Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains core generic KASAN code.
  4 *
  5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  7 *
  8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
  9 *        Andrey Konovalov <andreyknvl@gmail.com>
 10 *
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License version 2 as
 13 * published by the Free Software Foundation.
 14 *
 15 */
 16
 17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 18
 19#include <linux/export.h>
 20#include <linux/interrupt.h>
 21#include <linux/init.h>
 22#include <linux/kasan.h>
 23#include <linux/kernel.h>
 
 24#include <linux/kmemleak.h>
 25#include <linux/linkage.h>
 26#include <linux/memblock.h>
 27#include <linux/memory.h>
 28#include <linux/mm.h>
 29#include <linux/module.h>
 30#include <linux/printk.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/slab.h>
 
 
 34#include <linux/stacktrace.h>
 35#include <linux/string.h>
 36#include <linux/types.h>
 37#include <linux/vmalloc.h>
 38#include <linux/bug.h>
 39
 40#include "kasan.h"
 41#include "../slab.h"
 42
 43/*
 44 * All functions below always inlined so compiler could
 45 * perform better optimizations in each of __asan_loadX/__assn_storeX
 46 * depending on memory access size X.
 47 */
 48
 49static __always_inline bool memory_is_poisoned_1(unsigned long addr)
 50{
 51	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
 52
 53	if (unlikely(shadow_value)) {
 54		s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
 55		return unlikely(last_accessible_byte >= shadow_value);
 56	}
 57
 58	return false;
 59}
 60
 61static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
 62						unsigned long size)
 63{
 64	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
 65
 66	/*
 67	 * Access crosses 8(shadow size)-byte boundary. Such access maps
 68	 * into 2 shadow bytes, so we need to check them both.
 69	 */
 70	if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
 71		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
 72
 73	return memory_is_poisoned_1(addr + size - 1);
 74}
 75
 76static __always_inline bool memory_is_poisoned_16(unsigned long addr)
 77{
 78	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
 79
 80	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
 81	if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
 82		return *shadow_addr || memory_is_poisoned_1(addr + 15);
 83
 84	return *shadow_addr;
 85}
 86
 87static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
 88					size_t size)
 89{
 90	while (size) {
 91		if (unlikely(*start))
 92			return (unsigned long)start;
 93		start++;
 94		size--;
 95	}
 96
 97	return 0;
 98}
 99
100static __always_inline unsigned long memory_is_nonzero(const void *start,
101						const void *end)
102{
103	unsigned int words;
104	unsigned long ret;
105	unsigned int prefix = (unsigned long)start % 8;
106
107	if (end - start <= 16)
108		return bytes_is_nonzero(start, end - start);
109
110	if (prefix) {
111		prefix = 8 - prefix;
112		ret = bytes_is_nonzero(start, prefix);
113		if (unlikely(ret))
114			return ret;
115		start += prefix;
116	}
117
118	words = (end - start) / 8;
119	while (words) {
120		if (unlikely(*(u64 *)start))
121			return bytes_is_nonzero(start, 8);
122		start += 8;
123		words--;
124	}
125
126	return bytes_is_nonzero(start, (end - start) % 8);
127}
128
129static __always_inline bool memory_is_poisoned_n(unsigned long addr,
130						size_t size)
131{
132	unsigned long ret;
133
134	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
135			kasan_mem_to_shadow((void *)addr + size - 1) + 1);
136
137	if (unlikely(ret)) {
138		unsigned long last_byte = addr + size - 1;
139		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
 
140
141		if (unlikely(ret != (unsigned long)last_shadow ||
142			((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
143			return true;
144	}
145	return false;
146}
147
148static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
149{
150	if (__builtin_constant_p(size)) {
151		switch (size) {
152		case 1:
153			return memory_is_poisoned_1(addr);
154		case 2:
155		case 4:
156		case 8:
157			return memory_is_poisoned_2_4_8(addr, size);
158		case 16:
159			return memory_is_poisoned_16(addr);
160		default:
161			BUILD_BUG();
162		}
163	}
164
165	return memory_is_poisoned_n(addr, size);
166}
167
168static __always_inline bool check_memory_region_inline(unsigned long addr,
169						size_t size, bool write,
170						unsigned long ret_ip)
171{
 
 
 
