Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * RTC driver for the Armada 38x Marvell SoCs
  4 *
  5 * Copyright (C) 2015 Marvell
  6 *
  7 * Gregory Clement <gregory.clement@free-electrons.com>
  8 */
  9
 10#include <linux/delay.h>
 11#include <linux/io.h>
 12#include <linux/module.h>
 13#include <linux/of.h>
 14#include <linux/of_device.h>
 15#include <linux/platform_device.h>
 16#include <linux/rtc.h>
 17
 18#define RTC_STATUS	    0x0
 19#define RTC_STATUS_ALARM1	    BIT(0)
 20#define RTC_STATUS_ALARM2	    BIT(1)
 21#define RTC_IRQ1_CONF	    0x4
 22#define RTC_IRQ2_CONF	    0x8
 23#define RTC_IRQ_AL_EN		    BIT(0)
 24#define RTC_IRQ_FREQ_EN		    BIT(1)
 25#define RTC_IRQ_FREQ_1HZ	    BIT(2)
 26#define RTC_CCR		    0x18
 27#define RTC_CCR_MODE		    BIT(15)
 28#define RTC_CONF_TEST	    0x1C
 29#define RTC_NOMINAL_TIMING	    BIT(13)
 30
 31#define RTC_TIME	    0xC
 32#define RTC_ALARM1	    0x10
 33#define RTC_ALARM2	    0x14
 34
 35/* Armada38x SoC registers  */
 36#define RTC_38X_BRIDGE_TIMING_CTL   0x0
 37#define RTC_38X_PERIOD_OFFS		0
 38#define RTC_38X_PERIOD_MASK		(0x3FF << RTC_38X_PERIOD_OFFS)
 39#define RTC_38X_READ_DELAY_OFFS		26
 40#define RTC_38X_READ_DELAY_MASK		(0x1F << RTC_38X_READ_DELAY_OFFS)
 41
 42/* Armada 7K/8K registers  */
 43#define RTC_8K_BRIDGE_TIMING_CTL0    0x0
 44#define RTC_8K_WRCLK_PERIOD_OFFS	0
 45#define RTC_8K_WRCLK_PERIOD_MASK	(0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
 46#define RTC_8K_WRCLK_SETUP_OFFS		16
 47#define RTC_8K_WRCLK_SETUP_MASK		(0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
 48#define RTC_8K_BRIDGE_TIMING_CTL1   0x4
 49#define RTC_8K_READ_DELAY_OFFS		0
 50#define RTC_8K_READ_DELAY_MASK		(0xFFFF << RTC_8K_READ_DELAY_OFFS)
 51
 52#define RTC_8K_ISR		    0x10
 53#define RTC_8K_IMR		    0x14
 54#define RTC_8K_ALARM2			BIT(0)
 55
 56#define SOC_RTC_INTERRUPT	    0x8
 57#define SOC_RTC_ALARM1			BIT(0)
 58#define SOC_RTC_ALARM2			BIT(1)
 59#define SOC_RTC_ALARM1_MASK		BIT(2)
 60#define SOC_RTC_ALARM2_MASK		BIT(3)
 61
 62#define SAMPLE_NR 100
 63
 64struct value_to_freq {
 65	u32 value;
 66	u8 freq;
 67};
 68
 69struct armada38x_rtc {
 70	struct rtc_device   *rtc_dev;
 71	void __iomem	    *regs;
 72	void __iomem	    *regs_soc;
 73	spinlock_t	    lock;
 74	int		    irq;
 75	bool		    initialized;
 76	struct value_to_freq *val_to_freq;
 77	const struct armada38x_rtc_data *data;
 78};
 79
 80#define ALARM1	0
 81#define ALARM2	1
 82
 83#define ALARM_REG(base, alarm)	 ((base) + (alarm) * sizeof(u32))
 84
 85struct armada38x_rtc_data {
 86	/* Initialize the RTC-MBUS bridge timing */
 87	void (*update_mbus_timing)(struct armada38x_rtc *rtc);
 88	u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
 89	void (*clear_isr)(struct armada38x_rtc *rtc);
 90	void (*unmask_interrupt)(struct armada38x_rtc *rtc);
 91	u32 alarm;
 92};
 93
 94/*
 95 * According to the datasheet, the OS should wait 5us after every
 96 * register write to the RTC hard macro so that the required update
 97 * can occur without holding off the system bus
 98 * According to errata RES-3124064, Write to any RTC register
 99 * may fail. As a workaround, before writing to RTC
100 * register, issue a dummy write of 0x0 twice to RTC Status
101 * register.
