 struct evsel *evsel,
833 struct perf_sample *sample,
834 struct machine *machine __maybe_unused)
835{
836 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
837 *next_comm = evsel__strval(evsel, sample, "next_comm");
838 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
839 next_pid = evsel__intval(evsel, sample, "next_pid");
840 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
841 struct task_desc *prev, __maybe_unused *next;
842 u64 timestamp0, timestamp = sample->time;
843 int cpu = sample->cpu;
844 s64 delta;
845
846 if (verbose > 0)
847 printf("sched_switch event %p\n", evsel);
848
849 if (cpu >= MAX_CPUS || cpu < 0)
850 return 0;
851
852 timestamp0 = sched->cpu_last_switched[cpu];
853 if (timestamp0)
854 delta = timestamp - timestamp0;
855 else
856 delta = 0;
857
858 if (delta < 0) {
859 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
860 return -1;
861 }
862
863 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
864 prev_comm, prev_pid, next_comm, next_pid, delta);
865
866 prev = register_pid(sched, prev_pid, prev_comm);
867 next = register_pid(sched, next_pid, next_comm);
868
869 sched->cpu_last_switched[cpu] = timestamp;
870
871 add_sched_event_run(sched, prev, timestamp, delta);
872 add_sched_event_sleep(sched, prev, timestamp, prev_state);
873
874 return 0;
875}
876
877static int replay_fork_event(struct perf_sched *sched,
878 union perf_event *event,
879 struct machine *machine)
880{
881 struct thread *child, *parent;
882
883 child = machine__findnew_thread(machine, event->fork.pid,
884 event->fork.tid);
885 parent = machine__findnew_thread(machine, event->fork.ppid,
886 event->fork.ptid);
887
888 if (child == NULL || parent == NULL) {
889 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
890 child, parent);
891 goto out_put;
892 }
893
894 if (verbose > 0) {
895 printf("fork event\n");
896 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
897 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
898 }
899
900 register_pid(sched, parent->tid, thread__comm_str(parent));
901 register_pid(sched, child->tid, thread__comm_str(child));
902out_put:
903 thread__put(child);
904 thread__put(parent);
905 return 0;
906}
907
908struct sort_dimension {
909 const char *name;
910 sort_fn_t cmp;
911 struct list_head list;
912};
913
914/*
915 * handle runtime stats saved per thread
916 */
917static struct thread_runtime *thread__init_runtime(struct thread *thread)
918{
919 struct thread_runtime *r;
920
921 r = zalloc(sizeof(struct thread_runtime));
922 if (!r)
923 return NULL;
924
925 init_stats(&r->run_stats);
926 thread__set_priv(thread, r);
927
928 return r;
929}
930
931static struct thread_runtime *thread__get_runtime(struct thread *thread)
932{
933 struct thread_runtime *tr;
934
935 tr = thread__priv(thread);
936 if (tr == NULL) {
937 tr = thread__init_runtime(thread);
938 if (tr == NULL)
939 pr_debug("Failed to malloc memory for runtime data.\n");
940 }
941
942 return tr;
943}
944
945static int
946thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
947{
948 struct sort_dimension *sort;
949 int ret = 0;
950
951 BUG_ON(list_empty(list));
952
953 list_for_each_entry(sort, list, list) {
954 ret = sort->cmp(l, r);
955 if (ret)
956 return ret;
957 }
958
959 return ret;
960}
961
962static struct work_atoms *
963thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
964 struct list_head *sort_list)
965{
966 struct rb_node *node = root->rb_root.rb_node;
967 struct work_atoms key = { .thread = thread };
968
969 while (node) {
970 struct work_atoms *atoms;
971 int cmp;
972
973 atoms = container_of(node, struct work_atoms, node);
974
975 cmp = thread_lat_cmp(sort_list, &key, atoms);
976 if (cmp > 0)
977 node = node->rb_left;
978 else if (cmp < 0)
979 node = node->rb_right;
980 else {
981 BUG_ON(thread != atoms->thread);
982 return atoms;
983 }
984 }
985 return NULL;
986}
987
988static void
989__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
990 struct list_head *sort_list)
991{
992 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
993 bool leftmost = true;
994
995 while (*new) {
996 struct work_atoms *this;
997 int cmp;
998
999 this = container_of(*new, struct work_atoms, node);
1000 parent = *new;
1001
1002 cmp = thread_lat_cmp(sort_list, data, this);
1003
1004 if (cmp > 0)
1005 new = &((*new)->rb_left);
1006 else {
1007 new = &((*new)->rb_right);
1008 leftmost = false;
1009 }
1010 }
1011
1012 rb_link_node(&data->node, parent, new);
1013 rb_insert_color_cached(&data->node, root, leftmost);
1014}
1015
1016static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1017{
1018 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1019 if (!atoms) {
1020 pr_err("No memory at %s\n", __func__);
1021 return -1;
1022 }
1023
1024 atoms->thread = thread__get(thread);
1025 INIT_LIST_HEAD(&atoms->work_list);
1026 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1027 return 0;
1028}
1029
1030static char sched_out_state(u64 prev_state)
1031{
1032 const char *str = TASK_STATE_TO_CHAR_STR;
1033
1034 return str[prev_state];
1035}
1036
1037static int
1038add_sched_out_event(struct work_atoms *atoms,
1039 char run_state,
1040 u64 timestamp)
1041{
1042 struct work_atom *atom = zalloc(sizeof(*atom));
1043 if (!atom) {
1044 pr_err("Non memory at %s", __func__);
1045 return -1;
1046 }
1047
1048 atom->sched_out_time = timestamp;
1049
1050 if (run_state == 'R') {
1051 atom->state = THREAD_WAIT_CPU;
1052 atom->wake_up_time = atom->sched_out_time;
1053 }
1054
1055 list_add_tail(&atom->list, &atoms->work_list);
1056 return 0;
1057}
1058
1059static void
1060add_runtime_event(struct work_atoms *atoms, u64 delta,
1061 u64 timestamp __maybe_unused)
1062{
1063 struct work_atom *atom;
1064
1065 BUG_ON(list_empty(&atoms->work_list));
1066
1067 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1068
1069 atom->runtime += delta;
1070 atoms->total_runtime += delta;
1071}
1072
1073static void
1074add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1075{
1076 struct work_atom *atom;
1077 u64 delta;
1078
1079 if (list_empty(&atoms->work_list))
1080 return;
1081
1082 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1083
1084 if (atom->state != THREAD_WAIT_CPU)
1085 return;
1086
1087 if (timestamp < atom->wake_up_time) {
1088 atom->state = THREAD_IGNORE;
1089 return;
1090 }
1091
1092 atom->state = THREAD_SCHED_IN;
1093 atom->sched_in_time = timestamp;
1094
1095 delta = atom->sched_in_time - atom->wake_up_time;
1096 atoms->total_lat += delta;
1097 if (delta > atoms->max_lat) {
1098 atoms->max_lat = delta;
1099 atoms->max_lat_at = timestamp;
1100 }
1101 atoms->nb_atoms++;
1102}
1103
1104static int latency_switch_event(struct perf_sched *sched,
1105 struct evsel *evsel,
1106 struct perf_sample *sample,
1107 struct machine *machine)
1108{
1109 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1110 next_pid = evsel__intval(evsel, sample, "next_pid");
1111 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1112 struct work_atoms *out_events, *in_events;
1113 struct thread *sched_out, *sched_in;
1114 u64 timestamp0, timestamp = sample->time;
1115 int cpu = sample->cpu, err = -1;
1116 s64 delta;
1117
1118 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1119
1120 timestamp0 = sched->cpu_last_switched[cpu];
1121 sched->cpu_last_switched[cpu] = timestamp;
1122 if (timestamp0)
1123 delta = timestamp - timestamp0;
1124 else
1125 delta = 0;
1126
1127 if (delta < 0) {
1128 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1129 return -1;
1130 }
1131
1132 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1133 sched_in = machine__findnew_thread(machine, -1, next_pid);
1134 if (sched_out == NULL || sched_in == NULL)
1135 goto out_put;
1136
1137 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1138 if (!out_events) {
1139 if (thread_atoms_insert(sched, sched_out))
1140 goto out_put;
1141 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1142 if (!out_events) {
1143 pr_err("out-event: Internal tree error");
1144 goto out_put;
1145 }
1146 }
1147 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1148 return -1;
1149
1150 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1151 if (!in_events) {
1152 if (thread_atoms_insert(sched, sched_in))
1153 goto out_put;
1154 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1155 if (!in_events) {
1156 pr_err("in-event: Internal tree error");
1157 goto out_put;
1158 }
1159 /*
1160 * Take came in we have not heard about yet,
1161 * add in an initial atom in runnable state:
1162 */
1163 if (add_sched_out_event(in_events, 'R', timestamp))
1164 goto out_put;
1165 }
1166 add_sched_in_event(in_events, timestamp);
1167 err = 0;
1168out_put:
1169 thread__put(sched_out);
1170 thread__put(sched_in);
1171 return err;
1172}
1173
1174static int latency_runtime_event(struct perf_sched *sched,
1175 struct evsel *evsel,
1176 struct perf_sample *sample,
1177 struct machine *machine)
1178{
1179 const u32 pid = evsel__intval(evsel, sample, "pid");
1180 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1181 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1182 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1183 u64 timestamp = sample->time;
1184 int cpu = sample->cpu, err = -1;
1185
1186 if (thread == NULL)
1187 return -1;
1188
1189 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1190 if (!atoms) {
1191 if (thread_atoms_insert(sched, thread))
1192 goto out_put;
1193 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1194 if (!atoms) {
1195 pr_err("in-event: Internal tree error");
1196 goto out_put;
1197 }
1198 if (add_sched_out_event(atoms, 'R', timestamp))
1199 goto out_put;
1200 }
1201
1202 add_runtime_event(atoms, runtime, timestamp);
1203 err = 0;
1204out_put:
1205 thread__put(thread);
1206 return err;
1207}
1208
1209static int latency_wakeup_event(struct perf_sched *sched,
1210 struct evsel *evsel,
1211 struct perf_sample *sample,
1212 struct machine *machine)
1213{
1214 const u32 pid = evsel__intval(evsel, sample, "pid");
1215 struct work_atoms *atoms;
1216 struct work_atom *atom;
1217 struct thread *wakee;
1218 u64 timestamp = sample->time;
1219 int err = -1;
1220
1221 wakee = machine__findnew_thread(machine, -1, pid);
1222 if (wakee == NULL)
1223 return -1;
1224 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1225 if (!atoms) {
1226 if (thread_atoms_insert(sched, wakee))
1227 goto out_put;
1228 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1229 if (!atoms) {
1230 pr_err("wakeup-event: Internal tree error");
1231 goto out_put;
1232 }
1233 if (add_sched_out_event(atoms, 'S', timestamp))
1234 goto out_put;
1235 }
1236
1237 BUG_ON(list_empty(&atoms->work_list));
1238
1239 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1240
1241 /*
1242 * As we do not guarantee the wakeup event happens when
1243 * task is out of run queue, also may happen when task is
1244 * on run queue and wakeup only change ->state to TASK_RUNNING,
1245 * then we should not set the ->wake_up_time when wake up a
1246 * task which is on run queue.
1247 *
1248 * You WILL be missing events if you've recorded only
1249 * one CPU, or are only looking at only one, so don't
1250 * skip in this case.
1251 */
1252 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1253 goto out_ok;
1254
1255 sched->nr_timestamps++;
1256 if (atom->sched_out_time > timestamp) {
1257 sched->nr_unordered_timestamps++;
1258 goto out_ok;
1259 }
1260
1261 atom->state = THREAD_WAIT_CPU;
1262 atom->wake_up_time = timestamp;
1263out_ok:
1264 err = 0;
1265out_put:
1266 thread__put(wakee);
1267 return err;
1268}
1269
1270static int latency_migrate_task_event(struct perf_sched *sched,
1271 struct evsel *evsel,
1272 struct perf_sample *sample,
1273 struct machine *machine)
1274{
1275 const u32 pid = evsel__intval(evsel, sample, "pid");
1276 u64 timestamp = sample->time;
1277 struct work_atoms *atoms;
1278 struct work_atom *atom;
1279 struct thread *migrant;
1280 int err = -1;
1281
1282 /*
1283 * Only need to worry about migration when profiling one CPU.
1284 */
1285 if (sched->profile_cpu == -1)
1286 return 0;
1287
1288 migrant = machine__findnew_thread(machine, -1, pid);
1289 if (migrant == NULL)
1290 return -1;
1291 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1292 if (!atoms) {
1293 if (thread_atoms_insert(sched, migrant))
1294 goto out_put;
1295 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1296 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1297 if (!atoms) {
1298 pr_err("migration-event: Internal tree error");
1299 goto out_put;
1300 }
1301 if (add_sched_out_event(atoms, 'R', timestamp))
1302 goto out_put;
1303 }
1304
1305 BUG_ON(list_empty(&atoms->work_list));
1306
1307 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1308 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1309
1310 sched->nr_timestamps++;
1311
1312 if (atom->sched_out_time > timestamp)
1313 sched->nr_unordered_timestamps++;
1314 err = 0;
1315out_put:
1316 thread__put(migrant);
1317 return err;
1318}
1319
1320static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1321{
1322 int i;
1323 int ret;
1324 u64 avg;
1325 char max_lat_at[32];
1326
1327 if (!work_list->nb_atoms)
1328 return;
1329 /*
1330 * Ignore idle threads:
1331 */
1332 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1333 return;
1334
1335 sched->all_runtime += work_list->total_runtime;
1336 sched->all_count += work_list->nb_atoms;
1337
1338 if (work_list->num_merged > 1)
1339 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1340 else
1341 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1342
1343 for (i = 0; i < 24 - ret; i++)
1344 printf(" ");
1345
1346 avg = work_list->total_lat / work_list->nb_atoms;
1347 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1348
1349 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1350 (double)work_list->total_runtime / NSEC_PER_MSEC,
1351 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1352 (double)work_list->max_lat / NSEC_PER_MSEC,
1353 max_lat_at);
1354}
1355
1356static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1357{
1358 if (l->thread == r->thread)
1359 return 0;
1360 if (l->thread->tid < r->thread->tid)
1361 return -1;
1362 if (l->thread->tid > r->thread->tid)
1363 return 1;
1364 return (int)(l->thread - r->thread);
1365}
1366
1367static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1368{
1369 u64 avgl, avgr;
1370
1371 if (!l->nb_atoms)
1372 return -1;
1373
1374 if (!r->nb_atoms)
1375 return 1;
1376
1377 avgl = l->total_lat / l->nb_atoms;
1378 avgr = r->total_lat / r->nb_atoms;
1379
1380 if (avgl < avgr)
1381 return -1;
1382 if (avgl > avgr)
1383 return 1;
1384
1385 return 0;
1386}
1387
1388static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1389{
1390 if (l->max_lat < r->max_lat)
1391 return -1;
1392 if (l->max_lat > r->max_lat)
1393 return 1;
1394
1395 return 0;
1396}
1397
1398static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1399{
1400 if (l->nb_atoms < r->nb_atoms)
1401 return -1;
1402 if (l->nb_atoms > r->nb_atoms)
1403 return 1;
1404
1405 return 0;
1406}
1407
1408static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1409{
1410 if (l->total_runtime < r->total_runtime)
1411 return -1;
1412 if (l->total_runtime > r->total_runtime)
1413 return 1;
1414
1415 return 0;
1416}
1417
1418static int sort_dimension__add(const char *tok, struct list_head *list)
1419{
1420 size_t i;
1421 static struct sort_dimension avg_sort_dimension = {
1422 .name = "avg",
1423 .cmp = avg_cmp,
1424 };
1425 static struct sort_dimension max_sort_dimension = {
1426 .name = "max",
1427 .cmp = max_cmp,
1428 };
1429 static struct sort_dimension pid_sort_dimension = {
1430 .name = "pid",
1431 .cmp = pid_cmp,
1432 };
1433 static struct sort_dimension runtime_sort_dimension = {
1434 .name = "runtime",
1435 .cmp = runtime_cmp,
1436 };
1437 static struct sort_dimension switch_sort_dimension = {
1438 .name = "switch",
1439 .cmp = switch_cmp,
1440 };
1441 struct sort_dimension *available_sorts[] = {
1442 &pid_sort_dimension,
1443 &avg_sort_dimension,
1444 &max_sort_dimension,
1445 &switch_sort_dimension,
1446 &runtime_sort_dimension,
1447 };
1448
1449 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1450 if (!strcmp(available_sorts[i]->name, tok)) {
1451 list_add_tail(&available_sorts[i]->list, list);
1452
1453 return 0;
1454 }
1455 }
1456
1457 return -1;
1458}
1459
1460static void perf_sched__sort_lat(struct perf_sched *sched)
1461{
1462 struct rb_node *node;
1463 struct rb_root_cached *root = &sched->atom_root;
1464again:
1465 for (;;) {
1466 struct work_atoms *data;
1467 node = rb_first_cached(root);
1468 if (!node)
1469 break;
1470
1471 rb_erase_cached(node, root);
1472 data = rb_entry(node, struct work_atoms, node);
1473 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1474 }
1475 if (root == &sched->atom_root) {
1476 root = &sched->merged_atom_root;
1477 goto again;
1478 }
1479}
1480
1481static int process_sched_wakeup_event(struct perf_tool *tool,
1482 struct evsel *evsel,
1483 struct perf_sample *sample,
1484 struct machine *machine)
1485{
1486 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1487
1488 if (sched->tp_handler->wakeup_event)
1489 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1490
1491 return 0;
1492}
1493
1494union map_priv {
1495 void *ptr;
1496 bool color;
1497};
1498
1499static bool thread__has_color(struct thread *thread)
1500{
1501 union map_priv priv = {
1502 .ptr = thread__priv(thread),
1503 };
1504
1505 return priv.color;
1506}
1507
1508static struct thread*
1509map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1510{
1511 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1512 union map_priv priv = {
1513 .color = false,
1514 };
1515
1516 if (!sched->map.color_pids || !thread || thread__priv(thread))
1517 return thread;
1518
1519 if (thread_map__has(sched->map.color_pids, tid))
1520 priv.color = true;
1521
1522 thread__set_priv(thread, priv.ptr);
1523 return thread;
1524}
1525
1526static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1527 struct perf_sample *sample, struct machine *machine)
1528{
1529 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1530 struct thread *sched_in;
1531 struct thread_runtime *tr;
1532 int new_shortname;
1533 u64 timestamp0, timestamp = sample->time;
1534 s64 delta;
1535 int i, this_cpu = sample->cpu;
1536 int cpus_nr;
1537 bool new_cpu = false;
1538 const char *color = PERF_COLOR_NORMAL;
1539 char stimestamp[32];
1540
1541 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1542
1543 if (this_cpu > sched->max_cpu)
1544 sched->max_cpu = this_cpu;
1545
1546 if (sched->map.comp) {
1547 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1548 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1549 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1550 new_cpu = true;
1551 }
1552 } else
1553 cpus_nr = sched->max_cpu;
1554
1555 timestamp0 = sched->cpu_last_switched[this_cpu];
1556 sched->cpu_last_switched[this_cpu] = timestamp;
1557 if (timestamp0)
1558 delta = timestamp - timestamp0;
1559 else
1560 delta = 0;
1561
1562 if (delta < 0) {
1563 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1564 return -1;
1565 }
1566
1567 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1568 if (sched_in == NULL)
1569 return -1;
1570
1571 tr = thread__get_runtime(sched_in);
1572 if (tr == NULL) {
1573 thread__put(sched_in);
1574 return -1;
1575 }
1576
1577 sched->curr_thread[this_cpu] = thread__get(sched_in);
1578
1579 printf(" ");
1580
1581 new_shortname = 0;
1582 if (!tr->shortname[0]) {
1583 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1584 /*
1585 * Don't allocate a letter-number for swapper:0
1586 * as a shortname. Instead, we use '.' for it.
1587 */
1588 tr->shortname[0] = '.';
1589 tr->shortname[1] = ' ';
1590 } else {
1591 tr->shortname[0] = sched->next_shortname1;
1592 tr->shortname[1] = sched->next_shortname2;
1593
1594 if (sched->next_shortname1 < 'Z') {
1595 sched->next_shortname1++;
1596 } else {
1597 sched->next_shortname1 = 'A';
1598 if (sched->next_shortname2 < '9')
1599 sched->next_shortname2++;
1600 else
1601 sched->next_shortname2 = '0';
1602 }
1603 }
1604 new_shortname = 1;
1605 }
1606
1607 for (i = 0; i < cpus_nr; i++) {
1608 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1609 struct thread *curr_thread = sched->curr_thread[cpu];
1610 struct thread_runtime *curr_tr;
1611 const char *pid_color = color;
1612 const char *cpu_color = color;
1613
1614 if (curr_thread && thread__has_color(curr_thread))
1615 pid_color = COLOR_PIDS;
1616
1617 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1618 continue;
1619
1620 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1621 cpu_color = COLOR_CPUS;
1622
1623 if (cpu != this_cpu)
1624 color_fprintf(stdout, color, " ");
1625 else
1626 color_fprintf(stdout, cpu_color, "*");
1627
1628 if (sched->curr_thread[cpu]) {
1629 curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1630 if (curr_tr == NULL) {
1631 thread__put(sched_in);
1632 return -1;
1633 }
1634 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1635 } else
1636 color_fprintf(stdout, color, " ");
1637 }
1638
1639 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1640 goto out;
1641
1642 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1643 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1644 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1645 const char *pid_color = color;
1646
1647 if (thread__has_color(sched_in))
1648 pid_color = COLOR_PIDS;
1649
1650 color_fprintf(stdout, pid_color, "%s => %s:%d",
1651 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1652 tr->comm_changed = false;
1653 }
1654
1655 if (sched->map.comp && new_cpu)
1656 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1657
1658out:
1659 color_fprintf(stdout, color, "\n");
1660
1661 thread__put(sched_in);
1662
1663 return 0;
1664}
1665
1666static int process_sched_switch_event(struct perf_tool *tool,
1667 struct evsel *evsel,
1668 struct perf_sample *sample,
1669 struct machine *machine)
1670{
1671 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1672 int this_cpu = sample->cpu, err = 0;
1673 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1674 next_pid = evsel__intval(evsel, sample, "next_pid");
1675
1676 if (sched->curr_pid[this_cpu] != (u32)-1) {
1677 /*
1678 * Are we trying to switch away a PID that is
1679 * not current?
