Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/**
   3 * aops.c - NTFS kernel address space operations and page cache handling.
   4 *
   5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
   6 * Copyright (c) 2002 Richard Russon
   7 */
   8
   9#include <linux/errno.h>
  10#include <linux/fs.h>
  11#include <linux/gfp.h>
  12#include <linux/mm.h>
  13#include <linux/pagemap.h>
  14#include <linux/swap.h>
  15#include <linux/buffer_head.h>
  16#include <linux/writeback.h>
  17#include <linux/bit_spinlock.h>
  18#include <linux/bio.h>
  19
  20#include "aops.h"
  21#include "attrib.h"
  22#include "debug.h"
  23#include "inode.h"
  24#include "mft.h"
  25#include "runlist.h"
  26#include "types.h"
  27#include "ntfs.h"
  28
  29/**
  30 * ntfs_end_buffer_async_read - async io completion for reading attributes
  31 * @bh:		buffer head on which io is completed
  32 * @uptodate:	whether @bh is now uptodate or not
  33 *
  34 * Asynchronous I/O completion handler for reading pages belonging to the
  35 * attribute address space of an inode.  The inodes can either be files or
  36 * directories or they can be fake inodes describing some attribute.
  37 *
  38 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
  39 * page has been completed and mark the page uptodate or set the error bit on
  40 * the page.  To determine the size of the records that need fixing up, we
  41 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
  42 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
  43 * record size.
  44 */
  45static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
  46{
  47	unsigned long flags;
  48	struct buffer_head *first, *tmp;
  49	struct page *page;
  50	struct inode *vi;
  51	ntfs_inode *ni;
  52	int page_uptodate = 1;
  53
  54	page = bh->b_page;
  55	vi = page->mapping->host;
  56	ni = NTFS_I(vi);
  57
  58	if (likely(uptodate)) {
  59		loff_t i_size;
  60		s64 file_ofs, init_size;
  61
  62		set_buffer_uptodate(bh);
  63
  64		file_ofs = ((s64)page->index << PAGE_SHIFT) +
  65				bh_offset(bh);
  66		read_lock_irqsave(&ni->size_lock, flags);
  67		init_size = ni->initialized_size;
  68		i_size = i_size_read(vi);
  69		read_unlock_irqrestore(&ni->size_lock, flags);
  70		if (unlikely(init_size > i_size)) {
  71			/* Race with shrinking truncate. */
  72			init_size = i_size;
  73		}
  74		/* Check for the current buffer head overflowing. */
  75		if (unlikely(file_ofs + bh->b_size > init_size)) {
  76			int ofs;
  77			void *kaddr;
  78
  79			ofs = 0;
  80			if (file_ofs < init_size)
  81				ofs = init_size - file_ofs;
  82			kaddr = kmap_atomic(page);
  83			memset(kaddr + bh_offset(bh) + ofs, 0,
  84					bh->b_size - ofs);
  85			flush_dcache_page(page);
  86			kunmap_atomic(kaddr);
  87		}
  88	} else {
  89		clear_buffer_uptodate(bh);
  90		SetPageError(page);
  91		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
  92				"0x%llx.", (unsigned long long)bh->b_blocknr);
  93	}
  94	first = page_buffers(page);
  95	spin_lock_irqsave(&first->b_uptodate_lock, flags);
  96	clear_buffer_async_read(bh);
  97	unlock_buffer(bh);
  98	tmp = bh;
  99	do {
 100		if (!buffer_uptodate(tmp))
 101			page_uptodate = 0;
 102		if (buffer_async_read(tmp)) {
 103			if (likely(buffer_locked(tmp)))
 104				goto still_busy;
 105			/* Async buffers must be locked. */
 106			BUG();
 107		}
 108		tmp = tmp->b_this_page;
 109	} while (tmp != bh);
 110	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 111	/*
 112	 * If none of the buffers had errors then we can set the page uptodate,
 113	 * but we first have to perform the post read mst fixups, if the
 114	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
 115	 * Note we ignore fixup errors as those are detected when
 116	 * map_mft_record() is called which gives us per record granularity
 117	 * rather than per page granularity.
 118	 */
 119	if (!NInoMstProtected(ni)) {
 120		if (likely(page_uptodate && !PageError(page)))
 121			SetPageUptodate(page);
 122	} else {
 123		u8 *kaddr;
 124		unsigned int i, recs;
 125		u32 rec_size;
 126
 127		rec_size = ni->itype.index.block_size;
 128		recs = PAGE_SIZE / rec_size;
 129		/* Should have been verified before we got here... */
 130		BUG_ON(!recs);
 131		kaddr = kmap_atomic(page);
 132		for (i = 0; i < recs; i++)
 133			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
 134					i * rec_size), rec_size);
 135		kunmap_atomic(kaddr);
 136		flush_dcache_page(page);
 137		if (likely(page_uptodate && !PageError(page)))
 138			SetPageUptodate(page);
 139	}
 140	unlock_page(page);
 141	return;
 142still_busy:
 143	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 144	return;
 145}
 146
 147/**
 148 * ntfs_read_block - fill a @page of an address space with data
 149 * @page:	page cache page to fill with data
 150 *
 151 * Fill the page @page of the address space belonging to the @page->host inode.
 152 * We read each buffer asynchronously and when all buffers are read in, our io
 153 * completion handler ntfs_end_buffer_read_async(), if required, automatically
 154 * applies the mst fixups to the page before finally marking it uptodate and
 155 * unlocking it.
 156 *
 157 * We only enforce allocated_size limit because i_size is checked for in
 158 * generic_file_read().
 159 *
 160 * Return 0 on success and -errno on error.
 161 *
 162 * Contains an adapted version of fs/buffer.c::block_read_full_page().
 163 */
 164static int ntfs_read_block(struct page *page)
 165{
 166	loff_t i_size;
 167	VCN vcn;
 168	LCN lcn;
 169	s64 init_size;
 170	struct inode *vi;
 171	ntfs_inode *ni;
 172	ntfs_volume *vol;
 173	runlist_element *rl;
 174	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
 175	sector_t iblock, lblock, zblock;
 176	unsigned long flags;
 177	unsigned int blocksize, vcn_ofs;
 178	int i, nr;
 179	unsigned char blocksize_bits;
 180
 181	vi = page->mapping->host;
 182	ni = NTFS_I(vi);
 183	vol = ni->vol;
 184
 185	/* $MFT/$DATA must have its complete runlist in memory at all times. */
 186	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
 187
 188	blocksize = vol->sb->s_blocksize;
 189	blocksize_bits = vol->sb->s_blocksize_bits;
 190
 191	if (!page_has_buffers(page)) {
 192		create_empty_buffers(page, blocksize, 0);
 193		if (unlikely(!page_has_buffers(page))) {
 194			unlock_page(page);
 195			return -ENOMEM;
 196		}
 197	}
 198	bh = head = page_buffers(page);
 199	BUG_ON(!bh);
 200
 201	/*
 202	 * We may be racing with truncate.  To avoid some of the problems we
 203	 * now take a snapshot of the various sizes and use those for the whole
 204	 * of the function.  In case of an extending truncate it just means we
 205	 * may leave some buffers unmapped which are now allocated.  This is
 206	 * not a problem since these buffers will just get mapped when a write
 207	 * occurs.  In case of a shrinking truncate, we will detect this later
 208	 * on due to the runlist being incomplete and if the page is being
 209	 * fully truncated, truncate will throw it away as soon as we unlock
 210	 * it so no need to worry what we do with it.
 211	 */
 212	iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
 213	read_lock_irqsave(&ni->size_lock, flags);
 214	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
 215	init_size = ni->initialized_size;
 216	i_size = i_size_read(vi);
 217	read_unlock_irqrestore(&ni->size_lock, flags);
 218	if (unlikely(init_size > i_size)) {
 219		/* Race with shrinking truncate. */
 220		init_size = i_size;
 221	}
 222	zblock = (init_size + blocksize - 1) >> blocksize_bits;
 223
 224	/* Loop through all the buffers in the page. */
 225	rl = NULL;
 226	nr = i = 0;
 227	do {
 228		int err = 0;
 229
 230		if (unlikely(buffer_uptodate(bh)))
 231			continue;
 232		if (unlikely(buffer_mapped(bh))) {
 233			arr[nr++] = bh;
 234			continue;
 235		}
 236		bh->b_bdev = vol->sb->s_bdev;
 237		/* Is the block within the allowed limits? */
 238		if (iblock < lblock) {
 239			bool is_retry = false;
 240
 241			/* Convert iblock into corresponding vcn and offset. */
 242			vcn = (VCN)iblock << blocksize_bits >>
 243					vol->cluster_size_bits;
 244			vcn_ofs = ((VCN)iblock << blocksize_bits) &
 245					vol->cluster_size_mask;
 246			if (!rl) {
 247lock_retry_remap:
 248				down_read(&ni->runlist.lock);
 249				rl = ni->runlist.rl;
 250			}
 251			if (likely(rl != NULL)) {
 252				/* Seek to element containing target vcn. */
 253				while (rl->length && rl[1].vcn <= vcn)
 254					rl++;
 255				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 256			} else
 257				lcn = LCN_RL_NOT_MAPPED;
 258			/* Successful remap. */
 259			if (lcn >= 0) {
 260				/* Setup buffer head to correct block. */
 261				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
 262						+ vcn_ofs) >> blocksize_bits;
 263				set_buffer_mapped(bh);
 264				/* Only read initialized data blocks. */
 265				if (iblock < zblock) {
 266					arr[nr++] = bh;
 267					continue;
 268				}
 269				/* Fully non-initialized data block, zero it. */
 270				goto handle_zblock;
 271			}
 272			/* It is a hole, need to zero it. */
 273			if (lcn == LCN_HOLE)
 274				goto handle_hole;
 275			/* If first try and runlist unmapped, map and retry. */
 276			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
 277				is_retry = true;
 278				/*
 279				 * Attempt to map runlist, dropping lock for
 280				 * the duration.