102 */
103
104static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
105{
106	writel(0, rtc->regs + RTC_STATUS);
107	writel(0, rtc->regs + RTC_STATUS);
108	writel(val, rtc->regs + offset);
109	udelay(5);
110}
111
112/* Update RTC-MBUS bridge timing parameters */
113static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
114{
115	u32 reg;
116
117	reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
118	reg &= ~RTC_38X_PERIOD_MASK;
119	reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
120	reg &= ~RTC_38X_READ_DELAY_MASK;
121	reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
122	writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
123}
124
125static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
126{
127	u32 reg;
128
129	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
130	reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
131	reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
132	reg &= ~RTC_8K_WRCLK_SETUP_MASK;
133	reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
134	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
135
136	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
137	reg &= ~RTC_8K_READ_DELAY_MASK;
138	reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
139	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
140}
141
142static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
143{
144	return readl(rtc->regs + rtc_reg);
145}
146
147static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
148{
149	int i, index_max = 0, max = 0;
150
151	for (i = 0; i < SAMPLE_NR; i++) {
152		rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
153		rtc->val_to_freq[i].freq = 0;
154	}
155
156	for (i = 0; i < SAMPLE_NR; i++) {
157		int j = 0;
158		u32 value = rtc->val_to_freq[i].value;
159
160		while (rtc->val_to_freq[j].freq) {
161			if (rtc->val_to_freq[j].value == value) {
162				rtc->val_to_freq[j].freq++;
163				break;
164			}
165			j++;
166		}
167
168		if (!rtc->val_to_freq[j].freq) {
169			rtc->val_to_freq[j].value = value;
170			rtc->val_to_freq[j].freq = 1;
171		}
172
173		if (rtc->val_to_freq[j].freq > max) {
174			index_max = j;
175			max = rtc->val_to_freq[j].freq;
176		}
177
178		/*
179		 * If a value already has half of the sample this is the most
180		 * frequent one and we can stop the research right now
181		 */
182		if (max > SAMPLE_NR / 2)
183			break;
184	}
185
186	return rtc->val_to_freq[index_max].value;
187}
188
189static void armada38x_clear_isr(struct armada38x_rtc *rtc)
190{
191	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
192
193	writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
194}
195
196static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
197{
198	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
199
200	writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
201}
202
203static void armada8k_clear_isr(struct armada38x_rtc *rtc)
204{
205	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
206}
207
208static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
209{
210	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
211}
212
213static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
214{
215	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
216	unsigned long time, flags;
217
218	spin_lock_irqsave(&rtc->lock, flags);
219	time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
220	spin_unlock_irqrestore(&rtc->lock, flags);
221
222	rtc_time64_to_tm(time, tm);
223
224	return 0;
225}
226
227static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
228{
229	u32 reg;
230
231	reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
232	/* If bits [7:0] are non-zero, assume RTC was uninitialized */
233	if (reg & 0xff) {
234		rtc_delayed_write(0, rtc, RTC_CONF_TEST);
235		msleep(500); /* Oscillator startup time */
236		rtc_delayed_write(0, rtc, RTC_TIME);
237		rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
238				  RTC_STATUS);
239		rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
240	}
241	rtc->initialized = true;
242}
243
244static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
245{
246	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
247	unsigned long time, flags;
248
249	time = rtc_tm_to_time64(tm);
250
251	if (!rtc->initialized)
252		armada38x_rtc_reset(rtc);
253
254	spin_lock_irqsave(&rtc->lock, flags);
255	rtc_delayed_write(time, rtc, RTC_TIME);
256	spin_unlock_irqrestore(&rtc->lock, flags);
257
258	return 0;
259}
260
261static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
262{
263	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
264	unsigned long time, flags;
265	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
266	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
267	u32 val;
268
269	spin_lock_irqsave(&rtc->lock, flags);
270
271	time = rtc->data->read_rtc_reg(rtc, reg);
272	val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
273
274	spin_unlock_irqrestore(&rtc->lock, flags);
275
276	alrm->enabled = val ? 1 : 0;
277	rtc_time64_to_tm(time,  &alrm->time);
278
279	return 0;
280}
281
282static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
283{
284	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
285	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
286	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
287	unsigned long time, flags;
288
289	time = rtc_tm_to_time64(&alrm->time);
290
291	spin_lock_irqsave(&rtc->lock, flags);
292
293	rtc_delayed_write(time, rtc, reg);
294
295	if (alrm->enabled) {
296		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
297		rtc->data->unmask_interrupt(rtc);
298	}
299
300	spin_unlock_irqrestore(&rtc->lock, flags);
301
302	return 0;
303}
304
305static int armada38x_rtc_alarm_irq_enable(struct device *dev,
306					 unsigned int enabled)
307{
308	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
309	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
310	unsigned long flags;
311
312	spin_lock_irqsave(&rtc->lock, flags);
313
314	if (enabled)
315		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
316	else
317		rtc_delayed_write(0, rtc, reg_irq);
318
319	spin_unlock_irqrestore(&rtc->lock, flags);
320
321	return 0;
322}
323
324static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
325{
326	struct armada38x_rtc *rtc = data;
327	u32 val;
328	int event = RTC_IRQF | RTC_AF;
329	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
330
331	dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
332
333	spin_lock(&rtc->lock);
334
335	rtc->data->clear_isr(rtc);
336	val = rtc->data->read_rtc_reg(rtc, reg_irq);
337	/* disable all the interrupts for alarm*/
338	rtc_delayed_write(0, rtc, reg_irq);
339	/* Ack the event */
340	rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
341
342	spin_unlock(&rtc->lock);
343
344	if (val & RTC_IRQ_FREQ_EN) {
345		if (val & RTC_IRQ_FREQ_1HZ)
346			event |= RTC_UF;
347		else
348			event |= RTC_PF;
349	}
350
351	rtc_update_irq(rtc->rtc_dev, 1, event);
352
353	return IRQ_HANDLED;
354}
355
356/*
357 * The information given in the Armada 388 functional spec is complex.
