Loading...
Note: File does not exist in v5.9.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5 * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
6 */
7
8#define pr_fmt(fmt) "kasan: test: " fmt
9
10#include <kunit/test.h>
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/io.h>
14#include <linux/kasan.h>
15#include <linux/kernel.h>
16#include <linux/mempool.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/module.h>
20#include <linux/printk.h>
21#include <linux/random.h>
22#include <linux/set_memory.h>
23#include <linux/slab.h>
24#include <linux/string.h>
25#include <linux/tracepoint.h>
26#include <linux/uaccess.h>
27#include <linux/vmalloc.h>
28#include <trace/events/printk.h>
29
30#include <asm/page.h>
31
32#include "kasan.h"
33
34#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
35
36static bool multishot;
37
38/* Fields set based on lines observed in the console. */
39static struct {
40 bool report_found;
41 bool async_fault;
42} test_status;
43
44/*
45 * Some tests use these global variables to store return values from function
46 * calls that could otherwise be eliminated by the compiler as dead code.
47 */
48void *kasan_ptr_result;
49int kasan_int_result;
50
51/* Probe for console output: obtains test_status lines of interest. */
52static void probe_console(void *ignore, const char *buf, size_t len)
53{
54 if (strnstr(buf, "BUG: KASAN: ", len))
55 WRITE_ONCE(test_status.report_found, true);
56 else if (strnstr(buf, "Asynchronous fault: ", len))
57 WRITE_ONCE(test_status.async_fault, true);
58}
59
60static int kasan_suite_init(struct kunit_suite *suite)
61{
62 if (!kasan_enabled()) {
63 pr_err("Can't run KASAN tests with KASAN disabled");
64 return -1;
65 }
66
67 /* Stop failing KUnit tests on KASAN reports. */
68 kasan_kunit_test_suite_start();
69
70 /*
71 * Temporarily enable multi-shot mode. Otherwise, KASAN would only
72 * report the first detected bug and panic the kernel if panic_on_warn
73 * is enabled.
74 */
75 multishot = kasan_save_enable_multi_shot();
76
77 register_trace_console(probe_console, NULL);
78 return 0;
79}
80
81static void kasan_suite_exit(struct kunit_suite *suite)
82{
83 kasan_kunit_test_suite_end();
84 kasan_restore_multi_shot(multishot);
85 unregister_trace_console(probe_console, NULL);
86 tracepoint_synchronize_unregister();
87}
88
89static void kasan_test_exit(struct kunit *test)
90{
91 KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));
92}
93
94/**
95 * KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a
96 * KASAN report; causes a KUnit test failure otherwise.
97 *
98 * @test: Currently executing KUnit test.
99 * @expression: Expression that must produce a KASAN report.
100 *
101 * For hardware tag-based KASAN, when a synchronous tag fault happens, tag
102 * checking is auto-disabled. When this happens, this test handler reenables
103 * tag checking. As tag checking can be only disabled or enabled per CPU,
104 * this handler disables migration (preemption).
105 *
106 * Since the compiler doesn't see that the expression can change the test_status
107 * fields, it can reorder or optimize away the accesses to those fields.
108 * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
109 * expression to prevent that.
110 *
111 * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
112 * as false. This allows detecting KASAN reports that happen outside of the
113 * checks by asserting !test_status.report_found at the start of
114 * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
115 */
116#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do { \
117 if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \
118 kasan_sync_fault_possible()) \
119 migrate_disable(); \
120 KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); \
121 barrier(); \
122 expression; \
123 barrier(); \
124 if (kasan_async_fault_possible()) \
125 kasan_force_async_fault(); \
126 if (!READ_ONCE(test_status.report_found)) { \
127 KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure " \
128 "expected in \"" #expression \
129 "\", but none occurred"); \
130 } \
131 if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \
132 kasan_sync_fault_possible()) { \
133 if (READ_ONCE(test_status.report_found) && \
134 !READ_ONCE(test_status.async_fault)) \
135 kasan_enable_hw_tags(); \
136 migrate_enable(); \
137 } \
138 WRITE_ONCE(test_status.report_found, false); \
139 WRITE_ONCE(test_status.async_fault, false); \
140} while (0)
141
142#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do { \
143 if (!IS_ENABLED(config)) \
144 kunit_skip((test), "Test requires " #config "=y"); \
145} while (0)
146
147#define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do { \
148 if (IS_ENABLED(config)) \
149 kunit_skip((test), "Test requires " #config "=n"); \
150} while (0)
151
152#define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do { \
153 if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) \
154 break; /* No compiler instrumentation. */ \
155 if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX)) \
156 break; /* Should always be instrumented! */ \
157 if (IS_ENABLED(CONFIG_GENERIC_ENTRY)) \
158 kunit_skip((test), "Test requires checked mem*()"); \
159} while (0)
160
161static void kmalloc_oob_right(struct kunit *test)
162{
163 char *ptr;
164 size_t size = 128 - KASAN_GRANULE_SIZE - 5;
165
166 ptr = kmalloc(size, GFP_KERNEL);
167 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
168
169 OPTIMIZER_HIDE_VAR(ptr);
170 /*
171 * An unaligned access past the requested kmalloc size.
172 * Only generic KASAN can precisely detect these.
173 */
174 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
175 KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');
176
177 /*
178 * An aligned access into the first out-of-bounds granule that falls
179 * within the aligned kmalloc object.
180 */
181 KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');
182
183 /* Out-of-bounds access past the aligned kmalloc object. */
184 KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
185 ptr[size + KASAN_GRANULE_SIZE + 5]);
186
187 kfree(ptr);
188}
189
190static void kmalloc_oob_left(struct kunit *test)
191{
192 char *ptr;
193 size_t size = 15;
194
195 ptr = kmalloc(size, GFP_KERNEL);
196 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
197
198 OPTIMIZER_HIDE_VAR(ptr);
199 KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
200 kfree(ptr);
201}
202
203static void kmalloc_node_oob_right(struct kunit *test)
204{
205 char *ptr;
206 size_t size = 4096;
207
208 ptr = kmalloc_node(size, GFP_KERNEL, 0);
209 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
210
211 OPTIMIZER_HIDE_VAR(ptr);
212 KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
213 kfree(ptr);
214}
215
216/*
217 * Check that KASAN detects an out-of-bounds access for a big object allocated
218 * via kmalloc(). But not as big as to trigger the page_alloc fallback.
219 */
220static void kmalloc_big_oob_right(struct kunit *test)
221{
222 char *ptr;
223 size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
224
225 ptr = kmalloc(size, GFP_KERNEL);
226 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
227
228 OPTIMIZER_HIDE_VAR(ptr);
229 KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
230 kfree(ptr);
231}
232
233/*
234 * The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk
235 * that does not fit into the largest slab cache and therefore is allocated via
236 * the page_alloc fallback.
