Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  24 *				:	Fragmentation on mtu decrease
  25 *				:	Segment collapse on retransmit
  26 *				:	AF independence
  27 *
  28 *		Linus Torvalds	:	send_delayed_ack
  29 *		David S. Miller	:	Charge memory using the right skb
  30 *					during syn/ack processing.
  31 *		David S. Miller :	Output engine completely rewritten.
  32 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  33 *		Cacophonix Gaul :	draft-minshall-nagle-01
  34 *		J Hadi Salim	:	ECN support
  35 *
  36 */
  37
  38#define pr_fmt(fmt) "TCP: " fmt
  39
  40#include <net/tcp.h>
  41#include <net/mptcp.h>
  42
  43#include <linux/compiler.h>
  44#include <linux/gfp.h>
  45#include <linux/module.h>
  46#include <linux/static_key.h>
  47
  48#include <trace/events/tcp.h>
  49
  50/* Refresh clocks of a TCP socket,
  51 * ensuring monotically increasing values.
  52 */
  53void tcp_mstamp_refresh(struct tcp_sock *tp)
  54{
  55	u64 val = tcp_clock_ns();
  56
  57	tp->tcp_clock_cache = val;
  58	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
  59}
  60
  61static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  62			   int push_one, gfp_t gfp);
  63
  64/* Account for new data that has been sent to the network. */
  65static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  66{
  67	struct inet_connection_sock *icsk = inet_csk(sk);
  68	struct tcp_sock *tp = tcp_sk(sk);
  69	unsigned int prior_packets = tp->packets_out;
  70
  71	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
  72
  73	__skb_unlink(skb, &sk->sk_write_queue);
  74	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  75
  76	if (tp->highest_sack == NULL)
  77		tp->highest_sack = skb;
  78
  79	tp->packets_out += tcp_skb_pcount(skb);
  80	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  81		tcp_rearm_rto(sk);
  82
  83	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  84		      tcp_skb_pcount(skb));
 
  85}
  86
  87/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  88 * window scaling factor due to loss of precision.
  89 * If window has been shrunk, what should we make? It is not clear at all.
  90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  92 * invalid. OK, let's make this for now:
  93 */
  94static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  95{
  96	const struct tcp_sock *tp = tcp_sk(sk);
  97
  98	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  99	    (tp->rx_opt.wscale_ok &&
 100	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
 101		return tp->snd_nxt;
 102	else
 103		return tcp_wnd_end(tp);
 104}
 105
 106/* Calculate mss to advertise in SYN segment.
 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 108 *
 109 * 1. It is independent of path mtu.
 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 112 *    attached devices, because some buggy hosts are confused by
 113 *    large MSS.
 114 * 4. We do not make 3, we advertise MSS, calculated from first
 115 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 116 *    This may be overridden via information stored in routing table.
 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 118 *    probably even Jumbo".
 119 */
 120static __u16 tcp_advertise_mss(struct sock *sk)
 121{
 122	struct tcp_sock *tp = tcp_sk(sk);
 123	const struct dst_entry *dst = __sk_dst_get(sk);
 124	int mss = tp->advmss;
 125
 126	if (dst) {
 127		unsigned int metric = dst_metric_advmss(dst);
 128
 129		if (metric < mss) {
 130			mss = metric;
 131			tp->advmss = mss;
 132		}
 133	}
 134
 135	return (__u16)mss;
 136}
 137
 138/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 139 * This is the first part of cwnd validation mechanism.
 140 */
 141void tcp_cwnd_restart(struct sock *sk, s32 delta)
 142{
 143	struct tcp_sock *tp = tcp_sk(sk);
 144	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 145	u32 cwnd = tp->snd_cwnd;
 146
 147	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 148
 149	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 150	restart_cwnd = min(restart_cwnd, cwnd);
 151
 152	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 153		cwnd >>= 1;
 154	tp->snd_cwnd = max(cwnd, restart_cwnd);
 155	tp->snd_cwnd_stamp = tcp_jiffies32;
 156	tp->snd_cwnd_used = 0;
 157}
 158
 159/* Congestion state accounting after a packet has been sent. */
 160static void tcp_event_data_sent(struct tcp_sock *tp,
 161				struct sock *sk)
 162{
 163	struct inet_connection_sock *icsk = inet_csk(sk);
 164	const u32 now = tcp_jiffies32;
 165
 166	if (tcp_packets_in_flight(tp) == 0)
 167		tcp_ca_event(sk, CA_EVENT_TX_START);
 168
 169	/* If this is the first data packet sent in response to the
 170	 * previous received data,
 171	 * and it is a reply for ato after last received packet,
 172	 * increase pingpong count.
 173	 */
 174	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
 175	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 176		inet_csk_inc_pingpong_cnt(sk);
 177
 178	tp->lsndtime = now;
 179}
 180
 181/* Account for an ACK we sent. */
 182static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
 183				      u32 rcv_nxt)
 184{
 185	struct tcp_sock *tp = tcp_sk(sk);
 186
 187	if (unlikely(tp->compressed_ack)) {
 188		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
 189			      tp->compressed_ack);
 190		tp->compressed_ack = 0;
 191		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
 192			__sock_put(sk);
 193	}
 194
 195	if (unlikely(rcv_nxt != tp->rcv_nxt))
 196		return;  /* Special ACK sent by DCTCP to reflect ECN */
 197	tcp_dec_quickack_mode(sk, pkts);
 198	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 199}
 200
 201/* Determine a window scaling and initial window to offer.
 202 * Based on the assumption that the given amount of space
 203 * will be offered. Store the results in the tp structure.
 204 * NOTE: for smooth operation initial space offering should
 205 * be a multiple of mss if possible. We assume here that mss >= 1.
 206 * This MUST be enforced by all callers.
 207 */
 208void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
 209			       __u32 *rcv_wnd, __u32 *window_clamp,
 210			       int wscale_ok, __u8 *rcv_wscale,
 211			       __u32 init_rcv_wnd)
 212{
 213	unsigned int space = (__space < 0 ? 0 : __space);
 214
 215	/* If no clamp set the clamp to the max possible scaled window */
 216	if (*window_clamp == 0)
 217		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
 218	space = min(*window_clamp, space);
 219
 220	/* Quantize space offering to a multiple of mss if possible. */
 221	if (space > mss)
 222		space = rounddown(space, mss);
 223
 224	/* NOTE: offering an initial window larger than 32767
 225	 * will break some buggy TCP stacks. If the admin tells us
 226	 * it is likely we could be speaking with such a buggy stack
 227	 * we will truncate our initial window offering to 32K-1
 228	 * unless the remote has sent us a window scaling option,
 229	 * which we interpret as a sign the remote TCP is not
 230	 * misinterpreting the window field as a signed quantity.
 231	 */
 232	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 233		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 234	else
 235		(*rcv_wnd) = min_t(u32, space, U16_MAX);
 236
 237	if (init_rcv_wnd)
 238		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 239
 240	*rcv_wscale = 0;
 241	if (wscale_ok) {
 242		/* Set window scaling on max possible window */
 243		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 244		space = max_t(u32, space, sysctl_rmem_max);
 245		space = min_t(u32, space, *window_clamp);
 246		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
 247				      0, TCP_MAX_WSCALE);
 248	}
 249	/* Set the clamp no higher than max representable value */
 250	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
 251}
 252EXPORT_SYMBOL(tcp_select_initial_window);
 253
 254/* Chose a new window to advertise, update state in tcp_sock for the
 255 * socket, and return result with RFC1323 scaling applied.  The return
 256 * value can be stuffed directly into th->window for an outgoing
 257 * frame.
 258 */
 259static u16 tcp_select_window(struct sock *sk)
 260{
 261	struct tcp_sock *tp = tcp_sk(sk);
 
 262	u32 old_win = tp->rcv_wnd;
 263	u32 cur_win = tcp_receive_window(tp);
 264	u32 new_win = __tcp_select_window(sk);
 
 
 
 
 
 
 265
 266	/* Never shrink the offered window */
 
 267	if (new_win < cur_win) {
 268		/* Danger Will Robinson!
 269		 * Don't update rcv_wup/rcv_wnd here or else
 270		 * we will not be able to advertise a zero
 271		 * window in time.  --DaveM
 272		 *
 273		 * Relax Will Robinson.
 274		 */
 275		if (new_win == 0)
 276			NET_INC_STATS(sock_net(sk),
 277				      LINUX_MIB_TCPWANTZEROWINDOWADV);
 278		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 
 
 279	}
 
 280	tp->rcv_wnd = new_win;
 281	tp->rcv_wup = tp->rcv_nxt;
 282
 283	/* Make sure we do not exceed the maximum possible
 284	 * scaled window.
 285	 */
 286	if (!tp->rx_opt.rcv_wscale &&
 287	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 288		new_win = min(new_win, MAX_TCP_WINDOW);
 289	else
 290		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 291
 292	/* RFC1323 scaling applied */
 293	new_win >>= tp->rx_opt.rcv_wscale;
 294
 295	/* If we advertise zero window, disable fast path. */
 296	if (new_win == 0) {
 297		tp->pred_flags = 0;
 298		if (old_win)
 299			NET_INC_STATS(sock_net(sk),
 300				      LINUX_MIB_TCPTOZEROWINDOWADV);
 301	} else if (old_win == 0) {
 302		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 303	}
 304
 305	return new_win;
 306}
 307
 308/* Packet ECN state for a SYN-ACK */
 309static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 310{
 311	const struct tcp_sock *tp = tcp_sk(sk);
 312
 313	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 314	if (!(tp->ecn_flags & TCP_ECN_OK))
 315		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 316	else if (tcp_ca_needs_ecn(sk) ||
 317		 tcp_bpf_ca_needs_ecn(sk))
 318		INET_ECN_xmit(sk);
 319}
 320
 321/* Packet ECN state for a SYN.  */
 322static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 323{
 324	struct tcp_sock *tp = tcp_sk(sk);
 325	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
 326	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
 327		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
 328
 329	if (!use_ecn) {
 330		const struct dst_entry *dst = __sk_dst_get(sk);
 331
 332		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 333			use_ecn = true;
 334	}
 335
 336	tp->ecn_flags = 0;
 337
 338	if (use_ecn) {
 339		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 340		tp->ecn_flags = TCP_ECN_OK;
 341		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
 342			INET_ECN_xmit(sk);
 343	}
 344}
 345
 346static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 347{
 348	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
 349		/* tp->ecn_flags are cleared at a later point in time when
 350		 * SYN ACK is ultimatively being received.
 351		 */
 352		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 353}
 354
 355static void
 356tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 357{
 358	if (inet_rsk(req)->ecn_ok)
 359		th->ece = 1;
 360}
 361
 362/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 363 * be sent.
 364 */
 365static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 366			 struct tcphdr *th, int tcp_header_len)
 367{
 368	struct tcp_sock *tp = tcp_sk(sk);
 369
 370	if (tp->ecn_flags & TCP_ECN_OK) {
 371		/* Not-retransmitted data segment: set ECT and inject CWR. */
 372		if (skb->len != tcp_header_len &&
 373		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 374			INET_ECN_xmit(sk);
 375			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 376				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 377				th->cwr = 1;
 378				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 379			}
 380		} else if (!tcp_ca_needs_ecn(sk)) {
 381			/* ACK or retransmitted segment: clear ECT|CE */
 382			INET_ECN_dontxmit(sk);
 383		}
 384		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 385			th->ece = 1;
 386	}
 387}
 388
 389/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 390 * auto increment end seqno.
 391 */
 392static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 393{
 394	skb->ip_summed = CHECKSUM_PARTIAL;
 395
 396	TCP_SKB_CB(skb)->tcp_flags = flags;
 397	TCP_SKB_CB(skb)->sacked = 0;
 398
 399	tcp_skb_pcount_set(skb, 1);
 400
 401	TCP_SKB_CB(skb)->seq = seq;
 402	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 403		seq++;
 404	TCP_SKB_CB(skb)->end_seq = seq;
 405}
 406
 407static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 408{
 409	return tp->snd_una != tp->snd_up;
 410}
 411
 412#define OPTION_SACK_ADVERTISE	(1 << 0)
 413#define OPTION_TS		(1 << 1)
 414#define OPTION_MD5		(1 << 2)
 415#define OPTION_WSCALE		(1 << 3)
 416#define OPTION_FAST_OPEN_COOKIE	(1 << 8)
 417#define OPTION_SMC		(1 << 9)
 418#define OPTION_MPTCP		(1 << 10)
 
 419
 420static void smc_options_write(__be32 *ptr, u16 *options)
 421{
 422#if IS_ENABLED(CONFIG_SMC)
 423	if (static_branch_unlikely(&tcp_have_smc)) {
 424		if (unlikely(OPTION_SMC & *options)) {
 425			*ptr++ = htonl((TCPOPT_NOP  << 24) |
 426				       (TCPOPT_NOP  << 16) |
 427				       (TCPOPT_EXP <<  8) |
 428				       (TCPOLEN_EXP_SMC_BASE));
 429			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
 430		}
 431	}
 432#endif
 433}
 434
 435struct tcp_out_options {
 436	u16 options;		/* bit field of OPTION_* */
 437	u16 mss;		/* 0 to disable */
 438	u8 ws;			/* window scale, 0 to disable */
 439	u8 num_sack_blocks;	/* number of SACK blocks to include */
 440	u8 hash_size;		/* bytes in hash_location */
 
 441	__u8 *hash_location;	/* temporary pointer, overloaded */
 442	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 443	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 444	struct mptcp_out_options mptcp;
 445};
 446
 447static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
 
 
 448{
 449#if IS_ENABLED(CONFIG_MPTCP)
 450	if (unlikely(OPTION_MPTCP & opts->options))
 451		mptcp_write_options(ptr, &opts->mptcp);
 452#endif
 453}
 454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455/* Write previously computed TCP options to the packet.
 456 *
 457 * Beware: Something in the Internet is very sensitive to the ordering of
 458 * TCP options, we learned this through the hard way, so be careful here.
 459 * Luckily we can at least blame others for their non-compliance but from
 460 * inter-operability perspective it seems that we're somewhat stuck with
 461 * the ordering which we have been using if we want to keep working with
 462 * those broken things (not that it currently hurts anybody as there isn't
 463 * particular reason why the ordering would need to be changed).
 464 *
 465 * At least SACK_PERM as the first option is known to lead to a disaster
 466 * (but it may well be that other scenarios fail similarly).
 467 */
 468static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 469			      struct tcp_out_options *opts)
 
 
 470{
 
 471	u16 options = opts->options;	/* mungable copy */
 472
 473	if (unlikely(OPTION_MD5 & options)) {
 474		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 475			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 476		/* overload cookie hash location */
 477		opts->hash_location = (__u8 *)ptr;
 478		ptr += 4;
 
 
 479	}
 480
 481	if (unlikely(opts->mss)) {
 482		*ptr++ = htonl((TCPOPT_MSS << 24) |
 483			       (TCPOLEN_MSS << 16) |
 484			       opts->mss);
 485	}
 486
 487	if (likely(OPTION_TS & options)) {
 488		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 489			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 490				       (TCPOLEN_SACK_PERM << 16) |
 491				       (TCPOPT_TIMESTAMP << 8) |
 492				       TCPOLEN_TIMESTAMP);
 493			options &= ~OPTION_SACK_ADVERTISE;
 494		} else {
 495			*ptr++ = htonl((TCPOPT_NOP << 24) |
 496				       (TCPOPT_NOP << 16) |
 497				       (TCPOPT_TIMESTAMP << 8) |
 498				       TCPOLEN_TIMESTAMP);
 499		}
 500		*ptr++ = htonl(opts->tsval);
 501		*ptr++ = htonl(opts->tsecr);
 502	}
 503
 504	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 505		*ptr++ = htonl((TCPOPT_NOP << 24) |
 506			       (TCPOPT_NOP << 16) |
 507			       (TCPOPT_SACK_PERM << 8) |
 508			       TCPOLEN_SACK_PERM);
 509	}
 510
 511	if (unlikely(OPTION_WSCALE & options)) {
 512		*ptr++ = htonl((TCPOPT_NOP << 24) |
 513			       (TCPOPT_WINDOW << 16) |
 514			       (TCPOLEN_WINDOW << 8) |
 515			       opts->ws);
 516	}
 517
 518	if (unlikely(opts->num_sack_blocks)) {
 519		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 520			tp->duplicate_sack : tp->selective_acks;
 521		int this_sack;
 522
 523		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 524			       (TCPOPT_NOP  << 16) |
 525			       (TCPOPT_SACK <<  8) |
 526			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 527						     TCPOLEN_SACK_PERBLOCK)));
 528
 529		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 530		     ++this_sack) {
 531			*ptr++ = htonl(sp[this_sack].start_seq);
 532			*ptr++ = htonl(sp[this_sack].end_seq);
 533		}
 534
 535		tp->rx_opt.dsack = 0;
 536	}
 537
 538	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 539		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 540		u8 *p = (u8 *)ptr;
 541		u32 len; /* Fast Open option length */
 542
 543		if (foc->exp) {
 544			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 545			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 546				     TCPOPT_FASTOPEN_MAGIC);
 547			p += TCPOLEN_EXP_FASTOPEN_BASE;
 548		} else {
 549			len = TCPOLEN_FASTOPEN_BASE + foc->len;
 550			*p++ = TCPOPT_FASTOPEN;
 551			*p++ = len;
 552		}
 553
 554		memcpy(p, foc->val, foc->len);
 555		if ((len & 3) == 2) {
 556			p[foc->len] = TCPOPT_NOP;
 557			p[foc->len + 1] = TCPOPT_NOP;
 558		}
 559		ptr += (len + 3) >> 2;
 560	}
 561
 562	smc_options_write(ptr, &options);
 563
 564	mptcp_options_write(ptr, opts);
 565}
 566
 567static void smc_set_option(const struct tcp_sock *tp,
 568			   struct tcp_out_options *opts,
 569			   unsigned int *remaining)
 570{
 571#if IS_ENABLED(CONFIG_SMC)
 572	if (static_branch_unlikely(&tcp_have_smc)) {
 573		if (tp->syn_smc) {
 574			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 575				opts->options |= OPTION_SMC;
 576				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 577			}
 578		}
 579	}
 580#endif
 581}
 582
 583static void smc_set_option_cond(const struct tcp_sock *tp,
 584				const struct inet_request_sock *ireq,
 585				struct tcp_out_options *opts,
 586				unsigned int *remaining)
 587{
 588#if IS_ENABLED(CONFIG_SMC)
 589	if (static_branch_unlikely(&tcp_have_smc)) {
 590		if (tp->syn_smc && ireq->smc_ok) {
 591			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 592				opts->options |= OPTION_SMC;
 593				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 594			}
 595		}
 596	}
 597#endif
 598}
 599
 600static void mptcp_set_option_cond(const struct request_sock *req,
 601				  struct tcp_out_options *opts,
 602				  unsigned int *remaining)
 603{
 604	if (rsk_is_mptcp(req)) {
 605		unsigned int size;
 606
 607		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
 608			if (*remaining >= size) {
 609				opts->options |= OPTION_MPTCP;
 610				*remaining -= size;
 611			}
 612		}
 613	}
 614}
 615
 616/* Compute TCP options for SYN packets. This is not the final
 617 * network wire format yet.
 618 */
 619static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 620				struct tcp_out_options *opts,
 621				struct tcp_md5sig_key **md5)
 622{
 623	struct tcp_sock *tp = tcp_sk(sk);
 624	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 625	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 
 626
 627	*md5 = NULL;
 628#ifdef CONFIG_TCP_MD5SIG
 629	if (static_branch_unlikely(&tcp_md5_needed) &&
 630	    rcu_access_pointer(tp->md5sig_info)) {
 631		*md5 = tp->af_specific->md5_lookup(sk, sk);
 632		if (*md5) {
 633			opts->options |= OPTION_MD5;
 634			remaining -= TCPOLEN_MD5SIG_ALIGNED;
 
 
 635		}
 636	}
 637#endif
 638
 639	/* We always get an MSS option.  The option bytes which will be seen in
 640	 * normal data packets should timestamps be used, must be in the MSS
 641	 * advertised.  But we subtract them from tp->mss_cache so that
 642	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 643	 * fact here if necessary.  If we don't do this correctly, as a
 644	 * receiver we won't recognize data packets as being full sized when we
 645	 * should, and thus we won't abide by the delayed ACK rules correctly.
 646	 * SACKs don't matter, we never delay an ACK when we have any of those
 647	 * going out.  */
 648	opts->mss = tcp_advertise_mss(sk);
 649	remaining -= TCPOLEN_MSS_ALIGNED;
 650
 651	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
 652		opts->options |= OPTION_TS;
 653		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
 654		opts->tsecr = tp->rx_opt.ts_recent;
 655		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 656	}
 657	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
 658		opts->ws = tp->rx_opt.rcv_wscale;
 659		opts->options |= OPTION_WSCALE;
 660		remaining -= TCPOLEN_WSCALE_ALIGNED;
 661	}
 662	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
 663		opts->options |= OPTION_SACK_ADVERTISE;
 664		if (unlikely(!(OPTION_TS & opts->options)))
 665			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 666	}
 667
 668	if (fastopen && fastopen->cookie.len >= 0) {
 669		u32 need = fastopen->cookie.len;
 670
 671		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 672					       TCPOLEN_FASTOPEN_BASE;
 673		need = (need + 3) & ~3U;  /* Align to 32 bits */
 674		if (remaining >= need) {
 675			opts->options |= OPTION_FAST_OPEN_COOKIE;
 676			opts->fastopen_cookie = &fastopen->cookie;
 677			remaining -= need;
 678			tp->syn_fastopen = 1;
 679			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 680		}
 681	}
 682
 683	smc_set_option(tp, opts, &remaining);
 684
 685	if (sk_is_mptcp(sk)) {
 686		unsigned int size;
 687
 688		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
 689			opts->options |= OPTION_MPTCP;
 690			remaining -= size;
 691		}
 692	}
 693
 
 
 694	return MAX_TCP_OPTION_SPACE - remaining;
 695}
 696
 697/* Set up TCP options for SYN-ACKs. */
 698static unsigned int tcp_synack_options(const struct sock *sk,
 699				       struct request_sock *req,
 700				       unsigned int mss, struct sk_buff *skb,
 701				       struct tcp_out_options *opts,
 702				       const struct tcp_md5sig_key *md5,
 703				       struct tcp_fastopen_cookie *foc,
 704				       enum tcp_synack_type synack_type)
 
 705{
 706	struct inet_request_sock *ireq = inet_rsk(req);
 707	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 708
 709#ifdef CONFIG_TCP_MD5SIG
 710	if (md5) {
 711		opts->options |= OPTION_MD5;
 712		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 713
 714		/* We can't fit any SACK blocks in a packet with MD5 + TS
 715		 * options. There was discussion about disabling SACK
 716		 * rather than TS in order to fit in better with old,
 717		 * buggy kernels, but that was deemed to be unnecessary.
 718		 */
 719		if (synack_type != TCP_SYNACK_COOKIE)
 720			ireq->tstamp_ok &= !ireq->sack_ok;
 
 
 
 
 721	}
 722#endif
 723
 724	/* We always send an MSS option. */
 725	opts->mss = mss;
 726	remaining -= TCPOLEN_MSS_ALIGNED;
 727
 728	if (likely(ireq->wscale_ok)) {
 729		opts->ws = ireq->rcv_wscale;
 730		opts->options |= OPTION_WSCALE;
 731		remaining -= TCPOLEN_WSCALE_ALIGNED;
 732	}
 733	if (likely(ireq->tstamp_ok)) {
 734		opts->options |= OPTION_TS;
 735		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
 736		opts->tsecr = req->ts_recent;
 
 737		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 738	}
 739	if (likely(ireq->sack_ok)) {
 740		opts->options |= OPTION_SACK_ADVERTISE;
 741		if (unlikely(!ireq->tstamp_ok))
 742			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 743	}
 744	if (foc != NULL && foc->len >= 0) {
 745		u32 need = foc->len;
 746
 747		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 748				   TCPOLEN_FASTOPEN_BASE;
 749		need = (need + 3) & ~3U;  /* Align to 32 bits */
 750		if (remaining >= need) {
 751			opts->options |= OPTION_FAST_OPEN_COOKIE;
 752			opts->fastopen_cookie = foc;
 753			remaining -= need;
 754		}
 755	}
 756
 757	mptcp_set_option_cond(req, opts, &remaining);
 758
 759	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
 760
 
 
 
 761	return MAX_TCP_OPTION_SPACE - remaining;
 762}
 763
 764/* Compute TCP options for ESTABLISHED sockets. This is not the
 765 * final wire format yet.
 766 */
 767static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 768					struct tcp_out_options *opts,
 769					struct tcp_md5sig_key **md5)
 770{
 771	struct tcp_sock *tp = tcp_sk(sk);
 772	unsigned int size = 0;
 773	unsigned int eff_sacks;
 774
 775	opts->options = 0;
 776
 777	*md5 = NULL;
 778#ifdef CONFIG_TCP_MD5SIG
 779	if (static_branch_unlikely(&tcp_md5_needed) &&
 780	    rcu_access_pointer(tp->md5sig_info)) {
 781		*md5 = tp->af_specific->md5_lookup(sk, sk);
 782		if (*md5) {
 783			opts->options |= OPTION_MD5;
 784			size += TCPOLEN_MD5SIG_ALIGNED;
 785		}
 786	}
 787#endif
 788
 789	if (likely(tp->rx_opt.tstamp_ok)) {
 790		opts->options |= OPTION_TS;
 791		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
 
 792		opts->tsecr = tp->rx_opt.ts_recent;
 793		size += TCPOLEN_TSTAMP_ALIGNED;
 794	}
 795
 796	/* MPTCP options have precedence over SACK for the limited TCP
 797	 * option space because a MPTCP connection would be forced to
 798	 * fall back to regular TCP if a required multipath option is
 799	 * missing. SACK still gets a chance to use whatever space is
 800	 * left.
 801	 */
 802	if (sk_is_mptcp(sk)) {
 803		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 804		unsigned int opt_size = 0;
 805
 806		if (mptcp_established_options(sk, skb, &opt_size, remaining,
 807					      &opts->mptcp)) {
 808			opts->options |= OPTION_MPTCP;
 809			size += opt_size;
 810		}
 811	}
 812
 813	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 814	if (unlikely(eff_sacks)) {
 815		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 816		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
 817					 TCPOLEN_SACK_PERBLOCK))
 818			return size;
 819
 820		opts->num_sack_blocks =
 821			min_t(unsigned int, eff_sacks,
 822			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 823			      TCPOLEN_SACK_PERBLOCK);
 824
 825		size += TCPOLEN_SACK_BASE_ALIGNED +
 826			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 827	}
 828
 
 
 
 
 
 
 
 
 
 829	return size;
 830}
 831
 832
 833/* TCP SMALL QUEUES (TSQ)
 834 *
 835 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 836 * to reduce RTT and bufferbloat.
 837 * We do this using a special skb destructor (tcp_wfree).
 838 *
 839 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 840 * needs to be reallocated in a driver.
 841 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 842 *
 843 * Since transmit from skb destructor is forbidden, we use a tasklet
 844 * to process all sockets that eventually need to send more skbs.
 845 * We use one tasklet per cpu, with its own queue of sockets.
 846 */
 847struct tsq_tasklet {
 848	struct tasklet_struct	tasklet;
 849	struct list_head	head; /* queue of tcp sockets */
 850};
 851static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 852
 853static void tcp_tsq_write(struct sock *sk)
 854{
 855	if ((1 << sk->sk_state) &
 856	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 857	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
 858		struct tcp_sock *tp = tcp_sk(sk);
 859
 860		if (tp->lost_out > tp->retrans_out &&
 861		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
 862			tcp_mstamp_refresh(tp);
 863			tcp_xmit_retransmit_queue(sk);
 864		}
 865
 866		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
 867			       0, GFP_ATOMIC);
 868	}
 869}
 870
 871static void tcp_tsq_handler(struct sock *sk)
 872{
 873	bh_lock_sock(sk);
 874	if (!sock_owned_by_user(sk))
 875		tcp_tsq_write(sk);
 876	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
 877		sock_hold(sk);
 878	bh_unlock_sock(sk);
 879}
 880/*
 881 * One tasklet per cpu tries to send more skbs.
 882 * We run in tasklet context but need to disable irqs when
 883 * transferring tsq->head because tcp_wfree() might
 884 * interrupt us (non NAPI drivers)
 885 */
 886static void tcp_tasklet_func(unsigned long data)
 887{
 888	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
 889	LIST_HEAD(list);
 890	unsigned long flags;
 891	struct list_head *q, *n;
 892	struct tcp_sock *tp;
 893	struct sock *sk;
 894
 895	local_irq_save(flags);
 896	list_splice_init(&tsq->head, &list);
 897	local_irq_restore(flags);
 898
 899	list_for_each_safe(q, n, &list) {
 900		tp = list_entry(q, struct tcp_sock, tsq_node);
 901		list_del(&tp->tsq_node);
 902
 903		sk = (struct sock *)tp;
 904		smp_mb__before_atomic();
 905		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
 906
 907		tcp_tsq_handler(sk);
 908		sk_free(sk);
 909	}
 910}
 911
 912#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
 913			  TCPF_WRITE_TIMER_DEFERRED |	\
 914			  TCPF_DELACK_TIMER_DEFERRED |	\
 915			  TCPF_MTU_REDUCED_DEFERRED)
 
 916/**
 917 * tcp_release_cb - tcp release_sock() callback
 918 * @sk: socket
 919 *
 920 * called from release_sock() to perform protocol dependent
 921 * actions before socket release.
 922 */
 923void tcp_release_cb(struct sock *sk)
 924{
 925	unsigned long flags, nflags;
 
 926
 927	/* perform an atomic operation only if at least one flag is set */
 928	do {
 929		flags = sk->sk_tsq_flags;
 930		if (!(flags & TCP_DEFERRED_ALL))
 931			return;
 932		nflags = flags & ~TCP_DEFERRED_ALL;
 933	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
 934
 935	if (flags & TCPF_TSQ_DEFERRED) {
 936		tcp_tsq_write(sk);
 937		__sock_put(sk);
 938	}
 939	/* Here begins the tricky part :
 940	 * We are called from release_sock() with :
 941	 * 1) BH disabled
 942	 * 2) sk_lock.slock spinlock held
 943	 * 3) socket owned by us (sk->sk_lock.owned == 1)
 944	 *
 945	 * But following code is meant to be called from BH handlers,
 946	 * so we should keep BH disabled, but early release socket ownership
 947	 */
 948	sock_release_ownership(sk);
 949
 950	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
 951		tcp_write_timer_handler(sk);
 952		__sock_put(sk);
 953	}
 954	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
 955		tcp_delack_timer_handler(sk);
 956		__sock_put(sk);
 957	}
 958	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
 959		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
 960		__sock_put(sk);
 961	}
 
 
 962}
 963EXPORT_SYMBOL(tcp_release_cb);
 964
 965void __init tcp_tasklet_init(void)
 966{
 967	int i;
 968
 969	for_each_possible_cpu(i) {
 970		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 971
 972		INIT_LIST_HEAD(&tsq->head);
 973		tasklet_init(&tsq->tasklet,
 974			     tcp_tasklet_func,
 975			     (unsigned long)tsq);
 976	}
 977}
 978
 979/*
 980 * Write buffer destructor automatically called from kfree_skb.
 981 * We can't xmit new skbs from this context, as we might already
 982 * hold qdisc lock.
 983 */
 984void tcp_wfree(struct sk_buff *skb)
 985{
 986	struct sock *sk = skb->sk;
 987	struct tcp_sock *tp = tcp_sk(sk);
 988	unsigned long flags, nval, oval;
 
 
 989
 990	/* Keep one reference on sk_wmem_alloc.
 991	 * Will be released by sk_free() from here or tcp_tasklet_func()
 992	 */
 993	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
 994
 995	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
 996	 * Wait until our queues (qdisc + devices) are drained.
 997	 * This gives :
 998	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
 999	 * - chance for incoming ACK (processed by another cpu maybe)
1000	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1001	 */
1002	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1003		goto out;
1004
1005	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1006		struct tsq_tasklet *tsq;
1007		bool empty;
1008
1009		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1010			goto out;
1011
1012		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1013		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1014		if (nval != oval)
1015			continue;
1016
1017		/* queue this socket to tasklet queue */
1018		local_irq_save(flags);
1019		tsq = this_cpu_ptr(&tsq_tasklet);
1020		empty = list_empty(&tsq->head);
1021		list_add(&tp->tsq_node, &tsq->head);
1022		if (empty)
1023			tasklet_schedule(&tsq->tasklet);
1024		local_irq_restore(flags);
1025		return;
1026	}
1027out:
1028	sk_free(sk);
1029}
1030
1031/* Note: Called under soft irq.
1032 * We can call TCP stack right away, unless socket is owned by user.
1033 */
1034enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1035{
1036	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1037	struct sock *sk = (struct sock *)tp;
1038
1039	tcp_tsq_handler(sk);
1040	sock_put(sk);
1041
1042	return HRTIMER_NORESTART;
1043}
1044
1045static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1046				      u64 prior_wstamp)
1047{
1048	struct tcp_sock *tp = tcp_sk(sk);
1049
1050	if (sk->sk_pacing_status != SK_PACING_NONE) {
1051		unsigned long rate = sk->sk_pacing_rate;
1052
1053		/* Original sch_fq does not pace first 10 MSS
1054		 * Note that tp->data_segs_out overflows after 2^32 packets,
1055		 * this is a minor annoyance.
1056		 */
1057		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1058			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1059			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1060
1061			/* take into account OS jitter */
1062			len_ns -= min_t(u64, len_ns / 2, credit);
1063			tp->tcp_wstamp_ns += len_ns;
1064		}
1065	}
1066	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1067}
1068
1069INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1070INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1071INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1072
1073/* This routine actually transmits TCP packets queued in by
1074 * tcp_do_sendmsg().  This is used by both the initial
1075 * transmission and possible later retransmissions.
1076 * All SKB's seen here are completely headerless.  It is our
1077 * job to build the TCP header, and pass the packet down to
1078 * IP so it can do the same plus pass the packet off to the
1079 * device.
1080 *
1081 * We are working here with either a clone of the original
1082 * SKB, or a fresh unique copy made by the retransmit engine.
1083 */
1084static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1085			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1086{
1087	const struct inet_connection_sock *icsk = inet_csk(sk);
1088	struct inet_sock *inet;
1089	struct tcp_sock *tp;
1090	struct tcp_skb_cb *tcb;
1091	struct tcp_out_options opts;
1092	unsigned int tcp_options_size, tcp_header_size;
1093	struct sk_buff *oskb = NULL;
1094	struct tcp_md5sig_key *md5;
1095	struct tcphdr *th;
1096	u64 prior_wstamp;
1097	int err;
1098
1099	BUG_ON(!skb || !tcp_skb_pcount(skb));
1100	tp = tcp_sk(sk);
1101	prior_wstamp = tp->tcp_wstamp_ns;
1102	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1103	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1104	if (clone_it) {
1105		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1106			- tp->snd_una;
1107		oskb = skb;
1108
1109		tcp_skb_tsorted_save(oskb) {
1110			if (unlikely(skb_cloned(oskb)))
1111				skb = pskb_copy(oskb, gfp_mask);
1112			else
1113				skb = skb_clone(oskb, gfp_mask);
1114		} tcp_skb_tsorted_restore(oskb);
1115
1116		if (unlikely(!skb))
1117			return -ENOBUFS;
1118		/* retransmit skbs might have a non zero value in skb->dev
1119		 * because skb->dev is aliased with skb->rbnode.rb_left
1120		 */
1121		skb->dev = NULL;
1122	}
1123
1124	inet = inet_sk(sk);
1125	tcb = TCP_SKB_CB(skb);
1126	memset(&opts, 0, sizeof(opts));
1127
 
1128	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1129		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1130	} else {
1131		tcp_options_size = tcp_established_options(sk, skb, &opts,
1132							   &md5);
1133		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1134		 * at receiver : This slightly improve GRO performance.
1135		 * Note that we do not force the PSH flag for non GSO packets,
1136		 * because they might be sent under high congestion events,
1137		 * and in this case it is better to delay the delivery of 1-MSS
1138		 * packets and thus the corresponding ACK packet that would
1139		 * release the following packet.
1140		 */
1141		if (tcp_skb_pcount(skb) > 1)
1142			tcb->tcp_flags |= TCPHDR_PSH;
1143	}
1144	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1145
1146	/* if no packet is in qdisc/device queue, then allow XPS to select
1147	 * another queue. We can be called from tcp_tsq_handler()
1148	 * which holds one reference to sk.
1149	 *
1150	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1151	 * One way to get this would be to set skb->truesize = 2 on them.
 
