Linux Audio

Check our new training course

Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0+ */
  2/*
  3 * Read-Copy Update mechanism for mutual exclusion
  4 *
  5 * Copyright IBM Corporation, 2001
  6 *
  7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  8 *
  9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 11 * Papers:
 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 14 *
 15 * For detailed explanation of Read-Copy Update mechanism see -
 16 *		http://lse.sourceforge.net/locking/rcupdate.html
 17 *
 18 */
 19
 20#ifndef __LINUX_RCUPDATE_H
 21#define __LINUX_RCUPDATE_H
 22
 23#include <linux/types.h>
 24#include <linux/compiler.h>
 25#include <linux/atomic.h>
 26#include <linux/irqflags.h>
 27#include <linux/preempt.h>
 28#include <linux/bottom_half.h>
 29#include <linux/lockdep.h>
 
 30#include <asm/processor.h>
 31#include <linux/cpumask.h>
 
 32
 33#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
 34#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
 35#define ulong2long(a)		(*(long *)(&(a)))
 36
 37/* Exported common interfaces */
 38void call_rcu(struct rcu_head *head, rcu_callback_t func);
 39void rcu_barrier_tasks(void);
 40void rcu_barrier_tasks_rude(void);
 41void synchronize_rcu(void);
 42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43#ifdef CONFIG_PREEMPT_RCU
 44
 45void __rcu_read_lock(void);
 46void __rcu_read_unlock(void);
 47
 48/*
 49 * Defined as a macro as it is a very low level header included from
 50 * areas that don't even know about current.  This gives the rcu_read_lock()
 51 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 52 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 53 */
 54#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
 55
 56#else /* #ifdef CONFIG_PREEMPT_RCU */
 57
 
 
 
 
 
 
 58static inline void __rcu_read_lock(void)
 59{
 60	preempt_disable();
 61}
 62
 63static inline void __rcu_read_unlock(void)
 64{
 65	preempt_enable();
 
 
 66}
 67
 68static inline int rcu_preempt_depth(void)
 69{
 70	return 0;
 71}
 72
 73#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 74
 
 
 
 
 
 
 
 
 
 75/* Internal to kernel */
 76void rcu_init(void);
 77extern int rcu_scheduler_active __read_mostly;
 78void rcu_sched_clock_irq(int user);
 79void rcu_report_dead(unsigned int cpu);
 80void rcutree_migrate_callbacks(int cpu);
 
 
 
 
 81
 82#ifdef CONFIG_RCU_STALL_COMMON
 83void rcu_sysrq_start(void);
 84void rcu_sysrq_end(void);
 85#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 86static inline void rcu_sysrq_start(void) { }
 87static inline void rcu_sysrq_end(void) { }
 88#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 89
 90#ifdef CONFIG_NO_HZ_FULL
 91void rcu_user_enter(void);
 92void rcu_user_exit(void);
 93#else
 94static inline void rcu_user_enter(void) { }
 95static inline void rcu_user_exit(void) { }
 96#endif /* CONFIG_NO_HZ_FULL */
 97
 98#ifdef CONFIG_RCU_NOCB_CPU
 99void rcu_init_nohz(void);
 
 
 
100#else /* #ifdef CONFIG_RCU_NOCB_CPU */
101static inline void rcu_init_nohz(void) { }
 
 
 
102#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
103
104/**
105 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
106 * @a: Code that RCU needs to pay attention to.
107 *
108 * RCU read-side critical sections are forbidden in the inner idle loop,
109 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
110 * will happily ignore any such read-side critical sections.  However,
111 * things like powertop need tracepoints in the inner idle loop.
112 *
113 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
114 * will tell RCU that it needs to pay attention, invoke its argument
115 * (in this example, calling the do_something_with_RCU() function),
116 * and then tell RCU to go back to ignoring this CPU.  It is permissible
117 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
118 * on the order of a million or so, even on 32-bit systems).  It is
119 * not legal to block within RCU_NONIDLE(), nor is it permissible to
120 * transfer control either into or out of RCU_NONIDLE()'s statement.
121 */
122#define RCU_NONIDLE(a) \
123	do { \
124		rcu_irq_enter_irqson(); \
125		do { a; } while (0); \
126		rcu_irq_exit_irqson(); \
127	} while (0)
128
129/*
130 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
131 * This is a macro rather than an inline function to avoid #include hell.
132 */
133#ifdef CONFIG_TASKS_RCU_GENERIC
134
135# ifdef CONFIG_TASKS_RCU
136# define rcu_tasks_classic_qs(t, preempt)				\
137	do {								\
138		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
139			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
140	} while (0)
141void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
142void synchronize_rcu_tasks(void);
143# else
144# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
145# define call_rcu_tasks call_rcu
146# define synchronize_rcu_tasks synchronize_rcu
147# endif
148
149# ifdef CONFIG_TASKS_RCU_TRACE
150# define rcu_tasks_trace_qs(t)						\
151	do {								\
152		if (!likely(READ_ONCE((t)->trc_reader_checked)) &&	\
153		    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {	\
154			smp_store_release(&(t)->trc_reader_checked, true); \
155			smp_mb(); /* Readers partitioned by store. */	\
156		}							\
 
 
 
 
 
 
 
 
 
 
 
157	} while (0)
158# else
159# define rcu_tasks_trace_qs(t) do { } while (0)
160# endif
161
162#define rcu_tasks_qs(t, preempt)					\
163do {									\
164	rcu_tasks_classic_qs((t), (preempt));				\
165	rcu_tasks_trace_qs((t));					\
166} while (0)
167
168# ifdef CONFIG_TASKS_RUDE_RCU
169void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
170void synchronize_rcu_tasks_rude(void);
171# endif
172
173#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
174void exit_tasks_rcu_start(void);
 
175void exit_tasks_rcu_finish(void);
176#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
 
177#define rcu_tasks_qs(t, preempt) do { } while (0)
178#define rcu_note_voluntary_context_switch(t) do { } while (0)
179#define call_rcu_tasks call_rcu
180#define synchronize_rcu_tasks synchronize_rcu
181static inline void exit_tasks_rcu_start(void) { }
 
182static inline void exit_tasks_rcu_finish(void) { }
183#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
184
185/**
 
 
 
 
 
 
 
 
 
 
 
 
186 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
187 *
188 * This macro resembles cond_resched(), except that it is defined to
189 * report potential quiescent states to RCU-tasks even if the cond_resched()
190 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
191 */
192#define cond_resched_tasks_rcu_qs() \
193do { \
194	rcu_tasks_qs(current, false); \
195	cond_resched(); \
196} while (0)
197
198/*
199 * Infrastructure to implement the synchronize_() primitives in
200 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
201 */
202
203#if defined(CONFIG_TREE_RCU)
204#include <linux/rcutree.h>
205#elif defined(CONFIG_TINY_RCU)
206#include <linux/rcutiny.h>
207#else
208#error "Unknown RCU implementation specified to kernel configuration"
209#endif
210
211/*
212 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
213 * are needed for dynamic initialization and destruction of rcu_head
214 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
215 * dynamic initialization and destruction of statically allocated rcu_head
216 * structures.  However, rcu_head structures allocated dynamically in the
217 * heap don't need any initialization.
218 */
219#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
220void init_rcu_head(struct rcu_head *head);
221void destroy_rcu_head(struct rcu_head *head);
222void init_rcu_head_on_stack(struct rcu_head *head);
223void destroy_rcu_head_on_stack(struct rcu_head *head);
224#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
225static inline void init_rcu_head(struct rcu_head *head) { }
226static inline void destroy_rcu_head(struct rcu_head *head) { }
227static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
228static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
229#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
230
231#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
232bool rcu_lockdep_current_cpu_online(void);
233#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
234static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
235#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
236
 
 
 
 
 
237#ifdef CONFIG_DEBUG_LOCK_ALLOC
238
239static inline void rcu_lock_acquire(struct lockdep_map *map)
240{
241	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
242}
243
 
 
 
 
 
244static inline void rcu_lock_release(struct lockdep_map *map)
245{
246	lock_release(map, _THIS_IP_);
247}
248
249extern struct lockdep_map rcu_lock_map;
250extern struct lockdep_map rcu_bh_lock_map;
251extern struct lockdep_map rcu_sched_lock_map;
252extern struct lockdep_map rcu_callback_map;
253int debug_lockdep_rcu_enabled(void);
254int rcu_read_lock_held(void);
255int rcu_read_lock_bh_held(void);
256int rcu_read_lock_sched_held(void);
257int rcu_read_lock_any_held(void);
258
259#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
260
261# define rcu_lock_acquire(a)		do { } while (0)
 