1680 */
1681 if (sched->curr_pid[this_cpu] != prev_pid)
1682 sched->nr_context_switch_bugs++;
1683 }
1684
1685 if (sched->tp_handler->switch_event)
1686 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1687
1688 sched->curr_pid[this_cpu] = next_pid;
1689 return err;
1690}
1691
1692static int process_sched_runtime_event(struct perf_tool *tool,
1693 struct evsel *evsel,
1694 struct perf_sample *sample,
1695 struct machine *machine)
1696{
1697 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1698
1699 if (sched->tp_handler->runtime_event)
1700 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1701
1702 return 0;
1703}
1704
1705static int perf_sched__process_fork_event(struct perf_tool *tool,
1706 union perf_event *event,
1707 struct perf_sample *sample,
1708 struct machine *machine)
1709{
1710 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1711
1712 /* run the fork event through the perf machineruy */
1713 perf_event__process_fork(tool, event, sample, machine);
1714
1715 /* and then run additional processing needed for this command */
1716 if (sched->tp_handler->fork_event)
1717 return sched->tp_handler->fork_event(sched, event, machine);
1718
1719 return 0;
1720}
1721
1722static int process_sched_migrate_task_event(struct perf_tool *tool,
1723 struct evsel *evsel,
1724 struct perf_sample *sample,
1725 struct machine *machine)
1726{
1727 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1728
1729 if (sched->tp_handler->migrate_task_event)
1730 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1731
1732 return 0;
1733}
1734
1735typedef int (*tracepoint_handler)(struct perf_tool *tool,
1736 struct evsel *evsel,
1737 struct perf_sample *sample,
1738 struct machine *machine);
1739
1740static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1741 union perf_event *event __maybe_unused,
1742 struct perf_sample *sample,
1743 struct evsel *evsel,
1744 struct machine *machine)
1745{
1746 int err = 0;
1747
1748 if (evsel->handler != NULL) {
1749 tracepoint_handler f = evsel->handler;
1750 err = f(tool, evsel, sample, machine);
1751 }
1752
1753 return err;
1754}
1755
1756static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1757 union perf_event *event,
1758 struct perf_sample *sample,
1759 struct machine *machine)
1760{
1761 struct thread *thread;
1762 struct thread_runtime *tr;
1763 int err;
1764
1765 err = perf_event__process_comm(tool, event, sample, machine);
1766 if (err)
1767 return err;
1768
1769 thread = machine__find_thread(machine, sample->pid, sample->tid);
1770 if (!thread) {
1771 pr_err("Internal error: can't find thread\n");
1772 return -1;
1773 }
1774
1775 tr = thread__get_runtime(thread);
1776 if (tr == NULL) {
1777 thread__put(thread);
1778 return -1;
1779 }
1780
1781 tr->comm_changed = true;
1782 thread__put(thread);
1783
1784 return 0;
1785}
1786
1787static int perf_sched__read_events(struct perf_sched *sched)
1788{
1789 const struct evsel_str_handler handlers[] = {
1790 { "sched:sched_switch", process_sched_switch_event, },
1791 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1792 { "sched:sched_wakeup", process_sched_wakeup_event, },
1793 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1794 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1795 };
1796 struct perf_session *session;
1797 struct perf_data data = {
1798 .path = input_name,
1799 .mode = PERF_DATA_MODE_READ,
1800 .force = sched->force,
1801 };
1802 int rc = -1;
1803
1804 session = perf_session__new(&data, false, &sched->tool);
1805 if (IS_ERR(session)) {
1806 pr_debug("Error creating perf session");
1807 return PTR_ERR(session);
1808 }
1809
1810 symbol__init(&session->header.env);
1811
1812 if (perf_session__set_tracepoints_handlers(session, handlers))
1813 goto out_delete;
1814
1815 if (perf_session__has_traces(session, "record -R")) {
1816 int err = perf_session__process_events(session);
1817 if (err) {
1818 pr_err("Failed to process events, error %d", err);
1819 goto out_delete;
1820 }
1821
1822 sched->nr_events = session->evlist->stats.nr_events[0];
1823 sched->nr_lost_events = session->evlist->stats.total_lost;
1824 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1825 }
1826
1827 rc = 0;
1828out_delete:
1829 perf_session__delete(session);
1830 return rc;
1831}
1832
1833/*
1834 * scheduling times are printed as msec.usec
1835 */
1836static inline void print_sched_time(unsigned long long nsecs, int width)
1837{
1838 unsigned long msecs;
1839 unsigned long usecs;
1840
1841 msecs = nsecs / NSEC_PER_MSEC;
1842 nsecs -= msecs * NSEC_PER_MSEC;
1843 usecs = nsecs / NSEC_PER_USEC;
1844 printf("%*lu.%03lu ", width, msecs, usecs);
1845}
1846
1847/*
1848 * returns runtime data for event, allocating memory for it the
1849 * first time it is used.
1850 */
1851static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1852{
1853 struct evsel_runtime *r = evsel->priv;
1854
1855 if (r == NULL) {
1856 r = zalloc(sizeof(struct evsel_runtime));
1857 evsel->priv = r;
1858 }
1859
1860 return r;
1861}
1862
1863/*
1864 * save last time event was seen per cpu
1865 */
1866static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1867{
1868 struct evsel_runtime *r = evsel__get_runtime(evsel);
1869
1870 if (r == NULL)
1871 return;
1872
1873 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1874 int i, n = __roundup_pow_of_two(cpu+1);
1875 void *p = r->last_time;
1876
1877 p = realloc(r->last_time, n * sizeof(u64));
1878 if (!p)
1879 return;
1880
1881 r->last_time = p;
1882 for (i = r->ncpu; i < n; ++i)
1883 r->last_time[i] = (u64) 0;
1884
1885 r->ncpu = n;
1886 }
1887
1888 r->last_time[cpu] = timestamp;
1889}
1890
1891/* returns last time this event was seen on the given cpu */
1892static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1893{
1894 struct evsel_runtime *r = evsel__get_runtime(evsel);
1895
1896 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1897 return 0;
1898
1899 return r->last_time[cpu];
1900}
1901
1902static int comm_width = 30;
1903
1904static char *timehist_get_commstr(struct thread *thread)
1905{
1906 static char str[32];
1907 const char *comm = thread__comm_str(thread);
1908 pid_t tid = thread->tid;
1909 pid_t pid = thread->pid_;
1910 int n;
1911
1912 if (pid == 0)
1913 n = scnprintf(str, sizeof(str), "%s", comm);
1914
1915 else if (tid != pid)
1916 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1917
1918 else
1919 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1920
1921 if (n > comm_width)
1922 comm_width = n;
1923
1924 return str;
1925}
1926
1927static void timehist_header(struct perf_sched *sched)
1928{
1929 u32 ncpus = sched->max_cpu + 1;
1930 u32 i, j;
1931
1932 printf("%15s %6s ", "time", "cpu");
1933
1934 if (sched->show_cpu_visual) {
1935 printf(" ");
1936 for (i = 0, j = 0; i < ncpus; ++i) {
1937 printf("%x", j++);
1938 if (j > 15)
1939 j = 0;
1940 }
1941 printf(" ");
1942 }
1943
1944 printf(" %-*s %9s %9s %9s", comm_width,
1945 "task name", "wait time", "sch delay", "run time");
1946
1947 if (sched->show_state)
1948 printf(" %s", "state");
1949
1950 printf("\n");
1951
1952 /*
1953 * units row
1954 */
1955 printf("%15s %-6s ", "", "");
1956
1957 if (sched->show_cpu_visual)
1958 printf(" %*s ", ncpus, "");
1959
1960 printf(" %-*s %9s %9s %9s", comm_width,
1961 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1962
1963 if (sched->show_state)
1964 printf(" %5s", "");
1965
1966 printf("\n");
1967
1968 /*
1969 * separator
1970 */
1971 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1972
1973 if (sched->show_cpu_visual)
1974 printf(" %.*s ", ncpus, graph_dotted_line);
1975
1976 printf(" %.*s %.9s %.9s %.9s", comm_width,
1977 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1978 graph_dotted_line);
1979
1980 if (sched->show_state)
1981 printf(" %.5s", graph_dotted_line);
1982
1983 printf("\n");
1984}
1985
1986static char task_state_char(struct thread *thread, int state)
1987{
1988 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1989 unsigned bit = state ? ffs(state) : 0;
1990
1991 /* 'I' for idle */
1992 if (thread->tid == 0)
1993 return 'I';
1994
1995 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1996}
1997
1998static void timehist_print_sample(struct perf_sched *sched,
1999 struct evsel *evsel,
2000 struct perf_sample *sample,
2001 struct addr_location *al,
2002 struct thread *thread,
2003 u64 t, int state)
2004{
2005 struct thread_runtime *tr = thread__priv(thread);
2006 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2007 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2008 u32 max_cpus = sched->max_cpu + 1;
2009 char tstr[64];
2010 char nstr[30];
2011 u64 wait_time;
2012
2013 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2014 return;
2015
2016 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2017 printf("%15s [%04d] ", tstr, sample->cpu);
2018
2019 if (sched->show_cpu_visual) {
2020 u32 i;
2021 char c;
2022
2023 printf(" ");
2024 for (i = 0; i < max_cpus; ++i) {
2025 /* flag idle times with 'i'; others are sched events */
2026 if (i == sample->cpu)
2027 c = (thread->tid == 0) ? 'i' : 's';
2028 else
2029 c = ' ';
2030 printf("%c", c);
2031 }
2032 printf(" ");
2033 }
2034
2035 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2036
2037 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2038 print_sched_time(wait_time, 6);
2039
2040 print_sched_time(tr->dt_delay, 6);
2041 print_sched_time(tr->dt_run, 6);
2042
2043 if (sched->show_state)
2044 printf(" %5c ", task_state_char(thread, state));
2045
2046 if (sched->show_next) {
2047 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2048 printf(" %-*s", comm_width, nstr);
2049 }
2050
2051 if (sched->show_wakeups && !sched->show_next)
2052 printf(" %-*s", comm_width, "");
2053
2054 if (thread->tid == 0)
2055 goto out;
2056
2057 if (sched->show_callchain)
2058 printf(" ");
2059
2060 sample__fprintf_sym(sample, al, 0,
2061 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2062 EVSEL__PRINT_CALLCHAIN_ARROW |
2063 EVSEL__PRINT_SKIP_IGNORED,
2064 &callchain_cursor, symbol_conf.bt_stop_list, stdout);
2065
2066out:
2067 printf("\n");
2068}
2069
2070/*
2071 * Explanation of delta-time stats:
2072 *
2073 * t = time of current schedule out event
2074 * tprev = time of previous sched out event
2075 * also time of schedule-in event for current task
2076 * last_time = time of last sched change event for current task
2077 * (i.e, time process was last scheduled out)
2078 * ready_to_run = time of wakeup for current task
2079 *
2080 * -----|------------|------------|------------|------
2081 * last ready tprev t
2082 * time to run
2083 *
2084 * |-------- dt_wait --------|
2085 * |- dt_delay -|-- dt_run --|
2086 *
2087 * dt_run = run time of current task
2088 * dt_wait = time between last schedule out event for task and tprev
2089 * represents time spent off the cpu
2090 * dt_delay = time between wakeup and schedule-in of task
2091 */
2092
2093static void timehist_update_runtime_stats(struct thread_runtime *r,
2094 u64 t, u64 tprev)
2095{
2096 r->dt_delay = 0;
2097 r->dt_sleep = 0;
2098 r->dt_iowait = 0;
2099 r->dt_preempt = 0;
2100 r->dt_run = 0;
2101
2102 if (tprev) {
2103 r->dt_run = t - tprev;
2104 if (r->ready_to_run) {
2105 if (r->ready_to_run > tprev)
2106 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2107 else
2108 r->dt_delay = tprev - r->ready_to_run;
2109 }
2110
2111 if (r->last_time > tprev)
2112 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2113 else if (r->last_time) {
2114 u64 dt_wait = tprev - r->last_time;
2115
2116 if (r->last_state == TASK_RUNNING)
2117 r->dt_preempt = dt_wait;
2118 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2119 r->dt_iowait = dt_wait;
2120 else
2121 r->dt_sleep = dt_wait;
2122 }
2123 }
2124
2125 update_stats(&r->run_stats, r->dt_run);
2126
2127 r->total_run_time += r->dt_run;
2128 r->total_delay_time += r->dt_delay;
2129 r->total_sleep_time += r->dt_sleep;
2130 r->total_iowait_time += r->dt_iowait;
2131 r->total_preempt_time += r->dt_preempt;
2132}
2133
2134static bool is_idle_sample(struct perf_sample *sample,
2135 struct evsel *evsel)
2136{
2137 /* pid 0 == swapper == idle task */
2138 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2139 return evsel__intval(evsel, sample, "prev_pid") == 0;
2140
2141 return sample->pid == 0;
2142}
2143
2144static void save_task_callchain(struct perf_sched *sched,
2145 struct perf_sample *sample,
2146 struct evsel *evsel,
2147 struct machine *machine)
2148{
2149 struct callchain_cursor *cursor = &callchain_cursor;
2150 struct thread *thread;
2151
2152 /* want main thread for process - has maps */
2153 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2154 if (thread == NULL) {
2155 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2156 return;
2157 }
2158
2159 if (!sched->show_callchain || sample->callchain == NULL)
2160 return;
2161
2162 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2163 NULL, NULL, sched->max_stack + 2) != 0) {
2164 if (verbose > 0)
2165 pr_err("Failed to resolve callchain. Skipping\n");
2166
2167 return;
2168 }
2169
2170 callchain_cursor_commit(cursor);
2171
2172 while (true) {
2173 struct callchain_cursor_node *node;
2174 struct symbol *sym;
2175
2176 node = callchain_cursor_current(cursor);
2177 if (node == NULL)
2178 break;
2179
2180 sym = node->ms.sym;
2181 if (sym) {
2182 if (!strcmp(sym->name, "schedule") ||
2183 !strcmp(sym->name, "__schedule") ||
2184 !strcmp(sym->name, "preempt_schedule"))
2185 sym->ignore = 1;
2186 }
2187
2188 callchain_cursor_advance(cursor);
2189 }
2190}
2191
2192static int init_idle_thread(struct thread *thread)
2193{
2194 struct idle_thread_runtime *itr;
2195
2196 thread__set_comm(thread, idle_comm, 0);
2197
2198 itr = zalloc(sizeof(*itr));
2199 if (itr == NULL)
2200 return -ENOMEM;
2201
2202 init_stats(&itr->tr.run_stats);
2203 callchain_init(&itr->callchain);
2204 callchain_cursor_reset(&itr->cursor);
2205 thread__set_priv(thread, itr);
2206
2207 return 0;
2208}
2209
2210/*
2211 * Track idle stats per cpu by maintaining a local thread
2212 * struct for the idle task on each cpu.
2213 */
2214static int init_idle_threads(int ncpu)
2215{
2216 int i, ret;
2217
2218 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2219 if (!idle_threads)
2220 return -ENOMEM;
2221
2222 idle_max_cpu = ncpu;
2223
2224 /* allocate the actual thread struct if needed */
2225 for (i = 0; i < ncpu; ++i) {
2226 idle_threads[i] = thread__new(0, 0);
2227 if (idle_threads[i] == NULL)
2228 return -ENOMEM;
2229
2230 ret = init_idle_thread(idle_threads[i]);
2231 if (ret < 0)
2232 return ret;
2233 }
2234
2235 return 0;
2236}
2237
2238static void free_idle_threads(void)
2239{
2240 int i;
2241
2242 if (idle_threads == NULL)
2243 return;
2244
2245 for (i = 0; i < idle_max_cpu; ++i) {
2246 if ((idle_threads[i]))
2247 thread__delete(idle_threads[i]);
2248 }
2249
2250 free(idle_threads);
2251}
2252
2253static struct thread *get_idle_thread(int cpu)
2254{
2255 /*
2256 * expand/allocate array of pointers to local thread
2257 * structs if needed
2258 */
2259 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2260 int i, j = __roundup_pow_of_two(cpu+1);
2261 void *p;
2262
2263 p = realloc(idle_threads, j * sizeof(struct thread *));
2264 if (!p)
2265 return NULL;
2266
2267 idle_threads = (struct thread **) p;
2268 for (i = idle_max_cpu; i < j; ++i)
2269 idle_threads[i] = NULL;
2270
2271 idle_max_cpu = j;
2272 }
2273
2274 /* allocate a new thread struct if needed */
2275 if (idle_threads[cpu] == NULL) {
2276 idle_threads[cpu] = thread__new(0, 0);
2277
2278 if (idle_threads[cpu]) {
2279 if (init_idle_thread(idle_threads[cpu]) < 0)
2280 return NULL;
2281 }
2282 }
2283
2284 return idle_threads[cpu];
2285}
2286
2287static void save_idle_callchain(struct perf_sched *sched,
2288 struct idle_thread_runtime *itr,
2289 struct perf_sample *sample)
2290{
2291 if (!sched->show_callchain || sample->callchain == NULL)
2292 return;
2293
2294 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2295}
2296
2297static struct thread *timehist_get_thread(struct perf_sched *sched,
2298 struct perf_sample *sample,
2299 struct machine *machine,
2300 struct evsel *evsel)
2301{
2302 struct thread *thread;
2303
2304 if (is_idle_sample(sample, evsel)) {
2305 thread = get_idle_thread(sample->cpu);
2306 if (thread == NULL)
2307 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2308
2309 } else {
2310 /* there were samples with tid 0 but non-zero pid */
2311 thread = machine__findnew_thread(machine, sample->pid,
2312 sample->tid ?: sample->pid);
2313 if (thread == NULL) {
2314 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2315 sample->tid);
2316 }
2317
2318 save_task_callchain(sched, sample, evsel, machine);
2319 if (sched->idle_hist) {
2320 struct thread *idle;
2321 struct idle_thread_runtime *itr;
2322
2323 idle = get_idle_thread(sample->cpu);
2324 if (idle == NULL) {
2325 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2326 return NULL;
2327 }
2328
2329 itr = thread__priv(idle);
2330 if (itr == NULL)
2331 return NULL;
2332
2333 itr->last_thread = thread;
2334
2335 /* copy task callchain when entering to idle */
2336 if (evsel__intval(evsel, sample, "next_pid") == 0)
2337 save_idle_callchain(sched, itr, sample);
2338 }
2339 }
2340
2341 return thread;
2342}
2343
2344static bool timehist_skip_sample(struct perf_sched *sched,
2345 struct thread *thread,
2346 struct evsel *evsel,
2347 struct perf_sample *sample)
2348{
2349 bool rc = false;
2350
2351 if (thread__is_filtered(thread)) {
2352 rc = true;
2353 sched->skipped_samples++;
2354 }
2355
2356 if (sched->idle_hist) {
2357 if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2358 rc = true;
2359 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2360 evsel__intval(evsel, sample, "next_pid") != 0)
2361 rc = true;
2362 }
2363
2364 return rc;
2365}
2366
2367static void timehist_print_wakeup_event(struct perf_sched *sched,
2368 struct evsel *evsel,
2369 struct perf_sample *sample,
2370 struct machine *machine,
2371 struct thread *awakened)
2372{
2373 struct thread *thread;
2374 char tstr[64];
2375
2376 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2377 if (thread == NULL)
2378 return;
2379
2380 /* show wakeup unless both awakee and awaker are filtered */
2381 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2382 timehist_skip_sample(sched, awakened, evsel, sample)) {
2383 return;
2384 }
2385
2386 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2387 printf("%15s [%04d] ", tstr, sample->cpu);
2388 if (sched->show_cpu_visual)
2389 printf(" %*s ", sched->max_cpu + 1, "");
2390
2391 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2392
2393 /* dt spacer */
2394 printf(" %9s %9s %9s ", "", "", "");
2395
2396 printf("awakened: %s", timehist_get_commstr(awakened));
2397
2398 printf("\n");
2399}
2400
2401static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2402 union perf_event *event __maybe_unused,
2403 struct evsel *evsel __maybe_unused,
2404 struct perf_sample *sample __maybe_unused,
2405 struct machine *machine __maybe_unused)
2406{
2407 return 0;
2408}
2409
2410static int timehist_sched_wakeup_event(struct perf_tool *tool,
2411 union perf_event *event __maybe_unused,
2412 struct evsel *evsel,
2413 struct perf_sample *sample,
2414 struct machine *machine)
2415{
2416 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2417 struct thread *thread;
2418 struct thread_runtime *tr = NULL;
2419 /* want pid of awakened task not pid in sample */
2420 const u32 pid = evsel__intval(evsel, sample, "pid");
2421
2422 thread = machine__findnew_thread(machine, 0, pid);
2423 if (thread == NULL)
2424 return -1;
2425
2426 tr = thread__get_runtime(thread);
2427 if (tr == NULL)
2428 return -1;
2429
2430 if (tr->ready_to_run == 0)
2431 tr->ready_to_run = sample->time;
2432
2433 /* show wakeups if requested */
2434 if (sched->show_wakeups &&
2435 !perf_time__skip_sample(&sched->ptime, sample->time))
2436 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2437
2438 return 0;
2439}
2440
2441static void timehist_print_migration_event(struct perf_sched *sched,
2442 struct evsel *evsel,
2443 struct perf_sample *sample,
2444 struct machine *machine,
2445 struct thread *migrated)
2446{
2447 struct thread *thread;
2448 char tstr[64];
2449 u32 max_cpus = sched->max_cpu + 1;
2450 u32 ocpu, dcpu;
2451
2452 if (sched->summary_only)
2453 return;
2454
2455 max_cpus = sched->max_cpu + 1;
2456 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2457 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2458
2459 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2460 if (thread == NULL)
2461 return;
2462
2463 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2464 timehist_skip_sample(sched, migrated, evsel, sample)) {
2465 return;
2466 }
2467
2468 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2469 printf("%15s [%04d] ", tstr, sample->cpu);
2470
2471 if (sched->show_cpu_visual) {
2472 u32 i;
2473 char c;
2474
2475 printf(" ");
2476 for (i = 0; i < max_cpus; ++i) {
2477 c = (i == sample->cpu) ? 'm' : ' ';
2478 printf("%c", c);
2479 }
2480 printf(" ");
2481 }
2482
2483 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2484
2485 /* dt spacer */
2486 printf(" %9s %9s %9s ", "", "", "");
2487
2488 printf("migrated: %s", timehist_get_commstr(migrated));
2489 printf(" cpu %d => %d", ocpu, dcpu);
2490
2491 printf("\n");
2492}
2493
2494static int timehist_migrate_task_event(struct perf_tool *tool,
2495 union perf_event *event __maybe_unused,
2496 struct evsel *evsel,
2497 struct perf_sample *sample,
2498 struct machine *machine)
2499{
2500 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2501 struct thread *thread;
2502 struct thread_runtime *tr = NULL;
2503 /* want pid of migrated task not pid in sample */
2504 const u32 pid = evsel__intval(evsel, sample, "pid");
2505
2506 thread = machine__findnew_thread(machine, 0, pid);
2507 if (thread == NULL)
2508 return -1;
2509
2510 tr = thread__get_runtime(thread);
2511 if (tr == NULL)
2512 return -1;
2513
2514 tr->migrations++;
2515
2516 /* show migrations if requested */
2517 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2518
2519 return 0;
2520}
2521
2522static int timehist_sched_change_event(struct perf_tool *tool,
2523 union perf_event *event,
2524 struct evsel *evsel,
2525 struct perf_sample *sample,
2526 struct machine *machine)
2527{
2528 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2529 struct perf_time_interval *ptime = &sched->ptime;
2530 struct addr_location al;
2531 struct thread *thread;
2532 struct thread_runtime *tr = NULL;
2533 u64 tprev, t = sample->time;
2534 int rc = 0;
2535 int state = evsel__intval(evsel, sample, "prev_state");
2536
2537 if (machine__resolve(machine, &al, sample) < 0) {
2538 pr_err("problem processing %d event. skipping it\n",
2539 event->header.type);
2540 rc = -1;
2541 goto out;
2542 }
2543
2544 thread = timehist_get_thread(sched, sample, machine, evsel);
2545 if (thread == NULL) {
2546 rc = -1;
2547 goto out;
2548 }
2549
2550 if (timehist_skip_sample(sched, thread, evsel, sample))
2551 goto out;
2552
2553 tr = thread__get_runtime(thread);
2554 if (tr == NULL) {
2555 rc = -1;
2556 goto out;
2557 }
2558
2559 tprev = evsel__get_time(evsel, sample->cpu);
2560
2561 /*
2562 * If start time given:
2563 * - sample time is under window user cares about - skip sample
2564 * - tprev is under window user cares about - reset to start of window
2565 */
2566 if (ptime->start && ptime->start > t)
2567 goto out;
2568
2569 if (tprev && ptime->start > tprev)
2570 tprev = ptime->start;
2571
2572 /*
2573 * If end time given:
2574 * - previous sched event is out of window - we are done
2575 * - sample time is beyond window user cares about - reset it
2576 * to close out stats for time window interest
2577 */
2578 if (ptime->end) {
2579 if (tprev > ptime->end)
2580 goto out;
2581
2582 if (t > ptime->end)
2583 t = ptime->end;
2584 }
2585
2586 if (!sched->idle_hist || thread->tid == 0) {
2587 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2588 timehist_update_runtime_stats(tr, t, tprev);
2589
2590 if (sched->idle_hist) {
2591 struct idle_thread_runtime *itr = (void *)tr;
2592 struct thread_runtime *last_tr;
2593
2594 BUG_ON(thread->tid != 0);
2595
2596 if (itr->last_thread == NULL)
2597 goto out;
2598
2599 /* add current idle time as last thread's runtime */
2600 last_tr = thread__get_runtime(itr->last_thread);
2601 if (last_tr == NULL)
2602 goto out;
2603
2604 timehist_update_runtime_stats(last_tr, t, tprev);
2605 /*
2606 * remove delta time of last thread as it's not updated
2607 * and otherwise it will show an invalid value next
2608 * time. we only care total run time and run stat.