 
 
 
 
 
1152	 */
1153	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
 
1154
1155	/* If we had to use memory reserve to allocate this skb,
1156	 * this might cause drops if packet is looped back :
1157	 * Other socket might not have SOCK_MEMALLOC.
1158	 * Packets not looped back do not care about pfmemalloc.
1159	 */
1160	skb->pfmemalloc = 0;
1161
1162	skb_push(skb, tcp_header_size);
1163	skb_reset_transport_header(skb);
1164
1165	skb_orphan(skb);
1166	skb->sk = sk;
1167	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1168	skb_set_hash_from_sk(skb, sk);
1169	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1170
1171	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1172
1173	/* Build TCP header and checksum it. */
1174	th = (struct tcphdr *)skb->data;
1175	th->source		= inet->inet_sport;
1176	th->dest		= inet->inet_dport;
1177	th->seq			= htonl(tcb->seq);
1178	th->ack_seq		= htonl(rcv_nxt);
1179	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1180					tcb->tcp_flags);
1181
1182	th->check		= 0;
1183	th->urg_ptr		= 0;
1184
1185	/* The urg_mode check is necessary during a below snd_una win probe */
1186	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1187		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1188			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1189			th->urg = 1;
1190		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1191			th->urg_ptr = htons(0xFFFF);
1192			th->urg = 1;
1193		}
1194	}
1195
1196	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1197	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1198	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1199		th->window      = htons(tcp_select_window(sk));
1200		tcp_ecn_send(sk, skb, th, tcp_header_size);
1201	} else {
1202		/* RFC1323: The window in SYN & SYN/ACK segments
1203		 * is never scaled.
1204		 */
1205		th->window	= htons(min(tp->rcv_wnd, 65535U));
1206	}
 
 
 
 
1207#ifdef CONFIG_TCP_MD5SIG
1208	/* Calculate the MD5 hash, as we have all we need now */
1209	if (md5) {
1210		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1211		tp->af_specific->calc_md5_hash(opts.hash_location,
1212					       md5, sk, skb);
1213	}
1214#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
1215
1216	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1217			   tcp_v6_send_check, tcp_v4_send_check,
1218			   sk, skb);
1219
1220	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1221		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1222
1223	if (skb->len != tcp_header_size) {
1224		tcp_event_data_sent(tp, sk);
1225		tp->data_segs_out += tcp_skb_pcount(skb);
1226		tp->bytes_sent += skb->len - tcp_header_size;
1227	}
1228
1229	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1230		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1231			      tcp_skb_pcount(skb));
1232
1233	tp->segs_out += tcp_skb_pcount(skb);
 
1234	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1235	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1236	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1237
1238	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1239
1240	/* Cleanup our debris for IP stacks */
1241	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1242			       sizeof(struct inet6_skb_parm)));
1243
1244	tcp_add_tx_delay(skb, tp);
1245
1246	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1247				 inet6_csk_xmit, ip_queue_xmit,
1248				 sk, skb, &inet->cork.fl);
1249
1250	if (unlikely(err > 0)) {
1251		tcp_enter_cwr(sk);
1252		err = net_xmit_eval(err);
1253	}
1254	if (!err && oskb) {
1255		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1256		tcp_rate_skb_sent(sk, oskb);
1257	}
1258	return err;
1259}
1260
1261static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1262			    gfp_t gfp_mask)
1263{
1264	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1265				  tcp_sk(sk)->rcv_nxt);
1266}
1267
1268/* This routine just queues the buffer for sending.
1269 *
1270 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1271 * otherwise socket can stall.
1272 */
1273static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1274{
1275	struct tcp_sock *tp = tcp_sk(sk);
1276
1277	/* Advance write_seq and place onto the write_queue. */
1278	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1279	__skb_header_release(skb);
1280	tcp_add_write_queue_tail(sk, skb);
1281	sk_wmem_queued_add(sk, skb->truesize);
1282	sk_mem_charge(sk, skb->truesize);
1283}
1284
1285/* Initialize TSO segments for a packet. */
1286static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1287{
1288	if (skb->len <= mss_now) {
1289		/* Avoid the costly divide in the normal
1290		 * non-TSO case.
1291		 */
1292		tcp_skb_pcount_set(skb, 1);
1293		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1294	} else {
1295		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1296		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1297	}
1298}
1299
1300/* Pcount in the middle of the write queue got changed, we need to do various
1301 * tweaks to fix counters
1302 */
1303static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1304{
1305	struct tcp_sock *tp = tcp_sk(sk);
1306
1307	tp->packets_out -= decr;
1308
1309	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1310		tp->sacked_out -= decr;
1311	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1312		tp->retrans_out -= decr;
1313	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1314		tp->lost_out -= decr;
1315
1316	/* Reno case is special. Sigh... */
1317	if (tcp_is_reno(tp) && decr > 0)
1318		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1319
1320	if (tp->lost_skb_hint &&
1321	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1322	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1323		tp->lost_cnt_hint -= decr;
1324
1325	tcp_verify_left_out(tp);
1326}
1327
1328static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1329{
1330	return TCP_SKB_CB(skb)->txstamp_ack ||
1331		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1332}
1333
1334static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1335{
1336	struct skb_shared_info *shinfo = skb_shinfo(skb);
1337
1338	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1339	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1340		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1341		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1342
1343		shinfo->tx_flags &= ~tsflags;
1344		shinfo2->tx_flags |= tsflags;
1345		swap(shinfo->tskey, shinfo2->tskey);
1346		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1347		TCP_SKB_CB(skb)->txstamp_ack = 0;
1348	}
1349}
1350
1351static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1352{
1353	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1354	TCP_SKB_CB(skb)->eor = 0;
1355}
1356
1357/* Insert buff after skb on the write or rtx queue of sk.  */
1358static void tcp_insert_write_queue_after(struct sk_buff *skb,
1359					 struct sk_buff *buff,
1360					 struct sock *sk,
1361					 enum tcp_queue tcp_queue)
1362{
1363	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1364		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1365	else
1366		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1367}
1368
1369/* Function to create two new TCP segments.  Shrinks the given segment
1370 * to the specified size and appends a new segment with the rest of the
1371 * packet to the list.  This won't be called frequently, I hope.
1372 * Remember, these are still headerless SKBs at this point.
1373 */
1374int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1375		 struct sk_buff *skb, u32 len,
1376		 unsigned int mss_now, gfp_t gfp)
1377{
1378	struct tcp_sock *tp = tcp_sk(sk);
1379	struct sk_buff *buff;
1380	int nsize, old_factor;
1381	long limit;
1382	int nlen;
1383	u8 flags;
1384
1385	if (WARN_ON(len > skb->len))
1386		return -EINVAL;
1387
1388	nsize = skb_headlen(skb) - len;
1389	if (nsize < 0)
1390		nsize = 0;
1391
1392	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1393	 * We need some allowance to not penalize applications setting small
1394	 * SO_SNDBUF values.
1395	 * Also allow first and last skb in retransmit queue to be split.
1396	 */
1397	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1398	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1399		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1400		     skb != tcp_rtx_queue_head(sk) &&
1401		     skb != tcp_rtx_queue_tail(sk))) {
1402		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1403		return -ENOMEM;
1404	}
1405
1406	if (skb_unclone(skb, gfp))
1407		return -ENOMEM;
1408
1409	/* Get a new skb... force flag on. */
1410	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1411	if (!buff)
1412		return -ENOMEM; /* We'll just try again later. */
1413	skb_copy_decrypted(buff, skb);
 
1414
1415	sk_wmem_queued_add(sk, buff->truesize);
1416	sk_mem_charge(sk, buff->truesize);
1417	nlen = skb->len - len - nsize;
1418	buff->truesize += nlen;
1419	skb->truesize -= nlen;
1420
1421	/* Correct the sequence numbers. */
1422	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1423	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1424	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1425
1426	/* PSH and FIN should only be set in the second packet. */
1427	flags = TCP_SKB_CB(skb)->tcp_flags;
1428	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1429	TCP_SKB_CB(buff)->tcp_flags = flags;
1430	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1431	tcp_skb_fragment_eor(skb, buff);
1432
1433	skb_split(skb, buff, len);
1434
1435	buff->ip_summed = CHECKSUM_PARTIAL;
1436
1437	buff->tstamp = skb->tstamp;
1438	tcp_fragment_tstamp(skb, buff);
1439
1440	old_factor = tcp_skb_pcount(skb);
1441
1442	/* Fix up tso_factor for both original and new SKB.  */
1443	tcp_set_skb_tso_segs(skb, mss_now);
1444	tcp_set_skb_tso_segs(buff, mss_now);
1445
1446	/* Update delivered info for the new segment */
1447	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1448
1449	/* If this packet has been sent out already, we must
1450	 * adjust the various packet counters.
1451	 */
1452	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1453		int diff = old_factor - tcp_skb_pcount(skb) -
1454			tcp_skb_pcount(buff);
1455
1456		if (diff)
1457			tcp_adjust_pcount(sk, skb, diff);
1458	}
1459
1460	/* Link BUFF into the send queue. */
1461	__skb_header_release(buff);
1462	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1463	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1464		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1465
1466	return 0;
1467}
1468
1469/* This is similar to __pskb_pull_tail(). The difference is that pulled
1470 * data is not copied, but immediately discarded.
1471 */
1472static int __pskb_trim_head(struct sk_buff *skb, int len)
1473{
1474	struct skb_shared_info *shinfo;
1475	int i, k, eat;
1476
1477	eat = min_t(int, len, skb_headlen(skb));
1478	if (eat) {
1479		__skb_pull(skb, eat);
1480		len -= eat;
1481		if (!len)
1482			return 0;
1483	}
1484	eat = len;
1485	k = 0;
1486	shinfo = skb_shinfo(skb);
1487	for (i = 0; i < shinfo->nr_frags; i++) {
1488		int size = skb_frag_size(&shinfo->frags[i]);
1489
1490		if (size <= eat) {
1491			skb_frag_unref(skb, i);
1492			eat -= size;
1493		} else {
1494			shinfo->frags[k] = shinfo->frags[i];
1495			if (eat) {
1496				skb_frag_off_add(&shinfo->frags[k], eat);
1497				skb_frag_size_sub(&shinfo->frags[k], eat);
1498				eat = 0;
1499			}
1500			k++;
1501		}
1502	}
1503	shinfo->nr_frags = k;
1504
1505	skb->data_len -= len;
1506	skb->len = skb->data_len;
1507	return len;
1508}
1509
1510/* Remove acked data from a packet in the transmit queue. */
1511int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1512{
1513	u32 delta_truesize;
1514
1515	if (skb_unclone(skb, GFP_ATOMIC))
1516		return -ENOMEM;
1517
1518	delta_truesize = __pskb_trim_head(skb, len);
1519
1520	TCP_SKB_CB(skb)->seq += len;
1521	skb->ip_summed = CHECKSUM_PARTIAL;
1522
1523	if (delta_truesize) {
1524		skb->truesize	   -= delta_truesize;
1525		sk_wmem_queued_add(sk, -delta_truesize);
1526		sk_mem_uncharge(sk, delta_truesize);
1527		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1528	}
1529
1530	/* Any change of skb->len requires recalculation of tso factor. */
1531	if (tcp_skb_pcount(skb) > 1)
1532		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1533
1534	return 0;
1535}
1536
1537/* Calculate MSS not accounting any TCP options.  */
1538static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1539{
1540	const struct tcp_sock *tp = tcp_sk(sk);
1541	const struct inet_connection_sock *icsk = inet_csk(sk);
1542	int mss_now;
1543
1544	/* Calculate base mss without TCP options:
1545	   It is MMS_S - sizeof(tcphdr) of rfc1122
1546	 */
1547	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1548
1549	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1550	if (icsk->icsk_af_ops->net_frag_header_len) {
1551		const struct dst_entry *dst = __sk_dst_get(sk);
1552
1553		if (dst && dst_allfrag(dst))
1554			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1555	}
1556
1557	/* Clamp it (mss_clamp does not include tcp options) */
1558	if (mss_now > tp->rx_opt.mss_clamp)
1559		mss_now = tp->rx_opt.mss_clamp;
1560
1561	/* Now subtract optional transport overhead */
1562	mss_now -= icsk->icsk_ext_hdr_len;
1563
1564	/* Then reserve room for full set of TCP options and 8 bytes of data */
1565	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
 
1566	return mss_now;
1567}
1568
1569/* Calculate MSS. Not accounting for SACKs here.  */
1570int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1571{
1572	/* Subtract TCP options size, not including SACKs */
1573	return __tcp_mtu_to_mss(sk, pmtu) -
1574	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1575}
 
1576
1577/* Inverse of above */
1578int tcp_mss_to_mtu(struct sock *sk, int mss)
1579{
1580	const struct tcp_sock *tp = tcp_sk(sk);
1581	const struct inet_connection_sock *icsk = inet_csk(sk);
1582	int mtu;
1583
1584	mtu = mss +
1585	      tp->tcp_header_len +
1586	      icsk->icsk_ext_hdr_len +
1587	      icsk->icsk_af_ops->net_header_len;
1588
1589	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1590	if (icsk->icsk_af_ops->net_frag_header_len) {
1591		const struct dst_entry *dst = __sk_dst_get(sk);
1592
1593		if (dst && dst_allfrag(dst))
1594			mtu += icsk->icsk_af_ops->net_frag_header_len;
1595	}
1596	return mtu;
1597}
1598EXPORT_SYMBOL(tcp_mss_to_mtu);
1599
1600/* MTU probing init per socket */
1601void tcp_mtup_init(struct sock *sk)
1602{
1603	struct tcp_sock *tp = tcp_sk(sk);
1604	struct inet_connection_sock *icsk = inet_csk(sk);
1605	struct net *net = sock_net(sk);
1606
1607	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1608	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1609			       icsk->icsk_af_ops->net_header_len;
1610	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1611	icsk->icsk_mtup.probe_size = 0;
1612	if (icsk->icsk_mtup.enabled)
1613		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1614}
1615EXPORT_SYMBOL(tcp_mtup_init);
1616
1617/* This function synchronize snd mss to current pmtu/exthdr set.
1618
1619   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1620   for TCP options, but includes only bare TCP header.
1621
1622   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1623   It is minimum of user_mss and mss received with SYN.
1624   It also does not include TCP options.
1625
1626   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1627
1628   tp->mss_cache is current effective sending mss, including
1629   all tcp options except for SACKs. It is evaluated,
1630   taking into account current pmtu, but never exceeds
1631   tp->rx_opt.mss_clamp.
1632
1633   NOTE1. rfc1122 clearly states that advertised MSS
1634   DOES NOT include either tcp or ip options.
1635
1636   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1637   are READ ONLY outside this function.		--ANK (980731)
1638 */
1639unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1640{
1641	struct tcp_sock *tp = tcp_sk(sk);
1642	struct inet_connection_sock *icsk = inet_csk(sk);
1643	int mss_now;
1644
1645	if (icsk->icsk_mtup.search_high > pmtu)
1646		icsk->icsk_mtup.search_high = pmtu;
1647
1648	mss_now = tcp_mtu_to_mss(sk, pmtu);
1649	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1650
1651	/* And store cached results */
1652	icsk->icsk_pmtu_cookie = pmtu;
1653	if (icsk->icsk_mtup.enabled)
1654		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1655	tp->mss_cache = mss_now;
1656
1657	return mss_now;
1658}
1659EXPORT_SYMBOL(tcp_sync_mss);
1660
1661/* Compute the current effective MSS, taking SACKs and IP options,
1662 * and even PMTU discovery events into account.
1663 */
1664unsigned int tcp_current_mss(struct sock *sk)
1665{
1666	const struct tcp_sock *tp = tcp_sk(sk);
1667	const struct dst_entry *dst = __sk_dst_get(sk);
1668	u32 mss_now;
1669	unsigned int header_len;
1670	struct tcp_out_options opts;
1671	struct tcp_md5sig_key *md5;
1672
1673	mss_now = tp->mss_cache;
1674
1675	if (dst) {
1676		u32 mtu = dst_mtu(dst);
1677		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1678			mss_now = tcp_sync_mss(sk, mtu);
1679	}
1680
1681	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1682		     sizeof(struct tcphdr);
1683	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1684	 * some common options. If this is an odd packet (because we have SACK
1685	 * blocks etc) then our calculated header_len will be different, and
1686	 * we have to adjust mss_now correspondingly */
1687	if (header_len != tp->tcp_header_len) {
1688		int delta = (int) header_len - tp->tcp_header_len;
1689		mss_now -= delta;
1690	}
1691
1692	return mss_now;
1693}
1694
1695/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1696 * As additional protections, we do not touch cwnd in retransmission phases,
1697 * and if application hit its sndbuf limit recently.
1698 */
1699static void tcp_cwnd_application_limited(struct sock *sk)
1700{
1701	struct tcp_sock *tp = tcp_sk(sk);
1702
1703	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1704	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1705		/* Limited by application or receiver window. */
1706		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1707		u32 win_used = max(tp->snd_cwnd_used, init_win);
1708		if (win_used < tp->snd_cwnd) {
1709			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1710			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1711		}
1712		tp->snd_cwnd_used = 0;
1713	}
1714	tp->snd_cwnd_stamp = tcp_jiffies32;
1715}
1716
1717static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1718{
1719	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1720	struct tcp_sock *tp = tcp_sk(sk);
1721
1722	/* Track the maximum number of outstanding packets in each
1723	 * window, and remember whether we were cwnd-limited then.
1724	 */
1725	if (!before(tp->snd_una, tp->max_packets_seq) ||
1726	    tp->packets_out > tp->max_packets_out) {
1727		tp->max_packets_out = tp->packets_out;
1728		tp->max_packets_seq = tp->snd_nxt;
 
 
 
 
1729		tp->is_cwnd_limited = is_cwnd_limited;
 
 
1730	}
1731
1732	if (tcp_is_cwnd_limited(sk)) {
1733		/* Network is feed fully. */
1734		tp->snd_cwnd_used = 0;
1735		tp->snd_cwnd_stamp = tcp_jiffies32;
1736	} else {
1737		/* Network starves. */
1738		if (tp->packets_out > tp->snd_cwnd_used)
1739			tp->snd_cwnd_used = tp->packets_out;
1740
1741		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1742		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1743		    !ca_ops->cong_control)
1744			tcp_cwnd_application_limited(sk);
1745
1746		/* The following conditions together indicate the starvation
1747		 * is caused by insufficient sender buffer:
1748		 * 1) just sent some data (see tcp_write_xmit)
1749		 * 2) not cwnd limited (this else condition)
1750		 * 3) no more data to send (tcp_write_queue_empty())
1751		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1752		 */
1753		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1754		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1755		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1756			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1757	}
1758}
1759
1760/* Minshall's variant of the Nagle send check. */
1761static bool tcp_minshall_check(const struct tcp_sock *tp)
1762{
1763	return after(tp->snd_sml, tp->snd_una) &&
1764		!after(tp->snd_sml, tp->snd_nxt);
1765}
1766
1767/* Update snd_sml if this skb is under mss
1768 * Note that a TSO packet might end with a sub-mss segment
1769 * The test is really :
1770 * if ((skb->len % mss) != 0)
1771 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1772 * But we can avoid doing the divide again given we already have
1773 *  skb_pcount = skb->len / mss_now
1774 */
1775static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1776				const struct sk_buff *skb)
1777{
1778	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1779		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1780}
1781
1782/* Return false, if packet can be sent now without violation Nagle's rules:
1783 * 1. It is full sized. (provided by caller in %partial bool)
1784 * 2. Or it contains FIN. (already checked by caller)
1785 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1786 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1787 *    With Minshall's modification: all sent small packets are ACKed.
1788 */
1789static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1790			    int nonagle)
1791{
1792	return partial &&
1793		((nonagle & TCP_NAGLE_CORK) ||
1794		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1795}
1796
1797/* Return how many segs we'd like on a TSO packet,
1798 * to send one TSO packet per ms
 
 
 
 
 
 
 
 
 
 
 
1799 */
1800static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1801			    int min_tso_segs)
1802{
1803	u32 bytes, segs;
 
1804
1805	bytes = min_t(unsigned long,
1806		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1807		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1808
1809	/* Goal is to send at least one packet per ms,
1810	 * not one big TSO packet every 100 ms.
1811	 * This preserves ACK clocking and is consistent
1812	 * with tcp_tso_should_defer() heuristic.
1813	 */
1814	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1815
1816	return segs;
1817}
1818
1819/* Return the number of segments we want in the skb we are transmitting.
1820 * See if congestion control module wants to decide; otherwise, autosize.
1821 */
1822static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1823{
1824	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1825	u32 min_tso, tso_segs;
1826
1827	min_tso = ca_ops->min_tso_segs ?
1828			ca_ops->min_tso_segs(sk) :
1829			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1830
1831	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1832	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1833}
1834
1835/* Returns the portion of skb which can be sent right away */
1836static unsigned int tcp_mss_split_point(const struct sock *sk,
1837					const struct sk_buff *skb,
1838					unsigned int mss_now,
1839					unsigned int max_segs,
1840					int nonagle)
1841{
1842	const struct tcp_sock *tp = tcp_sk(sk);
1843	u32 partial, needed, window, max_len;
1844
1845	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1846	max_len = mss_now * max_segs;
1847
1848	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1849		return max_len;
1850
1851	needed = min(skb->len, window);
1852
1853	if (max_len <= needed)
1854		return max_len;
1855
1856	partial = needed % mss_now;
1857	/* If last segment is not a full MSS, check if Nagle rules allow us
1858	 * to include this last segment in this skb.
1859	 * Otherwise, we'll split the skb at last MSS boundary
1860	 */
1861	if (tcp_nagle_check(partial != 0, tp, nonagle))
1862		return needed - partial;
1863
1864	return needed;
1865}
1866
1867/* Can at least one segment of SKB be sent right now, according to the
1868 * congestion window rules?  If so, return how many segments are allowed.
1869 */
1870static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1871					 const struct sk_buff *skb)
1872{
1873	u32 in_flight, cwnd, halfcwnd;
1874
1875	/* Don't be strict about the congestion window for the final FIN.  */
1876	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1877	    tcp_skb_pcount(skb) == 1)
1878		return 1;
1879
1880	in_flight = tcp_packets_in_flight(tp);
1881	cwnd = tp->snd_cwnd;
1882	if (in_flight >= cwnd)
1883		return 0;
1884
1885	/* For better scheduling, ensure we have at least
1886	 * 2 GSO packets in flight.
1887	 */
1888	halfcwnd = max(cwnd >> 1, 1U);
1889	return min(halfcwnd, cwnd - in_flight);
1890}
1891
1892/* Initialize TSO state of a skb.
1893 * This must be invoked the first time we consider transmitting
1894 * SKB onto the wire.
1895 */
1896static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1897{
1898	int tso_segs = tcp_skb_pcount(skb);
1899
1900	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1901		tcp_set_skb_tso_segs(skb, mss_now);
1902		tso_segs = tcp_skb_pcount(skb);
1903	}
1904	return tso_segs;
1905}
1906
1907
1908/* Return true if the Nagle test allows this packet to be
1909 * sent now.
1910 */
1911static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1912				  unsigned int cur_mss, int nonagle)
1913{
1914	/* Nagle rule does not apply to frames, which sit in the middle of the
1915	 * write_queue (they have no chances to get new data).
1916	 *
1917	 * This is implemented in the callers, where they modify the 'nonagle'
1918	 * argument based upon the location of SKB in the send queue.
1919	 */
1920	if (nonagle & TCP_NAGLE_PUSH)
1921		return true;
1922
1923	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1924	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1925		return true;
1926
1927	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1928		return true;
1929
1930	return false;
1931}
1932
1933/* Does at least the first segment of SKB fit into the send window? */
1934static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1935			     const struct sk_buff *skb,
1936			     unsigned int cur_mss)
1937{
1938	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1939
1940	if (skb->len > cur_mss)
1941		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1942
1943	return !after(end_seq, tcp_wnd_end(tp));
1944}
1945
1946/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1947 * which is put after SKB on the list.  It is very much like
1948 * tcp_fragment() except that it may make several kinds of assumptions
1949 * in order to speed up the splitting operation.  In particular, we
1950 * know that all the data is in scatter-gather pages, and that the
1951 * packet has never been sent out before (and thus is not cloned).
1952 */
1953static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1954			unsigned int mss_now, gfp_t gfp)
1955{
1956	int nlen = skb->len - len;
1957	struct sk_buff *buff;
1958	u8 flags;
1959
1960	/* All of a TSO frame must be composed of paged data.  */
1961	if (skb->len != skb->data_len)
1962		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1963				    skb, len, mss_now, gfp);
1964
1965	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1966	if (unlikely(!buff))
1967		return -ENOMEM;
1968	skb_copy_decrypted(buff, skb);
 
1969
1970	sk_wmem_queued_add(sk, buff->truesize);
1971	sk_mem_charge(sk, buff->truesize);
1972	buff->truesize += nlen;
1973	skb->truesize -= nlen;
1974
1975	/* Correct the sequence numbers. */
1976	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1977	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1978	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1979
1980	/* PSH and FIN should only be set in the second packet. */
1981	flags = TCP_SKB_CB(skb)->tcp_flags;
1982	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1983	TCP_SKB_CB(buff)->tcp_flags = flags;
1984
1985	/* This packet was never sent out yet, so no SACK bits. */
1986	TCP_SKB_CB(buff)->sacked = 0;
1987
1988	tcp_skb_fragment_eor(skb, buff);
1989
1990	buff->ip_summed = CHECKSUM_PARTIAL;
1991	skb_split(skb, buff, len);
1992	tcp_fragment_tstamp(skb, buff);
1993
1994	/* Fix up tso_factor for both original and new SKB.  */
1995	tcp_set_skb_tso_segs(skb, mss_now);
1996	tcp_set_skb_tso_segs(buff, mss_now);
1997
1998	/* Link BUFF into the send queue. */
1999	__skb_header_release(buff);
2000	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2001
2002	return 0;
2003}
2004
2005/* Try to defer sending, if possible, in order to minimize the amount
2006 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2007 *
2008 * This algorithm is from John Heffner.
2009 */
2010static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2011				 bool *is_cwnd_limited,
2012				 bool *is_rwnd_limited,
2013				 u32 max_segs)
2014{
2015	const struct inet_connection_sock *icsk = inet_csk(sk);
2016	u32 send_win, cong_win, limit, in_flight;
2017	struct tcp_sock *tp = tcp_sk(sk);
2018	struct sk_buff *head;
2019	int win_divisor;
2020	s64 delta;
2021
2022	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2023		goto send_now;
2024
2025	/* Avoid bursty behavior by allowing defer
2026	 * only if the last write was recent (1 ms).
2027	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2028	 * packets waiting in a qdisc or device for EDT delivery.
2029	 */
2030	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2031	if (delta > 0)
2032		goto send_now;
2033
2034	in_flight = tcp_packets_in_flight(tp);
2035
2036	BUG_ON(tcp_skb_pcount(skb) <= 1);
2037	BUG_ON(tp->snd_cwnd <= in_flight);
2038
2039	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2040
2041	/* From in_flight test above, we know that cwnd > in_flight.  */
2042	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2043
2044	limit = min(send_win, cong_win);
2045
2046	/* If a full-sized TSO skb can be sent, do it. */
2047	if (limit >= max_segs * tp->mss_cache)
2048		goto send_now;
2049
2050	/* Middle in queue won't get any more data, full sendable already? */
2051	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2052		goto send_now;
2053
2054	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2055	if (win_divisor) {
2056		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2057
2058		/* If at least some fraction of a window is available,
2059		 * just use it.
2060		 */
2061		chunk /= win_divisor;
2062		if (limit >= chunk)
2063			goto send_now;
2064	} else {
2065		/* Different approach, try not to defer past a single
2066		 * ACK.  Receiver should ACK every other full sized
2067		 * frame, so if we have space for more than 3 frames
2068		 * then send now.
2069		 */
2070		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2071			goto send_now;
2072	}
2073
2074	/* TODO : use tsorted_sent_queue ? */
2075	head = tcp_rtx_queue_head(sk);
2076	if (!head)
2077		goto send_now;
2078	delta = tp->tcp_clock_cache - head->tstamp;
2079	/* If next ACK is likely to come too late (half srtt), do not defer */
2080	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2081		goto send_now;
2082
2083	/* Ok, it looks like it is advisable to defer.
2084	 * Three cases are tracked :
2085	 * 1) We are cwnd-limited
2086	 * 2) We are rwnd-limited
2087	 * 3) We are application limited.
2088	 */
2089	if (cong_win < send_win) {
2090		if (cong_win <= skb->len) {
2091			*is_cwnd_limited = true;
2092			return true;
2093		}
2094	} else {
2095		if (send_win <= skb->len) {
2096			*is_rwnd_limited = true;
2097			return true;
2098		}
2099	}
2100
2101	/* If this packet won't get more data, do not wait. */
2102	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2103	    TCP_SKB_CB(skb)->eor)
2104		goto send_now;
2105
2106	return true;
2107
2108send_now:
2109	return false;
2110}
2111
2112static inline void tcp_mtu_check_reprobe(struct sock *sk)
2113{
2114	struct inet_connection_sock *icsk = inet_csk(sk);
2115	struct tcp_sock *tp = tcp_sk(sk);
2116	struct net *net = sock_net(sk);
2117	u32 interval;
2118	s32 delta;
2119
2120	interval = net->ipv4.sysctl_tcp_probe_interval;
2121	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2122	if (unlikely(delta >= interval * HZ)) {
2123		int mss = tcp_current_mss(sk);
2124
2125		/* Update current search range */
2126		icsk->icsk_mtup.probe_size = 0;
2127		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2128			sizeof(struct tcphdr) +
2129			icsk->icsk_af_ops->net_header_len;
2130		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2131
2132		/* Update probe time stamp */
2133		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2134	}
2135}
2136
2137static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2138{
2139	struct sk_buff *skb, *next;
2140
2141	skb = tcp_send_head(sk);
2142	tcp_for_write_queue_from_safe(skb, next, sk) {
2143		if (len <= skb->len)
2144			break;
2145
2146		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
 