358 * They give two different formulas for calculating the offset value,
359 * but when considering "Offset" as an 8-bit signed integer, they both
360 * reduce down to (we shall rename "Offset" as "val" here):
361 *
362 *   val = (f_ideal / f_measured - 1) / resolution   where f_ideal = 32768
363 *
364 * Converting to time, f = 1/t:
365 *   val = (t_measured / t_ideal - 1) / resolution   where t_ideal = 1/32768
366 *
367 *   =>  t_measured / t_ideal = val * resolution + 1
368 *
369 * "offset" in the RTC interface is defined as:
370 *   t = t0 * (1 + offset * 1e-9)
371 * where t is the desired period, t0 is the measured period with a zero
372 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
373 *   offset = (t_ideal / t_measured - 1) / 1e-9
374 *
375 *   => t_ideal / t_measured = offset * 1e-9 + 1
376 *
377 * so:
378 *
379 *   offset * 1e-9 + 1 = 1 / (val * resolution + 1)
380 *
381 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
382 *   offset = 1e18 / (val * R + 1e9) - 1e9
383 *   val = (1e18 / (offset + 1e9) - 1e9) / R
384 * with a common transformation:
385 *   f(x) = 1e18 / (x + 1e9) - 1e9
386 *   offset = f(val * R)
387 *   val = f(offset) / R
388 *
389 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
390 */
391static long armada38x_ppb_convert(long ppb)
392{
393	long div = ppb + 1000000000L;
394
395	return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
396}
397
398static int armada38x_rtc_read_offset(struct device *dev, long *offset)
399{
400	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
401	unsigned long ccr, flags;
402	long ppb_cor;
403
404	spin_lock_irqsave(&rtc->lock, flags);
405	ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
406	spin_unlock_irqrestore(&rtc->lock, flags);
407
408	ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
409	/* ppb_cor + 1000000000L can never be zero */
410	*offset = armada38x_ppb_convert(ppb_cor);
411
412	return 0;
413}
414
415static int armada38x_rtc_set_offset(struct device *dev, long offset)
416{
417	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
418	unsigned long ccr = 0;
419	long ppb_cor, off;
420
421	/*
422	 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
423	 * need to clamp the input.  This equates to -484270 .. 488558.
424	 * Not only is this to stop out of range "off" but also to
425	 * avoid the division by zero in armada38x_ppb_convert().
426	 */
427	offset = clamp(offset, -484270L, 488558L);
428
429	ppb_cor = armada38x_ppb_convert(offset);
430
431	/*
432	 * Use low update mode where possible, which gives a better
433	 * resolution of correction.
