Linux Audio

Check our new training course

Loading...
v5.9
  1#ifndef _M68K_BITOPS_H
  2#define _M68K_BITOPS_H
  3/*
  4 * Copyright 1992, Linus Torvalds.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file COPYING in the main directory of this archive
  8 * for more details.
  9 */
 10
 11#ifndef _LINUX_BITOPS_H
 12#error only <linux/bitops.h> can be included directly
 13#endif
 14
 15#include <linux/compiler.h>
 16#include <asm/barrier.h>
 17
 18/*
 19 *	Bit access functions vary across the ColdFire and 68k families.
 20 *	So we will break them out here, and then macro in the ones we want.
 21 *
 22 *	ColdFire - supports standard bset/bclr/bchg with register operand only
 23 *	68000    - supports standard bset/bclr/bchg with memory operand
 24 *	>= 68020 - also supports the bfset/bfclr/bfchg instructions
 25 *
 26 *	Although it is possible to use only the bset/bclr/bchg with register
 27 *	operands on all platforms you end up with larger generated code.
 28 *	So we use the best form possible on a given platform.
 29 */
 30
 31static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
 32{
 33	char *p = (char *)vaddr + (nr ^ 31) / 8;
 34
 35	__asm__ __volatile__ ("bset %1,(%0)"
 36		:
 37		: "a" (p), "di" (nr & 7)
 38		: "memory");
 39}
 40
 41static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 42{
 43	char *p = (char *)vaddr + (nr ^ 31) / 8;
 44
 45	__asm__ __volatile__ ("bset %1,%0"
 46		: "+m" (*p)
 47		: "di" (nr & 7));
 48}
 49
 50static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 51{
 52	__asm__ __volatile__ ("bfset %1{%0:#1}"
 53		:
 54		: "d" (nr ^ 31), "o" (*vaddr)
 55		: "memory");
 56}
 57
 58#if defined(CONFIG_COLDFIRE)
 59#define	set_bit(nr, vaddr)	bset_reg_set_bit(nr, vaddr)
 60#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 61#define	set_bit(nr, vaddr)	bset_mem_set_bit(nr, vaddr)
 62#else
 63#define set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
 64				bset_mem_set_bit(nr, vaddr) : \
 65				bfset_mem_set_bit(nr, vaddr))
 66#endif
 67
 68#define __set_bit(nr, vaddr)	set_bit(nr, vaddr)
 69
 
 
 
 70
 71static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
 72{
 73	char *p = (char *)vaddr + (nr ^ 31) / 8;
 74
 75	__asm__ __volatile__ ("bclr %1,(%0)"
 76		:
 77		: "a" (p), "di" (nr & 7)
 78		: "memory");
 79}
 80
 81static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 82{
 83	char *p = (char *)vaddr + (nr ^ 31) / 8;
 84
 85	__asm__ __volatile__ ("bclr %1,%0"
 86		: "+m" (*p)
 87		: "di" (nr & 7));
 88}
 89
 90static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 91{
 92	__asm__ __volatile__ ("bfclr %1{%0:#1}"
 93		:
 94		: "d" (nr ^ 31), "o" (*vaddr)
 95		: "memory");
 96}
 97
 98#if defined(CONFIG_COLDFIRE)
 99#define	clear_bit(nr, vaddr)	bclr_reg_clear_bit(nr, vaddr)
100#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
101#define	clear_bit(nr, vaddr)	bclr_mem_clear_bit(nr, vaddr)
102#else
103#define clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
104				bclr_mem_clear_bit(nr, vaddr) : \
105				bfclr_mem_clear_bit(nr, vaddr))
106#endif
107
108#define __clear_bit(nr, vaddr)	clear_bit(nr, vaddr)
109
 
 
 