2609 */
2610 last_tr->dt_run = 0;
2611 last_tr->dt_delay = 0;
2612 last_tr->dt_sleep = 0;
2613 last_tr->dt_iowait = 0;
2614 last_tr->dt_preempt = 0;
2615
2616 if (itr->cursor.nr)
2617 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2618
2619 itr->last_thread = NULL;
2620 }
2621 }
2622
2623 if (!sched->summary_only)
2624 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2625
2626out:
2627 if (sched->hist_time.start == 0 && t >= ptime->start)
2628 sched->hist_time.start = t;
2629 if (ptime->end == 0 || t <= ptime->end)
2630 sched->hist_time.end = t;
2631
2632 if (tr) {
2633 /* time of this sched_switch event becomes last time task seen */
2634 tr->last_time = sample->time;
2635
2636 /* last state is used to determine where to account wait time */
2637 tr->last_state = state;
2638
2639 /* sched out event for task so reset ready to run time */
2640 tr->ready_to_run = 0;
2641 }
2642
2643 evsel__save_time(evsel, sample->time, sample->cpu);
2644
2645 return rc;
2646}
2647
2648static int timehist_sched_switch_event(struct perf_tool *tool,
2649 union perf_event *event,
2650 struct evsel *evsel,
2651 struct perf_sample *sample,
2652 struct machine *machine __maybe_unused)
2653{
2654 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2655}
2656
2657static int process_lost(struct perf_tool *tool __maybe_unused,
2658 union perf_event *event,
2659 struct perf_sample *sample,
2660 struct machine *machine __maybe_unused)
2661{
2662 char tstr[64];
2663
2664 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2665 printf("%15s ", tstr);
2666 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2667
2668 return 0;
2669}
2670
2671
2672static void print_thread_runtime(struct thread *t,
2673 struct thread_runtime *r)
2674{
2675 double mean = avg_stats(&r->run_stats);
2676 float stddev;
2677
2678 printf("%*s %5d %9" PRIu64 " ",
2679 comm_width, timehist_get_commstr(t), t->ppid,
2680 (u64) r->run_stats.n);
2681
2682 print_sched_time(r->total_run_time, 8);
2683 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2684 print_sched_time(r->run_stats.min, 6);
2685 printf(" ");
2686 print_sched_time((u64) mean, 6);
2687 printf(" ");
2688 print_sched_time(r->run_stats.max, 6);
2689 printf(" ");
2690 printf("%5.2f", stddev);
2691 printf(" %5" PRIu64, r->migrations);
2692 printf("\n");
2693}
2694
2695static void print_thread_waittime(struct thread *t,
2696 struct thread_runtime *r)
2697{
2698 printf("%*s %5d %9" PRIu64 " ",
2699 comm_width, timehist_get_commstr(t), t->ppid,
2700 (u64) r->run_stats.n);
2701
2702 print_sched_time(r->total_run_time, 8);
2703 print_sched_time(r->total_sleep_time, 6);
2704 printf(" ");
2705 print_sched_time(r->total_iowait_time, 6);
2706 printf(" ");
2707 print_sched_time(r->total_preempt_time, 6);
2708 printf(" ");
2709 print_sched_time(r->total_delay_time, 6);
2710 printf("\n");
2711}
2712
2713struct total_run_stats {
2714 struct perf_sched *sched;
2715 u64 sched_count;
2716 u64 task_count;
2717 u64 total_run_time;
2718};
2719
2720static int __show_thread_runtime(struct thread *t, void *priv)
2721{
2722 struct total_run_stats *stats = priv;
2723 struct thread_runtime *r;
2724
2725 if (thread__is_filtered(t))
2726 return 0;
2727
2728 r = thread__priv(t);
2729 if (r && r->run_stats.n) {
2730 stats->task_count++;
2731 stats->sched_count += r->run_stats.n;
2732 stats->total_run_time += r->total_run_time;
2733
2734 if (stats->sched->show_state)
2735 print_thread_waittime(t, r);
2736 else
2737 print_thread_runtime(t, r);
2738 }
2739
2740 return 0;
2741}
2742
2743static int show_thread_runtime(struct thread *t, void *priv)
2744{
2745 if (t->dead)
2746 return 0;
2747
2748 return __show_thread_runtime(t, priv);
2749}
2750
2751static int show_deadthread_runtime(struct thread *t, void *priv)
2752{
2753 if (!t->dead)
2754 return 0;
2755
2756 return __show_thread_runtime(t, priv);
2757}
2758
2759static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2760{
2761 const char *sep = " <- ";
2762 struct callchain_list *chain;
2763 size_t ret = 0;
2764 char bf[1024];
2765 bool first;
2766
2767 if (node == NULL)
2768 return 0;
2769
2770 ret = callchain__fprintf_folded(fp, node->parent);
2771 first = (ret == 0);
2772
2773 list_for_each_entry(chain, &node->val, list) {
2774 if (chain->ip >= PERF_CONTEXT_MAX)
2775 continue;
2776 if (chain->ms.sym && chain->ms.sym->ignore)
2777 continue;
2778 ret += fprintf(fp, "%s%s", first ? "" : sep,
2779 callchain_list__sym_name(chain, bf, sizeof(bf),
2780 false));
2781 first = false;
2782 }
2783
2784 return ret;
2785}
2786
2787static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2788{
2789 size_t ret = 0;
2790 FILE *fp = stdout;
2791 struct callchain_node *chain;
2792 struct rb_node *rb_node = rb_first_cached(root);
2793
2794 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2795 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2796 graph_dotted_line);
2797
2798 while (rb_node) {
2799 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2800 rb_node = rb_next(rb_node);
2801
2802 ret += fprintf(fp, " ");
2803 print_sched_time(chain->hit, 12);
2804 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2805 ret += fprintf(fp, " %8d ", chain->count);
2806 ret += callchain__fprintf_folded(fp, chain);
2807 ret += fprintf(fp, "\n");
2808 }
2809
2810 return ret;
2811}
2812
2813static void timehist_print_summary(struct perf_sched *sched,
2814 struct perf_session *session)
2815{
2816 struct machine *m = &session->machines.host;
2817 struct total_run_stats totals;
2818 u64 task_count;
2819 struct thread *t;
2820 struct thread_runtime *r;
2821 int i;
2822 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2823
2824 memset(&totals, 0, sizeof(totals));
2825 totals.sched = sched;
2826
2827 if (sched->idle_hist) {
2828 printf("\nIdle-time summary\n");
2829 printf("%*s parent sched-out ", comm_width, "comm");
2830 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2831 } else if (sched->show_state) {
2832 printf("\nWait-time summary\n");
2833 printf("%*s parent sched-in ", comm_width, "comm");
2834 printf(" run-time sleep iowait preempt delay\n");
2835 } else {
2836 printf("\nRuntime summary\n");
2837 printf("%*s parent sched-in ", comm_width, "comm");
2838 printf(" run-time min-run avg-run max-run stddev migrations\n");
2839 }
2840 printf("%*s (count) ", comm_width, "");
2841 printf(" (msec) (msec) (msec) (msec) %s\n",
2842 sched->show_state ? "(msec)" : "%");
2843 printf("%.117s\n", graph_dotted_line);
2844
2845 machine__for_each_thread(m, show_thread_runtime, &totals);
2846 task_count = totals.task_count;
2847 if (!task_count)
2848 printf("<no still running tasks>\n");
2849
2850 printf("\nTerminated tasks:\n");
2851 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2852 if (task_count == totals.task_count)
2853 printf("<no terminated tasks>\n");
2854
2855 /* CPU idle stats not tracked when samples were skipped */
2856 if (sched->skipped_samples && !sched->idle_hist)
2857 return;
2858
2859 printf("\nIdle stats:\n");
2860 for (i = 0; i < idle_max_cpu; ++i) {
2861 if (cpu_list && !test_bit(i, cpu_bitmap))
2862 continue;
2863
2864 t = idle_threads[i];
2865 if (!t)
2866 continue;
2867
2868 r = thread__priv(t);
2869 if (r && r->run_stats.n) {
2870 totals.sched_count += r->run_stats.n;
2871 printf(" CPU %2d idle for ", i);
2872 print_sched_time(r->total_run_time, 6);
2873 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2874 } else
2875 printf(" CPU %2d idle entire time window\n", i);
2876 }
2877
2878 if (sched->idle_hist && sched->show_callchain) {
2879 callchain_param.mode = CHAIN_FOLDED;
2880 callchain_param.value = CCVAL_PERIOD;
2881
2882 callchain_register_param(&callchain_param);
2883
2884 printf("\nIdle stats by callchain:\n");
2885 for (i = 0; i < idle_max_cpu; ++i) {
2886 struct idle_thread_runtime *itr;
2887
2888 t = idle_threads[i];
2889 if (!t)
2890 continue;
2891
2892 itr = thread__priv(t);
2893 if (itr == NULL)
2894 continue;
2895
2896 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2897 0, &callchain_param);
2898
2899 printf(" CPU %2d:", i);
2900 print_sched_time(itr->tr.total_run_time, 6);
2901 printf(" msec\n");
2902 timehist_print_idlehist_callchain(&itr->sorted_root);
2903 printf("\n");
2904 }
2905 }
2906
2907 printf("\n"
2908 " Total number of unique tasks: %" PRIu64 "\n"
2909 "Total number of context switches: %" PRIu64 "\n",
2910 totals.task_count, totals.sched_count);
2911
2912 printf(" Total run time (msec): ");
2913 print_sched_time(totals.total_run_time, 2);
2914 printf("\n");
2915
2916 printf(" Total scheduling time (msec): ");
2917 print_sched_time(hist_time, 2);
2918 printf(" (x %d)\n", sched->max_cpu);
2919}
2920
2921typedef int (*sched_handler)(struct perf_tool *tool,
2922 union perf_event *event,
2923 struct evsel *evsel,
2924 struct perf_sample *sample,
2925 struct machine *machine);
2926
2927static int perf_timehist__process_sample(struct perf_tool *tool,
2928 union perf_event *event,
2929 struct perf_sample *sample,
2930 struct evsel *evsel,
2931 struct machine *machine)
2932{
2933 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2934 int err = 0;
2935 int this_cpu = sample->cpu;
2936
2937 if (this_cpu > sched->max_cpu)
2938 sched->max_cpu = this_cpu;
2939
2940 if (evsel->handler != NULL) {
2941 sched_handler f = evsel->handler;
2942
2943 err = f(tool, event, evsel, sample, machine);
2944 }
2945
2946 return err;
2947}
2948
2949static int timehist_check_attr(struct perf_sched *sched,
2950 struct evlist *evlist)
2951{
2952 struct evsel *evsel;
2953 struct evsel_runtime *er;
2954
2955 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2956 er = evsel__get_runtime(evsel);
2957 if (er == NULL) {
2958 pr_err("Failed to allocate memory for evsel runtime data\n");
2959 return -1;
2960 }
2961
2962 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2963 pr_info("Samples do not have callchains.\n");
2964 sched->show_callchain = 0;
2965 symbol_conf.use_callchain = 0;
2966 }
2967 }
2968
2969 return 0;
2970}
2971
2972static int perf_sched__timehist(struct perf_sched *sched)
2973{
2974 struct evsel_str_handler handlers[] = {
2975 { "sched:sched_switch", timehist_sched_switch_event, },
2976 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2977 { "sched:sched_waking", timehist_sched_wakeup_event, },
2978 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2979 };
2980 const struct evsel_str_handler migrate_handlers[] = {
2981 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2982 };
2983 struct perf_data data = {
2984 .path = input_name,
2985 .mode = PERF_DATA_MODE_READ,
2986 .force = sched->force,
2987 };
2988
2989 struct perf_session *session;
2990 struct evlist *evlist;
2991 int err = -1;
2992
2993 /*
2994 * event handlers for timehist option
2995 */
2996 sched->tool.sample = perf_timehist__process_sample;
2997 sched->tool.mmap = perf_event__process_mmap;
2998 sched->tool.comm = perf_event__process_comm;
2999 sched->tool.exit = perf_event__process_exit;
3000 sched->tool.fork = perf_event__process_fork;
3001 sched->tool.lost = process_lost;
3002 sched->tool.attr = perf_event__process_attr;
3003 sched->tool.tracing_data = perf_event__process_tracing_data;
3004 sched->tool.build_id = perf_event__process_build_id;
3005
3006 sched->tool.ordered_events = true;
3007 sched->tool.ordering_requires_timestamps = true;
3008
3009 symbol_conf.use_callchain = sched->show_callchain;
3010
3011 session = perf_session__new(&data, false, &sched->tool);
3012 if (IS_ERR(session))
3013 return PTR_ERR(session);
3014
3015 if (cpu_list) {
3016 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3017 if (err < 0)
3018 goto out;
3019 }
3020
3021 evlist = session->evlist;
3022
3023 symbol__init(&session->header.env);
3024
3025 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3026 pr_err("Invalid time string\n");
3027 return -EINVAL;
3028 }
3029
3030 if (timehist_check_attr(sched, evlist) != 0)
3031 goto out;
3032
3033 setup_pager();
3034
3035 /* prefer sched_waking if it is captured */
3036 if (perf_evlist__find_tracepoint_by_name(session->evlist,
3037 "sched:sched_waking"))
3038 handlers[1].handler = timehist_sched_wakeup_ignore;
3039
3040 /* setup per-evsel handlers */
3041 if (perf_session__set_tracepoints_handlers(session, handlers))
3042 goto out;
3043
3044 /* sched_switch event at a minimum needs to exist */
3045 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3046 "sched:sched_switch")) {
3047 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3048 goto out;
3049 }
3050
3051 if (sched->show_migrations &&
3052 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3053 goto out;
3054
3055 /* pre-allocate struct for per-CPU idle stats */
3056 sched->max_cpu = session->header.env.nr_cpus_online;
3057 if (sched->max_cpu == 0)
3058 sched->max_cpu = 4;
3059 if (init_idle_threads(sched->max_cpu))
3060 goto out;
3061
3062 /* summary_only implies summary option, but don't overwrite summary if set */
3063 if (sched->summary_only)
3064 sched->summary = sched->summary_only;
3065
3066 if (!sched->summary_only)
3067 timehist_header(sched);
3068
3069 err = perf_session__process_events(session);
3070 if (err) {
3071 pr_err("Failed to process events, error %d", err);
3072 goto out;
3073 }
3074
3075 sched->nr_events = evlist->stats.nr_events[0];
3076 sched->nr_lost_events = evlist->stats.total_lost;
3077 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3078
3079 if (sched->summary)
3080 timehist_print_summary(sched, session);
3081
3082out:
3083 free_idle_threads();
3084 perf_session__delete(session);
3085
3086 return err;
3087}
3088
3089
3090static void print_bad_events(struct perf_sched *sched)
3091{
3092 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3093 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3094 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3095 sched->nr_unordered_timestamps, sched->nr_timestamps);
3096 }
3097 if (sched->nr_lost_events && sched->nr_events) {
3098 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3099 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3100 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3101 }
3102 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3103 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3104 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3105 sched->nr_context_switch_bugs, sched->nr_timestamps);
3106 if (sched->nr_lost_events)
3107 printf(" (due to lost events?)");
3108 printf("\n");
3109 }
3110}
3111
3112static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3113{
3114 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3115 struct work_atoms *this;
3116 const char *comm = thread__comm_str(data->thread), *this_comm;
3117 bool leftmost = true;
3118
3119 while (*new) {
3120 int cmp;
3121
3122 this = container_of(*new, struct work_atoms, node);
3123 parent = *new;
3124
3125 this_comm = thread__comm_str(this->thread);
3126 cmp = strcmp(comm, this_comm);
3127 if (cmp > 0) {
3128 new = &((*new)->rb_left);
3129 } else if (cmp < 0) {
3130 new = &((*new)->rb_right);
3131 leftmost = false;
3132 } else {
3133 this->num_merged++;
3134 this->total_runtime += data->total_runtime;
3135 this->nb_atoms += data->nb_atoms;
3136 this->total_lat += data->total_lat;
3137 list_splice(&data->work_list, &this->work_list);
3138 if (this->max_lat < data->max_lat) {
3139 this->max_lat = data->max_lat;
3140 this->max_lat_at = data->max_lat_at;
3141 }
3142 zfree(&data);
3143 return;
3144 }
3145 }
3146
3147 data->num_merged++;
3148 rb_link_node(&data->node, parent, new);
3149 rb_insert_color_cached(&data->node, root, leftmost);
3150}
3151
3152static void perf_sched__merge_lat(struct perf_sched *sched)
3153{
3154 struct work_atoms *data;
3155 struct rb_node *node;
3156
3157 if (sched->skip_merge)
3158 return;
3159
3160 while ((node = rb_first_cached(&sched->atom_root))) {
3161 rb_erase_cached(node, &sched->atom_root);
3162 data = rb_entry(node, struct work_atoms, node);
3163 __merge_work_atoms(&sched->merged_atom_root, data);
3164 }
3165}
3166
3167static int perf_sched__lat(struct perf_sched *sched)
3168{
3169 struct rb_node *next;
3170
3171 setup_pager();
3172
3173 if (perf_sched__read_events(sched))
3174 return -1;
3175
3176 perf_sched__merge_lat(sched);
3177 perf_sched__sort_lat(sched);
3178
3179 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3180 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3181 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3182
3183 next = rb_first_cached(&sched->sorted_atom_root);
3184
3185 while (next) {
3186 struct work_atoms *work_list;
3187
3188 work_list = rb_entry(next, struct work_atoms, node);
3189 output_lat_thread(sched, work_list);
3190 next = rb_next(next);
3191 thread__zput(work_list->thread);
3192 }
3193
3194 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3195 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3196 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3197
3198 printf(" ---------------------------------------------------\n");
3199
3200 print_bad_events(sched);
3201 printf("\n");
3202
3203 return 0;
3204}
3205
3206static int setup_map_cpus(struct perf_sched *sched)
3207{
3208 struct perf_cpu_map *map;
3209
3210 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3211
3212 if (sched->map.comp) {
3213 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3214 if (!sched->map.comp_cpus)
3215 return -1;
3216 }
3217
3218 if (!sched->map.cpus_str)
3219 return 0;
3220
3221 map = perf_cpu_map__new(sched->map.cpus_str);
3222 if (!map) {
3223 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3224 return -1;
3225 }
3226
3227 sched->map.cpus = map;
3228 return 0;
3229}
3230
3231static int setup_color_pids(struct perf_sched *sched)
3232{
3233 struct perf_thread_map *map;
3234
3235 if (!sched->map.color_pids_str)
3236 return 0;
3237
3238 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3239 if (!map) {
3240 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3241 return -1;
3242 }
3243
3244 sched->map.color_pids = map;
3245 return 0;
3246}
3247
3248static int setup_color_cpus(struct perf_sched *sched)
3249{
3250 struct perf_cpu_map *map;
3251
3252 if (!sched->map.color_cpus_str)
3253 return 0;
3254
3255 map = perf_cpu_map__new(sched->map.color_cpus_str);
3256 if (!map) {
3257 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3258 return -1;
3259 }
3260
3261 sched->map.color_cpus = map;
3262 return 0;
3263}
3264
3265static int perf_sched__map(struct perf_sched *sched)
3266{
3267 if (setup_map_cpus(sched))
3268 return -1;
3269
3270 if (setup_color_pids(sched))
3271 return -1;
3272
3273 if (setup_color_cpus(sched))
3274 return -1;
3275
3276 setup_pager();
3277 if (perf_sched__read_events(sched))
3278 return -1;
3279 print_bad_events(sched);
3280 return 0;
3281}
3282
3283static int perf_sched__replay(struct perf_sched *sched)
3284{
3285 unsigned long i;
3286
3287 calibrate_run_measurement_overhead(sched);
3288 calibrate_sleep_measurement_overhead(sched);
3289
3290 test_calibrations(sched);
3291
3292 if (perf_sched__read_events(sched))
3293 return -1;
3294
3295 printf("nr_run_events: %ld\n", sched->nr_run_events);
3296 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3297 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3298
3299 if (sched->targetless_wakeups)
3300 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3301 if (sched->multitarget_wakeups)
3302 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3303 if (sched->nr_run_events_optimized)
3304 printf("run atoms optimized: %ld\n",
3305 sched->nr_run_events_optimized);
3306
3307 print_task_traces(sched);
3308 add_cross_task_wakeups(sched);
3309
3310 create_tasks(sched);
3311 printf("------------------------------------------------------------\n");
3312 for (i = 0; i < sched->replay_repeat; i++)
3313 run_one_test(sched);
3314
3315 return 0;
3316}
3317
3318static void setup_sorting(struct perf_sched *sched, const struct option *options,
3319 const char * const usage_msg[])
3320{
3321 char *tmp, *tok, *str = strdup(sched->sort_order);
3322
3323 for (tok = strtok_r(str, ", ", &tmp);
3324 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3325 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3326 usage_with_options_msg(usage_msg, options,
3327 "Unknown --sort key: `%s'", tok);
3328 }
3329 }
3330
3331 free(str);
3332
3333 sort_dimension__add("pid", &sched->cmp_pid);
3334}
3335
3336static int __cmd_record(int argc, const char **argv)
3337{
3338 unsigned int rec_argc, i, j;
3339 const char **rec_argv;
3340 const char * const record_args[] = {
3341 "record",
3342 "-a",
3343 "-R",
3344 "-m", "1024",
3345 "-c", "1",
3346 "-e", "sched:sched_switch",
3347 "-e", "sched:sched_stat_wait",
3348 "-e", "sched:sched_stat_sleep",
3349 "-e", "sched:sched_stat_iowait",
3350 "-e", "sched:sched_stat_runtime",
3351 "-e", "sched:sched_process_fork",
3352 "-e", "sched:sched_wakeup_new",
3353 "-e", "sched:sched_migrate_task",
3354 };
3355 struct tep_event *waking_event;
3356
3357 /*
3358 * +2 for either "-e", "sched:sched_wakeup" or
3359 * "-e", "sched:sched_waking"
3360 */
3361 rec_argc = ARRAY_SIZE(record_args) + 2 + argc - 1;
3362 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3363
