Loading...
1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20#ifndef __LINUX_RCUPDATE_H
21#define __LINUX_RCUPDATE_H
22
23#include <linux/types.h>
24#include <linux/compiler.h>
25#include <linux/atomic.h>
26#include <linux/irqflags.h>
27#include <linux/preempt.h>
28#include <linux/bottom_half.h>
29#include <linux/lockdep.h>
30#include <asm/processor.h>
31#include <linux/cpumask.h>
32
33#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35#define ulong2long(a) (*(long *)(&(a)))
36
37/* Exported common interfaces */
38void call_rcu(struct rcu_head *head, rcu_callback_t func);
39void rcu_barrier_tasks(void);
40void rcu_barrier_tasks_rude(void);
41void synchronize_rcu(void);
42
43#ifdef CONFIG_PREEMPT_RCU
44
45void __rcu_read_lock(void);
46void __rcu_read_unlock(void);
47
48/*
49 * Defined as a macro as it is a very low level header included from
50 * areas that don't even know about current. This gives the rcu_read_lock()
51 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
52 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
53 */
54#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
55
56#else /* #ifdef CONFIG_PREEMPT_RCU */
57
58static inline void __rcu_read_lock(void)
59{
60 preempt_disable();
61}
62
63static inline void __rcu_read_unlock(void)
64{
65 preempt_enable();
66}
67
68static inline int rcu_preempt_depth(void)
69{
70 return 0;
71}
72
73#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
74
75/* Internal to kernel */
76void rcu_init(void);
77extern int rcu_scheduler_active __read_mostly;
78void rcu_sched_clock_irq(int user);
79void rcu_report_dead(unsigned int cpu);
80void rcutree_migrate_callbacks(int cpu);
81
82#ifdef CONFIG_RCU_STALL_COMMON
83void rcu_sysrq_start(void);
84void rcu_sysrq_end(void);
85#else /* #ifdef CONFIG_RCU_STALL_COMMON */
86static inline void rcu_sysrq_start(void) { }
87static inline void rcu_sysrq_end(void) { }
88#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
89
90#ifdef CONFIG_NO_HZ_FULL
91void rcu_user_enter(void);
92void rcu_user_exit(void);
93#else
94static inline void rcu_user_enter(void) { }
95static inline void rcu_user_exit(void) { }
96#endif /* CONFIG_NO_HZ_FULL */
97
98#ifdef CONFIG_RCU_NOCB_CPU
99void rcu_init_nohz(void);
100#else /* #ifdef CONFIG_RCU_NOCB_CPU */
101static inline void rcu_init_nohz(void) { }
102#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
103
104/**
105 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
106 * @a: Code that RCU needs to pay attention to.
107 *
108 * RCU read-side critical sections are forbidden in the inner idle loop,
109 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
110 * will happily ignore any such read-side critical sections. However,
111 * things like powertop need tracepoints in the inner idle loop.
112 *
113 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
114 * will tell RCU that it needs to pay attention, invoke its argument
115 * (in this example, calling the do_something_with_RCU() function),
116 * and then tell RCU to go back to ignoring this CPU. It is permissible
117 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
118 * on the order of a million or so, even on 32-bit systems). It is
119 * not legal to block within RCU_NONIDLE(), nor is it permissible to
120 * transfer control either into or out of RCU_NONIDLE()'s statement.
121 */
122#define RCU_NONIDLE(a) \
123 do { \
124 rcu_irq_enter_irqson(); \
125 do { a; } while (0); \
126 rcu_irq_exit_irqson(); \
127 } while (0)
128
129/*
130 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
131 * This is a macro rather than an inline function to avoid #include hell.
132 */
133#ifdef CONFIG_TASKS_RCU_GENERIC
134
135# ifdef CONFIG_TASKS_RCU
136# define rcu_tasks_classic_qs(t, preempt) \
137 do { \
138 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
139 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
140 } while (0)
141void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
142void synchronize_rcu_tasks(void);
143# else
144# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
145# define call_rcu_tasks call_rcu
146# define synchronize_rcu_tasks synchronize_rcu
147# endif
148
149# ifdef CONFIG_TASKS_RCU_TRACE
150# define rcu_tasks_trace_qs(t) \
151 do { \
152 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \
153 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \
154 smp_store_release(&(t)->trc_reader_checked, true); \
155 smp_mb(); /* Readers partitioned by store. */ \
156 } \
157 } while (0)
158# else
159# define rcu_tasks_trace_qs(t) do { } while (0)
160# endif
161
162#define rcu_tasks_qs(t, preempt) \
163do { \
164 rcu_tasks_classic_qs((t), (preempt)); \
165 rcu_tasks_trace_qs((t)); \
166} while (0)
167
168# ifdef CONFIG_TASKS_RUDE_RCU
169void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
170void synchronize_rcu_tasks_rude(void);
171# endif
172
173#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
174void exit_tasks_rcu_start(void);
175void exit_tasks_rcu_finish(void);
176#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
177#define rcu_tasks_qs(t, preempt) do { } while (0)
178#define rcu_note_voluntary_context_switch(t) do { } while (0)
179#define call_rcu_tasks call_rcu
180#define synchronize_rcu_tasks synchronize_rcu
181static inline void exit_tasks_rcu_start(void) { }
182static inline void exit_tasks_rcu_finish(void) { }
183#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
184
185/**
186 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
187 *
188 * This macro resembles cond_resched(), except that it is defined to
189 * report potential quiescent states to RCU-tasks even if the cond_resched()
190 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
191 */
192#define cond_resched_tasks_rcu_qs() \
193do { \
194 rcu_tasks_qs(current, false); \
195 cond_resched(); \
196} while (0)
197
198/*
199 * Infrastructure to implement the synchronize_() primitives in
200 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
201 */
202
203#if defined(CONFIG_TREE_RCU)
204#include <linux/rcutree.h>
205#elif defined(CONFIG_TINY_RCU)
206#include <linux/rcutiny.h>
207#else
208#error "Unknown RCU implementation specified to kernel configuration"
209#endif
210
211/*
212 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
213 * are needed for dynamic initialization and destruction of rcu_head
214 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
215 * dynamic initialization and destruction of statically allocated rcu_head
216 * structures. However, rcu_head structures allocated dynamically in the
217 * heap don't need any initialization.
218 */
219#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
220void init_rcu_head(struct rcu_head *head);
221void destroy_rcu_head(struct rcu_head *head);
222void init_rcu_head_on_stack(struct rcu_head *head);
223void destroy_rcu_head_on_stack(struct rcu_head *head);
224#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
225static inline void init_rcu_head(struct rcu_head *head) { }
226static inline void destroy_rcu_head(struct rcu_head *head) { }
227static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
228static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
229#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
230
231#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
232bool rcu_lockdep_current_cpu_online(void);
233#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
234static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
235#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
236
237#ifdef CONFIG_DEBUG_LOCK_ALLOC
238
239static inline void rcu_lock_acquire(struct lockdep_map *map)
240{
241 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
242}
243
244static inline void rcu_lock_release(struct lockdep_map *map)
245{
246 lock_release(map, _THIS_IP_);
247}
248
249extern struct lockdep_map rcu_lock_map;
250extern struct lockdep_map rcu_bh_lock_map;
251extern struct lockdep_map rcu_sched_lock_map;
252extern struct lockdep_map rcu_callback_map;
253int debug_lockdep_rcu_enabled(void);
254int rcu_read_lock_held(void);
255int rcu_read_lock_bh_held(void);
256int rcu_read_lock_sched_held(void);
257int rcu_read_lock_any_held(void);
258
259#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
260
261# define rcu_lock_acquire(a) do { } while (0)
262# define rcu_lock_release(a) do { } while (0)
263
264static inline int rcu_read_lock_held(void)
265{
266 return 1;
267}
268
269static inline int rcu_read_lock_bh_held(void)
270{
271 return 1;
272}
273
274static inline int rcu_read_lock_sched_held(void)
275{
276 return !preemptible();
277}
278
279static inline int rcu_read_lock_any_held(void)
280{
281 return !preemptible();
282}
283
284#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
285
286#ifdef CONFIG_PROVE_RCU
287
288/**
289 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
290 * @c: condition to check
291 * @s: informative message
292 */
293#define RCU_LOCKDEP_WARN(c, s) \
294 do { \
295 static bool __section(.data.unlikely) __warned; \
296 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
297 __warned = true; \
298 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
299 } \
300 } while (0)
301
302#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
303static inline void rcu_preempt_sleep_check(void)
304{
305 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
306 "Illegal context switch in RCU read-side critical section");
307}
308#else /* #ifdef CONFIG_PROVE_RCU */
309static inline void rcu_preempt_sleep_check(void) { }
310#endif /* #else #ifdef CONFIG_PROVE_RCU */
311
312#define rcu_sleep_check() \
313 do { \
314 rcu_preempt_sleep_check(); \
315 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
316 "Illegal context switch in RCU-bh read-side critical section"); \
317 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
318 "Illegal context switch in RCU-sched read-side critical section"); \
319 } while (0)
320
321#else /* #ifdef CONFIG_PROVE_RCU */
322
323#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
324#define rcu_sleep_check() do { } while (0)
325
326#endif /* #else #ifdef CONFIG_PROVE_RCU */
327
328/*
329 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
330 * and rcu_assign_pointer(). Some of these could be folded into their
331 * callers, but they are left separate in order to ease introduction of
332 * multiple pointers markings to match different RCU implementations
333 * (e.g., __srcu), should this make sense in the future.