172	if (unlikely(size == 0))
173		return true;
174
175	if (unlikely(addr + size < addr))
176		return !kasan_report(addr, size, write, ret_ip);
177
178	if (unlikely((void *)addr <
179		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
180		return !kasan_report(addr, size, write, ret_ip);
181	}
182
183	if (likely(!memory_is_poisoned(addr, size)))
184		return true;
185
186	return !kasan_report(addr, size, write, ret_ip);
187}
188
189bool check_memory_region(unsigned long addr, size_t size, bool write,
190				unsigned long ret_ip)
 
 
 
 
 
191{
192	return check_memory_region_inline(addr, size, write, ret_ip);
 
 
 
 
 
 
 
193}
194
195void kasan_cache_shrink(struct kmem_cache *cache)
196{
197	quarantine_remove_cache(cache);
198}
199
200void kasan_cache_shutdown(struct kmem_cache *cache)
201{
202	if (!__kmem_cache_empty(cache))
203		quarantine_remove_cache(cache);
204}
205
206static void register_global(struct kasan_global *global)
207{
208	size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
209
210	kasan_unpoison_shadow(global->beg, global->size);
211
212	kasan_poison_shadow(global->beg + aligned_size,
213		global->size_with_redzone - aligned_size,
214		KASAN_GLOBAL_REDZONE);
215}
216
217void __asan_register_globals(struct kasan_global *globals, size_t size)
218{
219	int i;
 
220
221	for (i = 0; i < size; i++)
222		register_global(&globals[i]);
223}
224EXPORT_SYMBOL(__asan_register_globals);
225
226void __asan_unregister_globals(struct kasan_global *globals, size_t size)
227{
228}
229EXPORT_SYMBOL(__asan_unregister_globals);
230
231#define DEFINE_ASAN_LOAD_STORE(size)					\
232	void __asan_load##size(unsigned long addr)			\
233	{								\
234		check_memory_region_inline(addr, size, false, _RET_IP_);\
235	}								\
236	EXPORT_SYMBOL(__asan_load##size);				\
237	__alias(__asan_load##size)					\
238	void __asan_load##size##_noabort(unsigned long);		\
239	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
240	void __asan_store##size(unsigned long addr)			\
241	{								\
242		check_memory_region_inline(addr, size, true, _RET_IP_);	\
243	}								\
244	EXPORT_SYMBOL(__asan_store##size);				\
245	__alias(__asan_store##size)					\
246	void __asan_store##size##_noabort(unsigned long);		\
247	EXPORT_SYMBOL(__asan_store##size##_noabort)
248
249DEFINE_ASAN_LOAD_STORE(1);
250DEFINE_ASAN_LOAD_STORE(2);
251DEFINE_ASAN_LOAD_STORE(4);
252DEFINE_ASAN_LOAD_STORE(8);
253DEFINE_ASAN_LOAD_STORE(16);
254
255void __asan_loadN(unsigned long addr, size_t size)
256{
257	check_memory_region(addr, size, false, _RET_IP_);
258}
259EXPORT_SYMBOL(__asan_loadN);
260
261__alias(__asan_loadN)
262void __asan_loadN_noabort(unsigned long, size_t);
263EXPORT_SYMBOL(__asan_loadN_noabort);
264
265void __asan_storeN(unsigned long addr, size_t size)
266{
267	check_memory_region(addr, size, true, _RET_IP_);
268}
269EXPORT_SYMBOL(__asan_storeN);
270
271__alias(__asan_storeN)
272void __asan_storeN_noabort(unsigned long, size_t);
273EXPORT_SYMBOL(__asan_storeN_noabort);
274
275/* to shut up compiler complaints */
276void __asan_handle_no_return(void) {}
277EXPORT_SYMBOL(__asan_handle_no_return);
278
279/* Emitted by compiler to poison alloca()ed objects. */
280void __asan_alloca_poison(unsigned long addr, size_t size)
281{
282	size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
283	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
284			rounded_up_size;
285	size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE);
286
287	const void *left_redzone = (const void *)(addr -
288			KASAN_ALLOCA_REDZONE_SIZE);
289	const void *right_redzone = (const void *)(addr + rounded_up_size);
290
291	WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
292
293	kasan_unpoison_shadow((const void *)(addr + rounded_down_size),
294			      size - rounded_down_size);
295	kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
296			KASAN_ALLOCA_LEFT);
297	kasan_poison_shadow(right_redzone,
298			padding_size + KASAN_ALLOCA_REDZONE_SIZE,
299			KASAN_ALLOCA_RIGHT);
300}
301EXPORT_SYMBOL(__asan_alloca_poison);
302
303/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
304void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
305{
306	if (unlikely(!stack_top || stack_top > stack_bottom))
307		return;
308
309	kasan_unpoison_shadow(stack_top, stack_bottom - stack_top);
310}
311EXPORT_SYMBOL(__asan_allocas_unpoison);
312
313/* Emitted by the compiler to [un]poison local variables. */
314#define DEFINE_ASAN_SET_SHADOW(byte) \
315	void __asan_set_shadow_##byte(const void *addr, size_t size)	\
316	{								\
317		__memset((void *)addr, 0x##byte, size);			\
318	}								\
319	EXPORT_SYMBOL(__asan_set_shadow_##byte)
320
321DEFINE_ASAN_SET_SHADOW(00);
322DEFINE_ASAN_SET_SHADOW(f1);
323DEFINE_ASAN_SET_SHADOW(f2);
324DEFINE_ASAN_SET_SHADOW(f3);
325DEFINE_ASAN_SET_SHADOW(f5);
326DEFINE_ASAN_SET_SHADOW(f8);
327
328void kasan_record_aux_stack(void *addr)
 