237 */
238
239static void kmalloc_large_oob_right(struct kunit *test)
240{
241 char *ptr;
242 size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
243
244 ptr = kmalloc(size, GFP_KERNEL);
245 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
246
247 OPTIMIZER_HIDE_VAR(ptr);
248 KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
249
250 kfree(ptr);
251}
252
253static void kmalloc_large_uaf(struct kunit *test)
254{
255 char *ptr;
256 size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
257
258 ptr = kmalloc(size, GFP_KERNEL);
259 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
260 kfree(ptr);
261
262 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
263}
264
265static void kmalloc_large_invalid_free(struct kunit *test)
266{
267 char *ptr;
268 size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
269
270 ptr = kmalloc(size, GFP_KERNEL);
271 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
272
273 KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
274}
275
276static void page_alloc_oob_right(struct kunit *test)
277{
278 char *ptr;
279 struct page *pages;
280 size_t order = 4;
281 size_t size = (1UL << (PAGE_SHIFT + order));
282
283 /*
284 * With generic KASAN page allocations have no redzones, thus
285 * out-of-bounds detection is not guaranteed.
286 * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
287 */
288 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
289
290 pages = alloc_pages(GFP_KERNEL, order);
291 ptr = page_address(pages);
292 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
293
294 KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
295 free_pages((unsigned long)ptr, order);
296}
297
298static void page_alloc_uaf(struct kunit *test)
299{
300 char *ptr;
301 struct page *pages;
302 size_t order = 4;
303
304 pages = alloc_pages(GFP_KERNEL, order);
305 ptr = page_address(pages);
306 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
307 free_pages((unsigned long)ptr, order);
308
309 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
310}
311
312static void krealloc_more_oob_helper(struct kunit *test,
313 size_t size1, size_t size2)
314{
315 char *ptr1, *ptr2;
316 size_t middle;
317
318 KUNIT_ASSERT_LT(test, size1, size2);
319 middle = size1 + (size2 - size1) / 2;
320
321 ptr1 = kmalloc(size1, GFP_KERNEL);
322 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
323
324 ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
325 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
326
327 /* Suppress -Warray-bounds warnings. */
328 OPTIMIZER_HIDE_VAR(ptr2);
329
330 /* All offsets up to size2 must be accessible. */
331 ptr2[size1 - 1] = 'x';
332 ptr2[size1] = 'x';
333 ptr2[middle] = 'x';
334 ptr2[size2 - 1] = 'x';
335
336 /* Generic mode is precise, so unaligned size2 must be inaccessible. */
337 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
338 KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
339
340 /* For all modes first aligned offset after size2 must be inaccessible. */
341 KUNIT_EXPECT_KASAN_FAIL(test,
342 ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
343
344 kfree(ptr2);
345}
346
347static void krealloc_less_oob_helper(struct kunit *test,
348 size_t size1, size_t size2)
349{
350 char *ptr1, *ptr2;
351 size_t middle;
352
353 KUNIT_ASSERT_LT(test, size2, size1);
354 middle = size2 + (size1 - size2) / 2;
355
356 ptr1 = kmalloc(size1, GFP_KERNEL);
357 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
358
359 ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
360 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
361
362 /* Suppress -Warray-bounds warnings. */
363 OPTIMIZER_HIDE_VAR(ptr2);
364
365 /* Must be accessible for all modes. */
366 ptr2[size2 - 1] = 'x';
367
368 /* Generic mode is precise, so unaligned size2 must be inaccessible. */
369 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
370 KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
371
372 /* For all modes first aligned offset after size2 must be inaccessible. */
373 KUNIT_EXPECT_KASAN_FAIL(test,
374 ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
375
376 /*
377 * For all modes all size2, middle, and size1 should land in separate
378 * granules and thus the latter two offsets should be inaccessible.
379 */
380 KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
381 round_down(middle, KASAN_GRANULE_SIZE));
382 KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
383 round_down(size1, KASAN_GRANULE_SIZE));
384 KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
385 KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
386 KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
387
388 kfree(ptr2);
389}
390
391static void krealloc_more_oob(struct kunit *test)
392{
393 krealloc_more_oob_helper(test, 201, 235);
394}
395
396static void krealloc_less_oob(struct kunit *test)
397{
398 krealloc_less_oob_helper(test, 235, 201);
399}
400
401static void krealloc_large_more_oob(struct kunit *test)
402{
403 krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
404 KMALLOC_MAX_CACHE_SIZE + 235);
405}
406
407static void krealloc_large_less_oob(struct kunit *test)
408{
409 krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
410 KMALLOC_MAX_CACHE_SIZE + 201);
411}
412
413/*
414 * Check that krealloc() detects a use-after-free, returns NULL,
415 * and doesn't unpoison the freed object.
416 */
417static void krealloc_uaf(struct kunit *test)
418{
419 char *ptr1, *ptr2;
420 int size1 = 201;
421 int size2 = 235;
422
423 ptr1 = kmalloc(size1, GFP_KERNEL);
424 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
425 kfree(ptr1);
426
427 KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
428 KUNIT_ASSERT_NULL(test, ptr2);
429 KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
430}
431
432static void kmalloc_oob_16(struct kunit *test)
433{
434 struct {
435 u64 words[2];
436 } *ptr1, *ptr2;
437
438 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
439
440 /* This test is specifically crafted for the generic mode. */
441 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
442
443 ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
444 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
445
446 ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
447 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
448
449 OPTIMIZER_HIDE_VAR(ptr1);
450 OPTIMIZER_HIDE_VAR(ptr2);
451 KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
452 kfree(ptr1);
453 kfree(ptr2);
454}
455
456static void kmalloc_uaf_16(struct kunit *test)
457{
458 struct {
459 u64 words[2];
460 } *ptr1, *ptr2;
461
462 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
463
464 ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
465 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
466
467 ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
468 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
469 kfree(ptr2);
470
471 KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
472 kfree(ptr1);
473}
474
475/*
476 * Note: in the memset tests below, the written range touches both valid and
477 * invalid memory. This makes sure that the instrumentation does not only check
478 * the starting address but the whole range.