3364 if (rec_argv == NULL)
3365 return -ENOMEM;
3366
3367 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3368 rec_argv[i] = strdup(record_args[i]);
3369
3370 rec_argv[i++] = "-e";
3371 waking_event = trace_event__tp_format("sched", "sched_waking");
3372 if (!IS_ERR(waking_event))
3373 rec_argv[i++] = strdup("sched:sched_waking");
3374 else
3375 rec_argv[i++] = strdup("sched:sched_wakeup");
3376
3377 for (j = 1; j < (unsigned int)argc; j++, i++)
3378 rec_argv[i] = argv[j];
3379
3380 BUG_ON(i != rec_argc);
3381
3382 return cmd_record(i, rec_argv);
3383}
3384
3385int cmd_sched(int argc, const char **argv)
3386{
3387 static const char default_sort_order[] = "avg, max, switch, runtime";
3388 struct perf_sched sched = {
3389 .tool = {
3390 .sample = perf_sched__process_tracepoint_sample,
3391 .comm = perf_sched__process_comm,
3392 .namespaces = perf_event__process_namespaces,
3393 .lost = perf_event__process_lost,
3394 .fork = perf_sched__process_fork_event,
3395 .ordered_events = true,
3396 },
3397 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3398 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3399 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3400 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3401 .sort_order = default_sort_order,
3402 .replay_repeat = 10,
3403 .profile_cpu = -1,
3404 .next_shortname1 = 'A',
3405 .next_shortname2 = '0',
3406 .skip_merge = 0,
3407 .show_callchain = 1,
3408 .max_stack = 5,
3409 };
3410 const struct option sched_options[] = {
3411 OPT_STRING('i', "input", &input_name, "file",
3412 "input file name"),
3413 OPT_INCR('v', "verbose", &verbose,
3414 "be more verbose (show symbol address, etc)"),
3415 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3416 "dump raw trace in ASCII"),
3417 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3418 OPT_END()
3419 };
3420 const struct option latency_options[] = {
3421 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3422 "sort by key(s): runtime, switch, avg, max"),
3423 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3424 "CPU to profile on"),
3425 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3426 "latency stats per pid instead of per comm"),
3427 OPT_PARENT(sched_options)
3428 };
3429 const struct option replay_options[] = {
3430 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3431 "repeat the workload replay N times (-1: infinite)"),
3432 OPT_PARENT(sched_options)
3433 };
3434 const struct option map_options[] = {
3435 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3436 "map output in compact mode"),
3437 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3438 "highlight given pids in map"),
3439 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3440 "highlight given CPUs in map"),
3441 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3442 "display given CPUs in map"),
3443 OPT_PARENT(sched_options)
3444 };
3445 const struct option timehist_options[] = {
3446 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3447 "file", "vmlinux pathname"),
3448 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3449 "file", "kallsyms pathname"),
3450 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3451 "Display call chains if present (default on)"),
3452 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3453 "Maximum number of functions to display backtrace."),
3454 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3455 "Look for files with symbols relative to this directory"),
3456 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3457 "Show only syscall summary with statistics"),
3458 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3459 "Show all syscalls and summary with statistics"),
3460 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3461 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3462 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3463 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3464 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3465 OPT_STRING(0, "time", &sched.time_str, "str",
3466 "Time span for analysis (start,stop)"),
3467 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3468 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3469 "analyze events only for given process id(s)"),
3470 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3471 "analyze events only for given thread id(s)"),
3472 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3473 OPT_PARENT(sched_options)
3474 };
3475
3476 const char * const latency_usage[] = {
3477 "perf sched latency [<options>]",
3478 NULL
3479 };
3480 const char * const replay_usage[] = {
3481 "perf sched replay [<options>]",
3482 NULL
3483 };
3484 const char * const map_usage[] = {
3485 "perf sched map [<options>]",
3486 NULL
3487 };
3488 const char * const timehist_usage[] = {
3489 "perf sched timehist [<options>]",
3490 NULL
3491 };
3492 const char *const sched_subcommands[] = { "record", "latency", "map",
3493 "replay", "script",
3494 "timehist", NULL };
3495 const char *sched_usage[] = {
3496 NULL,
3497 NULL
3498 };
3499 struct trace_sched_handler lat_ops = {
3500 .wakeup_event = latency_wakeup_event,
3501 .switch_event = latency_switch_event,
3502 .runtime_event = latency_runtime_event,
3503 .migrate_task_event = latency_migrate_task_event,
3504 };
3505 struct trace_sched_handler map_ops = {
3506 .switch_event = map_switch_event,
3507 };
3508 struct trace_sched_handler replay_ops = {
3509 .wakeup_event = replay_wakeup_event,
3510 .switch_event = replay_switch_event,
3511 .fork_event = replay_fork_event,
3512 };
3513 unsigned int i;
3514
3515 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3516 sched.curr_pid[i] = -1;
3517
3518 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3519 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3520 if (!argc)
3521 usage_with_options(sched_usage, sched_options);
3522
3523 /*
3524 * Aliased to 'perf script' for now:
3525 */
3526 if (!strcmp(argv[0], "script"))
3527 return cmd_script(argc, argv);
3528
3529 if (!strncmp(argv[0], "rec", 3)) {
3530 return __cmd_record(argc, argv);
3531 } else if (!strncmp(argv[0], "lat", 3)) {
3532 sched.tp_handler = &lat_ops;
3533 if (argc > 1) {
3534 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3535 if (argc)
3536 usage_with_options(latency_usage, latency_options);
3537 }
3538 setup_sorting(&sched, latency_options, latency_usage);
3539 return perf_sched__lat(&sched);
3540 } else if (!strcmp(argv[0], "map")) {
3541 if (argc) {
3542 argc = parse_options(argc, argv, map_options, map_usage, 0);
3543 if (argc)
3544 usage_with_options(map_usage, map_options);
3545 }
3546 sched.tp_handler = &map_ops;
3547 setup_sorting(&sched, latency_options, latency_usage);
3548 return perf_sched__map(&sched);
3549 } else if (!strncmp(argv[0], "rep", 3)) {
3550 sched.tp_handler = &replay_ops;
3551 if (argc) {
3552 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3553 if (argc)
3554 usage_with_options(replay_usage, replay_options);
3555 }
3556 return perf_sched__replay(&sched);
3557 } else if (!strcmp(argv[0], "timehist")) {
3558 if (argc) {
3559 argc = parse_options(argc, argv, timehist_options,
3560 timehist_usage, 0);
3561 if (argc)
3562 usage_with_options(timehist_usage, timehist_options);
3563 }
3564 if ((sched.show_wakeups || sched.show_next) &&
3565 sched.summary_only) {
3566 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3567 parse_options_usage(timehist_usage, timehist_options, "s", true);
3568 if (sched.show_wakeups)
3569 parse_options_usage(NULL, timehist_options, "w", true);
3570 if (sched.show_next)
3571 parse_options_usage(NULL, timehist_options, "n", true);
3572 return -EINVAL;
3573 }
3574
3575 return perf_sched__timehist(&sched);
3576 } else {
3577 usage_with_options(sched_usage, sched_options);
3578 }
3579
3580 return 0;
3581}
1// SPDX-License-Identifier: GPL-2.0
2#include "builtin.h"
3#include "perf-sys.h"
4
5#include "util/cpumap.h"
6#include "util/evlist.h"
7#include "util/evsel.h"
8#include "util/evsel_fprintf.h"
9#include "util/mutex.h"
10#include "util/symbol.h"
11#include "util/thread.h"
12#include "util/header.h"
13#include "util/session.h"
14#include "util/tool.h"
15#include "util/cloexec.h"
16#include "util/thread_map.h"
17#include "util/color.h"
18#include "util/stat.h"
19#include "util/string2.h"
20#include "util/callchain.h"
21#include "util/time-utils.h"
22
23#include <subcmd/pager.h>
24#include <subcmd/parse-options.h>
25#include "util/trace-event.h"
26
27#include "util/debug.h"
28#include "util/event.h"
29#include "util/util.h"
30
31#include <linux/kernel.h>
32#include <linux/log2.h>
33#include <linux/zalloc.h>
34#include <sys/prctl.h>
35#include <sys/resource.h>
36#include <inttypes.h>
37
38#include <errno.h>
39#include <semaphore.h>
40#include <pthread.h>
41#include <math.h>
42#include <api/fs/fs.h>
43#include <perf/cpumap.h>
44#include <linux/time64.h>
45#include <linux/err.h>
46
47#include <linux/ctype.h>
48
49#define PR_SET_NAME 15 /* Set process name */
50#define MAX_CPUS 4096
51#define COMM_LEN 20
52#define SYM_LEN 129
53#define MAX_PID 1024000
54
55static const char *cpu_list;
56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
57
58struct sched_atom;
59
60struct task_desc {
61 unsigned long nr;
62 unsigned long pid;
63 char comm[COMM_LEN];
64
65 unsigned long nr_events;
66 unsigned long curr_event;
67 struct sched_atom **atoms;
68
69 pthread_t thread;
70 sem_t sleep_sem;
71
72 sem_t ready_for_work;
73 sem_t work_done_sem;
74
75 u64 cpu_usage;
76};
77
78enum sched_event_type {
79 SCHED_EVENT_RUN,
80 SCHED_EVENT_SLEEP,
81 SCHED_EVENT_WAKEUP,
82 SCHED_EVENT_MIGRATION,
83};
84
85struct sched_atom {
86 enum sched_event_type type;
87 int specific_wait;
88 u64 timestamp;
89 u64 duration;
90 unsigned long nr;
91 sem_t *wait_sem;
92 struct task_desc *wakee;
93};
94
95#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
96
97/* task state bitmask, copied from include/linux/sched.h */
98#define TASK_RUNNING 0
99#define TASK_INTERRUPTIBLE 1
100#define TASK_UNINTERRUPTIBLE 2
101#define __TASK_STOPPED 4
102#define __TASK_TRACED 8
103/* in tsk->exit_state */
104#define EXIT_DEAD 16
105#define EXIT_ZOMBIE 32
106#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
107/* in tsk->state again */
108#define TASK_DEAD 64
109#define TASK_WAKEKILL 128
110#define TASK_WAKING 256
111#define TASK_PARKED 512
112
113enum thread_state {
114 THREAD_SLEEPING = 0,
115 THREAD_WAIT_CPU,
116 THREAD_SCHED_IN,
117 THREAD_IGNORE
118};
119
120struct work_atom {
121 struct list_head list;
122 enum thread_state state;
123 u64 sched_out_time;
124 u64 wake_up_time;
125 u64 sched_in_time;
126 u64 runtime;
127};
128
129struct work_atoms {
130 struct list_head work_list;
131 struct thread *thread;
132 struct rb_node node;
133 u64 max_lat;
134 u64 max_lat_start;
135 u64 max_lat_end;
136 u64 total_lat;
137 u64 nb_atoms;
138 u64 total_runtime;
139 int num_merged;
140};
141
142typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
143
144struct perf_sched;
145
146struct trace_sched_handler {
147 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
148 struct perf_sample *sample, struct machine *machine);
149
150 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
151 struct perf_sample *sample, struct machine *machine);
152
153 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
154 struct perf_sample *sample, struct machine *machine);
155
156 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
157 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
158 struct machine *machine);
159
160 int (*migrate_task_event)(struct perf_sched *sched,
161 struct evsel *evsel,
162 struct perf_sample *sample,
163 struct machine *machine);
164};
165
166#define COLOR_PIDS PERF_COLOR_BLUE
167#define COLOR_CPUS PERF_COLOR_BG_RED
168
169struct perf_sched_map {
170 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
171 struct perf_cpu *comp_cpus;
172 bool comp;
173 struct perf_thread_map *color_pids;
174 const char *color_pids_str;
175 struct perf_cpu_map *color_cpus;
176 const char *color_cpus_str;
177 struct perf_cpu_map *cpus;
178 const char *cpus_str;
179};
180
181struct perf_sched {
182 struct perf_tool tool;
183 const char *sort_order;
184 unsigned long nr_tasks;
185 struct task_desc **pid_to_task;
186 struct task_desc **tasks;
187 const struct trace_sched_handler *tp_handler;
188 struct mutex start_work_mutex;
189 struct mutex work_done_wait_mutex;
190 int profile_cpu;
191/*
192 * Track the current task - that way we can know whether there's any
193 * weird events, such as a task being switched away that is not current.
194 */
195 struct perf_cpu max_cpu;
196 u32 *curr_pid;
197 struct thread **curr_thread;
198 char next_shortname1;
199 char next_shortname2;
200 unsigned int replay_repeat;
201 unsigned long nr_run_events;
202 unsigned long nr_sleep_events;
203 unsigned long nr_wakeup_events;
204 unsigned long nr_sleep_corrections;
205 unsigned long nr_run_events_optimized;
206 unsigned long targetless_wakeups;
207 unsigned long multitarget_wakeups;
208 unsigned long nr_runs;
209 unsigned long nr_timestamps;
210 unsigned long nr_unordered_timestamps;
211 unsigned long nr_context_switch_bugs;
212 unsigned long nr_events;
213 unsigned long nr_lost_chunks;
214 unsigned long nr_lost_events;
215 u64 run_measurement_overhead;
216 u64 sleep_measurement_overhead;
217 u64 start_time;
218 u64 cpu_usage;
219 u64 runavg_cpu_usage;
220 u64 parent_cpu_usage;
221 u64 runavg_parent_cpu_usage;
222 u64 sum_runtime;
223 u64 sum_fluct;
224 u64 run_avg;
225 u64 all_runtime;
226 u64 all_count;
227 u64 *cpu_last_switched;
228 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
229 struct list_head sort_list, cmp_pid;
230 bool force;
231 bool skip_merge;
232 struct perf_sched_map map;
233
234 /* options for timehist command */
235 bool summary;
236 bool summary_only;
237 bool idle_hist;
238 bool show_callchain;
239 unsigned int max_stack;
240 bool show_cpu_visual;
241 bool show_wakeups;
242 bool show_next;
243 bool show_migrations;
244 bool show_state;
245 u64 skipped_samples;
246 const char *time_str;
247 struct perf_time_interval ptime;
248 struct perf_time_interval hist_time;
249 volatile bool thread_funcs_exit;
250};
251
252/* per thread run time data */
253struct thread_runtime {
254 u64 last_time; /* time of previous sched in/out event */
255 u64 dt_run; /* run time */
256 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
257 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
258 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
259 u64 dt_delay; /* time between wakeup and sched-in */
260 u64 ready_to_run; /* time of wakeup */
261
262 struct stats run_stats;
263 u64 total_run_time;
264 u64 total_sleep_time;
265 u64 total_iowait_time;
266 u64 total_preempt_time;
267 u64 total_delay_time;
268
269 int last_state;
270
271 char shortname[3];
272 bool comm_changed;
273
274 u64 migrations;
275};
276
277/* per event run time data */
278struct evsel_runtime {
279 u64 *last_time; /* time this event was last seen per cpu */
280 u32 ncpu; /* highest cpu slot allocated */
281};
282
283/* per cpu idle time data */
284struct idle_thread_runtime {
285 struct thread_runtime tr;
286 struct thread *last_thread;
287 struct rb_root_cached sorted_root;
288 struct callchain_root callchain;
289 struct callchain_cursor cursor;
290};
291
292/* track idle times per cpu */
293static struct thread **idle_threads;
294static int idle_max_cpu;
295static char idle_comm[] = "<idle>";
296
297static u64 get_nsecs(void)
298{
299 struct timespec ts;
300
301 clock_gettime(CLOCK_MONOTONIC, &ts);
302
303 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
304}
305
306static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
307{
308 u64 T0 = get_nsecs(), T1;
309
310 do {
311 T1 = get_nsecs();
312 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
313}
314
315static void sleep_nsecs(u64 nsecs)
316{
317 struct timespec ts;
318
319 ts.tv_nsec = nsecs % 999999999;
320 ts.tv_sec = nsecs / 999999999;
321
322 nanosleep(&ts, NULL);
323}
324
325static void calibrate_run_measurement_overhead(struct perf_sched *sched)
326{
327 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
328 int i;
329
330 for (i = 0; i < 10; i++) {
331 T0 = get_nsecs();
332 burn_nsecs(sched, 0);
333 T1 = get_nsecs();
334 delta = T1-T0;
335 min_delta = min(min_delta, delta);
336 }
337 sched->run_measurement_overhead = min_delta;
338
339 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
340}
341
342static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
343{
344 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
345 int i;
346
347 for (i = 0; i < 10; i++) {
348 T0 = get_nsecs();
349 sleep_nsecs(10000);
350 T1 = get_nsecs();
351 delta = T1-T0;
352 min_delta = min(min_delta, delta);
353 }
354 min_delta -= 10000;
355 sched->sleep_measurement_overhead = min_delta;
356
357 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
358}
359
360static struct sched_atom *
361get_new_event(struct task_desc *task, u64 timestamp)
362{
363 struct sched_atom *event = zalloc(sizeof(*event));
364 unsigned long idx = task->nr_events;
365 size_t size;
366
367 event->timestamp = timestamp;
368 event->nr = idx;
369
370 task->nr_events++;
371 size = sizeof(struct sched_atom *) * task->nr_events;
372 task->atoms = realloc(task->atoms, size);
373 BUG_ON(!task->atoms);
374
375 task->atoms[idx] = event;
376
377 return event;
378}
379
380static struct sched_atom *last_event(struct task_desc *task)
381{
382 if (!task->nr_events)
383 return NULL;
384
385 return task->atoms[task->nr_events - 1];
386}
387
388static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
389 u64 timestamp, u64 duration)
390{
391 struct sched_atom *event, *curr_event = last_event(task);
392
393 /*
394 * optimize an existing RUN event by merging this one
395 * to it:
396 */
397 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
398 sched->nr_run_events_optimized++;
399 curr_event->duration += duration;
400 return;
401 }
402
403 event = get_new_event(task, timestamp);
404
405 event->type = SCHED_EVENT_RUN;
406 event->duration = duration;
407
408 sched->nr_run_events++;
409}
410
411static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
412 u64 timestamp, struct task_desc *wakee)
413{
414 struct sched_atom *event, *wakee_event;
415
416 event = get_new_event(task, timestamp);
417 event->type = SCHED_EVENT_WAKEUP;
418 event->wakee = wakee;
419
420 wakee_event = last_event(wakee);
421 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
422 sched->targetless_wakeups++;
423 return;
424 }
425 if (wakee_event->wait_sem) {
426 sched->multitarget_wakeups++;
427 return;
428 }
429
430 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
431 sem_init(wakee_event->wait_sem, 0, 0);
432 wakee_event->specific_wait = 1;
433 event->wait_sem = wakee_event->wait_sem;
434
435 sched->nr_wakeup_events++;
436}
437
438static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
439 u64 timestamp, u64 task_state __maybe_unused)
440{
441 struct sched_atom *event = get_new_event(task, timestamp);
442
443 event->type = SCHED_EVENT_SLEEP;
444
445 sched->nr_sleep_events++;
446}
447
448static struct task_desc *register_pid(struct perf_sched *sched,
449 unsigned long pid, const char *comm)
450{
451 struct task_desc *task;
452 static int pid_max;
453
454 if (sched->pid_to_task == NULL) {
455 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
456 pid_max = MAX_PID;
457 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
458 }
459 if (pid >= (unsigned long)pid_max) {
460 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
461 sizeof(struct task_desc *))) == NULL);
462 while (pid >= (unsigned long)pid_max)
463 sched->pid_to_task[pid_max++] = NULL;
464 }
465
466 task = sched->pid_to_task[pid];
467
468 if (task)
469 return task;
470
471 task = zalloc(sizeof(*task));
472 task->pid = pid;
473 task->nr = sched->nr_tasks;
474 strcpy(task->comm, comm);
475 /*
476 * every task starts in sleeping state - this gets ignored
477 * if there's no wakeup pointing to this sleep state:
478 */
479 add_sched_event_sleep(sched, task, 0, 0);
480
481 sched->pid_to_task[pid] = task;
482 sched->nr_tasks++;
483 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
484 BUG_ON(!sched->tasks);
485 sched->tasks[task->nr] = task;
486
487 if (verbose > 0)
488 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
489
490 return task;
491}
492
493
494static void print_task_traces(struct perf_sched *sched)
495{
496 struct task_desc *task;
497 unsigned long i;
498
499 for (i = 0; i < sched->nr_tasks; i++) {
500 task = sched->tasks[i];
501 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
502 task->nr, task->comm, task->pid, task->nr_events);
503 }
504}
505
506static void add_cross_task_wakeups(struct perf_sched *sched)
507{
508 struct task_desc *task1, *task2;
509 unsigned long i, j;
510
511 for (i = 0; i < sched->nr_tasks; i++) {
512 task1 = sched->tasks[i];
513 j = i + 1;
514 if (j == sched->nr_tasks)
515 j = 0;
516 task2 = sched->tasks[j];
517 add_sched_event_wakeup(sched, task1, 0, task2);
518 }
519}
520
521static void perf_sched__process_event(struct perf_sched *sched,
522 struct sched_atom *atom)