 281				 */
 282				up_read(&ni->runlist.lock);
 283				err = ntfs_map_runlist(ni, vcn);
 284				if (likely(!err))
 285					goto lock_retry_remap;
 286				rl = NULL;
 287			} else if (!rl)
 288				up_read(&ni->runlist.lock);
 289			/*
 290			 * If buffer is outside the runlist, treat it as a
 291			 * hole.  This can happen due to concurrent truncate
 292			 * for example.
 293			 */
 294			if (err == -ENOENT || lcn == LCN_ENOENT) {
 295				err = 0;
 296				goto handle_hole;
 297			}
 298			/* Hard error, zero out region. */
 299			if (!err)
 300				err = -EIO;
 301			bh->b_blocknr = -1;
 302			SetPageError(page);
 303			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
 304					"attribute type 0x%x, vcn 0x%llx, "
 305					"offset 0x%x because its location on "
 306					"disk could not be determined%s "
 307					"(error code %i).", ni->mft_no,
 308					ni->type, (unsigned long long)vcn,
 309					vcn_ofs, is_retry ? " even after "
 310					"retrying" : "", err);
 311		}
 312		/*
 313		 * Either iblock was outside lblock limits or
 314		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
 315		 * of the page and set the buffer uptodate.
 316		 */
 317handle_hole:
 318		bh->b_blocknr = -1UL;
 319		clear_buffer_mapped(bh);
 320handle_zblock:
 321		zero_user(page, i * blocksize, blocksize);
 322		if (likely(!err))
 323			set_buffer_uptodate(bh);
 324	} while (i++, iblock++, (bh = bh->b_this_page) != head);
 325
 326	/* Release the lock if we took it. */
 327	if (rl)
 328		up_read(&ni->runlist.lock);
 329
 330	/* Check we have at least one buffer ready for i/o. */
 331	if (nr) {
 332		struct buffer_head *tbh;
 333
 334		/* Lock the buffers. */
 335		for (i = 0; i < nr; i++) {
 336			tbh = arr[i];
 337			lock_buffer(tbh);
 338			tbh->b_end_io = ntfs_end_buffer_async_read;
 339			set_buffer_async_read(tbh);
 340		}
 341		/* Finally, start i/o on the buffers. */
 342		for (i = 0; i < nr; i++) {
 343			tbh = arr[i];
 344			if (likely(!buffer_uptodate(tbh)))
 345				submit_bh(REQ_OP_READ, 0, tbh);
 346			else
 347				ntfs_end_buffer_async_read(tbh, 1);
 348		}
 349		return 0;
 350	}
 351	/* No i/o was scheduled on any of the buffers. */
 352	if (likely(!PageError(page)))
 353		SetPageUptodate(page);
 354	else /* Signal synchronous i/o error. */
 355		nr = -EIO;
 356	unlock_page(page);
 357	return nr;
 358}
 359
 360/**
 361 * ntfs_readpage - fill a @page of a @file with data from the device
 362 * @file:	open file to which the page @page belongs or NULL
 363 * @page:	page cache page to fill with data
 364 *
 365 * For non-resident attributes, ntfs_readpage() fills the @page of the open
 366 * file @file by calling the ntfs version of the generic block_read_full_page()
 367 * function, ntfs_read_block(), which in turn creates and reads in the buffers
 368 * associated with the page asynchronously.
 369 *
 370 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
 371 * data from the mft record (which at this stage is most likely in memory) and
 372 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
 373 * even if the mft record is not cached at this point in time, we need to wait
 374 * for it to be read in before we can do the copy.
 375 *
 376 * Return 0 on success and -errno on error.
 377 */
 378static int ntfs_readpage(struct file *file, struct page *page)
 379{
 
 380	loff_t i_size;
 381	struct inode *vi;
 382	ntfs_inode *ni, *base_ni;
 383	u8 *addr;
 384	ntfs_attr_search_ctx *ctx;
 385	MFT_RECORD *mrec;
 386	unsigned long flags;
 387	u32 attr_len;
 388	int err = 0;
 389
 390retry_readpage:
 391	BUG_ON(!PageLocked(page));
 392	vi = page->mapping->host;
 393	i_size = i_size_read(vi);
 394	/* Is the page fully outside i_size? (truncate in progress) */
 395	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
 396			PAGE_SHIFT)) {
 397		zero_user(page, 0, PAGE_SIZE);
 398		ntfs_debug("Read outside i_size - truncated?");
 399		goto done;
 400	}
 401	/*
 402	 * This can potentially happen because we clear PageUptodate() during
 403	 * ntfs_writepage() of MstProtected() attributes.
 404	 */
 405	if (PageUptodate(page)) {
 406		unlock_page(page);
 407		return 0;
 408	}
 409	ni = NTFS_I(vi);
 410	/*
 411	 * Only $DATA attributes can be encrypted and only unnamed $DATA
 412	 * attributes can be compressed.  Index root can have the flags set but
 413	 * this means to create compressed/encrypted files, not that the
 414	 * attribute is compressed/encrypted.  Note we need to check for
 415	 * AT_INDEX_ALLOCATION since this is the type of both directory and
 416	 * index inodes.
 417	 */
 418	if (ni->type != AT_INDEX_ALLOCATION) {
 419		/* If attribute is encrypted, deny access, just like NT4. */
 420		if (NInoEncrypted(ni)) {
 421			BUG_ON(ni->type != AT_DATA);
 422			err = -EACCES;
 423			goto err_out;
 424		}
 425		/* Compressed data streams are handled in compress.c. */
 426		if (NInoNonResident(ni) && NInoCompressed(ni)) {
 427			BUG_ON(ni->type != AT_DATA);
 428			BUG_ON(ni->name_len);
 429			return ntfs_read_compressed_block(page);
 430		}
 431	}
 432	/* NInoNonResident() == NInoIndexAllocPresent() */
 433	if (NInoNonResident(ni)) {
 434		/* Normal, non-resident data stream. */
 435		return ntfs_read_block(page);
 436	}
 437	/*
 438	 * Attribute is resident, implying it is not compressed or encrypted.
 439	 * This also means the attribute is smaller than an mft record and
 440	 * hence smaller than a page, so can simply zero out any pages with
 441	 * index above 0.  Note the attribute can actually be marked compressed
 442	 * but if it is resident the actual data is not compressed so we are
 443	 * ok to ignore the compressed flag here.
 444	 */
 445	if (unlikely(page->index > 0)) {
 446		zero_user(page, 0, PAGE_SIZE);
 447		goto done;
 448	}
 449	if (!NInoAttr(ni))
 450		base_ni = ni;
 451	else
 452		base_ni = ni->ext.base_ntfs_ino;
 453	/* Map, pin, and lock the mft record. */
 454	mrec = map_mft_record(base_ni);
 455	if (IS_ERR(mrec)) {
 456		err = PTR_ERR(mrec);
 457		goto err_out;
 458	}
 459	/*
 460	 * If a parallel write made the attribute non-resident, drop the mft
 461	 * record and retry the readpage.
 462	 */
 463	if (unlikely(NInoNonResident(ni))) {
 464		unmap_mft_record(base_ni);
 465		goto retry_readpage;
 466	}
 467	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
 468	if (unlikely(!ctx)) {
 469		err = -ENOMEM;
 470		goto unm_err_out;
 471	}
 472	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 473			CASE_SENSITIVE, 0, NULL, 0, ctx);
 474	if (unlikely(err))
 475		goto put_unm_err_out;
 476	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
 477	read_lock_irqsave(&ni->size_lock, flags);
 478	if (unlikely(attr_len > ni->initialized_size))
 479		attr_len = ni->initialized_size;
 480	i_size = i_size_read(vi);
 481	read_unlock_irqrestore(&ni->size_lock, flags);
 482	if (unlikely(attr_len > i_size)) {
 483		/* Race with shrinking truncate. */
 484		attr_len = i_size;
 485	}
 486	addr = kmap_atomic(page);
 487	/* Copy the data to the page. */
 488	memcpy(addr, (u8*)ctx->attr +
 489			le16_to_cpu(ctx->attr->data.resident.value_offset),
 490			attr_len);
 491	/* Zero the remainder of the page. */
 492	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
 493	flush_dcache_page(page);
 494	kunmap_atomic(addr);
 495put_unm_err_out:
 496	ntfs_attr_put_search_ctx(ctx);
 497unm_err_out:
 498	unmap_mft_record(base_ni);
 499done:
 500	SetPageUptodate(page);
 501err_out:
 502	unlock_page(page);
 503	return err;
 504}
 505
 506#ifdef NTFS_RW
 507
 508/**
 509 * ntfs_write_block - write a @page to the backing store
 510 * @page:	page cache page to write out
 511 * @wbc:	writeback control structure
 512 *
 513 * This function is for writing pages belonging to non-resident, non-mst
 514 * protected attributes to their backing store.
 515 *
 516 * For a page with buffers, map and write the dirty buffers asynchronously
 517 * under page writeback. For a page without buffers, create buffers for the
 518 * page, then proceed as above.
 519 *
 520 * If a page doesn't have buffers the page dirty state is definitive. If a page
 521 * does have buffers, the page dirty state is just a hint, and the buffer dirty
 522 * state is definitive. (A hint which has rules: dirty buffers against a clean
 523 * page is illegal. Other combinations are legal and need to be handled. In
 524 * particular a dirty page containing clean buffers for example.)
 
 525 *
 526 * Return 0 on success and -errno on error.
 527 *
 528 * Based on ntfs_read_block() and __block_write_full_page().
 529 */
 530static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
 531{
 532	VCN vcn;
 533	LCN lcn;
 534	s64 initialized_size;
 535	loff_t i_size;
 536	sector_t block, dblock, iblock;
 537	struct inode *vi;
 538	ntfs_inode *ni;
 539	ntfs_volume *vol;
 540	runlist_element *rl;
 541	struct buffer_head *bh, *head;
 542	unsigned long flags;
 543	unsigned int blocksize, vcn_ofs;
 544	int err;
 545	bool need_end_writeback;
 546	unsigned char blocksize_bits;
 547
 548	vi = page->mapping->host;
 549	ni = NTFS_I(vi);
 550	vol = ni->vol;
 551
 552	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
 553			"0x%lx.", ni->mft_no, ni->type, page->index);
 554
 555	BUG_ON(!NInoNonResident(ni));
 556	BUG_ON(NInoMstProtected(ni));
 557	blocksize = vol->sb->s_blocksize;
 558	blocksize_bits = vol->sb->s_blocksize_bits;
 559	if (!page_has_buffers(page)) {
 560		BUG_ON(!PageUptodate(page));
 561		create_empty_buffers(page, blocksize,
 
 562				(1 << BH_Uptodate) | (1 << BH_Dirty));
 563		if (unlikely(!page_has_buffers(page))) {
 564			ntfs_warning(vol->sb, "Error allocating page "
 565					"buffers.  Redirtying page so we try "
 566					"again later.");
 567			/*
 568			 * Put the page back on mapping->dirty_pages, but leave
 569			 * its buffers' dirty state as-is.