479 */
480
481static void kmalloc_oob_memset_2(struct kunit *test)
482{
483 char *ptr;
484 size_t size = 128 - KASAN_GRANULE_SIZE;
485 size_t memset_size = 2;
486
487 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
488
489 ptr = kmalloc(size, GFP_KERNEL);
490 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
491
492 OPTIMIZER_HIDE_VAR(ptr);
493 OPTIMIZER_HIDE_VAR(size);
494 OPTIMIZER_HIDE_VAR(memset_size);
495 KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size));
496 kfree(ptr);
497}
498
499static void kmalloc_oob_memset_4(struct kunit *test)
500{
501 char *ptr;
502 size_t size = 128 - KASAN_GRANULE_SIZE;
503 size_t memset_size = 4;
504
505 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
506
507 ptr = kmalloc(size, GFP_KERNEL);
508 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
509
510 OPTIMIZER_HIDE_VAR(ptr);
511 OPTIMIZER_HIDE_VAR(size);
512 OPTIMIZER_HIDE_VAR(memset_size);
513 KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size));
514 kfree(ptr);
515}
516
517static void kmalloc_oob_memset_8(struct kunit *test)
518{
519 char *ptr;
520 size_t size = 128 - KASAN_GRANULE_SIZE;
521 size_t memset_size = 8;
522
523 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
524
525 ptr = kmalloc(size, GFP_KERNEL);
526 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
527
528 OPTIMIZER_HIDE_VAR(ptr);
529 OPTIMIZER_HIDE_VAR(size);
530 OPTIMIZER_HIDE_VAR(memset_size);
531 KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size));
532 kfree(ptr);
533}
534
535static void kmalloc_oob_memset_16(struct kunit *test)
536{
537 char *ptr;
538 size_t size = 128 - KASAN_GRANULE_SIZE;
539 size_t memset_size = 16;
540
541 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
542
543 ptr = kmalloc(size, GFP_KERNEL);
544 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
545
546 OPTIMIZER_HIDE_VAR(ptr);
547 OPTIMIZER_HIDE_VAR(size);
548 OPTIMIZER_HIDE_VAR(memset_size);
549 KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size));
550 kfree(ptr);
551}
552
553static void kmalloc_oob_in_memset(struct kunit *test)
554{
555 char *ptr;
556 size_t size = 128 - KASAN_GRANULE_SIZE;
557
558 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
559
560 ptr = kmalloc(size, GFP_KERNEL);
561 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
562
563 OPTIMIZER_HIDE_VAR(ptr);
564 OPTIMIZER_HIDE_VAR(size);
565 KUNIT_EXPECT_KASAN_FAIL(test,
566 memset(ptr, 0, size + KASAN_GRANULE_SIZE));
567 kfree(ptr);
568}
569
570static void kmalloc_memmove_negative_size(struct kunit *test)
571{
572 char *ptr;
573 size_t size = 64;
574 size_t invalid_size = -2;
575
576 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
577
578 /*
579 * Hardware tag-based mode doesn't check memmove for negative size.
580 * As a result, this test introduces a side-effect memory corruption,
581 * which can result in a crash.
582 */
583 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);
584
585 ptr = kmalloc(size, GFP_KERNEL);
586 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
587
588 memset((char *)ptr, 0, 64);
589 OPTIMIZER_HIDE_VAR(ptr);
590 OPTIMIZER_HIDE_VAR(invalid_size);
591 KUNIT_EXPECT_KASAN_FAIL(test,
592 memmove((char *)ptr, (char *)ptr + 4, invalid_size));
593 kfree(ptr);
594}
595
596static void kmalloc_memmove_invalid_size(struct kunit *test)
597{
598 char *ptr;
599 size_t size = 64;
600 size_t invalid_size = size;
601
602 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
603
604 ptr = kmalloc(size, GFP_KERNEL);
605 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
606
607 memset((char *)ptr, 0, 64);
608 OPTIMIZER_HIDE_VAR(ptr);
609 OPTIMIZER_HIDE_VAR(invalid_size);
610 KUNIT_EXPECT_KASAN_FAIL(test,
611 memmove((char *)ptr, (char *)ptr + 4, invalid_size));
612 kfree(ptr);
613}
614
615static void kmalloc_uaf(struct kunit *test)
616{
617 char *ptr;
618 size_t size = 10;
619
620 ptr = kmalloc(size, GFP_KERNEL);
621 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
622
623 kfree(ptr);
624 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
625}
626
627static void kmalloc_uaf_memset(struct kunit *test)
628{
629 char *ptr;
630 size_t size = 33;
631
632 KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
633
634 /*
635 * Only generic KASAN uses quarantine, which is required to avoid a
636 * kernel memory corruption this test causes.
637 */
638 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
639
640 ptr = kmalloc(size, GFP_KERNEL);
641 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
642
643 kfree(ptr);
644 KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
645}
646
647static void kmalloc_uaf2(struct kunit *test)
648{
649 char *ptr1, *ptr2;
650 size_t size = 43;
651 int counter = 0;
652
653again:
654 ptr1 = kmalloc(size, GFP_KERNEL);
655 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
656
657 kfree(ptr1);
658
659 ptr2 = kmalloc(size, GFP_KERNEL);
660 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
661
662 /*
663 * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
664 * Allow up to 16 attempts at generating different tags.
665 */
666 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
667 kfree(ptr2);
668 goto again;
669 }
670
671 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
672 KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
673
674 kfree(ptr2);
675}
676
677/*
678 * Check that KASAN detects use-after-free when another object was allocated in
679 * the same slot. Relevant for the tag-based modes, which do not use quarantine.
680 */
681static void kmalloc_uaf3(struct kunit *test)
682{
683 char *ptr1, *ptr2;
684 size_t size = 100;
685
686 /* This test is specifically crafted for tag-based modes. */
687 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
688
689 ptr1 = kmalloc(size, GFP_KERNEL);
690 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
691 kfree(ptr1);
692
693 ptr2 = kmalloc(size, GFP_KERNEL);
694 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
695 kfree(ptr2);
696
697 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]);
698}
699
700static void kmalloc_double_kzfree(struct kunit *test)
701{
702 char *ptr;
703 size_t size = 16;
704
705 ptr = kmalloc(size, GFP_KERNEL);
706 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
707
708 kfree_sensitive(ptr);
709 KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
710}
711
712/* Check that ksize() does NOT unpoison whole object. */
713static void ksize_unpoisons_memory(struct kunit *test)
714{
715 char *ptr;
716 size_t size = 128 - KASAN_GRANULE_SIZE - 5;
717 size_t real_size;
718
719 ptr = kmalloc(size, GFP_KERNEL);
720 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
721
722 real_size = ksize(ptr);
723 KUNIT_EXPECT_GT(test, real_size, size);
724
725 OPTIMIZER_HIDE_VAR(ptr);
726
727 /* These accesses shouldn't trigger a KASAN report. */
728 ptr[0] = 'x';
729 ptr[size - 1] = 'x';
730
731 /* These must trigger a KASAN report. */
732 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
733 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
734 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]);
735 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]);
736
737 kfree(ptr);
738}
739
740/*
741 * Check that a use-after-free is detected by ksize() and via normal accesses
742 * after it.