523{
524 int ret = 0;
525
526 switch (atom->type) {
527 case SCHED_EVENT_RUN:
528 burn_nsecs(sched, atom->duration);
529 break;
530 case SCHED_EVENT_SLEEP:
531 if (atom->wait_sem)
532 ret = sem_wait(atom->wait_sem);
533 BUG_ON(ret);
534 break;
535 case SCHED_EVENT_WAKEUP:
536 if (atom->wait_sem)
537 ret = sem_post(atom->wait_sem);
538 BUG_ON(ret);
539 break;
540 case SCHED_EVENT_MIGRATION:
541 break;
542 default:
543 BUG_ON(1);
544 }
545}
546
547static u64 get_cpu_usage_nsec_parent(void)
548{
549 struct rusage ru;
550 u64 sum;
551 int err;
552
553 err = getrusage(RUSAGE_SELF, &ru);
554 BUG_ON(err);
555
556 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
557 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
558
559 return sum;
560}
561
562static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
563{
564 struct perf_event_attr attr;
565 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
566 int fd;
567 struct rlimit limit;
568 bool need_privilege = false;
569
570 memset(&attr, 0, sizeof(attr));
571
572 attr.type = PERF_TYPE_SOFTWARE;
573 attr.config = PERF_COUNT_SW_TASK_CLOCK;
574
575force_again:
576 fd = sys_perf_event_open(&attr, 0, -1, -1,
577 perf_event_open_cloexec_flag());
578
579 if (fd < 0) {
580 if (errno == EMFILE) {
581 if (sched->force) {
582 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
583 limit.rlim_cur += sched->nr_tasks - cur_task;
584 if (limit.rlim_cur > limit.rlim_max) {
585 limit.rlim_max = limit.rlim_cur;
586 need_privilege = true;
587 }
588 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
589 if (need_privilege && errno == EPERM)
590 strcpy(info, "Need privilege\n");
591 } else
592 goto force_again;
593 } else
594 strcpy(info, "Have a try with -f option\n");
595 }
596 pr_err("Error: sys_perf_event_open() syscall returned "
597 "with %d (%s)\n%s", fd,
598 str_error_r(errno, sbuf, sizeof(sbuf)), info);
599 exit(EXIT_FAILURE);
600 }
601 return fd;
602}
603
604static u64 get_cpu_usage_nsec_self(int fd)
605{
606 u64 runtime;
607 int ret;
608
609 ret = read(fd, &runtime, sizeof(runtime));
610 BUG_ON(ret != sizeof(runtime));
611
612 return runtime;
613}
614
615struct sched_thread_parms {
616 struct task_desc *task;
617 struct perf_sched *sched;
618 int fd;
619};
620
621static void *thread_func(void *ctx)
622{
623 struct sched_thread_parms *parms = ctx;
624 struct task_desc *this_task = parms->task;
625 struct perf_sched *sched = parms->sched;
626 u64 cpu_usage_0, cpu_usage_1;
627 unsigned long i, ret;
628 char comm2[22];
629 int fd = parms->fd;
630
631 zfree(&parms);
632
633 sprintf(comm2, ":%s", this_task->comm);
634 prctl(PR_SET_NAME, comm2);
635 if (fd < 0)
636 return NULL;
637
638 while (!sched->thread_funcs_exit) {
639 ret = sem_post(&this_task->ready_for_work);
640 BUG_ON(ret);
641 mutex_lock(&sched->start_work_mutex);
642 mutex_unlock(&sched->start_work_mutex);
643
644 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
645
646 for (i = 0; i < this_task->nr_events; i++) {
647 this_task->curr_event = i;
648 perf_sched__process_event(sched, this_task->atoms[i]);
649 }
650
651 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
652 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
653 ret = sem_post(&this_task->work_done_sem);
654 BUG_ON(ret);
655
656 mutex_lock(&sched->work_done_wait_mutex);
657 mutex_unlock(&sched->work_done_wait_mutex);
658 }
659 return NULL;
660}
661
662static void create_tasks(struct perf_sched *sched)
663 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
664 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
665{
666 struct task_desc *task;
667 pthread_attr_t attr;
668 unsigned long i;
669 int err;
670
671 err = pthread_attr_init(&attr);
672 BUG_ON(err);
673 err = pthread_attr_setstacksize(&attr,
674 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
675 BUG_ON(err);
676 mutex_lock(&sched->start_work_mutex);
677 mutex_lock(&sched->work_done_wait_mutex);
678 for (i = 0; i < sched->nr_tasks; i++) {
679 struct sched_thread_parms *parms = malloc(sizeof(*parms));
680 BUG_ON(parms == NULL);
681 parms->task = task = sched->tasks[i];
682 parms->sched = sched;
683 parms->fd = self_open_counters(sched, i);
684 sem_init(&task->sleep_sem, 0, 0);
685 sem_init(&task->ready_for_work, 0, 0);
686 sem_init(&task->work_done_sem, 0, 0);
687 task->curr_event = 0;
688 err = pthread_create(&task->thread, &attr, thread_func, parms);
689 BUG_ON(err);
690 }
691}
692
693static void destroy_tasks(struct perf_sched *sched)
694 UNLOCK_FUNCTION(sched->start_work_mutex)
695 UNLOCK_FUNCTION(sched->work_done_wait_mutex)
696{
697 struct task_desc *task;
698 unsigned long i;
699 int err;
700
701 mutex_unlock(&sched->start_work_mutex);
702 mutex_unlock(&sched->work_done_wait_mutex);
703 /* Get rid of threads so they won't be upset by mutex destrunction */
704 for (i = 0; i < sched->nr_tasks; i++) {
705 task = sched->tasks[i];
706 err = pthread_join(task->thread, NULL);
707 BUG_ON(err);
708 sem_destroy(&task->sleep_sem);
709 sem_destroy(&task->ready_for_work);
710 sem_destroy(&task->work_done_sem);
711 }
712}
713
714static void wait_for_tasks(struct perf_sched *sched)
715 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
716 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
717{
718 u64 cpu_usage_0, cpu_usage_1;
719 struct task_desc *task;
720 unsigned long i, ret;
721
722 sched->start_time = get_nsecs();
723 sched->cpu_usage = 0;
724 mutex_unlock(&sched->work_done_wait_mutex);
725
726 for (i = 0; i < sched->nr_tasks; i++) {
727 task = sched->tasks[i];
728 ret = sem_wait(&task->ready_for_work);
729 BUG_ON(ret);
730 sem_init(&task->ready_for_work, 0, 0);
731 }
732 mutex_lock(&sched->work_done_wait_mutex);
733
734 cpu_usage_0 = get_cpu_usage_nsec_parent();
735
736 mutex_unlock(&sched->start_work_mutex);
737
738 for (i = 0; i < sched->nr_tasks; i++) {
739 task = sched->tasks[i];
740 ret = sem_wait(&task->work_done_sem);
741 BUG_ON(ret);
742 sem_init(&task->work_done_sem, 0, 0);
743 sched->cpu_usage += task->cpu_usage;
744 task->cpu_usage = 0;
745 }
746
747 cpu_usage_1 = get_cpu_usage_nsec_parent();
748 if (!sched->runavg_cpu_usage)
749 sched->runavg_cpu_usage = sched->cpu_usage;
750 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
751
752 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
753 if (!sched->runavg_parent_cpu_usage)
754 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
755 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
756 sched->parent_cpu_usage)/sched->replay_repeat;
757
758 mutex_lock(&sched->start_work_mutex);
759
760 for (i = 0; i < sched->nr_tasks; i++) {
761 task = sched->tasks[i];
762 sem_init(&task->sleep_sem, 0, 0);
763 task->curr_event = 0;
764 }
765}
766
767static void run_one_test(struct perf_sched *sched)
768 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
769 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
770{
771 u64 T0, T1, delta, avg_delta, fluct;
772
773 T0 = get_nsecs();
774 wait_for_tasks(sched);
775 T1 = get_nsecs();
776
777 delta = T1 - T0;
778 sched->sum_runtime += delta;
779 sched->nr_runs++;
780
781 avg_delta = sched->sum_runtime / sched->nr_runs;
782 if (delta < avg_delta)
783 fluct = avg_delta - delta;
784 else
785 fluct = delta - avg_delta;
786 sched->sum_fluct += fluct;
787 if (!sched->run_avg)
788 sched->run_avg = delta;
789 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
790
791 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
792
793 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
794
795 printf("cpu: %0.2f / %0.2f",
796 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
797
798#if 0
799 /*
800 * rusage statistics done by the parent, these are less
801 * accurate than the sched->sum_exec_runtime based statistics:
802 */
803 printf(" [%0.2f / %0.2f]",
804 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
805 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
806#endif
807
808 printf("\n");
809
810 if (sched->nr_sleep_corrections)
811 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
812 sched->nr_sleep_corrections = 0;
813}
814
815static void test_calibrations(struct perf_sched *sched)
816{
817 u64 T0, T1;
818
819 T0 = get_nsecs();
820 burn_nsecs(sched, NSEC_PER_MSEC);
821 T1 = get_nsecs();
822
823 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
824
825 T0 = get_nsecs();
826 sleep_nsecs(NSEC_PER_MSEC);
827 T1 = get_nsecs();
828
829 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
830}
831
832static int
833replay_wakeup_event(struct perf_sched *sched,
834 struct evsel *evsel, struct perf_sample *sample,
835 struct machine *machine __maybe_unused)
836{
837 const char *comm = evsel__strval(evsel, sample, "comm");
838 const u32 pid = evsel__intval(evsel, sample, "pid");
839 struct task_desc *waker, *wakee;
840
841 if (verbose > 0) {
842 printf("sched_wakeup event %p\n", evsel);
843
844 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
845 }
846
847 waker = register_pid(sched, sample->tid, "<unknown>");
848 wakee = register_pid(sched, pid, comm);
849
850 add_sched_event_wakeup(sched, waker, sample->time, wakee);
851 return 0;
852}
853
854static int replay_switch_event(struct perf_sched *sched,
855 struct evsel *evsel,
856 struct perf_sample *sample,
857 struct machine *machine __maybe_unused)
858{
859 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
860 *next_comm = evsel__strval(evsel, sample, "next_comm");
861 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
862 next_pid = evsel__intval(evsel, sample, "next_pid");
863 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
864 struct task_desc *prev, __maybe_unused *next;
865 u64 timestamp0, timestamp = sample->time;
866 int cpu = sample->cpu;
867 s64 delta;
868
869 if (verbose > 0)
870 printf("sched_switch event %p\n", evsel);
871
872 if (cpu >= MAX_CPUS || cpu < 0)
873 return 0;
874
875 timestamp0 = sched->cpu_last_switched[cpu];
876 if (timestamp0)
877 delta = timestamp - timestamp0;
878 else
879 delta = 0;
880
881 if (delta < 0) {
882 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
883 return -1;
884 }
885
886 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
887 prev_comm, prev_pid, next_comm, next_pid, delta);
888
889 prev = register_pid(sched, prev_pid, prev_comm);
890 next = register_pid(sched, next_pid, next_comm);
891
892 sched->cpu_last_switched[cpu] = timestamp;
893
894 add_sched_event_run(sched, prev, timestamp, delta);
895 add_sched_event_sleep(sched, prev, timestamp, prev_state);
896
897 return 0;
898}
899
900static int replay_fork_event(struct perf_sched *sched,
901 union perf_event *event,
902 struct machine *machine)
903{
904 struct thread *child, *parent;
905
906 child = machine__findnew_thread(machine, event->fork.pid,
907 event->fork.tid);
908 parent = machine__findnew_thread(machine, event->fork.ppid,
909 event->fork.ptid);
910
911 if (child == NULL || parent == NULL) {
912 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
913 child, parent);
914 goto out_put;
915 }
916
917 if (verbose > 0) {
918 printf("fork event\n");
919 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
920 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child));
921 }
922
923 register_pid(sched, thread__tid(parent), thread__comm_str(parent));
924 register_pid(sched, thread__tid(child), thread__comm_str(child));
925out_put:
926 thread__put(child);
927 thread__put(parent);
928 return 0;
929}
930
931struct sort_dimension {
932 const char *name;
933 sort_fn_t cmp;
934 struct list_head list;
935};
936
937/*
938 * handle runtime stats saved per thread
939 */
940static struct thread_runtime *thread__init_runtime(struct thread *thread)
941{
942 struct thread_runtime *r;
943
944 r = zalloc(sizeof(struct thread_runtime));
945 if (!r)
946 return NULL;
947
948 init_stats(&r->run_stats);
949 thread__set_priv(thread, r);
950
951 return r;
952}
953
954static struct thread_runtime *thread__get_runtime(struct thread *thread)
955{
956 struct thread_runtime *tr;
957
958 tr = thread__priv(thread);
959 if (tr == NULL) {
960 tr = thread__init_runtime(thread);
961 if (tr == NULL)
962 pr_debug("Failed to malloc memory for runtime data.\n");
963 }
964
965 return tr;
966}
967
968static int
969thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
970{
971 struct sort_dimension *sort;
972 int ret = 0;
973
974 BUG_ON(list_empty(list));
975
976 list_for_each_entry(sort, list, list) {
977 ret = sort->cmp(l, r);
978 if (ret)
979 return ret;
980 }
981
982 return ret;
983}
984
985static struct work_atoms *
986thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
987 struct list_head *sort_list)
988{
989 struct rb_node *node = root->rb_root.rb_node;
990 struct work_atoms key = { .thread = thread };
991
992 while (node) {
993 struct work_atoms *atoms;
994 int cmp;
995
996 atoms = container_of(node, struct work_atoms, node);
997
998 cmp = thread_lat_cmp(sort_list, &key, atoms);
999 if (cmp > 0)
1000 node = node->rb_left;
1001 else if (cmp < 0)
1002 node = node->rb_right;
1003 else {
1004 BUG_ON(thread != atoms->thread);
1005 return atoms;
1006 }
1007 }
1008 return NULL;
1009}
1010
1011static void
1012__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013 struct list_head *sort_list)
1014{
1015 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016 bool leftmost = true;
1017
1018 while (*new) {
1019 struct work_atoms *this;
1020 int cmp;
1021
1022 this = container_of(*new, struct work_atoms, node);
1023 parent = *new;
1024
1025 cmp = thread_lat_cmp(sort_list, data, this);
1026
1027 if (cmp > 0)
1028 new = &((*new)->rb_left);
1029 else {
1030 new = &((*new)->rb_right);
1031 leftmost = false;
1032 }
1033 }
1034
1035 rb_link_node(&data->node, parent, new);
1036 rb_insert_color_cached(&data->node, root, leftmost);
1037}
1038
1039static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040{
1041 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042 if (!atoms) {
1043 pr_err("No memory at %s\n", __func__);
1044 return -1;
1045 }
1046
1047 atoms->thread = thread__get(thread);
1048 INIT_LIST_HEAD(&atoms->work_list);
1049 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050 return 0;
1051}
1052
1053static char sched_out_state(u64 prev_state)
1054{
1055 const char *str = TASK_STATE_TO_CHAR_STR;
1056
1057 return str[prev_state];
1058}
1059
1060static int
1061add_sched_out_event(struct work_atoms *atoms,
1062 char run_state,
1063 u64 timestamp)
1064{
1065 struct work_atom *atom = zalloc(sizeof(*atom));
1066 if (!atom) {
1067 pr_err("Non memory at %s", __func__);
1068 return -1;
1069 }
1070
1071 atom->sched_out_time = timestamp;
1072
1073 if (run_state == 'R') {
1074 atom->state = THREAD_WAIT_CPU;
1075 atom->wake_up_time = atom->sched_out_time;
1076 }
1077
1078 list_add_tail(&atom->list, &atoms->work_list);
1079 return 0;
1080}
1081
1082static void
1083add_runtime_event(struct work_atoms *atoms, u64 delta,
1084 u64 timestamp __maybe_unused)
1085{
1086 struct work_atom *atom;
1087
1088 BUG_ON(list_empty(&atoms->work_list));
1089
1090 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092 atom->runtime += delta;
1093 atoms->total_runtime += delta;
1094}
1095
1096static void
1097add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1098{
1099 struct work_atom *atom;
1100 u64 delta;
1101
1102 if (list_empty(&atoms->work_list))
1103 return;
1104
1105 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1106
1107 if (atom->state != THREAD_WAIT_CPU)
1108 return;
1109
1110 if (timestamp < atom->wake_up_time) {
1111 atom->state = THREAD_IGNORE;
1112 return;
1113 }
1114
1115 atom->state = THREAD_SCHED_IN;
1116 atom->sched_in_time = timestamp;
1117
1118 delta = atom->sched_in_time - atom->wake_up_time;
1119 atoms->total_lat += delta;
1120 if (delta > atoms->max_lat) {
1121 atoms->max_lat = delta;
1122 atoms->max_lat_start = atom->wake_up_time;
1123 atoms->max_lat_end = timestamp;
1124 }
1125 atoms->nb_atoms++;
1126}
1127
1128static int latency_switch_event(struct perf_sched *sched,
1129 struct evsel *evsel,
1130 struct perf_sample *sample,
1131 struct machine *machine)
1132{
1133 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134 next_pid = evsel__intval(evsel, sample, "next_pid");
1135 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136 struct work_atoms *out_events, *in_events;
1137 struct thread *sched_out, *sched_in;
1138 u64 timestamp0, timestamp = sample->time;
1139 int cpu = sample->cpu, err = -1;
1140 s64 delta;
1141
1142 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1143
1144 timestamp0 = sched->cpu_last_switched[cpu];
1145 sched->cpu_last_switched[cpu] = timestamp;
1146 if (timestamp0)
1147 delta = timestamp - timestamp0;
1148 else
1149 delta = 0;
1150
1151 if (delta < 0) {
1152 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1153 return -1;
1154 }
1155
1156 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157 sched_in = machine__findnew_thread(machine, -1, next_pid);
1158 if (sched_out == NULL || sched_in == NULL)
1159 goto out_put;
1160
1161 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1162 if (!out_events) {
1163 if (thread_atoms_insert(sched, sched_out))
1164 goto out_put;
1165 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1166 if (!out_events) {
1167 pr_err("out-event: Internal tree error");
1168 goto out_put;
1169 }
1170 }
1171 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1172 return -1;
1173
1174 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1175 if (!in_events) {
1176 if (thread_atoms_insert(sched, sched_in))
1177 goto out_put;
1178 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1179 if (!in_events) {
1180 pr_err("in-event: Internal tree error");
1181 goto out_put;
1182 }
1183 /*
1184 * Take came in we have not heard about yet,
1185 * add in an initial atom in runnable state:
1186 */
1187 if (add_sched_out_event(in_events, 'R', timestamp))
1188 goto out_put;
1189 }
1190 add_sched_in_event(in_events, timestamp);
1191 err = 0;
1192out_put:
1193 thread__put(sched_out);
1194 thread__put(sched_in);
1195 return err;
1196}
1197
1198static int latency_runtime_event(struct perf_sched *sched,
1199 struct evsel *evsel,
1200 struct perf_sample *sample,
1201 struct machine *machine)
1202{
1203 const u32 pid = evsel__intval(evsel, sample, "pid");
1204 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1205 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207 u64 timestamp = sample->time;
1208 int cpu = sample->cpu, err = -1;
1209
1210 if (thread == NULL)
1211 return -1;
1212
1213 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1214 if (!atoms) {
1215 if (thread_atoms_insert(sched, thread))
1216 goto out_put;
1217 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1218 if (!atoms) {
1219 pr_err("in-event: Internal tree error");
1220 goto out_put;
1221 }
1222 if (add_sched_out_event(atoms, 'R', timestamp))
1223 goto out_put;
1224 }
1225
1226 add_runtime_event(atoms, runtime, timestamp);
1227 err = 0;
1228out_put:
1229 thread__put(thread);
1230 return err;
1231}
1232
1233static int latency_wakeup_event(struct perf_sched *sched,
1234 struct evsel *evsel,
1235 struct perf_sample *sample,
1236 struct machine *machine)
1237{
1238 const u32 pid = evsel__intval(evsel, sample, "pid");
1239 struct work_atoms *atoms;
1240 struct work_atom *atom;
1241 struct thread *wakee;
1242 u64 timestamp = sample->time;
1243 int err = -1;
1244
1245 wakee = machine__findnew_thread(machine, -1, pid);
1246 if (wakee == NULL)
1247 return -1;
1248 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1249 if (!atoms) {
1250 if (thread_atoms_insert(sched, wakee))
1251 goto out_put;
1252 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1253 if (!atoms) {
1254 pr_err("wakeup-event: Internal tree error");
1255 goto out_put;
1256 }
1257 if (add_sched_out_event(atoms, 'S', timestamp))
1258 goto out_put;
1259 }
1260
1261 BUG_ON(list_empty(&atoms->work_list));
1262
1263 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1264
1265 /*
1266 * As we do not guarantee the wakeup event happens when
1267 * task is out of run queue, also may happen when task is
1268 * on run queue and wakeup only change ->state to TASK_RUNNING,
1269 * then we should not set the ->wake_up_time when wake up a
1270 * task which is on run queue.
1271 *
1272 * You WILL be missing events if you've recorded only
1273 * one CPU, or are only looking at only one, so don't
1274 * skip in this case.
1275 */
1276 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1277 goto out_ok;
1278
1279 sched->nr_timestamps++;
1280 if (atom->sched_out_time > timestamp) {
1281 sched->nr_unordered_timestamps++;
1282 goto out_ok;
1283 }
1284
1285 atom->state = THREAD_WAIT_CPU;
1286 atom->wake_up_time = timestamp;
1287out_ok:
1288 err = 0;
1289out_put:
1290 thread__put(wakee);
1291 return err;
1292}
1293
1294static int latency_migrate_task_event(struct perf_sched *sched,
1295 struct evsel *evsel,
1296 struct perf_sample *sample,
1297 struct machine *machine)
1298{
1299 const u32 pid = evsel__intval(evsel, sample, "pid");
1300 u64 timestamp = sample->time;
1301 struct work_atoms *atoms;
1302 struct work_atom *atom;
1303 struct thread *migrant;
1304 int err = -1;
1305
1306 /*
1307 * Only need to worry about migration when profiling one CPU.