334 */
335
336#ifdef __CHECKER__
337#define rcu_check_sparse(p, space) \
338 ((void)(((typeof(*p) space *)p) == p))
339#else /* #ifdef __CHECKER__ */
340#define rcu_check_sparse(p, space)
341#endif /* #else #ifdef __CHECKER__ */
342
343#define __rcu_access_pointer(p, space) \
344({ \
345 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
346 rcu_check_sparse(p, space); \
347 ((typeof(*p) __force __kernel *)(_________p1)); \
348})
349#define __rcu_dereference_check(p, c, space) \
350({ \
351 /* Dependency order vs. p above. */ \
352 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
353 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
354 rcu_check_sparse(p, space); \
355 ((typeof(*p) __force __kernel *)(________p1)); \
356})
357#define __rcu_dereference_protected(p, c, space) \
358({ \
359 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
360 rcu_check_sparse(p, space); \
361 ((typeof(*p) __force __kernel *)(p)); \
362})
363#define rcu_dereference_raw(p) \
364({ \
365 /* Dependency order vs. p above. */ \
366 typeof(p) ________p1 = READ_ONCE(p); \
367 ((typeof(*p) __force __kernel *)(________p1)); \
368})
369
370/**
371 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
372 * @v: The value to statically initialize with.
373 */
374#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
375
376/**
377 * rcu_assign_pointer() - assign to RCU-protected pointer
378 * @p: pointer to assign to
379 * @v: value to assign (publish)
380 *
381 * Assigns the specified value to the specified RCU-protected
382 * pointer, ensuring that any concurrent RCU readers will see
383 * any prior initialization.
384 *
385 * Inserts memory barriers on architectures that require them
386 * (which is most of them), and also prevents the compiler from
387 * reordering the code that initializes the structure after the pointer
388 * assignment. More importantly, this call documents which pointers
389 * will be dereferenced by RCU read-side code.
390 *
391 * In some special cases, you may use RCU_INIT_POINTER() instead
392 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
393 * to the fact that it does not constrain either the CPU or the compiler.
394 * That said, using RCU_INIT_POINTER() when you should have used
395 * rcu_assign_pointer() is a very bad thing that results in
396 * impossible-to-diagnose memory corruption. So please be careful.
397 * See the RCU_INIT_POINTER() comment header for details.
398 *
399 * Note that rcu_assign_pointer() evaluates each of its arguments only
400 * once, appearances notwithstanding. One of the "extra" evaluations
401 * is in typeof() and the other visible only to sparse (__CHECKER__),
402 * neither of which actually execute the argument. As with most cpp
403 * macros, this execute-arguments-only-once property is important, so
404 * please be careful when making changes to rcu_assign_pointer() and the
405 * other macros that it invokes.
406 */
407#define rcu_assign_pointer(p, v) \
408do { \
409 uintptr_t _r_a_p__v = (uintptr_t)(v); \
410 rcu_check_sparse(p, __rcu); \
411 \
412 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
413 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
414 else \
415 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
416} while (0)
417
418/**
419 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
420 * @rcu_ptr: RCU pointer, whose old value is returned
421 * @ptr: regular pointer
422 * @c: the lockdep conditions under which the dereference will take place
423 *
424 * Perform a replacement, where @rcu_ptr is an RCU-annotated
425 * pointer and @c is the lockdep argument that is passed to the
426 * rcu_dereference_protected() call used to read that pointer. The old
427 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
428 */
429#define rcu_replace_pointer(rcu_ptr, ptr, c) \
430({ \
431 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
432 rcu_assign_pointer((rcu_ptr), (ptr)); \
433 __tmp; \
434})
435
436/**
437 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
438 * @p: The pointer to read
439 *
440 * Return the value of the specified RCU-protected pointer, but omit the
441 * lockdep checks for being in an RCU read-side critical section. This is
442 * useful when the value of this pointer is accessed, but the pointer is
443 * not dereferenced, for example, when testing an RCU-protected pointer
444 * against NULL. Although rcu_access_pointer() may also be used in cases
445 * where update-side locks prevent the value of the pointer from changing,
446 * you should instead use rcu_dereference_protected() for this use case.
447 *
448 * It is also permissible to use rcu_access_pointer() when read-side
449 * access to the pointer was removed at least one grace period ago, as
450 * is the case in the context of the RCU callback that is freeing up
451 * the data, or after a synchronize_rcu() returns. This can be useful
452 * when tearing down multi-linked structures after a grace period
453 * has elapsed.
454 */
455#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
456
457/**
458 * rcu_dereference_check() - rcu_dereference with debug checking
459 * @p: The pointer to read, prior to dereferencing
460 * @c: The conditions under which the dereference will take place
461 *
462 * Do an rcu_dereference(), but check that the conditions under which the
463 * dereference will take place are correct. Typically the conditions
464 * indicate the various locking conditions that should be held at that
465 * point. The check should return true if the conditions are satisfied.
466 * An implicit check for being in an RCU read-side critical section
467 * (rcu_read_lock()) is included.
468 *
469 * For example:
470 *
471 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
472 *
473 * could be used to indicate to lockdep that foo->bar may only be dereferenced
474 * if either rcu_read_lock() is held, or that the lock required to replace
475 * the bar struct at foo->bar is held.
476 *
477 * Note that the list of conditions may also include indications of when a lock
478 * need not be held, for example during initialisation or destruction of the
479 * target struct:
480 *
481 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
482 * atomic_read(&foo->usage) == 0);
483 *
484 * Inserts memory barriers on architectures that require them
485 * (currently only the Alpha), prevents the compiler from refetching
486 * (and from merging fetches), and, more importantly, documents exactly
487 * which pointers are protected by RCU and checks that the pointer is
488 * annotated as __rcu.
489 */
490#define rcu_dereference_check(p, c) \
491 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
492
493/**
494 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
495 * @p: The pointer to read, prior to dereferencing
496 * @c: The conditions under which the dereference will take place
497 *
498 * This is the RCU-bh counterpart to rcu_dereference_check().
499 */
500#define rcu_dereference_bh_check(p, c) \
501 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
502
503/**
504 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
505 * @p: The pointer to read, prior to dereferencing
506 * @c: The conditions under which the dereference will take place
507 *
508 * This is the RCU-sched counterpart to rcu_dereference_check().
509 */
510#define rcu_dereference_sched_check(p, c) \
511 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
512 __rcu)
513
514/*
515 * The tracing infrastructure traces RCU (we want that), but unfortunately
516 * some of the RCU checks causes tracing to lock up the system.
517 *
518 * The no-tracing version of rcu_dereference_raw() must not call
519 * rcu_read_lock_held().
520 */
521#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
522
523/**
524 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
525 * @p: The pointer to read, prior to dereferencing
526 * @c: The conditions under which the dereference will take place
527 *
528 * Return the value of the specified RCU-protected pointer, but omit
529 * the READ_ONCE(). This is useful in cases where update-side locks
530 * prevent the value of the pointer from changing. Please note that this
531 * primitive does *not* prevent the compiler from repeating this reference
532 * or combining it with other references, so it should not be used without
533 * protection of appropriate locks.