743 */
744static void ksize_uaf(struct kunit *test)
745{
746 char *ptr;
747 int size = 128 - KASAN_GRANULE_SIZE;
748
749 ptr = kmalloc(size, GFP_KERNEL);
750 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
751 kfree(ptr);
752
753 OPTIMIZER_HIDE_VAR(ptr);
754 KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
755 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
756 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
757}
758
759/*
760 * The two tests below check that Generic KASAN prints auxiliary stack traces
761 * for RCU callbacks and workqueues. The reports need to be inspected manually.
762 *
763 * These tests are still enabled for other KASAN modes to make sure that all
764 * modes report bad accesses in tested scenarios.
765 */
766
767static struct kasan_rcu_info {
768 int i;
769 struct rcu_head rcu;
770} *global_rcu_ptr;
771
772static void rcu_uaf_reclaim(struct rcu_head *rp)
773{
774 struct kasan_rcu_info *fp =
775 container_of(rp, struct kasan_rcu_info, rcu);
776
777 kfree(fp);
778 ((volatile struct kasan_rcu_info *)fp)->i;
779}
780
781static void rcu_uaf(struct kunit *test)
782{
783 struct kasan_rcu_info *ptr;
784
785 ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL);
786 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
787
788 global_rcu_ptr = rcu_dereference_protected(
789 (struct kasan_rcu_info __rcu *)ptr, NULL);
790
791 KUNIT_EXPECT_KASAN_FAIL(test,
792 call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim);
793 rcu_barrier());
794}
795
796static void workqueue_uaf_work(struct work_struct *work)
797{
798 kfree(work);
799}
800
801static void workqueue_uaf(struct kunit *test)
802{
803 struct workqueue_struct *workqueue;
804 struct work_struct *work;
805
806 workqueue = create_workqueue("kasan_workqueue_test");
807 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue);
808
809 work = kmalloc(sizeof(struct work_struct), GFP_KERNEL);
810 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work);
811
812 INIT_WORK(work, workqueue_uaf_work);
813 queue_work(workqueue, work);
814 destroy_workqueue(workqueue);
815
816 KUNIT_EXPECT_KASAN_FAIL(test,
817 ((volatile struct work_struct *)work)->data);
818}
819
820static void kfree_via_page(struct kunit *test)
821{
822 char *ptr;
823 size_t size = 8;
824 struct page *page;
825 unsigned long offset;
826
827 ptr = kmalloc(size, GFP_KERNEL);
828 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
829
830 page = virt_to_page(ptr);
831 offset = offset_in_page(ptr);
832 kfree(page_address(page) + offset);
833}
834
835static void kfree_via_phys(struct kunit *test)
836{
837 char *ptr;
838 size_t size = 8;
839 phys_addr_t phys;
840
841 ptr = kmalloc(size, GFP_KERNEL);
842 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
843
844 phys = virt_to_phys(ptr);
845 kfree(phys_to_virt(phys));
846}
847
848static void kmem_cache_oob(struct kunit *test)
849{
850 char *p;
851 size_t size = 200;
852 struct kmem_cache *cache;
853
854 cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
855 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
856
857 p = kmem_cache_alloc(cache, GFP_KERNEL);
858 if (!p) {
859 kunit_err(test, "Allocation failed: %s\n", __func__);
860 kmem_cache_destroy(cache);
861 return;
862 }
863
864 KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
865
866 kmem_cache_free(cache, p);
867 kmem_cache_destroy(cache);
868}
869
870static void kmem_cache_double_free(struct kunit *test)
871{
872 char *p;
873 size_t size = 200;
874 struct kmem_cache *cache;
875
876 cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
877 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
878
879 p = kmem_cache_alloc(cache, GFP_KERNEL);
880 if (!p) {
881 kunit_err(test, "Allocation failed: %s\n", __func__);
882 kmem_cache_destroy(cache);
883 return;
884 }
885
886 kmem_cache_free(cache, p);
887 KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
888 kmem_cache_destroy(cache);
889}
890
891static void kmem_cache_invalid_free(struct kunit *test)
892{
893 char *p;
894 size_t size = 200;
895 struct kmem_cache *cache;
896
897 cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
898 NULL);
899 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
900
901 p = kmem_cache_alloc(cache, GFP_KERNEL);
902 if (!p) {
903 kunit_err(test, "Allocation failed: %s\n", __func__);
904 kmem_cache_destroy(cache);
905 return;
906 }
907
908 /* Trigger invalid free, the object doesn't get freed. */
909 KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
910
911 /*
912 * Properly free the object to prevent the "Objects remaining in
913 * test_cache on __kmem_cache_shutdown" BUG failure.
914 */
915 kmem_cache_free(cache, p);
916
917 kmem_cache_destroy(cache);
918}
919
920static void empty_cache_ctor(void *object) { }
921
922static void kmem_cache_double_destroy(struct kunit *test)
923{
924 struct kmem_cache *cache;
925
926 /* Provide a constructor to prevent cache merging. */
927 cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
928 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
929 kmem_cache_destroy(cache);
930 KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
931}
932
933static void kmem_cache_accounted(struct kunit *test)
934{
935 int i;
936 char *p;
937 size_t size = 200;
938 struct kmem_cache *cache;
939
940 cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
941 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
942
943 /*
944 * Several allocations with a delay to allow for lazy per memcg kmem
945 * cache creation.
946 */
947 for (i = 0; i < 5; i++) {
948 p = kmem_cache_alloc(cache, GFP_KERNEL);
949 if (!p)
950 goto free_cache;
951
952 kmem_cache_free(cache, p);
953 msleep(100);
954 }
955
956free_cache:
957 kmem_cache_destroy(cache);
958}
959
960static void kmem_cache_bulk(struct kunit *test)
961{
962 struct kmem_cache *cache;
963 size_t size = 200;
964 char *p[10];
965 bool ret;
966 int i;
967
968 cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
969 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
970
971 ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
972 if (!ret) {
973 kunit_err(test, "Allocation failed: %s\n", __func__);
974 kmem_cache_destroy(cache);
975 return;
976 }
977
978 for (i = 0; i < ARRAY_SIZE(p); i++)
979 p[i][0] = p[i][size - 1] = 42;
980
981 kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
982 kmem_cache_destroy(cache);
983}
984
985static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size)
986{
987 int pool_size = 4;
988 int ret;
989 void *elem;
990
991 memset(pool, 0, sizeof(*pool));
992 ret = mempool_init_kmalloc_pool(pool, pool_size, size);
993 KUNIT_ASSERT_EQ(test, ret, 0);
994
995 /*
996 * Allocate one element to prevent mempool from freeing elements to the
997 * underlying allocator and instead make it add them to the element
998 * list when the tests trigger double-free and invalid-free bugs.