329{
330	struct page *page = kasan_addr_to_page(addr);
331	struct kmem_cache *cache;
332	struct kasan_alloc_meta *alloc_info;
333	void *object;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334
335	if (!(page && PageSlab(page)))
336		return;
337
338	cache = page->slab_cache;
339	object = nearest_obj(cache, page, addr);
340	alloc_info = get_alloc_info(cache, object);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341
342	/*
343	 * record the last two call_rcu() call stacks.
 
344	 */
345	alloc_info->aux_stack[1] = alloc_info->aux_stack[0];
346	alloc_info->aux_stack[0] = kasan_save_stack(GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347}
348
349void kasan_set_free_info(struct kmem_cache *cache,
350				void *object, u8 tag)
351{
352	struct kasan_free_meta *free_meta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353
354	free_meta = get_free_info(cache, object);
355	kasan_set_track(&free_meta->free_track, GFP_NOWAIT);
 
 
 
356
357	/*
358	 *  the object was freed and has free track set
 
 
359	 */
360	*(u8 *)kasan_mem_to_shadow(object) = KASAN_KMALLOC_FREETRACK;
361}
362
363struct kasan_track *kasan_get_free_track(struct kmem_cache *cache,
364				void *object, u8 tag)
365{
366	if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_KMALLOC_FREETRACK)
367		return NULL;
368	return &get_free_info(cache, object)->free_track;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains core generic KASAN code.
  4 *
  5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  7 *
  8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
  9 *        Andrey Konovalov <andreyknvl@gmail.com>
 
 
 
 
 