1308 */
1309 if (sched->profile_cpu == -1)
1310 return 0;
1311
1312 migrant = machine__findnew_thread(machine, -1, pid);
1313 if (migrant == NULL)
1314 return -1;
1315 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1316 if (!atoms) {
1317 if (thread_atoms_insert(sched, migrant))
1318 goto out_put;
1319 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1320 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1321 if (!atoms) {
1322 pr_err("migration-event: Internal tree error");
1323 goto out_put;
1324 }
1325 if (add_sched_out_event(atoms, 'R', timestamp))
1326 goto out_put;
1327 }
1328
1329 BUG_ON(list_empty(&atoms->work_list));
1330
1331 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1333
1334 sched->nr_timestamps++;
1335
1336 if (atom->sched_out_time > timestamp)
1337 sched->nr_unordered_timestamps++;
1338 err = 0;
1339out_put:
1340 thread__put(migrant);
1341 return err;
1342}
1343
1344static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1345{
1346 int i;
1347 int ret;
1348 u64 avg;
1349 char max_lat_start[32], max_lat_end[32];
1350
1351 if (!work_list->nb_atoms)
1352 return;
1353 /*
1354 * Ignore idle threads:
1355 */
1356 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1357 return;
1358
1359 sched->all_runtime += work_list->total_runtime;
1360 sched->all_count += work_list->nb_atoms;
1361
1362 if (work_list->num_merged > 1) {
1363 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread),
1364 work_list->num_merged);
1365 } else {
1366 ret = printf(" %s:%d ", thread__comm_str(work_list->thread),
1367 thread__tid(work_list->thread));
1368 }
1369
1370 for (i = 0; i < 24 - ret; i++)
1371 printf(" ");
1372
1373 avg = work_list->total_lat / work_list->nb_atoms;
1374 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1375 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1376
1377 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1378 (double)work_list->total_runtime / NSEC_PER_MSEC,
1379 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1380 (double)work_list->max_lat / NSEC_PER_MSEC,
1381 max_lat_start, max_lat_end);
1382}
1383
1384static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1385{
1386 pid_t l_tid, r_tid;
1387
1388 if (RC_CHK_EQUAL(l->thread, r->thread))
1389 return 0;
1390 l_tid = thread__tid(l->thread);
1391 r_tid = thread__tid(r->thread);
1392 if (l_tid < r_tid)
1393 return -1;
1394 if (l_tid > r_tid)
1395 return 1;
1396 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1397}
1398
1399static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1400{
1401 u64 avgl, avgr;
1402
1403 if (!l->nb_atoms)
1404 return -1;
1405
1406 if (!r->nb_atoms)
1407 return 1;
1408
1409 avgl = l->total_lat / l->nb_atoms;
1410 avgr = r->total_lat / r->nb_atoms;
1411
1412 if (avgl < avgr)
1413 return -1;
1414 if (avgl > avgr)
1415 return 1;
1416
1417 return 0;
1418}
1419
1420static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1421{
1422 if (l->max_lat < r->max_lat)
1423 return -1;
1424 if (l->max_lat > r->max_lat)
1425 return 1;
1426
1427 return 0;
1428}
1429
1430static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1431{
1432 if (l->nb_atoms < r->nb_atoms)
1433 return -1;
1434 if (l->nb_atoms > r->nb_atoms)
1435 return 1;
1436
1437 return 0;
1438}
1439
1440static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1441{
1442 if (l->total_runtime < r->total_runtime)
1443 return -1;
1444 if (l->total_runtime > r->total_runtime)
1445 return 1;
1446
1447 return 0;
1448}
1449
1450static int sort_dimension__add(const char *tok, struct list_head *list)
1451{
1452 size_t i;
1453 static struct sort_dimension avg_sort_dimension = {
1454 .name = "avg",
1455 .cmp = avg_cmp,
1456 };
1457 static struct sort_dimension max_sort_dimension = {
1458 .name = "max",
1459 .cmp = max_cmp,
1460 };
1461 static struct sort_dimension pid_sort_dimension = {
1462 .name = "pid",
1463 .cmp = pid_cmp,
1464 };
1465 static struct sort_dimension runtime_sort_dimension = {
1466 .name = "runtime",
1467 .cmp = runtime_cmp,
1468 };
1469 static struct sort_dimension switch_sort_dimension = {
1470 .name = "switch",
1471 .cmp = switch_cmp,
1472 };
1473 struct sort_dimension *available_sorts[] = {
1474 &pid_sort_dimension,
1475 &avg_sort_dimension,
1476 &max_sort_dimension,
1477 &switch_sort_dimension,
1478 &runtime_sort_dimension,
1479 };
1480
1481 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1482 if (!strcmp(available_sorts[i]->name, tok)) {
1483 list_add_tail(&available_sorts[i]->list, list);
1484
1485 return 0;
1486 }
1487 }
1488
1489 return -1;
1490}
1491
1492static void perf_sched__sort_lat(struct perf_sched *sched)
1493{
1494 struct rb_node *node;
1495 struct rb_root_cached *root = &sched->atom_root;
1496again:
1497 for (;;) {
1498 struct work_atoms *data;
1499 node = rb_first_cached(root);
1500 if (!node)
1501 break;
1502
1503 rb_erase_cached(node, root);
1504 data = rb_entry(node, struct work_atoms, node);
1505 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1506 }
1507 if (root == &sched->atom_root) {
1508 root = &sched->merged_atom_root;
1509 goto again;
1510 }
1511}
1512
1513static int process_sched_wakeup_event(struct perf_tool *tool,
1514 struct evsel *evsel,
1515 struct perf_sample *sample,
1516 struct machine *machine)
1517{
1518 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1519
1520 if (sched->tp_handler->wakeup_event)
1521 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1522
1523 return 0;
1524}
1525
1526static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1527 struct evsel *evsel __maybe_unused,
1528 struct perf_sample *sample __maybe_unused,
1529 struct machine *machine __maybe_unused)
1530{
1531 return 0;
1532}
1533
1534union map_priv {
1535 void *ptr;
1536 bool color;
1537};
1538
1539static bool thread__has_color(struct thread *thread)
1540{
1541 union map_priv priv = {
1542 .ptr = thread__priv(thread),
1543 };
1544
1545 return priv.color;
1546}
1547
1548static struct thread*
1549map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1550{
1551 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1552 union map_priv priv = {
1553 .color = false,
1554 };
1555
1556 if (!sched->map.color_pids || !thread || thread__priv(thread))
1557 return thread;
1558
1559 if (thread_map__has(sched->map.color_pids, tid))
1560 priv.color = true;
1561
1562 thread__set_priv(thread, priv.ptr);
1563 return thread;
1564}
1565
1566static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1567 struct perf_sample *sample, struct machine *machine)
1568{
1569 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1570 struct thread *sched_in;
1571 struct thread_runtime *tr;
1572 int new_shortname;
1573 u64 timestamp0, timestamp = sample->time;
1574 s64 delta;
1575 int i;
1576 struct perf_cpu this_cpu = {
1577 .cpu = sample->cpu,
1578 };
1579 int cpus_nr;
1580 bool new_cpu = false;
1581 const char *color = PERF_COLOR_NORMAL;
1582 char stimestamp[32];
1583
1584 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1585
1586 if (this_cpu.cpu > sched->max_cpu.cpu)
1587 sched->max_cpu = this_cpu;
1588
1589 if (sched->map.comp) {
1590 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1591 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1592 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1593 new_cpu = true;
1594 }
1595 } else
1596 cpus_nr = sched->max_cpu.cpu;
1597
1598 timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1599 sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1600 if (timestamp0)
1601 delta = timestamp - timestamp0;
1602 else
1603 delta = 0;
1604
1605 if (delta < 0) {
1606 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1607 return -1;
1608 }
1609
1610 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1611 if (sched_in == NULL)
1612 return -1;
1613
1614 tr = thread__get_runtime(sched_in);
1615 if (tr == NULL) {
1616 thread__put(sched_in);
1617 return -1;
1618 }
1619
1620 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1621
1622 printf(" ");
1623
1624 new_shortname = 0;
1625 if (!tr->shortname[0]) {
1626 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1627 /*
1628 * Don't allocate a letter-number for swapper:0
1629 * as a shortname. Instead, we use '.' for it.
1630 */
1631 tr->shortname[0] = '.';
1632 tr->shortname[1] = ' ';
1633 } else {
1634 tr->shortname[0] = sched->next_shortname1;
1635 tr->shortname[1] = sched->next_shortname2;
1636
1637 if (sched->next_shortname1 < 'Z') {
1638 sched->next_shortname1++;
1639 } else {
1640 sched->next_shortname1 = 'A';
1641 if (sched->next_shortname2 < '9')
1642 sched->next_shortname2++;
1643 else
1644 sched->next_shortname2 = '0';
1645 }
1646 }
1647 new_shortname = 1;
1648 }
1649
1650 for (i = 0; i < cpus_nr; i++) {
1651 struct perf_cpu cpu = {
1652 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1653 };
1654 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1655 struct thread_runtime *curr_tr;
1656 const char *pid_color = color;
1657 const char *cpu_color = color;
1658
1659 if (curr_thread && thread__has_color(curr_thread))
1660 pid_color = COLOR_PIDS;
1661
1662 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1663 continue;
1664
1665 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1666 cpu_color = COLOR_CPUS;
1667
1668 if (cpu.cpu != this_cpu.cpu)
1669 color_fprintf(stdout, color, " ");
1670 else
1671 color_fprintf(stdout, cpu_color, "*");
1672
1673 if (sched->curr_thread[cpu.cpu]) {
1674 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1675 if (curr_tr == NULL) {
1676 thread__put(sched_in);
1677 return -1;
1678 }
1679 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1680 } else
1681 color_fprintf(stdout, color, " ");
1682 }
1683
1684 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1685 goto out;
1686
1687 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1688 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1689 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1690 const char *pid_color = color;
1691
1692 if (thread__has_color(sched_in))
1693 pid_color = COLOR_PIDS;
1694
1695 color_fprintf(stdout, pid_color, "%s => %s:%d",
1696 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1697 tr->comm_changed = false;
1698 }
1699
1700 if (sched->map.comp && new_cpu)
1701 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1702
1703out:
1704 color_fprintf(stdout, color, "\n");
1705
1706 thread__put(sched_in);
1707
1708 return 0;
1709}
1710
1711static int process_sched_switch_event(struct perf_tool *tool,
1712 struct evsel *evsel,
1713 struct perf_sample *sample,
1714 struct machine *machine)
1715{
1716 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1717 int this_cpu = sample->cpu, err = 0;
1718 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1719 next_pid = evsel__intval(evsel, sample, "next_pid");
1720
1721 if (sched->curr_pid[this_cpu] != (u32)-1) {
1722 /*
1723 * Are we trying to switch away a PID that is
1724 * not current?
1725 */
1726 if (sched->curr_pid[this_cpu] != prev_pid)
1727 sched->nr_context_switch_bugs++;
1728 }
1729
1730 if (sched->tp_handler->switch_event)
1731 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1732
1733 sched->curr_pid[this_cpu] = next_pid;
1734 return err;
1735}
1736
1737static int process_sched_runtime_event(struct perf_tool *tool,
1738 struct evsel *evsel,
1739 struct perf_sample *sample,
1740 struct machine *machine)
1741{
1742 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1743
1744 if (sched->tp_handler->runtime_event)
1745 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1746
1747 return 0;
1748}
1749
1750static int perf_sched__process_fork_event(struct perf_tool *tool,
1751 union perf_event *event,
1752 struct perf_sample *sample,
1753 struct machine *machine)
1754{
1755 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1756
1757 /* run the fork event through the perf machinery */
1758 perf_event__process_fork(tool, event, sample, machine);
1759
1760 /* and then run additional processing needed for this command */
1761 if (sched->tp_handler->fork_event)
1762 return sched->tp_handler->fork_event(sched, event, machine);
1763
1764 return 0;
1765}
1766
1767static int process_sched_migrate_task_event(struct perf_tool *tool,
1768 struct evsel *evsel,
1769 struct perf_sample *sample,
1770 struct machine *machine)
1771{
1772 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1773
1774 if (sched->tp_handler->migrate_task_event)
1775 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1776
1777 return 0;
1778}
1779
1780typedef int (*tracepoint_handler)(struct perf_tool *tool,
1781 struct evsel *evsel,
1782 struct perf_sample *sample,
1783 struct machine *machine);
1784
1785static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1786 union perf_event *event __maybe_unused,
1787 struct perf_sample *sample,
1788 struct evsel *evsel,
1789 struct machine *machine)
1790{
1791 int err = 0;
1792
1793 if (evsel->handler != NULL) {
1794 tracepoint_handler f = evsel->handler;
1795 err = f(tool, evsel, sample, machine);
1796 }
1797
1798 return err;
1799}
1800
1801static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1802 union perf_event *event,
1803 struct perf_sample *sample,
1804 struct machine *machine)
1805{
1806 struct thread *thread;
1807 struct thread_runtime *tr;
1808 int err;
1809
1810 err = perf_event__process_comm(tool, event, sample, machine);
1811 if (err)
1812 return err;
1813
1814 thread = machine__find_thread(machine, sample->pid, sample->tid);
1815 if (!thread) {
1816 pr_err("Internal error: can't find thread\n");
1817 return -1;
1818 }
1819
1820 tr = thread__get_runtime(thread);
1821 if (tr == NULL) {
1822 thread__put(thread);
1823 return -1;
1824 }
1825
1826 tr->comm_changed = true;
1827 thread__put(thread);
1828
1829 return 0;
1830}
1831
1832static int perf_sched__read_events(struct perf_sched *sched)
1833{
1834 struct evsel_str_handler handlers[] = {
1835 { "sched:sched_switch", process_sched_switch_event, },
1836 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1837 { "sched:sched_wakeup", process_sched_wakeup_event, },
1838 { "sched:sched_waking", process_sched_wakeup_event, },
1839 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1840 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1841 };
1842 struct perf_session *session;
1843 struct perf_data data = {
1844 .path = input_name,
1845 .mode = PERF_DATA_MODE_READ,
1846 .force = sched->force,
1847 };
1848 int rc = -1;
1849
1850 session = perf_session__new(&data, &sched->tool);
1851 if (IS_ERR(session)) {
1852 pr_debug("Error creating perf session");
1853 return PTR_ERR(session);
1854 }
1855
1856 symbol__init(&session->header.env);
1857
1858 /* prefer sched_waking if it is captured */
1859 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1860 handlers[2].handler = process_sched_wakeup_ignore;
1861
1862 if (perf_session__set_tracepoints_handlers(session, handlers))
1863 goto out_delete;
1864
1865 if (perf_session__has_traces(session, "record -R")) {
1866 int err = perf_session__process_events(session);
1867 if (err) {
1868 pr_err("Failed to process events, error %d", err);
1869 goto out_delete;
1870 }
1871
1872 sched->nr_events = session->evlist->stats.nr_events[0];
1873 sched->nr_lost_events = session->evlist->stats.total_lost;
1874 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1875 }
1876
1877 rc = 0;
1878out_delete:
1879 perf_session__delete(session);
1880 return rc;
1881}
1882
1883/*
1884 * scheduling times are printed as msec.usec
1885 */
1886static inline void print_sched_time(unsigned long long nsecs, int width)
1887{
1888 unsigned long msecs;
1889 unsigned long usecs;
1890
1891 msecs = nsecs / NSEC_PER_MSEC;
1892 nsecs -= msecs * NSEC_PER_MSEC;
1893 usecs = nsecs / NSEC_PER_USEC;
1894 printf("%*lu.%03lu ", width, msecs, usecs);
1895}
1896
1897/*
1898 * returns runtime data for event, allocating memory for it the
1899 * first time it is used.
1900 */
1901static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1902{
1903 struct evsel_runtime *r = evsel->priv;
1904
1905 if (r == NULL) {
1906 r = zalloc(sizeof(struct evsel_runtime));
1907 evsel->priv = r;
1908 }
1909
1910 return r;
1911}
1912
1913/*
1914 * save last time event was seen per cpu
1915 */
1916static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1917{
1918 struct evsel_runtime *r = evsel__get_runtime(evsel);
1919
1920 if (r == NULL)
1921 return;
1922
1923 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1924 int i, n = __roundup_pow_of_two(cpu+1);
1925 void *p = r->last_time;
1926
1927 p = realloc(r->last_time, n * sizeof(u64));
1928 if (!p)
1929 return;
1930
1931 r->last_time = p;
1932 for (i = r->ncpu; i < n; ++i)
1933 r->last_time[i] = (u64) 0;
1934
1935 r->ncpu = n;
1936 }
1937
1938 r->last_time[cpu] = timestamp;
1939}
1940
1941/* returns last time this event was seen on the given cpu */
1942static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1943{
1944 struct evsel_runtime *r = evsel__get_runtime(evsel);
1945
1946 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1947 return 0;
1948
1949 return r->last_time[cpu];
1950}
1951
1952static int comm_width = 30;
1953
1954static char *timehist_get_commstr(struct thread *thread)
1955{
1956 static char str[32];
1957 const char *comm = thread__comm_str(thread);
1958 pid_t tid = thread__tid(thread);
1959 pid_t pid = thread__pid(thread);
1960 int n;
1961
1962 if (pid == 0)
1963 n = scnprintf(str, sizeof(str), "%s", comm);
1964
1965 else if (tid != pid)
1966 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1967
1968 else
1969 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1970
1971 if (n > comm_width)
1972 comm_width = n;
1973
1974 return str;
1975}
1976
1977static void timehist_header(struct perf_sched *sched)
1978{
1979 u32 ncpus = sched->max_cpu.cpu + 1;
1980 u32 i, j;
1981
1982 printf("%15s %6s ", "time", "cpu");
1983
1984 if (sched->show_cpu_visual) {
1985 printf(" ");
1986 for (i = 0, j = 0; i < ncpus; ++i) {
1987 printf("%x", j++);
1988 if (j > 15)
1989 j = 0;
1990 }
1991 printf(" ");
1992 }
1993
1994 printf(" %-*s %9s %9s %9s", comm_width,
1995 "task name", "wait time", "sch delay", "run time");
1996
1997 if (sched->show_state)
1998 printf(" %s", "state");
1999
2000 printf("\n");
2001
2002 /*
2003 * units row
2004 */
2005 printf("%15s %-6s ", "", "");
2006
2007 if (sched->show_cpu_visual)
2008 printf(" %*s ", ncpus, "");
2009
2010 printf(" %-*s %9s %9s %9s", comm_width,
2011 "[tid/pid]", "(msec)", "(msec)", "(msec)");
2012
2013 if (sched->show_state)
2014 printf(" %5s", "");
2015
2016 printf("\n");
2017
2018 /*
2019 * separator
2020 */
2021 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2022
2023 if (sched->show_cpu_visual)
2024 printf(" %.*s ", ncpus, graph_dotted_line);
2025
2026 printf(" %.*s %.9s %.9s %.9s", comm_width,
2027 graph_dotted_line, graph_dotted_line, graph_dotted_line,
2028 graph_dotted_line);
2029
2030 if (sched->show_state)
2031 printf(" %.5s", graph_dotted_line);
2032
2033 printf("\n");
2034}
2035
2036static char task_state_char(struct thread *thread, int state)
2037{
2038 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2039 unsigned bit = state ? ffs(state) : 0;
2040
2041 /* 'I' for idle */
2042 if (thread__tid(thread) == 0)
2043 return 'I';
2044
2045 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2046}
2047
2048static void timehist_print_sample(struct perf_sched *sched,
2049 struct evsel *evsel,
2050 struct perf_sample *sample,
2051 struct addr_location *al,
2052 struct thread *thread,
2053 u64 t, int state)
2054{
2055 struct thread_runtime *tr = thread__priv(thread);
2056 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2057 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2058 u32 max_cpus = sched->max_cpu.cpu + 1;
2059 char tstr[64];
2060 char nstr[30];
2061 u64 wait_time;
2062
2063 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2064 return;
2065
2066 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2067 printf("%15s [%04d] ", tstr, sample->cpu);
2068
2069 if (sched->show_cpu_visual) {
2070 u32 i;
2071 char c;
2072
2073 printf(" ");
2074 for (i = 0; i < max_cpus; ++i) {
2075 /* flag idle times with 'i'; others are sched events */
2076 if (i == sample->cpu)
2077 c = (thread__tid(thread) == 0) ? 'i' : 's';
2078 else
2079 c = ' ';
2080 printf("%c", c);
2081 }
2082 printf(" ");
2083 }
2084
2085 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2086
2087 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2088 print_sched_time(wait_time, 6);
2089
2090 print_sched_time(tr->dt_delay, 6);
2091 print_sched_time(tr->dt_run, 6);
2092
2093 if (sched->show_state)
2094 printf(" %5c ", task_state_char(thread, state));
2095
2096 if (sched->show_next) {
2097 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2098 printf(" %-*s", comm_width, nstr);
2099 }
2100
2101 if (sched->show_wakeups && !sched->show_next)
2102 printf(" %-*s", comm_width, "");
2103
2104 if (thread__tid(thread) == 0)
2105 goto out;
2106
2107 if (sched->show_callchain)
2108 printf(" ");
2109
2110 sample__fprintf_sym(sample, al, 0,
2111 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2112 EVSEL__PRINT_CALLCHAIN_ARROW |
2113 EVSEL__PRINT_SKIP_IGNORED,
2114 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout);
2115
2116out:
2117 printf("\n");
2118}
2119
2120/*
2121 * Explanation of delta-time stats:
2122 *
2123 * t = time of current schedule out event
2124 * tprev = time of previous sched out event
2125 * also time of schedule-in event for current task
2126 * last_time = time of last sched change event for current task
2127 * (i.e, time process was last scheduled out)
2128 * ready_to_run = time of wakeup for current task
2129 *
2130 * -----|------------|------------|------------|------
2131 * last ready tprev t
2132 * time to run
2133 *
2134 * |-------- dt_wait --------|
2135 * |- dt_delay -|-- dt_run --|
2136 *
2137 * dt_run = run time of current task
2138 * dt_wait = time between last schedule out event for task and tprev
2139 * represents time spent off the cpu
2140 * dt_delay = time between wakeup and schedule-in of task
2141 */
2142
2143static void timehist_update_runtime_stats(struct thread_runtime *r,
2144 u64 t, u64 tprev)
2145{
2146 r->dt_delay = 0;
2147 r->dt_sleep = 0;
2148 r->dt_iowait = 0;
2149 r->dt_preempt = 0;
2150 r->dt_run = 0;
2151
2152 if (tprev) {
2153 r->dt_run = t - tprev;
2154 if (r->ready_to_run) {
2155 if (r->ready_to_run > tprev)
2156 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2157 else
2158 r->dt_delay = tprev - r->ready_to_run;
2159 }
2160
2161 if (r->last_time > tprev)
2162 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2163 else if (r->last_time) {
2164 u64 dt_wait = tprev - r->last_time;
2165
2166 if (r->last_state == TASK_RUNNING)
2167 r->dt_preempt = dt_wait;
2168 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2169 r->dt_iowait = dt_wait;
2170 else
2171 r->dt_sleep = dt_wait;
2172 }
2173 }
2174
2175 update_stats(&r->run_stats, r->dt_run);
2176
2177 r->total_run_time += r->dt_run;
2178 r->total_delay_time += r->dt_delay;
2179 r->total_sleep_time += r->dt_sleep;
2180 r->total_iowait_time += r->dt_iowait;
2181 r->total_preempt_time += r->dt_preempt;
2182}
2183
2184static bool is_idle_sample(struct perf_sample *sample,
2185 struct evsel *evsel)
2186{
2187 /* pid 0 == swapper == idle task */
2188 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2189 return evsel__intval(evsel, sample, "prev_pid") == 0;
2190
2191 return sample->pid == 0;
2192}
2193
2194static void save_task_callchain(struct perf_sched *sched,
2195 struct perf_sample *sample,
2196 struct evsel *evsel,
2197 struct machine *machine)
2198{
2199 struct callchain_cursor *cursor;
2200 struct thread *thread;
2201
2202 /* want main thread for process - has maps */
2203 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2204 if (thread == NULL) {
2205 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2206 return;
2207 }
2208
2209 if (!sched->show_callchain || sample->callchain == NULL)
2210 return;
2211
2212 cursor = get_tls_callchain_cursor();
2213
2214 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2215 NULL, NULL, sched->max_stack + 2) != 0) {
2216 if (verbose > 0)
2217 pr_err("Failed to resolve callchain. Skipping\n");
2218
2219 return;
2220 }
2221
2222 callchain_cursor_commit(cursor);
2223
2224 while (true) {
2225 struct callchain_cursor_node *node;
2226 struct symbol *sym;
2227
2228 node = callchain_cursor_current(cursor);
2229 if (node == NULL)
2230 break;
2231
2232 sym = node->ms.sym;
2233 if (sym) {
2234 if (!strcmp(sym->name, "schedule") ||
2235 !strcmp(sym->name, "__schedule") ||
2236 !strcmp(sym->name, "preempt_schedule"))
2237 sym->ignore = 1;
2238 }
2239
2240 callchain_cursor_advance(cursor);
2241 }
2242}
2243
2244static int init_idle_thread(struct thread *thread)
2245{
2246 struct idle_thread_runtime *itr;
2247
2248 thread__set_comm(thread, idle_comm, 0);
2249
2250 itr = zalloc(sizeof(*itr));
2251 if (itr == NULL)
2252 return -ENOMEM;
2253
2254 init_stats(&itr->tr.run_stats);
2255 callchain_init(&itr->callchain);
2256 callchain_cursor_reset(&itr->cursor);
2257 thread__set_priv(thread, itr);
2258
2259 return 0;
2260}
2261
2262/*
2263 * Track idle stats per cpu by maintaining a local thread
2264 * struct for the idle task on each cpu.