 570			 */
 571			redirty_page_for_writepage(wbc, page);
 572			unlock_page(page);
 573			return 0;
 574		}
 575	}
 576	bh = head = page_buffers(page);
 577	BUG_ON(!bh);
 578
 579	/* NOTE: Different naming scheme to ntfs_read_block()! */
 580
 581	/* The first block in the page. */
 582	block = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
 583
 584	read_lock_irqsave(&ni->size_lock, flags);
 585	i_size = i_size_read(vi);
 586	initialized_size = ni->initialized_size;
 587	read_unlock_irqrestore(&ni->size_lock, flags);
 588
 589	/* The first out of bounds block for the data size. */
 590	dblock = (i_size + blocksize - 1) >> blocksize_bits;
 591
 592	/* The last (fully or partially) initialized block. */
 593	iblock = initialized_size >> blocksize_bits;
 594
 595	/*
 596	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
 597	 * here, and the (potentially unmapped) buffers may become dirty at
 598	 * any time.  If a buffer becomes dirty here after we've inspected it
 599	 * then we just miss that fact, and the page stays dirty.
 600	 *
 601	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
 602	 * handle that here by just cleaning them.
 603	 */
 604
 605	/*
 606	 * Loop through all the buffers in the page, mapping all the dirty
 607	 * buffers to disk addresses and handling any aliases from the
 608	 * underlying block device's mapping.
 609	 */
 610	rl = NULL;
 611	err = 0;
 612	do {
 613		bool is_retry = false;
 614
 615		if (unlikely(block >= dblock)) {
 616			/*
 617			 * Mapped buffers outside i_size will occur, because
 618			 * this page can be outside i_size when there is a
 619			 * truncate in progress. The contents of such buffers
 620			 * were zeroed by ntfs_writepage().
 621			 *
 622			 * FIXME: What about the small race window where
 623			 * ntfs_writepage() has not done any clearing because
 624			 * the page was within i_size but before we get here,
 625			 * vmtruncate() modifies i_size?
 626			 */
 627			clear_buffer_dirty(bh);
 628			set_buffer_uptodate(bh);
 629			continue;
 630		}
 631
 632		/* Clean buffers are not written out, so no need to map them. */
 633		if (!buffer_dirty(bh))
 634			continue;
 635
 636		/* Make sure we have enough initialized size. */
 637		if (unlikely((block >= iblock) &&
 638				(initialized_size < i_size))) {
 639			/*
 640			 * If this page is fully outside initialized size, zero
 641			 * out all pages between the current initialized size
 642			 * and the current page. Just use ntfs_readpage() to do
 643			 * the zeroing transparently.
 
 644			 */
 645			if (block > iblock) {
 646				// TODO:
 647				// For each page do:
 648				// - read_cache_page()
 649				// Again for each page do:
 650				// - wait_on_page_locked()
 651				// - Check (PageUptodate(page) &&
 652				//			!PageError(page))
 653				// Update initialized size in the attribute and
 654				// in the inode.
 655				// Again, for each page do:
 656				//	__set_page_dirty_buffers();
 657				// put_page()
 658				// We don't need to wait on the writes.
 659				// Update iblock.
 660			}
 661			/*
 662			 * The current page straddles initialized size. Zero
 663			 * all non-uptodate buffers and set them uptodate (and
 664			 * dirty?). Note, there aren't any non-uptodate buffers
 665			 * if the page is uptodate.
 666			 * FIXME: For an uptodate page, the buffers may need to
 667			 * be written out because they were not initialized on
 668			 * disk before.
 669			 */
 670			if (!PageUptodate(page)) {
 671				// TODO:
 672				// Zero any non-uptodate buffers up to i_size.
 673				// Set them uptodate and dirty.
 674			}
 675			// TODO:
 676			// Update initialized size in the attribute and in the
 677			// inode (up to i_size).
 678			// Update iblock.
 679			// FIXME: This is inefficient. Try to batch the two
 680			// size changes to happen in one go.
 681			ntfs_error(vol->sb, "Writing beyond initialized size "
 682					"is not supported yet. Sorry.");
 683			err = -EOPNOTSUPP;
 684			break;
 685			// Do NOT set_buffer_new() BUT DO clear buffer range
 686			// outside write request range.
 687			// set_buffer_uptodate() on complete buffers as well as
 688			// set_buffer_dirty().
 689		}
 690
 691		/* No need to map buffers that are already mapped. */
 692		if (buffer_mapped(bh))
 693			continue;
 694
 695		/* Unmapped, dirty buffer. Need to map it. */
 696		bh->b_bdev = vol->sb->s_bdev;
 697
 698		/* Convert block into corresponding vcn and offset. */
 699		vcn = (VCN)block << blocksize_bits;
 700		vcn_ofs = vcn & vol->cluster_size_mask;
 701		vcn >>= vol->cluster_size_bits;
 702		if (!rl) {
 703lock_retry_remap:
 704			down_read(&ni->runlist.lock);
 705			rl = ni->runlist.rl;
 706		}
 707		if (likely(rl != NULL)) {
 708			/* Seek to element containing target vcn. */
 709			while (rl->length && rl[1].vcn <= vcn)
 710				rl++;
 711			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 712		} else
 713			lcn = LCN_RL_NOT_MAPPED;
 714		/* Successful remap. */
 715		if (lcn >= 0) {
 716			/* Setup buffer head to point to correct block. */
 717			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
 718					vcn_ofs) >> blocksize_bits;
 719			set_buffer_mapped(bh);
 720			continue;
 721		}
 722		/* It is a hole, need to instantiate it. */
 723		if (lcn == LCN_HOLE) {
 724			u8 *kaddr;
 725			unsigned long *bpos, *bend;
 726
 727			/* Check if the buffer is zero. */
 728			kaddr = kmap_atomic(page);
 729			bpos = (unsigned long *)(kaddr + bh_offset(bh));
 730			bend = (unsigned long *)((u8*)bpos + blocksize);
 731			do {
 732				if (unlikely(*bpos))
 733					break;
 734			} while (likely(++bpos < bend));
 735			kunmap_atomic(kaddr);
 736			if (bpos == bend) {
 737				/*
 738				 * Buffer is zero and sparse, no need to write
 739				 * it.
 740				 */
 741				bh->b_blocknr = -1;
 742				clear_buffer_dirty(bh);
 743				continue;
 744			}
 745			// TODO: Instantiate the hole.
 746			// clear_buffer_new(bh);
 747			// clean_bdev_bh_alias(bh);
 748			ntfs_error(vol->sb, "Writing into sparse regions is "
 749					"not supported yet. Sorry.");
 750			err = -EOPNOTSUPP;
 751			break;
 752		}
 753		/* If first try and runlist unmapped, map and retry. */
 754		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
 755			is_retry = true;
 756			/*
 757			 * Attempt to map runlist, dropping lock for
 758			 * the duration.
 759			 */
 760			up_read(&ni->runlist.lock);
 761			err = ntfs_map_runlist(ni, vcn);
 762			if (likely(!err))
 763				goto lock_retry_remap;
 764			rl = NULL;
 765		} else if (!rl)
 766			up_read(&ni->runlist.lock);
 767		/*
 768		 * If buffer is outside the runlist, truncate has cut it out
 769		 * of the runlist.  Just clean and clear the buffer and set it
 770		 * uptodate so it can get discarded by the VM.
 771		 */
 772		if (err == -ENOENT || lcn == LCN_ENOENT) {
 773			bh->b_blocknr = -1;
 774			clear_buffer_dirty(bh);
 775			zero_user(page, bh_offset(bh), blocksize);
 776			set_buffer_uptodate(bh);
 777			err = 0;
 778			continue;
 779		}
 780		/* Failed to map the buffer, even after retrying. */
 781		if (!err)
 782			err = -EIO;
 783		bh->b_blocknr = -1;
 784		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
 785				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
 786				"because its location on disk could not be "
 787				"determined%s (error code %i).", ni->mft_no,
 788				ni->type, (unsigned long long)vcn,
 789				vcn_ofs, is_retry ? " even after "
 790				"retrying" : "", err);
 791		break;
 792	} while (block++, (bh = bh->b_this_page) != head);
 793
 794	/* Release the lock if we took it. */
 795	if (rl)
 796		up_read(&ni->runlist.lock);
 797
 798	/* For the error case, need to reset bh to the beginning. */
 799	bh = head;
 800
 801	/* Just an optimization, so ->readpage() is not called later. */
 802	if (unlikely(!PageUptodate(page))) {
 803		int uptodate = 1;
 804		do {
 805			if (!buffer_uptodate(bh)) {
 806				uptodate = 0;
 807				bh = head;
 808				break;
 809			}
 810		} while ((bh = bh->b_this_page) != head);
 811		if (uptodate)
 812			SetPageUptodate(page);
 813	}
 814
 815	/* Setup all mapped, dirty buffers for async write i/o. */
 816	do {
 817		if (buffer_mapped(bh) && buffer_dirty(bh)) {
 818			lock_buffer(bh);
 819			if (test_clear_buffer_dirty(bh)) {
 820				BUG_ON(!buffer_uptodate(bh));
 821				mark_buffer_async_write(bh);
 822			} else
 823				unlock_buffer(bh);
 824		} else if (unlikely(err)) {
 825			/*
 826			 * For the error case. The buffer may have been set
 827			 * dirty during attachment to a dirty page.