262# define rcu_lock_release(a)		do { } while (0)
263
264static inline int rcu_read_lock_held(void)
265{
266	return 1;
267}
268
269static inline int rcu_read_lock_bh_held(void)
270{
271	return 1;
272}
273
274static inline int rcu_read_lock_sched_held(void)
275{
276	return !preemptible();
277}
278
279static inline int rcu_read_lock_any_held(void)
280{
281	return !preemptible();
282}
283
 
 
 
 
 
284#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
285
286#ifdef CONFIG_PROVE_RCU
287
288/**
289 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
290 * @c: condition to check
291 * @s: informative message
 
 
 
 
 
 
292 */
293#define RCU_LOCKDEP_WARN(c, s)						\
294	do {								\
295		static bool __section(.data.unlikely) __warned;		\
296		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
 
297			__warned = true;				\
298			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
299		}							\
300	} while (0)
301
302#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
303static inline void rcu_preempt_sleep_check(void)
304{
305	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
306			 "Illegal context switch in RCU read-side critical section");
307}
308#else /* #ifdef CONFIG_PROVE_RCU */
309static inline void rcu_preempt_sleep_check(void) { }
310#endif /* #else #ifdef CONFIG_PROVE_RCU */
311
312#define rcu_sleep_check()						\
313	do {								\
314		rcu_preempt_sleep_check();				\
315		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
 
316				 "Illegal context switch in RCU-bh read-side critical section"); \
317		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
318				 "Illegal context switch in RCU-sched read-side critical section"); \
319	} while (0)
320
321#else /* #ifdef CONFIG_PROVE_RCU */
322
323#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
324#define rcu_sleep_check() do { } while (0)
325
326#endif /* #else #ifdef CONFIG_PROVE_RCU */
327
328/*
329 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
330 * and rcu_assign_pointer().  Some of these could be folded into their
331 * callers, but they are left separate in order to ease introduction of
332 * multiple pointers markings to match different RCU implementations
333 * (e.g., __srcu), should this make sense in the future.
334 */
335
336#ifdef __CHECKER__
337#define rcu_check_sparse(p, space) \
338	((void)(((typeof(*p) space *)p) == p))
339#else /* #ifdef __CHECKER__ */
340#define rcu_check_sparse(p, space)
341#endif /* #else #ifdef __CHECKER__ */
342
343#define __rcu_access_pointer(p, space) \
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344({ \
345	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
346	rcu_check_sparse(p, space); \
347	((typeof(*p) __force __kernel *)(_________p1)); \
348})
349#define __rcu_dereference_check(p, c, space) \
350({ \
351	/* Dependency order vs. p above. */ \
352	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
353	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
354	rcu_check_sparse(p, space); \
355	((typeof(*p) __force __kernel *)(________p1)); \
356})
357#define __rcu_dereference_protected(p, c, space) \
358({ \
359	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
360	rcu_check_sparse(p, space); \
361	((typeof(*p) __force __kernel *)(p)); \
362})
363#define rcu_dereference_raw(p) \
364({ \
365	/* Dependency order vs. p above. */ \
366	typeof(p) ________p1 = READ_ONCE(p); \
367	((typeof(*p) __force __kernel *)(________p1)); \
368})
 
369
370/**
371 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
372 * @v: The value to statically initialize with.
373 */
374#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
375
376/**
377 * rcu_assign_pointer() - assign to RCU-protected pointer
378 * @p: pointer to assign to
379 * @v: value to assign (publish)
380 *
381 * Assigns the specified value to the specified RCU-protected
382 * pointer, ensuring that any concurrent RCU readers will see
383 * any prior initialization.
384 *
385 * Inserts memory barriers on architectures that require them
386 * (which is most of them), and also prevents the compiler from
387 * reordering the code that initializes the structure after the pointer
388 * assignment.  More importantly, this call documents which pointers
389 * will be dereferenced by RCU read-side code.
390 *
391 * In some special cases, you may use RCU_INIT_POINTER() instead
392 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
393 * to the fact that it does not constrain either the CPU or the compiler.
394 * That said, using RCU_INIT_POINTER() when you should have used
395 * rcu_assign_pointer() is a very bad thing that results in
396 * impossible-to-diagnose memory corruption.  So please be careful.
397 * See the RCU_INIT_POINTER() comment header for details.
398 *
399 * Note that rcu_assign_pointer() evaluates each of its arguments only
400 * once, appearances notwithstanding.  One of the "extra" evaluations
401 * is in typeof() and the other visible only to sparse (__CHECKER__),
402 * neither of which actually execute the argument.  As with most cpp
403 * macros, this execute-arguments-only-once property is important, so
404 * please be careful when making changes to rcu_assign_pointer() and the
405 * other macros that it invokes.
406 */
407#define rcu_assign_pointer(p, v)					      \
408do {									      \
409	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
410	rcu_check_sparse(p, __rcu);					      \
411									      \
412	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
413		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
414	else								      \
415		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
416} while (0)
417
418/**
419 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
420 * @rcu_ptr: RCU pointer, whose old value is returned
421 * @ptr: regular pointer
422 * @c: the lockdep conditions under which the dereference will take place
423 *
424 * Perform a replacement, where @rcu_ptr is an RCU-annotated
425 * pointer and @c is the lockdep argument that is passed to the
426 * rcu_dereference_protected() call used to read that pointer.  The old
427 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
428 */
429#define rcu_replace_pointer(rcu_ptr, ptr, c)				\
430({									\
431	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
432	rcu_assign_pointer((rcu_ptr), (ptr));				\
433	__tmp;								\
434})
435
436/**
437 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
438 * @p: The pointer to read
439 *
440 * Return the value of the specified RCU-protected pointer, but omit the
441 * lockdep checks for being in an RCU read-side critical section.  This is
442 * useful when the value of this pointer is accessed, but the pointer is
443 * not dereferenced, for example, when testing an RCU-protected pointer
444 * against NULL.  Although rcu_access_pointer() may also be used in cases
445 * where update-side locks prevent the value of the pointer from changing,
446 * you should instead use rcu_dereference_protected() for this use case.
 
 
 
 
 
 
 
 
447 *
448 * It is also permissible to use rcu_access_pointer() when read-side
449 * access to the pointer was removed at least one grace period ago, as
450 * is the case in the context of the RCU callback that is freeing up
451 * the data, or after a synchronize_rcu() returns.  This can be useful
452 * when tearing down multi-linked structures after a grace period
453 * has elapsed.
454 */
455#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
456
457/**
458 * rcu_dereference_check() - rcu_dereference with debug checking
459 * @p: The pointer to read, prior to dereferencing
460 * @c: The conditions under which the dereference will take place
461 *
462 * Do an rcu_dereference(), but check that the conditions under which the
463 * dereference will take place are correct.  Typically the conditions
464 * indicate the various locking conditions that should be held at that
465 * point.  The check should return true if the conditions are satisfied.
466 * An implicit check for being in an RCU read-side critical section
467 * (rcu_read_lock()) is included.
468 *
469 * For example:
470 *
471 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
472 *
473 * could be used to indicate to lockdep that foo->bar may only be dereferenced
474 * if either rcu_read_lock() is held, or that the lock required to replace
475 * the bar struct at foo->bar is held.
476 *
477 * Note that the list of conditions may also include indications of when a lock
478 * need not be held, for example during initialisation or destruction of the
479 * target struct:
480 *
481 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
482 *					      atomic_read(&foo->usage) == 0);
483 *
484 * Inserts memory barriers on architectures that require them
485 * (currently only the Alpha), prevents the compiler from refetching
486 * (and from merging fetches), and, more importantly, documents exactly
487 * which pointers are protected by RCU and checks that the pointer is
488 * annotated as __rcu.
489 */
490#define rcu_dereference_check(p, c) \
491	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 
492
493/**
494 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
495 * @p: The pointer to read, prior to dereferencing
496 * @c: The conditions under which the dereference will take place
497 *
498 * This is the RCU-bh counterpart to rcu_dereference_check().
 
 
 
 
 
499 */
500#define rcu_dereference_bh_check(p, c) \
501	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 
502
503/**
504 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
505 * @p: The pointer to read, prior to dereferencing
506 * @c: The conditions under which the dereference will take place
507 *
508 * This is the RCU-sched counterpart to rcu_dereference_check().
 