 10 */
 11
 
 
 12#include <linux/export.h>
 13#include <linux/interrupt.h>
 14#include <linux/init.h>
 15#include <linux/kasan.h>
 16#include <linux/kernel.h>
 17#include <linux/kfence.h>
 18#include <linux/kmemleak.h>
 19#include <linux/linkage.h>
 20#include <linux/memblock.h>
 21#include <linux/memory.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/printk.h>
 25#include <linux/sched.h>
 26#include <linux/sched/task_stack.h>
 27#include <linux/slab.h>
 28#include <linux/spinlock.h>
 29#include <linux/stackdepot.h>
 30#include <linux/stacktrace.h>
 31#include <linux/string.h>
 32#include <linux/types.h>
 33#include <linux/vmalloc.h>
 34#include <linux/bug.h>
 35
 36#include "kasan.h"
 37#include "../slab.h"
 38
 39/*
 40 * All functions below always inlined so compiler could
 41 * perform better optimizations in each of __asan_loadX/__assn_storeX
 42 * depending on memory access size X.
 43 */
 44
 45static __always_inline bool memory_is_poisoned_1(const void *addr)
 46{
 47	s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr);
 48
 49	if (unlikely(shadow_value)) {
 50		s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK;
 51		return unlikely(last_accessible_byte >= shadow_value);
 52	}
 53
 54	return false;
 55}
 56
 57static __always_inline bool memory_is_poisoned_2_4_8(const void *addr,
 58						unsigned long size)
 59{
 60	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr);
 61
 62	/*
 63	 * Access crosses 8(shadow size)-byte boundary. Such access maps
 64	 * into 2 shadow bytes, so we need to check them both.
 65	 */
 66	if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
 67		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
 68
 69	return memory_is_poisoned_1(addr + size - 1);
 70}
 71
 72static __always_inline bool memory_is_poisoned_16(const void *addr)
 73{
 74	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr);
 75
 76	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
 77	if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE)))
 78		return *shadow_addr || memory_is_poisoned_1(addr + 15);
 79
 80	return *shadow_addr;
 81}
 82
 83static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
 84					size_t size)
 85{
 86	while (size) {
 87		if (unlikely(*start))
 88			return (unsigned long)start;
 89		start++;
 90		size--;
 91	}
 92
 93	return 0;
 94}
 95
 96static __always_inline unsigned long memory_is_nonzero(const void *start,
 97						const void *end)
 98{
 99	unsigned int words;
100	unsigned long ret;
101	unsigned int prefix = (unsigned long)start % 8;
102
103	if (end - start <= 16)
104		return bytes_is_nonzero(start, end - start);
105
106	if (prefix) {
107		prefix = 8 - prefix;
108		ret = bytes_is_nonzero(start, prefix);
109		if (unlikely(ret))
110			return ret;
111		start += prefix;
112	}
113
114	words = (end - start) / 8;
115	while (words) {
116		if (unlikely(*(u64 *)start))
117			return bytes_is_nonzero(start, 8);
118		start += 8;
119		words--;
120	}
121
122	return bytes_is_nonzero(start, (end - start) % 8);
123}
124
125static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size)
 
126{
127	unsigned long ret;
128
129	ret = memory_is_nonzero(kasan_mem_to_shadow(addr),
130			kasan_mem_to_shadow(addr + size - 1) + 1);
131
132	if (unlikely(ret)) {
133		const void *last_byte = addr + size - 1;
134		s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte);
135		s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK;
136
137		if (unlikely(ret != (unsigned long)last_shadow ||
138			     last_accessible_byte >= *last_shadow))
139			return true;
140	}
141	return false;
142}
143
144static __always_inline bool memory_is_poisoned(const void *addr, size_t size)
145{
146	if (__builtin_constant_p(size)) {
147		switch (size) {
148		case 1:
149			return memory_is_poisoned_1(addr);
150		case 2:
151		case 4:
152		case 8:
153			return memory_is_poisoned_2_4_8(addr, size);
154		case 16:
155			return memory_is_poisoned_16(addr);
156		default:
157			BUILD_BUG();
158		}
159	}
160
161	return memory_is_poisoned_n(addr, size);
162}
163
164static __always_inline bool check_region_inline(const void *addr,
165						size_t size, bool write,
166						unsigned long ret_ip)
167{
168	if (!kasan_arch_is_ready())
169		return true;
170
171	if (unlikely(size == 0))
172		return true;
173
174	if (unlikely(addr + size < addr))
175		return !kasan_report(addr, size, write, ret_ip);
176
177	if (unlikely(!addr_has_metadata(addr)))
 
178		return !kasan_report(addr, size, write, ret_ip);
 