2265 */
2266static int init_idle_threads(int ncpu)
2267{
2268 int i, ret;
2269
2270 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2271 if (!idle_threads)
2272 return -ENOMEM;
2273
2274 idle_max_cpu = ncpu;
2275
2276 /* allocate the actual thread struct if needed */
2277 for (i = 0; i < ncpu; ++i) {
2278 idle_threads[i] = thread__new(0, 0);
2279 if (idle_threads[i] == NULL)
2280 return -ENOMEM;
2281
2282 ret = init_idle_thread(idle_threads[i]);
2283 if (ret < 0)
2284 return ret;
2285 }
2286
2287 return 0;
2288}
2289
2290static void free_idle_threads(void)
2291{
2292 int i;
2293
2294 if (idle_threads == NULL)
2295 return;
2296
2297 for (i = 0; i < idle_max_cpu; ++i) {
2298 if ((idle_threads[i]))
2299 thread__delete(idle_threads[i]);
2300 }
2301
2302 free(idle_threads);
2303}
2304
2305static struct thread *get_idle_thread(int cpu)
2306{
2307 /*
2308 * expand/allocate array of pointers to local thread
2309 * structs if needed
2310 */
2311 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2312 int i, j = __roundup_pow_of_two(cpu+1);
2313 void *p;
2314
2315 p = realloc(idle_threads, j * sizeof(struct thread *));
2316 if (!p)
2317 return NULL;
2318
2319 idle_threads = (struct thread **) p;
2320 for (i = idle_max_cpu; i < j; ++i)
2321 idle_threads[i] = NULL;
2322
2323 idle_max_cpu = j;
2324 }
2325
2326 /* allocate a new thread struct if needed */
2327 if (idle_threads[cpu] == NULL) {
2328 idle_threads[cpu] = thread__new(0, 0);
2329
2330 if (idle_threads[cpu]) {
2331 if (init_idle_thread(idle_threads[cpu]) < 0)
2332 return NULL;
2333 }
2334 }
2335
2336 return idle_threads[cpu];
2337}
2338
2339static void save_idle_callchain(struct perf_sched *sched,
2340 struct idle_thread_runtime *itr,
2341 struct perf_sample *sample)
2342{
2343 struct callchain_cursor *cursor;
2344
2345 if (!sched->show_callchain || sample->callchain == NULL)
2346 return;
2347
2348 cursor = get_tls_callchain_cursor();
2349 if (cursor == NULL)
2350 return;
2351
2352 callchain_cursor__copy(&itr->cursor, cursor);
2353}
2354
2355static struct thread *timehist_get_thread(struct perf_sched *sched,
2356 struct perf_sample *sample,
2357 struct machine *machine,
2358 struct evsel *evsel)
2359{
2360 struct thread *thread;
2361
2362 if (is_idle_sample(sample, evsel)) {
2363 thread = get_idle_thread(sample->cpu);
2364 if (thread == NULL)
2365 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2366
2367 } else {
2368 /* there were samples with tid 0 but non-zero pid */
2369 thread = machine__findnew_thread(machine, sample->pid,
2370 sample->tid ?: sample->pid);
2371 if (thread == NULL) {
2372 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2373 sample->tid);
2374 }
2375
2376 save_task_callchain(sched, sample, evsel, machine);
2377 if (sched->idle_hist) {
2378 struct thread *idle;
2379 struct idle_thread_runtime *itr;
2380
2381 idle = get_idle_thread(sample->cpu);
2382 if (idle == NULL) {
2383 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2384 return NULL;
2385 }
2386
2387 itr = thread__priv(idle);
2388 if (itr == NULL)
2389 return NULL;
2390
2391 itr->last_thread = thread;
2392
2393 /* copy task callchain when entering to idle */
2394 if (evsel__intval(evsel, sample, "next_pid") == 0)
2395 save_idle_callchain(sched, itr, sample);
2396 }
2397 }
2398
2399 return thread;
2400}
2401
2402static bool timehist_skip_sample(struct perf_sched *sched,
2403 struct thread *thread,
2404 struct evsel *evsel,
2405 struct perf_sample *sample)
2406{
2407 bool rc = false;
2408
2409 if (thread__is_filtered(thread)) {
2410 rc = true;
2411 sched->skipped_samples++;
2412 }
2413
2414 if (sched->idle_hist) {
2415 if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2416 rc = true;
2417 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2418 evsel__intval(evsel, sample, "next_pid") != 0)
2419 rc = true;
2420 }
2421
2422 return rc;
2423}
2424
2425static void timehist_print_wakeup_event(struct perf_sched *sched,
2426 struct evsel *evsel,
2427 struct perf_sample *sample,
2428 struct machine *machine,
2429 struct thread *awakened)
2430{
2431 struct thread *thread;
2432 char tstr[64];
2433
2434 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2435 if (thread == NULL)
2436 return;
2437
2438 /* show wakeup unless both awakee and awaker are filtered */
2439 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2440 timehist_skip_sample(sched, awakened, evsel, sample)) {
2441 return;
2442 }
2443
2444 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2445 printf("%15s [%04d] ", tstr, sample->cpu);
2446 if (sched->show_cpu_visual)
2447 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2448
2449 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2450
2451 /* dt spacer */
2452 printf(" %9s %9s %9s ", "", "", "");
2453
2454 printf("awakened: %s", timehist_get_commstr(awakened));
2455
2456 printf("\n");
2457}
2458
2459static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2460 union perf_event *event __maybe_unused,
2461 struct evsel *evsel __maybe_unused,
2462 struct perf_sample *sample __maybe_unused,
2463 struct machine *machine __maybe_unused)
2464{
2465 return 0;
2466}
2467
2468static int timehist_sched_wakeup_event(struct perf_tool *tool,
2469 union perf_event *event __maybe_unused,
2470 struct evsel *evsel,
2471 struct perf_sample *sample,
2472 struct machine *machine)
2473{
2474 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2475 struct thread *thread;
2476 struct thread_runtime *tr = NULL;
2477 /* want pid of awakened task not pid in sample */
2478 const u32 pid = evsel__intval(evsel, sample, "pid");
2479
2480 thread = machine__findnew_thread(machine, 0, pid);
2481 if (thread == NULL)
2482 return -1;
2483
2484 tr = thread__get_runtime(thread);
2485 if (tr == NULL)
2486 return -1;
2487
2488 if (tr->ready_to_run == 0)
2489 tr->ready_to_run = sample->time;
2490
2491 /* show wakeups if requested */
2492 if (sched->show_wakeups &&
2493 !perf_time__skip_sample(&sched->ptime, sample->time))
2494 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2495
2496 return 0;
2497}
2498
2499static void timehist_print_migration_event(struct perf_sched *sched,
2500 struct evsel *evsel,
2501 struct perf_sample *sample,
2502 struct machine *machine,
2503 struct thread *migrated)
2504{
2505 struct thread *thread;
2506 char tstr[64];
2507 u32 max_cpus;
2508 u32 ocpu, dcpu;
2509
2510 if (sched->summary_only)
2511 return;
2512
2513 max_cpus = sched->max_cpu.cpu + 1;
2514 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2515 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2516
2517 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2518 if (thread == NULL)
2519 return;
2520
2521 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2522 timehist_skip_sample(sched, migrated, evsel, sample)) {
2523 return;
2524 }
2525
2526 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2527 printf("%15s [%04d] ", tstr, sample->cpu);
2528
2529 if (sched->show_cpu_visual) {
2530 u32 i;
2531 char c;
2532
2533 printf(" ");
2534 for (i = 0; i < max_cpus; ++i) {
2535 c = (i == sample->cpu) ? 'm' : ' ';
2536 printf("%c", c);
2537 }
2538 printf(" ");
2539 }
2540
2541 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2542
2543 /* dt spacer */
2544 printf(" %9s %9s %9s ", "", "", "");
2545
2546 printf("migrated: %s", timehist_get_commstr(migrated));
2547 printf(" cpu %d => %d", ocpu, dcpu);
2548
2549 printf("\n");
2550}
2551
2552static int timehist_migrate_task_event(struct perf_tool *tool,
2553 union perf_event *event __maybe_unused,
2554 struct evsel *evsel,
2555 struct perf_sample *sample,
2556 struct machine *machine)
2557{
2558 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2559 struct thread *thread;
2560 struct thread_runtime *tr = NULL;
2561 /* want pid of migrated task not pid in sample */
2562 const u32 pid = evsel__intval(evsel, sample, "pid");
2563
2564 thread = machine__findnew_thread(machine, 0, pid);
2565 if (thread == NULL)
2566 return -1;
2567
2568 tr = thread__get_runtime(thread);
2569 if (tr == NULL)
2570 return -1;
2571
2572 tr->migrations++;
2573
2574 /* show migrations if requested */
2575 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2576
2577 return 0;
2578}
2579
2580static int timehist_sched_change_event(struct perf_tool *tool,
2581 union perf_event *event,
2582 struct evsel *evsel,
2583 struct perf_sample *sample,
2584 struct machine *machine)
2585{
2586 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2587 struct perf_time_interval *ptime = &sched->ptime;
2588 struct addr_location al;
2589 struct thread *thread;
2590 struct thread_runtime *tr = NULL;
2591 u64 tprev, t = sample->time;
2592 int rc = 0;
2593 int state = evsel__intval(evsel, sample, "prev_state");
2594
2595 addr_location__init(&al);
2596 if (machine__resolve(machine, &al, sample) < 0) {
2597 pr_err("problem processing %d event. skipping it\n",
2598 event->header.type);
2599 rc = -1;
2600 goto out;
2601 }
2602
2603 thread = timehist_get_thread(sched, sample, machine, evsel);
2604 if (thread == NULL) {
2605 rc = -1;
2606 goto out;
2607 }
2608
2609 if (timehist_skip_sample(sched, thread, evsel, sample))
2610 goto out;
2611
2612 tr = thread__get_runtime(thread);
2613 if (tr == NULL) {
2614 rc = -1;
2615 goto out;
2616 }
2617
2618 tprev = evsel__get_time(evsel, sample->cpu);
2619
2620 /*
2621 * If start time given:
2622 * - sample time is under window user cares about - skip sample
2623 * - tprev is under window user cares about - reset to start of window
2624 */
2625 if (ptime->start && ptime->start > t)
2626 goto out;
2627
2628 if (tprev && ptime->start > tprev)
2629 tprev = ptime->start;
2630
2631 /*
2632 * If end time given:
2633 * - previous sched event is out of window - we are done
2634 * - sample time is beyond window user cares about - reset it
2635 * to close out stats for time window interest
2636 */
2637 if (ptime->end) {
2638 if (tprev > ptime->end)
2639 goto out;
2640
2641 if (t > ptime->end)
2642 t = ptime->end;
2643 }
2644
2645 if (!sched->idle_hist || thread__tid(thread) == 0) {
2646 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2647 timehist_update_runtime_stats(tr, t, tprev);
2648
2649 if (sched->idle_hist) {
2650 struct idle_thread_runtime *itr = (void *)tr;
2651 struct thread_runtime *last_tr;
2652
2653 BUG_ON(thread__tid(thread) != 0);
2654
2655 if (itr->last_thread == NULL)
2656 goto out;
2657
2658 /* add current idle time as last thread's runtime */
2659 last_tr = thread__get_runtime(itr->last_thread);
2660 if (last_tr == NULL)
2661 goto out;
2662
2663 timehist_update_runtime_stats(last_tr, t, tprev);
2664 /*
2665 * remove delta time of last thread as it's not updated
2666 * and otherwise it will show an invalid value next
2667 * time. we only care total run time and run stat.
2668 */
2669 last_tr->dt_run = 0;
2670 last_tr->dt_delay = 0;
2671 last_tr->dt_sleep = 0;
2672 last_tr->dt_iowait = 0;
2673 last_tr->dt_preempt = 0;
2674
2675 if (itr->cursor.nr)
2676 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2677
2678 itr->last_thread = NULL;
2679 }
2680 }
2681
2682 if (!sched->summary_only)
2683 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2684
2685out:
2686 if (sched->hist_time.start == 0 && t >= ptime->start)
2687 sched->hist_time.start = t;
2688 if (ptime->end == 0 || t <= ptime->end)
2689 sched->hist_time.end = t;
2690
2691 if (tr) {
2692 /* time of this sched_switch event becomes last time task seen */
2693 tr->last_time = sample->time;
2694
2695 /* last state is used to determine where to account wait time */
2696 tr->last_state = state;
2697
2698 /* sched out event for task so reset ready to run time */
2699 tr->ready_to_run = 0;
2700 }
2701
2702 evsel__save_time(evsel, sample->time, sample->cpu);
2703
2704 addr_location__exit(&al);
2705 return rc;
2706}
2707
2708static int timehist_sched_switch_event(struct perf_tool *tool,
2709 union perf_event *event,
2710 struct evsel *evsel,
2711 struct perf_sample *sample,
2712 struct machine *machine __maybe_unused)
2713{
2714 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2715}
2716
2717static int process_lost(struct perf_tool *tool __maybe_unused,
2718 union perf_event *event,
2719 struct perf_sample *sample,
2720 struct machine *machine __maybe_unused)
2721{
2722 char tstr[64];
2723
2724 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2725 printf("%15s ", tstr);
2726 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2727
2728 return 0;
2729}
2730
2731
2732static void print_thread_runtime(struct thread *t,
2733 struct thread_runtime *r)
2734{
2735 double mean = avg_stats(&r->run_stats);
2736 float stddev;
2737
2738 printf("%*s %5d %9" PRIu64 " ",
2739 comm_width, timehist_get_commstr(t), thread__ppid(t),
2740 (u64) r->run_stats.n);
2741
2742 print_sched_time(r->total_run_time, 8);
2743 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2744 print_sched_time(r->run_stats.min, 6);
2745 printf(" ");
2746 print_sched_time((u64) mean, 6);
2747 printf(" ");
2748 print_sched_time(r->run_stats.max, 6);
2749 printf(" ");
2750 printf("%5.2f", stddev);
2751 printf(" %5" PRIu64, r->migrations);
2752 printf("\n");
2753}
2754
2755static void print_thread_waittime(struct thread *t,
2756 struct thread_runtime *r)
2757{
2758 printf("%*s %5d %9" PRIu64 " ",
2759 comm_width, timehist_get_commstr(t), thread__ppid(t),
2760 (u64) r->run_stats.n);
2761
2762 print_sched_time(r->total_run_time, 8);
2763 print_sched_time(r->total_sleep_time, 6);
2764 printf(" ");
2765 print_sched_time(r->total_iowait_time, 6);
2766 printf(" ");
2767 print_sched_time(r->total_preempt_time, 6);
2768 printf(" ");
2769 print_sched_time(r->total_delay_time, 6);
2770 printf("\n");
2771}
2772
2773struct total_run_stats {
2774 struct perf_sched *sched;
2775 u64 sched_count;
2776 u64 task_count;
2777 u64 total_run_time;
2778};
2779
2780static int show_thread_runtime(struct thread *t, void *priv)
2781{
2782 struct total_run_stats *stats = priv;
2783 struct thread_runtime *r;
2784
2785 if (thread__is_filtered(t))
2786 return 0;
2787
2788 r = thread__priv(t);
2789 if (r && r->run_stats.n) {
2790 stats->task_count++;
2791 stats->sched_count += r->run_stats.n;
2792 stats->total_run_time += r->total_run_time;
2793
2794 if (stats->sched->show_state)
2795 print_thread_waittime(t, r);
2796 else
2797 print_thread_runtime(t, r);
2798 }
2799
2800 return 0;
2801}
2802
2803static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2804{
2805 const char *sep = " <- ";
2806 struct callchain_list *chain;
2807 size_t ret = 0;
2808 char bf[1024];
2809 bool first;
2810
2811 if (node == NULL)
2812 return 0;
2813
2814 ret = callchain__fprintf_folded(fp, node->parent);
2815 first = (ret == 0);
2816
2817 list_for_each_entry(chain, &node->val, list) {
2818 if (chain->ip >= PERF_CONTEXT_MAX)
2819 continue;
2820 if (chain->ms.sym && chain->ms.sym->ignore)
2821 continue;
2822 ret += fprintf(fp, "%s%s", first ? "" : sep,
2823 callchain_list__sym_name(chain, bf, sizeof(bf),
2824 false));
2825 first = false;
2826 }
2827
2828 return ret;
2829}
2830
2831static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2832{
2833 size_t ret = 0;
2834 FILE *fp = stdout;
2835 struct callchain_node *chain;
2836 struct rb_node *rb_node = rb_first_cached(root);
2837
2838 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2839 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2840 graph_dotted_line);
2841
2842 while (rb_node) {
2843 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2844 rb_node = rb_next(rb_node);
2845
2846 ret += fprintf(fp, " ");
2847 print_sched_time(chain->hit, 12);
2848 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2849 ret += fprintf(fp, " %8d ", chain->count);
2850 ret += callchain__fprintf_folded(fp, chain);
2851 ret += fprintf(fp, "\n");
2852 }
2853
2854 return ret;
2855}
2856
2857static void timehist_print_summary(struct perf_sched *sched,
2858 struct perf_session *session)
2859{
2860 struct machine *m = &session->machines.host;
2861 struct total_run_stats totals;
2862 u64 task_count;
2863 struct thread *t;
2864 struct thread_runtime *r;
2865 int i;
2866 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2867
2868 memset(&totals, 0, sizeof(totals));
2869 totals.sched = sched;
2870
2871 if (sched->idle_hist) {
2872 printf("\nIdle-time summary\n");
2873 printf("%*s parent sched-out ", comm_width, "comm");
2874 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2875 } else if (sched->show_state) {
2876 printf("\nWait-time summary\n");
2877 printf("%*s parent sched-in ", comm_width, "comm");
2878 printf(" run-time sleep iowait preempt delay\n");
2879 } else {
2880 printf("\nRuntime summary\n");
2881 printf("%*s parent sched-in ", comm_width, "comm");
2882 printf(" run-time min-run avg-run max-run stddev migrations\n");
2883 }
2884 printf("%*s (count) ", comm_width, "");
2885 printf(" (msec) (msec) (msec) (msec) %s\n",
2886 sched->show_state ? "(msec)" : "%");
2887 printf("%.117s\n", graph_dotted_line);
2888
2889 machine__for_each_thread(m, show_thread_runtime, &totals);
2890 task_count = totals.task_count;
2891 if (!task_count)
2892 printf("<no still running tasks>\n");
2893
2894 /* CPU idle stats not tracked when samples were skipped */
2895 if (sched->skipped_samples && !sched->idle_hist)
2896 return;
2897
2898 printf("\nIdle stats:\n");
2899 for (i = 0; i < idle_max_cpu; ++i) {
2900 if (cpu_list && !test_bit(i, cpu_bitmap))
2901 continue;
2902
2903 t = idle_threads[i];
2904 if (!t)
2905 continue;
2906
2907 r = thread__priv(t);
2908 if (r && r->run_stats.n) {
2909 totals.sched_count += r->run_stats.n;
2910 printf(" CPU %2d idle for ", i);
2911 print_sched_time(r->total_run_time, 6);
2912 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2913 } else
2914 printf(" CPU %2d idle entire time window\n", i);
2915 }
2916
2917 if (sched->idle_hist && sched->show_callchain) {
2918 callchain_param.mode = CHAIN_FOLDED;
2919 callchain_param.value = CCVAL_PERIOD;
2920
2921 callchain_register_param(&callchain_param);
2922
2923 printf("\nIdle stats by callchain:\n");
2924 for (i = 0; i < idle_max_cpu; ++i) {
2925 struct idle_thread_runtime *itr;
2926
2927 t = idle_threads[i];
2928 if (!t)
2929 continue;
2930
2931 itr = thread__priv(t);
2932 if (itr == NULL)
2933 continue;
2934
2935 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2936 0, &callchain_param);
2937
2938 printf(" CPU %2d:", i);
2939 print_sched_time(itr->tr.total_run_time, 6);
2940 printf(" msec\n");
2941 timehist_print_idlehist_callchain(&itr->sorted_root);
2942 printf("\n");
2943 }
2944 }
2945
2946 printf("\n"
2947 " Total number of unique tasks: %" PRIu64 "\n"
2948 "Total number of context switches: %" PRIu64 "\n",
2949 totals.task_count, totals.sched_count);
2950
2951 printf(" Total run time (msec): ");
2952 print_sched_time(totals.total_run_time, 2);
2953 printf("\n");
2954
2955 printf(" Total scheduling time (msec): ");
2956 print_sched_time(hist_time, 2);
2957 printf(" (x %d)\n", sched->max_cpu.cpu);
2958}
2959
2960typedef int (*sched_handler)(struct perf_tool *tool,
2961 union perf_event *event,
2962 struct evsel *evsel,
2963 struct perf_sample *sample,
2964 struct machine *machine);
2965
2966static int perf_timehist__process_sample(struct perf_tool *tool,
2967 union perf_event *event,
2968 struct perf_sample *sample,
2969 struct evsel *evsel,
2970 struct machine *machine)
2971{
2972 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2973 int err = 0;
2974 struct perf_cpu this_cpu = {
2975 .cpu = sample->cpu,
2976 };
2977
2978 if (this_cpu.cpu > sched->max_cpu.cpu)
2979 sched->max_cpu = this_cpu;
2980
2981 if (evsel->handler != NULL) {
2982 sched_handler f = evsel->handler;
2983
2984 err = f(tool, event, evsel, sample, machine);
2985 }
2986
2987 return err;
2988}
2989
2990static int timehist_check_attr(struct perf_sched *sched,
2991 struct evlist *evlist)
2992{
2993 struct evsel *evsel;
2994 struct evsel_runtime *er;
2995
2996 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2997 er = evsel__get_runtime(evsel);
2998 if (er == NULL) {
2999 pr_err("Failed to allocate memory for evsel runtime data\n");
3000 return -1;
3001 }
3002
3003 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
3004 pr_info("Samples do not have callchains.\n");
3005 sched->show_callchain = 0;
3006 symbol_conf.use_callchain = 0;
3007 }
3008 }
3009
3010 return 0;
3011}
3012
3013static int perf_sched__timehist(struct perf_sched *sched)
3014{
3015 struct evsel_str_handler handlers[] = {
3016 { "sched:sched_switch", timehist_sched_switch_event, },
3017 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
3018 { "sched:sched_waking", timehist_sched_wakeup_event, },
3019 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3020 };