110
111static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
112{
113	char *p = (char *)vaddr + (nr ^ 31) / 8;
114
115	__asm__ __volatile__ ("bchg %1,(%0)"
116		:
117		: "a" (p), "di" (nr & 7)
118		: "memory");
119}
120
121static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
122{
123	char *p = (char *)vaddr + (nr ^ 31) / 8;
124
125	__asm__ __volatile__ ("bchg %1,%0"
126		: "+m" (*p)
127		: "di" (nr & 7));
128}
129
130static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
131{
132	__asm__ __volatile__ ("bfchg %1{%0:#1}"
133		:
134		: "d" (nr ^ 31), "o" (*vaddr)
135		: "memory");
136}
137
138#if defined(CONFIG_COLDFIRE)
139#define	change_bit(nr, vaddr)	bchg_reg_change_bit(nr, vaddr)
140#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
141#define	change_bit(nr, vaddr)	bchg_mem_change_bit(nr, vaddr)
142#else
143#define change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
144				bchg_mem_change_bit(nr, vaddr) : \
145				bfchg_mem_change_bit(nr, vaddr))
146#endif
147
148#define __change_bit(nr, vaddr)	change_bit(nr, vaddr)
149
150
151static inline int test_bit(int nr, const volatile unsigned long *vaddr)
152{
153	return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
154}
155
 
 
156
157static inline int bset_reg_test_and_set_bit(int nr,
158					    volatile unsigned long *vaddr)
159{
160	char *p = (char *)vaddr + (nr ^ 31) / 8;
161	char retval;
162
163	__asm__ __volatile__ ("bset %2,(%1); sne %0"
164		: "=d" (retval)
165		: "a" (p), "di" (nr & 7)
166		: "memory");
167	return retval;
168}
169
170static inline int bset_mem_test_and_set_bit(int nr,
171					    volatile unsigned long *vaddr)
172{
173	char *p = (char *)vaddr + (nr ^ 31) / 8;
174	char retval;
175
176	__asm__ __volatile__ ("bset %2,%1; sne %0"
177		: "=d" (retval), "+m" (*p)
178		: "di" (nr & 7));
179	return retval;
180}
181
182static inline int bfset_mem_test_and_set_bit(int nr,
183					     volatile unsigned long *vaddr)
184{
185	char retval;
186
187	__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
188		: "=d" (retval)
189		: "d" (nr ^ 31), "o" (*vaddr)
190		: "memory");
191	return retval;
192}
193
194#if defined(CONFIG_COLDFIRE)
195#define	test_and_set_bit(nr, vaddr)	bset_reg_test_and_set_bit(nr, vaddr)
196#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
197#define	test_and_set_bit(nr, vaddr)	bset_mem_test_and_set_bit(nr, vaddr)
198#else
199#define test_and_set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
200					bset_mem_test_and_set_bit(nr, vaddr) : \
201					bfset_mem_test_and_set_bit(nr, vaddr))
202#endif
203
204#define __test_and_set_bit(nr, vaddr)	test_and_set_bit(nr, vaddr)
205
 
 
 
206
207static inline int bclr_reg_test_and_clear_bit(int nr,
208					      volatile unsigned long *vaddr)
209{
210	char *p = (char *)vaddr + (nr ^ 31) / 8;
211	char retval;
212
213	__asm__ __volatile__ ("bclr %2,(%1); sne %0"
214		: "=d" (retval)
215		: "a" (p), "di" (nr & 7)
216		: "memory");
217	return retval;
218}
219
220static inline int bclr_mem_test_and_clear_bit(int nr,
221					      volatile unsigned long *vaddr)
222{
223	char *p = (char *)vaddr + (nr ^ 31) / 8;
224	char retval;
225
226	__asm__ __volatile__ ("bclr %2,%1; sne %0"
227		: "=d" (retval), "+m" (*p)
228		: "di" (nr & 7));
229	return retval;
230}
231
232static inline int bfclr_mem_test_and_clear_bit(int nr,
233					       volatile unsigned long *vaddr)
234{
235	char retval;
236
237	__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
238		: "=d" (retval)
239		: "d" (nr ^ 31), "o" (*vaddr)
240		: "memory");
241	return retval;
242}
243
244#if defined(CONFIG_COLDFIRE)
245#define	test_and_clear_bit(nr, vaddr)	bclr_reg_test_and_clear_bit(nr, vaddr)
246#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
247#define	test_and_clear_bit(nr, vaddr)	bclr_mem_test_and_clear_bit(nr, vaddr)
248#else
249#define test_and_clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
250					bclr_mem_test_and_clear_bit(nr, vaddr) : \
251					bfclr_mem_test_and_clear_bit(nr, vaddr))
252#endif
253
254#define __test_and_clear_bit(nr, vaddr)	test_and_clear_bit(nr, vaddr)
255
 