 
 
 
 
509 */
510#define rcu_dereference_sched_check(p, c) \
511	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 
512				__rcu)
513
514/*
515 * The tracing infrastructure traces RCU (we want that), but unfortunately
516 * some of the RCU checks causes tracing to lock up the system.
517 *
518 * The no-tracing version of rcu_dereference_raw() must not call
519 * rcu_read_lock_held().
520 */
521#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
 
522
523/**
524 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
525 * @p: The pointer to read, prior to dereferencing
526 * @c: The conditions under which the dereference will take place
527 *
528 * Return the value of the specified RCU-protected pointer, but omit
529 * the READ_ONCE().  This is useful in cases where update-side locks
530 * prevent the value of the pointer from changing.  Please note that this
531 * primitive does *not* prevent the compiler from repeating this reference
532 * or combining it with other references, so it should not be used without
533 * protection of appropriate locks.
534 *
535 * This function is only for update-side use.  Using this function
536 * when protected only by rcu_read_lock() will result in infrequent
537 * but very ugly failures.
538 */
539#define rcu_dereference_protected(p, c) \
540	__rcu_dereference_protected((p), (c), __rcu)
541
542
543/**
544 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
545 * @p: The pointer to read, prior to dereferencing
546 *
547 * This is a simple wrapper around rcu_dereference_check().
548 */
549#define rcu_dereference(p) rcu_dereference_check(p, 0)
550
551/**
552 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
553 * @p: The pointer to read, prior to dereferencing
554 *
555 * Makes rcu_dereference_check() do the dirty work.
556 */
557#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
558
559/**
560 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
561 * @p: The pointer to read, prior to dereferencing
562 *
563 * Makes rcu_dereference_check() do the dirty work.
564 */
565#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
566
567/**
568 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
569 * @p: The pointer to hand off
570 *
571 * This is simply an identity function, but it documents where a pointer
572 * is handed off from RCU to some other synchronization mechanism, for
573 * example, reference counting or locking.  In C11, it would map to
574 * kill_dependency().  It could be used as follows::
575 *
576 *	rcu_read_lock();
577 *	p = rcu_dereference(gp);
578 *	long_lived = is_long_lived(p);
579 *	if (long_lived) {
580 *		if (!atomic_inc_not_zero(p->refcnt))
581 *			long_lived = false;
582 *		else
583 *			p = rcu_pointer_handoff(p);
584 *	}
585 *	rcu_read_unlock();
586 */
587#define rcu_pointer_handoff(p) (p)
588
589/**
590 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
591 *
592 * When synchronize_rcu() is invoked on one CPU while other CPUs
593 * are within RCU read-side critical sections, then the
594 * synchronize_rcu() is guaranteed to block until after all the other
595 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
596 * on one CPU while other CPUs are within RCU read-side critical
597 * sections, invocation of the corresponding RCU callback is deferred
598 * until after the all the other CPUs exit their critical sections.
599 *
 
 
 
 
 
 
600 * Note, however, that RCU callbacks are permitted to run concurrently
601 * with new RCU read-side critical sections.  One way that this can happen
602 * is via the following sequence of events: (1) CPU 0 enters an RCU
603 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
604 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
605 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
606 * callback is invoked.  This is legal, because the RCU read-side critical
607 * section that was running concurrently with the call_rcu() (and which
608 * therefore might be referencing something that the corresponding RCU
609 * callback would free up) has completed before the corresponding
610 * RCU callback is invoked.
611 *
612 * RCU read-side critical sections may be nested.  Any deferred actions
613 * will be deferred until the outermost RCU read-side critical section
614 * completes.
615 *
616 * You can avoid reading and understanding the next paragraph by
617 * following this rule: don't put anything in an rcu_read_lock() RCU
618 * read-side critical section that would block in a !PREEMPTION kernel.
619 * But if you want the full story, read on!
620 *
621 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
622 * it is illegal to block while in an RCU read-side critical section.
623 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
624 * kernel builds, RCU read-side critical sections may be preempted,
625 * but explicit blocking is illegal.  Finally, in preemptible RCU
626 * implementations in real-time (with -rt patchset) kernel builds, RCU
627 * read-side critical sections may be preempted and they may also block, but
628 * only when acquiring spinlocks that are subject to priority inheritance.
629 */
630static __always_inline void rcu_read_lock(void)
631{
632	__rcu_read_lock();
633	__acquire(RCU);
634	rcu_lock_acquire(&rcu_lock_map);
635	RCU_LOCKDEP_WARN(!rcu_is_watching(),
636			 "rcu_read_lock() used illegally while idle");
637}
638
639/*
640 * So where is rcu_write_lock()?  It does not exist, as there is no
641 * way for writers to lock out RCU readers.  This is a feature, not
642 * a bug -- this property is what provides RCU's performance benefits.
643 * Of course, writers must coordinate with each other.  The normal
644 * spinlock primitives work well for this, but any other technique may be
645 * used as well.  RCU does not care how the writers keep out of each
646 * others' way, as long as they do so.
647 */
648
649/**
650 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
651 *
652 * In most situations, rcu_read_unlock() is immune from deadlock.
653 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
654 * is responsible for deboosting, which it does via rt_mutex_unlock().
655 * Unfortunately, this function acquires the scheduler's runqueue and
656 * priority-inheritance spinlocks.  This means that deadlock could result
657 * if the caller of rcu_read_unlock() already holds one of these locks or
658 * any lock that is ever acquired while holding them.
659 *
660 * That said, RCU readers are never priority boosted unless they were
661 * preempted.  Therefore, one way to avoid deadlock is to make sure
662 * that preemption never happens within any RCU read-side critical
663 * section whose outermost rcu_read_unlock() is called with one of
664 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
665 * a number of ways, for example, by invoking preempt_disable() before
666 * critical section's outermost rcu_read_lock().
667 *
668 * Given that the set of locks acquired by rt_mutex_unlock() might change
669 * at any time, a somewhat more future-proofed approach is to make sure
670 * that that preemption never happens within any RCU read-side critical
671 * section whose outermost rcu_read_unlock() is called with irqs disabled.
672 * This approach relies on the fact that rt_mutex_unlock() currently only
673 * acquires irq-disabled locks.
674 *
675 * The second of these two approaches is best in most situations,
676 * however, the first approach can also be useful, at least to those
677 * developers willing to keep abreast of the set of locks acquired by
678 * rt_mutex_unlock().
679 *
680 * See rcu_read_lock() for more information.
681 */
682static inline void rcu_read_unlock(void)
683{
684	RCU_LOCKDEP_WARN(!rcu_is_watching(),
685			 "rcu_read_unlock() used illegally while idle");
686	__release(RCU);
687	__rcu_read_unlock();
688	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
689}
690
691/**
692 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
693 *
694 * This is equivalent of rcu_read_lock(), but also disables softirqs.
695 * Note that anything else that disables softirqs can also serve as
696 * an RCU read-side critical section.
 
 
697 *
698 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
699 * must occur in the same context, for example, it is illegal to invoke
700 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
701 * was invoked from some other task.
702 */
703static inline void rcu_read_lock_bh(void)
704{
705	local_bh_disable();
706	__acquire(RCU_BH);
707	rcu_lock_acquire(&rcu_bh_lock_map);
708	RCU_LOCKDEP_WARN(!rcu_is_watching(),
709			 "rcu_read_lock_bh() used illegally while idle");
710}
711
712/*
713 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
714 *
715 * See rcu_read_lock_bh() for more information.
716 */
717static inline void rcu_read_unlock_bh(void)
718{
719	RCU_LOCKDEP_WARN(!rcu_is_watching(),
720			 "rcu_read_unlock_bh() used illegally while idle");
721	rcu_lock_release(&rcu_bh_lock_map);
722	__release(RCU_BH);
723	local_bh_enable();
724}
725
726/**
727 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
728 *
729 * This is equivalent of rcu_read_lock(), but disables preemption.
730 * Read-side critical sections can also be introduced by anything else
731 * that disables preemption, including local_irq_disable() and friends.
 
 
 