 828			 */
 829			if (err != -ENOMEM)
 830				clear_buffer_dirty(bh);
 831		}
 832	} while ((bh = bh->b_this_page) != head);
 833
 834	if (unlikely(err)) {
 835		// TODO: Remove the -EOPNOTSUPP check later on...
 836		if (unlikely(err == -EOPNOTSUPP))
 837			err = 0;
 838		else if (err == -ENOMEM) {
 839			ntfs_warning(vol->sb, "Error allocating memory. "
 840					"Redirtying page so we try again "
 841					"later.");
 842			/*
 843			 * Put the page back on mapping->dirty_pages, but
 844			 * leave its buffer's dirty state as-is.
 845			 */
 846			redirty_page_for_writepage(wbc, page);
 847			err = 0;
 848		} else
 849			SetPageError(page);
 850	}
 851
 852	BUG_ON(PageWriteback(page));
 853	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
 854
 855	/* Submit the prepared buffers for i/o. */
 856	need_end_writeback = true;
 857	do {
 858		struct buffer_head *next = bh->b_this_page;
 859		if (buffer_async_write(bh)) {
 860			submit_bh(REQ_OP_WRITE, 0, bh);
 861			need_end_writeback = false;
 862		}
 863		bh = next;
 864	} while (bh != head);
 865	unlock_page(page);
 866
 867	/* If no i/o was started, need to end_page_writeback(). */
 868	if (unlikely(need_end_writeback))
 869		end_page_writeback(page);
 870
 871	ntfs_debug("Done.");
 872	return err;
 873}
 874
 875/**
 876 * ntfs_write_mst_block - write a @page to the backing store
 877 * @page:	page cache page to write out
 878 * @wbc:	writeback control structure
 879 *
 880 * This function is for writing pages belonging to non-resident, mst protected
 881 * attributes to their backing store.  The only supported attributes are index
 882 * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
 883 * supported for the index allocation case.
 884 *
 885 * The page must remain locked for the duration of the write because we apply
 886 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
 887 * page before undoing the fixups, any other user of the page will see the
 888 * page contents as corrupt.
 889 *
 890 * We clear the page uptodate flag for the duration of the function to ensure
 891 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
 892 * are about to apply the mst fixups to.
 893 *
 894 * Return 0 on success and -errno on error.
 895 *
 896 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
 897 * write_mft_record_nolock().
 898 */
 899static int ntfs_write_mst_block(struct page *page,
 900		struct writeback_control *wbc)
 901{
 902	sector_t block, dblock, rec_block;
 903	struct inode *vi = page->mapping->host;
 904	ntfs_inode *ni = NTFS_I(vi);
 905	ntfs_volume *vol = ni->vol;
 906	u8 *kaddr;
 907	unsigned int rec_size = ni->itype.index.block_size;
 908	ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE];
 909	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
 910	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
 911	runlist_element *rl;
 912	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
 913	unsigned bh_size, rec_size_bits;
 914	bool sync, is_mft, page_is_dirty, rec_is_dirty;
 915	unsigned char bh_size_bits;
 916
 917	if (WARN_ON(rec_size < NTFS_BLOCK_SIZE))
 918		return -EINVAL;
 919
 920	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
 921			"0x%lx.", vi->i_ino, ni->type, page->index);
 922	BUG_ON(!NInoNonResident(ni));
 923	BUG_ON(!NInoMstProtected(ni));
 924	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
 925	/*
 926	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
 927	 * in its page cache were to be marked dirty.  However this should
 928	 * never happen with the current driver and considering we do not
 929	 * handle this case here we do want to BUG(), at least for now.
 930	 */
 931	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
 932			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
 933	bh_size = vol->sb->s_blocksize;
 934	bh_size_bits = vol->sb->s_blocksize_bits;
 935	max_bhs = PAGE_SIZE / bh_size;
 936	BUG_ON(!max_bhs);
 937	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
 938
 939	/* Were we called for sync purposes? */
 940	sync = (wbc->sync_mode == WB_SYNC_ALL);
 941
 942	/* Make sure we have mapped buffers. */
 943	bh = head = page_buffers(page);
 944	BUG_ON(!bh);
 945
 946	rec_size_bits = ni->itype.index.block_size_bits;
 947	BUG_ON(!(PAGE_SIZE >> rec_size_bits));
 948	bhs_per_rec = rec_size >> bh_size_bits;
 949	BUG_ON(!bhs_per_rec);
 950
 951	/* The first block in the page. */
 952	rec_block = block = (sector_t)page->index <<
 953			(PAGE_SHIFT - bh_size_bits);
 954
 955	/* The first out of bounds block for the data size. */
 956	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
 957
 958	rl = NULL;
 959	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
 960	page_is_dirty = rec_is_dirty = false;
 961	rec_start_bh = NULL;
 962	do {
 963		bool is_retry = false;
 964
 965		if (likely(block < rec_block)) {
 966			if (unlikely(block >= dblock)) {
 967				clear_buffer_dirty(bh);
 968				set_buffer_uptodate(bh);
 969				continue;
 970			}
 971			/*
 972			 * This block is not the first one in the record.  We
 973			 * ignore the buffer's dirty state because we could
 974			 * have raced with a parallel mark_ntfs_record_dirty().
 975			 */
 976			if (!rec_is_dirty)
 977				continue;
 978			if (unlikely(err2)) {
 979				if (err2 != -ENOMEM)
 980					clear_buffer_dirty(bh);
 981				continue;
 982			}
 983		} else /* if (block == rec_block) */ {
 984			BUG_ON(block > rec_block);
 985			/* This block is the first one in the record. */
 986			rec_block += bhs_per_rec;
 987			err2 = 0;
 988			if (unlikely(block >= dblock)) {
 989				clear_buffer_dirty(bh);
 990				continue;
 991			}
 992			if (!buffer_dirty(bh)) {
 993				/* Clean records are not written out. */
 994				rec_is_dirty = false;
 995				continue;
 996			}
 997			rec_is_dirty = true;
 998			rec_start_bh = bh;
 999		}
1000		/* Need to map the buffer if it is not mapped already. */
1001		if (unlikely(!buffer_mapped(bh))) {
1002			VCN vcn;
1003			LCN lcn;
1004			unsigned int vcn_ofs;
1005
1006			bh->b_bdev = vol->sb->s_bdev;
1007			/* Obtain the vcn and offset of the current block. */
1008			vcn = (VCN)block << bh_size_bits;
1009			vcn_ofs = vcn & vol->cluster_size_mask;
1010			vcn >>= vol->cluster_size_bits;
1011			if (!rl) {
1012lock_retry_remap:
1013				down_read(&ni->runlist.lock);
1014				rl = ni->runlist.rl;
1015			}
1016			if (likely(rl != NULL)) {
1017				/* Seek to element containing target vcn. */
1018				while (rl->length && rl[1].vcn <= vcn)
1019					rl++;
1020				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1021			} else
1022				lcn = LCN_RL_NOT_MAPPED;
1023			/* Successful remap. */
1024			if (likely(lcn >= 0)) {
1025				/* Setup buffer head to correct block. */
1026				bh->b_blocknr = ((lcn <<
1027						vol->cluster_size_bits) +
1028						vcn_ofs) >> bh_size_bits;
1029				set_buffer_mapped(bh);
1030			} else {
1031				/*
1032				 * Remap failed.  Retry to map the runlist once
1033				 * unless we are working on $MFT which always
1034				 * has the whole of its runlist in memory.
1035				 */
1036				if (!is_mft && !is_retry &&
1037						lcn == LCN_RL_NOT_MAPPED) {
1038					is_retry = true;
1039					/*
1040					 * Attempt to map runlist, dropping
1041					 * lock for the duration.
1042					 */
1043					up_read(&ni->runlist.lock);
1044					err2 = ntfs_map_runlist(ni, vcn);
1045					if (likely(!err2))
1046						goto lock_retry_remap;
1047					if (err2 == -ENOMEM)
1048						page_is_dirty = true;
1049					lcn = err2;
1050				} else {
1051					err2 = -EIO;
1052					if (!rl)
1053						up_read(&ni->runlist.lock);
1054				}
1055				/* Hard error.  Abort writing this record. */
1056				if (!err || err == -ENOMEM)
1057					err = err2;
1058				bh->b_blocknr = -1;
1059				ntfs_error(vol->sb, "Cannot write ntfs record "
1060						"0x%llx (inode 0x%lx, "
1061						"attribute type 0x%x) because "
1062						"its location on disk could "
1063						"not be determined (error "
1064						"code %lli).",
1065						(long long)block <<
1066						bh_size_bits >>
1067						vol->mft_record_size_bits,
1068						ni->mft_no, ni->type,
1069						(long long)lcn);
1070				/*
1071				 * If this is not the first buffer, remove the
1072				 * buffers in this record from the list of
1073				 * buffers to write and clear their dirty bit
1074				 * if not error -ENOMEM.
1075				 */
1076				if (rec_start_bh != bh) {
1077					while (bhs[--nr_bhs] != rec_start_bh)
1078						;
1079					if (err2 != -ENOMEM) {
1080						do {
1081							clear_buffer_dirty(
1082								rec_start_bh);
1083						} while ((rec_start_bh =
1084								rec_start_bh->
1085								b_this_page) !=
1086								bh);
1087					}
1088				}
1089				continue;
1090			}
1091		}
1092		BUG_ON(!buffer_uptodate(bh));
1093		BUG_ON(nr_bhs >= max_bhs);
1094		bhs[nr_bhs++] = bh;
1095	} while (block++, (bh = bh->b_this_page) != head);
1096	if (unlikely(rl))
1097		up_read(&ni->runlist.lock);
1098	/* If there were no dirty buffers, we are done. */
1099	if (!nr_bhs)
1100		goto done;
1101	/* Map the page so we can access its contents. */
1102	kaddr = kmap(page);
1103	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1104	BUG_ON(!PageUptodate(page));
1105	ClearPageUptodate(page);
1106	for (i = 0; i < nr_bhs; i++) {
1107		unsigned int ofs;
1108
1109		/* Skip buffers which are not at the beginning of records. */
1110		if (i % bhs_per_rec)
1111			continue;
1112		tbh = bhs[i];
1113		ofs = bh_offset(tbh);
1114		if (is_mft) {
1115			ntfs_inode *tni;
1116			unsigned long mft_no;
1117
1118			/* Get the mft record number. */
1119			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1120					>> rec_size_bits;
1121			/* Check whether to write this mft record. */
1122			tni = NULL;
1123			if (!ntfs_may_write_mft_record(vol, mft_no,
1124					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1125				/*
1126				 * The record should not be written.  This
1127				 * means we need to redirty the page before
1128				 * returning.