 
 
256
257static inline int bchg_reg_test_and_change_bit(int nr,
258					       volatile unsigned long *vaddr)
259{
260	char *p = (char *)vaddr + (nr ^ 31) / 8;
261	char retval;
262
263	__asm__ __volatile__ ("bchg %2,(%1); sne %0"
264		: "=d" (retval)
265		: "a" (p), "di" (nr & 7)
266		: "memory");
267	return retval;
268}
269
270static inline int bchg_mem_test_and_change_bit(int nr,
271					       volatile unsigned long *vaddr)
272{
273	char *p = (char *)vaddr + (nr ^ 31) / 8;
274	char retval;
275
276	__asm__ __volatile__ ("bchg %2,%1; sne %0"
277		: "=d" (retval), "+m" (*p)
278		: "di" (nr & 7));
279	return retval;
280}
281
282static inline int bfchg_mem_test_and_change_bit(int nr,
283						volatile unsigned long *vaddr)
284{
285	char retval;
286
287	__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
288		: "=d" (retval)
289		: "d" (nr ^ 31), "o" (*vaddr)
290		: "memory");
291	return retval;
292}
293
294#if defined(CONFIG_COLDFIRE)
295#define	test_and_change_bit(nr, vaddr)	bchg_reg_test_and_change_bit(nr, vaddr)
296#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
297#define	test_and_change_bit(nr, vaddr)	bchg_mem_test_and_change_bit(nr, vaddr)
298#else
299#define test_and_change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
300					bchg_mem_test_and_change_bit(nr, vaddr) : \
301					bfchg_mem_test_and_change_bit(nr, vaddr))
302#endif
303
304#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
 
 
 