534 *
535 * This function is only for update-side use. Using this function
536 * when protected only by rcu_read_lock() will result in infrequent
537 * but very ugly failures.
538 */
539#define rcu_dereference_protected(p, c) \
540 __rcu_dereference_protected((p), (c), __rcu)
541
542
543/**
544 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
545 * @p: The pointer to read, prior to dereferencing
546 *
547 * This is a simple wrapper around rcu_dereference_check().
548 */
549#define rcu_dereference(p) rcu_dereference_check(p, 0)
550
551/**
552 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
553 * @p: The pointer to read, prior to dereferencing
554 *
555 * Makes rcu_dereference_check() do the dirty work.
556 */
557#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
558
559/**
560 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
561 * @p: The pointer to read, prior to dereferencing
562 *
563 * Makes rcu_dereference_check() do the dirty work.
564 */
565#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
566
567/**
568 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
569 * @p: The pointer to hand off
570 *
571 * This is simply an identity function, but it documents where a pointer
572 * is handed off from RCU to some other synchronization mechanism, for
573 * example, reference counting or locking. In C11, it would map to
574 * kill_dependency(). It could be used as follows::
575 *
576 * rcu_read_lock();
577 * p = rcu_dereference(gp);
578 * long_lived = is_long_lived(p);
579 * if (long_lived) {
580 * if (!atomic_inc_not_zero(p->refcnt))
581 * long_lived = false;
582 * else
583 * p = rcu_pointer_handoff(p);
584 * }
585 * rcu_read_unlock();
586 */
587#define rcu_pointer_handoff(p) (p)
588
589/**
590 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
591 *
592 * When synchronize_rcu() is invoked on one CPU while other CPUs
593 * are within RCU read-side critical sections, then the
594 * synchronize_rcu() is guaranteed to block until after all the other
595 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
596 * on one CPU while other CPUs are within RCU read-side critical
597 * sections, invocation of the corresponding RCU callback is deferred
598 * until after the all the other CPUs exit their critical sections.
599 *
600 * Note, however, that RCU callbacks are permitted to run concurrently
601 * with new RCU read-side critical sections. One way that this can happen
602 * is via the following sequence of events: (1) CPU 0 enters an RCU
603 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
604 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
605 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
606 * callback is invoked. This is legal, because the RCU read-side critical
607 * section that was running concurrently with the call_rcu() (and which
608 * therefore might be referencing something that the corresponding RCU
609 * callback would free up) has completed before the corresponding
610 * RCU callback is invoked.
611 *
612 * RCU read-side critical sections may be nested. Any deferred actions
613 * will be deferred until the outermost RCU read-side critical section
614 * completes.
615 *
616 * You can avoid reading and understanding the next paragraph by
617 * following this rule: don't put anything in an rcu_read_lock() RCU
618 * read-side critical section that would block in a !PREEMPTION kernel.
619 * But if you want the full story, read on!
620 *
621 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
622 * it is illegal to block while in an RCU read-side critical section.
623 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
624 * kernel builds, RCU read-side critical sections may be preempted,
625 * but explicit blocking is illegal. Finally, in preemptible RCU
626 * implementations in real-time (with -rt patchset) kernel builds, RCU
627 * read-side critical sections may be preempted and they may also block, but
628 * only when acquiring spinlocks that are subject to priority inheritance.
629 */
630static __always_inline void rcu_read_lock(void)
631{
632 __rcu_read_lock();
633 __acquire(RCU);
634 rcu_lock_acquire(&rcu_lock_map);
635 RCU_LOCKDEP_WARN(!rcu_is_watching(),
636 "rcu_read_lock() used illegally while idle");
637}
638
639/*
640 * So where is rcu_write_lock()? It does not exist, as there is no
641 * way for writers to lock out RCU readers. This is a feature, not
642 * a bug -- this property is what provides RCU's performance benefits.
643 * Of course, writers must coordinate with each other. The normal
644 * spinlock primitives work well for this, but any other technique may be
645 * used as well. RCU does not care how the writers keep out of each
646 * others' way, as long as they do so.
647 */
648
649/**
650 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
651 *
652 * In most situations, rcu_read_unlock() is immune from deadlock.
653 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
654 * is responsible for deboosting, which it does via rt_mutex_unlock().
655 * Unfortunately, this function acquires the scheduler's runqueue and
656 * priority-inheritance spinlocks. This means that deadlock could result
657 * if the caller of rcu_read_unlock() already holds one of these locks or
658 * any lock that is ever acquired while holding them.
659 *
660 * That said, RCU readers are never priority boosted unless they were
661 * preempted. Therefore, one way to avoid deadlock is to make sure
662 * that preemption never happens within any RCU read-side critical
663 * section whose outermost rcu_read_unlock() is called with one of
664 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
665 * a number of ways, for example, by invoking preempt_disable() before
666 * critical section's outermost rcu_read_lock().
667 *
668 * Given that the set of locks acquired by rt_mutex_unlock() might change
669 * at any time, a somewhat more future-proofed approach is to make sure
670 * that that preemption never happens within any RCU read-side critical
671 * section whose outermost rcu_read_unlock() is called with irqs disabled.
672 * This approach relies on the fact that rt_mutex_unlock() currently only
673 * acquires irq-disabled locks.
674 *
675 * The second of these two approaches is best in most situations,
676 * however, the first approach can also be useful, at least to those
677 * developers willing to keep abreast of the set of locks acquired by
678 * rt_mutex_unlock().
679 *
680 * See rcu_read_lock() for more information.
681 */
682static inline void rcu_read_unlock(void)
683{
684 RCU_LOCKDEP_WARN(!rcu_is_watching(),
685 "rcu_read_unlock() used illegally while idle");
686 __release(RCU);
687 __rcu_read_unlock();
688 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
689}
690
691/**
692 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
693 *
694 * This is equivalent of rcu_read_lock(), but also disables softirqs.
695 * Note that anything else that disables softirqs can also serve as
696 * an RCU read-side critical section.
697 *
698 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
699 * must occur in the same context, for example, it is illegal to invoke
700 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
701 * was invoked from some other task.
702 */
703static inline void rcu_read_lock_bh(void)
704{
705 local_bh_disable();
706 __acquire(RCU_BH);
707 rcu_lock_acquire(&rcu_bh_lock_map);
708 RCU_LOCKDEP_WARN(!rcu_is_watching(),
709 "rcu_read_lock_bh() used illegally while idle");
710}
711
712/*
713 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
714 *
715 * See rcu_read_lock_bh() for more information.
716 */
717static inline void rcu_read_unlock_bh(void)
718{
719 RCU_LOCKDEP_WARN(!rcu_is_watching(),
720 "rcu_read_unlock_bh() used illegally while idle");
721 rcu_lock_release(&rcu_bh_lock_map);
722 __release(RCU_BH);
723 local_bh_enable();
724}
725
726/**
727 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
728 *
729 * This is equivalent of rcu_read_lock(), but disables preemption.
730 * Read-side critical sections can also be introduced by anything else
731 * that disables preemption, including local_irq_disable() and friends.
732 *
733 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
734 * must occur in the same context, for example, it is illegal to invoke
735 * rcu_read_unlock_sched() from process context if the matching
736 * rcu_read_lock_sched() was invoked from an NMI handler.
737 */
738static inline void rcu_read_lock_sched(void)
739{
740 preempt_disable();
741 __acquire(RCU_SCHED);
742 rcu_lock_acquire(&rcu_sched_lock_map);
743 RCU_LOCKDEP_WARN(!rcu_is_watching(),
744 "rcu_read_lock_sched() used illegally while idle");
745}
746
747/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
748static inline notrace void rcu_read_lock_sched_notrace(void)
749{
750 preempt_disable_notrace();
751 __acquire(RCU_SCHED);
752}
753
754/*
755 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
756 *
757 * See rcu_read_lock_sched for more information.