999 * This allows testing KASAN annotations in add_element().
1000 */
1001 elem = mempool_alloc_preallocated(pool);
1002 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1003
1004 return elem;
1005}
1006
1007static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size)
1008{
1009 struct kmem_cache *cache;
1010 int pool_size = 4;
1011 int ret;
1012
1013 cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
1014 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
1015
1016 memset(pool, 0, sizeof(*pool));
1017 ret = mempool_init_slab_pool(pool, pool_size, cache);
1018 KUNIT_ASSERT_EQ(test, ret, 0);
1019
1020 /*
1021 * Do not allocate one preallocated element, as we skip the double-free
1022 * and invalid-free tests for slab mempool for simplicity.
1023 */
1024
1025 return cache;
1026}
1027
1028static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order)
1029{
1030 int pool_size = 4;
1031 int ret;
1032 void *elem;
1033
1034 memset(pool, 0, sizeof(*pool));
1035 ret = mempool_init_page_pool(pool, pool_size, order);
1036 KUNIT_ASSERT_EQ(test, ret, 0);
1037
1038 elem = mempool_alloc_preallocated(pool);
1039 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1040
1041 return elem;
1042}
1043
1044static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size)
1045{
1046 char *elem;
1047
1048 elem = mempool_alloc_preallocated(pool);
1049 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1050
1051 OPTIMIZER_HIDE_VAR(elem);
1052
1053 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1054 KUNIT_EXPECT_KASAN_FAIL(test,
1055 ((volatile char *)&elem[size])[0]);
1056 else
1057 KUNIT_EXPECT_KASAN_FAIL(test,
1058 ((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]);
1059
1060 mempool_free(elem, pool);
1061}
1062
1063static void mempool_kmalloc_oob_right(struct kunit *test)
1064{
1065 mempool_t pool;
1066 size_t size = 128 - KASAN_GRANULE_SIZE - 5;
1067 void *extra_elem;
1068
1069 extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1070
1071 mempool_oob_right_helper(test, &pool, size);
1072
1073 mempool_free(extra_elem, &pool);
1074 mempool_exit(&pool);
1075}
1076
1077static void mempool_kmalloc_large_oob_right(struct kunit *test)
1078{
1079 mempool_t pool;
1080 size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1081 void *extra_elem;
1082
1083 extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1084
1085 mempool_oob_right_helper(test, &pool, size);
1086
1087 mempool_free(extra_elem, &pool);
1088 mempool_exit(&pool);
1089}
1090
1091static void mempool_slab_oob_right(struct kunit *test)
1092{
1093 mempool_t pool;
1094 size_t size = 123;
1095 struct kmem_cache *cache;
1096
1097 cache = mempool_prepare_slab(test, &pool, size);
1098
1099 mempool_oob_right_helper(test, &pool, size);
1100
1101 mempool_exit(&pool);
1102 kmem_cache_destroy(cache);
1103}
1104
1105/*
1106 * Skip the out-of-bounds test for page mempool. With Generic KASAN, page
1107 * allocations have no redzones, and thus the out-of-bounds detection is not
1108 * guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With
1109 * the tag-based KASAN modes, the neighboring allocation might have the same
1110 * tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505.
1111 */
1112
1113static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page)
1114{
1115 char *elem, *ptr;
1116
1117 elem = mempool_alloc_preallocated(pool);
1118 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1119
1120 mempool_free(elem, pool);
1121
1122 ptr = page ? page_address((struct page *)elem) : elem;
1123 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
1124}
1125
1126static void mempool_kmalloc_uaf(struct kunit *test)
1127{
1128 mempool_t pool;
1129 size_t size = 128;
1130 void *extra_elem;
1131
1132 extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1133
1134 mempool_uaf_helper(test, &pool, false);
1135
1136 mempool_free(extra_elem, &pool);
1137 mempool_exit(&pool);
1138}
1139
1140static void mempool_kmalloc_large_uaf(struct kunit *test)
1141{
1142 mempool_t pool;
1143 size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1144 void *extra_elem;
1145
1146 extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1147
1148 mempool_uaf_helper(test, &pool, false);
1149
1150 mempool_free(extra_elem, &pool);
1151 mempool_exit(&pool);
1152}
1153
1154static void mempool_slab_uaf(struct kunit *test)
1155{
1156 mempool_t pool;
1157 size_t size = 123;
1158 struct kmem_cache *cache;
1159
1160 cache = mempool_prepare_slab(test, &pool, size);
1161
1162 mempool_uaf_helper(test, &pool, false);
1163
1164 mempool_exit(&pool);
1165 kmem_cache_destroy(cache);
1166}
1167
1168static void mempool_page_alloc_uaf(struct kunit *test)
1169{
1170 mempool_t pool;
1171 int order = 2;
1172 void *extra_elem;
1173
1174 extra_elem = mempool_prepare_page(test, &pool, order);
1175
1176 mempool_uaf_helper(test, &pool, true);
1177
1178 mempool_free(extra_elem, &pool);
1179 mempool_exit(&pool);
1180}
1181
1182static void mempool_double_free_helper(struct kunit *test, mempool_t *pool)
1183{
1184 char *elem;
1185
1186 elem = mempool_alloc_preallocated(pool);
1187 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1188
1189 mempool_free(elem, pool);
1190
1191 KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool));
1192}
1193
1194static void mempool_kmalloc_double_free(struct kunit *test)
1195{
1196 mempool_t pool;
1197 size_t size = 128;
1198 char *extra_elem;
1199
1200 extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1201
1202 mempool_double_free_helper(test, &pool);
1203
1204 mempool_free(extra_elem, &pool);
1205 mempool_exit(&pool);
1206}
1207
1208static void mempool_kmalloc_large_double_free(struct kunit *test)
1209{
1210 mempool_t pool;
1211 size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1212 char *extra_elem;
1213
1214 extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1215
1216 mempool_double_free_helper(test, &pool);
1217
1218 mempool_free(extra_elem, &pool);
1219 mempool_exit(&pool);
1220}
1221
1222static void mempool_page_alloc_double_free(struct kunit *test)
1223{
1224 mempool_t pool;
1225 int order = 2;
1226 char *extra_elem;
1227
1228 extra_elem = mempool_prepare_page(test, &pool, order);
1229
1230 mempool_double_free_helper(test, &pool);
1231
1232 mempool_free(extra_elem, &pool);
1233 mempool_exit(&pool);
1234}
1235
1236static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool)
1237{
1238 char *elem;
1239
1240 elem = mempool_alloc_preallocated(pool);
1241 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1242
1243 KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool));
1244
1245 mempool_free(elem, pool);
1246}
1247
1248static void mempool_kmalloc_invalid_free(struct kunit *test)
1249{
1250 mempool_t pool;
1251 size_t size = 128;
1252 char *extra_elem;
1253
1254 extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1255
1256 mempool_kmalloc_invalid_free_helper(test, &pool);
1257
1258 mempool_free(extra_elem, &pool);
1259 mempool_exit(&pool);
1260}
1261
1262static void mempool_kmalloc_large_invalid_free(struct kunit *test)
1263{
1264 mempool_t pool;
1265 size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1266 char *extra_elem;
1267
1268 extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1269
1270 mempool_kmalloc_invalid_free_helper(test, &pool);
1271
1272 mempool_free(extra_elem, &pool);
1273 mempool_exit(&pool);
1274}
1275
1276/*
1277 * Skip the invalid-free test for page mempool. The invalid-free detection only
1278 * works for compound pages and mempool preallocates all page elements without
1279 * the __GFP_COMP flag.