179
180	if (likely(!memory_is_poisoned(addr, size)))
181		return true;
182
183	return !kasan_report(addr, size, write, ret_ip);
184}
185
186bool kasan_check_range(const void *addr, size_t size, bool write,
187					unsigned long ret_ip)
188{
189	return check_region_inline(addr, size, write, ret_ip);
190}
191
192bool kasan_byte_accessible(const void *addr)
193{
194	s8 shadow_byte;
195
196	if (!kasan_arch_is_ready())
197		return true;
198
199	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
200
201	return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
202}
203
204void kasan_cache_shrink(struct kmem_cache *cache)
205{
206	kasan_quarantine_remove_cache(cache);
207}
208
209void kasan_cache_shutdown(struct kmem_cache *cache)
210{
211	if (!__kmem_cache_empty(cache))
212		kasan_quarantine_remove_cache(cache);
213}
214
215static void register_global(struct kasan_global *global)
216{
217	size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
218
219	kasan_unpoison(global->beg, global->size, false);
220
221	kasan_poison(global->beg + aligned_size,
222		     global->size_with_redzone - aligned_size,
223		     KASAN_GLOBAL_REDZONE, false);
224}
225
226void __asan_register_globals(void *ptr, ssize_t size)
227{
228	int i;
229	struct kasan_global *globals = ptr;
230
231	for (i = 0; i < size; i++)
232		register_global(&globals[i]);
233}
234EXPORT_SYMBOL(__asan_register_globals);
235
236void __asan_unregister_globals(void *ptr, ssize_t size)
237{
238}
239EXPORT_SYMBOL(__asan_unregister_globals);
240
241#define DEFINE_ASAN_LOAD_STORE(size)					\
242	void __asan_load##size(void *addr)				\
243	{								\
244		check_region_inline(addr, size, false, _RET_IP_);	\
245	}								\
246	EXPORT_SYMBOL(__asan_load##size);				\
247	__alias(__asan_load##size)					\
248	void __asan_load##size##_noabort(void *);			\
249	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
250	void __asan_store##size(void *addr)				\
251	{								\
252		check_region_inline(addr, size, true, _RET_IP_);	\
253	}								\
254	EXPORT_SYMBOL(__asan_store##size);				\
255	__alias(__asan_store##size)					\
256	void __asan_store##size##_noabort(void *);			\
257	EXPORT_SYMBOL(__asan_store##size##_noabort)
258
259DEFINE_ASAN_LOAD_STORE(1);
260DEFINE_ASAN_LOAD_STORE(2);
261DEFINE_ASAN_LOAD_STORE(4);
262DEFINE_ASAN_LOAD_STORE(8);
263DEFINE_ASAN_LOAD_STORE(16);
264
265void __asan_loadN(void *addr, ssize_t size)
266{
267	kasan_check_range(addr, size, false, _RET_IP_);
268}
269EXPORT_SYMBOL(__asan_loadN);
270
271__alias(__asan_loadN)
272void __asan_loadN_noabort(void *, ssize_t);
273EXPORT_SYMBOL(__asan_loadN_noabort);
274
275void __asan_storeN(void *addr, ssize_t size)
276{
277	kasan_check_range(addr, size, true, _RET_IP_);
278}
279EXPORT_SYMBOL(__asan_storeN);
280
281__alias(__asan_storeN)
282void __asan_storeN_noabort(void *, ssize_t);
283EXPORT_SYMBOL(__asan_storeN_noabort);
284
285/* to shut up compiler complaints */
286void __asan_handle_no_return(void) {}
287EXPORT_SYMBOL(__asan_handle_no_return);
288
289/* Emitted by compiler to poison alloca()ed objects. */
290void __asan_alloca_poison(void *addr, ssize_t size)
291{
292	size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
293	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
294			rounded_up_size;
295	size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
296
297	const void *left_redzone = (const void *)(addr -
298			KASAN_ALLOCA_REDZONE_SIZE);
299	const void *right_redzone = (const void *)(addr + rounded_up_size);
300
301	WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE));
302
303	kasan_unpoison((const void *)(addr + rounded_down_size),
304			size - rounded_down_size, false);
305	kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
306		     KASAN_ALLOCA_LEFT, false);
307	kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
308		     KASAN_ALLOCA_RIGHT, false);
 