758 */
759static inline void rcu_read_unlock_sched(void)
760{
761 RCU_LOCKDEP_WARN(!rcu_is_watching(),
762 "rcu_read_unlock_sched() used illegally while idle");
763 rcu_lock_release(&rcu_sched_lock_map);
764 __release(RCU_SCHED);
765 preempt_enable();
766}
767
768/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
769static inline notrace void rcu_read_unlock_sched_notrace(void)
770{
771 __release(RCU_SCHED);
772 preempt_enable_notrace();
773}
774
775/**
776 * RCU_INIT_POINTER() - initialize an RCU protected pointer
777 * @p: The pointer to be initialized.
778 * @v: The value to initialized the pointer to.
779 *
780 * Initialize an RCU-protected pointer in special cases where readers
781 * do not need ordering constraints on the CPU or the compiler. These
782 * special cases are:
783 *
784 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
785 * 2. The caller has taken whatever steps are required to prevent
786 * RCU readers from concurrently accessing this pointer *or*
787 * 3. The referenced data structure has already been exposed to
788 * readers either at compile time or via rcu_assign_pointer() *and*
789 *
790 * a. You have not made *any* reader-visible changes to
791 * this structure since then *or*
792 * b. It is OK for readers accessing this structure from its
793 * new location to see the old state of the structure. (For
794 * example, the changes were to statistical counters or to
795 * other state where exact synchronization is not required.)
796 *
797 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
798 * result in impossible-to-diagnose memory corruption. As in the structures
799 * will look OK in crash dumps, but any concurrent RCU readers might
800 * see pre-initialized values of the referenced data structure. So
801 * please be very careful how you use RCU_INIT_POINTER()!!!
802 *
803 * If you are creating an RCU-protected linked structure that is accessed
804 * by a single external-to-structure RCU-protected pointer, then you may
805 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
806 * pointers, but you must use rcu_assign_pointer() to initialize the
807 * external-to-structure pointer *after* you have completely initialized
808 * the reader-accessible portions of the linked structure.
809 *
810 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
811 * ordering guarantees for either the CPU or the compiler.
812 */
813#define RCU_INIT_POINTER(p, v) \
814 do { \
815 rcu_check_sparse(p, __rcu); \
816 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
817 } while (0)
818
819/**
820 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
821 * @p: The pointer to be initialized.
822 * @v: The value to initialized the pointer to.
823 *
824 * GCC-style initialization for an RCU-protected pointer in a structure field.
825 */
826#define RCU_POINTER_INITIALIZER(p, v) \
827 .p = RCU_INITIALIZER(v)
828
829/*
830 * Does the specified offset indicate that the corresponding rcu_head
831 * structure can be handled by kvfree_rcu()?
832 */
833#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
834
835/*
836 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
837 */
838#define __kvfree_rcu(head, offset) \
839 do { \
840 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \
841 kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
842 } while (0)
843
844/**
845 * kfree_rcu() - kfree an object after a grace period.
846 * @ptr: pointer to kfree
847 * @rhf: the name of the struct rcu_head within the type of @ptr.
848 *
849 * Many rcu callbacks functions just call kfree() on the base structure.
850 * These functions are trivial, but their size adds up, and furthermore
851 * when they are used in a kernel module, that module must invoke the
852 * high-latency rcu_barrier() function at module-unload time.
853 *
854 * The kfree_rcu() function handles this issue. Rather than encoding a
855 * function address in the embedded rcu_head structure, kfree_rcu() instead
856 * encodes the offset of the rcu_head structure within the base structure.
857 * Because the functions are not allowed in the low-order 4096 bytes of
858 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
859 * If the offset is larger than 4095 bytes, a compile-time error will
860 * be generated in __kvfree_rcu(). If this error is triggered, you can
861 * either fall back to use of call_rcu() or rearrange the structure to
862 * position the rcu_head structure into the first 4096 bytes.
863 *
864 * Note that the allowable offset might decrease in the future, for example,
865 * to allow something like kmem_cache_free_rcu().
866 *
867 * The BUILD_BUG_ON check must not involve any function calls, hence the
868 * checks are done in macros here.
869 */
870#define kfree_rcu(ptr, rhf) \
871do { \
872 typeof (ptr) ___p = (ptr); \
873 \
874 if (___p) \
875 __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
876} while (0)
877
878/**
879 * kvfree_rcu() - kvfree an object after a grace period.
880 *
881 * This macro consists of one or two arguments and it is
882 * based on whether an object is head-less or not. If it
883 * has a head then a semantic stays the same as it used
884 * to be before:
885 *
886 * kvfree_rcu(ptr, rhf);
887 *
888 * where @ptr is a pointer to kvfree(), @rhf is the name
889 * of the rcu_head structure within the type of @ptr.
890 *
891 * When it comes to head-less variant, only one argument
892 * is passed and that is just a pointer which has to be
893 * freed after a grace period. Therefore the semantic is
894 *
895 * kvfree_rcu(ptr);
896 *
897 * where @ptr is a pointer to kvfree().
898 *
899 * Please note, head-less way of freeing is permitted to
900 * use from a context that has to follow might_sleep()
901 * annotation. Otherwise, please switch and embed the
902 * rcu_head structure within the type of @ptr.
903 */
904#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
905 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
906
907#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
908#define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf)
909#define kvfree_rcu_arg_1(ptr) \
910do { \
911 typeof(ptr) ___p = (ptr); \
912 \
913 if (___p) \
914 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
915} while (0)
916
917/*
918 * Place this after a lock-acquisition primitive to guarantee that
919 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
920 * if the UNLOCK and LOCK are executed by the same CPU or if the
921 * UNLOCK and LOCK operate on the same lock variable.
922 */
923#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
924#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
925#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
926#define smp_mb__after_unlock_lock() do { } while (0)
927#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
928
929
930/* Has the specified rcu_head structure been handed to call_rcu()? */
931
932/**
933 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
934 * @rhp: The rcu_head structure to initialize.
935 *
936 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
937 * given rcu_head structure has already been passed to call_rcu(), then
938 * you must also invoke this rcu_head_init() function on it just after
939 * allocating that structure. Calls to this function must not race with
940 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
941 */
942static inline void rcu_head_init(struct rcu_head *rhp)
943{
944 rhp->func = (rcu_callback_t)~0L;
945}
946
947/**
948 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
949 * @rhp: The rcu_head structure to test.
950 * @f: The function passed to call_rcu() along with @rhp.
951 *
952 * Returns @true if the @rhp has been passed to call_rcu() with @func,
953 * and @false otherwise. Emits a warning in any other case, including
954 * the case where @rhp has already been invoked after a grace period.
955 * Calls to this function must not race with callback invocation. One way
956 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
957 * in an RCU read-side critical section that includes a read-side fetch
958 * of the pointer to the structure containing @rhp.
959 */
960static inline bool
961rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
962{
963 rcu_callback_t func = READ_ONCE(rhp->func);
964
965 if (func == f)
966 return true;
967 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
968 return false;
969}
970
971/* kernel/ksysfs.c definitions */
972extern int rcu_expedited;
973extern int rcu_normal;
974
975#endif /* __LINUX_RCUPDATE_H */
1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20#ifndef __LINUX_RCUPDATE_H
21#define __LINUX_RCUPDATE_H
22
23#include <linux/types.h>
24#include <linux/compiler.h>
25#include <linux/atomic.h>
26#include <linux/irqflags.h>
27#include <linux/preempt.h>
28#include <linux/bottom_half.h>
29#include <linux/lockdep.h>
30#include <linux/cleanup.h>
31#include <asm/processor.h>
32#include <linux/cpumask.h>
33#include <linux/context_tracking_irq.h>
34
35#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
36#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
37
38/* Exported common interfaces */
39void call_rcu(struct rcu_head *head, rcu_callback_t func);
40void rcu_barrier_tasks(void);
41void rcu_barrier_tasks_rude(void);
42void synchronize_rcu(void);
43
44struct rcu_gp_oldstate;
45unsigned long get_completed_synchronize_rcu(void);
46void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
47
48// Maximum number of unsigned long values corresponding to
49// not-yet-completed RCU grace periods.
50#define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
51
52/**
53 * same_state_synchronize_rcu - Are two old-state values identical?
54 * @oldstate1: First old-state value.
55 * @oldstate2: Second old-state value.
56 *
57 * The two old-state values must have been obtained from either
58 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
59 * get_completed_synchronize_rcu(). Returns @true if the two values are
60 * identical and @false otherwise. This allows structures whose lifetimes
61 * are tracked by old-state values to push these values to a list header,
62 * allowing those structures to be slightly smaller.