 
2147			return false;
2148
2149		len -= skb->len;
2150	}
2151
2152	return true;
2153}
2154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155/* Create a new MTU probe if we are ready.
2156 * MTU probe is regularly attempting to increase the path MTU by
2157 * deliberately sending larger packets.  This discovers routing
2158 * changes resulting in larger path MTUs.
2159 *
2160 * Returns 0 if we should wait to probe (no cwnd available),
2161 *         1 if a probe was sent,
2162 *         -1 otherwise
2163 */
2164static int tcp_mtu_probe(struct sock *sk)
2165{
2166	struct inet_connection_sock *icsk = inet_csk(sk);
2167	struct tcp_sock *tp = tcp_sk(sk);
2168	struct sk_buff *skb, *nskb, *next;
2169	struct net *net = sock_net(sk);
2170	int probe_size;
2171	int size_needed;
2172	int copy, len;
2173	int mss_now;
2174	int interval;
2175
2176	/* Not currently probing/verifying,
2177	 * not in recovery,
2178	 * have enough cwnd, and
2179	 * not SACKing (the variable headers throw things off)
2180	 */
2181	if (likely(!icsk->icsk_mtup.enabled ||
2182		   icsk->icsk_mtup.probe_size ||
2183		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2184		   tp->snd_cwnd < 11 ||
2185		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2186		return -1;
2187
2188	/* Use binary search for probe_size between tcp_mss_base,
2189	 * and current mss_clamp. if (search_high - search_low)
2190	 * smaller than a threshold, backoff from probing.
2191	 */
2192	mss_now = tcp_current_mss(sk);
2193	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2194				    icsk->icsk_mtup.search_low) >> 1);
2195	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2196	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2197	/* When misfortune happens, we are reprobing actively,
2198	 * and then reprobe timer has expired. We stick with current
2199	 * probing process by not resetting search range to its orignal.
2200	 */
2201	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2202		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2203		/* Check whether enough time has elaplased for
2204		 * another round of probing.
2205		 */
2206		tcp_mtu_check_reprobe(sk);
2207		return -1;
2208	}
2209
2210	/* Have enough data in the send queue to probe? */
2211	if (tp->write_seq - tp->snd_nxt < size_needed)
2212		return -1;
2213
2214	if (tp->snd_wnd < size_needed)
2215		return -1;
2216	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2217		return 0;
2218
2219	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2220	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2221		if (!tcp_packets_in_flight(tp))
2222			return -1;
2223		else
2224			return 0;
2225	}
2226
2227	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2228		return -1;
2229
2230	/* We're allowed to probe.  Build it now. */
2231	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2232	if (!nskb)
2233		return -1;
 
 
 
 
 
 
 
2234	sk_wmem_queued_add(sk, nskb->truesize);
2235	sk_mem_charge(sk, nskb->truesize);
2236
2237	skb = tcp_send_head(sk);
2238	skb_copy_decrypted(nskb, skb);
 
2239
2240	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2241	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2242	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2243	TCP_SKB_CB(nskb)->sacked = 0;
2244	nskb->csum = 0;
2245	nskb->ip_summed = CHECKSUM_PARTIAL;
2246
2247	tcp_insert_write_queue_before(nskb, skb, sk);
2248	tcp_highest_sack_replace(sk, skb, nskb);
2249
2250	len = 0;
2251	tcp_for_write_queue_from_safe(skb, next, sk) {
2252		copy = min_t(int, skb->len, probe_size - len);
2253		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2254
2255		if (skb->len <= copy) {
2256			/* We've eaten all the data from this skb.
2257			 * Throw it away. */
2258			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2259			/* If this is the last SKB we copy and eor is set
2260			 * we need to propagate it to the new skb.
2261			 */
2262			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2263			tcp_skb_collapse_tstamp(nskb, skb);
2264			tcp_unlink_write_queue(skb, sk);
2265			sk_wmem_free_skb(sk, skb);
2266		} else {
2267			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2268						   ~(TCPHDR_FIN|TCPHDR_PSH);
2269			if (!skb_shinfo(skb)->nr_frags) {
2270				skb_pull(skb, copy);
2271			} else {
2272				__pskb_trim_head(skb, copy);
2273				tcp_set_skb_tso_segs(skb, mss_now);
2274			}
2275			TCP_SKB_CB(skb)->seq += copy;
2276		}
2277
2278		len += copy;
2279
2280		if (len >= probe_size)
2281			break;
2282	}
2283	tcp_init_tso_segs(nskb, nskb->len);
2284
2285	/* We're ready to send.  If this fails, the probe will
2286	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2287	 */
2288	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2289		/* Decrement cwnd here because we are sending
2290		 * effectively two packets. */
2291		tp->snd_cwnd--;
2292		tcp_event_new_data_sent(sk, nskb);
2293
2294		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2295		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2296		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2297
2298		return 1;
2299	}
2300
2301	return -1;
2302}
2303
2304static bool tcp_pacing_check(struct sock *sk)
2305{
2306	struct tcp_sock *tp = tcp_sk(sk);
2307
2308	if (!tcp_needs_internal_pacing(sk))
2309		return false;
2310
2311	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2312		return false;
2313
2314	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2315		hrtimer_start(&tp->pacing_timer,
2316			      ns_to_ktime(tp->tcp_wstamp_ns),
2317			      HRTIMER_MODE_ABS_PINNED_SOFT);
2318		sock_hold(sk);
2319	}
2320	return true;
2321}
2322
 
 
 
 
 
 
 
 
 
 
 
 
2323/* TCP Small Queues :
2324 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2325 * (These limits are doubled for retransmits)
2326 * This allows for :
2327 *  - better RTT estimation and ACK scheduling
2328 *  - faster recovery
2329 *  - high rates
2330 * Alas, some drivers / subsystems require a fair amount
2331 * of queued bytes to ensure line rate.
2332 * One example is wifi aggregation (802.11 AMPDU)
2333 */
2334static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2335				  unsigned int factor)
2336{
2337	unsigned long limit;
2338
2339	limit = max_t(unsigned long,
2340		      2 * skb->truesize,
2341		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2342	if (sk->sk_pacing_status == SK_PACING_NONE)
2343		limit = min_t(unsigned long, limit,
2344			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2345	limit <<= factor;
2346
2347	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2348	    tcp_sk(sk)->tcp_tx_delay) {
2349		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
 
2350
2351		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2352		 * approximate our needs assuming an ~100% skb->truesize overhead.
2353		 * USEC_PER_SEC is approximated by 2^20.
2354		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2355		 */
2356		extra_bytes >>= (20 - 1);
2357		limit += extra_bytes;
2358	}
2359	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2360		/* Always send skb if rtx queue is empty.
2361		 * No need to wait for TX completion to call us back,
2362		 * after softirq/tasklet schedule.
2363		 * This helps when TX completions are delayed too much.
2364		 */
2365		if (tcp_rtx_queue_empty(sk))
2366			return false;
2367
2368		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2369		/* It is possible TX completion already happened
2370		 * before we set TSQ_THROTTLED, so we must
2371		 * test again the condition.
2372		 */
2373		smp_mb__after_atomic();
2374		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2375			return true;
2376	}
2377	return false;
2378}
2379
2380static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2381{
2382	const u32 now = tcp_jiffies32;
2383	enum tcp_chrono old = tp->chrono_type;
2384
2385	if (old > TCP_CHRONO_UNSPEC)
2386		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2387	tp->chrono_start = now;
2388	tp->chrono_type = new;
2389}
2390
2391void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2392{
2393	struct tcp_sock *tp = tcp_sk(sk);
2394
2395	/* If there are multiple conditions worthy of tracking in a
2396	 * chronograph then the highest priority enum takes precedence
2397	 * over the other conditions. So that if something "more interesting"
2398	 * starts happening, stop the previous chrono and start a new one.
2399	 */
2400	if (type > tp->chrono_type)
2401		tcp_chrono_set(tp, type);
2402}
2403
2404void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2405{
2406	struct tcp_sock *tp = tcp_sk(sk);
2407
2408
2409	/* There are multiple conditions worthy of tracking in a
2410	 * chronograph, so that the highest priority enum takes
2411	 * precedence over the other conditions (see tcp_chrono_start).
2412	 * If a condition stops, we only stop chrono tracking if
2413	 * it's the "most interesting" or current chrono we are
2414	 * tracking and starts busy chrono if we have pending data.
2415	 */
2416	if (tcp_rtx_and_write_queues_empty(sk))
2417		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2418	else if (type == tp->chrono_type)
2419		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2420}
2421
2422/* This routine writes packets to the network.  It advances the
2423 * send_head.  This happens as incoming acks open up the remote
2424 * window for us.
2425 *
2426 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2427 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2428 * account rare use of URG, this is not a big flaw.
2429 *
2430 * Send at most one packet when push_one > 0. Temporarily ignore
2431 * cwnd limit to force at most one packet out when push_one == 2.
2432
2433 * Returns true, if no segments are in flight and we have queued segments,
2434 * but cannot send anything now because of SWS or another problem.
2435 */
2436static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2437			   int push_one, gfp_t gfp)
2438{
2439	struct tcp_sock *tp = tcp_sk(sk);
2440	struct sk_buff *skb;
2441	unsigned int tso_segs, sent_pkts;
2442	int cwnd_quota;
2443	int result;
2444	bool is_cwnd_limited = false, is_rwnd_limited = false;
2445	u32 max_segs;
2446
2447	sent_pkts = 0;
2448
2449	tcp_mstamp_refresh(tp);
2450	if (!push_one) {
2451		/* Do MTU probing. */
2452		result = tcp_mtu_probe(sk);
2453		if (!result) {
2454			return false;
2455		} else if (result > 0) {
2456			sent_pkts = 1;
2457		}
2458	}
2459
2460	max_segs = tcp_tso_segs(sk, mss_now);
2461	while ((skb = tcp_send_head(sk))) {
2462		unsigned int limit;
2463
2464		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2465			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2466			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
 
2467			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2468			tcp_init_tso_segs(skb, mss_now);
2469			goto repair; /* Skip network transmission */
2470		}
2471
2472		if (tcp_pacing_check(sk))
2473			break;
2474
2475		tso_segs = tcp_init_tso_segs(skb, mss_now);
2476		BUG_ON(!tso_segs);
2477
2478		cwnd_quota = tcp_cwnd_test(tp, skb);
2479		if (!cwnd_quota) {
2480			if (push_one == 2)
2481				/* Force out a loss probe pkt. */
2482				cwnd_quota = 1;
2483			else
2484				break;
2485		}
2486
2487		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2488			is_rwnd_limited = true;
2489			break;
2490		}
2491
2492		if (tso_segs == 1) {
2493			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2494						     (tcp_skb_is_last(sk, skb) ?
2495						      nonagle : TCP_NAGLE_PUSH))))
2496				break;
2497		} else {
2498			if (!push_one &&
2499			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2500						 &is_rwnd_limited, max_segs))
2501				break;
2502		}
2503
2504		limit = mss_now;
2505		if (tso_segs > 1 && !tcp_urg_mode(tp))
2506			limit = tcp_mss_split_point(sk, skb, mss_now,
2507						    min_t(unsigned int,
2508							  cwnd_quota,
2509							  max_segs),
2510						    nonagle);
2511
2512		if (skb->len > limit &&
2513		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2514			break;
2515
2516		if (tcp_small_queue_check(sk, skb, 0))
2517			break;
2518
2519		/* Argh, we hit an empty skb(), presumably a thread
2520		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2521		 * We do not want to send a pure-ack packet and have
2522		 * a strange looking rtx queue with empty packet(s).
2523		 */
2524		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2525			break;
2526
2527		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2528			break;
2529
2530repair:
2531		/* Advance the send_head.  This one is sent out.
2532		 * This call will increment packets_out.
2533		 */
2534		tcp_event_new_data_sent(sk, skb);
2535
2536		tcp_minshall_update(tp, mss_now, skb);
2537		sent_pkts += tcp_skb_pcount(skb);
2538
2539		if (push_one)
2540			break;
2541	}
2542
2543	if (is_rwnd_limited)
2544		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2545	else
2546		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2547
 
 
 
 
2548	if (likely(sent_pkts)) {
2549		if (tcp_in_cwnd_reduction(sk))
2550			tp->prr_out += sent_pkts;
2551
2552		/* Send one loss probe per tail loss episode. */
2553		if (push_one != 2)
2554			tcp_schedule_loss_probe(sk, false);
2555		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2556		tcp_cwnd_validate(sk, is_cwnd_limited);
2557		return false;
2558	}
2559	return !tp->packets_out && !tcp_write_queue_empty(sk);
2560}
2561
2562bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2563{
2564	struct inet_connection_sock *icsk = inet_csk(sk);
2565	struct tcp_sock *tp = tcp_sk(sk);
2566	u32 timeout, rto_delta_us;
2567	int early_retrans;
2568
2569	/* Don't do any loss probe on a Fast Open connection before 3WHS
2570	 * finishes.
2571	 */
2572	if (rcu_access_pointer(tp->fastopen_rsk))
2573		return false;
2574
2575	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2576	/* Schedule a loss probe in 2*RTT for SACK capable connections
2577	 * not in loss recovery, that are either limited by cwnd or application.
2578	 */
2579	if ((early_retrans != 3 && early_retrans != 4) ||
2580	    !tp->packets_out || !tcp_is_sack(tp) ||
2581	    (icsk->icsk_ca_state != TCP_CA_Open &&
2582	     icsk->icsk_ca_state != TCP_CA_CWR))
2583		return false;
2584
2585	/* Probe timeout is 2*rtt. Add minimum RTO to account
2586	 * for delayed ack when there's one outstanding packet. If no RTT
2587	 * sample is available then probe after TCP_TIMEOUT_INIT.
2588	 */
2589	if (tp->srtt_us) {
2590		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2591		if (tp->packets_out == 1)
2592			timeout += TCP_RTO_MIN;
2593		else
2594			timeout += TCP_TIMEOUT_MIN;
 
2595	} else {
2596		timeout = TCP_TIMEOUT_INIT;
2597	}
2598
2599	/* If the RTO formula yields an earlier time, then use that time. */
2600	rto_delta_us = advancing_rto ?
2601			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2602			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2603	if (rto_delta_us > 0)
2604		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2605
2606	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2607	return true;
2608}
2609
2610/* Thanks to skb fast clones, we can detect if a prior transmit of
2611 * a packet is still in a qdisc or driver queue.
2612 * In this case, there is very little point doing a retransmit !
2613 */
2614static bool skb_still_in_host_queue(const struct sock *sk,
2615				    const struct sk_buff *skb)
2616{
2617	if (unlikely(skb_fclone_busy(sk, skb))) {
2618		NET_INC_STATS(sock_net(sk),
2619			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2620		return true;
 
 
 
 
2621	}
2622	return false;
2623}
2624
2625/* When probe timeout (PTO) fires, try send a new segment if possible, else
2626 * retransmit the last segment.
2627 */
2628void tcp_send_loss_probe(struct sock *sk)
2629{
2630	struct tcp_sock *tp = tcp_sk(sk);
2631	struct sk_buff *skb;
2632	int pcount;
2633	int mss = tcp_current_mss(sk);
2634
2635	/* At most one outstanding TLP */
2636	if (tp->tlp_high_seq)
2637		goto rearm_timer;
2638
2639	tp->tlp_retrans = 0;
2640	skb = tcp_send_head(sk);
2641	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2642		pcount = tp->packets_out;
2643		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2644		if (tp->packets_out > pcount)
2645			goto probe_sent;
2646		goto rearm_timer;
2647	}
2648	skb = skb_rb_last(&sk->tcp_rtx_queue);
2649	if (unlikely(!skb)) {
2650		WARN_ONCE(tp->packets_out,
2651			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2652			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2653		inet_csk(sk)->icsk_pending = 0;
2654		return;
2655	}
2656
2657	if (skb_still_in_host_queue(sk, skb))
2658		goto rearm_timer;
2659
2660	pcount = tcp_skb_pcount(skb);
2661	if (WARN_ON(!pcount))
2662		goto rearm_timer;
2663
2664	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2665		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2666					  (pcount - 1) * mss, mss,
2667					  GFP_ATOMIC)))
2668			goto rearm_timer;
2669		skb = skb_rb_next(skb);
2670	}
2671
2672	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2673		goto rearm_timer;
2674
2675	if (__tcp_retransmit_skb(sk, skb, 1))
2676		goto rearm_timer;
2677
2678	tp->tlp_retrans = 1;
2679
2680probe_sent:
2681	/* Record snd_nxt for loss detection. */
2682	tp->tlp_high_seq = tp->snd_nxt;
2683
2684	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2685	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2686	inet_csk(sk)->icsk_pending = 0;
2687rearm_timer:
2688	tcp_rearm_rto(sk);
2689}
2690
2691/* Push out any pending frames which were held back due to
2692 * TCP_CORK or attempt at coalescing tiny packets.
2693 * The socket must be locked by the caller.
2694 */
2695void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2696			       int nonagle)
2697{
2698	/* If we are closed, the bytes will have to remain here.
2699	 * In time closedown will finish, we empty the write queue and
2700	 * all will be happy.
2701	 */
2702	if (unlikely(sk->sk_state == TCP_CLOSE))
2703		return;
2704
2705	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2706			   sk_gfp_mask(sk, GFP_ATOMIC)))
2707		tcp_check_probe_timer(sk);
2708}
2709
2710/* Send _single_ skb sitting at the send head. This function requires
2711 * true push pending frames to setup probe timer etc.
2712 */
2713void tcp_push_one(struct sock *sk, unsigned int mss_now)
2714{
2715	struct sk_buff *skb = tcp_send_head(sk);
2716
2717	BUG_ON(!skb || skb->len < mss_now);
2718
2719	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2720}
2721
2722/* This function returns the amount that we can raise the
2723 * usable window based on the following constraints
2724 *
2725 * 1. The window can never be shrunk once it is offered (RFC 793)
2726 * 2. We limit memory per socket
2727 *
2728 * RFC 1122:
2729 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2730 *  RECV.NEXT + RCV.WIN fixed until:
2731 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2732 *
2733 * i.e. don't raise the right edge of the window until you can raise
2734 * it at least MSS bytes.
2735 *
2736 * Unfortunately, the recommended algorithm breaks header prediction,
2737 * since header prediction assumes th->window stays fixed.
2738 *
2739 * Strictly speaking, keeping th->window fixed violates the receiver
2740 * side SWS prevention criteria. The problem is that under this rule
2741 * a stream of single byte packets will cause the right side of the
2742 * window to always advance by a single byte.
2743 *
2744 * Of course, if the sender implements sender side SWS prevention
2745 * then this will not be a problem.
2746 *
2747 * BSD seems to make the following compromise:
2748 *
2749 *	If the free space is less than the 1/4 of the maximum
2750 *	space available and the free space is less than 1/2 mss,
2751 *	then set the window to 0.
2752 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2753 *	Otherwise, just prevent the window from shrinking
2754 *	and from being larger than the largest representable value.
2755 *
2756 * This prevents incremental opening of the window in the regime
2757 * where TCP is limited by the speed of the reader side taking
2758 * data out of the TCP receive queue. It does nothing about
2759 * those cases where the window is constrained on the sender side
2760 * because the pipeline is full.
2761 *
2762 * BSD also seems to "accidentally" limit itself to windows that are a
2763 * multiple of MSS, at least until the free space gets quite small.
2764 * This would appear to be a side effect of the mbuf implementation.
2765 * Combining these two algorithms results in the observed behavior
2766 * of having a fixed window size at almost all times.
2767 *
2768 * Below we obtain similar behavior by forcing the offered window to
2769 * a multiple of the mss when it is feasible to do so.
2770 *
2771 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2772 * Regular options like TIMESTAMP are taken into account.
2773 */
2774u32 __tcp_select_window(struct sock *sk)
2775{
2776	struct inet_connection_sock *icsk = inet_csk(sk);
2777	struct tcp_sock *tp = tcp_sk(sk);
 
2778	/* MSS for the peer's data.  Previous versions used mss_clamp
2779	 * here.  I don't know if the value based on our guesses
2780	 * of peer's MSS is better for the performance.  It's more correct
2781	 * but may be worse for the performance because of rcv_mss
2782	 * fluctuations.  --SAW  1998/11/1
2783	 */
2784	int mss = icsk->icsk_ack.rcv_mss;
2785	int free_space = tcp_space(sk);
2786	int allowed_space = tcp_full_space(sk);
2787	int full_space, window;
2788
2789	if (sk_is_mptcp(sk))
2790		mptcp_space(sk, &free_space, &allowed_space);
2791
2792	full_space = min_t(int, tp->window_clamp, allowed_space);
2793
2794	if (unlikely(mss > full_space)) {
2795		mss = full_space;
2796		if (mss <= 0)
2797			return 0;
2798	}
 
 
 
 
 
 
 
 
 
2799	if (free_space < (full_space >> 1)) {
2800		icsk->icsk_ack.quick = 0;
2801
2802		if (tcp_under_memory_pressure(sk))
2803			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2804					       4U * tp->advmss);
2805
2806		/* free_space might become our new window, make sure we don't
2807		 * increase it due to wscale.
2808		 */
2809		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2810
2811		/* if free space is less than mss estimate, or is below 1/16th
2812		 * of the maximum allowed, try to move to zero-window, else
2813		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2814		 * new incoming data is dropped due to memory limits.
2815		 * With large window, mss test triggers way too late in order
2816		 * to announce zero window in time before rmem limit kicks in.
2817		 */
2818		if (free_space < (allowed_space >> 4) || free_space < mss)
2819			return 0;
2820	}
2821
2822	if (free_space > tp->rcv_ssthresh)
2823		free_space = tp->rcv_ssthresh;
2824
2825	/* Don't do rounding if we are using window scaling, since the
2826	 * scaled window will not line up with the MSS boundary anyway.
2827	 */
2828	if (tp->rx_opt.rcv_wscale) {
2829		window = free_space;
2830
2831		/* Advertise enough space so that it won't get scaled away.
2832		 * Import case: prevent zero window announcement if
2833		 * 1<<rcv_wscale > mss.
2834		 */
2835		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2836	} else {
2837		window = tp->rcv_wnd;
2838		/* Get the largest window that is a nice multiple of mss.
2839		 * Window clamp already applied above.
2840		 * If our current window offering is within 1 mss of the
2841		 * free space we just keep it. This prevents the divide
2842		 * and multiply from happening most of the time.
2843		 * We also don't do any window rounding when the free space
2844		 * is too small.
2845		 */
2846		if (window <= free_space - mss || window > free_space)
2847			window = rounddown(free_space, mss);
2848		else if (mss == full_space &&
2849			 free_space > window + (full_space >> 1))
2850			window = free_space;
2851	}
2852
2853	return window;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854}
2855
2856void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2857			     const struct sk_buff *next_skb)
2858{
2859	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2860		const struct skb_shared_info *next_shinfo =
2861			skb_shinfo(next_skb);
2862		struct skb_shared_info *shinfo = skb_shinfo(skb);
2863
2864		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2865		shinfo->tskey = next_shinfo->tskey;
2866		TCP_SKB_CB(skb)->txstamp_ack |=
2867			TCP_SKB_CB(next_skb)->txstamp_ack;
2868	}
2869}
2870
2871/* Collapses two adjacent SKB's during retransmission. */
2872static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2873{
2874	struct tcp_sock *tp = tcp_sk(sk);
2875	struct sk_buff *next_skb = skb_rb_next(skb);
2876	int next_skb_size;
2877
2878	next_skb_size = next_skb->len;
2879
2880	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2881
2882	if (next_skb_size) {
2883		if (next_skb_size <= skb_availroom(skb))
2884			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2885				      next_skb_size);
2886		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2887			return false;
2888	}
2889	tcp_highest_sack_replace(sk, next_skb, skb);
2890
2891	/* Update sequence range on original skb. */
2892	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2893
2894	/* Merge over control information. This moves PSH/FIN etc. over */
2895	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2896
2897	/* All done, get rid of second SKB and account for it so
2898	 * packet counting does not break.
2899	 */
2900	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2901	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2902
2903	/* changed transmit queue under us so clear hints */
2904	tcp_clear_retrans_hints_partial(tp);
2905	if (next_skb == tp->retransmit_skb_hint)
2906		tp->retransmit_skb_hint = skb;
2907
2908	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2909
2910	tcp_skb_collapse_tstamp(skb, next_skb);
2911
2912	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2913	return true;
2914}
2915
2916/* Check if coalescing SKBs is legal. */
2917static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2918{
2919	if (tcp_skb_pcount(skb) > 1)
2920		return false;
2921	if (skb_cloned(skb))
2922		return false;
2923	/* Some heuristics for collapsing over SACK'd could be invented */
2924	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2925		return false;
2926
2927	return true;
2928}
2929
2930/* Collapse packets in the retransmit queue to make to create
2931 * less packets on the wire. This is only done on retransmission.
2932 */
2933static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2934				     int space)
2935{
2936	struct tcp_sock *tp = tcp_sk(sk);
2937	struct sk_buff *skb = to, *tmp;
2938	bool first = true;
2939
2940	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2941		return;
2942	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2943		return;
2944
2945	skb_rbtree_walk_from_safe(skb, tmp) {
2946		if (!tcp_can_collapse(sk, skb))
2947			break;
2948
2949		if (!tcp_skb_can_collapse(to, skb))
2950			break;
2951
2952		space -= skb->len;
2953
2954		if (first) {
2955			first = false;
2956			continue;
2957		}
2958
2959		if (space < 0)
2960			break;
2961
2962		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2963			break;
2964
2965		if (!tcp_collapse_retrans(sk, to))
2966			break;
2967	}
2968}
2969
2970/* This retransmits one SKB.  Policy decisions and retransmit queue
2971 * state updates are done by the caller.  Returns non-zero if an
2972 * error occurred which prevented the send.
2973 */
2974int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2975{
2976	struct inet_connection_sock *icsk = inet_csk(sk);
2977	struct tcp_sock *tp = tcp_sk(sk);
2978	unsigned int cur_mss;
2979	int diff, len, err;
2980
2981
2982	/* Inconclusive MTU probe */
2983	if (icsk->icsk_mtup.probe_size)
2984		icsk->icsk_mtup.probe_size = 0;
2985
2986	/* Do not sent more than we queued. 1/4 is reserved for possible
2987	 * copying overhead: fragmentation, tunneling, mangling etc.
2988	 */
2989	if (refcount_read(&sk->sk_wmem_alloc) >
2990	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2991		  sk->sk_sndbuf))
2992		return -EAGAIN;
2993
2994	if (skb_still_in_host_queue(sk, skb))
2995		return -EBUSY;
2996
 
2997	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
 
 
 
 
 
2998		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2999			WARN_ON_ONCE(1);
3000			return -EINVAL;
3001		}
3002		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3003			return -ENOMEM;
3004	}
3005
3006	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3007		return -EHOSTUNREACH; /* Routing failure or similar. */
3008
3009	cur_mss = tcp_current_mss(sk);
 
3010
3011	/* If receiver has shrunk his window, and skb is out of
3012	 * new window, do not retransmit it. The exception is the
3013	 * case, when window is shrunk to zero. In this case
3014	 * our retransmit serves as a zero window probe.
3015	 */
3016	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3017	    TCP_SKB_CB(skb)->seq != tp->snd_una)
3018		return -EAGAIN;
 
 
3019
3020	len = cur_mss * segs;
 
 
 
 
 
3021	if (skb->len > len) {
3022		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3023				 cur_mss, GFP_ATOMIC))
3024			return -ENOMEM; /* We'll try again later. */
3025	} else {
3026		if (skb_unclone(skb, GFP_ATOMIC))
3027			return -ENOMEM;
3028
3029		diff = tcp_skb_pcount(skb);
3030		tcp_set_skb_tso_segs(skb, cur_mss);
3031		diff -= tcp_skb_pcount(skb);
3032		if (diff)
3033			tcp_adjust_pcount(sk, skb, diff);
3034		if (skb->len < cur_mss)
3035			tcp_retrans_try_collapse(sk, skb, cur_mss);
 