732 *
733 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
734 * must occur in the same context, for example, it is illegal to invoke
735 * rcu_read_unlock_sched() from process context if the matching
736 * rcu_read_lock_sched() was invoked from an NMI handler.
737 */
738static inline void rcu_read_lock_sched(void)
739{
740	preempt_disable();
741	__acquire(RCU_SCHED);
742	rcu_lock_acquire(&rcu_sched_lock_map);
743	RCU_LOCKDEP_WARN(!rcu_is_watching(),
744			 "rcu_read_lock_sched() used illegally while idle");
745}
746
747/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
748static inline notrace void rcu_read_lock_sched_notrace(void)
749{
750	preempt_disable_notrace();
751	__acquire(RCU_SCHED);
752}
753
754/*
755 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
756 *
757 * See rcu_read_lock_sched for more information.
758 */
759static inline void rcu_read_unlock_sched(void)
760{
761	RCU_LOCKDEP_WARN(!rcu_is_watching(),
762			 "rcu_read_unlock_sched() used illegally while idle");
763	rcu_lock_release(&rcu_sched_lock_map);
764	__release(RCU_SCHED);
765	preempt_enable();
766}
767
768/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
769static inline notrace void rcu_read_unlock_sched_notrace(void)
770{
771	__release(RCU_SCHED);
772	preempt_enable_notrace();
773}
774
775/**
776 * RCU_INIT_POINTER() - initialize an RCU protected pointer
777 * @p: The pointer to be initialized.
778 * @v: The value to initialized the pointer to.
779 *
780 * Initialize an RCU-protected pointer in special cases where readers
781 * do not need ordering constraints on the CPU or the compiler.  These
782 * special cases are:
783 *
784 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
785 * 2.	The caller has taken whatever steps are required to prevent
786 *	RCU readers from concurrently accessing this pointer *or*
787 * 3.	The referenced data structure has already been exposed to
788 *	readers either at compile time or via rcu_assign_pointer() *and*
789 *
790 *	a.	You have not made *any* reader-visible changes to
791 *		this structure since then *or*
792 *	b.	It is OK for readers accessing this structure from its
793 *		new location to see the old state of the structure.  (For
794 *		example, the changes were to statistical counters or to
795 *		other state where exact synchronization is not required.)
796 *
797 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
798 * result in impossible-to-diagnose memory corruption.  As in the structures
799 * will look OK in crash dumps, but any concurrent RCU readers might
800 * see pre-initialized values of the referenced data structure.  So
801 * please be very careful how you use RCU_INIT_POINTER()!!!
802 *
803 * If you are creating an RCU-protected linked structure that is accessed
804 * by a single external-to-structure RCU-protected pointer, then you may
805 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
806 * pointers, but you must use rcu_assign_pointer() to initialize the
807 * external-to-structure pointer *after* you have completely initialized
808 * the reader-accessible portions of the linked structure.
809 *
810 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
811 * ordering guarantees for either the CPU or the compiler.
812 */
813#define RCU_INIT_POINTER(p, v) \
814	do { \
815		rcu_check_sparse(p, __rcu); \
816		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
817	} while (0)
818
819/**
820 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
821 * @p: The pointer to be initialized.
822 * @v: The value to initialized the pointer to.
823 *
824 * GCC-style initialization for an RCU-protected pointer in a structure field.
825 */
826#define RCU_POINTER_INITIALIZER(p, v) \
827		.p = RCU_INITIALIZER(v)
828
829/*
830 * Does the specified offset indicate that the corresponding rcu_head
831 * structure can be handled by kvfree_rcu()?
832 */
833#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
834
835/*
836 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
837 */
838#define __kvfree_rcu(head, offset) \
839	do { \
840		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \
841		kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
842	} while (0)
843
844/**
845 * kfree_rcu() - kfree an object after a grace period.
846 * @ptr:	pointer to kfree
847 * @rhf:	the name of the struct rcu_head within the type of @ptr.
848 *
849 * Many rcu callbacks functions just call kfree() on the base structure.
850 * These functions are trivial, but their size adds up, and furthermore
851 * when they are used in a kernel module, that module must invoke the
852 * high-latency rcu_barrier() function at module-unload time.
853 *
854 * The kfree_rcu() function handles this issue.  Rather than encoding a
855 * function address in the embedded rcu_head structure, kfree_rcu() instead
856 * encodes the offset of the rcu_head structure within the base structure.
857 * Because the functions are not allowed in the low-order 4096 bytes of
858 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
859 * If the offset is larger than 4095 bytes, a compile-time error will
860 * be generated in __kvfree_rcu(). If this error is triggered, you can
861 * either fall back to use of call_rcu() or rearrange the structure to
862 * position the rcu_head structure into the first 4096 bytes.
863 *
864 * Note that the allowable offset might decrease in the future, for example,
865 * to allow something like kmem_cache_free_rcu().
 
 
866 *
867 * The BUILD_BUG_ON check must not involve any function calls, hence the
868 * checks are done in macros here.
869 */
870#define kfree_rcu(ptr, rhf)						\
871do {									\
872	typeof (ptr) ___p = (ptr);					\
873									\
874	if (___p)							\
875		__kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
876} while (0)
877
878/**
879 * kvfree_rcu() - kvfree an object after a grace period.
880 *
881 * This macro consists of one or two arguments and it is
882 * based on whether an object is head-less or not. If it
883 * has a head then a semantic stays the same as it used
884 * to be before:
885 *
886 *     kvfree_rcu(ptr, rhf);
887 *
888 * where @ptr is a pointer to kvfree(), @rhf is the name
889 * of the rcu_head structure within the type of @ptr.
890 *
891 * When it comes to head-less variant, only one argument
892 * is passed and that is just a pointer which has to be
893 * freed after a grace period. Therefore the semantic is
894 *
895 *     kvfree_rcu(ptr);
896 *
897 * where @ptr is a pointer to kvfree().
898 *
899 * Please note, head-less way of freeing is permitted to
900 * use from a context that has to follow might_sleep()
901 * annotation. Otherwise, please switch and embed the
902 * rcu_head structure within the type of @ptr.
903 */
904#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,		\
905	kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
 
 
 
 
 
 
 
 
 
 
906
907#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
908#define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf)
909#define kvfree_rcu_arg_1(ptr)					\
910do {								\
911	typeof(ptr) ___p = (ptr);				\
912								\
913	if (___p)						\
914		kvfree_call_rcu(NULL, (rcu_callback_t) (___p));	\
915} while (0)
916
917/*
918 * Place this after a lock-acquisition primitive to guarantee that
919 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
920 * if the UNLOCK and LOCK are executed by the same CPU or if the
921 * UNLOCK and LOCK operate on the same lock variable.
922 */
923#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
924#define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
925#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
926#define smp_mb__after_unlock_lock()	do { } while (0)
927#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
928
929
930/* Has the specified rcu_head structure been handed to call_rcu()? */
931
932/**
933 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
934 * @rhp: The rcu_head structure to initialize.
935 *
936 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
937 * given rcu_head structure has already been passed to call_rcu(), then
938 * you must also invoke this rcu_head_init() function on it just after
939 * allocating that structure.  Calls to this function must not race with
940 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
941 */
942static inline void rcu_head_init(struct rcu_head *rhp)
943{
944	rhp->func = (rcu_callback_t)~0L;
945}
946
947/**
948 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
949 * @rhp: The rcu_head structure to test.
950 * @f: The function passed to call_rcu() along with @rhp.
951 *
952 * Returns @true if the @rhp has been passed to call_rcu() with @func,
953 * and @false otherwise.  Emits a warning in any other case, including
954 * the case where @rhp has already been invoked after a grace period.
955 * Calls to this function must not race with callback invocation.  One way
956 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
957 * in an RCU read-side critical section that includes a read-side fetch
958 * of the pointer to the structure containing @rhp.
959 */
960static inline bool
961rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
962{
963	rcu_callback_t func = READ_ONCE(rhp->func);
964
965	if (func == f)
966		return true;
967	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
968	return false;
969}
970
971/* kernel/ksysfs.c definitions */
972extern int rcu_expedited;
973extern int rcu_normal;
 
 
974
975#endif /* __LINUX_RCUPDATE_H */
v6.8
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2001
   6 *
   7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
   8 *
   9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
  10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  11 * Papers:
  12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  14 *
  15 * For detailed explanation of Read-Copy Update mechanism see -
  16 *		http://lse.sourceforge.net/locking/rcupdate.html
  17 *
  18 */
  19
  20#ifndef __LINUX_RCUPDATE_H
  21#define __LINUX_RCUPDATE_H
  22
  23#include <linux/types.h>
  24#include <linux/compiler.h>
  25#include <linux/atomic.h>
  26#include <linux/irqflags.h>
  27#include <linux/preempt.h>
  28#include <linux/bottom_half.h>
  29#include <linux/lockdep.h>
  30#include <linux/cleanup.h>
  31#include <asm/processor.h>
  32#include <linux/cpumask.h>
  33#include <linux/context_tracking_irq.h>
  34
  35#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
  36#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
 