63 */
64static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
65{
66 return oldstate1 == oldstate2;
67}
68
69#ifdef CONFIG_PREEMPT_RCU
70
71void __rcu_read_lock(void);
72void __rcu_read_unlock(void);
73
74/*
75 * Defined as a macro as it is a very low level header included from
76 * areas that don't even know about current. This gives the rcu_read_lock()
77 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
78 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
79 */
80#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
81
82#else /* #ifdef CONFIG_PREEMPT_RCU */
83
84#ifdef CONFIG_TINY_RCU
85#define rcu_read_unlock_strict() do { } while (0)
86#else
87void rcu_read_unlock_strict(void);
88#endif
89
90static inline void __rcu_read_lock(void)
91{
92 preempt_disable();
93}
94
95static inline void __rcu_read_unlock(void)
96{
97 preempt_enable();
98 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
99 rcu_read_unlock_strict();
100}
101
102static inline int rcu_preempt_depth(void)
103{
104 return 0;
105}
106
107#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
108
109#ifdef CONFIG_RCU_LAZY
110void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
111#else
112static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
113{
114 call_rcu(head, func);
115}
116#endif
117
118/* Internal to kernel */
119void rcu_init(void);
120extern int rcu_scheduler_active;
121void rcu_sched_clock_irq(int user);
122
123#ifdef CONFIG_TASKS_RCU_GENERIC
124void rcu_init_tasks_generic(void);
125#else
126static inline void rcu_init_tasks_generic(void) { }
127#endif
128
129#ifdef CONFIG_RCU_STALL_COMMON
130void rcu_sysrq_start(void);
131void rcu_sysrq_end(void);
132#else /* #ifdef CONFIG_RCU_STALL_COMMON */
133static inline void rcu_sysrq_start(void) { }
134static inline void rcu_sysrq_end(void) { }
135#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
136
137#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
138void rcu_irq_work_resched(void);
139#else
140static inline void rcu_irq_work_resched(void) { }
141#endif
142
143#ifdef CONFIG_RCU_NOCB_CPU
144void rcu_init_nohz(void);
145int rcu_nocb_cpu_offload(int cpu);
146int rcu_nocb_cpu_deoffload(int cpu);
147void rcu_nocb_flush_deferred_wakeup(void);
148#else /* #ifdef CONFIG_RCU_NOCB_CPU */
149static inline void rcu_init_nohz(void) { }
150static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
151static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
152static inline void rcu_nocb_flush_deferred_wakeup(void) { }
153#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
154
155/*
156 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
157 * This is a macro rather than an inline function to avoid #include hell.
158 */
159#ifdef CONFIG_TASKS_RCU_GENERIC
160
161# ifdef CONFIG_TASKS_RCU
162# define rcu_tasks_classic_qs(t, preempt) \
163 do { \
164 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
165 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
166 } while (0)
167void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
168void synchronize_rcu_tasks(void);
169# else
170# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
171# define call_rcu_tasks call_rcu
172# define synchronize_rcu_tasks synchronize_rcu
173# endif
174
175# ifdef CONFIG_TASKS_TRACE_RCU
176// Bits for ->trc_reader_special.b.need_qs field.
177#define TRC_NEED_QS 0x1 // Task needs a quiescent state.
178#define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
179
180u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
181void rcu_tasks_trace_qs_blkd(struct task_struct *t);
182
183# define rcu_tasks_trace_qs(t) \
184 do { \
185 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
186 \
187 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \
188 likely(!___rttq_nesting)) { \
189 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \
190 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
191 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
192 rcu_tasks_trace_qs_blkd(t); \
193 } \
194 } while (0)
195# else
196# define rcu_tasks_trace_qs(t) do { } while (0)
197# endif
198
199#define rcu_tasks_qs(t, preempt) \
200do { \
201 rcu_tasks_classic_qs((t), (preempt)); \
202 rcu_tasks_trace_qs(t); \
203} while (0)
204
205# ifdef CONFIG_TASKS_RUDE_RCU
206void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
207void synchronize_rcu_tasks_rude(void);
208# endif
209
210#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
211void exit_tasks_rcu_start(void);
212void exit_tasks_rcu_stop(void);
213void exit_tasks_rcu_finish(void);
214#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
215#define rcu_tasks_classic_qs(t, preempt) do { } while (0)
216#define rcu_tasks_qs(t, preempt) do { } while (0)
217#define rcu_note_voluntary_context_switch(t) do { } while (0)
218#define call_rcu_tasks call_rcu
219#define synchronize_rcu_tasks synchronize_rcu
220static inline void exit_tasks_rcu_start(void) { }
221static inline void exit_tasks_rcu_stop(void) { }
222static inline void exit_tasks_rcu_finish(void) { }
223#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
224
225/**
226 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
227 *
228 * As an accident of implementation, an RCU Tasks Trace grace period also
229 * acts as an RCU grace period. However, this could change at any time.
230 * Code relying on this accident must call this function to verify that
231 * this accident is still happening.
232 *
233 * You have been warned!
234 */
235static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
236
237/**
238 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
239 *
240 * This macro resembles cond_resched(), except that it is defined to
241 * report potential quiescent states to RCU-tasks even if the cond_resched()
242 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
243 */
244#define cond_resched_tasks_rcu_qs() \
245do { \
246 rcu_tasks_qs(current, false); \
247 cond_resched(); \
248} while (0)
249
250/*
251 * Infrastructure to implement the synchronize_() primitives in
252 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
253 */
254
255#if defined(CONFIG_TREE_RCU)
256#include <linux/rcutree.h>
257#elif defined(CONFIG_TINY_RCU)
258#include <linux/rcutiny.h>
259#else
260#error "Unknown RCU implementation specified to kernel configuration"
261#endif
262
263/*
264 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
265 * are needed for dynamic initialization and destruction of rcu_head
266 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
267 * dynamic initialization and destruction of statically allocated rcu_head
268 * structures. However, rcu_head structures allocated dynamically in the
269 * heap don't need any initialization.
270 */
271#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
272void init_rcu_head(struct rcu_head *head);
273void destroy_rcu_head(struct rcu_head *head);
274void init_rcu_head_on_stack(struct rcu_head *head);
275void destroy_rcu_head_on_stack(struct rcu_head *head);
276#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
277static inline void init_rcu_head(struct rcu_head *head) { }
278static inline void destroy_rcu_head(struct rcu_head *head) { }
279static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
280static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
281#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
282
283#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
284bool rcu_lockdep_current_cpu_online(void);
285#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
286static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
287#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
288
289extern struct lockdep_map rcu_lock_map;
290extern struct lockdep_map rcu_bh_lock_map;
291extern struct lockdep_map rcu_sched_lock_map;
292extern struct lockdep_map rcu_callback_map;
293
294#ifdef CONFIG_DEBUG_LOCK_ALLOC
295
296static inline void rcu_lock_acquire(struct lockdep_map *map)
297{
298 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
299}
300
301static inline void rcu_try_lock_acquire(struct lockdep_map *map)
302{
303 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
304}
305
306static inline void rcu_lock_release(struct lockdep_map *map)
307{
308 lock_release(map, _THIS_IP_);
309}
310
311int debug_lockdep_rcu_enabled(void);
312int rcu_read_lock_held(void);
313int rcu_read_lock_bh_held(void);
314int rcu_read_lock_sched_held(void);
315int rcu_read_lock_any_held(void);
316
317#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
318
319# define rcu_lock_acquire(a) do { } while (0)
320# define rcu_try_lock_acquire(a) do { } while (0)
321# define rcu_lock_release(a) do { } while (0)
322
323static inline int rcu_read_lock_held(void)
324{
325 return 1;
326}
327
328static inline int rcu_read_lock_bh_held(void)
329{
330 return 1;
331}
332
333static inline int rcu_read_lock_sched_held(void)
334{
335 return !preemptible();
336}
337
338static inline int rcu_read_lock_any_held(void)
339{
340 return !preemptible();
341}
342
343static inline int debug_lockdep_rcu_enabled(void)
344{
345 return 0;
346}
347
348#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
349
350#ifdef CONFIG_PROVE_RCU
351
352/**
353 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
354 * @c: condition to check
355 * @s: informative message
356 *
357 * This checks debug_lockdep_rcu_enabled() before checking (c) to
358 * prevent early boot splats due to lockdep not yet being initialized,
359 * and rechecks it after checking (c) to prevent false-positive splats
360 * due to races with lockdep being disabled. See commit 3066820034b5dd
361 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
362 */
363#define RCU_LOCKDEP_WARN(c, s) \
364 do { \
365 static bool __section(".data.unlikely") __warned; \
366 if (debug_lockdep_rcu_enabled() && (c) && \
367 debug_lockdep_rcu_enabled() && !__warned) { \
368 __warned = true; \
369 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
370 } \
371 } while (0)
372
373#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
374static inline void rcu_preempt_sleep_check(void)
375{
376 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
377 "Illegal context switch in RCU read-side critical section");
378}
379#else /* #ifdef CONFIG_PROVE_RCU */
380static inline void rcu_preempt_sleep_check(void) { }
381#endif /* #else #ifdef CONFIG_PROVE_RCU */
382
383#define rcu_sleep_check() \
384 do { \
385 rcu_preempt_sleep_check(); \
386 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
387 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
388 "Illegal context switch in RCU-bh read-side critical section"); \
389 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
390 "Illegal context switch in RCU-sched read-side critical section"); \
391 } while (0)
392
393#else /* #ifdef CONFIG_PROVE_RCU */
394
395#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
396#define rcu_sleep_check() do { } while (0)
397
398#endif /* #else #ifdef CONFIG_PROVE_RCU */
399
400/*
401 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
402 * and rcu_assign_pointer(). Some of these could be folded into their
403 * callers, but they are left separate in order to ease introduction of
404 * multiple pointers markings to match different RCU implementations
405 * (e.g., __srcu), should this make sense in the future.