309}
310EXPORT_SYMBOL(__asan_alloca_poison);
311
312/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
313void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom)
314{
315	if (unlikely(!stack_top || stack_top > (void *)stack_bottom))
316		return;
317
318	kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false);
319}
320EXPORT_SYMBOL(__asan_allocas_unpoison);
321
322/* Emitted by the compiler to [un]poison local variables. */
323#define DEFINE_ASAN_SET_SHADOW(byte) \
324	void __asan_set_shadow_##byte(const void *addr, ssize_t size)	\
325	{								\
326		__memset((void *)addr, 0x##byte, size);			\
327	}								\
328	EXPORT_SYMBOL(__asan_set_shadow_##byte)
329
330DEFINE_ASAN_SET_SHADOW(00);
331DEFINE_ASAN_SET_SHADOW(f1);
332DEFINE_ASAN_SET_SHADOW(f2);
333DEFINE_ASAN_SET_SHADOW(f3);
334DEFINE_ASAN_SET_SHADOW(f5);
335DEFINE_ASAN_SET_SHADOW(f8);
336
337/* Only allow cache merging when no per-object metadata is present. */
338slab_flags_t kasan_never_merge(void)
339{
340	if (!kasan_requires_meta())
341		return 0;
342	return SLAB_KASAN;
343}
344
345/*
346 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
347 * For larger allocations larger redzones are used.
348 */
349static inline unsigned int optimal_redzone(unsigned int object_size)
350{
351	return
352		object_size <= 64        - 16   ? 16 :
353		object_size <= 128       - 32   ? 32 :
354		object_size <= 512       - 64   ? 64 :
355		object_size <= 4096      - 128  ? 128 :
356		object_size <= (1 << 14) - 256  ? 256 :
357		object_size <= (1 << 15) - 512  ? 512 :
358		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
359}
360
361void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
362			  slab_flags_t *flags)
363{
364	unsigned int ok_size;
365	unsigned int optimal_size;
366	unsigned int rem_free_meta_size;
367	unsigned int orig_alloc_meta_offset;
368
369	if (!kasan_requires_meta())
370		return;
371
372	/*
373	 * SLAB_KASAN is used to mark caches that are sanitized by KASAN
374	 * and that thus have per-object metadata.
375	 * Currently this flag is used in two places:
376	 * 1. In slab_ksize() to account for per-object metadata when
377	 *    calculating the size of the accessible memory within the object.
378	 * 2. In slab_common.c via kasan_never_merge() to prevent merging of
379	 *    caches with per-object metadata.
380	 */
381	*flags |= SLAB_KASAN;
382
383	ok_size = *size;
384
385	/* Add alloc meta into the redzone. */
386	cache->kasan_info.alloc_meta_offset = *size;
387	*size += sizeof(struct kasan_alloc_meta);
388
389	/* If alloc meta doesn't fit, don't add it. */
390	if (*size > KMALLOC_MAX_SIZE) {
391		cache->kasan_info.alloc_meta_offset = 0;
392		*size = ok_size;
393		/* Continue, since free meta might still fit. */
394	}
395
396	ok_size = *size;
397	orig_alloc_meta_offset = cache->kasan_info.alloc_meta_offset;
398
399	/*
400	 * Store free meta in the redzone when it's not possible to store
401	 * it in the object. This is the case when:
402	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
403	 *    be touched after it was freed, or
404	 * 2. Object has a constructor, which means it's expected to
405	 *    retain its content until the next allocation.
406	 */
407	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor) {
408		cache->kasan_info.free_meta_offset = *size;
409		*size += sizeof(struct kasan_free_meta);
410		goto free_meta_added;
411	}
412
413	/*
414	 * Otherwise, if the object is large enough to contain free meta,
415	 * store it within the object.
416	 */
417	if (sizeof(struct kasan_free_meta) <= cache->object_size) {
418		/* cache->kasan_info.free_meta_offset = 0 is implied. */
419		goto free_meta_added;
420	}
421
422	/*
423	 * For smaller objects, store the beginning of free meta within the
424	 * object and the end in the redzone. And thus shift the location of
425	 * alloc meta to free up space for free meta.
426	 * This is only possible when slub_debug is disabled, as otherwise
427	 * the end of free meta will overlap with slub_debug metadata.
428	 */
429	if (!__slub_debug_enabled()) {
430		rem_free_meta_size = sizeof(struct kasan_free_meta) -
431							cache->object_size;
432		*size += rem_free_meta_size;
433		if (cache->kasan_info.alloc_meta_offset != 0)
434			cache->kasan_info.alloc_meta_offset += rem_free_meta_size;
435		goto free_meta_added;
436	}
437
438	/*
439	 * If the object is small and slub_debug is enabled, store free meta
440	 * in the redzone after alloc meta.
441	 */
442	cache->kasan_info.free_meta_offset = *size;
443	*size += sizeof(struct kasan_free_meta);
444
445free_meta_added:
446	/* If free meta doesn't fit, don't add it. */
447	if (*size > KMALLOC_MAX_SIZE) {
448		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
449		cache->kasan_info.alloc_meta_offset = orig_alloc_meta_offset;
450		*size = ok_size;
451	}
452
453	/* Calculate size with optimal redzone. */
454	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
455	/* Limit it with KMALLOC_MAX_SIZE. */
456	if (optimal_size > KMALLOC_MAX_SIZE)
457		optimal_size = KMALLOC_MAX_SIZE;
458	/* Use optimal size if the size with added metas is not large enough. */
459	if (*size < optimal_size)
460		*size = optimal_size;
461}
462
463struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
464					      const void *object)
465{
466	if (!cache->kasan_info.alloc_meta_offset)
467		return NULL;
468	return (void *)object + cache->kasan_info.alloc_meta_offset;
469}
470
471struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
472					    const void *object)
473{
474	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
475	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
476		return NULL;
477	return (void *)object + cache->kasan_info.free_meta_offset;
478}
479
480void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
481{
482	struct kasan_alloc_meta *alloc_meta;
483
484	alloc_meta = kasan_get_alloc_meta(cache, object);
485	if (alloc_meta) {
486		/* Zero out alloc meta to mark it as invalid. */
487		__memset(alloc_meta, 0, sizeof(*alloc_meta));
488	}
489
490	/*
491	 * Explicitly marking free meta as invalid is not required: the shadow
492	 * value for the first 8 bytes of a newly allocated object is not
493	 * KASAN_SLAB_FREE_META.
494	 */
 