1129				 */
1130				page_is_dirty = true;
1131				/*
1132				 * Remove the buffers in this mft record from
1133				 * the list of buffers to write.
1134				 */
1135				do {
1136					bhs[i] = NULL;
1137				} while (++i % bhs_per_rec);
1138				continue;
1139			}
1140			/*
1141			 * The record should be written.  If a locked ntfs
1142			 * inode was returned, add it to the array of locked
1143			 * ntfs inodes.
1144			 */
1145			if (tni)
1146				locked_nis[nr_locked_nis++] = tni;
1147		}
1148		/* Apply the mst protection fixups. */
1149		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1150				rec_size);
1151		if (unlikely(err2)) {
1152			if (!err || err == -ENOMEM)
1153				err = -EIO;
1154			ntfs_error(vol->sb, "Failed to apply mst fixups "
1155					"(inode 0x%lx, attribute type 0x%x, "
1156					"page index 0x%lx, page offset 0x%x)!"
1157					"  Unmount and run chkdsk.", vi->i_ino,
1158					ni->type, page->index, ofs);
1159			/*
1160			 * Mark all the buffers in this record clean as we do
1161			 * not want to write corrupt data to disk.
1162			 */
1163			do {
1164				clear_buffer_dirty(bhs[i]);
1165				bhs[i] = NULL;
1166			} while (++i % bhs_per_rec);
1167			continue;
1168		}
1169		nr_recs++;
1170	}
1171	/* If no records are to be written out, we are done. */
1172	if (!nr_recs)
1173		goto unm_done;
1174	flush_dcache_page(page);
1175	/* Lock buffers and start synchronous write i/o on them. */
1176	for (i = 0; i < nr_bhs; i++) {
1177		tbh = bhs[i];
1178		if (!tbh)
1179			continue;
1180		if (!trylock_buffer(tbh))
1181			BUG();
1182		/* The buffer dirty state is now irrelevant, just clean it. */
1183		clear_buffer_dirty(tbh);
1184		BUG_ON(!buffer_uptodate(tbh));
1185		BUG_ON(!buffer_mapped(tbh));
1186		get_bh(tbh);
1187		tbh->b_end_io = end_buffer_write_sync;
1188		submit_bh(REQ_OP_WRITE, 0, tbh);
1189	}
1190	/* Synchronize the mft mirror now if not @sync. */
1191	if (is_mft && !sync)
1192		goto do_mirror;
1193do_wait:
1194	/* Wait on i/o completion of buffers. */
1195	for (i = 0; i < nr_bhs; i++) {
1196		tbh = bhs[i];
1197		if (!tbh)
1198			continue;
1199		wait_on_buffer(tbh);
1200		if (unlikely(!buffer_uptodate(tbh))) {
1201			ntfs_error(vol->sb, "I/O error while writing ntfs "
1202					"record buffer (inode 0x%lx, "
1203					"attribute type 0x%x, page index "
1204					"0x%lx, page offset 0x%lx)!  Unmount "
1205					"and run chkdsk.", vi->i_ino, ni->type,
1206					page->index, bh_offset(tbh));
1207			if (!err || err == -ENOMEM)
1208				err = -EIO;
1209			/*
1210			 * Set the buffer uptodate so the page and buffer
1211			 * states do not become out of sync.
1212			 */
1213			set_buffer_uptodate(tbh);
1214		}
1215	}
1216	/* If @sync, now synchronize the mft mirror. */
1217	if (is_mft && sync) {
1218do_mirror:
1219		for (i = 0; i < nr_bhs; i++) {
1220			unsigned long mft_no;
1221			unsigned int ofs;
1222
1223			/*
1224			 * Skip buffers which are not at the beginning of
1225			 * records.
1226			 */
1227			if (i % bhs_per_rec)
1228				continue;
1229			tbh = bhs[i];
1230			/* Skip removed buffers (and hence records). */
1231			if (!tbh)
1232				continue;
1233			ofs = bh_offset(tbh);
1234			/* Get the mft record number. */
1235			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1236					>> rec_size_bits;
1237			if (mft_no < vol->mftmirr_size)
1238				ntfs_sync_mft_mirror(vol, mft_no,
1239						(MFT_RECORD*)(kaddr + ofs),
1240						sync);
1241		}
1242		if (!sync)
1243			goto do_wait;
1244	}
1245	/* Remove the mst protection fixups again. */
1246	for (i = 0; i < nr_bhs; i++) {
1247		if (!(i % bhs_per_rec)) {
1248			tbh = bhs[i];
1249			if (!tbh)
1250				continue;
1251			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1252					bh_offset(tbh)));
1253		}
1254	}
1255	flush_dcache_page(page);
1256unm_done:
1257	/* Unlock any locked inodes. */
1258	while (nr_locked_nis-- > 0) {
1259		ntfs_inode *tni, *base_tni;
1260		
1261		tni = locked_nis[nr_locked_nis];
1262		/* Get the base inode. */
1263		mutex_lock(&tni->extent_lock);
1264		if (tni->nr_extents >= 0)
1265			base_tni = tni;
1266		else {
1267			base_tni = tni->ext.base_ntfs_ino;
1268			BUG_ON(!base_tni);
1269		}
1270		mutex_unlock(&tni->extent_lock);
1271		ntfs_debug("Unlocking %s inode 0x%lx.",
1272				tni == base_tni ? "base" : "extent",
1273				tni->mft_no);
1274		mutex_unlock(&tni->mrec_lock);
1275		atomic_dec(&tni->count);
1276		iput(VFS_I(base_tni));
1277	}
1278	SetPageUptodate(page);
1279	kunmap(page);
1280done:
1281	if (unlikely(err && err != -ENOMEM)) {
1282		/*
1283		 * Set page error if there is only one ntfs record in the page.
1284		 * Otherwise we would loose per-record granularity.
1285		 */
1286		if (ni->itype.index.block_size == PAGE_SIZE)
1287			SetPageError(page);
1288		NVolSetErrors(vol);
1289	}
1290	if (page_is_dirty) {
1291		ntfs_debug("Page still contains one or more dirty ntfs "
1292				"records.  Redirtying the page starting at "
1293				"record 0x%lx.", page->index <<
1294				(PAGE_SHIFT - rec_size_bits));
1295		redirty_page_for_writepage(wbc, page);
1296		unlock_page(page);
1297	} else {
1298		/*
1299		 * Keep the VM happy.  This must be done otherwise the
1300		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1301		 * the page is clean.
1302		 */
1303		BUG_ON(PageWriteback(page));
1304		set_page_writeback(page);
1305		unlock_page(page);
1306		end_page_writeback(page);
1307	}
1308	if (likely(!err))
1309		ntfs_debug("Done.");
1310	return err;
1311}
1312
1313/**
1314 * ntfs_writepage - write a @page to the backing store
1315 * @page:	page cache page to write out
1316 * @wbc:	writeback control structure
1317 *
1318 * This is called from the VM when it wants to have a dirty ntfs page cache
1319 * page cleaned.  The VM has already locked the page and marked it clean.
1320 *
1321 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1322 * the ntfs version of the generic block_write_full_page() function,
1323 * ntfs_write_block(), which in turn if necessary creates and writes the
1324 * buffers associated with the page asynchronously.
1325 *
1326 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1327 * the data to the mft record (which at this stage is most likely in memory).
1328 * The mft record is then marked dirty and written out asynchronously via the
1329 * vfs inode dirty code path for the inode the mft record belongs to or via the
1330 * vm page dirty code path for the page the mft record is in.
1331 *
1332 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1333 *
1334 * Return 0 on success and -errno on error.
1335 */
1336static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1337{
 
1338	loff_t i_size;
1339	struct inode *vi = page->mapping->host;
1340	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1341	char *addr;
1342	ntfs_attr_search_ctx *ctx = NULL;
1343	MFT_RECORD *m = NULL;
1344	u32 attr_len;
1345	int err;
1346
1347retry_writepage:
1348	BUG_ON(!PageLocked(page));
1349	i_size = i_size_read(vi);
1350	/* Is the page fully outside i_size? (truncate in progress) */
1351	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
1352			PAGE_SHIFT)) {
1353		/*
1354		 * The page may have dirty, unmapped buffers.  Make them
1355		 * freeable here, so the page does not leak.
1356		 */
1357		block_invalidatepage(page, 0, PAGE_SIZE);
1358		unlock_page(page);
1359		ntfs_debug("Write outside i_size - truncated?");
1360		return 0;
1361	}
1362	/*
1363	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1364	 * attributes can be compressed.  Index root can have the flags set but
1365	 * this means to create compressed/encrypted files, not that the
1366	 * attribute is compressed/encrypted.  Note we need to check for
1367	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1368	 * index inodes.
1369	 */
1370	if (ni->type != AT_INDEX_ALLOCATION) {
1371		/* If file is encrypted, deny access, just like NT4. */
1372		if (NInoEncrypted(ni)) {
1373			unlock_page(page);
1374			BUG_ON(ni->type != AT_DATA);
1375			ntfs_debug("Denying write access to encrypted file.");
1376			return -EACCES;
1377		}
1378		/* Compressed data streams are handled in compress.c. */
1379		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1380			BUG_ON(ni->type != AT_DATA);
1381			BUG_ON(ni->name_len);
1382			// TODO: Implement and replace this with
1383			// return ntfs_write_compressed_block(page);
1384			unlock_page(page);
1385			ntfs_error(vi->i_sb, "Writing to compressed files is "
1386					"not supported yet.  Sorry.");
1387			return -EOPNOTSUPP;
1388		}
1389		// TODO: Implement and remove this check.