406 */
407
408#ifdef __CHECKER__
409#define rcu_check_sparse(p, space) \
410 ((void)(((typeof(*p) space *)p) == p))
411#else /* #ifdef __CHECKER__ */
412#define rcu_check_sparse(p, space)
413#endif /* #else #ifdef __CHECKER__ */
414
415#define __unrcu_pointer(p, local) \
416({ \
417 typeof(*p) *local = (typeof(*p) *__force)(p); \
418 rcu_check_sparse(p, __rcu); \
419 ((typeof(*p) __force __kernel *)(local)); \
420})
421/**
422 * unrcu_pointer - mark a pointer as not being RCU protected
423 * @p: pointer needing to lose its __rcu property
424 *
425 * Converts @p from an __rcu pointer to a __kernel pointer.
426 * This allows an __rcu pointer to be used with xchg() and friends.
427 */
428#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
429
430#define __rcu_access_pointer(p, local, space) \
431({ \
432 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
433 rcu_check_sparse(p, space); \
434 ((typeof(*p) __force __kernel *)(local)); \
435})
436#define __rcu_dereference_check(p, local, c, space) \
437({ \
438 /* Dependency order vs. p above. */ \
439 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
440 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
441 rcu_check_sparse(p, space); \
442 ((typeof(*p) __force __kernel *)(local)); \
443})
444#define __rcu_dereference_protected(p, local, c, space) \
445({ \
446 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
447 rcu_check_sparse(p, space); \
448 ((typeof(*p) __force __kernel *)(p)); \
449})
450#define __rcu_dereference_raw(p, local) \
451({ \
452 /* Dependency order vs. p above. */ \
453 typeof(p) local = READ_ONCE(p); \
454 ((typeof(*p) __force __kernel *)(local)); \
455})
456#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
457
458/**
459 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
460 * @v: The value to statically initialize with.
461 */
462#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
463
464/**
465 * rcu_assign_pointer() - assign to RCU-protected pointer
466 * @p: pointer to assign to
467 * @v: value to assign (publish)
468 *
469 * Assigns the specified value to the specified RCU-protected
470 * pointer, ensuring that any concurrent RCU readers will see
471 * any prior initialization.
472 *
473 * Inserts memory barriers on architectures that require them
474 * (which is most of them), and also prevents the compiler from
475 * reordering the code that initializes the structure after the pointer
476 * assignment. More importantly, this call documents which pointers
477 * will be dereferenced by RCU read-side code.
478 *
479 * In some special cases, you may use RCU_INIT_POINTER() instead
480 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
481 * to the fact that it does not constrain either the CPU or the compiler.
482 * That said, using RCU_INIT_POINTER() when you should have used
483 * rcu_assign_pointer() is a very bad thing that results in
484 * impossible-to-diagnose memory corruption. So please be careful.
485 * See the RCU_INIT_POINTER() comment header for details.
486 *
487 * Note that rcu_assign_pointer() evaluates each of its arguments only
488 * once, appearances notwithstanding. One of the "extra" evaluations
489 * is in typeof() and the other visible only to sparse (__CHECKER__),
490 * neither of which actually execute the argument. As with most cpp
491 * macros, this execute-arguments-only-once property is important, so
492 * please be careful when making changes to rcu_assign_pointer() and the
493 * other macros that it invokes.
494 */
495#define rcu_assign_pointer(p, v) \
496do { \
497 uintptr_t _r_a_p__v = (uintptr_t)(v); \
498 rcu_check_sparse(p, __rcu); \
499 \
500 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
501 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
502 else \
503 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
504} while (0)
505
506/**
507 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
508 * @rcu_ptr: RCU pointer, whose old value is returned
509 * @ptr: regular pointer
510 * @c: the lockdep conditions under which the dereference will take place
511 *
512 * Perform a replacement, where @rcu_ptr is an RCU-annotated
513 * pointer and @c is the lockdep argument that is passed to the
514 * rcu_dereference_protected() call used to read that pointer. The old
515 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
516 */
517#define rcu_replace_pointer(rcu_ptr, ptr, c) \
518({ \
519 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
520 rcu_assign_pointer((rcu_ptr), (ptr)); \
521 __tmp; \
522})
523
524/**
525 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
526 * @p: The pointer to read
527 *
528 * Return the value of the specified RCU-protected pointer, but omit the
529 * lockdep checks for being in an RCU read-side critical section. This is
530 * useful when the value of this pointer is accessed, but the pointer is
531 * not dereferenced, for example, when testing an RCU-protected pointer
532 * against NULL. Although rcu_access_pointer() may also be used in cases
533 * where update-side locks prevent the value of the pointer from changing,
534 * you should instead use rcu_dereference_protected() for this use case.
535 * Within an RCU read-side critical section, there is little reason to
536 * use rcu_access_pointer().
537 *
538 * It is usually best to test the rcu_access_pointer() return value
539 * directly in order to avoid accidental dereferences being introduced
540 * by later inattentive changes. In other words, assigning the
541 * rcu_access_pointer() return value to a local variable results in an
542 * accident waiting to happen.
543 *
544 * It is also permissible to use rcu_access_pointer() when read-side
545 * access to the pointer was removed at least one grace period ago, as is
546 * the case in the context of the RCU callback that is freeing up the data,
547 * or after a synchronize_rcu() returns. This can be useful when tearing
548 * down multi-linked structures after a grace period has elapsed. However,
549 * rcu_dereference_protected() is normally preferred for this use case.
550 */
551#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
552
553/**
554 * rcu_dereference_check() - rcu_dereference with debug checking
555 * @p: The pointer to read, prior to dereferencing
556 * @c: The conditions under which the dereference will take place
557 *
558 * Do an rcu_dereference(), but check that the conditions under which the
559 * dereference will take place are correct. Typically the conditions
560 * indicate the various locking conditions that should be held at that
561 * point. The check should return true if the conditions are satisfied.
562 * An implicit check for being in an RCU read-side critical section
563 * (rcu_read_lock()) is included.
564 *
565 * For example:
566 *
567 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
568 *
569 * could be used to indicate to lockdep that foo->bar may only be dereferenced
570 * if either rcu_read_lock() is held, or that the lock required to replace
571 * the bar struct at foo->bar is held.