 
305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
307/*
308 *	The true 68020 and more advanced processors support the "bfffo"
309 *	instruction for finding bits. ColdFire and simple 68000 parts
310 *	(including CPU32) do not support this. They simply use the generic
311 *	functions.
312 */
313#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
314#include <asm-generic/bitops/ffz.h>
315#else
316
317static inline int find_first_zero_bit(const unsigned long *vaddr,
318				      unsigned size)
319{
320	const unsigned long *p = vaddr;
321	int res = 32;
322	unsigned int words;
323	unsigned long num;
324
325	if (!size)
326		return 0;
327
328	words = (size + 31) >> 5;
329	while (!(num = ~*p++)) {
330		if (!--words)
331			goto out;
332	}
333
334	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
335			      : "=d" (res) : "d" (num & -num));
336	res ^= 31;
337out:
338	res += ((long)p - (long)vaddr - 4) * 8;
339	return res < size ? res : size;
340}
341#define find_first_zero_bit find_first_zero_bit
342
343static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
344				     int offset)
345{
346	const unsigned long *p = vaddr + (offset >> 5);
347	int bit = offset & 31UL, res;
348
349	if (offset >= size)
350		return size;
351
352	if (bit) {
353		unsigned long num = ~*p++ & (~0UL << bit);
354		offset -= bit;
355
356		/* Look for zero in first longword */
357		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
358				      : "=d" (res) : "d" (num & -num));
359		if (res < 32) {
360			offset += res ^ 31;
361			return offset < size ? offset : size;
362		}
363		offset += 32;
364
365		if (offset >= size)
366			return size;
367	}
368	/* No zero yet, search remaining full bytes for a zero */
369	return offset + find_first_zero_bit(p, size - offset);
370}
371#define find_next_zero_bit find_next_zero_bit
372
373static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
374{
375	const unsigned long *p = vaddr;
376	int res = 32;
377	unsigned int words;
378	unsigned long num;
379
380	if (!size)
381		return 0;
382
383	words = (size + 31) >> 5;
384	while (!(num = *p++)) {
385		if (!--words)
386			goto out;
387	}
388
389	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
390			      : "=d" (res) : "d" (num & -num));
391	res ^= 31;
392out:
393	res += ((long)p - (long)vaddr - 4) * 8;
394	return res < size ? res : size;
395}
396#define find_first_bit find_first_bit
397
398static inline int find_next_bit(const unsigned long *vaddr, int size,
399				int offset)
400{
401	const unsigned long *p = vaddr + (offset >> 5);
402	int bit = offset & 31UL, res;
403
404	if (offset >= size)
405		return size;
406
407	if (bit) {
408		unsigned long num = *p++ & (~0UL << bit);
409		offset -= bit;
410
411		/* Look for one in first longword */
412		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
413				      : "=d" (res) : "d" (num & -num));
414		if (res < 32) {
415			offset += res ^ 31;
416			return offset < size ? offset : size;
417		}
418		offset += 32;
419
420		if (offset >= size)
421			return size;
422	}
423	/* No one yet, search remaining full bytes for a one */
424	return offset + find_first_bit(p, size - offset);
425}
426#define find_next_bit find_next_bit
427
428/*
429 * ffz = Find First Zero in word. Undefined if no zero exists,
430 * so code should check against ~0UL first..
431 */
432static inline unsigned long ffz(unsigned long word)
433{
434	int res;
435
436	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
437			      : "=d" (res) : "d" (~word & -~word));
438	return res ^ 31;
439}
440
441#endif
442
443#include <asm-generic/bitops/find.h>
444
445#ifdef __KERNEL__
446
447#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
448
449/*
450 *	The newer ColdFire family members support a "bitrev" instruction
451 *	and we can use that to implement a fast ffs. Older Coldfire parts,
452 *	and normal 68000 parts don't have anything special, so we use the
453 *	generic functions for those.
454 */
455#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
456	!defined(CONFIG_M68000) && !defined(CONFIG_MCPU32)
457static inline unsigned long __ffs(unsigned long x)
458{
459	__asm__ __volatile__ ("bitrev %0; ff1 %0"
460		: "=d" (x)
461		: "0" (x));
462	return x;
463}
464
465static inline int ffs(int x)
466{
467	if (!x)
468		return 0;
469	return __ffs(x) + 1;
470}
471
472#else
473#include <asm-generic/bitops/ffs.h>
474#include <asm-generic/bitops/__ffs.h>
475#endif
476
477#include <asm-generic/bitops/fls.h>
478#include <asm-generic/bitops/__fls.h>
479
480#else
481
482/*
483 *	ffs: find first bit set. This is defined the same way as
484 *	the libc and compiler builtin ffs routines, therefore
485 *	differs in spirit from the above ffz (man ffs).
486 */
487static inline int ffs(int x)
488{
489	int cnt;
490
491	__asm__ ("bfffo %1{#0:#0},%0"
492		: "=d" (cnt)
493		: "dm" (x & -x));
494	return 32 - cnt;
495}
496
497static inline unsigned long __ffs(unsigned long x)
498{
499	return ffs(x) - 1;
500}
501
502/*
503 *	fls: find last bit set.
504 */
505static inline int fls(unsigned int x)
506{
507	int cnt;
508
509	__asm__ ("bfffo %1{#0,#0},%0"
510		: "=d" (cnt)
511		: "dm" (x));
512	return 32 - cnt;
513}
514
515static inline int __fls(int x)
516{
517	return fls(x) - 1;
518}
519
520#endif
521
522/* Simple test-and-set bit locks */
523#define test_and_set_bit_lock	test_and_set_bit
524#define clear_bit_unlock	clear_bit
525#define __clear_bit_unlock	clear_bit_unlock
526
 
527#include <asm-generic/bitops/ext2-atomic.h>
528#include <asm-generic/bitops/le.h>
529#include <asm-generic/bitops/fls64.h>
530#include <asm-generic/bitops/sched.h>
531#include <asm-generic/bitops/hweight.h>
 