3021 const struct evsel_str_handler migrate_handlers[] = {
3022 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3023 };
3024 struct perf_data data = {
3025 .path = input_name,
3026 .mode = PERF_DATA_MODE_READ,
3027 .force = sched->force,
3028 };
3029
3030 struct perf_session *session;
3031 struct evlist *evlist;
3032 int err = -1;
3033
3034 /*
3035 * event handlers for timehist option
3036 */
3037 sched->tool.sample = perf_timehist__process_sample;
3038 sched->tool.mmap = perf_event__process_mmap;
3039 sched->tool.comm = perf_event__process_comm;
3040 sched->tool.exit = perf_event__process_exit;
3041 sched->tool.fork = perf_event__process_fork;
3042 sched->tool.lost = process_lost;
3043 sched->tool.attr = perf_event__process_attr;
3044 sched->tool.tracing_data = perf_event__process_tracing_data;
3045 sched->tool.build_id = perf_event__process_build_id;
3046
3047 sched->tool.ordered_events = true;
3048 sched->tool.ordering_requires_timestamps = true;
3049
3050 symbol_conf.use_callchain = sched->show_callchain;
3051
3052 session = perf_session__new(&data, &sched->tool);
3053 if (IS_ERR(session))
3054 return PTR_ERR(session);
3055
3056 if (cpu_list) {
3057 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3058 if (err < 0)
3059 goto out;
3060 }
3061
3062 evlist = session->evlist;
3063
3064 symbol__init(&session->header.env);
3065
3066 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3067 pr_err("Invalid time string\n");
3068 return -EINVAL;
3069 }
3070
3071 if (timehist_check_attr(sched, evlist) != 0)
3072 goto out;
3073
3074 setup_pager();
3075
3076 /* prefer sched_waking if it is captured */
3077 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3078 handlers[1].handler = timehist_sched_wakeup_ignore;
3079
3080 /* setup per-evsel handlers */
3081 if (perf_session__set_tracepoints_handlers(session, handlers))
3082 goto out;
3083
3084 /* sched_switch event at a minimum needs to exist */
3085 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3086 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3087 goto out;
3088 }
3089
3090 if (sched->show_migrations &&
3091 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3092 goto out;
3093
3094 /* pre-allocate struct for per-CPU idle stats */
3095 sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3096 if (sched->max_cpu.cpu == 0)
3097 sched->max_cpu.cpu = 4;
3098 if (init_idle_threads(sched->max_cpu.cpu))
3099 goto out;
3100
3101 /* summary_only implies summary option, but don't overwrite summary if set */
3102 if (sched->summary_only)
3103 sched->summary = sched->summary_only;
3104
3105 if (!sched->summary_only)
3106 timehist_header(sched);
3107
3108 err = perf_session__process_events(session);
3109 if (err) {
3110 pr_err("Failed to process events, error %d", err);
3111 goto out;
3112 }
3113
3114 sched->nr_events = evlist->stats.nr_events[0];
3115 sched->nr_lost_events = evlist->stats.total_lost;
3116 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3117
3118 if (sched->summary)
3119 timehist_print_summary(sched, session);
3120
3121out:
3122 free_idle_threads();
3123 perf_session__delete(session);
3124
3125 return err;
3126}
3127
3128
3129static void print_bad_events(struct perf_sched *sched)
3130{
3131 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3132 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3133 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3134 sched->nr_unordered_timestamps, sched->nr_timestamps);
3135 }
3136 if (sched->nr_lost_events && sched->nr_events) {
3137 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3138 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3139 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3140 }
3141 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3142 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3143 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3144 sched->nr_context_switch_bugs, sched->nr_timestamps);
3145 if (sched->nr_lost_events)
3146 printf(" (due to lost events?)");
3147 printf("\n");
3148 }
3149}
3150
3151static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3152{
3153 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3154 struct work_atoms *this;
3155 const char *comm = thread__comm_str(data->thread), *this_comm;
3156 bool leftmost = true;
3157
3158 while (*new) {
3159 int cmp;
3160
3161 this = container_of(*new, struct work_atoms, node);
3162 parent = *new;
3163
3164 this_comm = thread__comm_str(this->thread);
3165 cmp = strcmp(comm, this_comm);
3166 if (cmp > 0) {
3167 new = &((*new)->rb_left);
3168 } else if (cmp < 0) {
3169 new = &((*new)->rb_right);
3170 leftmost = false;
3171 } else {
3172 this->num_merged++;
3173 this->total_runtime += data->total_runtime;
3174 this->nb_atoms += data->nb_atoms;
3175 this->total_lat += data->total_lat;
3176 list_splice(&data->work_list, &this->work_list);
3177 if (this->max_lat < data->max_lat) {
3178 this->max_lat = data->max_lat;
3179 this->max_lat_start = data->max_lat_start;
3180 this->max_lat_end = data->max_lat_end;
3181 }
3182 zfree(&data);
3183 return;
3184 }
3185 }
3186
3187 data->num_merged++;
3188 rb_link_node(&data->node, parent, new);
3189 rb_insert_color_cached(&data->node, root, leftmost);
3190}
3191
3192static void perf_sched__merge_lat(struct perf_sched *sched)
3193{
3194 struct work_atoms *data;
3195 struct rb_node *node;
3196
3197 if (sched->skip_merge)
3198 return;
3199
3200 while ((node = rb_first_cached(&sched->atom_root))) {
3201 rb_erase_cached(node, &sched->atom_root);
3202 data = rb_entry(node, struct work_atoms, node);
3203 __merge_work_atoms(&sched->merged_atom_root, data);
3204 }
3205}
3206
3207static int perf_sched__lat(struct perf_sched *sched)
3208{
3209 struct rb_node *next;
3210
3211 setup_pager();
3212
3213 if (perf_sched__read_events(sched))
3214 return -1;
3215
3216 perf_sched__merge_lat(sched);
3217 perf_sched__sort_lat(sched);
3218
3219 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3220 printf(" Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3221 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3222
3223 next = rb_first_cached(&sched->sorted_atom_root);
3224
3225 while (next) {
3226 struct work_atoms *work_list;
3227
3228 work_list = rb_entry(next, struct work_atoms, node);
3229 output_lat_thread(sched, work_list);
3230 next = rb_next(next);
3231 thread__zput(work_list->thread);
3232 }
3233
3234 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3235 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3236 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3237
3238 printf(" ---------------------------------------------------\n");
3239
3240 print_bad_events(sched);
3241 printf("\n");
3242
3243 return 0;
3244}
3245
3246static int setup_map_cpus(struct perf_sched *sched)
3247{
3248 struct perf_cpu_map *map;
3249
3250 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3251
3252 if (sched->map.comp) {
3253 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3254 if (!sched->map.comp_cpus)
3255 return -1;
3256 }
3257
3258 if (!sched->map.cpus_str)
3259 return 0;
3260
3261 map = perf_cpu_map__new(sched->map.cpus_str);
3262 if (!map) {
3263 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3264 return -1;
3265 }
3266
3267 sched->map.cpus = map;
3268 return 0;
3269}
3270
3271static int setup_color_pids(struct perf_sched *sched)
3272{
3273 struct perf_thread_map *map;
3274
3275 if (!sched->map.color_pids_str)
3276 return 0;
3277
3278 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3279 if (!map) {
3280 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3281 return -1;
3282 }
3283
3284 sched->map.color_pids = map;
3285 return 0;
3286}
3287
3288static int setup_color_cpus(struct perf_sched *sched)
3289{
3290 struct perf_cpu_map *map;
3291
3292 if (!sched->map.color_cpus_str)
3293 return 0;
3294
3295 map = perf_cpu_map__new(sched->map.color_cpus_str);
3296 if (!map) {
3297 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3298 return -1;
3299 }
3300
3301 sched->map.color_cpus = map;
3302 return 0;
3303}
3304
3305static int perf_sched__map(struct perf_sched *sched)
3306{
3307 if (setup_map_cpus(sched))
3308 return -1;
3309
3310 if (setup_color_pids(sched))
3311 return -1;
3312
3313 if (setup_color_cpus(sched))
3314 return -1;
3315
3316 setup_pager();
3317 if (perf_sched__read_events(sched))
3318 return -1;
3319 print_bad_events(sched);
3320 return 0;
3321}
3322
3323static int perf_sched__replay(struct perf_sched *sched)
3324{
3325 unsigned long i;
3326
3327 calibrate_run_measurement_overhead(sched);
3328 calibrate_sleep_measurement_overhead(sched);
3329
3330 test_calibrations(sched);
3331
3332 if (perf_sched__read_events(sched))
3333 return -1;
3334
3335 printf("nr_run_events: %ld\n", sched->nr_run_events);
3336 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3337 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3338
3339 if (sched->targetless_wakeups)
3340 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3341 if (sched->multitarget_wakeups)
3342 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3343 if (sched->nr_run_events_optimized)
3344 printf("run atoms optimized: %ld\n",
3345 sched->nr_run_events_optimized);
3346
3347 print_task_traces(sched);
3348 add_cross_task_wakeups(sched);
3349
3350 sched->thread_funcs_exit = false;
3351 create_tasks(sched);
3352 printf("------------------------------------------------------------\n");
3353 for (i = 0; i < sched->replay_repeat; i++)
3354 run_one_test(sched);
3355
3356 sched->thread_funcs_exit = true;
3357 destroy_tasks(sched);
3358 return 0;
3359}
3360
3361static void setup_sorting(struct perf_sched *sched, const struct option *options,
3362 const char * const usage_msg[])
3363{
3364 char *tmp, *tok, *str = strdup(sched->sort_order);
3365
3366 for (tok = strtok_r(str, ", ", &tmp);
3367 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3368 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3369 usage_with_options_msg(usage_msg, options,
3370 "Unknown --sort key: `%s'", tok);
3371 }
3372 }
3373
3374 free(str);
3375
3376 sort_dimension__add("pid", &sched->cmp_pid);
3377}
3378
3379static bool schedstat_events_exposed(void)
3380{
3381 /*
3382 * Select "sched:sched_stat_wait" event to check
3383 * whether schedstat tracepoints are exposed.
3384 */
3385 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3386 false : true;
3387}
3388
3389static int __cmd_record(int argc, const char **argv)
3390{
3391 unsigned int rec_argc, i, j;
3392 char **rec_argv;
3393 const char **rec_argv_copy;
3394 const char * const record_args[] = {
3395 "record",
3396 "-a",
3397 "-R",
3398 "-m", "1024",
3399 "-c", "1",
3400 "-e", "sched:sched_switch",
3401 "-e", "sched:sched_stat_runtime",
3402 "-e", "sched:sched_process_fork",
3403 "-e", "sched:sched_wakeup_new",
3404 "-e", "sched:sched_migrate_task",
3405 };
3406
3407 /*
3408 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3409 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3410 * to prevent "perf sched record" execution failure, determine
3411 * whether to record schedstat events according to actual situation.
3412 */
3413 const char * const schedstat_args[] = {
3414 "-e", "sched:sched_stat_wait",
3415 "-e", "sched:sched_stat_sleep",
3416 "-e", "sched:sched_stat_iowait",
3417 };
3418 unsigned int schedstat_argc = schedstat_events_exposed() ?
3419 ARRAY_SIZE(schedstat_args) : 0;
3420
3421 struct tep_event *waking_event;
3422 int ret;
3423
3424 /*
3425 * +2 for either "-e", "sched:sched_wakeup" or
3426 * "-e", "sched:sched_waking"
3427 */
3428 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3429 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3430 if (rec_argv == NULL)
3431 return -ENOMEM;
3432 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3433 if (rec_argv_copy == NULL) {
3434 free(rec_argv);
3435 return -ENOMEM;
3436 }
3437
3438 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3439 rec_argv[i] = strdup(record_args[i]);
3440
3441 rec_argv[i++] = strdup("-e");
3442 waking_event = trace_event__tp_format("sched", "sched_waking");
3443 if (!IS_ERR(waking_event))
3444 rec_argv[i++] = strdup("sched:sched_waking");
3445 else
3446 rec_argv[i++] = strdup("sched:sched_wakeup");
3447
3448 for (j = 0; j < schedstat_argc; j++)
3449 rec_argv[i++] = strdup(schedstat_args[j]);
3450
3451 for (j = 1; j < (unsigned int)argc; j++, i++)
3452 rec_argv[i] = strdup(argv[j]);
3453
3454 BUG_ON(i != rec_argc);
3455
3456 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3457 ret = cmd_record(rec_argc, rec_argv_copy);
3458
3459 for (i = 0; i < rec_argc; i++)
3460 free(rec_argv[i]);
3461 free(rec_argv);
3462 free(rec_argv_copy);
3463
3464 return ret;
3465}
3466
3467int cmd_sched(int argc, const char **argv)
3468{
3469 static const char default_sort_order[] = "avg, max, switch, runtime";
3470 struct perf_sched sched = {
3471 .tool = {
3472 .sample = perf_sched__process_tracepoint_sample,
3473 .comm = perf_sched__process_comm,
3474 .namespaces = perf_event__process_namespaces,
3475 .lost = perf_event__process_lost,
3476 .fork = perf_sched__process_fork_event,
3477 .ordered_events = true,
3478 },
3479 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3480 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3481 .sort_order = default_sort_order,
3482 .replay_repeat = 10,
3483 .profile_cpu = -1,
3484 .next_shortname1 = 'A',
3485 .next_shortname2 = '0',
3486 .skip_merge = 0,
3487 .show_callchain = 1,
3488 .max_stack = 5,
3489 };
3490 const struct option sched_options[] = {
3491 OPT_STRING('i', "input", &input_name, "file",
3492 "input file name"),
3493 OPT_INCR('v', "verbose", &verbose,
3494 "be more verbose (show symbol address, etc)"),
3495 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3496 "dump raw trace in ASCII"),
3497 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3498 OPT_END()
3499 };
3500 const struct option latency_options[] = {
3501 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3502 "sort by key(s): runtime, switch, avg, max"),
3503 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3504 "CPU to profile on"),
3505 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3506 "latency stats per pid instead of per comm"),
3507 OPT_PARENT(sched_options)
3508 };
3509 const struct option replay_options[] = {
3510 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3511 "repeat the workload replay N times (-1: infinite)"),
3512 OPT_PARENT(sched_options)
3513 };
3514 const struct option map_options[] = {
3515 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3516 "map output in compact mode"),
3517 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3518 "highlight given pids in map"),
3519 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3520 "highlight given CPUs in map"),
3521 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3522 "display given CPUs in map"),
3523 OPT_PARENT(sched_options)
3524 };
3525 const struct option timehist_options[] = {
3526 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3527 "file", "vmlinux pathname"),
3528 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3529 "file", "kallsyms pathname"),
3530 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3531 "Display call chains if present (default on)"),
3532 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3533 "Maximum number of functions to display backtrace."),
3534 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3535 "Look for files with symbols relative to this directory"),
3536 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3537 "Show only syscall summary with statistics"),
3538 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3539 "Show all syscalls and summary with statistics"),
3540 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3541 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3542 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3543 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3544 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3545 OPT_STRING(0, "time", &sched.time_str, "str",
3546 "Time span for analysis (start,stop)"),
3547 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3548 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3549 "analyze events only for given process id(s)"),
3550 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3551 "analyze events only for given thread id(s)"),
3552 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3553 OPT_PARENT(sched_options)
3554 };
3555
3556 const char * const latency_usage[] = {
3557 "perf sched latency [<options>]",
3558 NULL
3559 };
3560 const char * const replay_usage[] = {
3561 "perf sched replay [<options>]",
3562 NULL
3563 };
3564 const char * const map_usage[] = {
3565 "perf sched map [<options>]",
3566 NULL
3567 };
3568 const char * const timehist_usage[] = {
3569 "perf sched timehist [<options>]",
3570 NULL
3571 };
3572 const char *const sched_subcommands[] = { "record", "latency", "map",
3573 "replay", "script",
3574 "timehist", NULL };
3575 const char *sched_usage[] = {
3576 NULL,
3577 NULL
3578 };
3579 struct trace_sched_handler lat_ops = {
3580 .wakeup_event = latency_wakeup_event,
3581 .switch_event = latency_switch_event,
3582 .runtime_event = latency_runtime_event,
3583 .migrate_task_event = latency_migrate_task_event,
3584 };
3585 struct trace_sched_handler map_ops = {
3586 .switch_event = map_switch_event,
3587 };
3588 struct trace_sched_handler replay_ops = {
3589 .wakeup_event = replay_wakeup_event,
3590 .switch_event = replay_switch_event,
3591 .fork_event = replay_fork_event,
3592 };
3593 unsigned int i;
3594 int ret = 0;
3595
3596 mutex_init(&sched.start_work_mutex);
3597 mutex_init(&sched.work_done_wait_mutex);
3598 sched.curr_thread = calloc(MAX_CPUS, sizeof(*sched.curr_thread));
3599 if (!sched.curr_thread) {
3600 ret = -ENOMEM;
3601 goto out;
3602 }
3603 sched.cpu_last_switched = calloc(MAX_CPUS, sizeof(*sched.cpu_last_switched));
3604 if (!sched.cpu_last_switched) {
3605 ret = -ENOMEM;
3606 goto out;
3607 }
3608 sched.curr_pid = malloc(MAX_CPUS * sizeof(*sched.curr_pid));
3609 if (!sched.curr_pid) {
3610 ret = -ENOMEM;
3611 goto out;
3612 }
3613 for (i = 0; i < MAX_CPUS; i++)
3614 sched.curr_pid[i] = -1;
3615
3616 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3617 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3618 if (!argc)
3619 usage_with_options(sched_usage, sched_options);
3620
3621 /*
3622 * Aliased to 'perf script' for now:
3623 */
3624 if (!strcmp(argv[0], "script")) {
3625 ret = cmd_script(argc, argv);
3626 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3627 ret = __cmd_record(argc, argv);
3628 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3629 sched.tp_handler = &lat_ops;
3630 if (argc > 1) {
3631 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3632 if (argc)
3633 usage_with_options(latency_usage, latency_options);
3634 }
3635 setup_sorting(&sched, latency_options, latency_usage);
3636 ret = perf_sched__lat(&sched);
3637 } else if (!strcmp(argv[0], "map")) {
3638 if (argc) {
3639 argc = parse_options(argc, argv, map_options, map_usage, 0);
3640 if (argc)
3641 usage_with_options(map_usage, map_options);
3642 }
3643 sched.tp_handler = &map_ops;
3644 setup_sorting(&sched, latency_options, latency_usage);
3645 ret = perf_sched__map(&sched);
3646 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3647 sched.tp_handler = &replay_ops;
3648 if (argc) {
3649 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3650 if (argc)
3651 usage_with_options(replay_usage, replay_options);
3652 }
3653 ret = perf_sched__replay(&sched);
3654 } else if (!strcmp(argv[0], "timehist")) {
3655 if (argc) {
3656 argc = parse_options(argc, argv, timehist_options,
3657 timehist_usage, 0);
3658 if (argc)
3659 usage_with_options(timehist_usage, timehist_options);
3660 }
3661 if ((sched.show_wakeups || sched.show_next) &&
3662 sched.summary_only) {
3663 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3664 parse_options_usage(timehist_usage, timehist_options, "s", true);
3665 if (sched.show_wakeups)
3666 parse_options_usage(NULL, timehist_options, "w", true);
3667 if (sched.show_next)
3668 parse_options_usage(NULL, timehist_options, "n", true);
3669 ret = -EINVAL;
3670 goto out;
3671 }
3672 ret = symbol__validate_sym_arguments();
3673 if (ret)
3674 goto out;
3675
3676 ret = perf_sched__timehist(&sched);
3677 } else {
3678 usage_with_options(sched_usage, sched_options);
3679 }
3680
3681out:
3682 free(sched.curr_pid);
3683 free(sched.cpu_last_switched);
3684 free(sched.curr_thread);
3685 mutex_destroy(&sched.start_work_mutex);
3686 mutex_destroy(&sched.work_done_wait_mutex);
3687
3688 return ret;
3689}