572 *
573 * Note that the list of conditions may also include indications of when a lock
574 * need not be held, for example during initialisation or destruction of the
575 * target struct:
576 *
577 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
578 * atomic_read(&foo->usage) == 0);
579 *
580 * Inserts memory barriers on architectures that require them
581 * (currently only the Alpha), prevents the compiler from refetching
582 * (and from merging fetches), and, more importantly, documents exactly
583 * which pointers are protected by RCU and checks that the pointer is
584 * annotated as __rcu.
585 */
586#define rcu_dereference_check(p, c) \
587 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
588 (c) || rcu_read_lock_held(), __rcu)
589
590/**
591 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
592 * @p: The pointer to read, prior to dereferencing
593 * @c: The conditions under which the dereference will take place
594 *
595 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
596 * please note that starting in v5.0 kernels, vanilla RCU grace periods
597 * wait for local_bh_disable() regions of code in addition to regions of
598 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
599 * that synchronize_rcu(), call_rcu, and friends all take not only
600 * rcu_read_lock() but also rcu_read_lock_bh() into account.
601 */
602#define rcu_dereference_bh_check(p, c) \
603 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
604 (c) || rcu_read_lock_bh_held(), __rcu)
605
606/**
607 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
608 * @p: The pointer to read, prior to dereferencing
609 * @c: The conditions under which the dereference will take place
610 *
611 * This is the RCU-sched counterpart to rcu_dereference_check().
612 * However, please note that starting in v5.0 kernels, vanilla RCU grace
613 * periods wait for preempt_disable() regions of code in addition to
614 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
615 * This means that synchronize_rcu(), call_rcu, and friends all take not
616 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
617 */
618#define rcu_dereference_sched_check(p, c) \
619 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
620 (c) || rcu_read_lock_sched_held(), \
621 __rcu)
622
623/*
624 * The tracing infrastructure traces RCU (we want that), but unfortunately
625 * some of the RCU checks causes tracing to lock up the system.
626 *
627 * The no-tracing version of rcu_dereference_raw() must not call
628 * rcu_read_lock_held().
629 */
630#define rcu_dereference_raw_check(p) \
631 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
632
633/**
634 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
635 * @p: The pointer to read, prior to dereferencing
636 * @c: The conditions under which the dereference will take place
637 *
638 * Return the value of the specified RCU-protected pointer, but omit
639 * the READ_ONCE(). This is useful in cases where update-side locks
640 * prevent the value of the pointer from changing. Please note that this
641 * primitive does *not* prevent the compiler from repeating this reference
642 * or combining it with other references, so it should not be used without
643 * protection of appropriate locks.
644 *
645 * This function is only for update-side use. Using this function
646 * when protected only by rcu_read_lock() will result in infrequent
647 * but very ugly failures.
648 */
649#define rcu_dereference_protected(p, c) \
650 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
651
652
653/**
654 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
655 * @p: The pointer to read, prior to dereferencing
656 *
657 * This is a simple wrapper around rcu_dereference_check().
658 */
659#define rcu_dereference(p) rcu_dereference_check(p, 0)
660
661/**
662 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
663 * @p: The pointer to read, prior to dereferencing
664 *
665 * Makes rcu_dereference_check() do the dirty work.
666 */
667#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
668
669/**
670 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
671 * @p: The pointer to read, prior to dereferencing
672 *
673 * Makes rcu_dereference_check() do the dirty work.
674 */
675#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
676
677/**
678 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
679 * @p: The pointer to hand off
680 *
681 * This is simply an identity function, but it documents where a pointer
682 * is handed off from RCU to some other synchronization mechanism, for
683 * example, reference counting or locking. In C11, it would map to
684 * kill_dependency(). It could be used as follows::
685 *
686 * rcu_read_lock();
687 * p = rcu_dereference(gp);
688 * long_lived = is_long_lived(p);
689 * if (long_lived) {
690 * if (!atomic_inc_not_zero(p->refcnt))
691 * long_lived = false;
692 * else
693 * p = rcu_pointer_handoff(p);
694 * }
695 * rcu_read_unlock();
696 */
697#define rcu_pointer_handoff(p) (p)
698
699/**
700 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
701 *
702 * When synchronize_rcu() is invoked on one CPU while other CPUs
703 * are within RCU read-side critical sections, then the
704 * synchronize_rcu() is guaranteed to block until after all the other
705 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
706 * on one CPU while other CPUs are within RCU read-side critical
707 * sections, invocation of the corresponding RCU callback is deferred
708 * until after the all the other CPUs exit their critical sections.
709 *
710 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
711 * wait for regions of code with preemption disabled, including regions of
712 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
713 * define synchronize_sched(), only code enclosed within rcu_read_lock()
714 * and rcu_read_unlock() are guaranteed to be waited for.
715 *
716 * Note, however, that RCU callbacks are permitted to run concurrently
717 * with new RCU read-side critical sections. One way that this can happen
718 * is via the following sequence of events: (1) CPU 0 enters an RCU
719 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
720 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
721 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
722 * callback is invoked. This is legal, because the RCU read-side critical
723 * section that was running concurrently with the call_rcu() (and which
724 * therefore might be referencing something that the corresponding RCU
725 * callback would free up) has completed before the corresponding
726 * RCU callback is invoked.
727 *
728 * RCU read-side critical sections may be nested. Any deferred actions
729 * will be deferred until the outermost RCU read-side critical section
730 * completes.
731 *
732 * You can avoid reading and understanding the next paragraph by
733 * following this rule: don't put anything in an rcu_read_lock() RCU
734 * read-side critical section that would block in a !PREEMPTION kernel.
735 * But if you want the full story, read on!
736 *
737 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
738 * it is illegal to block while in an RCU read-side critical section.
739 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
740 * kernel builds, RCU read-side critical sections may be preempted,
741 * but explicit blocking is illegal. Finally, in preemptible RCU
742 * implementations in real-time (with -rt patchset) kernel builds, RCU
743 * read-side critical sections may be preempted and they may also block, but
744 * only when acquiring spinlocks that are subject to priority inheritance.
745 */
746static __always_inline void rcu_read_lock(void)
747{
748 __rcu_read_lock();
749 __acquire(RCU);
750 rcu_lock_acquire(&rcu_lock_map);
751 RCU_LOCKDEP_WARN(!rcu_is_watching(),
752 "rcu_read_lock() used illegally while idle");
753}
754
755/*
756 * So where is rcu_write_lock()? It does not exist, as there is no
757 * way for writers to lock out RCU readers. This is a feature, not
758 * a bug -- this property is what provides RCU's performance benefits.
759 * Of course, writers must coordinate with each other. The normal
760 * spinlock primitives work well for this, but any other technique may be
761 * used as well. RCU does not care how the writers keep out of each
762 * others' way, as long as they do so.
763 */
764
765/**
766 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
767 *
768 * In almost all situations, rcu_read_unlock() is immune from deadlock.
769 * In recent kernels that have consolidated synchronize_sched() and
770 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
771 * also extends to the scheduler's runqueue and priority-inheritance
772 * spinlocks, courtesy of the quiescent-state deferral that is carried
773 * out when rcu_read_unlock() is invoked with interrupts disabled.
774 *
775 * See rcu_read_lock() for more information.
776 */
777static inline void rcu_read_unlock(void)
778{
779 RCU_LOCKDEP_WARN(!rcu_is_watching(),
780 "rcu_read_unlock() used illegally while idle");
781 __release(RCU);
782 __rcu_read_unlock();
783 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
784}
785
786/**
787 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
788 *
789 * This is equivalent to rcu_read_lock(), but also disables softirqs.
790 * Note that anything else that disables softirqs can also serve as an RCU
791 * read-side critical section. However, please note that this equivalence
792 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
793 * rcu_read_lock_bh() were unrelated.
794 *
795 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
796 * must occur in the same context, for example, it is illegal to invoke
797 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
798 * was invoked from some other task.
799 */
800static inline void rcu_read_lock_bh(void)
801{
802 local_bh_disable();
803 __acquire(RCU_BH);
804 rcu_lock_acquire(&rcu_bh_lock_map);
805 RCU_LOCKDEP_WARN(!rcu_is_watching(),
806 "rcu_read_lock_bh() used illegally while idle");
807}
808
809/**
810 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
811 *
812 * See rcu_read_lock_bh() for more information.