1390		if (NInoNonResident(ni) && NInoSparse(ni)) {
1391			unlock_page(page);
1392			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1393					"supported yet.  Sorry.");
1394			return -EOPNOTSUPP;
1395		}
1396	}
1397	/* NInoNonResident() == NInoIndexAllocPresent() */
1398	if (NInoNonResident(ni)) {
1399		/* We have to zero every time due to mmap-at-end-of-file. */
1400		if (page->index >= (i_size >> PAGE_SHIFT)) {
1401			/* The page straddles i_size. */
1402			unsigned int ofs = i_size & ~PAGE_MASK;
1403			zero_user_segment(page, ofs, PAGE_SIZE);
1404		}
1405		/* Handle mst protected attributes. */
1406		if (NInoMstProtected(ni))
1407			return ntfs_write_mst_block(page, wbc);
1408		/* Normal, non-resident data stream. */
1409		return ntfs_write_block(page, wbc);
1410	}
1411	/*
1412	 * Attribute is resident, implying it is not compressed, encrypted, or
1413	 * mst protected.  This also means the attribute is smaller than an mft
1414	 * record and hence smaller than a page, so can simply return error on
1415	 * any pages with index above 0.  Note the attribute can actually be
1416	 * marked compressed but if it is resident the actual data is not
1417	 * compressed so we are ok to ignore the compressed flag here.
1418	 */
1419	BUG_ON(page_has_buffers(page));
1420	BUG_ON(!PageUptodate(page));
1421	if (unlikely(page->index > 0)) {
1422		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1423				"Aborting write.", page->index);
1424		BUG_ON(PageWriteback(page));
1425		set_page_writeback(page);
1426		unlock_page(page);
1427		end_page_writeback(page);
1428		return -EIO;
1429	}
1430	if (!NInoAttr(ni))
1431		base_ni = ni;
1432	else
1433		base_ni = ni->ext.base_ntfs_ino;
1434	/* Map, pin, and lock the mft record. */
1435	m = map_mft_record(base_ni);
1436	if (IS_ERR(m)) {
1437		err = PTR_ERR(m);
1438		m = NULL;
1439		ctx = NULL;
1440		goto err_out;
1441	}
1442	/*
1443	 * If a parallel write made the attribute non-resident, drop the mft
1444	 * record and retry the writepage.
1445	 */
1446	if (unlikely(NInoNonResident(ni))) {
1447		unmap_mft_record(base_ni);
1448		goto retry_writepage;
1449	}
1450	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1451	if (unlikely(!ctx)) {
1452		err = -ENOMEM;
1453		goto err_out;
1454	}
1455	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1456			CASE_SENSITIVE, 0, NULL, 0, ctx);
1457	if (unlikely(err))
1458		goto err_out;
1459	/*
1460	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1461	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1462	 */
1463	BUG_ON(PageWriteback(page));
1464	set_page_writeback(page);
1465	unlock_page(page);
1466	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1467	i_size = i_size_read(vi);
1468	if (unlikely(attr_len > i_size)) {
1469		/* Race with shrinking truncate or a failed truncate. */
1470		attr_len = i_size;
1471		/*
1472		 * If the truncate failed, fix it up now.  If a concurrent
1473		 * truncate, we do its job, so it does not have to do anything.
1474		 */
1475		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1476				attr_len);
1477		/* Shrinking cannot fail. */
1478		BUG_ON(err);
1479	}
1480	addr = kmap_atomic(page);
1481	/* Copy the data from the page to the mft record. */
1482	memcpy((u8*)ctx->attr +
1483			le16_to_cpu(ctx->attr->data.resident.value_offset),
1484			addr, attr_len);
1485	/* Zero out of bounds area in the page cache page. */
1486	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
1487	kunmap_atomic(addr);
1488	flush_dcache_page(page);
1489	flush_dcache_mft_record_page(ctx->ntfs_ino);
1490	/* We are done with the page. */
1491	end_page_writeback(page);
1492	/* Finally, mark the mft record dirty, so it gets written back. */
1493	mark_mft_record_dirty(ctx->ntfs_ino);
1494	ntfs_attr_put_search_ctx(ctx);
1495	unmap_mft_record(base_ni);
1496	return 0;
1497err_out:
1498	if (err == -ENOMEM) {
1499		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1500				"page so we try again later.");
1501		/*
1502		 * Put the page back on mapping->dirty_pages, but leave its
1503		 * buffers' dirty state as-is.
1504		 */
1505		redirty_page_for_writepage(wbc, page);
1506		err = 0;
1507	} else {
1508		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1509				"error %i.", err);
1510		SetPageError(page);
1511		NVolSetErrors(ni->vol);
1512	}
1513	unlock_page(page);
1514	if (ctx)
1515		ntfs_attr_put_search_ctx(ctx);
1516	if (m)
1517		unmap_mft_record(base_ni);
1518	return err;
1519}
1520
1521#endif	/* NTFS_RW */
1522
1523/**
1524 * ntfs_bmap - map logical file block to physical device block
1525 * @mapping:	address space mapping to which the block to be mapped belongs
1526 * @block:	logical block to map to its physical device block
1527 *
1528 * For regular, non-resident files (i.e. not compressed and not encrypted), map
1529 * the logical @block belonging to the file described by the address space
1530 * mapping @mapping to its physical device block.
1531 *
1532 * The size of the block is equal to the @s_blocksize field of the super block
1533 * of the mounted file system which is guaranteed to be smaller than or equal
1534 * to the cluster size thus the block is guaranteed to fit entirely inside the
1535 * cluster which means we do not need to care how many contiguous bytes are
1536 * available after the beginning of the block.
1537 *
1538 * Return the physical device block if the mapping succeeded or 0 if the block
1539 * is sparse or there was an error.
1540 *
1541 * Note: This is a problem if someone tries to run bmap() on $Boot system file
1542 * as that really is in block zero but there is nothing we can do.  bmap() is
1543 * just broken in that respect (just like it cannot distinguish sparse from
1544 * not available or error).
1545 */
1546static sector_t ntfs_bmap(struct address_space *mapping, sector_t block)
1547{
1548	s64 ofs, size;
1549	loff_t i_size;
1550	LCN lcn;
1551	unsigned long blocksize, flags;
1552	ntfs_inode *ni = NTFS_I(mapping->host);
1553	ntfs_volume *vol = ni->vol;
1554	unsigned delta;
1555	unsigned char blocksize_bits, cluster_size_shift;
1556
1557	ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.",
1558			ni->mft_no, (unsigned long long)block);
1559	if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) {
1560		ntfs_error(vol->sb, "BMAP does not make sense for %s "
1561				"attributes, returning 0.",
1562				(ni->type != AT_DATA) ? "non-data" :
1563				(!NInoNonResident(ni) ? "resident" :
1564				"encrypted"));
1565		return 0;
1566	}
1567	/* None of these can happen. */
1568	BUG_ON(NInoCompressed(ni));
1569	BUG_ON(NInoMstProtected(ni));
1570	blocksize = vol->sb->s_blocksize;
1571	blocksize_bits = vol->sb->s_blocksize_bits;
1572	ofs = (s64)block << blocksize_bits;
1573	read_lock_irqsave(&ni->size_lock, flags);
1574	size = ni->initialized_size;
1575	i_size = i_size_read(VFS_I(ni));
1576	read_unlock_irqrestore(&ni->size_lock, flags);
1577	/*
1578	 * If the offset is outside the initialized size or the block straddles
1579	 * the initialized size then pretend it is a hole unless the
1580	 * initialized size equals the file size.
1581	 */
1582	if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size)))
1583		goto hole;
1584	cluster_size_shift = vol->cluster_size_bits;
1585	down_read(&ni->runlist.lock);
1586	lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false);
1587	up_read(&ni->runlist.lock);
1588	if (unlikely(lcn < LCN_HOLE)) {
1589		/*
1590		 * Step down to an integer to avoid gcc doing a long long
1591		 * comparision in the switch when we know @lcn is between
1592		 * LCN_HOLE and LCN_EIO (i.e. -1 to -5).
1593		 *
1594		 * Otherwise older gcc (at least on some architectures) will
1595		 * try to use __cmpdi2() which is of course not available in
1596		 * the kernel.
1597		 */
1598		switch ((int)lcn) {
1599		case LCN_ENOENT:
1600			/*
1601			 * If the offset is out of bounds then pretend it is a
1602			 * hole.
1603			 */
1604			goto hole;
1605		case LCN_ENOMEM:
1606			ntfs_error(vol->sb, "Not enough memory to complete "
1607					"mapping for inode 0x%lx.  "
1608					"Returning 0.", ni->mft_no);
1609			break;
1610		default:
1611			ntfs_error(vol->sb, "Failed to complete mapping for "
1612					"inode 0x%lx.  Run chkdsk.  "
1613					"Returning 0.", ni->mft_no);
1614			break;
1615		}
1616		return 0;
1617	}
1618	if (lcn < 0) {
1619		/* It is a hole. */
1620hole:
1621		ntfs_debug("Done (returning hole).");
1622		return 0;
1623	}
1624	/*
1625	 * The block is really allocated and fullfils all our criteria.
1626	 * Convert the cluster to units of block size and return the result.
1627	 */
1628	delta = ofs & vol->cluster_size_mask;
1629	if (unlikely(sizeof(block) < sizeof(lcn))) {
1630		block = lcn = ((lcn << cluster_size_shift) + delta) >>
1631				blocksize_bits;
1632		/* If the block number was truncated return 0. */
1633		if (unlikely(block != lcn)) {
1634			ntfs_error(vol->sb, "Physical block 0x%llx is too "
1635					"large to be returned, returning 0.",
1636					(long long)lcn);
1637			return 0;
1638		}
1639	} else
1640		block = ((lcn << cluster_size_shift) + delta) >>
1641				blocksize_bits;
1642	ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn);
1643	return block;
1644}
1645
1646/**
1647 * ntfs_normal_aops - address space operations for normal inodes and attributes
1648 *
1649 * Note these are not used for compressed or mst protected inodes and
1650 * attributes.