3036	}
3037
3038	/* RFC3168, section 6.1.1.1. ECN fallback */
3039	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3040		tcp_ecn_clear_syn(sk, skb);
3041
3042	/* Update global and local TCP statistics. */
3043	segs = tcp_skb_pcount(skb);
3044	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3045	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3046		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3047	tp->total_retrans += segs;
3048	tp->bytes_retrans += skb->len;
3049
3050	/* make sure skb->data is aligned on arches that require it
3051	 * and check if ack-trimming & collapsing extended the headroom
3052	 * beyond what csum_start can cover.
3053	 */
3054	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3055		     skb_headroom(skb) >= 0xFFFF)) {
3056		struct sk_buff *nskb;
3057
3058		tcp_skb_tsorted_save(skb) {
3059			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3060			if (nskb) {
3061				nskb->dev = NULL;
3062				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3063			} else {
3064				err = -ENOBUFS;
3065			}
3066		} tcp_skb_tsorted_restore(skb);
3067
3068		if (!err) {
3069			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3070			tcp_rate_skb_sent(sk, skb);
3071		}
3072	} else {
3073		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3074	}
3075
3076	/* To avoid taking spuriously low RTT samples based on a timestamp
3077	 * for a transmit that never happened, always mark EVER_RETRANS
3078	 */
3079	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3080
3081	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3082		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3083				  TCP_SKB_CB(skb)->seq, segs, err);
3084
3085	if (likely(!err)) {
3086		trace_tcp_retransmit_skb(sk, skb);
3087	} else if (err != -EBUSY) {
3088		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3089	}
3090	return err;
3091}
3092
3093int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3094{
3095	struct tcp_sock *tp = tcp_sk(sk);
3096	int err = __tcp_retransmit_skb(sk, skb, segs);
3097
3098	if (err == 0) {
3099#if FASTRETRANS_DEBUG > 0
3100		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3101			net_dbg_ratelimited("retrans_out leaked\n");
3102		}
3103#endif
3104		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3105		tp->retrans_out += tcp_skb_pcount(skb);
3106	}
3107
3108	/* Save stamp of the first (attempted) retransmit. */
3109	if (!tp->retrans_stamp)
3110		tp->retrans_stamp = tcp_skb_timestamp(skb);
3111
3112	if (tp->undo_retrans < 0)
3113		tp->undo_retrans = 0;
3114	tp->undo_retrans += tcp_skb_pcount(skb);
3115	return err;
3116}
3117
3118/* This gets called after a retransmit timeout, and the initially
3119 * retransmitted data is acknowledged.  It tries to continue
3120 * resending the rest of the retransmit queue, until either
3121 * we've sent it all or the congestion window limit is reached.
3122 */
3123void tcp_xmit_retransmit_queue(struct sock *sk)
3124{
3125	const struct inet_connection_sock *icsk = inet_csk(sk);
3126	struct sk_buff *skb, *rtx_head, *hole = NULL;
3127	struct tcp_sock *tp = tcp_sk(sk);
3128	bool rearm_timer = false;
3129	u32 max_segs;
3130	int mib_idx;
3131
3132	if (!tp->packets_out)
3133		return;
3134
3135	rtx_head = tcp_rtx_queue_head(sk);
3136	skb = tp->retransmit_skb_hint ?: rtx_head;
3137	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3138	skb_rbtree_walk_from(skb) {
3139		__u8 sacked;
3140		int segs;
3141
3142		if (tcp_pacing_check(sk))
3143			break;
3144
3145		/* we could do better than to assign each time */
3146		if (!hole)
3147			tp->retransmit_skb_hint = skb;
3148
3149		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3150		if (segs <= 0)
3151			break;
3152		sacked = TCP_SKB_CB(skb)->sacked;
3153		/* In case tcp_shift_skb_data() have aggregated large skbs,
3154		 * we need to make sure not sending too bigs TSO packets
3155		 */
3156		segs = min_t(int, segs, max_segs);
3157
3158		if (tp->retrans_out >= tp->lost_out) {
3159			break;
3160		} else if (!(sacked & TCPCB_LOST)) {
3161			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3162				hole = skb;
3163			continue;
3164
3165		} else {
3166			if (icsk->icsk_ca_state != TCP_CA_Loss)
3167				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3168			else
3169				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3170		}
3171
3172		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3173			continue;
3174
3175		if (tcp_small_queue_check(sk, skb, 1))
3176			break;
3177
3178		if (tcp_retransmit_skb(sk, skb, segs))
3179			break;
3180
3181		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3182
3183		if (tcp_in_cwnd_reduction(sk))
3184			tp->prr_out += tcp_skb_pcount(skb);
3185
3186		if (skb == rtx_head &&
3187		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3188			rearm_timer = true;
3189
3190	}
3191	if (rearm_timer)
3192		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3193				     inet_csk(sk)->icsk_rto,
3194				     TCP_RTO_MAX);
3195}
3196
3197/* We allow to exceed memory limits for FIN packets to expedite
3198 * connection tear down and (memory) recovery.
3199 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3200 * or even be forced to close flow without any FIN.
3201 * In general, we want to allow one skb per socket to avoid hangs
3202 * with edge trigger epoll()
3203 */
3204void sk_forced_mem_schedule(struct sock *sk, int size)
3205{
3206	int amt;
3207
3208	if (size <= sk->sk_forward_alloc)
 
3209		return;
3210	amt = sk_mem_pages(size);
3211	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3212	sk_memory_allocated_add(sk, amt);
3213
3214	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3215		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
 
3216}
3217
3218/* Send a FIN. The caller locks the socket for us.
3219 * We should try to send a FIN packet really hard, but eventually give up.
3220 */
3221void tcp_send_fin(struct sock *sk)
3222{
3223	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3224	struct tcp_sock *tp = tcp_sk(sk);
3225
3226	/* Optimization, tack on the FIN if we have one skb in write queue and
3227	 * this skb was not yet sent, or we are under memory pressure.
3228	 * Note: in the latter case, FIN packet will be sent after a timeout,
3229	 * as TCP stack thinks it has already been transmitted.
3230	 */
3231	tskb = tail;
3232	if (!tskb && tcp_under_memory_pressure(sk))
3233		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3234
3235	if (tskb) {
3236		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3237		TCP_SKB_CB(tskb)->end_seq++;
3238		tp->write_seq++;
3239		if (!tail) {
3240			/* This means tskb was already sent.
3241			 * Pretend we included the FIN on previous transmit.
3242			 * We need to set tp->snd_nxt to the value it would have
3243			 * if FIN had been sent. This is because retransmit path
3244			 * does not change tp->snd_nxt.
3245			 */
3246			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3247			return;
3248		}
3249	} else {
3250		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3251		if (unlikely(!skb))
3252			return;
3253
3254		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3255		skb_reserve(skb, MAX_TCP_HEADER);
3256		sk_forced_mem_schedule(sk, skb->truesize);
3257		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3258		tcp_init_nondata_skb(skb, tp->write_seq,
3259				     TCPHDR_ACK | TCPHDR_FIN);
3260		tcp_queue_skb(sk, skb);
3261	}
3262	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3263}
3264
3265/* We get here when a process closes a file descriptor (either due to
3266 * an explicit close() or as a byproduct of exit()'ing) and there
3267 * was unread data in the receive queue.  This behavior is recommended
3268 * by RFC 2525, section 2.17.  -DaveM
3269 */
3270void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3271{
3272	struct sk_buff *skb;
3273
3274	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3275
3276	/* NOTE: No TCP options attached and we never retransmit this. */
3277	skb = alloc_skb(MAX_TCP_HEADER, priority);
3278	if (!skb) {
3279		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3280		return;
3281	}
3282
3283	/* Reserve space for headers and prepare control bits. */
3284	skb_reserve(skb, MAX_TCP_HEADER);
3285	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3286			     TCPHDR_ACK | TCPHDR_RST);
3287	tcp_mstamp_refresh(tcp_sk(sk));
3288	/* Send it off. */
3289	if (tcp_transmit_skb(sk, skb, 0, priority))
3290		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3291
3292	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3293	 * skb here is different to the troublesome skb, so use NULL
3294	 */
3295	trace_tcp_send_reset(sk, NULL);
3296}
3297
3298/* Send a crossed SYN-ACK during socket establishment.
3299 * WARNING: This routine must only be called when we have already sent
3300 * a SYN packet that crossed the incoming SYN that caused this routine
3301 * to get called. If this assumption fails then the initial rcv_wnd
3302 * and rcv_wscale values will not be correct.
3303 */
3304int tcp_send_synack(struct sock *sk)
3305{
3306	struct sk_buff *skb;
3307
3308	skb = tcp_rtx_queue_head(sk);
3309	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3310		pr_err("%s: wrong queue state\n", __func__);
3311		return -EFAULT;
3312	}
3313	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3314		if (skb_cloned(skb)) {
3315			struct sk_buff *nskb;
3316
3317			tcp_skb_tsorted_save(skb) {
3318				nskb = skb_copy(skb, GFP_ATOMIC);
3319			} tcp_skb_tsorted_restore(skb);
3320			if (!nskb)
3321				return -ENOMEM;
3322			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3323			tcp_highest_sack_replace(sk, skb, nskb);
3324			tcp_rtx_queue_unlink_and_free(skb, sk);
3325			__skb_header_release(nskb);
3326			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3327			sk_wmem_queued_add(sk, nskb->truesize);
3328			sk_mem_charge(sk, nskb->truesize);
3329			skb = nskb;
3330		}
3331
3332		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3333		tcp_ecn_send_synack(sk, skb);
3334	}
3335	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3336}
3337
3338/**
3339 * tcp_make_synack - Prepare a SYN-ACK.
3340 * sk: listener socket
3341 * dst: dst entry attached to the SYNACK
3342 * req: request_sock pointer
3343 * foc: cookie for tcp fast open
3344 * synack_type: Type of synback to prepare
3345 *
3346 * Allocate one skb and build a SYNACK packet.
3347 * @dst is consumed : Caller should not use it again.
3348 */
3349struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3350				struct request_sock *req,
3351				struct tcp_fastopen_cookie *foc,
3352				enum tcp_synack_type synack_type)
 
3353{
3354	struct inet_request_sock *ireq = inet_rsk(req);
3355	const struct tcp_sock *tp = tcp_sk(sk);
3356	struct tcp_md5sig_key *md5 = NULL;
3357	struct tcp_out_options opts;
 
3358	struct sk_buff *skb;
3359	int tcp_header_size;
3360	struct tcphdr *th;
3361	int mss;
3362	u64 now;
3363
3364	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3365	if (unlikely(!skb)) {
3366		dst_release(dst);
3367		return NULL;
3368	}
3369	/* Reserve space for headers. */
3370	skb_reserve(skb, MAX_TCP_HEADER);
3371
3372	switch (synack_type) {
3373	case TCP_SYNACK_NORMAL:
3374		skb_set_owner_w(skb, req_to_sk(req));
3375		break;
3376	case TCP_SYNACK_COOKIE:
3377		/* Under synflood, we do not attach skb to a socket,
3378		 * to avoid false sharing.
3379		 */
3380		break;
3381	case TCP_SYNACK_FASTOPEN:
3382		/* sk is a const pointer, because we want to express multiple
3383		 * cpu might call us concurrently.
3384		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3385		 */
3386		skb_set_owner_w(skb, (struct sock *)sk);
3387		break;
3388	}
3389	skb_dst_set(skb, dst);
3390
3391	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3392
3393	memset(&opts, 0, sizeof(opts));
3394	now = tcp_clock_ns();
3395#ifdef CONFIG_SYN_COOKIES
3396	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3397		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
 
3398	else
3399#endif
3400	{
3401		skb->skb_mstamp_ns = now;
3402		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3403			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3404	}
3405
3406#ifdef CONFIG_TCP_MD5SIG
3407	rcu_read_lock();
3408	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3409#endif
3410	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3411	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3412					     foc, synack_type) + sizeof(*th);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3413
3414	skb_push(skb, tcp_header_size);
3415	skb_reset_transport_header(skb);
3416
3417	th = (struct tcphdr *)skb->data;
3418	memset(th, 0, sizeof(struct tcphdr));
3419	th->syn = 1;
3420	th->ack = 1;
3421	tcp_ecn_make_synack(req, th);
3422	th->source = htons(ireq->ir_num);
3423	th->dest = ireq->ir_rmt_port;
3424	skb->mark = ireq->ir_mark;
3425	skb->ip_summed = CHECKSUM_PARTIAL;
3426	th->seq = htonl(tcp_rsk(req)->snt_isn);
3427	/* XXX data is queued and acked as is. No buffer/window check */
3428	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3429
3430	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3431	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3432	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3433	th->doff = (tcp_header_size >> 2);
3434	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3435
3436#ifdef CONFIG_TCP_MD5SIG
3437	/* Okay, we have all we need - do the md5 hash if needed */
3438	if (md5)
 
3439		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3440					       md5, req_to_sk(req), skb);
 
 
 
 
 
 
 
 
 
3441	rcu_read_unlock();
3442#endif
3443
3444	skb->skb_mstamp_ns = now;
 
 
 
3445	tcp_add_tx_delay(skb, tp);
3446
3447	return skb;
3448}
3449EXPORT_SYMBOL(tcp_make_synack);
3450
3451static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3452{
3453	struct inet_connection_sock *icsk = inet_csk(sk);
3454	const struct tcp_congestion_ops *ca;
3455	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3456
3457	if (ca_key == TCP_CA_UNSPEC)
3458		return;
3459
3460	rcu_read_lock();
3461	ca = tcp_ca_find_key(ca_key);
3462	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3463		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3464		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3465		icsk->icsk_ca_ops = ca;
3466	}
3467	rcu_read_unlock();
3468}
3469
3470/* Do all connect socket setups that can be done AF independent. */
3471static void tcp_connect_init(struct sock *sk)
3472{
3473	const struct dst_entry *dst = __sk_dst_get(sk);
3474	struct tcp_sock *tp = tcp_sk(sk);
3475	__u8 rcv_wscale;
3476	u32 rcv_wnd;
3477
3478	/* We'll fix this up when we get a response from the other end.
3479	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3480	 */
3481	tp->tcp_header_len = sizeof(struct tcphdr);
3482	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3483		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3484
3485#ifdef CONFIG_TCP_MD5SIG
3486	if (tp->af_specific->md5_lookup(sk, sk))
3487		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3488#endif
3489
3490	/* If user gave his TCP_MAXSEG, record it to clamp */
3491	if (tp->rx_opt.user_mss)
3492		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3493	tp->max_window = 0;
3494	tcp_mtup_init(sk);
3495	tcp_sync_mss(sk, dst_mtu(dst));
3496
3497	tcp_ca_dst_init(sk, dst);
3498
3499	if (!tp->window_clamp)
3500		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3501	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3502
3503	tcp_initialize_rcv_mss(sk);
3504
3505	/* limit the window selection if the user enforce a smaller rx buffer */
3506	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3507	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3508		tp->window_clamp = tcp_full_space(sk);
3509
3510	rcv_wnd = tcp_rwnd_init_bpf(sk);
3511	if (rcv_wnd == 0)
3512		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3513
3514	tcp_select_initial_window(sk, tcp_full_space(sk),
3515				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3516				  &tp->rcv_wnd,
3517				  &tp->window_clamp,
3518				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3519				  &rcv_wscale,
3520				  rcv_wnd);
3521
3522	tp->rx_opt.rcv_wscale = rcv_wscale;
3523	tp->rcv_ssthresh = tp->rcv_wnd;
3524
3525	sk->sk_err = 0;
3526	sock_reset_flag(sk, SOCK_DONE);
3527	tp->snd_wnd = 0;
3528	tcp_init_wl(tp, 0);
3529	tcp_write_queue_purge(sk);
3530	tp->snd_una = tp->write_seq;
3531	tp->snd_sml = tp->write_seq;
3532	tp->snd_up = tp->write_seq;
3533	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3534
3535	if (likely(!tp->repair))
3536		tp->rcv_nxt = 0;
3537	else
3538		tp->rcv_tstamp = tcp_jiffies32;
3539	tp->rcv_wup = tp->rcv_nxt;
3540	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3541
3542	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3543	inet_csk(sk)->icsk_retransmits = 0;
3544	tcp_clear_retrans(tp);
3545}
3546
3547static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3548{
3549	struct tcp_sock *tp = tcp_sk(sk);
3550	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3551
3552	tcb->end_seq += skb->len;
3553	__skb_header_release(skb);
3554	sk_wmem_queued_add(sk, skb->truesize);
3555	sk_mem_charge(sk, skb->truesize);
3556	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3557	tp->packets_out += tcp_skb_pcount(skb);
3558}
3559
3560/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3561 * queue a data-only packet after the regular SYN, such that regular SYNs
3562 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3563 * only the SYN sequence, the data are retransmitted in the first ACK.
3564 * If cookie is not cached or other error occurs, falls back to send a
3565 * regular SYN with Fast Open cookie request option.
3566 */
3567static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3568{
 
3569	struct tcp_sock *tp = tcp_sk(sk);
3570	struct tcp_fastopen_request *fo = tp->fastopen_req;
3571	int space, err = 0;
3572	struct sk_buff *syn_data;
 
3573
3574	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3575	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3576		goto fallback;
3577
3578	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3579	 * user-MSS. Reserve maximum option space for middleboxes that add
3580	 * private TCP options. The cost is reduced data space in SYN :(
3581	 */
3582	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
 
 
3583
3584	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3585		MAX_TCP_OPTION_SPACE;
3586
3587	space = min_t(size_t, space, fo->size);
3588
3589	/* limit to order-0 allocations */
3590	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3591
3592	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
 
3593	if (!syn_data)
3594		goto fallback;
3595	syn_data->ip_summed = CHECKSUM_PARTIAL;
3596	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3597	if (space) {
3598		int copied = copy_from_iter(skb_put(syn_data, space), space,
3599					    &fo->data->msg_iter);
3600		if (unlikely(!copied)) {
 
 
 
 
3601			tcp_skb_tsorted_anchor_cleanup(syn_data);
3602			kfree_skb(syn_data);
3603			goto fallback;
3604		}
3605		if (copied != space) {
3606			skb_trim(syn_data, copied);
3607			space = copied;
3608		}
 
3609		skb_zcopy_set(syn_data, fo->uarg, NULL);
3610	}
3611	/* No more data pending in inet_wait_for_connect() */
3612	if (space == fo->size)
3613		fo->data = NULL;
3614	fo->copied = space;
3615
3616	tcp_connect_queue_skb(sk, syn_data);
3617	if (syn_data->len)
3618		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3619
3620	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3621
3622	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3623
3624	/* Now full SYN+DATA was cloned and sent (or not),
3625	 * remove the SYN from the original skb (syn_data)
3626	 * we keep in write queue in case of a retransmit, as we
3627	 * also have the SYN packet (with no data) in the same queue.
3628	 */
3629	TCP_SKB_CB(syn_data)->seq++;
3630	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3631	if (!err) {
3632		tp->syn_data = (fo->copied > 0);
3633		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3634		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3635		goto done;
3636	}
3637
3638	/* data was not sent, put it in write_queue */
3639	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3640	tp->packets_out -= tcp_skb_pcount(syn_data);
3641
3642fallback:
3643	/* Send a regular SYN with Fast Open cookie request option */
3644	if (fo->cookie.len > 0)
3645		fo->cookie.len = 0;
3646	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3647	if (err)
3648		tp->syn_fastopen = 0;
3649done:
3650	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3651	return err;
3652}
3653
3654/* Build a SYN and send it off. */
3655int tcp_connect(struct sock *sk)
3656{
3657	struct tcp_sock *tp = tcp_sk(sk);
3658	struct sk_buff *buff;
3659	int err;
3660
3661	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3663	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3664		return -EHOSTUNREACH; /* Routing failure or similar. */
3665
3666	tcp_connect_init(sk);
3667
3668	if (unlikely(tp->repair)) {
3669		tcp_finish_connect(sk, NULL);
3670		return 0;
3671	}
3672
3673	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3674	if (unlikely(!buff))
3675		return -ENOBUFS;
3676
3677	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3678	tcp_mstamp_refresh(tp);
3679	tp->retrans_stamp = tcp_time_stamp(tp);
3680	tcp_connect_queue_skb(sk, buff);
3681	tcp_ecn_send_syn(sk, buff);
3682	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3683
3684	/* Send off SYN; include data in Fast Open. */
3685	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3686	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3687	if (err == -ECONNREFUSED)
3688		return err;
3689
3690	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3691	 * in order to make this packet get counted in tcpOutSegs.
3692	 */
3693	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3694	tp->pushed_seq = tp->write_seq;
3695	buff = tcp_send_head(sk);
3696	if (unlikely(buff)) {
3697		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3698		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3699	}
3700	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3701
3702	/* Timer for repeating the SYN until an answer. */
3703	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3704				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3705	return 0;
3706}
3707EXPORT_SYMBOL(tcp_connect);
3708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3709/* Send out a delayed ack, the caller does the policy checking
3710 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3711 * for details.
3712 */
3713void tcp_send_delayed_ack(struct sock *sk)
3714{
3715	struct inet_connection_sock *icsk = inet_csk(sk);
3716	int ato = icsk->icsk_ack.ato;
3717	unsigned long timeout;
3718
3719	if (ato > TCP_DELACK_MIN) {
3720		const struct tcp_sock *tp = tcp_sk(sk);
3721		int max_ato = HZ / 2;
3722
3723		if (inet_csk_in_pingpong_mode(sk) ||
3724		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3725			max_ato = TCP_DELACK_MAX;
3726
3727		/* Slow path, intersegment interval is "high". */
3728
3729		/* If some rtt estimate is known, use it to bound delayed ack.
3730		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3731		 * directly.
3732		 */
3733		if (tp->srtt_us) {
3734			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3735					TCP_DELACK_MIN);
3736
3737			if (rtt < max_ato)
3738				max_ato = rtt;
3739		}
3740
3741		ato = min(ato, max_ato);
3742	}
3743
 
 
3744	/* Stay within the limit we were given */
3745	timeout = jiffies + ato;
3746
3747	/* Use new timeout only if there wasn't a older one earlier. */
3748	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3749		/* If delack timer was blocked or is about to expire,
3750		 * send ACK now.
3751		 */
3752		if (icsk->icsk_ack.blocked ||
3753		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3754			tcp_send_ack(sk);
3755			return;
3756		}
3757
3758		if (!time_before(timeout, icsk->icsk_ack.timeout))
3759			timeout = icsk->icsk_ack.timeout;
3760	}
3761	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3762	icsk->icsk_ack.timeout = timeout;
3763	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3764}
3765
3766/* This routine sends an ack and also updates the window. */
3767void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3768{
3769	struct sk_buff *buff;
3770
3771	/* If we have been reset, we may not send again. */
3772	if (sk->sk_state == TCP_CLOSE)
3773		return;
3774
3775	/* We are not putting this on the write queue, so
3776	 * tcp_transmit_skb() will set the ownership to this
3777	 * sock.
3778	 */
3779	buff = alloc_skb(MAX_TCP_HEADER,
3780			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3781	if (unlikely(!buff)) {
 
 
 
 
 
 
3782		inet_csk_schedule_ack(sk);
3783		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3784		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3785					  TCP_DELACK_MAX, TCP_RTO_MAX);
3786		return;
3787	}
3788
3789	/* Reserve space for headers and prepare control bits. */
3790	skb_reserve(buff, MAX_TCP_HEADER);
3791	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3792
3793	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3794	 * too much.
3795	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3796	 */
3797	skb_set_tcp_pure_ack(buff);
3798
3799	/* Send it off, this clears delayed acks for us. */
3800	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3801}
3802EXPORT_SYMBOL_GPL(__tcp_send_ack);
3803
3804void tcp_send_ack(struct sock *sk)
3805{
3806	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3807}
3808
3809/* This routine sends a packet with an out of date sequence
3810 * number. It assumes the other end will try to ack it.
3811 *
3812 * Question: what should we make while urgent mode?
3813 * 4.4BSD forces sending single byte of data. We cannot send
3814 * out of window data, because we have SND.NXT==SND.MAX...
3815 *
3816 * Current solution: to send TWO zero-length segments in urgent mode:
3817 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3818 * out-of-date with SND.UNA-1 to probe window.
3819 */
3820static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3821{
3822	struct tcp_sock *tp = tcp_sk(sk);
3823	struct sk_buff *skb;
3824
3825	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3826	skb = alloc_skb(MAX_TCP_HEADER,
3827			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3828	if (!skb)
3829		return -1;
3830
3831	/* Reserve space for headers and set control bits. */
3832	skb_reserve(skb, MAX_TCP_HEADER);
3833	/* Use a previous sequence.  This should cause the other
3834	 * end to send an ack.  Don't queue or clone SKB, just
3835	 * send it.
3836	 */
3837	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3838	NET_INC_STATS(sock_net(sk), mib);
3839	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3840}
3841
3842/* Called from setsockopt( ... TCP_REPAIR ) */
3843void tcp_send_window_probe(struct sock *sk)
3844{
3845	if (sk->sk_state == TCP_ESTABLISHED) {
3846		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3847		tcp_mstamp_refresh(tcp_sk(sk));
3848		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3849	}
3850}
3851
3852/* Initiate keepalive or window probe from timer. */
3853int tcp_write_wakeup(struct sock *sk, int mib)
3854{
3855	struct tcp_sock *tp = tcp_sk(sk);
3856	struct sk_buff *skb;
3857
3858	if (sk->sk_state == TCP_CLOSE)
3859		return -1;
3860
3861	skb = tcp_send_head(sk);
3862	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3863		int err;
3864		unsigned int mss = tcp_current_mss(sk);
3865		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3866
3867		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3868			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3869
3870		/* We are probing the opening of a window
3871		 * but the window size is != 0
3872		 * must have been a result SWS avoidance ( sender )
3873		 */
3874		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3875		    skb->len > mss) {
3876			seg_size = min(seg_size, mss);
3877			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3878			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3879					 skb, seg_size, mss, GFP_ATOMIC))
3880				return -1;
3881		} else if (!tcp_skb_pcount(skb))
3882			tcp_set_skb_tso_segs(skb, mss);
3883
3884		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3885		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3886		if (!err)
3887			tcp_event_new_data_sent(sk, skb);
3888		return err;
3889	} else {
3890		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3891			tcp_xmit_probe_skb(sk, 1, mib);
3892		return tcp_xmit_probe_skb(sk, 0, mib);
3893	}
3894}
3895
3896/* A window probe timeout has occurred.  If window is not closed send
3897 * a partial packet else a zero probe.
3898 */
3899void tcp_send_probe0(struct sock *sk)
3900{
3901	struct inet_connection_sock *icsk = inet_csk(sk);
3902	struct tcp_sock *tp = tcp_sk(sk);
3903	struct net *net = sock_net(sk);
3904	unsigned long timeout;
3905	int err;
3906
3907	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3908
3909	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3910		/* Cancel probe timer, if it is not required. */
3911		icsk->icsk_probes_out = 0;
3912		icsk->icsk_backoff = 0;
 
3913		return;
3914	}
3915
3916	icsk->icsk_probes_out++;
3917	if (err <= 0) {
3918		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3919			icsk->icsk_backoff++;
3920		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3921	} else {
3922		/* If packet was not sent due to local congestion,
3923		 * Let senders fight for local resources conservatively.
3924		 */
3925		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3926	}
 
 
3927	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
3928}
3929
3930int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3931{
3932	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3933	struct flowi fl;
3934	int res;
3935
3936	tcp_rsk(req)->txhash = net_tx_rndhash();
3937	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
 
 
 
3938	if (!res) {
3939		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3940		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3941		if (unlikely(tcp_passive_fastopen(sk)))
3942			tcp_sk(sk)->total_retrans++;
 
 
 
 
 
3943		trace_tcp_retransmit_synack(sk, req);
3944	}
3945	return res;
3946}
3947EXPORT_SYMBOL(tcp_rtx_synack);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  24 *				:	Fragmentation on mtu decrease
  25 *				:	Segment collapse on retransmit
  26 *				:	AF independence
  27 *
  28 *		Linus Torvalds	:	send_delayed_ack
  29 *		David S. Miller	:	Charge memory using the right skb
  30 *					during syn/ack processing.
  31 *		David S. Miller :	Output engine completely rewritten.
  32 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  33 *		Cacophonix Gaul :	draft-minshall-nagle-01
  34 *		J Hadi Salim	:	ECN support
  35 *
  36 */
  37
  38#define pr_fmt(fmt) "TCP: " fmt
  39
  40#include <net/tcp.h>
  41#include <net/mptcp.h>
  42
  43#include <linux/compiler.h>
  44#include <linux/gfp.h>
  45#include <linux/module.h>
  46#include <linux/static_key.h>
  47
  48#include <trace/events/tcp.h>
  49
  50/* Refresh clocks of a TCP socket,
  51 * ensuring monotically increasing values.
  52 */
  53void tcp_mstamp_refresh(struct tcp_sock *tp)
  54{
  55	u64 val = tcp_clock_ns();
  56
  57	tp->tcp_clock_cache = val;
  58	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
  59}
  60
  61static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  62			   int push_one, gfp_t gfp);
  63
  64/* Account for new data that has been sent to the network. */
  65static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  66{
  67	struct inet_connection_sock *icsk = inet_csk(sk);
  68	struct tcp_sock *tp = tcp_sk(sk);
  69	unsigned int prior_packets = tp->packets_out;
  70
  71	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
  72
  73	__skb_unlink(skb, &sk->sk_write_queue);
  74	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  75
  76	if (tp->highest_sack == NULL)
  77		tp->highest_sack = skb;
  78
  79	tp->packets_out += tcp_skb_pcount(skb);
  80	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  81		tcp_rearm_rto(sk);
  82
  83	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  84		      tcp_skb_pcount(skb));
  85	tcp_check_space(sk);
  86}
  87
  88/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  89 * window scaling factor due to loss of precision.
  90 * If window has been shrunk, what should we make? It is not clear at all.
  91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  93 * invalid. OK, let's make this for now:
  94 */
  95static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  96{
  97	const struct tcp_sock *tp = tcp_sk(sk);
  98
  99	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
 100	    (tp->rx_opt.wscale_ok &&
 101	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
 102		return tp->snd_nxt;
 103	else
 104		return tcp_wnd_end(tp);
 105}
 106
 107/* Calculate mss to advertise in SYN segment.
 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 109 *
 110 * 1. It is independent of path mtu.
 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 113 *    attached devices, because some buggy hosts are confused by
 114 *    large MSS.
 115 * 4. We do not make 3, we advertise MSS, calculated from first
 116 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 117 *    This may be overridden via information stored in routing table.
 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 119 *    probably even Jumbo".
 120 */
 121static __u16 tcp_advertise_mss(struct sock *sk)
 122{
 123	struct tcp_sock *tp = tcp_sk(sk);
 124	const struct dst_entry *dst = __sk_dst_get(sk);
 125	int mss = tp->advmss;
 126
 127	if (dst) {
 128		unsigned int metric = dst_metric_advmss(dst);
 129
 130		if (metric < mss) {
 131			mss = metric;
 132			tp->advmss = mss;
 133		}
 134	}
 135
 136	return (__u16)mss;
 137}
 138
 139/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 140 * This is the first part of cwnd validation mechanism.
 141 */
 142void tcp_cwnd_restart(struct sock *sk, s32 delta)
 143{
 144	struct tcp_sock *tp = tcp_sk(sk);
 145	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 146	u32 cwnd = tcp_snd_cwnd(tp);
 147
 148	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 149
 150	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 151	restart_cwnd = min(restart_cwnd, cwnd);
 152
 153	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 154		cwnd >>= 1;
 155	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
 156	tp->snd_cwnd_stamp = tcp_jiffies32;
 157	tp->snd_cwnd_used = 0;
 158}
 159
 160/* Congestion state accounting after a packet has been sent. */
 161static void tcp_event_data_sent(struct tcp_sock *tp,
 162				struct sock *sk)
 163{
 164	struct inet_connection_sock *icsk = inet_csk(sk);
 165	const u32 now = tcp_jiffies32;
 166
 167	if (tcp_packets_in_flight(tp) == 0)
 168		tcp_ca_event(sk, CA_EVENT_TX_START);
 169
 170	tp->lsndtime = now;
 171
 172	/* If it is a reply for ato after last received
 173	 * packet, increase pingpong count.
 174	 */
 175	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 
 176		inet_csk_inc_pingpong_cnt(sk);
 
 
 177}
 178
 179/* Account for an ACK we sent. */
 180static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
 