532#endif /* __KERNEL__ */
533
534#endif /* _M68K_BITOPS_H */
v6.8
  1#ifndef _M68K_BITOPS_H
  2#define _M68K_BITOPS_H
  3/*
  4 * Copyright 1992, Linus Torvalds.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file COPYING in the main directory of this archive
  8 * for more details.
  9 */
 10
 11#ifndef _LINUX_BITOPS_H
 12#error only <linux/bitops.h> can be included directly
 13#endif
 14
 15#include <linux/compiler.h>
 16#include <asm/barrier.h>
 17
 18/*
 19 *	Bit access functions vary across the ColdFire and 68k families.
 20 *	So we will break them out here, and then macro in the ones we want.
 21 *
 22 *	ColdFire - supports standard bset/bclr/bchg with register operand only
 23 *	68000    - supports standard bset/bclr/bchg with memory operand
 24 *	>= 68020 - also supports the bfset/bfclr/bfchg instructions
 25 *
 26 *	Although it is possible to use only the bset/bclr/bchg with register
 27 *	operands on all platforms you end up with larger generated code.
 28 *	So we use the best form possible on a given platform.
 29 */
 30
 31static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
 32{
 33	char *p = (char *)vaddr + (nr ^ 31) / 8;
 34
 35	__asm__ __volatile__ ("bset %1,(%0)"
 36		:
 37		: "a" (p), "di" (nr & 7)
 38		: "memory");
 39}
 40
 41static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 42{
 43	char *p = (char *)vaddr + (nr ^ 31) / 8;
 44
 45	__asm__ __volatile__ ("bset %1,%0"
 46		: "+m" (*p)
 47		: "di" (nr & 7));
 48}
 49
 50static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 51{
 52	__asm__ __volatile__ ("bfset %1{%0:#1}"
 53		:
 54		: "d" (nr ^ 31), "o" (*vaddr)
 55		: "memory");
 56}
 57
 58#if defined(CONFIG_COLDFIRE)
 59#define	set_bit(nr, vaddr)	bset_reg_set_bit(nr, vaddr)
 60#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 61#define	set_bit(nr, vaddr)	bset_mem_set_bit(nr, vaddr)
 62#else
 63#define set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
 64				bset_mem_set_bit(nr, vaddr) : \
 65				bfset_mem_set_bit(nr, vaddr))
 66#endif
 67
 68static __always_inline void
 69arch___set_bit(unsigned long nr, volatile unsigned long *addr)
 70{
 71	set_bit(nr, addr);
 72}
 73
 74static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
 75{
 76	char *p = (char *)vaddr + (nr ^ 31) / 8;
 77
 78	__asm__ __volatile__ ("bclr %1,(%0)"
 79		:
 80		: "a" (p), "di" (nr & 7)
 81		: "memory");
 82}
 83
 84static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 85{
 86	char *p = (char *)vaddr + (nr ^ 31) / 8;
 87
 88	__asm__ __volatile__ ("bclr %1,%0"
 89		: "+m" (*p)
 90		: "di" (nr & 7));
 91}
 92
 93static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 94{
 95	__asm__ __volatile__ ("bfclr %1{%0:#1}"
 96		:
 97		: "d" (nr ^ 31), "o" (*vaddr)
 98		: "memory");
 99}
100
101#if defined(CONFIG_COLDFIRE)
102#define	clear_bit(nr, vaddr)	bclr_reg_clear_bit(nr, vaddr)
103#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
104#define	clear_bit(nr, vaddr)	bclr_mem_clear_bit(nr, vaddr)
105#else
106#define clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
107				bclr_mem_clear_bit(nr, vaddr) : \
108				bfclr_mem_clear_bit(nr, vaddr))
109#endif
110
111static __always_inline void
112arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
113{
114	clear_bit(nr, addr);
115}
116
117static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
118{
119	char *p = (char *)vaddr + (nr ^ 31) / 8;
120
121	__asm__ __volatile__ ("bchg %1,(%0)"
122		:
123		: "a" (p), "di" (nr & 7)
124		: "memory");
125}
126
127static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
128{
129	char *p = (char *)vaddr + (nr ^ 31) / 8;
130
131	__asm__ __volatile__ ("bchg %1,%0"
132		: "+m" (*p)
133		: "di" (nr & 7));
134}
135
136static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
137{
138	__asm__ __volatile__ ("bfchg %1{%0:#1}"
139		:
140		: "d" (nr ^ 31), "o" (*vaddr)
141		: "memory");
142}
143
144#if defined(CONFIG_COLDFIRE)
145#define	change_bit(nr, vaddr)	bchg_reg_change_bit(nr, vaddr)
146#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
147#define	change_bit(nr, vaddr)	bchg_mem_change_bit(nr, vaddr)
148#else
149#define change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
150				bchg_mem_change_bit(nr, vaddr) : \
151				bfchg_mem_change_bit(nr, vaddr))
152#endif
153
154static __always_inline void
155arch___change_bit(unsigned long nr, volatile unsigned long *addr)
 