  37
  38/* Exported common interfaces */
  39void call_rcu(struct rcu_head *head, rcu_callback_t func);
  40void rcu_barrier_tasks(void);
  41void rcu_barrier_tasks_rude(void);
  42void synchronize_rcu(void);
  43
  44struct rcu_gp_oldstate;
  45unsigned long get_completed_synchronize_rcu(void);
  46void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
  47
  48// Maximum number of unsigned long values corresponding to
  49// not-yet-completed RCU grace periods.
  50#define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
  51
  52/**
  53 * same_state_synchronize_rcu - Are two old-state values identical?
  54 * @oldstate1: First old-state value.
  55 * @oldstate2: Second old-state value.
  56 *
  57 * The two old-state values must have been obtained from either
  58 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
  59 * get_completed_synchronize_rcu().  Returns @true if the two values are
  60 * identical and @false otherwise.  This allows structures whose lifetimes
  61 * are tracked by old-state values to push these values to a list header,
  62 * allowing those structures to be slightly smaller.
  63 */
  64static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
  65{
  66	return oldstate1 == oldstate2;
  67}
  68
  69#ifdef CONFIG_PREEMPT_RCU
  70
  71void __rcu_read_lock(void);
  72void __rcu_read_unlock(void);
  73
  74/*
  75 * Defined as a macro as it is a very low level header included from
  76 * areas that don't even know about current.  This gives the rcu_read_lock()
  77 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  78 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  79 */
  80#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
  81
  82#else /* #ifdef CONFIG_PREEMPT_RCU */
  83
  84#ifdef CONFIG_TINY_RCU
  85#define rcu_read_unlock_strict() do { } while (0)
  86#else
  87void rcu_read_unlock_strict(void);
  88#endif
  89
  90static inline void __rcu_read_lock(void)
  91{
  92	preempt_disable();
  93}
  94
  95static inline void __rcu_read_unlock(void)
  96{
  97	preempt_enable();
  98	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
  99		rcu_read_unlock_strict();
 100}
 101
 102static inline int rcu_preempt_depth(void)
 103{
 104	return 0;
 105}
 106
 107#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 108
 109#ifdef CONFIG_RCU_LAZY
 110void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
 111#else
 112static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
 113{
 114	call_rcu(head, func);
 115}
 116#endif
 117
 118/* Internal to kernel */
 119void rcu_init(void);
 120extern int rcu_scheduler_active;
 121void rcu_sched_clock_irq(int user);
 122
 123#ifdef CONFIG_TASKS_RCU_GENERIC
 124void rcu_init_tasks_generic(void);
 125#else
 126static inline void rcu_init_tasks_generic(void) { }
 127#endif
 128
 129#ifdef CONFIG_RCU_STALL_COMMON
 130void rcu_sysrq_start(void);
 131void rcu_sysrq_end(void);
 132#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 133static inline void rcu_sysrq_start(void) { }
 134static inline void rcu_sysrq_end(void) { }
 135#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 136
 137#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 138void rcu_irq_work_resched(void);
 
 139#else
 140static inline void rcu_irq_work_resched(void) { }
 141#endif
 
 142
 143#ifdef CONFIG_RCU_NOCB_CPU
 144void rcu_init_nohz(void);
 145int rcu_nocb_cpu_offload(int cpu);
 146int rcu_nocb_cpu_deoffload(int cpu);
 147void rcu_nocb_flush_deferred_wakeup(void);
 148#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 149static inline void rcu_init_nohz(void) { }
 150static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
 151static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
 152static inline void rcu_nocb_flush_deferred_wakeup(void) { }
 153#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155/*
 156 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 157 * This is a macro rather than an inline function to avoid #include hell.
 158 */
 159#ifdef CONFIG_TASKS_RCU_GENERIC
 160
 161# ifdef CONFIG_TASKS_RCU
 162# define rcu_tasks_classic_qs(t, preempt)				\
 163	do {								\
 164		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
 165			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
 166	} while (0)
 167void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 168void synchronize_rcu_tasks(void);
 169# else
 170# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
 171# define call_rcu_tasks call_rcu
 172# define synchronize_rcu_tasks synchronize_rcu
 173# endif
 174
 175# ifdef CONFIG_TASKS_TRACE_RCU
 176// Bits for ->trc_reader_special.b.need_qs field.
 177#define TRC_NEED_QS		0x1  // Task needs a quiescent state.
 178#define TRC_NEED_QS_CHECKED	0x2  // Task has been checked for needing quiescent state.
 179
 180u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
 181void rcu_tasks_trace_qs_blkd(struct task_struct *t);
 182
 183# define rcu_tasks_trace_qs(t)							\
 184	do {									\
 185		int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting);	\
 186										\
 187		if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) &&	\
 188		    likely(!___rttq_nesting)) {					\
 189			rcu_trc_cmpxchg_need_qs((t), 0,	TRC_NEED_QS_CHECKED);	\
 190		} else if (___rttq_nesting && ___rttq_nesting != INT_MIN &&	\
 191			   !READ_ONCE((t)->trc_reader_special.b.blocked)) {	\
 192			rcu_tasks_trace_qs_blkd(t);				\
 193		}								\
 194	} while (0)
 195# else
 196# define rcu_tasks_trace_qs(t) do { } while (0)
 197# endif
 198
 199#define rcu_tasks_qs(t, preempt)					\
 200do {									\
 201	rcu_tasks_classic_qs((t), (preempt));				\
 202	rcu_tasks_trace_qs(t);						\
 203} while (0)
 204
 205# ifdef CONFIG_TASKS_RUDE_RCU
 206void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
 207void synchronize_rcu_tasks_rude(void);
 208# endif
 209
 210#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
 211void exit_tasks_rcu_start(void);
 212void exit_tasks_rcu_stop(void);
 213void exit_tasks_rcu_finish(void);
 214#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
 215#define rcu_tasks_classic_qs(t, preempt) do { } while (0)
 216#define rcu_tasks_qs(t, preempt) do { } while (0)
 217#define rcu_note_voluntary_context_switch(t) do { } while (0)
 218#define call_rcu_tasks call_rcu
 219#define synchronize_rcu_tasks synchronize_rcu
 220static inline void exit_tasks_rcu_start(void) { }
 221static inline void exit_tasks_rcu_stop(void) { }
 222static inline void exit_tasks_rcu_finish(void) { }
 223#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
 224
 225/**
 226 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
 227 *
 228 * As an accident of implementation, an RCU Tasks Trace grace period also
 229 * acts as an RCU grace period.  However, this could change at any time.
 230 * Code relying on this accident must call this function to verify that
 231 * this accident is still happening.
 232 *
 233 * You have been warned!
 234 */
 235static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
 236
 237/**
 238 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 239 *
 240 * This macro resembles cond_resched(), except that it is defined to
 241 * report potential quiescent states to RCU-tasks even if the cond_resched()
 242 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
 243 */
 244#define cond_resched_tasks_rcu_qs() \
 245do { \
 246	rcu_tasks_qs(current, false); \
 247	cond_resched(); \
 248} while (0)
 249
 250/*
 251 * Infrastructure to implement the synchronize_() primitives in
 252 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 253 */
 254
 255#if defined(CONFIG_TREE_RCU)
 256#include <linux/rcutree.h>
 257#elif defined(CONFIG_TINY_RCU)
 258#include <linux/rcutiny.h>
 259#else
 260#error "Unknown RCU implementation specified to kernel configuration"
 261#endif
 262
 263/*
 264 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 265 * are needed for dynamic initialization and destruction of rcu_head
 266 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 267 * dynamic initialization and destruction of statically allocated rcu_head
 268 * structures.  However, rcu_head structures allocated dynamically in the
 269 * heap don't need any initialization.
 270 */
 271#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 272void init_rcu_head(struct rcu_head *head);
 273void destroy_rcu_head(struct rcu_head *head);
 274void init_rcu_head_on_stack(struct rcu_head *head);
 275void destroy_rcu_head_on_stack(struct rcu_head *head);
 276#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 277static inline void init_rcu_head(struct rcu_head *head) { }
 278static inline void destroy_rcu_head(struct rcu_head *head) { }
 279static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 280static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 281#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 282
 283#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 284bool rcu_lockdep_current_cpu_online(void);
 285#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 286static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 287#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 288
 289extern struct lockdep_map rcu_lock_map;
 290extern struct lockdep_map rcu_bh_lock_map;
 291extern struct lockdep_map rcu_sched_lock_map;
 292extern struct lockdep_map rcu_callback_map;
 293
 294#ifdef CONFIG_DEBUG_LOCK_ALLOC
 295
 296static inline void rcu_lock_acquire(struct lockdep_map *map)
 297{
 298	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 299}
 300
 301static inline void rcu_try_lock_acquire(struct lockdep_map *map)
 302{
 303	lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
 304}
 305
 306static inline void rcu_lock_release(struct lockdep_map *map)
 307{
 308	lock_release(map, _THIS_IP_);
 309}
 310
 
 
 