 181{
 182	struct tcp_sock *tp = tcp_sk(sk);
 183
 184	if (unlikely(tp->compressed_ack)) {
 185		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
 186			      tp->compressed_ack);
 187		tp->compressed_ack = 0;
 188		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
 189			__sock_put(sk);
 190	}
 191
 192	if (unlikely(rcv_nxt != tp->rcv_nxt))
 193		return;  /* Special ACK sent by DCTCP to reflect ECN */
 194	tcp_dec_quickack_mode(sk);
 195	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 196}
 197
 198/* Determine a window scaling and initial window to offer.
 199 * Based on the assumption that the given amount of space
 200 * will be offered. Store the results in the tp structure.
 201 * NOTE: for smooth operation initial space offering should
 202 * be a multiple of mss if possible. We assume here that mss >= 1.
 203 * This MUST be enforced by all callers.
 204 */
 205void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
 206			       __u32 *rcv_wnd, __u32 *window_clamp,
 207			       int wscale_ok, __u8 *rcv_wscale,
 208			       __u32 init_rcv_wnd)
 209{
 210	unsigned int space = (__space < 0 ? 0 : __space);
 211
 212	/* If no clamp set the clamp to the max possible scaled window */
 213	if (*window_clamp == 0)
 214		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
 215	space = min(*window_clamp, space);
 216
 217	/* Quantize space offering to a multiple of mss if possible. */
 218	if (space > mss)
 219		space = rounddown(space, mss);
 220
 221	/* NOTE: offering an initial window larger than 32767
 222	 * will break some buggy TCP stacks. If the admin tells us
 223	 * it is likely we could be speaking with such a buggy stack
 224	 * we will truncate our initial window offering to 32K-1
 225	 * unless the remote has sent us a window scaling option,
 226	 * which we interpret as a sign the remote TCP is not
 227	 * misinterpreting the window field as a signed quantity.
 228	 */
 229	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
 230		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 231	else
 232		(*rcv_wnd) = min_t(u32, space, U16_MAX);
 233
 234	if (init_rcv_wnd)
 235		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 236
 237	*rcv_wscale = 0;
 238	if (wscale_ok) {
 239		/* Set window scaling on max possible window */
 240		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
 241		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
 242		space = min_t(u32, space, *window_clamp);
 243		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
 244				      0, TCP_MAX_WSCALE);
 245	}
 246	/* Set the clamp no higher than max representable value */
 247	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
 248}
 249EXPORT_SYMBOL(tcp_select_initial_window);
 250
 251/* Chose a new window to advertise, update state in tcp_sock for the
 252 * socket, and return result with RFC1323 scaling applied.  The return
 253 * value can be stuffed directly into th->window for an outgoing
 254 * frame.
 255 */
 256static u16 tcp_select_window(struct sock *sk)
 257{
 258	struct tcp_sock *tp = tcp_sk(sk);
 259	struct net *net = sock_net(sk);
 260	u32 old_win = tp->rcv_wnd;
 261	u32 cur_win, new_win;
 262
 263	/* Make the window 0 if we failed to queue the data because we
 264	 * are out of memory. The window is temporary, so we don't store
 265	 * it on the socket.
 266	 */
 267	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
 268		return 0;
 269
 270	cur_win = tcp_receive_window(tp);
 271	new_win = __tcp_select_window(sk);
 272	if (new_win < cur_win) {
 273		/* Danger Will Robinson!
 274		 * Don't update rcv_wup/rcv_wnd here or else
 275		 * we will not be able to advertise a zero
 276		 * window in time.  --DaveM
 277		 *
 278		 * Relax Will Robinson.
 279		 */
 280		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
 281			/* Never shrink the offered window */
 282			if (new_win == 0)
 283				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
 284			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 285		}
 286	}
 287
 288	tp->rcv_wnd = new_win;
 289	tp->rcv_wup = tp->rcv_nxt;
 290
 291	/* Make sure we do not exceed the maximum possible
 292	 * scaled window.
 293	 */
 294	if (!tp->rx_opt.rcv_wscale &&
 295	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
 296		new_win = min(new_win, MAX_TCP_WINDOW);
 297	else
 298		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 299
 300	/* RFC1323 scaling applied */
 301	new_win >>= tp->rx_opt.rcv_wscale;
 302
 303	/* If we advertise zero window, disable fast path. */
 304	if (new_win == 0) {
 305		tp->pred_flags = 0;
 306		if (old_win)
 307			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
 
 308	} else if (old_win == 0) {
 309		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
 310	}
 311
 312	return new_win;
 313}
 314
 315/* Packet ECN state for a SYN-ACK */
 316static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 317{
 318	const struct tcp_sock *tp = tcp_sk(sk);
 319
 320	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 321	if (!(tp->ecn_flags & TCP_ECN_OK))
 322		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 323	else if (tcp_ca_needs_ecn(sk) ||
 324		 tcp_bpf_ca_needs_ecn(sk))
 325		INET_ECN_xmit(sk);
 326}
 327
 328/* Packet ECN state for a SYN.  */
 329static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 330{
 331	struct tcp_sock *tp = tcp_sk(sk);
 332	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
 333	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
 334		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
 335
 336	if (!use_ecn) {
 337		const struct dst_entry *dst = __sk_dst_get(sk);
 338
 339		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 340			use_ecn = true;
 341	}
 342
 343	tp->ecn_flags = 0;
 344
 345	if (use_ecn) {
 346		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 347		tp->ecn_flags = TCP_ECN_OK;
 348		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
 349			INET_ECN_xmit(sk);
 350	}
 351}
 352
 353static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 354{
 355	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
 356		/* tp->ecn_flags are cleared at a later point in time when
 357		 * SYN ACK is ultimatively being received.
 358		 */
 359		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 360}
 361
 362static void
 363tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 364{
 365	if (inet_rsk(req)->ecn_ok)
 366		th->ece = 1;
 367}
 368
 369/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 370 * be sent.
 371 */
 372static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 373			 struct tcphdr *th, int tcp_header_len)
 374{
 375	struct tcp_sock *tp = tcp_sk(sk);
 376
 377	if (tp->ecn_flags & TCP_ECN_OK) {
 378		/* Not-retransmitted data segment: set ECT and inject CWR. */
 379		if (skb->len != tcp_header_len &&
 380		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 381			INET_ECN_xmit(sk);
 382			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 383				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 384				th->cwr = 1;
 385				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 386			}
 387		} else if (!tcp_ca_needs_ecn(sk)) {
 388			/* ACK or retransmitted segment: clear ECT|CE */
 389			INET_ECN_dontxmit(sk);
 390		}
 391		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 392			th->ece = 1;
 393	}
 394}
 395
 396/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 397 * auto increment end seqno.
 398 */
 399static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 400{
 401	skb->ip_summed = CHECKSUM_PARTIAL;
 402
 403	TCP_SKB_CB(skb)->tcp_flags = flags;
 
 404
 405	tcp_skb_pcount_set(skb, 1);
 406
 407	TCP_SKB_CB(skb)->seq = seq;
 408	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 409		seq++;
 410	TCP_SKB_CB(skb)->end_seq = seq;
 411}
 412
 413static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 414{
 415	return tp->snd_una != tp->snd_up;
 416}
 417
 418#define OPTION_SACK_ADVERTISE	BIT(0)
 419#define OPTION_TS		BIT(1)
 420#define OPTION_MD5		BIT(2)
 421#define OPTION_WSCALE		BIT(3)
 422#define OPTION_FAST_OPEN_COOKIE	BIT(8)
 423#define OPTION_SMC		BIT(9)
 424#define OPTION_MPTCP		BIT(10)
 425#define OPTION_AO		BIT(11)
 426
 427static void smc_options_write(__be32 *ptr, u16 *options)
 428{
 429#if IS_ENABLED(CONFIG_SMC)
 430	if (static_branch_unlikely(&tcp_have_smc)) {
 431		if (unlikely(OPTION_SMC & *options)) {
 432			*ptr++ = htonl((TCPOPT_NOP  << 24) |
 433				       (TCPOPT_NOP  << 16) |
 434				       (TCPOPT_EXP <<  8) |
 435				       (TCPOLEN_EXP_SMC_BASE));
 436			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
 437		}
 438	}
 439#endif
 440}
 441
 442struct tcp_out_options {
 443	u16 options;		/* bit field of OPTION_* */
 444	u16 mss;		/* 0 to disable */
 445	u8 ws;			/* window scale, 0 to disable */
 446	u8 num_sack_blocks;	/* number of SACK blocks to include */
 447	u8 hash_size;		/* bytes in hash_location */
 448	u8 bpf_opt_len;		/* length of BPF hdr option */
 449	__u8 *hash_location;	/* temporary pointer, overloaded */
 450	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 451	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 452	struct mptcp_out_options mptcp;
 453};
 454
 455static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
 456				struct tcp_sock *tp,
 457				struct tcp_out_options *opts)
 458{
 459#if IS_ENABLED(CONFIG_MPTCP)
 460	if (unlikely(OPTION_MPTCP & opts->options))
 461		mptcp_write_options(th, ptr, tp, &opts->mptcp);
 462#endif
 463}
 464
 465#ifdef CONFIG_CGROUP_BPF
 466static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
 467					enum tcp_synack_type synack_type)
 468{
 469	if (unlikely(!skb))
 470		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
 471
 472	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
 473		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
 474
 475	return 0;
 476}
 477
 478/* req, syn_skb and synack_type are used when writing synack */
 479static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 480				  struct request_sock *req,
 481				  struct sk_buff *syn_skb,
 482				  enum tcp_synack_type synack_type,
 483				  struct tcp_out_options *opts,
 484				  unsigned int *remaining)
 485{
 486	struct bpf_sock_ops_kern sock_ops;
 487	int err;
 488
 489	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 490					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
 491	    !*remaining)
 492		return;
 493
 494	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
 495
 496	/* init sock_ops */
 497	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 498
 499	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
 500
 501	if (req) {
 502		/* The listen "sk" cannot be passed here because
 503		 * it is not locked.  It would not make too much
 504		 * sense to do bpf_setsockopt(listen_sk) based
 505		 * on individual connection request also.
 506		 *
 507		 * Thus, "req" is passed here and the cgroup-bpf-progs
 508		 * of the listen "sk" will be run.
 509		 *
 510		 * "req" is also used here for fastopen even the "sk" here is
 511		 * a fullsock "child" sk.  It is to keep the behavior
 512		 * consistent between fastopen and non-fastopen on
 513		 * the bpf programming side.
 514		 */
 515		sock_ops.sk = (struct sock *)req;
 516		sock_ops.syn_skb = syn_skb;
 517	} else {
 518		sock_owned_by_me(sk);
 519
 520		sock_ops.is_fullsock = 1;
 521		sock_ops.sk = sk;
 522	}
 523
 524	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 525	sock_ops.remaining_opt_len = *remaining;
 526	/* tcp_current_mss() does not pass a skb */
 527	if (skb)
 528		bpf_skops_init_skb(&sock_ops, skb, 0);
 529
 530	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 531
 532	if (err || sock_ops.remaining_opt_len == *remaining)
 533		return;
 534
 535	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
 536	/* round up to 4 bytes */
 537	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
 538
 539	*remaining -= opts->bpf_opt_len;
 540}
 541
 542static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 543				    struct request_sock *req,
 544				    struct sk_buff *syn_skb,
 545				    enum tcp_synack_type synack_type,
 546				    struct tcp_out_options *opts)
 547{
 548	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
 549	struct bpf_sock_ops_kern sock_ops;
 550	int err;
 551
 552	if (likely(!max_opt_len))
 553		return;
 554
 555	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 556
 557	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
 558
 559	if (req) {
 560		sock_ops.sk = (struct sock *)req;
 561		sock_ops.syn_skb = syn_skb;
 562	} else {
 563		sock_owned_by_me(sk);
 564
 565		sock_ops.is_fullsock = 1;
 566		sock_ops.sk = sk;
 567	}
 568
 569	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 570	sock_ops.remaining_opt_len = max_opt_len;
 571	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
 572	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
 573
 574	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 575
 576	if (err)
 577		nr_written = 0;
 578	else
 579		nr_written = max_opt_len - sock_ops.remaining_opt_len;
 580
 581	if (nr_written < max_opt_len)
 582		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
 583		       max_opt_len - nr_written);
 584}
 585#else
 586static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 587				  struct request_sock *req,
 588				  struct sk_buff *syn_skb,
 589				  enum tcp_synack_type synack_type,
 590				  struct tcp_out_options *opts,
 591				  unsigned int *remaining)
 592{
 593}
 594
 595static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 596				    struct request_sock *req,
 597				    struct sk_buff *syn_skb,
 598				    enum tcp_synack_type synack_type,
 599				    struct tcp_out_options *opts)
 600{
 601}
 602#endif
 603
 604static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
 605				      const struct tcp_request_sock *tcprsk,
 606				      struct tcp_out_options *opts,
 607				      struct tcp_key *key, __be32 *ptr)
 608{
 609#ifdef CONFIG_TCP_AO
 610	u8 maclen = tcp_ao_maclen(key->ao_key);
 611
 612	if (tcprsk) {
 613		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
 614
 615		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
 616			       (tcprsk->ao_keyid << 8) |
 617			       (tcprsk->ao_rcv_next));
 618	} else {
 619		struct tcp_ao_key *rnext_key;
 620		struct tcp_ao_info *ao_info;
 621
 622		ao_info = rcu_dereference_check(tp->ao_info,
 623			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
 624		rnext_key = READ_ONCE(ao_info->rnext_key);
 625		if (WARN_ON_ONCE(!rnext_key))
 626			return ptr;
 627		*ptr++ = htonl((TCPOPT_AO << 24) |
 628			       (tcp_ao_len(key->ao_key) << 16) |
 629			       (key->ao_key->sndid << 8) |
 630			       (rnext_key->rcvid));
 631	}
 632	opts->hash_location = (__u8 *)ptr;
 633	ptr += maclen / sizeof(*ptr);
 634	if (unlikely(maclen % sizeof(*ptr))) {
 635		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
 636		ptr++;
 637	}
 638#endif
 639	return ptr;
 640}
 641
 642/* Write previously computed TCP options to the packet.
 643 *
 644 * Beware: Something in the Internet is very sensitive to the ordering of
 645 * TCP options, we learned this through the hard way, so be careful here.
 646 * Luckily we can at least blame others for their non-compliance but from
 647 * inter-operability perspective it seems that we're somewhat stuck with
 648 * the ordering which we have been using if we want to keep working with
 649 * those broken things (not that it currently hurts anybody as there isn't
 650 * particular reason why the ordering would need to be changed).
 651 *
 652 * At least SACK_PERM as the first option is known to lead to a disaster
 653 * (but it may well be that other scenarios fail similarly).
 654 */
 655static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
 656			      const struct tcp_request_sock *tcprsk,
 657			      struct tcp_out_options *opts,
 658			      struct tcp_key *key)
 659{
 660	__be32 *ptr = (__be32 *)(th + 1);
 661	u16 options = opts->options;	/* mungable copy */
 662
 663	if (tcp_key_is_md5(key)) {
 664		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 665			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 666		/* overload cookie hash location */
 667		opts->hash_location = (__u8 *)ptr;
 668		ptr += 4;
 669	} else if (tcp_key_is_ao(key)) {
 670		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
 671	}
 
 672	if (unlikely(opts->mss)) {
 673		*ptr++ = htonl((TCPOPT_MSS << 24) |
 674			       (TCPOLEN_MSS << 16) |
 675			       opts->mss);
 676	}
 677
 678	if (likely(OPTION_TS & options)) {
 679		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 680			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 681				       (TCPOLEN_SACK_PERM << 16) |
 682				       (TCPOPT_TIMESTAMP << 8) |
 683				       TCPOLEN_TIMESTAMP);
 684			options &= ~OPTION_SACK_ADVERTISE;
 685		} else {
 686			*ptr++ = htonl((TCPOPT_NOP << 24) |
 687				       (TCPOPT_NOP << 16) |
 688				       (TCPOPT_TIMESTAMP << 8) |
 689				       TCPOLEN_TIMESTAMP);
 690		}
 691		*ptr++ = htonl(opts->tsval);
 692		*ptr++ = htonl(opts->tsecr);
 693	}
 694
 695	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 696		*ptr++ = htonl((TCPOPT_NOP << 24) |
 697			       (TCPOPT_NOP << 16) |
 698			       (TCPOPT_SACK_PERM << 8) |
 699			       TCPOLEN_SACK_PERM);
 700	}
 701
 702	if (unlikely(OPTION_WSCALE & options)) {
 703		*ptr++ = htonl((TCPOPT_NOP << 24) |
 704			       (TCPOPT_WINDOW << 16) |
 705			       (TCPOLEN_WINDOW << 8) |
 706			       opts->ws);
 707	}
 708
 709	if (unlikely(opts->num_sack_blocks)) {
 710		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 711			tp->duplicate_sack : tp->selective_acks;
 712		int this_sack;
 713
 714		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 715			       (TCPOPT_NOP  << 16) |
 716			       (TCPOPT_SACK <<  8) |
 717			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 718						     TCPOLEN_SACK_PERBLOCK)));
 719
 720		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 721		     ++this_sack) {
 722			*ptr++ = htonl(sp[this_sack].start_seq);
 723			*ptr++ = htonl(sp[this_sack].end_seq);
 724		}
 725
 726		tp->rx_opt.dsack = 0;
 727	}
 728
 729	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 730		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 731		u8 *p = (u8 *)ptr;
 732		u32 len; /* Fast Open option length */
 733
 734		if (foc->exp) {
 735			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 736			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 737				     TCPOPT_FASTOPEN_MAGIC);
 738			p += TCPOLEN_EXP_FASTOPEN_BASE;
 739		} else {
 740			len = TCPOLEN_FASTOPEN_BASE + foc->len;
 741			*p++ = TCPOPT_FASTOPEN;
 742			*p++ = len;
 743		}
 744
 745		memcpy(p, foc->val, foc->len);
 746		if ((len & 3) == 2) {
 747			p[foc->len] = TCPOPT_NOP;
 748			p[foc->len + 1] = TCPOPT_NOP;
 749		}
 750		ptr += (len + 3) >> 2;
 751	}
 752
 753	smc_options_write(ptr, &options);
 754
 755	mptcp_options_write(th, ptr, tp, opts);
 756}
 757
 758static void smc_set_option(const struct tcp_sock *tp,
 759			   struct tcp_out_options *opts,
 760			   unsigned int *remaining)
 761{
 762#if IS_ENABLED(CONFIG_SMC)
 763	if (static_branch_unlikely(&tcp_have_smc)) {
 764		if (tp->syn_smc) {
 765			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 766				opts->options |= OPTION_SMC;
 767				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 768			}
 769		}
 770	}
 771#endif
 772}
 773
 774static void smc_set_option_cond(const struct tcp_sock *tp,
 775				const struct inet_request_sock *ireq,
 776				struct tcp_out_options *opts,
 777				unsigned int *remaining)
 778{
 779#if IS_ENABLED(CONFIG_SMC)
 780	if (static_branch_unlikely(&tcp_have_smc)) {
 781		if (tp->syn_smc && ireq->smc_ok) {
 782			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 783				opts->options |= OPTION_SMC;
 784				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 785			}
 786		}
 787	}
 788#endif
 789}
 790
 791static void mptcp_set_option_cond(const struct request_sock *req,
 792				  struct tcp_out_options *opts,
 793				  unsigned int *remaining)
 794{
 795	if (rsk_is_mptcp(req)) {
 796		unsigned int size;
 797
 798		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
 799			if (*remaining >= size) {
 800				opts->options |= OPTION_MPTCP;
 801				*remaining -= size;
 802			}
 803		}
 804	}
 805}
 806
 807/* Compute TCP options for SYN packets. This is not the final
 808 * network wire format yet.
 809 */
 810static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 811				struct tcp_out_options *opts,
 812				struct tcp_key *key)
 813{
 814	struct tcp_sock *tp = tcp_sk(sk);
 815	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 816	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 817	bool timestamps;
 818
 819	/* Better than switch (key.type) as it has static branches */
 820	if (tcp_key_is_md5(key)) {
 821		timestamps = false;
 822		opts->options |= OPTION_MD5;
 823		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 824	} else {
 825		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
 826		if (tcp_key_is_ao(key)) {
 827			opts->options |= OPTION_AO;
 828			remaining -= tcp_ao_len_aligned(key->ao_key);
 829		}
 830	}
 
 831
 832	/* We always get an MSS option.  The option bytes which will be seen in
 833	 * normal data packets should timestamps be used, must be in the MSS
 834	 * advertised.  But we subtract them from tp->mss_cache so that
 835	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 836	 * fact here if necessary.  If we don't do this correctly, as a
 837	 * receiver we won't recognize data packets as being full sized when we
 838	 * should, and thus we won't abide by the delayed ACK rules correctly.
 839	 * SACKs don't matter, we never delay an ACK when we have any of those
 840	 * going out.  */
 841	opts->mss = tcp_advertise_mss(sk);
 842	remaining -= TCPOLEN_MSS_ALIGNED;
 843
 844	if (likely(timestamps)) {
 845		opts->options |= OPTION_TS;
 846		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
 847		opts->tsecr = tp->rx_opt.ts_recent;
 848		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 849	}
 850	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
 851		opts->ws = tp->rx_opt.rcv_wscale;
 852		opts->options |= OPTION_WSCALE;
 853		remaining -= TCPOLEN_WSCALE_ALIGNED;
 854	}
 855	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
 856		opts->options |= OPTION_SACK_ADVERTISE;
 857		if (unlikely(!(OPTION_TS & opts->options)))
 858			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 859	}
 860
 861	if (fastopen && fastopen->cookie.len >= 0) {
 862		u32 need = fastopen->cookie.len;
 863
 864		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 865					       TCPOLEN_FASTOPEN_BASE;
 866		need = (need + 3) & ~3U;  /* Align to 32 bits */
 867		if (remaining >= need) {
 868			opts->options |= OPTION_FAST_OPEN_COOKIE;
 869			opts->fastopen_cookie = &fastopen->cookie;
 870			remaining -= need;
 871			tp->syn_fastopen = 1;
 872			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 873		}
 874	}
 875
 876	smc_set_option(tp, opts, &remaining);
 877
 878	if (sk_is_mptcp(sk)) {
 879		unsigned int size;
 880
 881		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
 882			opts->options |= OPTION_MPTCP;
 883			remaining -= size;
 884		}
 885	}
 886
 887	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
 888
 889	return MAX_TCP_OPTION_SPACE - remaining;
 890}
 891
 892/* Set up TCP options for SYN-ACKs. */
 893static unsigned int tcp_synack_options(const struct sock *sk,
 894				       struct request_sock *req,
 895				       unsigned int mss, struct sk_buff *skb,
 896				       struct tcp_out_options *opts,
 897				       const struct tcp_key *key,
 898				       struct tcp_fastopen_cookie *foc,
 899				       enum tcp_synack_type synack_type,
 900				       struct sk_buff *syn_skb)
 901{
 902	struct inet_request_sock *ireq = inet_rsk(req);
 903	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 904
 905	if (tcp_key_is_md5(key)) {
 
 906		opts->options |= OPTION_MD5;
 907		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 908
 909		/* We can't fit any SACK blocks in a packet with MD5 + TS
 910		 * options. There was discussion about disabling SACK
 911		 * rather than TS in order to fit in better with old,
 912		 * buggy kernels, but that was deemed to be unnecessary.
 913		 */
 914		if (synack_type != TCP_SYNACK_COOKIE)
 915			ireq->tstamp_ok &= !ireq->sack_ok;
 916	} else if (tcp_key_is_ao(key)) {
 917		opts->options |= OPTION_AO;
 918		remaining -= tcp_ao_len_aligned(key->ao_key);
 919		ireq->tstamp_ok &= !ireq->sack_ok;
 920	}
 
 921
 922	/* We always send an MSS option. */
 923	opts->mss = mss;
 924	remaining -= TCPOLEN_MSS_ALIGNED;
 925
 926	if (likely(ireq->wscale_ok)) {
 927		opts->ws = ireq->rcv_wscale;
 928		opts->options |= OPTION_WSCALE;
 929		remaining -= TCPOLEN_WSCALE_ALIGNED;
 930	}
 931	if (likely(ireq->tstamp_ok)) {
 932		opts->options |= OPTION_TS;
 933		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
 934			      tcp_rsk(req)->ts_off;
 935		opts->tsecr = READ_ONCE(req->ts_recent);
 936		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 937	}
 938	if (likely(ireq->sack_ok)) {
 939		opts->options |= OPTION_SACK_ADVERTISE;
 940		if (unlikely(!ireq->tstamp_ok))
 941			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 942	}
 943	if (foc != NULL && foc->len >= 0) {
 944		u32 need = foc->len;
 945
 946		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 947				   TCPOLEN_FASTOPEN_BASE;
 948		need = (need + 3) & ~3U;  /* Align to 32 bits */
 949		if (remaining >= need) {
 950			opts->options |= OPTION_FAST_OPEN_COOKIE;
 951			opts->fastopen_cookie = foc;
 952			remaining -= need;
 953		}
 954	}
 955
 956	mptcp_set_option_cond(req, opts, &remaining);
 957
 958	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
 959
 960	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
 961			      synack_type, opts, &remaining);
 962
 963	return MAX_TCP_OPTION_SPACE - remaining;
 964}
 965
 966/* Compute TCP options for ESTABLISHED sockets. This is not the
 967 * final wire format yet.
 968 */
 969static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 970					struct tcp_out_options *opts,
 971					struct tcp_key *key)
 972{
 973	struct tcp_sock *tp = tcp_sk(sk);
 974	unsigned int size = 0;
 975	unsigned int eff_sacks;
 976
 977	opts->options = 0;
 978
 979	/* Better than switch (key.type) as it has static branches */
 980	if (tcp_key_is_md5(key)) {
 981		opts->options |= OPTION_MD5;
 982		size += TCPOLEN_MD5SIG_ALIGNED;
 983	} else if (tcp_key_is_ao(key)) {
 984		opts->options |= OPTION_AO;
 985		size += tcp_ao_len_aligned(key->ao_key);
 
 
 986	}
 
 987
 988	if (likely(tp->rx_opt.tstamp_ok)) {
 989		opts->options |= OPTION_TS;
 990		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
 991				tp->tsoffset : 0;
 992		opts->tsecr = tp->rx_opt.ts_recent;
 993		size += TCPOLEN_TSTAMP_ALIGNED;
 994	}
 995
 996	/* MPTCP options have precedence over SACK for the limited TCP
 997	 * option space because a MPTCP connection would be forced to
 998	 * fall back to regular TCP if a required multipath option is
 999	 * missing. SACK still gets a chance to use whatever space is
1000	 * left.
1001	 */
1002	if (sk_is_mptcp(sk)) {
1003		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1004		unsigned int opt_size = 0;
1005
1006		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1007					      &opts->mptcp)) {
1008			opts->options |= OPTION_MPTCP;
1009			size += opt_size;
1010		}
1011	}
1012
1013	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1014	if (unlikely(eff_sacks)) {
1015		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1016		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1017					 TCPOLEN_SACK_PERBLOCK))
1018			return size;
1019
1020		opts->num_sack_blocks =
1021			min_t(unsigned int, eff_sacks,
1022			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1023			      TCPOLEN_SACK_PERBLOCK);
1024
1025		size += TCPOLEN_SACK_BASE_ALIGNED +
1026			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1027	}
1028
1029	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1030					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1031		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1032
1033		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1034
1035		size = MAX_TCP_OPTION_SPACE - remaining;
1036	}
1037
1038	return size;
1039}
1040
1041
1042/* TCP SMALL QUEUES (TSQ)
1043 *
1044 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1045 * to reduce RTT and bufferbloat.
1046 * We do this using a special skb destructor (tcp_wfree).
1047 *
1048 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1049 * needs to be reallocated in a driver.
1050 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1051 *
1052 * Since transmit from skb destructor is forbidden, we use a tasklet
1053 * to process all sockets that eventually need to send more skbs.
1054 * We use one tasklet per cpu, with its own queue of sockets.
1055 */
1056struct tsq_tasklet {
1057	struct tasklet_struct	tasklet;
1058	struct list_head	head; /* queue of tcp sockets */
1059};
1060static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1061
1062static void tcp_tsq_write(struct sock *sk)
1063{
1064	if ((1 << sk->sk_state) &
1065	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1066	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1067		struct tcp_sock *tp = tcp_sk(sk);
1068
1069		if (tp->lost_out > tp->retrans_out &&
1070		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1071			tcp_mstamp_refresh(tp);
1072			tcp_xmit_retransmit_queue(sk);
1073		}
1074
1075		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1076			       0, GFP_ATOMIC);
1077	}
1078}
1079
1080static void tcp_tsq_handler(struct sock *sk)
1081{
1082	bh_lock_sock(sk);
1083	if (!sock_owned_by_user(sk))
1084		tcp_tsq_write(sk);
1085	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1086		sock_hold(sk);
1087	bh_unlock_sock(sk);
1088}
1089/*
1090 * One tasklet per cpu tries to send more skbs.
1091 * We run in tasklet context but need to disable irqs when
1092 * transferring tsq->head because tcp_wfree() might
1093 * interrupt us (non NAPI drivers)
1094 */
1095static void tcp_tasklet_func(struct tasklet_struct *t)
1096{
1097	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1098	LIST_HEAD(list);
1099	unsigned long flags;
1100	struct list_head *q, *n;
1101	struct tcp_sock *tp;
1102	struct sock *sk;
1103
1104	local_irq_save(flags);
1105	list_splice_init(&tsq->head, &list);
1106	local_irq_restore(flags);
1107
1108	list_for_each_safe(q, n, &list) {
1109		tp = list_entry(q, struct tcp_sock, tsq_node);
1110		list_del(&tp->tsq_node);
1111
1112		sk = (struct sock *)tp;
1113		smp_mb__before_atomic();
1114		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1115
1116		tcp_tsq_handler(sk);
1117		sk_free(sk);
1118	}
1119}
1120
1121#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1122			  TCPF_WRITE_TIMER_DEFERRED |	\
1123			  TCPF_DELACK_TIMER_DEFERRED |	\
1124			  TCPF_MTU_REDUCED_DEFERRED |	\
1125			  TCPF_ACK_DEFERRED)
1126/**
1127 * tcp_release_cb - tcp release_sock() callback
1128 * @sk: socket
1129 *
1130 * called from release_sock() to perform protocol dependent
1131 * actions before socket release.
1132 */
1133void tcp_release_cb(struct sock *sk)
1134{
1135	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1136	unsigned long nflags;
1137
1138	/* perform an atomic operation only if at least one flag is set */
1139	do {
 
1140		if (!(flags & TCP_DEFERRED_ALL))
1141			return;
1142		nflags = flags & ~TCP_DEFERRED_ALL;
1143	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1144
1145	if (flags & TCPF_TSQ_DEFERRED) {
1146		tcp_tsq_write(sk);
1147		__sock_put(sk);
1148	}
 
 
 
 
 
 
 
 
 
 
1149
1150	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1151		tcp_write_timer_handler(sk);
1152		__sock_put(sk);
1153	}
1154	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1155		tcp_delack_timer_handler(sk);
1156		__sock_put(sk);
1157	}
1158	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1159		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1160		__sock_put(sk);
1161	}
1162	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1163		tcp_send_ack(sk);
1164}
1165EXPORT_SYMBOL(tcp_release_cb);
1166
1167void __init tcp_tasklet_init(void)
1168{
1169	int i;
1170
1171	for_each_possible_cpu(i) {
1172		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1173
1174		INIT_LIST_HEAD(&tsq->head);
1175		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
 
 
1176	}
1177}
1178
1179/*
1180 * Write buffer destructor automatically called from kfree_skb.
1181 * We can't xmit new skbs from this context, as we might already
1182 * hold qdisc lock.
1183 */
1184void tcp_wfree(struct sk_buff *skb)
1185{
1186	struct sock *sk = skb->sk;
1187	struct tcp_sock *tp = tcp_sk(sk);
1188	unsigned long flags, nval, oval;
1189	struct tsq_tasklet *tsq;
1190	bool empty;
1191
1192	/* Keep one reference on sk_wmem_alloc.
1193	 * Will be released by sk_free() from here or tcp_tasklet_func()
1194	 */
1195	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1196
1197	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1198	 * Wait until our queues (qdisc + devices) are drained.
1199	 * This gives :
1200	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1201	 * - chance for incoming ACK (processed by another cpu maybe)
1202	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1203	 */
1204	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1205		goto out;
1206
1207	oval = smp_load_acquire(&sk->sk_tsq_flags);
1208	do {
 
 
1209		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1210			goto out;
1211
1212		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1213	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
 
 
1214
1215	/* queue this socket to tasklet queue */
1216	local_irq_save(flags);
1217	tsq = this_cpu_ptr(&tsq_tasklet);
1218	empty = list_empty(&tsq->head);
1219	list_add(&tp->tsq_node, &tsq->head);
1220	if (empty)
1221		tasklet_schedule(&tsq->tasklet);
1222	local_irq_restore(flags);
1223	return;
 