1280 */
1281
1282static char global_array[10];
1283
1284static void kasan_global_oob_right(struct kunit *test)
1285{
1286 /*
1287 * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
1288 * from failing here and panicking the kernel, access the array via a
1289 * volatile pointer, which will prevent the compiler from being able to
1290 * determine the array bounds.
1291 *
1292 * This access uses a volatile pointer to char (char *volatile) rather
1293 * than the more conventional pointer to volatile char (volatile char *)
1294 * because we want to prevent the compiler from making inferences about
1295 * the pointer itself (i.e. its array bounds), not the data that it
1296 * refers to.
1297 */
1298 char *volatile array = global_array;
1299 char *p = &array[ARRAY_SIZE(global_array) + 3];
1300
1301 /* Only generic mode instruments globals. */
1302 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1303
1304 KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1305}
1306
1307static void kasan_global_oob_left(struct kunit *test)
1308{
1309 char *volatile array = global_array;
1310 char *p = array - 3;
1311
1312 /*
1313 * GCC is known to fail this test, skip it.
1314 * See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
1315 */
1316 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
1317 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1318 KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1319}
1320
1321static void kasan_stack_oob(struct kunit *test)
1322{
1323 char stack_array[10];
1324 /* See comment in kasan_global_oob_right. */
1325 char *volatile array = stack_array;
1326 char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
1327
1328 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
1329
1330 KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1331}
1332
1333static void kasan_alloca_oob_left(struct kunit *test)
1334{
1335 volatile int i = 10;
1336 char alloca_array[i];
1337 /* See comment in kasan_global_oob_right. */
1338 char *volatile array = alloca_array;
1339 char *p = array - 1;
1340
1341 /* Only generic mode instruments dynamic allocas. */
1342 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1343 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
1344
1345 KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1346}
1347
1348static void kasan_alloca_oob_right(struct kunit *test)
1349{
1350 volatile int i = 10;
1351 char alloca_array[i];
1352 /* See comment in kasan_global_oob_right. */
1353 char *volatile array = alloca_array;
1354 char *p = array + i;
1355
1356 /* Only generic mode instruments dynamic allocas. */
1357 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1358 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
1359
1360 KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1361}
1362
1363static void kasan_memchr(struct kunit *test)
1364{
1365 char *ptr;
1366 size_t size = 24;
1367
1368 /*
1369 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1370 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1371 */
1372 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1373
1374 if (OOB_TAG_OFF)
1375 size = round_up(size, OOB_TAG_OFF);
1376
1377 ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1378 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1379
1380 OPTIMIZER_HIDE_VAR(ptr);
1381 OPTIMIZER_HIDE_VAR(size);
1382 KUNIT_EXPECT_KASAN_FAIL(test,
1383 kasan_ptr_result = memchr(ptr, '1', size + 1));
1384
1385 kfree(ptr);
1386}
1387
1388static void kasan_memcmp(struct kunit *test)
1389{
1390 char *ptr;
1391 size_t size = 24;
1392 int arr[9];
1393
1394 /*
1395 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1396 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1397 */
1398 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1399
1400 if (OOB_TAG_OFF)
1401 size = round_up(size, OOB_TAG_OFF);
1402
1403 ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1404 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1405 memset(arr, 0, sizeof(arr));
1406
1407 OPTIMIZER_HIDE_VAR(ptr);
1408 OPTIMIZER_HIDE_VAR(size);
1409 KUNIT_EXPECT_KASAN_FAIL(test,
1410 kasan_int_result = memcmp(ptr, arr, size+1));
1411 kfree(ptr);
1412}
1413
1414static void kasan_strings(struct kunit *test)
1415{
1416 char *ptr;
1417 size_t size = 24;
1418
1419 /*
1420 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1421 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1422 */
1423 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1424
1425 ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1426 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1427
1428 kfree(ptr);
1429
1430 /*
1431 * Try to cause only 1 invalid access (less spam in dmesg).
1432 * For that we need ptr to point to zeroed byte.
1433 * Skip metadata that could be stored in freed object so ptr
1434 * will likely point to zeroed byte.
1435 */
1436 ptr += 16;
1437 KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
1438
1439 KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
1440
1441 KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
1442
1443 KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
1444
1445 KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
1446
1447 KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
1448}
1449
1450static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
1451{
1452 KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
1453 KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
1454 KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
1455 KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
1456 KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
1457 KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
1458 KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
1459 KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
1460}
1461
1462static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
1463{
1464 KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
1465 KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
1466 KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
1467 KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
1468 KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
1469 KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
1470 KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
1471 KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
1472 if (nr < 7)
1473 KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
1474 xor_unlock_is_negative_byte(1 << nr, addr));
1475}
1476
1477static void kasan_bitops_generic(struct kunit *test)
1478{
1479 long *bits;
1480
1481 /* This test is specifically crafted for the generic mode. */
1482 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1483
1484 /*
1485 * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
1486 * this way we do not actually corrupt other memory.
1487 */
1488 bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
1489 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1490
1491 /*
1492 * Below calls try to access bit within allocated memory; however, the
1493 * below accesses are still out-of-bounds, since bitops are defined to
1494 * operate on the whole long the bit is in.
1495 */
1496 kasan_bitops_modify(test, BITS_PER_LONG, bits);
1497
1498 /*
1499 * Below calls try to access bit beyond allocated memory.