 
156{
157	change_bit(nr, addr);
158}
159
160#define arch_test_bit generic_test_bit
161#define arch_test_bit_acquire generic_test_bit_acquire
162
163static inline int bset_reg_test_and_set_bit(int nr,
164					    volatile unsigned long *vaddr)
165{
166	char *p = (char *)vaddr + (nr ^ 31) / 8;
167	char retval;
168
169	__asm__ __volatile__ ("bset %2,(%1); sne %0"
170		: "=d" (retval)
171		: "a" (p), "di" (nr & 7)
172		: "memory");
173	return retval;
174}
175
176static inline int bset_mem_test_and_set_bit(int nr,
177					    volatile unsigned long *vaddr)
178{
179	char *p = (char *)vaddr + (nr ^ 31) / 8;
180	char retval;
181
182	__asm__ __volatile__ ("bset %2,%1; sne %0"
183		: "=d" (retval), "+m" (*p)
184		: "di" (nr & 7));
185	return retval;
186}
187
188static inline int bfset_mem_test_and_set_bit(int nr,
189					     volatile unsigned long *vaddr)
190{
191	char retval;
192
193	__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
194		: "=d" (retval)
195		: "d" (nr ^ 31), "o" (*vaddr)
196		: "memory");
197	return retval;
198}
199
200#if defined(CONFIG_COLDFIRE)
201#define	test_and_set_bit(nr, vaddr)	bset_reg_test_and_set_bit(nr, vaddr)
202#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
203#define	test_and_set_bit(nr, vaddr)	bset_mem_test_and_set_bit(nr, vaddr)
204#else
205#define test_and_set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
206					bset_mem_test_and_set_bit(nr, vaddr) : \
207					bfset_mem_test_and_set_bit(nr, vaddr))
208#endif
209
210static __always_inline bool
211arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
212{
213	return test_and_set_bit(nr, addr);
214}
215
216static inline int bclr_reg_test_and_clear_bit(int nr,
217					      volatile unsigned long *vaddr)
218{
219	char *p = (char *)vaddr + (nr ^ 31) / 8;
220	char retval;
221
222	__asm__ __volatile__ ("bclr %2,(%1); sne %0"
223		: "=d" (retval)
224		: "a" (p), "di" (nr & 7)
225		: "memory");
226	return retval;
227}
228
229static inline int bclr_mem_test_and_clear_bit(int nr,
230					      volatile unsigned long *vaddr)
231{
232	char *p = (char *)vaddr + (nr ^ 31) / 8;
233	char retval;
234
235	__asm__ __volatile__ ("bclr %2,%1; sne %0"
236		: "=d" (retval), "+m" (*p)
237		: "di" (nr & 7));
238	return retval;
239}
240
241static inline int bfclr_mem_test_and_clear_bit(int nr,
242					       volatile unsigned long *vaddr)
243{
244	char retval;
245
246	__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
247		: "=d" (retval)
248		: "d" (nr ^ 31), "o" (*vaddr)
249		: "memory");
250	return retval;
251}
252
253#if defined(CONFIG_COLDFIRE)
254#define	test_and_clear_bit(nr, vaddr)	bclr_reg_test_and_clear_bit(nr, vaddr)
255#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
256#define	test_and_clear_bit(nr, vaddr)	bclr_mem_test_and_clear_bit(nr, vaddr)
257#else
258#define test_and_clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
259					bclr_mem_test_and_clear_bit(nr, vaddr) : \
260					bfclr_mem_test_and_clear_bit(nr, vaddr))
261#endif
262
263static __always_inline bool
264arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
265{
266	return test_and_clear_bit(nr, addr);
267}
268
269static inline int bchg_reg_test_and_change_bit(int nr,
270					       volatile unsigned long *vaddr)
271{
272	char *p = (char *)vaddr + (nr ^ 31) / 8;
273	char retval;
274
275	__asm__ __volatile__ ("bchg %2,(%1); sne %0"
276		: "=d" (retval)
277		: "a" (p), "di" (nr & 7)
278		: "memory");
279	return retval;
280}
281
282static inline int bchg_mem_test_and_change_bit(int nr,
283					       volatile unsigned long *vaddr)
284{
285	char *p = (char *)vaddr + (nr ^ 31) / 8;
286	char retval;
287
288	__asm__ __volatile__ ("bchg %2,%1; sne %0"
289		: "=d" (retval), "+m" (*p)
290		: "di" (nr & 7));
291	return retval;
292}
293
294static inline int bfchg_mem_test_and_change_bit(int nr,
295						volatile unsigned long *vaddr)
296{
297	char retval;
298
299	__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
300		: "=d" (retval)
301		: "d" (nr ^ 31), "o" (*vaddr)
302		: "memory");
303	return retval;
304}
305
306#if defined(CONFIG_COLDFIRE)
307#define	test_and_change_bit(nr, vaddr)	bchg_reg_test_and_change_bit(nr, vaddr)
308#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
309#define	test_and_change_bit(nr, vaddr)	bchg_mem_test_and_change_bit(nr, vaddr)
310#else