1651 */
1652const struct address_space_operations ntfs_normal_aops = {
1653	.readpage	= ntfs_readpage,
1654#ifdef NTFS_RW
1655	.writepage	= ntfs_writepage,
1656	.set_page_dirty	= __set_page_dirty_buffers,
1657#endif /* NTFS_RW */
1658	.bmap		= ntfs_bmap,
1659	.migratepage	= buffer_migrate_page,
1660	.is_partially_uptodate = block_is_partially_uptodate,
1661	.error_remove_page = generic_error_remove_page,
1662};
1663
1664/**
1665 * ntfs_compressed_aops - address space operations for compressed inodes
1666 */
1667const struct address_space_operations ntfs_compressed_aops = {
1668	.readpage	= ntfs_readpage,
1669#ifdef NTFS_RW
1670	.writepage	= ntfs_writepage,
1671	.set_page_dirty	= __set_page_dirty_buffers,
1672#endif /* NTFS_RW */
1673	.migratepage	= buffer_migrate_page,
1674	.is_partially_uptodate = block_is_partially_uptodate,
1675	.error_remove_page = generic_error_remove_page,
1676};
1677
1678/**
1679 * ntfs_mst_aops - general address space operations for mst protecteed inodes
1680 *		   and attributes
1681 */
1682const struct address_space_operations ntfs_mst_aops = {
1683	.readpage	= ntfs_readpage,	/* Fill page with data. */
1684#ifdef NTFS_RW
1685	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1686	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
1687						   without touching the buffers
1688						   belonging to the page. */
1689#endif /* NTFS_RW */
1690	.migratepage	= buffer_migrate_page,
1691	.is_partially_uptodate	= block_is_partially_uptodate,
1692	.error_remove_page = generic_error_remove_page,
1693};
1694
1695#ifdef NTFS_RW
1696
1697/**
1698 * mark_ntfs_record_dirty - mark an ntfs record dirty
1699 * @page:	page containing the ntfs record to mark dirty
1700 * @ofs:	byte offset within @page at which the ntfs record begins
1701 *
1702 * Set the buffers and the page in which the ntfs record is located dirty.
1703 *
1704 * The latter also marks the vfs inode the ntfs record belongs to dirty
1705 * (I_DIRTY_PAGES only).
1706 *
1707 * If the page does not have buffers, we create them and set them uptodate.
1708 * The page may not be locked which is why we need to handle the buffers under
1709 * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1710 * need the lock since try_to_free_buffers() does not free dirty buffers.
1711 */
1712void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1713	struct address_space *mapping = page->mapping;
1714	ntfs_inode *ni = NTFS_I(mapping->host);
1715	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1716	unsigned int end, bh_size, bh_ofs;
1717
1718	BUG_ON(!PageUptodate(page));
1719	end = ofs + ni->itype.index.block_size;
1720	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1721	spin_lock(&mapping->private_lock);
1722	if (unlikely(!page_has_buffers(page))) {
1723		spin_unlock(&mapping->private_lock);
1724		bh = head = alloc_page_buffers(page, bh_size, true);
1725		spin_lock(&mapping->private_lock);
1726		if (likely(!page_has_buffers(page))) {
1727			struct buffer_head *tail;
1728
1729			do {
1730				set_buffer_uptodate(bh);
1731				tail = bh;
1732				bh = bh->b_this_page;
1733			} while (bh);
1734			tail->b_this_page = head;
1735			attach_page_private(page, head);
1736		} else
1737			buffers_to_free = bh;
1738	}
1739	bh = head = page_buffers(page);
1740	BUG_ON(!bh);
1741	do {
1742		bh_ofs = bh_offset(bh);
1743		if (bh_ofs + bh_size <= ofs)
1744			continue;
1745		if (unlikely(bh_ofs >= end))
1746			break;
1747		set_buffer_dirty(bh);
1748	} while ((bh = bh->b_this_page) != head);
1749	spin_unlock(&mapping->private_lock);
1750	__set_page_dirty_nobuffers(page);
1751	if (unlikely(buffers_to_free)) {
1752		do {
1753			bh = buffers_to_free->b_this_page;
1754			free_buffer_head(buffers_to_free);
1755			buffers_to_free = bh;
1756		} while (buffers_to_free);
1757	}
1758}
1759
1760#endif /* NTFS_RW */
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * aops.c - NTFS kernel address space operations and page cache handling.
   4 *
   5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
   6 * Copyright (c) 2002 Richard Russon
   7 */
   8
   9#include <linux/errno.h>
  10#include <linux/fs.h>
  11#include <linux/gfp.h>
  12#include <linux/mm.h>
  13#include <linux/pagemap.h>
  14#include <linux/swap.h>
  15#include <linux/buffer_head.h>
  16#include <linux/writeback.h>
  17#include <linux/bit_spinlock.h>
  18#include <linux/bio.h>
  19
  20#include "aops.h"
  21#include "attrib.h"
  22#include "debug.h"
  23#include "inode.h"
  24#include "mft.h"
  25#include "runlist.h"
  26#include "types.h"
  27#include "ntfs.h"
  28
  29/**
  30 * ntfs_end_buffer_async_read - async io completion for reading attributes
  31 * @bh:		buffer head on which io is completed
  32 * @uptodate:	whether @bh is now uptodate or not
  33 *
  34 * Asynchronous I/O completion handler for reading pages belonging to the
  35 * attribute address space of an inode.  The inodes can either be files or
  36 * directories or they can be fake inodes describing some attribute.
  37 *
  38 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
  39 * page has been completed and mark the page uptodate or set the error bit on
  40 * the page.  To determine the size of the records that need fixing up, we
  41 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
  42 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
  43 * record size.
  44 */
  45static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
  46{
  47	unsigned long flags;
  48	struct buffer_head *first, *tmp;
  49	struct page *page;
  50	struct inode *vi;
  51	ntfs_inode *ni;
  52	int page_uptodate = 1;
  53
  54	page = bh->b_page;
  55	vi = page->mapping->host;
  56	ni = NTFS_I(vi);
  57
  58	if (likely(uptodate)) {
  59		loff_t i_size;
  60		s64 file_ofs, init_size;
  61
  62		set_buffer_uptodate(bh);
  63
  64		file_ofs = ((s64)page->index << PAGE_SHIFT) +
  65				bh_offset(bh);
  66		read_lock_irqsave(&ni->size_lock, flags);
  67		init_size = ni->initialized_size;
  68		i_size = i_size_read(vi);
  69		read_unlock_irqrestore(&ni->size_lock, flags);
  70		if (unlikely(init_size > i_size)) {
  71			/* Race with shrinking truncate. */
  72			init_size = i_size;
  73		}
  74		/* Check for the current buffer head overflowing. */
  75		if (unlikely(file_ofs + bh->b_size > init_size)) {
  76			int ofs;
  77			void *kaddr;
  78
  79			ofs = 0;
  80			if (file_ofs < init_size)
  81				ofs = init_size - file_ofs;
  82			kaddr = kmap_atomic(page);
  83			memset(kaddr + bh_offset(bh) + ofs, 0,
  84					bh->b_size - ofs);
  85			flush_dcache_page(page);
  86			kunmap_atomic(kaddr);
  87		}
  88	} else {
  89		clear_buffer_uptodate(bh);
  90		SetPageError(page);
  91		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
  92				"0x%llx.", (unsigned long long)bh->b_blocknr);
  93	}
  94	first = page_buffers(page);
  95	spin_lock_irqsave(&first->b_uptodate_lock, flags);
  96	clear_buffer_async_read(bh);
  97	unlock_buffer(bh);
  98	tmp = bh;
  99	do {
 100		if (!buffer_uptodate(tmp))
 101			page_uptodate = 0;
 102		if (buffer_async_read(tmp)) {
 103			if (likely(buffer_locked(tmp)))
 104				goto still_busy;
 105			/* Async buffers must be locked. */
 106			BUG();
 107		}
 108		tmp = tmp->b_this_page;
 109	} while (tmp != bh);
 110	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 111	/*
 112	 * If none of the buffers had errors then we can set the page uptodate,
 113	 * but we first have to perform the post read mst fixups, if the
 114	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
 115	 * Note we ignore fixup errors as those are detected when
 116	 * map_mft_record() is called which gives us per record granularity
 117	 * rather than per page granularity.
 118	 */
 119	if (!NInoMstProtected(ni)) {
 120		if (likely(page_uptodate && !PageError(page)))
 121			SetPageUptodate(page);
 122	} else {
 123		u8 *kaddr;
 124		unsigned int i, recs;
 125		u32 rec_size;
 126
 127		rec_size = ni->itype.index.block_size;
 128		recs = PAGE_SIZE / rec_size;
 129		/* Should have been verified before we got here... */
 130		BUG_ON(!recs);
 131		kaddr = kmap_atomic(page);
 132		for (i = 0; i < recs; i++)
 133			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
 134					i * rec_size), rec_size);
 135		kunmap_atomic(kaddr);
 136		flush_dcache_page(page);
 137		if (likely(page_uptodate && !PageError(page)))
 138			SetPageUptodate(page);
 139	}
 140	unlock_page(page);
 141	return;
 142still_busy:
 143	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 144	return;
 145}
 146
 147/**
 148 * ntfs_read_block - fill a @folio of an address space with data
 149 * @folio:	page cache folio to fill with data
 150 *
 
 151 * We read each buffer asynchronously and when all buffers are read in, our io
 152 * completion handler ntfs_end_buffer_read_async(), if required, automatically
 153 * applies the mst fixups to the folio before finally marking it uptodate and
 154 * unlocking it.
 155 *
 156 * We only enforce allocated_size limit because i_size is checked for in
 157 * generic_file_read().
 158 *
 159 * Return 0 on success and -errno on error.
 160 *
 161 * Contains an adapted version of fs/buffer.c::block_read_full_folio().