1224out:
1225	sk_free(sk);
1226}
1227
1228/* Note: Called under soft irq.
1229 * We can call TCP stack right away, unless socket is owned by user.
1230 */
1231enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1232{
1233	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1234	struct sock *sk = (struct sock *)tp;
1235
1236	tcp_tsq_handler(sk);
1237	sock_put(sk);
1238
1239	return HRTIMER_NORESTART;
1240}
1241
1242static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1243				      u64 prior_wstamp)
1244{
1245	struct tcp_sock *tp = tcp_sk(sk);
1246
1247	if (sk->sk_pacing_status != SK_PACING_NONE) {
1248		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1249
1250		/* Original sch_fq does not pace first 10 MSS
1251		 * Note that tp->data_segs_out overflows after 2^32 packets,
1252		 * this is a minor annoyance.
1253		 */
1254		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1255			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1256			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1257
1258			/* take into account OS jitter */
1259			len_ns -= min_t(u64, len_ns / 2, credit);
1260			tp->tcp_wstamp_ns += len_ns;
1261		}
1262	}
1263	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1264}
1265
1266INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1267INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1268INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1269
1270/* This routine actually transmits TCP packets queued in by
1271 * tcp_do_sendmsg().  This is used by both the initial
1272 * transmission and possible later retransmissions.
1273 * All SKB's seen here are completely headerless.  It is our
1274 * job to build the TCP header, and pass the packet down to
1275 * IP so it can do the same plus pass the packet off to the
1276 * device.
1277 *
1278 * We are working here with either a clone of the original
1279 * SKB, or a fresh unique copy made by the retransmit engine.
1280 */
1281static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1282			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1283{
1284	const struct inet_connection_sock *icsk = inet_csk(sk);
1285	struct inet_sock *inet;
1286	struct tcp_sock *tp;
1287	struct tcp_skb_cb *tcb;
1288	struct tcp_out_options opts;
1289	unsigned int tcp_options_size, tcp_header_size;
1290	struct sk_buff *oskb = NULL;
1291	struct tcp_key key;
1292	struct tcphdr *th;
1293	u64 prior_wstamp;
1294	int err;
1295
1296	BUG_ON(!skb || !tcp_skb_pcount(skb));
1297	tp = tcp_sk(sk);
1298	prior_wstamp = tp->tcp_wstamp_ns;
1299	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1300	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1301	if (clone_it) {
 
 
1302		oskb = skb;
1303
1304		tcp_skb_tsorted_save(oskb) {
1305			if (unlikely(skb_cloned(oskb)))
1306				skb = pskb_copy(oskb, gfp_mask);
1307			else
1308				skb = skb_clone(oskb, gfp_mask);
1309		} tcp_skb_tsorted_restore(oskb);
1310
1311		if (unlikely(!skb))
1312			return -ENOBUFS;
1313		/* retransmit skbs might have a non zero value in skb->dev
1314		 * because skb->dev is aliased with skb->rbnode.rb_left
1315		 */
1316		skb->dev = NULL;
1317	}
1318
1319	inet = inet_sk(sk);
1320	tcb = TCP_SKB_CB(skb);
1321	memset(&opts, 0, sizeof(opts));
1322
1323	tcp_get_current_key(sk, &key);
1324	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1325		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1326	} else {
1327		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
 
1328		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1329		 * at receiver : This slightly improve GRO performance.
1330		 * Note that we do not force the PSH flag for non GSO packets,
1331		 * because they might be sent under high congestion events,
1332		 * and in this case it is better to delay the delivery of 1-MSS
1333		 * packets and thus the corresponding ACK packet that would
1334		 * release the following packet.
1335		 */
1336		if (tcp_skb_pcount(skb) > 1)
1337			tcb->tcp_flags |= TCPHDR_PSH;
1338	}
1339	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1340
1341	/* We set skb->ooo_okay to one if this packet can select
1342	 * a different TX queue than prior packets of this flow,
1343	 * to avoid self inflicted reorders.
1344	 * The 'other' queue decision is based on current cpu number
1345	 * if XPS is enabled, or sk->sk_txhash otherwise.
1346	 * We can switch to another (and better) queue if:
1347	 * 1) No packet with payload is in qdisc/device queues.
1348	 *    Delays in TX completion can defeat the test
1349	 *    even if packets were already sent.
1350	 * 2) Or rtx queue is empty.
1351	 *    This mitigates above case if ACK packets for
1352	 *    all prior packets were already processed.
1353	 */
1354	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1355			tcp_rtx_queue_empty(sk);
1356
1357	/* If we had to use memory reserve to allocate this skb,
1358	 * this might cause drops if packet is looped back :
1359	 * Other socket might not have SOCK_MEMALLOC.
1360	 * Packets not looped back do not care about pfmemalloc.
1361	 */
1362	skb->pfmemalloc = 0;
1363
1364	skb_push(skb, tcp_header_size);
1365	skb_reset_transport_header(skb);
1366
1367	skb_orphan(skb);
1368	skb->sk = sk;
1369	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
 
1370	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1371
1372	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1373
1374	/* Build TCP header and checksum it. */
1375	th = (struct tcphdr *)skb->data;
1376	th->source		= inet->inet_sport;
1377	th->dest		= inet->inet_dport;
1378	th->seq			= htonl(tcb->seq);
1379	th->ack_seq		= htonl(rcv_nxt);
1380	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1381					tcb->tcp_flags);
1382
1383	th->check		= 0;
1384	th->urg_ptr		= 0;
1385
1386	/* The urg_mode check is necessary during a below snd_una win probe */
1387	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1388		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1389			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1390			th->urg = 1;
1391		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1392			th->urg_ptr = htons(0xFFFF);
1393			th->urg = 1;
1394		}
1395	}
1396
 
1397	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1398	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1399		th->window      = htons(tcp_select_window(sk));
1400		tcp_ecn_send(sk, skb, th, tcp_header_size);
1401	} else {
1402		/* RFC1323: The window in SYN & SYN/ACK segments
1403		 * is never scaled.
1404		 */
1405		th->window	= htons(min(tp->rcv_wnd, 65535U));
1406	}
1407
1408	tcp_options_write(th, tp, NULL, &opts, &key);
1409
1410	if (tcp_key_is_md5(&key)) {
1411#ifdef CONFIG_TCP_MD5SIG
1412		/* Calculate the MD5 hash, as we have all we need now */
1413		sk_gso_disable(sk);
 
1414		tp->af_specific->calc_md5_hash(opts.hash_location,
1415					       key.md5_key, sk, skb);
 
1416#endif
1417	} else if (tcp_key_is_ao(&key)) {
1418		int err;
1419
1420		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1421					  opts.hash_location);
1422		if (err) {
1423			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1424			return -ENOMEM;
1425		}
1426	}
1427
1428	/* BPF prog is the last one writing header option */
1429	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1430
1431	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1432			   tcp_v6_send_check, tcp_v4_send_check,
1433			   sk, skb);
1434
1435	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1436		tcp_event_ack_sent(sk, rcv_nxt);
1437
1438	if (skb->len != tcp_header_size) {
1439		tcp_event_data_sent(tp, sk);
1440		tp->data_segs_out += tcp_skb_pcount(skb);
1441		tp->bytes_sent += skb->len - tcp_header_size;
1442	}
1443
1444	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1445		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1446			      tcp_skb_pcount(skb));
1447
1448	tp->segs_out += tcp_skb_pcount(skb);
1449	skb_set_hash_from_sk(skb, sk);
1450	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1451	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1452	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1453
1454	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1455
1456	/* Cleanup our debris for IP stacks */
1457	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1458			       sizeof(struct inet6_skb_parm)));
1459
1460	tcp_add_tx_delay(skb, tp);
1461
1462	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1463				 inet6_csk_xmit, ip_queue_xmit,
1464				 sk, skb, &inet->cork.fl);
1465
1466	if (unlikely(err > 0)) {
1467		tcp_enter_cwr(sk);
1468		err = net_xmit_eval(err);
1469	}
1470	if (!err && oskb) {
1471		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1472		tcp_rate_skb_sent(sk, oskb);
1473	}
1474	return err;
1475}
1476
1477static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1478			    gfp_t gfp_mask)
1479{
1480	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1481				  tcp_sk(sk)->rcv_nxt);
1482}
1483
1484/* This routine just queues the buffer for sending.
1485 *
1486 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1487 * otherwise socket can stall.
1488 */
1489static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1490{
1491	struct tcp_sock *tp = tcp_sk(sk);
1492
1493	/* Advance write_seq and place onto the write_queue. */
1494	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1495	__skb_header_release(skb);
1496	tcp_add_write_queue_tail(sk, skb);
1497	sk_wmem_queued_add(sk, skb->truesize);
1498	sk_mem_charge(sk, skb->truesize);
1499}
1500
1501/* Initialize TSO segments for a packet. */
1502static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1503{
1504	if (skb->len <= mss_now) {
1505		/* Avoid the costly divide in the normal
1506		 * non-TSO case.
1507		 */
1508		tcp_skb_pcount_set(skb, 1);
1509		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1510	} else {
1511		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1512		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1513	}
1514}
1515
1516/* Pcount in the middle of the write queue got changed, we need to do various
1517 * tweaks to fix counters
1518 */
1519static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1520{
1521	struct tcp_sock *tp = tcp_sk(sk);
1522
1523	tp->packets_out -= decr;
1524
1525	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1526		tp->sacked_out -= decr;
1527	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1528		tp->retrans_out -= decr;
1529	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1530		tp->lost_out -= decr;
1531
1532	/* Reno case is special. Sigh... */
1533	if (tcp_is_reno(tp) && decr > 0)
1534		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1535
1536	if (tp->lost_skb_hint &&
1537	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1538	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1539		tp->lost_cnt_hint -= decr;
1540
1541	tcp_verify_left_out(tp);
1542}
1543
1544static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1545{
1546	return TCP_SKB_CB(skb)->txstamp_ack ||
1547		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1548}
1549
1550static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1551{
1552	struct skb_shared_info *shinfo = skb_shinfo(skb);
1553
1554	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1555	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1556		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1557		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1558
1559		shinfo->tx_flags &= ~tsflags;
1560		shinfo2->tx_flags |= tsflags;
1561		swap(shinfo->tskey, shinfo2->tskey);
1562		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1563		TCP_SKB_CB(skb)->txstamp_ack = 0;
1564	}
1565}
1566
1567static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1568{
1569	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1570	TCP_SKB_CB(skb)->eor = 0;
1571}
1572
1573/* Insert buff after skb on the write or rtx queue of sk.  */
1574static void tcp_insert_write_queue_after(struct sk_buff *skb,
1575					 struct sk_buff *buff,
1576					 struct sock *sk,
1577					 enum tcp_queue tcp_queue)
1578{
1579	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1580		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1581	else
1582		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1583}
1584
1585/* Function to create two new TCP segments.  Shrinks the given segment
1586 * to the specified size and appends a new segment with the rest of the
1587 * packet to the list.  This won't be called frequently, I hope.
1588 * Remember, these are still headerless SKBs at this point.
1589 */
1590int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1591		 struct sk_buff *skb, u32 len,
1592		 unsigned int mss_now, gfp_t gfp)
1593{
1594	struct tcp_sock *tp = tcp_sk(sk);
1595	struct sk_buff *buff;
1596	int old_factor;
1597	long limit;
1598	int nlen;
1599	u8 flags;
1600
1601	if (WARN_ON(len > skb->len))
1602		return -EINVAL;
1603
1604	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
 
 
1605
1606	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1607	 * We need some allowance to not penalize applications setting small
1608	 * SO_SNDBUF values.
1609	 * Also allow first and last skb in retransmit queue to be split.
1610	 */
1611	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1612	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1613		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1614		     skb != tcp_rtx_queue_head(sk) &&
1615		     skb != tcp_rtx_queue_tail(sk))) {
1616		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1617		return -ENOMEM;
1618	}
1619
1620	if (skb_unclone_keeptruesize(skb, gfp))
1621		return -ENOMEM;
1622
1623	/* Get a new skb... force flag on. */
1624	buff = tcp_stream_alloc_skb(sk, gfp, true);
1625	if (!buff)
1626		return -ENOMEM; /* We'll just try again later. */
1627	skb_copy_decrypted(buff, skb);
1628	mptcp_skb_ext_copy(buff, skb);
1629
1630	sk_wmem_queued_add(sk, buff->truesize);
1631	sk_mem_charge(sk, buff->truesize);
1632	nlen = skb->len - len;
1633	buff->truesize += nlen;
1634	skb->truesize -= nlen;
1635
1636	/* Correct the sequence numbers. */
1637	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1638	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1639	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1640
1641	/* PSH and FIN should only be set in the second packet. */
1642	flags = TCP_SKB_CB(skb)->tcp_flags;
1643	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1644	TCP_SKB_CB(buff)->tcp_flags = flags;
1645	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1646	tcp_skb_fragment_eor(skb, buff);
1647
1648	skb_split(skb, buff, len);
1649
1650	skb_set_delivery_time(buff, skb->tstamp, true);
 
 
1651	tcp_fragment_tstamp(skb, buff);
1652
1653	old_factor = tcp_skb_pcount(skb);
1654
1655	/* Fix up tso_factor for both original and new SKB.  */
1656	tcp_set_skb_tso_segs(skb, mss_now);
1657	tcp_set_skb_tso_segs(buff, mss_now);
1658
1659	/* Update delivered info for the new segment */
1660	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1661
1662	/* If this packet has been sent out already, we must
1663	 * adjust the various packet counters.
1664	 */
1665	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1666		int diff = old_factor - tcp_skb_pcount(skb) -
1667			tcp_skb_pcount(buff);
1668
1669		if (diff)
1670			tcp_adjust_pcount(sk, skb, diff);
1671	}
1672
1673	/* Link BUFF into the send queue. */
1674	__skb_header_release(buff);
1675	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1676	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1677		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1678
1679	return 0;
1680}
1681
1682/* This is similar to __pskb_pull_tail(). The difference is that pulled
1683 * data is not copied, but immediately discarded.
1684 */
1685static int __pskb_trim_head(struct sk_buff *skb, int len)
1686{
1687	struct skb_shared_info *shinfo;
1688	int i, k, eat;
1689
1690	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
 
 
 
 
 
 
1691	eat = len;
1692	k = 0;
1693	shinfo = skb_shinfo(skb);
1694	for (i = 0; i < shinfo->nr_frags; i++) {
1695		int size = skb_frag_size(&shinfo->frags[i]);
1696
1697		if (size <= eat) {
1698			skb_frag_unref(skb, i);
1699			eat -= size;
1700		} else {
1701			shinfo->frags[k] = shinfo->frags[i];
1702			if (eat) {
1703				skb_frag_off_add(&shinfo->frags[k], eat);
1704				skb_frag_size_sub(&shinfo->frags[k], eat);
1705				eat = 0;
1706			}
1707			k++;
1708		}
1709	}
1710	shinfo->nr_frags = k;
1711
1712	skb->data_len -= len;
1713	skb->len = skb->data_len;
1714	return len;
1715}
1716
1717/* Remove acked data from a packet in the transmit queue. */
1718int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1719{
1720	u32 delta_truesize;
1721
1722	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1723		return -ENOMEM;
1724
1725	delta_truesize = __pskb_trim_head(skb, len);
1726
1727	TCP_SKB_CB(skb)->seq += len;
 
1728
1729	skb->truesize	   -= delta_truesize;
1730	sk_wmem_queued_add(sk, -delta_truesize);
1731	if (!skb_zcopy_pure(skb))
1732		sk_mem_uncharge(sk, delta_truesize);
 
 
1733
1734	/* Any change of skb->len requires recalculation of tso factor. */
1735	if (tcp_skb_pcount(skb) > 1)
1736		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1737
1738	return 0;
1739}
1740
1741/* Calculate MSS not accounting any TCP options.  */
1742static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1743{
1744	const struct tcp_sock *tp = tcp_sk(sk);
1745	const struct inet_connection_sock *icsk = inet_csk(sk);
1746	int mss_now;
1747
1748	/* Calculate base mss without TCP options:
1749	   It is MMS_S - sizeof(tcphdr) of rfc1122
1750	 */
1751	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1752
 
 
 
 
 
 
 
 
1753	/* Clamp it (mss_clamp does not include tcp options) */
1754	if (mss_now > tp->rx_opt.mss_clamp)
1755		mss_now = tp->rx_opt.mss_clamp;
1756
1757	/* Now subtract optional transport overhead */
1758	mss_now -= icsk->icsk_ext_hdr_len;
1759
1760	/* Then reserve room for full set of TCP options and 8 bytes of data */
1761	mss_now = max(mss_now,
1762		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1763	return mss_now;
1764}
1765
1766/* Calculate MSS. Not accounting for SACKs here.  */
1767int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1768{
1769	/* Subtract TCP options size, not including SACKs */
1770	return __tcp_mtu_to_mss(sk, pmtu) -
1771	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1772}
1773EXPORT_SYMBOL(tcp_mtu_to_mss);
1774
1775/* Inverse of above */
1776int tcp_mss_to_mtu(struct sock *sk, int mss)
1777{
1778	const struct tcp_sock *tp = tcp_sk(sk);
1779	const struct inet_connection_sock *icsk = inet_csk(sk);
 
1780
1781	return mss +
1782	      tp->tcp_header_len +
1783	      icsk->icsk_ext_hdr_len +
1784	      icsk->icsk_af_ops->net_header_len;
 
 
 
 
 
 
 
 
 
1785}
1786EXPORT_SYMBOL(tcp_mss_to_mtu);
1787
1788/* MTU probing init per socket */
1789void tcp_mtup_init(struct sock *sk)
1790{
1791	struct tcp_sock *tp = tcp_sk(sk);
1792	struct inet_connection_sock *icsk = inet_csk(sk);
1793	struct net *net = sock_net(sk);
1794
1795	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1796	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1797			       icsk->icsk_af_ops->net_header_len;
1798	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1799	icsk->icsk_mtup.probe_size = 0;
1800	if (icsk->icsk_mtup.enabled)
1801		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1802}
1803EXPORT_SYMBOL(tcp_mtup_init);
1804
1805/* This function synchronize snd mss to current pmtu/exthdr set.
1806
1807   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1808   for TCP options, but includes only bare TCP header.
1809
1810   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1811   It is minimum of user_mss and mss received with SYN.
1812   It also does not include TCP options.
1813
1814   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1815
1816   tp->mss_cache is current effective sending mss, including
1817   all tcp options except for SACKs. It is evaluated,
1818   taking into account current pmtu, but never exceeds
1819   tp->rx_opt.mss_clamp.
1820
1821   NOTE1. rfc1122 clearly states that advertised MSS
1822   DOES NOT include either tcp or ip options.
1823
1824   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1825   are READ ONLY outside this function.		--ANK (980731)
1826 */
1827unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1828{
1829	struct tcp_sock *tp = tcp_sk(sk);
1830	struct inet_connection_sock *icsk = inet_csk(sk);
1831	int mss_now;
1832
1833	if (icsk->icsk_mtup.search_high > pmtu)
1834		icsk->icsk_mtup.search_high = pmtu;
1835
1836	mss_now = tcp_mtu_to_mss(sk, pmtu);
1837	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1838
1839	/* And store cached results */
1840	icsk->icsk_pmtu_cookie = pmtu;
1841	if (icsk->icsk_mtup.enabled)
1842		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1843	tp->mss_cache = mss_now;
1844
1845	return mss_now;
1846}
1847EXPORT_SYMBOL(tcp_sync_mss);
1848
1849/* Compute the current effective MSS, taking SACKs and IP options,
1850 * and even PMTU discovery events into account.
1851 */
1852unsigned int tcp_current_mss(struct sock *sk)
1853{
1854	const struct tcp_sock *tp = tcp_sk(sk);
1855	const struct dst_entry *dst = __sk_dst_get(sk);
1856	u32 mss_now;
1857	unsigned int header_len;
1858	struct tcp_out_options opts;
1859	struct tcp_key key;
1860
1861	mss_now = tp->mss_cache;
1862
1863	if (dst) {
1864		u32 mtu = dst_mtu(dst);
1865		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1866			mss_now = tcp_sync_mss(sk, mtu);
1867	}
1868	tcp_get_current_key(sk, &key);
1869	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1870		     sizeof(struct tcphdr);
1871	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1872	 * some common options. If this is an odd packet (because we have SACK
1873	 * blocks etc) then our calculated header_len will be different, and
1874	 * we have to adjust mss_now correspondingly */
1875	if (header_len != tp->tcp_header_len) {
1876		int delta = (int) header_len - tp->tcp_header_len;
1877		mss_now -= delta;
1878	}
1879
1880	return mss_now;
1881}
1882
1883/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1884 * As additional protections, we do not touch cwnd in retransmission phases,
1885 * and if application hit its sndbuf limit recently.
1886 */
1887static void tcp_cwnd_application_limited(struct sock *sk)
1888{
1889	struct tcp_sock *tp = tcp_sk(sk);
1890
1891	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1892	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1893		/* Limited by application or receiver window. */
1894		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1895		u32 win_used = max(tp->snd_cwnd_used, init_win);
1896		if (win_used < tcp_snd_cwnd(tp)) {
1897			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1898			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1899		}
1900		tp->snd_cwnd_used = 0;
1901	}
1902	tp->snd_cwnd_stamp = tcp_jiffies32;
1903}
1904
1905static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1906{
1907	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1908	struct tcp_sock *tp = tcp_sk(sk);
1909
1910	/* Track the strongest available signal of the degree to which the cwnd
1911	 * is fully utilized. If cwnd-limited then remember that fact for the
1912	 * current window. If not cwnd-limited then track the maximum number of
1913	 * outstanding packets in the current window. (If cwnd-limited then we
1914	 * chose to not update tp->max_packets_out to avoid an extra else
1915	 * clause with no functional impact.)
1916	 */
1917	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1918	    is_cwnd_limited ||
1919	    (!tp->is_cwnd_limited &&
1920	     tp->packets_out > tp->max_packets_out)) {
1921		tp->is_cwnd_limited = is_cwnd_limited;
1922		tp->max_packets_out = tp->packets_out;
1923		tp->cwnd_usage_seq = tp->snd_nxt;
1924	}
1925
1926	if (tcp_is_cwnd_limited(sk)) {
1927		/* Network is feed fully. */
1928		tp->snd_cwnd_used = 0;
1929		tp->snd_cwnd_stamp = tcp_jiffies32;
1930	} else {
1931		/* Network starves. */
1932		if (tp->packets_out > tp->snd_cwnd_used)
1933			tp->snd_cwnd_used = tp->packets_out;
1934
1935		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1936		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1937		    !ca_ops->cong_control)
1938			tcp_cwnd_application_limited(sk);
1939
1940		/* The following conditions together indicate the starvation
1941		 * is caused by insufficient sender buffer:
1942		 * 1) just sent some data (see tcp_write_xmit)
1943		 * 2) not cwnd limited (this else condition)
1944		 * 3) no more data to send (tcp_write_queue_empty())
1945		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1946		 */
1947		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1948		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1949		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1950			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1951	}
1952}
1953
1954/* Minshall's variant of the Nagle send check. */
1955static bool tcp_minshall_check(const struct tcp_sock *tp)
1956{
1957	return after(tp->snd_sml, tp->snd_una) &&
1958		!after(tp->snd_sml, tp->snd_nxt);
1959}
1960
1961/* Update snd_sml if this skb is under mss
1962 * Note that a TSO packet might end with a sub-mss segment
1963 * The test is really :
1964 * if ((skb->len % mss) != 0)
1965 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1966 * But we can avoid doing the divide again given we already have
1967 *  skb_pcount = skb->len / mss_now
1968 */
1969static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1970				const struct sk_buff *skb)
1971{
1972	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1973		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1974}
1975
1976/* Return false, if packet can be sent now without violation Nagle's rules:
1977 * 1. It is full sized. (provided by caller in %partial bool)
1978 * 2. Or it contains FIN. (already checked by caller)
1979 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1980 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1981 *    With Minshall's modification: all sent small packets are ACKed.
1982 */
1983static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1984			    int nonagle)
1985{
1986	return partial &&
1987		((nonagle & TCP_NAGLE_CORK) ||
1988		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1989}
1990
1991/* Return how many segs we'd like on a TSO packet,
1992 * depending on current pacing rate, and how close the peer is.
1993 *
1994 * Rationale is:
1995 * - For close peers, we rather send bigger packets to reduce
1996 *   cpu costs, because occasional losses will be repaired fast.
1997 * - For long distance/rtt flows, we would like to get ACK clocking
1998 *   with 1 ACK per ms.
1999 *
2000 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2001 * in bigger TSO bursts. We we cut the RTT-based allowance in half
2002 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2003 * is below 1500 bytes after 6 * ~500 usec = 3ms.
2004 */
2005static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2006			    int min_tso_segs)
2007{
2008	unsigned long bytes;
2009	u32 r;
2010
2011	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
 
 
2012
2013	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2014	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2015		bytes += sk->sk_gso_max_size >> r;
2016
2017	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
 
2018
2019	return max_t(u32, bytes / mss_now, min_tso_segs);
2020}
2021
2022/* Return the number of segments we want in the skb we are transmitting.
2023 * See if congestion control module wants to decide; otherwise, autosize.
2024 */
2025static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2026{
2027	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2028	u32 min_tso, tso_segs;
2029
2030	min_tso = ca_ops->min_tso_segs ?
2031			ca_ops->min_tso_segs(sk) :
2032			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2033
2034	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2035	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2036}
2037
2038/* Returns the portion of skb which can be sent right away */
2039static unsigned int tcp_mss_split_point(const struct sock *sk,
2040					const struct sk_buff *skb,
2041					unsigned int mss_now,
2042					unsigned int max_segs,
2043					int nonagle)
2044{
2045	const struct tcp_sock *tp = tcp_sk(sk);
2046	u32 partial, needed, window, max_len;
2047
2048	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2049	max_len = mss_now * max_segs;
2050
2051	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2052		return max_len;
2053
2054	needed = min(skb->len, window);
2055
2056	if (max_len <= needed)
2057		return max_len;
2058
2059	partial = needed % mss_now;
2060	/* If last segment is not a full MSS, check if Nagle rules allow us
2061	 * to include this last segment in this skb.
2062	 * Otherwise, we'll split the skb at last MSS boundary
2063	 */
2064	if (tcp_nagle_check(partial != 0, tp, nonagle))
2065		return needed - partial;
2066
2067	return needed;
2068}
2069
2070/* Can at least one segment of SKB be sent right now, according to the
2071 * congestion window rules?  If so, return how many segments are allowed.
2072 */
2073static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2074					 const struct sk_buff *skb)
2075{
2076	u32 in_flight, cwnd, halfcwnd;
2077
2078	/* Don't be strict about the congestion window for the final FIN.  */
2079	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2080	    tcp_skb_pcount(skb) == 1)
2081		return 1;
2082
2083	in_flight = tcp_packets_in_flight(tp);
2084	cwnd = tcp_snd_cwnd(tp);
2085	if (in_flight >= cwnd)
2086		return 0;
2087
2088	/* For better scheduling, ensure we have at least
2089	 * 2 GSO packets in flight.
2090	 */
2091	halfcwnd = max(cwnd >> 1, 1U);
2092	return min(halfcwnd, cwnd - in_flight);
2093}
2094
2095/* Initialize TSO state of a skb.
2096 * This must be invoked the first time we consider transmitting
2097 * SKB onto the wire.
2098 */
2099static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2100{
2101	int tso_segs = tcp_skb_pcount(skb);
2102
2103	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2104		tcp_set_skb_tso_segs(skb, mss_now);
2105		tso_segs = tcp_skb_pcount(skb);
2106	}
2107	return tso_segs;
2108}
2109
2110
2111/* Return true if the Nagle test allows this packet to be
2112 * sent now.
2113 */
2114static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2115				  unsigned int cur_mss, int nonagle)
2116{
2117	/* Nagle rule does not apply to frames, which sit in the middle of the
2118	 * write_queue (they have no chances to get new data).
2119	 *
2120	 * This is implemented in the callers, where they modify the 'nonagle'
2121	 * argument based upon the location of SKB in the send queue.
2122	 */
2123	if (nonagle & TCP_NAGLE_PUSH)
2124		return true;
2125
2126	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2127	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2128		return true;
2129
2130	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2131		return true;
2132
2133	return false;
2134}
2135
2136/* Does at least the first segment of SKB fit into the send window? */
2137static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2138			     const struct sk_buff *skb,
2139			     unsigned int cur_mss)
2140{
2141	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2142
2143	if (skb->len > cur_mss)
2144		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2145
2146	return !after(end_seq, tcp_wnd_end(tp));
2147}
2148
2149/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2150 * which is put after SKB on the list.  It is very much like
2151 * tcp_fragment() except that it may make several kinds of assumptions
2152 * in order to speed up the splitting operation.  In particular, we
2153 * know that all the data is in scatter-gather pages, and that the
2154 * packet has never been sent out before (and thus is not cloned).
2155 */
2156static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2157			unsigned int mss_now, gfp_t gfp)
2158{
2159	int nlen = skb->len - len;
2160	struct sk_buff *buff;
2161	u8 flags;
2162
2163	/* All of a TSO frame must be composed of paged data.  */
2164	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
 
 
2165
2166	buff = tcp_stream_alloc_skb(sk, gfp, true);
2167	if (unlikely(!buff))
2168		return -ENOMEM;
2169	skb_copy_decrypted(buff, skb);
2170	mptcp_skb_ext_copy(buff, skb);
2171
2172	sk_wmem_queued_add(sk, buff->truesize);
2173	sk_mem_charge(sk, buff->truesize);
2174	buff->truesize += nlen;
2175	skb->truesize -= nlen;
2176
2177	/* Correct the sequence numbers. */
2178	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2179	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2180	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2181
2182	/* PSH and FIN should only be set in the second packet. */
2183	flags = TCP_SKB_CB(skb)->tcp_flags;
2184	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2185	TCP_SKB_CB(buff)->tcp_flags = flags;
2186
 
 
 