495}
496
497static void release_alloc_meta(struct kasan_alloc_meta *meta)
 
498{
499	/* Zero out alloc meta to mark it as invalid. */
500	__memset(meta, 0, sizeof(*meta));
501}
502
503static void release_free_meta(const void *object, struct kasan_free_meta *meta)
504{
505	if (!kasan_arch_is_ready())
506		return;
507
508	/* Check if free meta is valid. */
509	if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_SLAB_FREE_META)
510		return;
511
512	/* Mark free meta as invalid. */
513	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE;
514}
515
516size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
517{
518	struct kasan_cache *info = &cache->kasan_info;
519
520	if (!kasan_requires_meta())
521		return 0;
522
523	if (in_object)
524		return (info->free_meta_offset ?
525			0 : sizeof(struct kasan_free_meta));
526	else
527		return (info->alloc_meta_offset ?
528			sizeof(struct kasan_alloc_meta) : 0) +
529			((info->free_meta_offset &&
530			info->free_meta_offset != KASAN_NO_FREE_META) ?
531			sizeof(struct kasan_free_meta) : 0);
532}
533
534static void __kasan_record_aux_stack(void *addr, depot_flags_t depot_flags)
535{
536	struct slab *slab = kasan_addr_to_slab(addr);
537	struct kmem_cache *cache;
538	struct kasan_alloc_meta *alloc_meta;
539	void *object;
540
541	if (is_kfence_address(addr) || !slab)
542		return;
543
544	cache = slab->slab_cache;
545	object = nearest_obj(cache, slab, addr);
546	alloc_meta = kasan_get_alloc_meta(cache, object);
547	if (!alloc_meta)
548		return;
549
550	alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
551	alloc_meta->aux_stack[0] = kasan_save_stack(0, depot_flags);
552}
553
554void kasan_record_aux_stack(void *addr)
555{
556	return __kasan_record_aux_stack(addr, STACK_DEPOT_FLAG_CAN_ALLOC);
557}
558
559void kasan_record_aux_stack_noalloc(void *addr)
560{
561	return __kasan_record_aux_stack(addr, 0);
562}
563
564void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
565{
566	struct kasan_alloc_meta *alloc_meta;
567
568	alloc_meta = kasan_get_alloc_meta(cache, object);
569	if (!alloc_meta)
570		return;
571
572	/* Invalidate previous stack traces (might exist for krealloc or mempool). */
573	release_alloc_meta(alloc_meta);
574
575	kasan_save_track(&alloc_meta->alloc_track, flags);
576}
577
578void kasan_save_free_info(struct kmem_cache *cache, void *object)
579{
580	struct kasan_free_meta *free_meta;
581
582	free_meta = kasan_get_free_meta(cache, object);
583	if (!free_meta)
584		return;
585
586	/* Invalidate previous stack trace (might exist for mempool). */
587	release_free_meta(object, free_meta);
588
589	kasan_save_track(&free_meta->free_track, 0);
590
591	/* Mark free meta as valid. */
592	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE_META;
593}