434	 */
435	off = DIV_ROUND_CLOSEST(ppb_cor, 954);
436	if (off > 127 || off < -128) {
437		ccr = RTC_CCR_MODE;
438		off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
439	}
440
441	/*
442	 * Armada 388 requires a bit pattern in bits 14..8 depending on
443	 * the sign bit: { 0, ~S, S, S, S, S, S }
444	 */
445	ccr |= (off & 0x3fff) ^ 0x2000;
446	rtc_delayed_write(ccr, rtc, RTC_CCR);
447
448	return 0;
449}
450
451static const struct rtc_class_ops armada38x_rtc_ops = {
452	.read_time = armada38x_rtc_read_time,
453	.set_time = armada38x_rtc_set_time,
454	.read_alarm = armada38x_rtc_read_alarm,
455	.set_alarm = armada38x_rtc_set_alarm,
456	.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
457	.read_offset = armada38x_rtc_read_offset,
458	.set_offset = armada38x_rtc_set_offset,
459};
460
461static const struct rtc_class_ops armada38x_rtc_ops_noirq = {
462	.read_time = armada38x_rtc_read_time,
463	.set_time = armada38x_rtc_set_time,
464	.read_alarm = armada38x_rtc_read_alarm,
465	.read_offset = armada38x_rtc_read_offset,
466	.set_offset = armada38x_rtc_set_offset,
467};
468
469static const struct armada38x_rtc_data armada38x_data = {
470	.update_mbus_timing = rtc_update_38x_mbus_timing_params,
471	.read_rtc_reg = read_rtc_register_38x_wa,
472	.clear_isr = armada38x_clear_isr,
473	.unmask_interrupt = armada38x_unmask_interrupt,
474	.alarm = ALARM1,
475};
476
477static const struct armada38x_rtc_data armada8k_data = {
478	.update_mbus_timing = rtc_update_8k_mbus_timing_params,
479	.read_rtc_reg = read_rtc_register,
480	.clear_isr = armada8k_clear_isr,
481	.unmask_interrupt = armada8k_unmask_interrupt,
482	.alarm = ALARM2,
483};
484
485#ifdef CONFIG_OF
486static const struct of_device_id armada38x_rtc_of_match_table[] = {
487	{
488		.compatible = "marvell,armada-380-rtc",
489		.data = &armada38x_data,
490	},
491	{
492		.compatible = "marvell,armada-8k-rtc",
493		.data = &armada8k_data,
494	},
495	{}
496};
497MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
498#endif
499
500static __init int armada38x_rtc_probe(struct platform_device *pdev)
501{
502	struct resource *res;
503	struct armada38x_rtc *rtc;
504
505	rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
506			    GFP_KERNEL);
507	if (!rtc)
508		return -ENOMEM;
509
510	rtc->data = of_device_get_match_data(&pdev->dev);
511
512	rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
513				sizeof(struct value_to_freq), GFP_KERNEL);
514	if (!rtc->val_to_freq)
515		return -ENOMEM;
516
517	spin_lock_init(&rtc->lock);
518
519	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
520	rtc->regs = devm_ioremap_resource(&pdev->dev, res);
521	if (IS_ERR(rtc->regs))
522		return PTR_ERR(rtc->regs);
523	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
524	rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
525	if (IS_ERR(rtc->regs_soc))
526		return PTR_ERR(rtc->regs_soc);
527
528	rtc->irq = platform_get_irq(pdev, 0);
529	if (rtc->irq < 0)
530		return rtc->irq;
531
532	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
533	if (IS_ERR(rtc->rtc_dev))
534		return PTR_ERR(rtc->rtc_dev);
535
536	if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
537				0, pdev->name, rtc) < 0) {
538		dev_warn(&pdev->dev, "Interrupt not available.\n");
539		rtc->irq = -1;
540	}
541	platform_set_drvdata(pdev, rtc);
542
543	if (rtc->irq != -1) {
544		device_init_wakeup(&pdev->dev, 1);
545		rtc->rtc_dev->ops = &armada38x_rtc_ops;
546	} else {
547		/*
548		 * If there is no interrupt available then we can't
549		 * use the alarm
550		 */
551		rtc->rtc_dev->ops = &armada38x_rtc_ops_noirq;
552	}
553
554	/* Update RTC-MBUS bridge timing parameters */
555	rtc->data->update_mbus_timing(rtc);
556
 
557	rtc->rtc_dev->range_max = U32_MAX;
558
559	return rtc_register_device(rtc->rtc_dev);
560}
561
562#ifdef CONFIG_PM_SLEEP
563static int armada38x_rtc_suspend(struct device *dev)
564{
565	if (device_may_wakeup(dev)) {
566		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
567
568		return enable_irq_wake(rtc->irq);
569	}
570
571	return 0;
572}
573