2187	tcp_skb_fragment_eor(skb, buff);
2188
 
2189	skb_split(skb, buff, len);
2190	tcp_fragment_tstamp(skb, buff);
2191
2192	/* Fix up tso_factor for both original and new SKB.  */
2193	tcp_set_skb_tso_segs(skb, mss_now);
2194	tcp_set_skb_tso_segs(buff, mss_now);
2195
2196	/* Link BUFF into the send queue. */
2197	__skb_header_release(buff);
2198	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2199
2200	return 0;
2201}
2202
2203/* Try to defer sending, if possible, in order to minimize the amount
2204 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2205 *
2206 * This algorithm is from John Heffner.
2207 */
2208static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2209				 bool *is_cwnd_limited,
2210				 bool *is_rwnd_limited,
2211				 u32 max_segs)
2212{
2213	const struct inet_connection_sock *icsk = inet_csk(sk);
2214	u32 send_win, cong_win, limit, in_flight;
2215	struct tcp_sock *tp = tcp_sk(sk);
2216	struct sk_buff *head;
2217	int win_divisor;
2218	s64 delta;
2219
2220	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2221		goto send_now;
2222
2223	/* Avoid bursty behavior by allowing defer
2224	 * only if the last write was recent (1 ms).
2225	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2226	 * packets waiting in a qdisc or device for EDT delivery.
2227	 */
2228	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2229	if (delta > 0)
2230		goto send_now;
2231
2232	in_flight = tcp_packets_in_flight(tp);
2233
2234	BUG_ON(tcp_skb_pcount(skb) <= 1);
2235	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2236
2237	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2238
2239	/* From in_flight test above, we know that cwnd > in_flight.  */
2240	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2241
2242	limit = min(send_win, cong_win);
2243
2244	/* If a full-sized TSO skb can be sent, do it. */
2245	if (limit >= max_segs * tp->mss_cache)
2246		goto send_now;
2247
2248	/* Middle in queue won't get any more data, full sendable already? */
2249	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2250		goto send_now;
2251
2252	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2253	if (win_divisor) {
2254		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2255
2256		/* If at least some fraction of a window is available,
2257		 * just use it.
2258		 */
2259		chunk /= win_divisor;
2260		if (limit >= chunk)
2261			goto send_now;
2262	} else {
2263		/* Different approach, try not to defer past a single
2264		 * ACK.  Receiver should ACK every other full sized
2265		 * frame, so if we have space for more than 3 frames
2266		 * then send now.
2267		 */
2268		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2269			goto send_now;
2270	}
2271
2272	/* TODO : use tsorted_sent_queue ? */
2273	head = tcp_rtx_queue_head(sk);
2274	if (!head)
2275		goto send_now;
2276	delta = tp->tcp_clock_cache - head->tstamp;
2277	/* If next ACK is likely to come too late (half srtt), do not defer */
2278	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2279		goto send_now;
2280
2281	/* Ok, it looks like it is advisable to defer.
2282	 * Three cases are tracked :
2283	 * 1) We are cwnd-limited
2284	 * 2) We are rwnd-limited
2285	 * 3) We are application limited.
2286	 */
2287	if (cong_win < send_win) {
2288		if (cong_win <= skb->len) {
2289			*is_cwnd_limited = true;
2290			return true;
2291		}
2292	} else {
2293		if (send_win <= skb->len) {
2294			*is_rwnd_limited = true;
2295			return true;
2296		}
2297	}
2298
2299	/* If this packet won't get more data, do not wait. */
2300	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2301	    TCP_SKB_CB(skb)->eor)
2302		goto send_now;
2303
2304	return true;
2305
2306send_now:
2307	return false;
2308}
2309
2310static inline void tcp_mtu_check_reprobe(struct sock *sk)
2311{
2312	struct inet_connection_sock *icsk = inet_csk(sk);
2313	struct tcp_sock *tp = tcp_sk(sk);
2314	struct net *net = sock_net(sk);
2315	u32 interval;
2316	s32 delta;
2317
2318	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2319	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2320	if (unlikely(delta >= interval * HZ)) {
2321		int mss = tcp_current_mss(sk);
2322
2323		/* Update current search range */
2324		icsk->icsk_mtup.probe_size = 0;
2325		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2326			sizeof(struct tcphdr) +
2327			icsk->icsk_af_ops->net_header_len;
2328		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2329
2330		/* Update probe time stamp */
2331		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2332	}
2333}
2334
2335static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2336{
2337	struct sk_buff *skb, *next;
2338
2339	skb = tcp_send_head(sk);
2340	tcp_for_write_queue_from_safe(skb, next, sk) {
2341		if (len <= skb->len)
2342			break;
2343
2344		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2345		    tcp_has_tx_tstamp(skb) ||
2346		    !skb_pure_zcopy_same(skb, next))
2347			return false;
2348
2349		len -= skb->len;
2350	}
2351
2352	return true;
2353}
2354
2355static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2356			     int probe_size)
2357{
2358	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2359	int i, todo, len = 0, nr_frags = 0;
2360	const struct sk_buff *skb;
2361
2362	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2363		return -ENOMEM;
2364
2365	skb_queue_walk(&sk->sk_write_queue, skb) {
2366		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2367
2368		if (skb_headlen(skb))
2369			return -EINVAL;
2370
2371		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2372			if (len >= probe_size)
2373				goto commit;
2374			todo = min_t(int, skb_frag_size(fragfrom),
2375				     probe_size - len);
2376			len += todo;
2377			if (lastfrag &&
2378			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2379			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2380						      skb_frag_size(lastfrag)) {
2381				skb_frag_size_add(lastfrag, todo);
2382				continue;
2383			}
2384			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2385				return -E2BIG;
2386			skb_frag_page_copy(fragto, fragfrom);
2387			skb_frag_off_copy(fragto, fragfrom);
2388			skb_frag_size_set(fragto, todo);
2389			nr_frags++;
2390			lastfrag = fragto++;
2391		}
2392	}
2393commit:
2394	WARN_ON_ONCE(len != probe_size);
2395	for (i = 0; i < nr_frags; i++)
2396		skb_frag_ref(to, i);
2397
2398	skb_shinfo(to)->nr_frags = nr_frags;
2399	to->truesize += probe_size;
2400	to->len += probe_size;
2401	to->data_len += probe_size;
2402	__skb_header_release(to);
2403	return 0;
2404}
2405
2406/* Create a new MTU probe if we are ready.
2407 * MTU probe is regularly attempting to increase the path MTU by
2408 * deliberately sending larger packets.  This discovers routing
2409 * changes resulting in larger path MTUs.
2410 *
2411 * Returns 0 if we should wait to probe (no cwnd available),
2412 *         1 if a probe was sent,
2413 *         -1 otherwise
2414 */
2415static int tcp_mtu_probe(struct sock *sk)
2416{
2417	struct inet_connection_sock *icsk = inet_csk(sk);
2418	struct tcp_sock *tp = tcp_sk(sk);
2419	struct sk_buff *skb, *nskb, *next;
2420	struct net *net = sock_net(sk);
2421	int probe_size;
2422	int size_needed;
2423	int copy, len;
2424	int mss_now;
2425	int interval;
2426
2427	/* Not currently probing/verifying,
2428	 * not in recovery,
2429	 * have enough cwnd, and
2430	 * not SACKing (the variable headers throw things off)
2431	 */
2432	if (likely(!icsk->icsk_mtup.enabled ||
2433		   icsk->icsk_mtup.probe_size ||
2434		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2435		   tcp_snd_cwnd(tp) < 11 ||
2436		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2437		return -1;
2438
2439	/* Use binary search for probe_size between tcp_mss_base,
2440	 * and current mss_clamp. if (search_high - search_low)
2441	 * smaller than a threshold, backoff from probing.
2442	 */
2443	mss_now = tcp_current_mss(sk);
2444	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2445				    icsk->icsk_mtup.search_low) >> 1);
2446	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2447	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2448	/* When misfortune happens, we are reprobing actively,
2449	 * and then reprobe timer has expired. We stick with current
2450	 * probing process by not resetting search range to its orignal.
2451	 */
2452	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2453	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2454		/* Check whether enough time has elaplased for
2455		 * another round of probing.
2456		 */
2457		tcp_mtu_check_reprobe(sk);
2458		return -1;
2459	}
2460
2461	/* Have enough data in the send queue to probe? */
2462	if (tp->write_seq - tp->snd_nxt < size_needed)
2463		return -1;
2464
2465	if (tp->snd_wnd < size_needed)
2466		return -1;
2467	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2468		return 0;
2469
2470	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2471	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2472		if (!tcp_packets_in_flight(tp))
2473			return -1;
2474		else
2475			return 0;
2476	}
2477
2478	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2479		return -1;
2480
2481	/* We're allowed to probe.  Build it now. */
2482	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2483	if (!nskb)
2484		return -1;
2485
2486	/* build the payload, and be prepared to abort if this fails. */
2487	if (tcp_clone_payload(sk, nskb, probe_size)) {
2488		tcp_skb_tsorted_anchor_cleanup(nskb);
2489		consume_skb(nskb);
2490		return -1;
2491	}
2492	sk_wmem_queued_add(sk, nskb->truesize);
2493	sk_mem_charge(sk, nskb->truesize);
2494
2495	skb = tcp_send_head(sk);
2496	skb_copy_decrypted(nskb, skb);
2497	mptcp_skb_ext_copy(nskb, skb);
2498
2499	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2500	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2501	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
 
 
 
2502
2503	tcp_insert_write_queue_before(nskb, skb, sk);
2504	tcp_highest_sack_replace(sk, skb, nskb);
2505
2506	len = 0;
2507	tcp_for_write_queue_from_safe(skb, next, sk) {
2508		copy = min_t(int, skb->len, probe_size - len);
 
2509
2510		if (skb->len <= copy) {
2511			/* We've eaten all the data from this skb.
2512			 * Throw it away. */
2513			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2514			/* If this is the last SKB we copy and eor is set
2515			 * we need to propagate it to the new skb.
2516			 */
2517			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2518			tcp_skb_collapse_tstamp(nskb, skb);
2519			tcp_unlink_write_queue(skb, sk);
2520			tcp_wmem_free_skb(sk, skb);
2521		} else {
2522			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2523						   ~(TCPHDR_FIN|TCPHDR_PSH);
2524			__pskb_trim_head(skb, copy);
2525			tcp_set_skb_tso_segs(skb, mss_now);
 
 
 
 
2526			TCP_SKB_CB(skb)->seq += copy;
2527		}
2528
2529		len += copy;
2530
2531		if (len >= probe_size)
2532			break;
2533	}
2534	tcp_init_tso_segs(nskb, nskb->len);
2535
2536	/* We're ready to send.  If this fails, the probe will
2537	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2538	 */
2539	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2540		/* Decrement cwnd here because we are sending
2541		 * effectively two packets. */
2542		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2543		tcp_event_new_data_sent(sk, nskb);
2544
2545		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2546		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2547		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2548
2549		return 1;
2550	}
2551
2552	return -1;
2553}
2554
2555static bool tcp_pacing_check(struct sock *sk)
2556{
2557	struct tcp_sock *tp = tcp_sk(sk);
2558
2559	if (!tcp_needs_internal_pacing(sk))
2560		return false;
2561
2562	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2563		return false;
2564
2565	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2566		hrtimer_start(&tp->pacing_timer,
2567			      ns_to_ktime(tp->tcp_wstamp_ns),
2568			      HRTIMER_MODE_ABS_PINNED_SOFT);
2569		sock_hold(sk);
2570	}
2571	return true;
2572}
2573
2574static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2575{
2576	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2577
2578	/* No skb in the rtx queue. */
2579	if (!node)
2580		return true;
2581
2582	/* Only one skb in rtx queue. */
2583	return !node->rb_left && !node->rb_right;
2584}
2585
2586/* TCP Small Queues :
2587 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2588 * (These limits are doubled for retransmits)
2589 * This allows for :
2590 *  - better RTT estimation and ACK scheduling
2591 *  - faster recovery
2592 *  - high rates
2593 * Alas, some drivers / subsystems require a fair amount
2594 * of queued bytes to ensure line rate.
2595 * One example is wifi aggregation (802.11 AMPDU)
2596 */
2597static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2598				  unsigned int factor)
2599{
2600	unsigned long limit;
2601
2602	limit = max_t(unsigned long,
2603		      2 * skb->truesize,
2604		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2605	if (sk->sk_pacing_status == SK_PACING_NONE)
2606		limit = min_t(unsigned long, limit,
2607			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2608	limit <<= factor;
2609
2610	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2611	    tcp_sk(sk)->tcp_tx_delay) {
2612		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2613				  tcp_sk(sk)->tcp_tx_delay;
2614
2615		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2616		 * approximate our needs assuming an ~100% skb->truesize overhead.
2617		 * USEC_PER_SEC is approximated by 2^20.
2618		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2619		 */
2620		extra_bytes >>= (20 - 1);
2621		limit += extra_bytes;
2622	}
2623	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2624		/* Always send skb if rtx queue is empty or has one skb.
2625		 * No need to wait for TX completion to call us back,
2626		 * after softirq/tasklet schedule.
2627		 * This helps when TX completions are delayed too much.
2628		 */
2629		if (tcp_rtx_queue_empty_or_single_skb(sk))
2630			return false;
2631
2632		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2633		/* It is possible TX completion already happened
2634		 * before we set TSQ_THROTTLED, so we must
2635		 * test again the condition.
2636		 */
2637		smp_mb__after_atomic();
2638		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2639			return true;
2640	}
2641	return false;
2642}
2643
2644static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2645{
2646	const u32 now = tcp_jiffies32;
2647	enum tcp_chrono old = tp->chrono_type;
2648
2649	if (old > TCP_CHRONO_UNSPEC)
2650		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2651	tp->chrono_start = now;
2652	tp->chrono_type = new;
2653}
2654
2655void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2656{
2657	struct tcp_sock *tp = tcp_sk(sk);
2658
2659	/* If there are multiple conditions worthy of tracking in a
2660	 * chronograph then the highest priority enum takes precedence
2661	 * over the other conditions. So that if something "more interesting"
2662	 * starts happening, stop the previous chrono and start a new one.
2663	 */
2664	if (type > tp->chrono_type)
2665		tcp_chrono_set(tp, type);
2666}
2667
2668void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2669{
2670	struct tcp_sock *tp = tcp_sk(sk);
2671
2672
2673	/* There are multiple conditions worthy of tracking in a
2674	 * chronograph, so that the highest priority enum takes
2675	 * precedence over the other conditions (see tcp_chrono_start).
2676	 * If a condition stops, we only stop chrono tracking if
2677	 * it's the "most interesting" or current chrono we are
2678	 * tracking and starts busy chrono if we have pending data.
2679	 */
2680	if (tcp_rtx_and_write_queues_empty(sk))
2681		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2682	else if (type == tp->chrono_type)
2683		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2684}
2685
2686/* This routine writes packets to the network.  It advances the
2687 * send_head.  This happens as incoming acks open up the remote
2688 * window for us.
2689 *
2690 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2691 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2692 * account rare use of URG, this is not a big flaw.
2693 *
2694 * Send at most one packet when push_one > 0. Temporarily ignore
2695 * cwnd limit to force at most one packet out when push_one == 2.
2696
2697 * Returns true, if no segments are in flight and we have queued segments,
2698 * but cannot send anything now because of SWS or another problem.
2699 */
2700static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2701			   int push_one, gfp_t gfp)
2702{
2703	struct tcp_sock *tp = tcp_sk(sk);
2704	struct sk_buff *skb;
2705	unsigned int tso_segs, sent_pkts;
2706	int cwnd_quota;
2707	int result;
2708	bool is_cwnd_limited = false, is_rwnd_limited = false;
2709	u32 max_segs;
2710
2711	sent_pkts = 0;
2712
2713	tcp_mstamp_refresh(tp);
2714	if (!push_one) {
2715		/* Do MTU probing. */
2716		result = tcp_mtu_probe(sk);
2717		if (!result) {
2718			return false;
2719		} else if (result > 0) {
2720			sent_pkts = 1;
2721		}
2722	}
2723
2724	max_segs = tcp_tso_segs(sk, mss_now);
2725	while ((skb = tcp_send_head(sk))) {
2726		unsigned int limit;
2727
2728		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2729			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2730			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2731			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2732			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2733			tcp_init_tso_segs(skb, mss_now);
2734			goto repair; /* Skip network transmission */
2735		}
2736
2737		if (tcp_pacing_check(sk))
2738			break;
2739
2740		tso_segs = tcp_init_tso_segs(skb, mss_now);
2741		BUG_ON(!tso_segs);
2742
2743		cwnd_quota = tcp_cwnd_test(tp, skb);
2744		if (!cwnd_quota) {
2745			if (push_one == 2)
2746				/* Force out a loss probe pkt. */
2747				cwnd_quota = 1;
2748			else
2749				break;
2750		}
2751
2752		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2753			is_rwnd_limited = true;
2754			break;
2755		}
2756
2757		if (tso_segs == 1) {
2758			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2759						     (tcp_skb_is_last(sk, skb) ?
2760						      nonagle : TCP_NAGLE_PUSH))))
2761				break;
2762		} else {
2763			if (!push_one &&
2764			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2765						 &is_rwnd_limited, max_segs))
2766				break;
2767		}
2768
2769		limit = mss_now;
2770		if (tso_segs > 1 && !tcp_urg_mode(tp))
2771			limit = tcp_mss_split_point(sk, skb, mss_now,
2772						    min_t(unsigned int,
2773							  cwnd_quota,
2774							  max_segs),
2775						    nonagle);
2776
2777		if (skb->len > limit &&
2778		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2779			break;
2780
2781		if (tcp_small_queue_check(sk, skb, 0))
2782			break;
2783
2784		/* Argh, we hit an empty skb(), presumably a thread
2785		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2786		 * We do not want to send a pure-ack packet and have
2787		 * a strange looking rtx queue with empty packet(s).
2788		 */
2789		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2790			break;
2791
2792		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2793			break;
2794
2795repair:
2796		/* Advance the send_head.  This one is sent out.
2797		 * This call will increment packets_out.
2798		 */
2799		tcp_event_new_data_sent(sk, skb);
2800
2801		tcp_minshall_update(tp, mss_now, skb);
2802		sent_pkts += tcp_skb_pcount(skb);
2803
2804		if (push_one)
2805			break;
2806	}
2807
2808	if (is_rwnd_limited)
2809		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2810	else
2811		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2812
2813	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2814	if (likely(sent_pkts || is_cwnd_limited))
2815		tcp_cwnd_validate(sk, is_cwnd_limited);
2816
2817	if (likely(sent_pkts)) {
2818		if (tcp_in_cwnd_reduction(sk))
2819			tp->prr_out += sent_pkts;
2820
2821		/* Send one loss probe per tail loss episode. */
2822		if (push_one != 2)
2823			tcp_schedule_loss_probe(sk, false);
 
 
2824		return false;
2825	}
2826	return !tp->packets_out && !tcp_write_queue_empty(sk);
2827}
2828
2829bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2830{
2831	struct inet_connection_sock *icsk = inet_csk(sk);
2832	struct tcp_sock *tp = tcp_sk(sk);
2833	u32 timeout, timeout_us, rto_delta_us;
2834	int early_retrans;
2835
2836	/* Don't do any loss probe on a Fast Open connection before 3WHS
2837	 * finishes.
2838	 */
2839	if (rcu_access_pointer(tp->fastopen_rsk))
2840		return false;
2841
2842	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2843	/* Schedule a loss probe in 2*RTT for SACK capable connections
2844	 * not in loss recovery, that are either limited by cwnd or application.
2845	 */
2846	if ((early_retrans != 3 && early_retrans != 4) ||
2847	    !tp->packets_out || !tcp_is_sack(tp) ||
2848	    (icsk->icsk_ca_state != TCP_CA_Open &&
2849	     icsk->icsk_ca_state != TCP_CA_CWR))
2850		return false;
2851
2852	/* Probe timeout is 2*rtt. Add minimum RTO to account
2853	 * for delayed ack when there's one outstanding packet. If no RTT
2854	 * sample is available then probe after TCP_TIMEOUT_INIT.
2855	 */
2856	if (tp->srtt_us) {
2857		timeout_us = tp->srtt_us >> 2;
2858		if (tp->packets_out == 1)
2859			timeout_us += tcp_rto_min_us(sk);
2860		else
2861			timeout_us += TCP_TIMEOUT_MIN_US;
2862		timeout = usecs_to_jiffies(timeout_us);
2863	} else {
2864		timeout = TCP_TIMEOUT_INIT;
2865	}
2866
2867	/* If the RTO formula yields an earlier time, then use that time. */
2868	rto_delta_us = advancing_rto ?
2869			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2870			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2871	if (rto_delta_us > 0)
2872		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2873
2874	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2875	return true;
2876}
2877
2878/* Thanks to skb fast clones, we can detect if a prior transmit of
2879 * a packet is still in a qdisc or driver queue.
2880 * In this case, there is very little point doing a retransmit !
2881 */
2882static bool skb_still_in_host_queue(struct sock *sk,
2883				    const struct sk_buff *skb)
2884{
2885	if (unlikely(skb_fclone_busy(sk, skb))) {
2886		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2887		smp_mb__after_atomic();
2888		if (skb_fclone_busy(sk, skb)) {
2889			NET_INC_STATS(sock_net(sk),
2890				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2891			return true;
2892		}
2893	}
2894	return false;
2895}
2896
2897/* When probe timeout (PTO) fires, try send a new segment if possible, else
2898 * retransmit the last segment.
2899 */
2900void tcp_send_loss_probe(struct sock *sk)
2901{
2902	struct tcp_sock *tp = tcp_sk(sk);
2903	struct sk_buff *skb;
2904	int pcount;
2905	int mss = tcp_current_mss(sk);
2906
2907	/* At most one outstanding TLP */
2908	if (tp->tlp_high_seq)
2909		goto rearm_timer;
2910
2911	tp->tlp_retrans = 0;
2912	skb = tcp_send_head(sk);
2913	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2914		pcount = tp->packets_out;
2915		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2916		if (tp->packets_out > pcount)
2917			goto probe_sent;
2918		goto rearm_timer;
2919	}
2920	skb = skb_rb_last(&sk->tcp_rtx_queue);
2921	if (unlikely(!skb)) {
2922		WARN_ONCE(tp->packets_out,
2923			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2924			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2925		inet_csk(sk)->icsk_pending = 0;
2926		return;
2927	}
2928
2929	if (skb_still_in_host_queue(sk, skb))
2930		goto rearm_timer;
2931
2932	pcount = tcp_skb_pcount(skb);
2933	if (WARN_ON(!pcount))
2934		goto rearm_timer;
2935
2936	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2937		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2938					  (pcount - 1) * mss, mss,
2939					  GFP_ATOMIC)))
2940			goto rearm_timer;
2941		skb = skb_rb_next(skb);
2942	}
2943
2944	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2945		goto rearm_timer;
2946
2947	if (__tcp_retransmit_skb(sk, skb, 1))
2948		goto rearm_timer;
2949
2950	tp->tlp_retrans = 1;
2951
2952probe_sent:
2953	/* Record snd_nxt for loss detection. */
2954	tp->tlp_high_seq = tp->snd_nxt;
2955
2956	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2957	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2958	inet_csk(sk)->icsk_pending = 0;
2959rearm_timer:
2960	tcp_rearm_rto(sk);
2961}
2962
2963/* Push out any pending frames which were held back due to
2964 * TCP_CORK or attempt at coalescing tiny packets.
2965 * The socket must be locked by the caller.
2966 */
2967void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2968			       int nonagle)
2969{
2970	/* If we are closed, the bytes will have to remain here.
2971	 * In time closedown will finish, we empty the write queue and
2972	 * all will be happy.
2973	 */
2974	if (unlikely(sk->sk_state == TCP_CLOSE))
2975		return;
2976
2977	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2978			   sk_gfp_mask(sk, GFP_ATOMIC)))
2979		tcp_check_probe_timer(sk);
2980}
2981
2982/* Send _single_ skb sitting at the send head. This function requires
2983 * true push pending frames to setup probe timer etc.
2984 */
2985void tcp_push_one(struct sock *sk, unsigned int mss_now)
2986{
2987	struct sk_buff *skb = tcp_send_head(sk);
2988
2989	BUG_ON(!skb || skb->len < mss_now);
2990
2991	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2992}
2993
2994/* This function returns the amount that we can raise the
2995 * usable window based on the following constraints
2996 *
2997 * 1. The window can never be shrunk once it is offered (RFC 793)
2998 * 2. We limit memory per socket
2999 *
3000 * RFC 1122:
3001 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3002 *  RECV.NEXT + RCV.WIN fixed until:
3003 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3004 *
3005 * i.e. don't raise the right edge of the window until you can raise
3006 * it at least MSS bytes.
3007 *
3008 * Unfortunately, the recommended algorithm breaks header prediction,
3009 * since header prediction assumes th->window stays fixed.
3010 *
3011 * Strictly speaking, keeping th->window fixed violates the receiver
3012 * side SWS prevention criteria. The problem is that under this rule
3013 * a stream of single byte packets will cause the right side of the
3014 * window to always advance by a single byte.
3015 *
3016 * Of course, if the sender implements sender side SWS prevention
3017 * then this will not be a problem.
3018 *
3019 * BSD seems to make the following compromise:
3020 *
3021 *	If the free space is less than the 1/4 of the maximum
3022 *	space available and the free space is less than 1/2 mss,
3023 *	then set the window to 0.
3024 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3025 *	Otherwise, just prevent the window from shrinking
3026 *	and from being larger than the largest representable value.
3027 *
3028 * This prevents incremental opening of the window in the regime
3029 * where TCP is limited by the speed of the reader side taking
3030 * data out of the TCP receive queue. It does nothing about
3031 * those cases where the window is constrained on the sender side
3032 * because the pipeline is full.
3033 *
3034 * BSD also seems to "accidentally" limit itself to windows that are a
3035 * multiple of MSS, at least until the free space gets quite small.
3036 * This would appear to be a side effect of the mbuf implementation.
3037 * Combining these two algorithms results in the observed behavior
3038 * of having a fixed window size at almost all times.
3039 *
3040 * Below we obtain similar behavior by forcing the offered window to
3041 * a multiple of the mss when it is feasible to do so.
3042 *
3043 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3044 * Regular options like TIMESTAMP are taken into account.
3045 */
3046u32 __tcp_select_window(struct sock *sk)
3047{
3048	struct inet_connection_sock *icsk = inet_csk(sk);
3049	struct tcp_sock *tp = tcp_sk(sk);
3050	struct net *net = sock_net(sk);
3051	/* MSS for the peer's data.  Previous versions used mss_clamp
3052	 * here.  I don't know if the value based on our guesses
3053	 * of peer's MSS is better for the performance.  It's more correct
3054	 * but may be worse for the performance because of rcv_mss
3055	 * fluctuations.  --SAW  1998/11/1
3056	 */
3057	int mss = icsk->icsk_ack.rcv_mss;
3058	int free_space = tcp_space(sk);
3059	int allowed_space = tcp_full_space(sk);
3060	int full_space, window;
3061
3062	if (sk_is_mptcp(sk))
3063		mptcp_space(sk, &free_space, &allowed_space);
3064
3065	full_space = min_t(int, tp->window_clamp, allowed_space);
3066
3067	if (unlikely(mss > full_space)) {
3068		mss = full_space;
3069		if (mss <= 0)
3070			return 0;
3071	}
3072
3073	/* Only allow window shrink if the sysctl is enabled and we have
3074	 * a non-zero scaling factor in effect.
3075	 */
3076	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3077		goto shrink_window_allowed;
3078
3079	/* do not allow window to shrink */
3080
3081	if (free_space < (full_space >> 1)) {
3082		icsk->icsk_ack.quick = 0;
3083
3084		if (tcp_under_memory_pressure(sk))
3085			tcp_adjust_rcv_ssthresh(sk);
 
3086
3087		/* free_space might become our new window, make sure we don't
3088		 * increase it due to wscale.
3089		 */
3090		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3091
3092		/* if free space is less than mss estimate, or is below 1/16th
3093		 * of the maximum allowed, try to move to zero-window, else
3094		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3095		 * new incoming data is dropped due to memory limits.
3096		 * With large window, mss test triggers way too late in order
3097		 * to announce zero window in time before rmem limit kicks in.
3098		 */
3099		if (free_space < (allowed_space >> 4) || free_space < mss)
3100			return 0;
3101	}
3102
3103	if (free_space > tp->rcv_ssthresh)
3104		free_space = tp->rcv_ssthresh;
3105
3106	/* Don't do rounding if we are using window scaling, since the
3107	 * scaled window will not line up with the MSS boundary anyway.
3108	 */
3109	if (tp->rx_opt.rcv_wscale) {
3110		window = free_space;
3111
3112		/* Advertise enough space so that it won't get scaled away.
3113		 * Import case: prevent zero window announcement if
3114		 * 1<<rcv_wscale > mss.
3115		 */
3116		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3117	} else {
3118		window = tp->rcv_wnd;
3119		/* Get the largest window that is a nice multiple of mss.
3120		 * Window clamp already applied above.
3121		 * If our current window offering is within 1 mss of the
3122		 * free space we just keep it. This prevents the divide
3123		 * and multiply from happening most of the time.
3124		 * We also don't do any window rounding when the free space
3125		 * is too small.
3126		 */
3127		if (window <= free_space - mss || window > free_space)
3128			window = rounddown(free_space, mss);
3129		else if (mss == full_space &&
3130			 free_space > window + (full_space >> 1))
3131			window = free_space;
3132	}
3133
3134	return window;
3135
3136shrink_window_allowed:
3137	/* new window should always be an exact multiple of scaling factor */
3138	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3139
3140	if (free_space < (full_space >> 1)) {
3141		icsk->icsk_ack.quick = 0;
3142
3143		if (tcp_under_memory_pressure(sk))
3144			tcp_adjust_rcv_ssthresh(sk);
3145
3146		/* if free space is too low, return a zero window */
3147		if (free_space < (allowed_space >> 4) || free_space < mss ||
3148			free_space < (1 << tp->rx_opt.rcv_wscale))
3149			return 0;
3150	}
3151
3152	if (free_space > tp->rcv_ssthresh) {
3153		free_space = tp->rcv_ssthresh;
3154		/* new window should always be an exact multiple of scaling factor
3155		 *
3156		 * For this case, we ALIGN "up" (increase free_space) because
3157		 * we know free_space is not zero here, it has been reduced from
3158		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3159		 * (unlike sk_rcvbuf).
3160		 */
3161		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3162	}
3163
3164	return free_space;
3165}
3166
3167void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3168			     const struct sk_buff *next_skb)
3169{
3170	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3171		const struct skb_shared_info *next_shinfo =
3172			skb_shinfo(next_skb);
3173		struct skb_shared_info *shinfo = skb_shinfo(skb);
3174
3175		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3176		shinfo->tskey = next_shinfo->tskey;
3177		TCP_SKB_CB(skb)->txstamp_ack |=
3178			TCP_SKB_CB(next_skb)->txstamp_ack;
3179	}
3180}
3181
3182/* Collapses two adjacent SKB's during retransmission. */
3183static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3184{
3185	struct tcp_sock *tp = tcp_sk(sk);
3186	struct sk_buff *next_skb = skb_rb_next(skb);
3187	int next_skb_size;
3188
3189	next_skb_size = next_skb->len;
3190
3191	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3192
3193	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3194		return false;
3195
 
 
 
 
3196	tcp_highest_sack_replace(sk, next_skb, skb);
3197
3198	/* Update sequence range on original skb. */
3199	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3200
3201	/* Merge over control information. This moves PSH/FIN etc. over */
3202	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3203
3204	/* All done, get rid of second SKB and account for it so
3205	 * packet counting does not break.
3206	 */
3207	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3208	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3209
3210	/* changed transmit queue under us so clear hints */
3211	tcp_clear_retrans_hints_partial(tp);
3212	if (next_skb == tp->retransmit_skb_hint)
3213		tp->retransmit_skb_hint = skb;
3214
3215	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3216
3217	tcp_skb_collapse_tstamp(skb, next_skb);
3218
3219	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3220	return true;
3221}
3222
3223/* Check if coalescing SKBs is legal. */
3224static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3225{
3226	if (tcp_skb_pcount(skb) > 1)
3227		return false;
3228	if (skb_cloned(skb))
3229		return false;
3230	/* Some heuristics for collapsing over SACK'd could be invented */
3231	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3232		return false;
3233
3234	return true;
3235}
3236
3237/* Collapse packets in the retransmit queue to make to create
3238 * less packets on the wire. This is only done on retransmission.
3239 */
3240static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3241				     int space)
3242{
3243	struct tcp_sock *tp = tcp_sk(sk);
3244	struct sk_buff *skb = to, *tmp;
3245	bool first = true;
3246
3247	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3248		return;
3249	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3250		return;
3251
3252	skb_rbtree_walk_from_safe(skb, tmp) {
3253		if (!tcp_can_collapse(sk, skb))
3254			break;
3255
3256		if (!tcp_skb_can_collapse(to, skb))
3257			break;
3258
3259		space -= skb->len;
3260
3261		if (first) {
3262			first = false;
3263			continue;
3264		}
3265
3266		if (space < 0)
3267			break;
3268
3269		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3270			break;
3271
3272		if (!tcp_collapse_retrans(sk, to))
3273			break;
3274	}
3275}
3276
3277/* This retransmits one SKB.  Policy decisions and retransmit queue
3278 * state updates are done by the caller.  Returns non-zero if an
3279 * error occurred which prevented the send.
3280 */
3281int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3282{
3283	struct inet_connection_sock *icsk = inet_csk(sk);
3284	struct tcp_sock *tp = tcp_sk(sk);
3285	unsigned int cur_mss;
3286	int diff, len, err;
3287	int avail_wnd;
3288
3289	/* Inconclusive MTU probe */
3290	if (icsk->icsk_mtup.probe_size)
3291		icsk->icsk_mtup.probe_size = 0;
3292
 
 
 
 
 
 
 