813 */
814static inline void rcu_read_unlock_bh(void)
815{
816 RCU_LOCKDEP_WARN(!rcu_is_watching(),
817 "rcu_read_unlock_bh() used illegally while idle");
818 rcu_lock_release(&rcu_bh_lock_map);
819 __release(RCU_BH);
820 local_bh_enable();
821}
822
823/**
824 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
825 *
826 * This is equivalent to rcu_read_lock(), but also disables preemption.
827 * Read-side critical sections can also be introduced by anything else that
828 * disables preemption, including local_irq_disable() and friends. However,
829 * please note that the equivalence to rcu_read_lock() applies only to
830 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
831 * were unrelated.
832 *
833 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
834 * must occur in the same context, for example, it is illegal to invoke
835 * rcu_read_unlock_sched() from process context if the matching
836 * rcu_read_lock_sched() was invoked from an NMI handler.
837 */
838static inline void rcu_read_lock_sched(void)
839{
840 preempt_disable();
841 __acquire(RCU_SCHED);
842 rcu_lock_acquire(&rcu_sched_lock_map);
843 RCU_LOCKDEP_WARN(!rcu_is_watching(),
844 "rcu_read_lock_sched() used illegally while idle");
845}
846
847/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
848static inline notrace void rcu_read_lock_sched_notrace(void)
849{
850 preempt_disable_notrace();
851 __acquire(RCU_SCHED);
852}
853
854/**
855 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
856 *
857 * See rcu_read_lock_sched() for more information.
858 */
859static inline void rcu_read_unlock_sched(void)
860{
861 RCU_LOCKDEP_WARN(!rcu_is_watching(),
862 "rcu_read_unlock_sched() used illegally while idle");
863 rcu_lock_release(&rcu_sched_lock_map);
864 __release(RCU_SCHED);
865 preempt_enable();
866}
867
868/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
869static inline notrace void rcu_read_unlock_sched_notrace(void)
870{
871 __release(RCU_SCHED);
872 preempt_enable_notrace();
873}
874
875/**
876 * RCU_INIT_POINTER() - initialize an RCU protected pointer
877 * @p: The pointer to be initialized.
878 * @v: The value to initialized the pointer to.
879 *
880 * Initialize an RCU-protected pointer in special cases where readers
881 * do not need ordering constraints on the CPU or the compiler. These
882 * special cases are:
883 *
884 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
885 * 2. The caller has taken whatever steps are required to prevent
886 * RCU readers from concurrently accessing this pointer *or*
887 * 3. The referenced data structure has already been exposed to
888 * readers either at compile time or via rcu_assign_pointer() *and*
889 *
890 * a. You have not made *any* reader-visible changes to
891 * this structure since then *or*
892 * b. It is OK for readers accessing this structure from its
893 * new location to see the old state of the structure. (For
894 * example, the changes were to statistical counters or to
895 * other state where exact synchronization is not required.)
896 *
897 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
898 * result in impossible-to-diagnose memory corruption. As in the structures
899 * will look OK in crash dumps, but any concurrent RCU readers might
900 * see pre-initialized values of the referenced data structure. So
901 * please be very careful how you use RCU_INIT_POINTER()!!!
902 *
903 * If you are creating an RCU-protected linked structure that is accessed
904 * by a single external-to-structure RCU-protected pointer, then you may
905 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
906 * pointers, but you must use rcu_assign_pointer() to initialize the
907 * external-to-structure pointer *after* you have completely initialized
908 * the reader-accessible portions of the linked structure.
909 *
910 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
911 * ordering guarantees for either the CPU or the compiler.
912 */
913#define RCU_INIT_POINTER(p, v) \
914 do { \
915 rcu_check_sparse(p, __rcu); \
916 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
917 } while (0)
918
919/**
920 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
921 * @p: The pointer to be initialized.
922 * @v: The value to initialized the pointer to.
923 *
924 * GCC-style initialization for an RCU-protected pointer in a structure field.
925 */
926#define RCU_POINTER_INITIALIZER(p, v) \
927 .p = RCU_INITIALIZER(v)
928
929/*
930 * Does the specified offset indicate that the corresponding rcu_head
931 * structure can be handled by kvfree_rcu()?
932 */
933#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
934
935/**
936 * kfree_rcu() - kfree an object after a grace period.
937 * @ptr: pointer to kfree for double-argument invocations.
938 * @rhf: the name of the struct rcu_head within the type of @ptr.
939 *
940 * Many rcu callbacks functions just call kfree() on the base structure.
941 * These functions are trivial, but their size adds up, and furthermore
942 * when they are used in a kernel module, that module must invoke the
943 * high-latency rcu_barrier() function at module-unload time.
944 *
945 * The kfree_rcu() function handles this issue. Rather than encoding a
946 * function address in the embedded rcu_head structure, kfree_rcu() instead
947 * encodes the offset of the rcu_head structure within the base structure.
948 * Because the functions are not allowed in the low-order 4096 bytes of
949 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
950 * If the offset is larger than 4095 bytes, a compile-time error will
951 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
952 * either fall back to use of call_rcu() or rearrange the structure to
953 * position the rcu_head structure into the first 4096 bytes.
954 *
955 * The object to be freed can be allocated either by kmalloc() or
956 * kmem_cache_alloc().
957 *
958 * Note that the allowable offset might decrease in the future.
959 *
960 * The BUILD_BUG_ON check must not involve any function calls, hence the
961 * checks are done in macros here.
962 */
963#define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
964#define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
965
966/**
967 * kfree_rcu_mightsleep() - kfree an object after a grace period.
968 * @ptr: pointer to kfree for single-argument invocations.
969 *
970 * When it comes to head-less variant, only one argument
971 * is passed and that is just a pointer which has to be
972 * freed after a grace period. Therefore the semantic is
973 *
974 * kfree_rcu_mightsleep(ptr);
975 *
976 * where @ptr is the pointer to be freed by kvfree().
977 *
978 * Please note, head-less way of freeing is permitted to
979 * use from a context that has to follow might_sleep()
980 * annotation. Otherwise, please switch and embed the
981 * rcu_head structure within the type of @ptr.
982 */
983#define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
984#define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
985
986#define kvfree_rcu_arg_2(ptr, rhf) \
987do { \
988 typeof (ptr) ___p = (ptr); \
989 \
990 if (___p) { \
991 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
992 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \
993 } \
994} while (0)
995
996#define kvfree_rcu_arg_1(ptr) \
997do { \
998 typeof(ptr) ___p = (ptr); \
999 \
1000 if (___p) \
1001 kvfree_call_rcu(NULL, (void *) (___p)); \
1002} while (0)
1003
1004/*
1005 * Place this after a lock-acquisition primitive to guarantee that
1006 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1007 * if the UNLOCK and LOCK are executed by the same CPU or if the
1008 * UNLOCK and LOCK operate on the same lock variable.
1009 */
1010#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1011#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1012#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1013#define smp_mb__after_unlock_lock() do { } while (0)
1014#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1015
1016
1017/* Has the specified rcu_head structure been handed to call_rcu()? */
1018
1019/**
1020 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1021 * @rhp: The rcu_head structure to initialize.
1022 *
1023 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1024 * given rcu_head structure has already been passed to call_rcu(), then
1025 * you must also invoke this rcu_head_init() function on it just after
1026 * allocating that structure. Calls to this function must not race with
1027 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1028 */
1029static inline void rcu_head_init(struct rcu_head *rhp)
1030{
1031 rhp->func = (rcu_callback_t)~0L;
1032}
1033
1034/**
1035 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1036 * @rhp: The rcu_head structure to test.
1037 * @f: The function passed to call_rcu() along with @rhp.
1038 *
1039 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1040 * and @false otherwise. Emits a warning in any other case, including
1041 * the case where @rhp has already been invoked after a grace period.
1042 * Calls to this function must not race with callback invocation. One way
1043 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1044 * in an RCU read-side critical section that includes a read-side fetch
1045 * of the pointer to the structure containing @rhp.
1046 */
1047static inline bool
1048rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1049{
1050 rcu_callback_t func = READ_ONCE(rhp->func);
1051
1052 if (func == f)
1053 return true;
1054 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1055 return false;
1056}
1057
1058/* kernel/ksysfs.c definitions */
1059extern int rcu_expedited;
1060extern int rcu_normal;
1061
1062DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1063
1064#endif /* __LINUX_RCUPDATE_H */