 
 311int debug_lockdep_rcu_enabled(void);
 312int rcu_read_lock_held(void);
 313int rcu_read_lock_bh_held(void);
 314int rcu_read_lock_sched_held(void);
 315int rcu_read_lock_any_held(void);
 316
 317#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 318
 319# define rcu_lock_acquire(a)		do { } while (0)
 320# define rcu_try_lock_acquire(a)	do { } while (0)
 321# define rcu_lock_release(a)		do { } while (0)
 322
 323static inline int rcu_read_lock_held(void)
 324{
 325	return 1;
 326}
 327
 328static inline int rcu_read_lock_bh_held(void)
 329{
 330	return 1;
 331}
 332
 333static inline int rcu_read_lock_sched_held(void)
 334{
 335	return !preemptible();
 336}
 337
 338static inline int rcu_read_lock_any_held(void)
 339{
 340	return !preemptible();
 341}
 342
 343static inline int debug_lockdep_rcu_enabled(void)
 344{
 345	return 0;
 346}
 347
 348#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 349
 350#ifdef CONFIG_PROVE_RCU
 351
 352/**
 353 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 354 * @c: condition to check
 355 * @s: informative message
 356 *
 357 * This checks debug_lockdep_rcu_enabled() before checking (c) to
 358 * prevent early boot splats due to lockdep not yet being initialized,
 359 * and rechecks it after checking (c) to prevent false-positive splats
 360 * due to races with lockdep being disabled.  See commit 3066820034b5dd
 361 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
 362 */
 363#define RCU_LOCKDEP_WARN(c, s)						\
 364	do {								\
 365		static bool __section(".data.unlikely") __warned;	\
 366		if (debug_lockdep_rcu_enabled() && (c) &&		\
 367		    debug_lockdep_rcu_enabled() && !__warned) {		\
 368			__warned = true;				\
 369			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
 370		}							\
 371	} while (0)
 372
 373#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 374static inline void rcu_preempt_sleep_check(void)
 375{
 376	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 377			 "Illegal context switch in RCU read-side critical section");
 378}
 379#else /* #ifdef CONFIG_PROVE_RCU */
 380static inline void rcu_preempt_sleep_check(void) { }
 381#endif /* #else #ifdef CONFIG_PROVE_RCU */
 382
 383#define rcu_sleep_check()						\
 384	do {								\
 385		rcu_preempt_sleep_check();				\
 386		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
 387		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
 388				 "Illegal context switch in RCU-bh read-side critical section"); \
 389		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
 390				 "Illegal context switch in RCU-sched read-side critical section"); \
 391	} while (0)
 392
 393#else /* #ifdef CONFIG_PROVE_RCU */
 394
 395#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
 396#define rcu_sleep_check() do { } while (0)
 397
 398#endif /* #else #ifdef CONFIG_PROVE_RCU */
 399
 400/*
 401 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 402 * and rcu_assign_pointer().  Some of these could be folded into their
 403 * callers, but they are left separate in order to ease introduction of
 404 * multiple pointers markings to match different RCU implementations
 405 * (e.g., __srcu), should this make sense in the future.
 406 */
 407
 408#ifdef __CHECKER__
 409#define rcu_check_sparse(p, space) \
 410	((void)(((typeof(*p) space *)p) == p))
 411#else /* #ifdef __CHECKER__ */
 412#define rcu_check_sparse(p, space)
 413#endif /* #else #ifdef __CHECKER__ */
 414
 415#define __unrcu_pointer(p, local)					\
 416({									\
 417	typeof(*p) *local = (typeof(*p) *__force)(p);			\
 418	rcu_check_sparse(p, __rcu);					\
 419	((typeof(*p) __force __kernel *)(local)); 			\
 420})
 421/**
 422 * unrcu_pointer - mark a pointer as not being RCU protected
 423 * @p: pointer needing to lose its __rcu property
 424 *
 425 * Converts @p from an __rcu pointer to a __kernel pointer.
 426 * This allows an __rcu pointer to be used with xchg() and friends.
 427 */
 428#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
 429
 430#define __rcu_access_pointer(p, local, space) \
 431({ \
 432	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
 433	rcu_check_sparse(p, space); \
 434	((typeof(*p) __force __kernel *)(local)); \
 435})
 436#define __rcu_dereference_check(p, local, c, space) \
 437({ \
 438	/* Dependency order vs. p above. */ \
 439	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
 440	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 441	rcu_check_sparse(p, space); \
 442	((typeof(*p) __force __kernel *)(local)); \
 443})
 444#define __rcu_dereference_protected(p, local, c, space) \
 445({ \
 446	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 447	rcu_check_sparse(p, space); \
 448	((typeof(*p) __force __kernel *)(p)); \
 449})
 450#define __rcu_dereference_raw(p, local) \
 451({ \
 452	/* Dependency order vs. p above. */ \
 453	typeof(p) local = READ_ONCE(p); \
 454	((typeof(*p) __force __kernel *)(local)); \
 455})
 456#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
 457
 458/**
 459 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 460 * @v: The value to statically initialize with.
 461 */
 462#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 463
 464/**
 465 * rcu_assign_pointer() - assign to RCU-protected pointer
 466 * @p: pointer to assign to
 467 * @v: value to assign (publish)
 468 *
 469 * Assigns the specified value to the specified RCU-protected
 470 * pointer, ensuring that any concurrent RCU readers will see
 471 * any prior initialization.
 472 *
 473 * Inserts memory barriers on architectures that require them
 474 * (which is most of them), and also prevents the compiler from
 475 * reordering the code that initializes the structure after the pointer
 476 * assignment.  More importantly, this call documents which pointers
 477 * will be dereferenced by RCU read-side code.
 478 *
 479 * In some special cases, you may use RCU_INIT_POINTER() instead
 480 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 481 * to the fact that it does not constrain either the CPU or the compiler.
 482 * That said, using RCU_INIT_POINTER() when you should have used
 483 * rcu_assign_pointer() is a very bad thing that results in
 484 * impossible-to-diagnose memory corruption.  So please be careful.
 485 * See the RCU_INIT_POINTER() comment header for details.
 486 *
 487 * Note that rcu_assign_pointer() evaluates each of its arguments only
 488 * once, appearances notwithstanding.  One of the "extra" evaluations
 489 * is in typeof() and the other visible only to sparse (__CHECKER__),
 490 * neither of which actually execute the argument.  As with most cpp
 491 * macros, this execute-arguments-only-once property is important, so
 492 * please be careful when making changes to rcu_assign_pointer() and the
 493 * other macros that it invokes.
 494 */
 495#define rcu_assign_pointer(p, v)					      \
 496do {									      \
 497	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
 498	rcu_check_sparse(p, __rcu);					      \
 499									      \
 500	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
 501		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
 502	else								      \
 503		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 504} while (0)
 505
 506/**
 507 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
 508 * @rcu_ptr: RCU pointer, whose old value is returned
 509 * @ptr: regular pointer
 510 * @c: the lockdep conditions under which the dereference will take place
 511 *
 512 * Perform a replacement, where @rcu_ptr is an RCU-annotated
 513 * pointer and @c is the lockdep argument that is passed to the
 514 * rcu_dereference_protected() call used to read that pointer.  The old
 515 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
 516 */
 517#define rcu_replace_pointer(rcu_ptr, ptr, c)				\
 518({									\
 519	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
 520	rcu_assign_pointer((rcu_ptr), (ptr));				\
 521	__tmp;								\
 522})
 523
 524/**
 525 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 526 * @p: The pointer to read
 527 *
 528 * Return the value of the specified RCU-protected pointer, but omit the
 529 * lockdep checks for being in an RCU read-side critical section.  This is
 530 * useful when the value of this pointer is accessed, but the pointer is
 531 * not dereferenced, for example, when testing an RCU-protected pointer
 532 * against NULL.  Although rcu_access_pointer() may also be used in cases
 533 * where update-side locks prevent the value of the pointer from changing,
 534 * you should instead use rcu_dereference_protected() for this use case.
 535 * Within an RCU read-side critical section, there is little reason to
 536 * use rcu_access_pointer().
 537 *
 538 * It is usually best to test the rcu_access_pointer() return value
 539 * directly in order to avoid accidental dereferences being introduced
 540 * by later inattentive changes.  In other words, assigning the
 541 * rcu_access_pointer() return value to a local variable results in an
 542 * accident waiting to happen.
 543 *
 544 * It is also permissible to use rcu_access_pointer() when read-side
 545 * access to the pointer was removed at least one grace period ago, as is
 546 * the case in the context of the RCU callback that is freeing up the data,
 547 * or after a synchronize_rcu() returns.  This can be useful when tearing
 548 * down multi-linked structures after a grace period has elapsed.  However,
 549 * rcu_dereference_protected() is normally preferred for this use case.
 550 */
 551#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
 552
 553/**
 554 * rcu_dereference_check() - rcu_dereference with debug checking
 555 * @p: The pointer to read, prior to dereferencing
 556 * @c: The conditions under which the dereference will take place
 557 *
 558 * Do an rcu_dereference(), but check that the conditions under which the
 559 * dereference will take place are correct.  Typically the conditions
 560 * indicate the various locking conditions that should be held at that
 561 * point.  The check should return true if the conditions are satisfied.
 562 * An implicit check for being in an RCU read-side critical section
 563 * (rcu_read_lock()) is included.
 564 *
 565 * For example:
 566 *
 567 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 568 *
 569 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 570 * if either rcu_read_lock() is held, or that the lock required to replace
 571 * the bar struct at foo->bar is held.
 572 *
 573 * Note that the list of conditions may also include indications of when a lock
 574 * need not be held, for example during initialisation or destruction of the
 575 * target struct:
 576 *
 577 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 578 *					      atomic_read(&foo->usage) == 0);
 579 *
 580 * Inserts memory barriers on architectures that require them
 581 * (currently only the Alpha), prevents the compiler from refetching
 582 * (and from merging fetches), and, more importantly, documents exactly
 583 * which pointers are protected by RCU and checks that the pointer is
 584 * annotated as __rcu.
 585 */
 586#define rcu_dereference_check(p, c) \
 587	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
 588				(c) || rcu_read_lock_held(), __rcu)
 589
 590/**
 591 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 592 * @p: The pointer to read, prior to dereferencing
 593 * @c: The conditions under which the dereference will take place
 594 *
 595 * This is the RCU-bh counterpart to rcu_dereference_check().  However,
 596 * please note that starting in v5.0 kernels, vanilla RCU grace periods
 597 * wait for local_bh_disable() regions of code in addition to regions of
 598 * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
 599 * that synchronize_rcu(), call_rcu, and friends all take not only
 600 * rcu_read_lock() but also rcu_read_lock_bh() into account.
 601 */
 602#define rcu_dereference_bh_check(p, c) \
 603	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
 604				(c) || rcu_read_lock_bh_held(), __rcu)
 605
 606/**
 607 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 608 * @p: The pointer to read, prior to dereferencing
 609 * @c: The conditions under which the dereference will take place
 610 *
 611 * This is the RCU-sched counterpart to rcu_dereference_check().
 612 * However, please note that starting in v5.0 kernels, vanilla RCU grace
 613 * periods wait for preempt_disable() regions of code in addition to
 614 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
 615 * This means that synchronize_rcu(), call_rcu, and friends all take not
 616 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
 617 */
 618#define rcu_dereference_sched_check(p, c) \
 619	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
 620				(c) || rcu_read_lock_sched_held(), \
 621				__rcu)
 622