574static int armada38x_rtc_resume(struct device *dev)
575{
576	if (device_may_wakeup(dev)) {
577		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
578
579		/* Update RTC-MBUS bridge timing parameters */
580		rtc->data->update_mbus_timing(rtc);
581
582		return disable_irq_wake(rtc->irq);
583	}
584
585	return 0;
586}
587#endif
588
589static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
590			 armada38x_rtc_suspend, armada38x_rtc_resume);
591
592static struct platform_driver armada38x_rtc_driver = {
593	.driver		= {
594		.name	= "armada38x-rtc",
595		.pm	= &armada38x_rtc_pm_ops,
596		.of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
597	},
598};
599
600module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
601
602MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
603MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
604MODULE_LICENSE("GPL");
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * RTC driver for the Armada 38x Marvell SoCs
  4 *
  5 * Copyright (C) 2015 Marvell
  6 *
  7 * Gregory Clement <gregory.clement@free-electrons.com>
  8 */
  9
 10#include <linux/delay.h>
 11#include <linux/io.h>
 12#include <linux/module.h>
 13#include <linux/of.h>
 
 14#include <linux/platform_device.h>
 15#include <linux/rtc.h>
 16
 17#define RTC_STATUS	    0x0
 18#define RTC_STATUS_ALARM1	    BIT(0)
 19#define RTC_STATUS_ALARM2	    BIT(1)
 20#define RTC_IRQ1_CONF	    0x4
 21#define RTC_IRQ2_CONF	    0x8
 22#define RTC_IRQ_AL_EN		    BIT(0)
 23#define RTC_IRQ_FREQ_EN		    BIT(1)
 24#define RTC_IRQ_FREQ_1HZ	    BIT(2)
 25#define RTC_CCR		    0x18
 26#define RTC_CCR_MODE		    BIT(15)
 27#define RTC_CONF_TEST	    0x1C
 28#define RTC_NOMINAL_TIMING	    BIT(13)
 29
 30#define RTC_TIME	    0xC
 31#define RTC_ALARM1	    0x10
 32#define RTC_ALARM2	    0x14
 33
 34/* Armada38x SoC registers  */
 35#define RTC_38X_BRIDGE_TIMING_CTL   0x0
 36#define RTC_38X_PERIOD_OFFS		0
 37#define RTC_38X_PERIOD_MASK		(0x3FF << RTC_38X_PERIOD_OFFS)
 38#define RTC_38X_READ_DELAY_OFFS		26
 39#define RTC_38X_READ_DELAY_MASK		(0x1F << RTC_38X_READ_DELAY_OFFS)
 40
 41/* Armada 7K/8K registers  */
 42#define RTC_8K_BRIDGE_TIMING_CTL0    0x0
 43#define RTC_8K_WRCLK_PERIOD_OFFS	0
 44#define RTC_8K_WRCLK_PERIOD_MASK	(0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
 45#define RTC_8K_WRCLK_SETUP_OFFS		16
 46#define RTC_8K_WRCLK_SETUP_MASK		(0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
 47#define RTC_8K_BRIDGE_TIMING_CTL1   0x4
 48#define RTC_8K_READ_DELAY_OFFS		0
 49#define RTC_8K_READ_DELAY_MASK		(0xFFFF << RTC_8K_READ_DELAY_OFFS)
 50
 51#define RTC_8K_ISR		    0x10
 52#define RTC_8K_IMR		    0x14
 53#define RTC_8K_ALARM2			BIT(0)
 54
 55#define SOC_RTC_INTERRUPT	    0x8
 56#define SOC_RTC_ALARM1			BIT(0)
 57#define SOC_RTC_ALARM2			BIT(1)
 58#define SOC_RTC_ALARM1_MASK		BIT(2)
 59#define SOC_RTC_ALARM2_MASK		BIT(3)
 60
 61#define SAMPLE_NR 100
 62
 63struct value_to_freq {
 64	u32 value;
 65	u8 freq;
 66};
 67
 68struct armada38x_rtc {
 69	struct rtc_device   *rtc_dev;
 70	void __iomem	    *regs;
 71	void __iomem	    *regs_soc;
 72	spinlock_t	    lock;
 73	int		    irq;
 74	bool		    initialized;
 75	struct value_to_freq *val_to_freq;
 76	const struct armada38x_rtc_data *data;
 77};
 78
 79#define ALARM1	0
 80#define ALARM2	1
 81
 82#define ALARM_REG(base, alarm)	 ((base) + (alarm) * sizeof(u32))
 83
 84struct armada38x_rtc_data {
 85	/* Initialize the RTC-MBUS bridge timing */
 86	void (*update_mbus_timing)(struct armada38x_rtc *rtc);
 87	u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
 88	void (*clear_isr)(struct armada38x_rtc *rtc);
 89	void (*unmask_interrupt)(struct armada38x_rtc *rtc);
 90	u32 alarm;
 91};
 92
 93/*
 94 * According to the datasheet, the OS should wait 5us after every
 95 * register write to the RTC hard macro so that the required update
 96 * can occur without holding off the system bus
 97 * According to errata RES-3124064, Write to any RTC register
 98 * may fail. As a workaround, before writing to RTC
 99 * register, issue a dummy write of 0x0 twice to RTC Status
100 * register.