311#define test_and_change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
312					bchg_mem_test_and_change_bit(nr, vaddr) : \
313					bfchg_mem_test_and_change_bit(nr, vaddr))
314#endif
315
316static __always_inline bool
317arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
318{
319	return test_and_change_bit(nr, addr);
320}
321
322static inline bool xor_unlock_is_negative_byte(unsigned long mask,
323		volatile unsigned long *p)
324{
325#ifdef CONFIG_COLDFIRE
326	__asm__ __volatile__ ("eorl %1, %0"
327		: "+m" (*p)
328		: "d" (mask)
329		: "memory");
330	return *p & (1 << 7);
331#else
332	char result;
333	char *cp = (char *)p + 3;	/* m68k is big-endian */
334
335	__asm__ __volatile__ ("eor.b %1, %2; smi %0"
336		: "=d" (result)
337		: "di" (mask), "o" (*cp)
338		: "memory");
339	return result;
340#endif
341}
342
343/*
344 *	The true 68020 and more advanced processors support the "bfffo"
345 *	instruction for finding bits. ColdFire and simple 68000 parts
346 *	(including CPU32) do not support this. They simply use the generic
347 *	functions.
348 */
349#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
350#include <asm-generic/bitops/ffz.h>
351#else
352
353static inline int find_first_zero_bit(const unsigned long *vaddr,
354				      unsigned size)
355{
356	const unsigned long *p = vaddr;
357	int res = 32;
358	unsigned int words;
359	unsigned long num;
360
361	if (!size)
362		return 0;
363
364	words = (size + 31) >> 5;
365	while (!(num = ~*p++)) {
366		if (!--words)
367			goto out;
368	}
369
370	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
371			      : "=d" (res) : "d" (num & -num));
372	res ^= 31;
373out:
374	res += ((long)p - (long)vaddr - 4) * 8;
375	return res < size ? res : size;
376}
377#define find_first_zero_bit find_first_zero_bit
378
379static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
380				     int offset)
381{
382	const unsigned long *p = vaddr + (offset >> 5);
383	int bit = offset & 31UL, res;
384
385	if (offset >= size)
386		return size;
387
388	if (bit) {
389		unsigned long num = ~*p++ & (~0UL << bit);
390		offset -= bit;
391
392		/* Look for zero in first longword */
393		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
394				      : "=d" (res) : "d" (num & -num));
395		if (res < 32) {
396			offset += res ^ 31;
397			return offset < size ? offset : size;
398		}
399		offset += 32;
400
401		if (offset >= size)
402			return size;
403	}
404	/* No zero yet, search remaining full bytes for a zero */
405	return offset + find_first_zero_bit(p, size - offset);
406}
407#define find_next_zero_bit find_next_zero_bit
408
409static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
410{
411	const unsigned long *p = vaddr;
412	int res = 32;
413	unsigned int words;
414	unsigned long num;
415
416	if (!size)
417		return 0;
418
419	words = (size + 31) >> 5;
420	while (!(num = *p++)) {
421		if (!--words)
422			goto out;
423	}
424
425	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
426			      : "=d" (res) : "d" (num & -num));
427	res ^= 31;
428out:
429	res += ((long)p - (long)vaddr - 4) * 8;
430	return res < size ? res : size;
431}
432#define find_first_bit find_first_bit
433
434static inline int find_next_bit(const unsigned long *vaddr, int size,
435				int offset)
436{
437	const unsigned long *p = vaddr + (offset >> 5);
438	int bit = offset & 31UL, res;
439
440	if (offset >= size)
441		return size;
442
443	if (bit) {
444		unsigned long num = *p++ & (~0UL << bit);
445		offset -= bit;
446
447		/* Look for one in first longword */
448		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
449				      : "=d" (res) : "d" (num & -num));
450		if (res < 32) {
451			offset += res ^ 31;
452			return offset < size ? offset : size;
453		}
454		offset += 32;
455
456		if (offset >= size)
457			return size;
458	}
459	/* No one yet, search remaining full bytes for a one */
460	return offset + find_first_bit(p, size - offset);
461}
462#define find_next_bit find_next_bit
463
464/*
465 * ffz = Find First Zero in word. Undefined if no zero exists,
466 * so code should check against ~0UL first..
467 */
468static inline unsigned long ffz(unsigned long word)
469{
470	int res;
471
472	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
473			      : "=d" (res) : "d" (~word & -~word));
474	return res ^ 31;
475}
476
477#endif
478
 