 
3293	if (skb_still_in_host_queue(sk, skb))
3294		return -EBUSY;
3295
3296start:
3297	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3298		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3299			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3300			TCP_SKB_CB(skb)->seq++;
3301			goto start;
3302		}
3303		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3304			WARN_ON_ONCE(1);
3305			return -EINVAL;
3306		}
3307		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3308			return -ENOMEM;
3309	}
3310
3311	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3312		return -EHOSTUNREACH; /* Routing failure or similar. */
3313
3314	cur_mss = tcp_current_mss(sk);
3315	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3316
3317	/* If receiver has shrunk his window, and skb is out of
3318	 * new window, do not retransmit it. The exception is the
3319	 * case, when window is shrunk to zero. In this case
3320	 * our retransmit of one segment serves as a zero window probe.
3321	 */
3322	if (avail_wnd <= 0) {
3323		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3324			return -EAGAIN;
3325		avail_wnd = cur_mss;
3326	}
3327
3328	len = cur_mss * segs;
3329	if (len > avail_wnd) {
3330		len = rounddown(avail_wnd, cur_mss);
3331		if (!len)
3332			len = avail_wnd;
3333	}
3334	if (skb->len > len) {
3335		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3336				 cur_mss, GFP_ATOMIC))
3337			return -ENOMEM; /* We'll try again later. */
3338	} else {
3339		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3340			return -ENOMEM;
3341
3342		diff = tcp_skb_pcount(skb);
3343		tcp_set_skb_tso_segs(skb, cur_mss);
3344		diff -= tcp_skb_pcount(skb);
3345		if (diff)
3346			tcp_adjust_pcount(sk, skb, diff);
3347		avail_wnd = min_t(int, avail_wnd, cur_mss);
3348		if (skb->len < avail_wnd)
3349			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3350	}
3351
3352	/* RFC3168, section 6.1.1.1. ECN fallback */
3353	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3354		tcp_ecn_clear_syn(sk, skb);
3355
3356	/* Update global and local TCP statistics. */
3357	segs = tcp_skb_pcount(skb);
3358	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3359	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3360		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3361	tp->total_retrans += segs;
3362	tp->bytes_retrans += skb->len;
3363
3364	/* make sure skb->data is aligned on arches that require it
3365	 * and check if ack-trimming & collapsing extended the headroom
3366	 * beyond what csum_start can cover.
3367	 */
3368	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3369		     skb_headroom(skb) >= 0xFFFF)) {
3370		struct sk_buff *nskb;
3371
3372		tcp_skb_tsorted_save(skb) {
3373			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3374			if (nskb) {
3375				nskb->dev = NULL;
3376				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3377			} else {
3378				err = -ENOBUFS;
3379			}
3380		} tcp_skb_tsorted_restore(skb);
3381
3382		if (!err) {
3383			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3384			tcp_rate_skb_sent(sk, skb);
3385		}
3386	} else {
3387		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3388	}
3389
3390	/* To avoid taking spuriously low RTT samples based on a timestamp
3391	 * for a transmit that never happened, always mark EVER_RETRANS
3392	 */
3393	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3394
3395	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3396		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3397				  TCP_SKB_CB(skb)->seq, segs, err);
3398
3399	if (likely(!err)) {
3400		trace_tcp_retransmit_skb(sk, skb);
3401	} else if (err != -EBUSY) {
3402		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3403	}
3404	return err;
3405}
3406
3407int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3408{
3409	struct tcp_sock *tp = tcp_sk(sk);
3410	int err = __tcp_retransmit_skb(sk, skb, segs);
3411
3412	if (err == 0) {
3413#if FASTRETRANS_DEBUG > 0
3414		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3415			net_dbg_ratelimited("retrans_out leaked\n");
3416		}
3417#endif
3418		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3419		tp->retrans_out += tcp_skb_pcount(skb);
3420	}
3421
3422	/* Save stamp of the first (attempted) retransmit. */
3423	if (!tp->retrans_stamp)
3424		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3425
3426	if (tp->undo_retrans < 0)
3427		tp->undo_retrans = 0;
3428	tp->undo_retrans += tcp_skb_pcount(skb);
3429	return err;
3430}
3431
3432/* This gets called after a retransmit timeout, and the initially
3433 * retransmitted data is acknowledged.  It tries to continue
3434 * resending the rest of the retransmit queue, until either
3435 * we've sent it all or the congestion window limit is reached.
3436 */
3437void tcp_xmit_retransmit_queue(struct sock *sk)
3438{
3439	const struct inet_connection_sock *icsk = inet_csk(sk);
3440	struct sk_buff *skb, *rtx_head, *hole = NULL;
3441	struct tcp_sock *tp = tcp_sk(sk);
3442	bool rearm_timer = false;
3443	u32 max_segs;
3444	int mib_idx;
3445
3446	if (!tp->packets_out)
3447		return;
3448
3449	rtx_head = tcp_rtx_queue_head(sk);
3450	skb = tp->retransmit_skb_hint ?: rtx_head;
3451	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3452	skb_rbtree_walk_from(skb) {
3453		__u8 sacked;
3454		int segs;
3455
3456		if (tcp_pacing_check(sk))
3457			break;
3458
3459		/* we could do better than to assign each time */
3460		if (!hole)
3461			tp->retransmit_skb_hint = skb;
3462
3463		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3464		if (segs <= 0)
3465			break;
3466		sacked = TCP_SKB_CB(skb)->sacked;
3467		/* In case tcp_shift_skb_data() have aggregated large skbs,
3468		 * we need to make sure not sending too bigs TSO packets
3469		 */
3470		segs = min_t(int, segs, max_segs);
3471
3472		if (tp->retrans_out >= tp->lost_out) {
3473			break;
3474		} else if (!(sacked & TCPCB_LOST)) {
3475			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3476				hole = skb;
3477			continue;
3478
3479		} else {
3480			if (icsk->icsk_ca_state != TCP_CA_Loss)
3481				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3482			else
3483				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3484		}
3485
3486		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3487			continue;
3488
3489		if (tcp_small_queue_check(sk, skb, 1))
3490			break;
3491
3492		if (tcp_retransmit_skb(sk, skb, segs))
3493			break;
3494
3495		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3496
3497		if (tcp_in_cwnd_reduction(sk))
3498			tp->prr_out += tcp_skb_pcount(skb);
3499
3500		if (skb == rtx_head &&
3501		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3502			rearm_timer = true;
3503
3504	}
3505	if (rearm_timer)
3506		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3507				     inet_csk(sk)->icsk_rto,
3508				     TCP_RTO_MAX);
3509}
3510
3511/* We allow to exceed memory limits for FIN packets to expedite
3512 * connection tear down and (memory) recovery.
3513 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3514 * or even be forced to close flow without any FIN.
3515 * In general, we want to allow one skb per socket to avoid hangs
3516 * with edge trigger epoll()
3517 */
3518void sk_forced_mem_schedule(struct sock *sk, int size)
3519{
3520	int delta, amt;
3521
3522	delta = size - sk->sk_forward_alloc;
3523	if (delta <= 0)
3524		return;
3525	amt = sk_mem_pages(delta);
3526	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3527	sk_memory_allocated_add(sk, amt);
3528
3529	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3530		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3531					gfp_memcg_charge() | __GFP_NOFAIL);
3532}
3533
3534/* Send a FIN. The caller locks the socket for us.
3535 * We should try to send a FIN packet really hard, but eventually give up.
3536 */
3537void tcp_send_fin(struct sock *sk)
3538{
3539	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3540	struct tcp_sock *tp = tcp_sk(sk);
3541
3542	/* Optimization, tack on the FIN if we have one skb in write queue and
3543	 * this skb was not yet sent, or we are under memory pressure.
3544	 * Note: in the latter case, FIN packet will be sent after a timeout,
3545	 * as TCP stack thinks it has already been transmitted.
3546	 */
3547	tskb = tail;
3548	if (!tskb && tcp_under_memory_pressure(sk))
3549		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3550
3551	if (tskb) {
3552		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3553		TCP_SKB_CB(tskb)->end_seq++;
3554		tp->write_seq++;
3555		if (!tail) {
3556			/* This means tskb was already sent.
3557			 * Pretend we included the FIN on previous transmit.
3558			 * We need to set tp->snd_nxt to the value it would have
3559			 * if FIN had been sent. This is because retransmit path
3560			 * does not change tp->snd_nxt.
3561			 */
3562			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3563			return;
3564		}
3565	} else {
3566		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3567		if (unlikely(!skb))
3568			return;
3569
3570		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3571		skb_reserve(skb, MAX_TCP_HEADER);
3572		sk_forced_mem_schedule(sk, skb->truesize);
3573		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3574		tcp_init_nondata_skb(skb, tp->write_seq,
3575				     TCPHDR_ACK | TCPHDR_FIN);
3576		tcp_queue_skb(sk, skb);
3577	}
3578	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3579}
3580
3581/* We get here when a process closes a file descriptor (either due to
3582 * an explicit close() or as a byproduct of exit()'ing) and there
3583 * was unread data in the receive queue.  This behavior is recommended
3584 * by RFC 2525, section 2.17.  -DaveM
3585 */
3586void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3587{
3588	struct sk_buff *skb;
3589
3590	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3591
3592	/* NOTE: No TCP options attached and we never retransmit this. */
3593	skb = alloc_skb(MAX_TCP_HEADER, priority);
3594	if (!skb) {
3595		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3596		return;
3597	}
3598
3599	/* Reserve space for headers and prepare control bits. */
3600	skb_reserve(skb, MAX_TCP_HEADER);
3601	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3602			     TCPHDR_ACK | TCPHDR_RST);
3603	tcp_mstamp_refresh(tcp_sk(sk));
3604	/* Send it off. */
3605	if (tcp_transmit_skb(sk, skb, 0, priority))
3606		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3607
3608	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3609	 * skb here is different to the troublesome skb, so use NULL
3610	 */
3611	trace_tcp_send_reset(sk, NULL);
3612}
3613
3614/* Send a crossed SYN-ACK during socket establishment.
3615 * WARNING: This routine must only be called when we have already sent
3616 * a SYN packet that crossed the incoming SYN that caused this routine
3617 * to get called. If this assumption fails then the initial rcv_wnd
3618 * and rcv_wscale values will not be correct.
3619 */
3620int tcp_send_synack(struct sock *sk)
3621{
3622	struct sk_buff *skb;
3623
3624	skb = tcp_rtx_queue_head(sk);
3625	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3626		pr_err("%s: wrong queue state\n", __func__);
3627		return -EFAULT;
3628	}
3629	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3630		if (skb_cloned(skb)) {
3631			struct sk_buff *nskb;
3632
3633			tcp_skb_tsorted_save(skb) {
3634				nskb = skb_copy(skb, GFP_ATOMIC);
3635			} tcp_skb_tsorted_restore(skb);
3636			if (!nskb)
3637				return -ENOMEM;
3638			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3639			tcp_highest_sack_replace(sk, skb, nskb);
3640			tcp_rtx_queue_unlink_and_free(skb, sk);
3641			__skb_header_release(nskb);
3642			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3643			sk_wmem_queued_add(sk, nskb->truesize);
3644			sk_mem_charge(sk, nskb->truesize);
3645			skb = nskb;
3646		}
3647
3648		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3649		tcp_ecn_send_synack(sk, skb);
3650	}
3651	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3652}
3653
3654/**
3655 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3656 * @sk: listener socket
3657 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3658 *       should not use it again.
3659 * @req: request_sock pointer
3660 * @foc: cookie for tcp fast open
3661 * @synack_type: Type of synack to prepare
3662 * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
 
3663 */
3664struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3665				struct request_sock *req,
3666				struct tcp_fastopen_cookie *foc,
3667				enum tcp_synack_type synack_type,
3668				struct sk_buff *syn_skb)
3669{
3670	struct inet_request_sock *ireq = inet_rsk(req);
3671	const struct tcp_sock *tp = tcp_sk(sk);
 
3672	struct tcp_out_options opts;
3673	struct tcp_key key = {};
3674	struct sk_buff *skb;
3675	int tcp_header_size;
3676	struct tcphdr *th;
3677	int mss;
3678	u64 now;
3679
3680	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3681	if (unlikely(!skb)) {
3682		dst_release(dst);
3683		return NULL;
3684	}
3685	/* Reserve space for headers. */
3686	skb_reserve(skb, MAX_TCP_HEADER);
3687
3688	switch (synack_type) {
3689	case TCP_SYNACK_NORMAL:
3690		skb_set_owner_w(skb, req_to_sk(req));
3691		break;
3692	case TCP_SYNACK_COOKIE:
3693		/* Under synflood, we do not attach skb to a socket,
3694		 * to avoid false sharing.
3695		 */
3696		break;
3697	case TCP_SYNACK_FASTOPEN:
3698		/* sk is a const pointer, because we want to express multiple
3699		 * cpu might call us concurrently.
3700		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3701		 */
3702		skb_set_owner_w(skb, (struct sock *)sk);
3703		break;
3704	}
3705	skb_dst_set(skb, dst);
3706
3707	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3708
3709	memset(&opts, 0, sizeof(opts));
3710	now = tcp_clock_ns();
3711#ifdef CONFIG_SYN_COOKIES
3712	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3713		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3714				      true);
3715	else
3716#endif
3717	{
3718		skb_set_delivery_time(skb, now, true);
3719		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3720			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3721	}
3722
3723#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3724	rcu_read_lock();
 
3725#endif
3726	if (tcp_rsk_used_ao(req)) {
3727#ifdef CONFIG_TCP_AO
3728		struct tcp_ao_key *ao_key = NULL;
3729		u8 keyid = tcp_rsk(req)->ao_keyid;
3730
3731		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3732							    keyid, -1);
3733		/* If there is no matching key - avoid sending anything,
3734		 * especially usigned segments. It could try harder and lookup
3735		 * for another peer-matching key, but the peer has requested
3736		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3737		 */
3738		if (unlikely(!ao_key)) {
3739			rcu_read_unlock();
3740			kfree_skb(skb);
3741			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3742					     keyid);
3743			return NULL;
3744		}
3745		key.ao_key = ao_key;
3746		key.type = TCP_KEY_AO;
3747#endif
3748	} else {
3749#ifdef CONFIG_TCP_MD5SIG
3750		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3751					req_to_sk(req));
3752		if (key.md5_key)
3753			key.type = TCP_KEY_MD5;
3754#endif
3755	}
3756	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3757	/* bpf program will be interested in the tcp_flags */
3758	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3759	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3760					     &key, foc, synack_type, syn_skb)
3761					+ sizeof(*th);
3762
3763	skb_push(skb, tcp_header_size);
3764	skb_reset_transport_header(skb);
3765
3766	th = (struct tcphdr *)skb->data;
3767	memset(th, 0, sizeof(struct tcphdr));
3768	th->syn = 1;
3769	th->ack = 1;
3770	tcp_ecn_make_synack(req, th);
3771	th->source = htons(ireq->ir_num);
3772	th->dest = ireq->ir_rmt_port;
3773	skb->mark = ireq->ir_mark;
3774	skb->ip_summed = CHECKSUM_PARTIAL;
3775	th->seq = htonl(tcp_rsk(req)->snt_isn);
3776	/* XXX data is queued and acked as is. No buffer/window check */
3777	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3778
3779	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3780	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3781	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3782	th->doff = (tcp_header_size >> 2);
3783	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3784
 
3785	/* Okay, we have all we need - do the md5 hash if needed */
3786	if (tcp_key_is_md5(&key)) {
3787#ifdef CONFIG_TCP_MD5SIG
3788		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3789					key.md5_key, req_to_sk(req), skb);
3790#endif
3791	} else if (tcp_key_is_ao(&key)) {
3792#ifdef CONFIG_TCP_AO
3793		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3794					key.ao_key, req, skb,
3795					opts.hash_location - (u8 *)th, 0);
3796#endif
3797	}
3798#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3799	rcu_read_unlock();
3800#endif
3801
3802	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3803				synack_type, &opts);
3804
3805	skb_set_delivery_time(skb, now, true);
3806	tcp_add_tx_delay(skb, tp);
3807
3808	return skb;
3809}
3810EXPORT_SYMBOL(tcp_make_synack);
3811
3812static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3813{
3814	struct inet_connection_sock *icsk = inet_csk(sk);
3815	const struct tcp_congestion_ops *ca;
3816	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3817
3818	if (ca_key == TCP_CA_UNSPEC)
3819		return;
3820
3821	rcu_read_lock();
3822	ca = tcp_ca_find_key(ca_key);
3823	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3824		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3825		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3826		icsk->icsk_ca_ops = ca;
3827	}
3828	rcu_read_unlock();
3829}
3830
3831/* Do all connect socket setups that can be done AF independent. */
3832static void tcp_connect_init(struct sock *sk)
3833{
3834	const struct dst_entry *dst = __sk_dst_get(sk);
3835	struct tcp_sock *tp = tcp_sk(sk);
3836	__u8 rcv_wscale;
3837	u32 rcv_wnd;
3838
3839	/* We'll fix this up when we get a response from the other end.
3840	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3841	 */
3842	tp->tcp_header_len = sizeof(struct tcphdr);
3843	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3844		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3845
3846	tcp_ao_connect_init(sk);
 
 
 
3847
3848	/* If user gave his TCP_MAXSEG, record it to clamp */
3849	if (tp->rx_opt.user_mss)
3850		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3851	tp->max_window = 0;
3852	tcp_mtup_init(sk);
3853	tcp_sync_mss(sk, dst_mtu(dst));
3854
3855	tcp_ca_dst_init(sk, dst);
3856
3857	if (!tp->window_clamp)
3858		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3859	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3860
3861	tcp_initialize_rcv_mss(sk);
3862
3863	/* limit the window selection if the user enforce a smaller rx buffer */
3864	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3865	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3866		tp->window_clamp = tcp_full_space(sk);
3867
3868	rcv_wnd = tcp_rwnd_init_bpf(sk);
3869	if (rcv_wnd == 0)
3870		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3871
3872	tcp_select_initial_window(sk, tcp_full_space(sk),
3873				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3874				  &tp->rcv_wnd,
3875				  &tp->window_clamp,
3876				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3877				  &rcv_wscale,
3878				  rcv_wnd);
3879
3880	tp->rx_opt.rcv_wscale = rcv_wscale;
3881	tp->rcv_ssthresh = tp->rcv_wnd;
3882
3883	WRITE_ONCE(sk->sk_err, 0);
3884	sock_reset_flag(sk, SOCK_DONE);
3885	tp->snd_wnd = 0;
3886	tcp_init_wl(tp, 0);
3887	tcp_write_queue_purge(sk);
3888	tp->snd_una = tp->write_seq;
3889	tp->snd_sml = tp->write_seq;
3890	tp->snd_up = tp->write_seq;
3891	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3892
3893	if (likely(!tp->repair))
3894		tp->rcv_nxt = 0;
3895	else
3896		tp->rcv_tstamp = tcp_jiffies32;
3897	tp->rcv_wup = tp->rcv_nxt;
3898	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3899
3900	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3901	inet_csk(sk)->icsk_retransmits = 0;
3902	tcp_clear_retrans(tp);
3903}
3904
3905static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3906{
3907	struct tcp_sock *tp = tcp_sk(sk);
3908	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3909
3910	tcb->end_seq += skb->len;
3911	__skb_header_release(skb);
3912	sk_wmem_queued_add(sk, skb->truesize);
3913	sk_mem_charge(sk, skb->truesize);
3914	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3915	tp->packets_out += tcp_skb_pcount(skb);
3916}
3917
3918/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3919 * queue a data-only packet after the regular SYN, such that regular SYNs
3920 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3921 * only the SYN sequence, the data are retransmitted in the first ACK.
3922 * If cookie is not cached or other error occurs, falls back to send a
3923 * regular SYN with Fast Open cookie request option.
3924 */
3925static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3926{
3927	struct inet_connection_sock *icsk = inet_csk(sk);
3928	struct tcp_sock *tp = tcp_sk(sk);
3929	struct tcp_fastopen_request *fo = tp->fastopen_req;
3930	struct page_frag *pfrag = sk_page_frag(sk);
3931	struct sk_buff *syn_data;
3932	int space, err = 0;
3933
3934	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3935	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3936		goto fallback;
3937
3938	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3939	 * user-MSS. Reserve maximum option space for middleboxes that add
3940	 * private TCP options. The cost is reduced data space in SYN :(
3941	 */
3942	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3943	/* Sync mss_cache after updating the mss_clamp */
3944	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3945
3946	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3947		MAX_TCP_OPTION_SPACE;
3948
3949	space = min_t(size_t, space, fo->size);
3950
3951	if (space &&
3952	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3953				  pfrag, sk->sk_allocation))
3954		goto fallback;
3955	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3956	if (!syn_data)
3957		goto fallback;
 
3958	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3959	if (space) {
3960		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3961		space = tcp_wmem_schedule(sk, space);
3962	}
3963	if (space) {
3964		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3965					    space, &fo->data->msg_iter);
3966		if (unlikely(!space)) {
3967			tcp_skb_tsorted_anchor_cleanup(syn_data);
3968			kfree_skb(syn_data);
3969			goto fallback;
3970		}
3971		skb_fill_page_desc(syn_data, 0, pfrag->page,
3972				   pfrag->offset, space);
3973		page_ref_inc(pfrag->page);
3974		pfrag->offset += space;
3975		skb_len_add(syn_data, space);
3976		skb_zcopy_set(syn_data, fo->uarg, NULL);
3977	}
3978	/* No more data pending in inet_wait_for_connect() */
3979	if (space == fo->size)
3980		fo->data = NULL;
3981	fo->copied = space;
3982
3983	tcp_connect_queue_skb(sk, syn_data);
3984	if (syn_data->len)
3985		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3986
3987	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3988
3989	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3990
3991	/* Now full SYN+DATA was cloned and sent (or not),
3992	 * remove the SYN from the original skb (syn_data)
3993	 * we keep in write queue in case of a retransmit, as we
3994	 * also have the SYN packet (with no data) in the same queue.
3995	 */
3996	TCP_SKB_CB(syn_data)->seq++;
3997	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3998	if (!err) {
3999		tp->syn_data = (fo->copied > 0);
4000		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4001		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4002		goto done;
4003	}
4004
4005	/* data was not sent, put it in write_queue */
4006	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4007	tp->packets_out -= tcp_skb_pcount(syn_data);
4008
4009fallback:
4010	/* Send a regular SYN with Fast Open cookie request option */
4011	if (fo->cookie.len > 0)
4012		fo->cookie.len = 0;
4013	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4014	if (err)
4015		tp->syn_fastopen = 0;
4016done:
4017	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4018	return err;
4019}
4020
4021/* Build a SYN and send it off. */
4022int tcp_connect(struct sock *sk)
4023{
4024	struct tcp_sock *tp = tcp_sk(sk);
4025	struct sk_buff *buff;
4026	int err;
4027
4028	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4029
4030#if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4031	/* Has to be checked late, after setting daddr/saddr/ops.
4032	 * Return error if the peer has both a md5 and a tcp-ao key
4033	 * configured as this is ambiguous.
4034	 */
4035	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4036					       lockdep_sock_is_held(sk)))) {
4037		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4038		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4039		struct tcp_ao_info *ao_info;
4040
4041		ao_info = rcu_dereference_check(tp->ao_info,
4042						lockdep_sock_is_held(sk));
4043		if (ao_info) {
4044			/* This is an extra check: tcp_ao_required() in
4045			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4046			 * md5 keys on ao_required socket.
4047			 */
4048			needs_ao |= ao_info->ao_required;
4049			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4050		}
4051		if (needs_md5 && needs_ao)
4052			return -EKEYREJECTED;
4053
4054		/* If we have a matching md5 key and no matching tcp-ao key
4055		 * then free up ao_info if allocated.
4056		 */
4057		if (needs_md5) {
4058			tcp_ao_destroy_sock(sk, false);
4059		} else if (needs_ao) {
4060			tcp_clear_md5_list(sk);
4061			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4062						  lockdep_sock_is_held(sk)));
4063		}
4064	}
4065#endif
4066#ifdef CONFIG_TCP_AO
4067	if (unlikely(rcu_dereference_protected(tp->ao_info,
4068					       lockdep_sock_is_held(sk)))) {
4069		/* Don't allow connecting if ao is configured but no
4070		 * matching key is found.
4071		 */
4072		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4073			return -EKEYREJECTED;
4074	}
4075#endif
4076
4077	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4078		return -EHOSTUNREACH; /* Routing failure or similar. */
4079
4080	tcp_connect_init(sk);
4081
4082	if (unlikely(tp->repair)) {
4083		tcp_finish_connect(sk, NULL);
4084		return 0;
4085	}
4086
4087	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4088	if (unlikely(!buff))
4089		return -ENOBUFS;
4090
4091	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4092	tcp_mstamp_refresh(tp);
4093	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4094	tcp_connect_queue_skb(sk, buff);
4095	tcp_ecn_send_syn(sk, buff);
4096	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4097
4098	/* Send off SYN; include data in Fast Open. */
4099	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4100	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4101	if (err == -ECONNREFUSED)
4102		return err;
4103
4104	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4105	 * in order to make this packet get counted in tcpOutSegs.
4106	 */
4107	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4108	tp->pushed_seq = tp->write_seq;
4109	buff = tcp_send_head(sk);
4110	if (unlikely(buff)) {
4111		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4112		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4113	}
4114	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4115
4116	/* Timer for repeating the SYN until an answer. */
4117	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4118				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4119	return 0;
4120}
4121EXPORT_SYMBOL(tcp_connect);
4122
4123u32 tcp_delack_max(const struct sock *sk)
4124{
4125	const struct dst_entry *dst = __sk_dst_get(sk);
4126	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4127
4128	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4129		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4130		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4131
4132		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4133	}
4134	return delack_max;
4135}
4136
4137/* Send out a delayed ack, the caller does the policy checking
4138 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4139 * for details.
4140 */
4141void tcp_send_delayed_ack(struct sock *sk)
4142{
4143	struct inet_connection_sock *icsk = inet_csk(sk);
4144	int ato = icsk->icsk_ack.ato;
4145	unsigned long timeout;
4146
4147	if (ato > TCP_DELACK_MIN) {
4148		const struct tcp_sock *tp = tcp_sk(sk);
4149		int max_ato = HZ / 2;
4150
4151		if (inet_csk_in_pingpong_mode(sk) ||
4152		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4153			max_ato = TCP_DELACK_MAX;
4154
4155		/* Slow path, intersegment interval is "high". */
4156
4157		/* If some rtt estimate is known, use it to bound delayed ack.
4158		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4159		 * directly.
4160		 */
4161		if (tp->srtt_us) {
4162			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4163					TCP_DELACK_MIN);
4164
4165			if (rtt < max_ato)
4166				max_ato = rtt;
4167		}
4168
4169		ato = min(ato, max_ato);
4170	}
4171
4172	ato = min_t(u32, ato, tcp_delack_max(sk));
4173
4174	/* Stay within the limit we were given */
4175	timeout = jiffies + ato;
4176
4177	/* Use new timeout only if there wasn't a older one earlier. */
4178	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4179		/* If delack timer is about to expire, send ACK now. */
4180		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
 
 
 
4181			tcp_send_ack(sk);
4182			return;
4183		}
4184
4185		if (!time_before(timeout, icsk->icsk_ack.timeout))
4186			timeout = icsk->icsk_ack.timeout;
4187	}
4188	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4189	icsk->icsk_ack.timeout = timeout;
4190	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4191}
4192
4193/* This routine sends an ack and also updates the window. */
4194void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4195{
4196	struct sk_buff *buff;
4197
4198	/* If we have been reset, we may not send again. */
4199	if (sk->sk_state == TCP_CLOSE)
4200		return;
4201
4202	/* We are not putting this on the write queue, so
4203	 * tcp_transmit_skb() will set the ownership to this
4204	 * sock.
4205	 */
4206	buff = alloc_skb(MAX_TCP_HEADER,
4207			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4208	if (unlikely(!buff)) {
4209		struct inet_connection_sock *icsk = inet_csk(sk);
4210		unsigned long delay;
4211
4212		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4213		if (delay < TCP_RTO_MAX)
4214			icsk->icsk_ack.retry++;
4215		inet_csk_schedule_ack(sk);
4216		icsk->icsk_ack.ato = TCP_ATO_MIN;
4217		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
 
4218		return;
4219	}
4220
4221	/* Reserve space for headers and prepare control bits. */
4222	skb_reserve(buff, MAX_TCP_HEADER);
4223	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4224
4225	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4226	 * too much.
4227	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4228	 */
4229	skb_set_tcp_pure_ack(buff);
4230
4231	/* Send it off, this clears delayed acks for us. */
4232	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4233}
4234EXPORT_SYMBOL_GPL(__tcp_send_ack);
4235
4236void tcp_send_ack(struct sock *sk)
4237{
4238	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4239}
4240
4241/* This routine sends a packet with an out of date sequence
4242 * number. It assumes the other end will try to ack it.
4243 *
4244 * Question: what should we make while urgent mode?
4245 * 4.4BSD forces sending single byte of data. We cannot send
4246 * out of window data, because we have SND.NXT==SND.MAX...
4247 *
4248 * Current solution: to send TWO zero-length segments in urgent mode:
4249 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4250 * out-of-date with SND.UNA-1 to probe window.
4251 */
4252static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4253{
4254	struct tcp_sock *tp = tcp_sk(sk);
4255	struct sk_buff *skb;
4256
4257	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4258	skb = alloc_skb(MAX_TCP_HEADER,
4259			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4260	if (!skb)
4261		return -1;
4262
4263	/* Reserve space for headers and set control bits. */
4264	skb_reserve(skb, MAX_TCP_HEADER);
4265	/* Use a previous sequence.  This should cause the other
4266	 * end to send an ack.  Don't queue or clone SKB, just
4267	 * send it.
4268	 */
4269	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4270	NET_INC_STATS(sock_net(sk), mib);
4271	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4272}
4273
4274/* Called from setsockopt( ... TCP_REPAIR ) */
4275void tcp_send_window_probe(struct sock *sk)
4276{
4277	if (sk->sk_state == TCP_ESTABLISHED) {
4278		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4279		tcp_mstamp_refresh(tcp_sk(sk));
4280		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4281	}
4282}
4283
4284/* Initiate keepalive or window probe from timer. */
4285int tcp_write_wakeup(struct sock *sk, int mib)
4286{
4287	struct tcp_sock *tp = tcp_sk(sk);
4288	struct sk_buff *skb;
4289
4290	if (sk->sk_state == TCP_CLOSE)
4291		return -1;
4292
4293	skb = tcp_send_head(sk);
4294	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4295		int err;
4296		unsigned int mss = tcp_current_mss(sk);
4297		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4298
4299		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4300			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4301
4302		/* We are probing the opening of a window
4303		 * but the window size is != 0
4304		 * must have been a result SWS avoidance ( sender )
4305		 */
4306		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4307		    skb->len > mss) {
4308			seg_size = min(seg_size, mss);
4309			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4310			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4311					 skb, seg_size, mss, GFP_ATOMIC))
4312				return -1;
4313		} else if (!tcp_skb_pcount(skb))
4314			tcp_set_skb_tso_segs(skb, mss);
4315
4316		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4317		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4318		if (!err)
4319			tcp_event_new_data_sent(sk, skb);
4320		return err;
4321	} else {
4322		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4323			tcp_xmit_probe_skb(sk, 1, mib);
4324		return tcp_xmit_probe_skb(sk, 0, mib);
4325	}
4326}
4327
4328/* A window probe timeout has occurred.  If window is not closed send
4329 * a partial packet else a zero probe.
4330 */
4331void tcp_send_probe0(struct sock *sk)
4332{
4333	struct inet_connection_sock *icsk = inet_csk(sk);
4334	struct tcp_sock *tp = tcp_sk(sk);
4335	struct net *net = sock_net(sk);
4336	unsigned long timeout;
4337	int err;
4338
4339	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4340
4341	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4342		/* Cancel probe timer, if it is not required. */
4343		icsk->icsk_probes_out = 0;
4344		icsk->icsk_backoff = 0;
4345		icsk->icsk_probes_tstamp = 0;
4346		return;
4347	}
4348
4349	icsk->icsk_probes_out++;
4350	if (err <= 0) {
4351		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4352			icsk->icsk_backoff++;
4353		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4354	} else {
4355		/* If packet was not sent due to local congestion,
4356		 * Let senders fight for local resources conservatively.
4357		 */
4358		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4359	}
4360
4361	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4362	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4363}
4364
4365int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4366{
4367	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4368	struct flowi fl;
4369	int res;
4370
4371	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4372	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4373		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4374	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4375				  NULL);
4376	if (!res) {
4377		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4378		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4379		if (unlikely(tcp_passive_fastopen(sk))) {
4380			/* sk has const attribute because listeners are lockless.
4381			 * However in this case, we are dealing with a passive fastopen
4382			 * socket thus we can change total_retrans value.
4383			 */
4384			tcp_sk_rw(sk)->total_retrans++;
4385		}
4386		trace_tcp_retransmit_synack(sk, req);
4387	}
4388	return res;
4389}
4390EXPORT_SYMBOL(tcp_rtx_synack);