101 */
102
103static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
104{
105	writel(0, rtc->regs + RTC_STATUS);
106	writel(0, rtc->regs + RTC_STATUS);
107	writel(val, rtc->regs + offset);
108	udelay(5);
109}
110
111/* Update RTC-MBUS bridge timing parameters */
112static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
113{
114	u32 reg;
115
116	reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
117	reg &= ~RTC_38X_PERIOD_MASK;
118	reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
119	reg &= ~RTC_38X_READ_DELAY_MASK;
120	reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
121	writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
122}
123
124static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
125{
126	u32 reg;
127
128	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
129	reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
130	reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
131	reg &= ~RTC_8K_WRCLK_SETUP_MASK;
132	reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
133	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
134
135	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
136	reg &= ~RTC_8K_READ_DELAY_MASK;
137	reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
138	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
139}
140
141static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
142{
143	return readl(rtc->regs + rtc_reg);
144}
145
146static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
147{
148	int i, index_max = 0, max = 0;
149
150	for (i = 0; i < SAMPLE_NR; i++) {
151		rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
152		rtc->val_to_freq[i].freq = 0;
153	}
154
155	for (i = 0; i < SAMPLE_NR; i++) {
156		int j = 0;
157		u32 value = rtc->val_to_freq[i].value;
158
159		while (rtc->val_to_freq[j].freq) {
160			if (rtc->val_to_freq[j].value == value) {
161				rtc->val_to_freq[j].freq++;
162				break;
163			}
164			j++;
165		}
166
167		if (!rtc->val_to_freq[j].freq) {
168			rtc->val_to_freq[j].value = value;
169			rtc->val_to_freq[j].freq = 1;
170		}
171
172		if (rtc->val_to_freq[j].freq > max) {
173			index_max = j;
174			max = rtc->val_to_freq[j].freq;
175		}
176
177		/*
178		 * If a value already has half of the sample this is the most
179		 * frequent one and we can stop the research right now
180		 */
181		if (max > SAMPLE_NR / 2)
182			break;
183	}
184
185	return rtc->val_to_freq[index_max].value;
186}
187
188static void armada38x_clear_isr(struct armada38x_rtc *rtc)
189{
190	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
191
192	writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
193}
194
195static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
196{
197	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
198
199	writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
200}
201
202static void armada8k_clear_isr(struct armada38x_rtc *rtc)
203{
204	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
205}
206
207static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
208{
209	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
210}
211
212static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
213{
214	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
215	unsigned long time, flags;
216
217	spin_lock_irqsave(&rtc->lock, flags);
218	time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
219	spin_unlock_irqrestore(&rtc->lock, flags);
220
221	rtc_time64_to_tm(time, tm);
222
223	return 0;
224}
225
226static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
227{
228	u32 reg;
229
230	reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
231	/* If bits [7:0] are non-zero, assume RTC was uninitialized */
232	if (reg & 0xff) {
233		rtc_delayed_write(0, rtc, RTC_CONF_TEST);
234		msleep(500); /* Oscillator startup time */
235		rtc_delayed_write(0, rtc, RTC_TIME);
236		rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
237				  RTC_STATUS);
238		rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
239	}
240	rtc->initialized = true;
241}
242
243static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
244{
245	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
246	unsigned long time, flags;
247
248	time = rtc_tm_to_time64(tm);
249
250	if (!rtc->initialized)
251		armada38x_rtc_reset(rtc);
252
253	spin_lock_irqsave(&rtc->lock, flags);
254	rtc_delayed_write(time, rtc, RTC_TIME);
255	spin_unlock_irqrestore(&rtc->lock, flags);
256
257	return 0;
258}
259
260static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
261{
262	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
263	unsigned long time, flags;
264	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
265	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
266	u32 val;
267
268	spin_lock_irqsave(&rtc->lock, flags);
269
270	time = rtc->data->read_rtc_reg(rtc, reg);