 
479#ifdef __KERNEL__
480
481#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
482
483/*
484 *	The newer ColdFire family members support a "bitrev" instruction
485 *	and we can use that to implement a fast ffs. Older Coldfire parts,
486 *	and normal 68000 parts don't have anything special, so we use the
487 *	generic functions for those.
488 */
489#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
490	!defined(CONFIG_M68000)
491static inline unsigned long __ffs(unsigned long x)
492{
493	__asm__ __volatile__ ("bitrev %0; ff1 %0"
494		: "=d" (x)
495		: "0" (x));
496	return x;
497}
498
499static inline int ffs(int x)
500{
501	if (!x)
502		return 0;
503	return __ffs(x) + 1;
504}
505
506#else
507#include <asm-generic/bitops/ffs.h>
508#include <asm-generic/bitops/__ffs.h>
509#endif
510
511#include <asm-generic/bitops/fls.h>
512#include <asm-generic/bitops/__fls.h>
513
514#else
515
516/*
517 *	ffs: find first bit set. This is defined the same way as
518 *	the libc and compiler builtin ffs routines, therefore
519 *	differs in spirit from the above ffz (man ffs).
520 */
521static inline int ffs(int x)
522{
523	int cnt;
524
525	__asm__ ("bfffo %1{#0:#0},%0"
526		: "=d" (cnt)
527		: "dm" (x & -x));
528	return 32 - cnt;
529}
530
531static inline unsigned long __ffs(unsigned long x)
532{
533	return ffs(x) - 1;
534}
535
536/*
537 *	fls: find last bit set.
538 */
539static inline int fls(unsigned int x)
540{
541	int cnt;
542
543	__asm__ ("bfffo %1{#0,#0},%0"
544		: "=d" (cnt)
545		: "dm" (x));
546	return 32 - cnt;
547}
548
549static inline unsigned long __fls(unsigned long x)
550{
551	return fls(x) - 1;
552}
553
554#endif
555
556/* Simple test-and-set bit locks */
557#define test_and_set_bit_lock	test_and_set_bit
558#define clear_bit_unlock	clear_bit
559#define __clear_bit_unlock	clear_bit_unlock
560
561#include <asm-generic/bitops/non-instrumented-non-atomic.h>
562#include <asm-generic/bitops/ext2-atomic.h>
 
563#include <asm-generic/bitops/fls64.h>
564#include <asm-generic/bitops/sched.h>
565#include <asm-generic/bitops/hweight.h>
566#include <asm-generic/bitops/le.h>
567#endif /* __KERNEL__ */
568
569#endif /* _M68K_BITOPS_H */