 623/*
 624 * The tracing infrastructure traces RCU (we want that), but unfortunately
 625 * some of the RCU checks causes tracing to lock up the system.
 626 *
 627 * The no-tracing version of rcu_dereference_raw() must not call
 628 * rcu_read_lock_held().
 629 */
 630#define rcu_dereference_raw_check(p) \
 631	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
 632
 633/**
 634 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 635 * @p: The pointer to read, prior to dereferencing
 636 * @c: The conditions under which the dereference will take place
 637 *
 638 * Return the value of the specified RCU-protected pointer, but omit
 639 * the READ_ONCE().  This is useful in cases where update-side locks
 640 * prevent the value of the pointer from changing.  Please note that this
 641 * primitive does *not* prevent the compiler from repeating this reference
 642 * or combining it with other references, so it should not be used without
 643 * protection of appropriate locks.
 644 *
 645 * This function is only for update-side use.  Using this function
 646 * when protected only by rcu_read_lock() will result in infrequent
 647 * but very ugly failures.
 648 */
 649#define rcu_dereference_protected(p, c) \
 650	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
 651
 652
 653/**
 654 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 655 * @p: The pointer to read, prior to dereferencing
 656 *
 657 * This is a simple wrapper around rcu_dereference_check().
 658 */
 659#define rcu_dereference(p) rcu_dereference_check(p, 0)
 660
 661/**
 662 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 663 * @p: The pointer to read, prior to dereferencing
 664 *
 665 * Makes rcu_dereference_check() do the dirty work.
 666 */
 667#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 668
 669/**
 670 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 671 * @p: The pointer to read, prior to dereferencing
 672 *
 673 * Makes rcu_dereference_check() do the dirty work.
 674 */
 675#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 676
 677/**
 678 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 679 * @p: The pointer to hand off
 680 *
 681 * This is simply an identity function, but it documents where a pointer
 682 * is handed off from RCU to some other synchronization mechanism, for
 683 * example, reference counting or locking.  In C11, it would map to
 684 * kill_dependency().  It could be used as follows::
 685 *
 686 *	rcu_read_lock();
 687 *	p = rcu_dereference(gp);
 688 *	long_lived = is_long_lived(p);
 689 *	if (long_lived) {
 690 *		if (!atomic_inc_not_zero(p->refcnt))
 691 *			long_lived = false;
 692 *		else
 693 *			p = rcu_pointer_handoff(p);
 694 *	}
 695 *	rcu_read_unlock();
 696 */
 697#define rcu_pointer_handoff(p) (p)
 698
 699/**
 700 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 701 *
 702 * When synchronize_rcu() is invoked on one CPU while other CPUs
 703 * are within RCU read-side critical sections, then the
 704 * synchronize_rcu() is guaranteed to block until after all the other
 705 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 706 * on one CPU while other CPUs are within RCU read-side critical
 707 * sections, invocation of the corresponding RCU callback is deferred
 708 * until after the all the other CPUs exit their critical sections.
 709 *
 710 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
 711 * wait for regions of code with preemption disabled, including regions of
 712 * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
 713 * define synchronize_sched(), only code enclosed within rcu_read_lock()
 714 * and rcu_read_unlock() are guaranteed to be waited for.
 715 *
 716 * Note, however, that RCU callbacks are permitted to run concurrently
 717 * with new RCU read-side critical sections.  One way that this can happen
 718 * is via the following sequence of events: (1) CPU 0 enters an RCU
 719 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 720 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 721 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 722 * callback is invoked.  This is legal, because the RCU read-side critical
 723 * section that was running concurrently with the call_rcu() (and which
 724 * therefore might be referencing something that the corresponding RCU
 725 * callback would free up) has completed before the corresponding
 726 * RCU callback is invoked.
 727 *
 728 * RCU read-side critical sections may be nested.  Any deferred actions
 729 * will be deferred until the outermost RCU read-side critical section
 730 * completes.
 731 *
 732 * You can avoid reading and understanding the next paragraph by
 733 * following this rule: don't put anything in an rcu_read_lock() RCU
 734 * read-side critical section that would block in a !PREEMPTION kernel.
 735 * But if you want the full story, read on!
 736 *
 737 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
 738 * it is illegal to block while in an RCU read-side critical section.
 739 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
 740 * kernel builds, RCU read-side critical sections may be preempted,
 741 * but explicit blocking is illegal.  Finally, in preemptible RCU
 742 * implementations in real-time (with -rt patchset) kernel builds, RCU
 743 * read-side critical sections may be preempted and they may also block, but
 744 * only when acquiring spinlocks that are subject to priority inheritance.
 745 */
 746static __always_inline void rcu_read_lock(void)
 747{
 748	__rcu_read_lock();
 749	__acquire(RCU);
 750	rcu_lock_acquire(&rcu_lock_map);
 751	RCU_LOCKDEP_WARN(!rcu_is_watching(),
 752			 "rcu_read_lock() used illegally while idle");
 753}
 754
 755/*
 756 * So where is rcu_write_lock()?  It does not exist, as there is no
 757 * way for writers to lock out RCU readers.  This is a feature, not
 758 * a bug -- this property is what provides RCU's performance benefits.
 759 * Of course, writers must coordinate with each other.  The normal
 760 * spinlock primitives work well for this, but any other technique may be
 761 * used as well.  RCU does not care how the writers keep out of each
 762 * others' way, as long as they do so.
 763 */
 764
 765/**
 766 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 767 *
 768 * In almost all situations, rcu_read_unlock() is immune from deadlock.
 769 * In recent kernels that have consolidated synchronize_sched() and
 770 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
 771 * also extends to the scheduler's runqueue and priority-inheritance
 772 * spinlocks, courtesy of the quiescent-state deferral that is carried
 773 * out when rcu_read_unlock() is invoked with interrupts disabled.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774 *
 775 * See rcu_read_lock() for more information.
 776 */
 777static inline void rcu_read_unlock(void)
 778{
 779	RCU_LOCKDEP_WARN(!rcu_is_watching(),
 780			 "rcu_read_unlock() used illegally while idle");
 781	__release(RCU);
 782	__rcu_read_unlock();
 783	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 784}
 785
 786/**
 787 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 788 *
 789 * This is equivalent to rcu_read_lock(), but also disables softirqs.
 790 * Note that anything else that disables softirqs can also serve as an RCU
 791 * read-side critical section.  However, please note that this equivalence
 792 * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
 793 * rcu_read_lock_bh() were unrelated.
 794 *
 795 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 796 * must occur in the same context, for example, it is illegal to invoke
 797 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 798 * was invoked from some other task.
 799 */
 800static inline void rcu_read_lock_bh(void)
 801{
 802	local_bh_disable();
 803	__acquire(RCU_BH);
 804	rcu_lock_acquire(&rcu_bh_lock_map);
 805	RCU_LOCKDEP_WARN(!rcu_is_watching(),
 806			 "rcu_read_lock_bh() used illegally while idle");
 807}
 808
 809/**
 810 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
 811 *
 812 * See rcu_read_lock_bh() for more information.
 813 */
 814static inline void rcu_read_unlock_bh(void)
 815{
 816	RCU_LOCKDEP_WARN(!rcu_is_watching(),
 817			 "rcu_read_unlock_bh() used illegally while idle");
 818	rcu_lock_release(&rcu_bh_lock_map);
 819	__release(RCU_BH);
 820	local_bh_enable();
 821}
 822
 823/**
 824 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 825 *
 826 * This is equivalent to rcu_read_lock(), but also disables preemption.
 827 * Read-side critical sections can also be introduced by anything else that
 828 * disables preemption, including local_irq_disable() and friends.  However,
 829 * please note that the equivalence to rcu_read_lock() applies only to
 830 * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
 831 * were unrelated.
 832 *
 833 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 834 * must occur in the same context, for example, it is illegal to invoke
 835 * rcu_read_unlock_sched() from process context if the matching
 836 * rcu_read_lock_sched() was invoked from an NMI handler.
 837 */
 838static inline void rcu_read_lock_sched(void)
 839{
 840	preempt_disable();
 841	__acquire(RCU_SCHED);
 842	rcu_lock_acquire(&rcu_sched_lock_map);
 843	RCU_LOCKDEP_WARN(!rcu_is_watching(),
 844			 "rcu_read_lock_sched() used illegally while idle");
 845}
 846
 847/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 848static inline notrace void rcu_read_lock_sched_notrace(void)
 849{
 850	preempt_disable_notrace();
 851	__acquire(RCU_SCHED);
 852}
 853
 854/**
 855 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
 856 *
 857 * See rcu_read_lock_sched() for more information.
 858 */
 859static inline void rcu_read_unlock_sched(void)
 860{
 861	RCU_LOCKDEP_WARN(!rcu_is_watching(),
 862			 "rcu_read_unlock_sched() used illegally while idle");
 863	rcu_lock_release(&rcu_sched_lock_map);
 864	__release(RCU_SCHED);
 865	preempt_enable();
 866}
 867
 868/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 869static inline notrace void rcu_read_unlock_sched_notrace(void)
 870{
 871	__release(RCU_SCHED);
 872	preempt_enable_notrace();
 873}
 874
 875/**
 876 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 877 * @p: The pointer to be initialized.
 878 * @v: The value to initialized the pointer to.
 879 *
 880 * Initialize an RCU-protected pointer in special cases where readers
 881 * do not need ordering constraints on the CPU or the compiler.  These
 882 * special cases are:
 883 *
 884 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 885 * 2.	The caller has taken whatever steps are required to prevent
 886 *	RCU readers from concurrently accessing this pointer *or*
 887 * 3.	The referenced data structure has already been exposed to
 888 *	readers either at compile time or via rcu_assign_pointer() *and*
 889 *
 890 *	a.	You have not made *any* reader-visible changes to
 891 *		this structure since then *or*
 892 *	b.	It is OK for readers accessing this structure from its
 893 *		new location to see the old state of the structure.  (For
 894 *		example, the changes were to statistical counters or to
 895 *		other state where exact synchronization is not required.)
 896 *
 897 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 898 * result in impossible-to-diagnose memory corruption.  As in the structures
 899 * will look OK in crash dumps, but any concurrent RCU readers might
 900 * see pre-initialized values of the referenced data structure.  So
 901 * please be very careful how you use RCU_INIT_POINTER()!!!
 902 *
 903 * If you are creating an RCU-protected linked structure that is accessed
 904 * by a single external-to-structure RCU-protected pointer, then you may
 905 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 906 * pointers, but you must use rcu_assign_pointer() to initialize the
 907 * external-to-structure pointer *after* you have completely initialized
 908 * the reader-accessible portions of the linked structure.
 909 *
 910 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 911 * ordering guarantees for either the CPU or the compiler.
 912 */
 913#define RCU_INIT_POINTER(p, v) \
 914	do { \
 915		rcu_check_sparse(p, __rcu); \
 916		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 917	} while (0)
 918
 919/**
 920 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 921 * @p: The pointer to be initialized.
 922 * @v: The value to initialized the pointer to.
 923 *
 924 * GCC-style initialization for an RCU-protected pointer in a structure field.
 925 */
 926#define RCU_POINTER_INITIALIZER(p, v) \
 927		.p = RCU_INITIALIZER(v)
 928
 929/*
 930 * Does the specified offset indicate that the corresponding rcu_head
 931 * structure can be handled by kvfree_rcu()?
 932 */
 933#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
 934
 