271	val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
272
273	spin_unlock_irqrestore(&rtc->lock, flags);
274
275	alrm->enabled = val ? 1 : 0;
276	rtc_time64_to_tm(time,  &alrm->time);
277
278	return 0;
279}
280
281static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
282{
283	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
284	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
285	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
286	unsigned long time, flags;
287
288	time = rtc_tm_to_time64(&alrm->time);
289
290	spin_lock_irqsave(&rtc->lock, flags);
291
292	rtc_delayed_write(time, rtc, reg);
293
294	if (alrm->enabled) {
295		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
296		rtc->data->unmask_interrupt(rtc);
297	}
298
299	spin_unlock_irqrestore(&rtc->lock, flags);
300
301	return 0;
302}
303
304static int armada38x_rtc_alarm_irq_enable(struct device *dev,
305					 unsigned int enabled)
306{
307	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
308	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
309	unsigned long flags;
310
311	spin_lock_irqsave(&rtc->lock, flags);
312
313	if (enabled)
314		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
315	else
316		rtc_delayed_write(0, rtc, reg_irq);
317
318	spin_unlock_irqrestore(&rtc->lock, flags);
319
320	return 0;
321}
322
323static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
324{
325	struct armada38x_rtc *rtc = data;
326	u32 val;
327	int event = RTC_IRQF | RTC_AF;
328	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
329
330	dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
331
332	spin_lock(&rtc->lock);
333
334	rtc->data->clear_isr(rtc);
335	val = rtc->data->read_rtc_reg(rtc, reg_irq);
336	/* disable all the interrupts for alarm*/
337	rtc_delayed_write(0, rtc, reg_irq);
338	/* Ack the event */
339	rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
340
341	spin_unlock(&rtc->lock);
342
343	if (val & RTC_IRQ_FREQ_EN) {
344		if (val & RTC_IRQ_FREQ_1HZ)
345			event |= RTC_UF;
346		else
347			event |= RTC_PF;
348	}
349
350	rtc_update_irq(rtc->rtc_dev, 1, event);
351
352	return IRQ_HANDLED;
353}
354
355/*
356 * The information given in the Armada 388 functional spec is complex.
357 * They give two different formulas for calculating the offset value,
358 * but when considering "Offset" as an 8-bit signed integer, they both
359 * reduce down to (we shall rename "Offset" as "val" here):
360 *
361 *   val = (f_ideal / f_measured - 1) / resolution   where f_ideal = 32768
362 *
363 * Converting to time, f = 1/t:
364 *   val = (t_measured / t_ideal - 1) / resolution   where t_ideal = 1/32768
365 *
366 *   =>  t_measured / t_ideal = val * resolution + 1
367 *
368 * "offset" in the RTC interface is defined as:
369 *   t = t0 * (1 + offset * 1e-9)
370 * where t is the desired period, t0 is the measured period with a zero
371 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
372 *   offset = (t_ideal / t_measured - 1) / 1e-9
373 *
374 *   => t_ideal / t_measured = offset * 1e-9 + 1
375 *
376 * so:
377 *
378 *   offset * 1e-9 + 1 = 1 / (val * resolution + 1)
379 *
380 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
381 *   offset = 1e18 / (val * R + 1e9) - 1e9
382 *   val = (1e18 / (offset + 1e9) - 1e9) / R
383 * with a common transformation:
384 *   f(x) = 1e18 / (x + 1e9) - 1e9
385 *   offset = f(val * R)
386 *   val = f(offset) / R
387 *
388 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
389 */
390static long armada38x_ppb_convert(long ppb)
391{
392	long div = ppb + 1000000000L;
393
394	return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
395}
396
397static int armada38x_rtc_read_offset(struct device *dev, long *offset)
398{
399	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
400	unsigned long ccr, flags;
401	long ppb_cor;
402
403	spin_lock_irqsave(&rtc->lock, flags);
404	ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
405	spin_unlock_irqrestore(&rtc->lock, flags);
406
407	ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
408	/* ppb_cor + 1000000000L can never be zero */
409	*offset = armada38x_ppb_convert(ppb_cor);
410
411	return 0;
412}
413
414static int armada38x_rtc_set_offset(struct device *dev, long offset)
415{
416	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
417	unsigned long ccr = 0;
418	long ppb_cor, off;
419
420	/*
421	 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
422	 * need to clamp the input.  This equates to -484270 .. 488558.
423	 * Not only is this to stop out of range "off" but also to
424	 * avoid the division by zero in armada38x_ppb_convert().
425	 */
426	offset = clamp(offset, -484270L, 488558L);
427
428	ppb_cor = armada38x_ppb_convert(offset);
429
430	/*
431	 * Use low update mode where possible, which gives a better
432	 * resolution of correction.