1500 */
1501 kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
1502
1503 kfree(bits);
1504}
1505
1506static void kasan_bitops_tags(struct kunit *test)
1507{
1508 long *bits;
1509
1510 /* This test is specifically crafted for tag-based modes. */
1511 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1512
1513 /* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
1514 bits = kzalloc(48, GFP_KERNEL);
1515 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1516
1517 /* Do the accesses past the 48 allocated bytes, but within the redone. */
1518 kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
1519 kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
1520
1521 kfree(bits);
1522}
1523
1524static void vmalloc_helpers_tags(struct kunit *test)
1525{
1526 void *ptr;
1527
1528 /* This test is intended for tag-based modes. */
1529 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1530
1531 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1532
1533 if (!kasan_vmalloc_enabled())
1534 kunit_skip(test, "Test requires kasan.vmalloc=on");
1535
1536 ptr = vmalloc(PAGE_SIZE);
1537 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1538
1539 /* Check that the returned pointer is tagged. */
1540 KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1541 KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1542
1543 /* Make sure exported vmalloc helpers handle tagged pointers. */
1544 KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
1545 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));
1546
1547#if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
1548 {
1549 int rv;
1550
1551 /* Make sure vmalloc'ed memory permissions can be changed. */
1552 rv = set_memory_ro((unsigned long)ptr, 1);
1553 KUNIT_ASSERT_GE(test, rv, 0);
1554 rv = set_memory_rw((unsigned long)ptr, 1);
1555 KUNIT_ASSERT_GE(test, rv, 0);
1556 }
1557#endif
1558
1559 vfree(ptr);
1560}
1561
1562static void vmalloc_oob(struct kunit *test)
1563{
1564 char *v_ptr, *p_ptr;
1565 struct page *page;
1566 size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;
1567
1568 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1569
1570 if (!kasan_vmalloc_enabled())
1571 kunit_skip(test, "Test requires kasan.vmalloc=on");
1572
1573 v_ptr = vmalloc(size);
1574 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1575
1576 OPTIMIZER_HIDE_VAR(v_ptr);
1577
1578 /*
1579 * We have to be careful not to hit the guard page in vmalloc tests.
1580 * The MMU will catch that and crash us.
1581 */
1582
1583 /* Make sure in-bounds accesses are valid. */
1584 v_ptr[0] = 0;
1585 v_ptr[size - 1] = 0;
1586
1587 /*
1588 * An unaligned access past the requested vmalloc size.
1589 * Only generic KASAN can precisely detect these.
1590 */
1591 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1592 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);
1593
1594 /* An aligned access into the first out-of-bounds granule. */
1595 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);
1596
1597 /* Check that in-bounds accesses to the physical page are valid. */
1598 page = vmalloc_to_page(v_ptr);
1599 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1600 p_ptr = page_address(page);
1601 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1602 p_ptr[0] = 0;
1603
1604 vfree(v_ptr);
1605
1606 /*
1607 * We can't check for use-after-unmap bugs in this nor in the following
1608 * vmalloc tests, as the page might be fully unmapped and accessing it
1609 * will crash the kernel.
1610 */
1611}
1612
1613static void vmap_tags(struct kunit *test)
1614{
1615 char *p_ptr, *v_ptr;
1616 struct page *p_page, *v_page;
1617
1618 /*
1619 * This test is specifically crafted for the software tag-based mode,
1620 * the only tag-based mode that poisons vmap mappings.
1621 */
1622 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1623
1624 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1625
1626 if (!kasan_vmalloc_enabled())
1627 kunit_skip(test, "Test requires kasan.vmalloc=on");
1628
1629 p_page = alloc_pages(GFP_KERNEL, 1);
1630 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
1631 p_ptr = page_address(p_page);
1632 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1633
1634 v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
1635 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1636
1637 /*
1638 * We can't check for out-of-bounds bugs in this nor in the following
1639 * vmalloc tests, as allocations have page granularity and accessing
1640 * the guard page will crash the kernel.
1641 */
1642
1643 KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1644 KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1645
1646 /* Make sure that in-bounds accesses through both pointers work. */
1647 *p_ptr = 0;
1648 *v_ptr = 0;
1649
1650 /* Make sure vmalloc_to_page() correctly recovers the page pointer. */
1651 v_page = vmalloc_to_page(v_ptr);
1652 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
1653 KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);
1654
1655 vunmap(v_ptr);
1656 free_pages((unsigned long)p_ptr, 1);
1657}
1658
1659static void vm_map_ram_tags(struct kunit *test)
1660{
1661 char *p_ptr, *v_ptr;
1662 struct page *page;
1663
1664 /*
1665 * This test is specifically crafted for the software tag-based mode,
1666 * the only tag-based mode that poisons vm_map_ram mappings.
1667 */
1668 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1669
1670 page = alloc_pages(GFP_KERNEL, 1);
1671 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1672 p_ptr = page_address(page);
1673 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1674
1675 v_ptr = vm_map_ram(&page, 1, -1);
1676 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1677
1678 KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1679 KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1680
1681 /* Make sure that in-bounds accesses through both pointers work. */
1682 *p_ptr = 0;
1683 *v_ptr = 0;
1684
1685 vm_unmap_ram(v_ptr, 1);
1686 free_pages((unsigned long)p_ptr, 1);
1687}
1688
1689static void vmalloc_percpu(struct kunit *test)
1690{
1691 char __percpu *ptr;
1692 int cpu;
1693
1694 /*
1695 * This test is specifically crafted for the software tag-based mode,
1696 * the only tag-based mode that poisons percpu mappings.
1697 */
1698 KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1699
1700 ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE);
1701
1702 for_each_possible_cpu(cpu) {
1703 char *c_ptr = per_cpu_ptr(ptr, cpu);
1704
1705 KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN);
1706 KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL);
1707
1708 /* Make sure that in-bounds accesses don't crash the kernel. */
1709 *c_ptr = 0;
1710 }
1711
1712 free_percpu(ptr);
1713}
1714
1715/*
1716 * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
1717 * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
1718 * modes.