 
 
 
 
 
 
 
 
 935/**
 936 * kfree_rcu() - kfree an object after a grace period.
 937 * @ptr: pointer to kfree for double-argument invocations.
 938 * @rhf: the name of the struct rcu_head within the type of @ptr.
 939 *
 940 * Many rcu callbacks functions just call kfree() on the base structure.
 941 * These functions are trivial, but their size adds up, and furthermore
 942 * when they are used in a kernel module, that module must invoke the
 943 * high-latency rcu_barrier() function at module-unload time.
 944 *
 945 * The kfree_rcu() function handles this issue.  Rather than encoding a
 946 * function address in the embedded rcu_head structure, kfree_rcu() instead
 947 * encodes the offset of the rcu_head structure within the base structure.
 948 * Because the functions are not allowed in the low-order 4096 bytes of
 949 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 950 * If the offset is larger than 4095 bytes, a compile-time error will
 951 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
 952 * either fall back to use of call_rcu() or rearrange the structure to
 953 * position the rcu_head structure into the first 4096 bytes.
 954 *
 955 * The object to be freed can be allocated either by kmalloc() or
 956 * kmem_cache_alloc().
 957 *
 958 * Note that the allowable offset might decrease in the future.
 959 *
 960 * The BUILD_BUG_ON check must not involve any function calls, hence the
 961 * checks are done in macros here.
 962 */
 963#define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
 964#define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
 
 
 
 
 
 965
 966/**
 967 * kfree_rcu_mightsleep() - kfree an object after a grace period.
 968 * @ptr: pointer to kfree for single-argument invocations.
 
 
 
 
 
 
 
 
 
 969 *
 970 * When it comes to head-less variant, only one argument
 971 * is passed and that is just a pointer which has to be
 972 * freed after a grace period. Therefore the semantic is
 973 *
 974 *     kfree_rcu_mightsleep(ptr);
 975 *
 976 * where @ptr is the pointer to be freed by kvfree().
 977 *
 978 * Please note, head-less way of freeing is permitted to
 979 * use from a context that has to follow might_sleep()
 980 * annotation. Otherwise, please switch and embed the
 981 * rcu_head structure within the type of @ptr.
 982 */
 983#define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
 984#define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
 985
 986#define kvfree_rcu_arg_2(ptr, rhf)					\
 987do {									\
 988	typeof (ptr) ___p = (ptr);					\
 989									\
 990	if (___p) {									\
 991		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
 992		kvfree_call_rcu(&((___p)->rhf), (void *) (___p));			\
 993	}										\
 994} while (0)
 995
 
 
 996#define kvfree_rcu_arg_1(ptr)					\
 997do {								\
 998	typeof(ptr) ___p = (ptr);				\
 999								\
1000	if (___p)						\
1001		kvfree_call_rcu(NULL, (void *) (___p));		\
1002} while (0)
1003
1004/*
1005 * Place this after a lock-acquisition primitive to guarantee that
1006 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
1007 * if the UNLOCK and LOCK are executed by the same CPU or if the
1008 * UNLOCK and LOCK operate on the same lock variable.
1009 */
1010#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1011#define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
1012#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1013#define smp_mb__after_unlock_lock()	do { } while (0)
1014#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1015
1016
1017/* Has the specified rcu_head structure been handed to call_rcu()? */
1018
1019/**
1020 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1021 * @rhp: The rcu_head structure to initialize.
1022 *
1023 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1024 * given rcu_head structure has already been passed to call_rcu(), then
1025 * you must also invoke this rcu_head_init() function on it just after
1026 * allocating that structure.  Calls to this function must not race with
1027 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1028 */
1029static inline void rcu_head_init(struct rcu_head *rhp)
1030{
1031	rhp->func = (rcu_callback_t)~0L;
1032}
1033
1034/**
1035 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1036 * @rhp: The rcu_head structure to test.
1037 * @f: The function passed to call_rcu() along with @rhp.
1038 *
1039 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1040 * and @false otherwise.  Emits a warning in any other case, including
1041 * the case where @rhp has already been invoked after a grace period.
1042 * Calls to this function must not race with callback invocation.  One way
1043 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1044 * in an RCU read-side critical section that includes a read-side fetch
1045 * of the pointer to the structure containing @rhp.
1046 */
1047static inline bool
1048rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1049{
1050	rcu_callback_t func = READ_ONCE(rhp->func);
1051
1052	if (func == f)
1053		return true;
1054	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1055	return false;
1056}
1057
1058/* kernel/ksysfs.c definitions */
1059extern int rcu_expedited;
1060extern int rcu_normal;
1061
1062DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1063
1064#endif /* __LINUX_RCUPDATE_H */