433	 */
434	off = DIV_ROUND_CLOSEST(ppb_cor, 954);
435	if (off > 127 || off < -128) {
436		ccr = RTC_CCR_MODE;
437		off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
438	}
439
440	/*
441	 * Armada 388 requires a bit pattern in bits 14..8 depending on
442	 * the sign bit: { 0, ~S, S, S, S, S, S }
443	 */
444	ccr |= (off & 0x3fff) ^ 0x2000;
445	rtc_delayed_write(ccr, rtc, RTC_CCR);
446
447	return 0;
448}
449
450static const struct rtc_class_ops armada38x_rtc_ops = {
451	.read_time = armada38x_rtc_read_time,
452	.set_time = armada38x_rtc_set_time,
453	.read_alarm = armada38x_rtc_read_alarm,
454	.set_alarm = armada38x_rtc_set_alarm,
455	.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
456	.read_offset = armada38x_rtc_read_offset,
457	.set_offset = armada38x_rtc_set_offset,
458};
459
 
 
 
 
 
 
 
 
460static const struct armada38x_rtc_data armada38x_data = {
461	.update_mbus_timing = rtc_update_38x_mbus_timing_params,
462	.read_rtc_reg = read_rtc_register_38x_wa,
463	.clear_isr = armada38x_clear_isr,
464	.unmask_interrupt = armada38x_unmask_interrupt,
465	.alarm = ALARM1,
466};
467
468static const struct armada38x_rtc_data armada8k_data = {
469	.update_mbus_timing = rtc_update_8k_mbus_timing_params,
470	.read_rtc_reg = read_rtc_register,
471	.clear_isr = armada8k_clear_isr,
472	.unmask_interrupt = armada8k_unmask_interrupt,
473	.alarm = ALARM2,
474};
475
 
476static const struct of_device_id armada38x_rtc_of_match_table[] = {
477	{
478		.compatible = "marvell,armada-380-rtc",
479		.data = &armada38x_data,
480	},
481	{
482		.compatible = "marvell,armada-8k-rtc",
483		.data = &armada8k_data,
484	},
485	{}
486};
487MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
 
488
489static __init int armada38x_rtc_probe(struct platform_device *pdev)
490{
 
491	struct armada38x_rtc *rtc;
492
493	rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
494			    GFP_KERNEL);
495	if (!rtc)
496		return -ENOMEM;
497
498	rtc->data = of_device_get_match_data(&pdev->dev);
499
500	rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
501				sizeof(struct value_to_freq), GFP_KERNEL);
502	if (!rtc->val_to_freq)
503		return -ENOMEM;
504
505	spin_lock_init(&rtc->lock);
506
507	rtc->regs = devm_platform_ioremap_resource_byname(pdev, "rtc");
 
508	if (IS_ERR(rtc->regs))
509		return PTR_ERR(rtc->regs);
510	rtc->regs_soc = devm_platform_ioremap_resource_byname(pdev, "rtc-soc");
 
511	if (IS_ERR(rtc->regs_soc))
512		return PTR_ERR(rtc->regs_soc);
513
514	rtc->irq = platform_get_irq(pdev, 0);
515	if (rtc->irq < 0)
516		return rtc->irq;
517
518	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
519	if (IS_ERR(rtc->rtc_dev))
520		return PTR_ERR(rtc->rtc_dev);
521
522	if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
523				0, pdev->name, rtc) < 0) {
524		dev_warn(&pdev->dev, "Interrupt not available.\n");
525		rtc->irq = -1;
526	}
527	platform_set_drvdata(pdev, rtc);
528
529	if (rtc->irq != -1)
530		device_init_wakeup(&pdev->dev, 1);
531	else
532		clear_bit(RTC_FEATURE_ALARM, rtc->rtc_dev->features);
 
 
 
 
 
 
533
534	/* Update RTC-MBUS bridge timing parameters */
535	rtc->data->update_mbus_timing(rtc);
536
537	rtc->rtc_dev->ops = &armada38x_rtc_ops;
538	rtc->rtc_dev->range_max = U32_MAX;
539
540	return devm_rtc_register_device(rtc->rtc_dev);
541}
542
543#ifdef CONFIG_PM_SLEEP
544static int armada38x_rtc_suspend(struct device *dev)
545{
546	if (device_may_wakeup(dev)) {
547		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
548
549		return enable_irq_wake(rtc->irq);
550	}
551
552	return 0;
553}
554
555static int armada38x_rtc_resume(struct device *dev)
556{
557	if (device_may_wakeup(dev)) {
558		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
559
560		/* Update RTC-MBUS bridge timing parameters */
561		rtc->data->update_mbus_timing(rtc);
562
563		return disable_irq_wake(rtc->irq);
564	}
565
566	return 0;
567}
568#endif
569
570static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
571			 armada38x_rtc_suspend, armada38x_rtc_resume);
572
573static struct platform_driver armada38x_rtc_driver = {
574	.driver		= {
575		.name	= "armada38x-rtc",
576		.pm	= &armada38x_rtc_pm_ops,
577		.of_match_table = armada38x_rtc_of_match_table,
578	},
579};
580
581module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
582
583MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
584MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
585MODULE_LICENSE("GPL");