1719 */
1720static void match_all_not_assigned(struct kunit *test)
1721{
1722 char *ptr;
1723 struct page *pages;
1724 int i, size, order;
1725
1726 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1727
1728 for (i = 0; i < 256; i++) {
1729 size = get_random_u32_inclusive(1, 1024);
1730 ptr = kmalloc(size, GFP_KERNEL);
1731 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1732 KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1733 KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1734 kfree(ptr);
1735 }
1736
1737 for (i = 0; i < 256; i++) {
1738 order = get_random_u32_inclusive(1, 4);
1739 pages = alloc_pages(GFP_KERNEL, order);
1740 ptr = page_address(pages);
1741 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1742 KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1743 KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1744 free_pages((unsigned long)ptr, order);
1745 }
1746
1747 if (!kasan_vmalloc_enabled())
1748 return;
1749
1750 for (i = 0; i < 256; i++) {
1751 size = get_random_u32_inclusive(1, 1024);
1752 ptr = vmalloc(size);
1753 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1754 KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1755 KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1756 vfree(ptr);
1757 }
1758}
1759
1760/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
1761static void match_all_ptr_tag(struct kunit *test)
1762{
1763 char *ptr;
1764 u8 tag;
1765
1766 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1767
1768 ptr = kmalloc(128, GFP_KERNEL);
1769 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1770
1771 /* Backup the assigned tag. */
1772 tag = get_tag(ptr);
1773 KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
1774
1775 /* Reset the tag to 0xff.*/
1776 ptr = set_tag(ptr, KASAN_TAG_KERNEL);
1777
1778 /* This access shouldn't trigger a KASAN report. */
1779 *ptr = 0;
1780
1781 /* Recover the pointer tag and free. */
1782 ptr = set_tag(ptr, tag);
1783 kfree(ptr);
1784}
1785
1786/* Check that there are no match-all memory tags for tag-based modes. */
1787static void match_all_mem_tag(struct kunit *test)
1788{
1789 char *ptr;
1790 int tag;
1791
1792 KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1793
1794 ptr = kmalloc(128, GFP_KERNEL);
1795 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1796 KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1797
1798 /* For each possible tag value not matching the pointer tag. */
1799 for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
1800 /*
1801 * For Software Tag-Based KASAN, skip the majority of tag
1802 * values to avoid the test printing too many reports.
1803 */
1804 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
1805 tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8)
1806 continue;
1807
1808 if (tag == get_tag(ptr))
1809 continue;
1810
1811 /* Mark the first memory granule with the chosen memory tag. */
1812 kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
1813
1814 /* This access must cause a KASAN report. */
1815 KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
1816 }
1817
1818 /* Recover the memory tag and free. */
1819 kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
1820 kfree(ptr);
1821}
1822
1823static struct kunit_case kasan_kunit_test_cases[] = {
1824 KUNIT_CASE(kmalloc_oob_right),
1825 KUNIT_CASE(kmalloc_oob_left),
1826 KUNIT_CASE(kmalloc_node_oob_right),
1827 KUNIT_CASE(kmalloc_big_oob_right),
1828 KUNIT_CASE(kmalloc_large_oob_right),
1829 KUNIT_CASE(kmalloc_large_uaf),
1830 KUNIT_CASE(kmalloc_large_invalid_free),
1831 KUNIT_CASE(page_alloc_oob_right),
1832 KUNIT_CASE(page_alloc_uaf),
1833 KUNIT_CASE(krealloc_more_oob),
1834 KUNIT_CASE(krealloc_less_oob),
1835 KUNIT_CASE(krealloc_large_more_oob),
1836 KUNIT_CASE(krealloc_large_less_oob),
1837 KUNIT_CASE(krealloc_uaf),
1838 KUNIT_CASE(kmalloc_oob_16),
1839 KUNIT_CASE(kmalloc_uaf_16),
1840 KUNIT_CASE(kmalloc_oob_in_memset),
1841 KUNIT_CASE(kmalloc_oob_memset_2),
1842 KUNIT_CASE(kmalloc_oob_memset_4),
1843 KUNIT_CASE(kmalloc_oob_memset_8),
1844 KUNIT_CASE(kmalloc_oob_memset_16),
1845 KUNIT_CASE(kmalloc_memmove_negative_size),
1846 KUNIT_CASE(kmalloc_memmove_invalid_size),
1847 KUNIT_CASE(kmalloc_uaf),
1848 KUNIT_CASE(kmalloc_uaf_memset),
1849 KUNIT_CASE(kmalloc_uaf2),
1850 KUNIT_CASE(kmalloc_uaf3),
1851 KUNIT_CASE(kmalloc_double_kzfree),
1852 KUNIT_CASE(ksize_unpoisons_memory),
1853 KUNIT_CASE(ksize_uaf),
1854 KUNIT_CASE(rcu_uaf),
1855 KUNIT_CASE(workqueue_uaf),
1856 KUNIT_CASE(kfree_via_page),
1857 KUNIT_CASE(kfree_via_phys),
1858 KUNIT_CASE(kmem_cache_oob),
1859 KUNIT_CASE(kmem_cache_double_free),
1860 KUNIT_CASE(kmem_cache_invalid_free),
1861 KUNIT_CASE(kmem_cache_double_destroy),
1862 KUNIT_CASE(kmem_cache_accounted),
1863 KUNIT_CASE(kmem_cache_bulk),
1864 KUNIT_CASE(mempool_kmalloc_oob_right),
1865 KUNIT_CASE(mempool_kmalloc_large_oob_right),
1866 KUNIT_CASE(mempool_slab_oob_right),
1867 KUNIT_CASE(mempool_kmalloc_uaf),
1868 KUNIT_CASE(mempool_kmalloc_large_uaf),
1869 KUNIT_CASE(mempool_slab_uaf),
1870 KUNIT_CASE(mempool_page_alloc_uaf),
1871 KUNIT_CASE(mempool_kmalloc_double_free),
1872 KUNIT_CASE(mempool_kmalloc_large_double_free),
1873 KUNIT_CASE(mempool_page_alloc_double_free),
1874 KUNIT_CASE(mempool_kmalloc_invalid_free),
1875 KUNIT_CASE(mempool_kmalloc_large_invalid_free),
1876 KUNIT_CASE(kasan_global_oob_right),
1877 KUNIT_CASE(kasan_global_oob_left),
1878 KUNIT_CASE(kasan_stack_oob),
1879 KUNIT_CASE(kasan_alloca_oob_left),
1880 KUNIT_CASE(kasan_alloca_oob_right),
1881 KUNIT_CASE(kasan_memchr),
1882 KUNIT_CASE(kasan_memcmp),
1883 KUNIT_CASE(kasan_strings),
1884 KUNIT_CASE(kasan_bitops_generic),
1885 KUNIT_CASE(kasan_bitops_tags),
1886 KUNIT_CASE(vmalloc_helpers_tags),
1887 KUNIT_CASE(vmalloc_oob),
1888 KUNIT_CASE(vmap_tags),
1889 KUNIT_CASE(vm_map_ram_tags),
1890 KUNIT_CASE(vmalloc_percpu),
1891 KUNIT_CASE(match_all_not_assigned),
1892 KUNIT_CASE(match_all_ptr_tag),
1893 KUNIT_CASE(match_all_mem_tag),
1894 {}
1895};
1896
1897static struct kunit_suite kasan_kunit_test_suite = {
1898 .name = "kasan",
1899 .test_cases = kasan_kunit_test_cases,
1900 .exit = kasan_test_exit,
1901 .suite_init = kasan_suite_init,
1902 .suite_exit = kasan_suite_exit,
1903};
1904
1905kunit_test_suite(kasan_kunit_test_suite);
1906
1907MODULE_LICENSE("GPL");