 162 */
 163static int ntfs_read_block(struct folio *folio)
 164{
 165	loff_t i_size;
 166	VCN vcn;
 167	LCN lcn;
 168	s64 init_size;
 169	struct inode *vi;
 170	ntfs_inode *ni;
 171	ntfs_volume *vol;
 172	runlist_element *rl;
 173	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
 174	sector_t iblock, lblock, zblock;
 175	unsigned long flags;
 176	unsigned int blocksize, vcn_ofs;
 177	int i, nr;
 178	unsigned char blocksize_bits;
 179
 180	vi = folio->mapping->host;
 181	ni = NTFS_I(vi);
 182	vol = ni->vol;
 183
 184	/* $MFT/$DATA must have its complete runlist in memory at all times. */
 185	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
 186
 187	blocksize = vol->sb->s_blocksize;
 188	blocksize_bits = vol->sb->s_blocksize_bits;
 189
 190	head = folio_buffers(folio);
 191	if (!head)
 192		head = create_empty_buffers(folio, blocksize, 0);
 193	bh = head;
 
 
 
 
 
 194
 195	/*
 196	 * We may be racing with truncate.  To avoid some of the problems we
 197	 * now take a snapshot of the various sizes and use those for the whole
 198	 * of the function.  In case of an extending truncate it just means we
 199	 * may leave some buffers unmapped which are now allocated.  This is
 200	 * not a problem since these buffers will just get mapped when a write
 201	 * occurs.  In case of a shrinking truncate, we will detect this later
 202	 * on due to the runlist being incomplete and if the folio is being
 203	 * fully truncated, truncate will throw it away as soon as we unlock
 204	 * it so no need to worry what we do with it.
 205	 */
 206	iblock = (s64)folio->index << (PAGE_SHIFT - blocksize_bits);
 207	read_lock_irqsave(&ni->size_lock, flags);
 208	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
 209	init_size = ni->initialized_size;
 210	i_size = i_size_read(vi);
 211	read_unlock_irqrestore(&ni->size_lock, flags);
 212	if (unlikely(init_size > i_size)) {
 213		/* Race with shrinking truncate. */
 214		init_size = i_size;
 215	}
 216	zblock = (init_size + blocksize - 1) >> blocksize_bits;
 217
 218	/* Loop through all the buffers in the folio. */
 219	rl = NULL;
 220	nr = i = 0;
 221	do {
 222		int err = 0;
 223
 224		if (unlikely(buffer_uptodate(bh)))
 225			continue;
 226		if (unlikely(buffer_mapped(bh))) {
 227			arr[nr++] = bh;
 228			continue;
 229		}
 230		bh->b_bdev = vol->sb->s_bdev;
 231		/* Is the block within the allowed limits? */
 232		if (iblock < lblock) {
 233			bool is_retry = false;
 234
 235			/* Convert iblock into corresponding vcn and offset. */
 236			vcn = (VCN)iblock << blocksize_bits >>
 237					vol->cluster_size_bits;
 238			vcn_ofs = ((VCN)iblock << blocksize_bits) &
 239					vol->cluster_size_mask;
 240			if (!rl) {
 241lock_retry_remap:
 242				down_read(&ni->runlist.lock);
 243				rl = ni->runlist.rl;
 244			}
 245			if (likely(rl != NULL)) {
 246				/* Seek to element containing target vcn. */
 247				while (rl->length && rl[1].vcn <= vcn)
 248					rl++;
 249				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 250			} else
 251				lcn = LCN_RL_NOT_MAPPED;
 252			/* Successful remap. */
 253			if (lcn >= 0) {
 254				/* Setup buffer head to correct block. */
 255				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
 256						+ vcn_ofs) >> blocksize_bits;
 257				set_buffer_mapped(bh);
 258				/* Only read initialized data blocks. */
 259				if (iblock < zblock) {
 260					arr[nr++] = bh;
 261					continue;
 262				}
 263				/* Fully non-initialized data block, zero it. */
 264				goto handle_zblock;
 265			}
 266			/* It is a hole, need to zero it. */
 267			if (lcn == LCN_HOLE)
 268				goto handle_hole;
 269			/* If first try and runlist unmapped, map and retry. */
 270			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
 271				is_retry = true;
 272				/*
 273				 * Attempt to map runlist, dropping lock for
 274				 * the duration.
 275				 */
 276				up_read(&ni->runlist.lock);
 277				err = ntfs_map_runlist(ni, vcn);
 278				if (likely(!err))
 279					goto lock_retry_remap;
 280				rl = NULL;
 281			} else if (!rl)
 282				up_read(&ni->runlist.lock);
 283			/*
 284			 * If buffer is outside the runlist, treat it as a
 285			 * hole.  This can happen due to concurrent truncate
 286			 * for example.
 287			 */
 288			if (err == -ENOENT || lcn == LCN_ENOENT) {
 289				err = 0;
 290				goto handle_hole;
 291			}
 292			/* Hard error, zero out region. */
 293			if (!err)
 294				err = -EIO;
 295			bh->b_blocknr = -1;
 296			folio_set_error(folio);
 297			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
 298					"attribute type 0x%x, vcn 0x%llx, "
 299					"offset 0x%x because its location on "
 300					"disk could not be determined%s "
 301					"(error code %i).", ni->mft_no,
 302					ni->type, (unsigned long long)vcn,
 303					vcn_ofs, is_retry ? " even after "
 304					"retrying" : "", err);
 305		}
 306		/*
 307		 * Either iblock was outside lblock limits or
 308		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
 309		 * of the folio and set the buffer uptodate.
 310		 */
 311handle_hole:
 312		bh->b_blocknr = -1UL;
 313		clear_buffer_mapped(bh);
 314handle_zblock:
 315		folio_zero_range(folio, i * blocksize, blocksize);
 316		if (likely(!err))
 317			set_buffer_uptodate(bh);
 318	} while (i++, iblock++, (bh = bh->b_this_page) != head);
 319
 320	/* Release the lock if we took it. */
 321	if (rl)
 322		up_read(&ni->runlist.lock);
 323
 324	/* Check we have at least one buffer ready for i/o. */
 325	if (nr) {
 326		struct buffer_head *tbh;
 327
 328		/* Lock the buffers. */
 329		for (i = 0; i < nr; i++) {
 330			tbh = arr[i];
 331			lock_buffer(tbh);
 332			tbh->b_end_io = ntfs_end_buffer_async_read;
 333			set_buffer_async_read(tbh);
 334		}
 335		/* Finally, start i/o on the buffers. */
 336		for (i = 0; i < nr; i++) {
 337			tbh = arr[i];
 338			if (likely(!buffer_uptodate(tbh)))
 339				submit_bh(REQ_OP_READ, tbh);
 340			else
 341				ntfs_end_buffer_async_read(tbh, 1);
 342		}
 343		return 0;
 344	}
 345	/* No i/o was scheduled on any of the buffers. */
 346	if (likely(!folio_test_error(folio)))
 347		folio_mark_uptodate(folio);
 348	else /* Signal synchronous i/o error. */
 349		nr = -EIO;
 350	folio_unlock(folio);
 351	return nr;
 352}
 353
 354/**
 355 * ntfs_read_folio - fill a @folio of a @file with data from the device
 356 * @file:	open file to which the folio @folio belongs or NULL
 357 * @folio:	page cache folio to fill with data
 358 *
 359 * For non-resident attributes, ntfs_read_folio() fills the @folio of the open
 360 * file @file by calling the ntfs version of the generic block_read_full_folio()
 361 * function, ntfs_read_block(), which in turn creates and reads in the buffers
 362 * associated with the folio asynchronously.
 363 *
 364 * For resident attributes, OTOH, ntfs_read_folio() fills @folio by copying the
 365 * data from the mft record (which at this stage is most likely in memory) and
 366 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
 367 * even if the mft record is not cached at this point in time, we need to wait
 368 * for it to be read in before we can do the copy.
 369 *
 370 * Return 0 on success and -errno on error.
 371 */
 372static int ntfs_read_folio(struct file *file, struct folio *folio)
 373{
 374	struct page *page = &folio->page;
 375	loff_t i_size;
 376	struct inode *vi;
 377	ntfs_inode *ni, *base_ni;
 378	u8 *addr;
 379	ntfs_attr_search_ctx *ctx;
 380	MFT_RECORD *mrec;
 381	unsigned long flags;
 382	u32 attr_len;
 383	int err = 0;
 384
 385retry_readpage:
 386	BUG_ON(!PageLocked(page));
 387	vi = page->mapping->host;
 388	i_size = i_size_read(vi);
 389	/* Is the page fully outside i_size? (truncate in progress) */
 390	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
 391			PAGE_SHIFT)) {
 392		zero_user(page, 0, PAGE_SIZE);
 393		ntfs_debug("Read outside i_size - truncated?");
 394		goto done;
 395	}
 396	/*
 397	 * This can potentially happen because we clear PageUptodate() during
 398	 * ntfs_writepage() of MstProtected() attributes.
 399	 */
 400	if (PageUptodate(page)) {
 401		unlock_page(page);
 402		return 0;
 403	}
 404	ni = NTFS_I(vi);
 405	/*
 406	 * Only $DATA attributes can be encrypted and only unnamed $DATA
 407	 * attributes can be compressed.  Index root can have the flags set but
 408	 * this means to create compressed/encrypted files, not that the
 409	 * attribute is compressed/encrypted.  Note we need to check for
 410	 * AT_INDEX_ALLOCATION since this is the type of both directory and
 411	 * index inodes.
 412	 */
 413	if (ni->type != AT_INDEX_ALLOCATION) {
 414		/* If attribute is encrypted, deny access, just like NT4. */
 415		if (NInoEncrypted(ni)) {
 416			BUG_ON(ni->type != AT_DATA);
 417			err = -EACCES;
 418			goto err_out;
 419		}
 420		/* Compressed data streams are handled in compress.c. */
 421		if (NInoNonResident(ni) && NInoCompressed(ni)) {
 422			BUG_ON(ni->type != AT_DATA);
 423			BUG_ON(ni->name_len);
 424			return ntfs_read_compressed_block(page);
 425		}
 426	}
 427	/* NInoNonResident() == NInoIndexAllocPresent() */
 428	if (NInoNonResident(ni)) {
 429		/* Normal, non-resident data stream. */
 430		return ntfs_read_block(folio);
 431	}
 432	/*
 433	 * Attribute is resident, implying it is not compressed or encrypted.
 434	 * This also means the attribute is smaller than an mft record and
 435	 * hence smaller than a page, so can simply zero out any pages with
 436	 * index above 0.  Note the attribute can actually be marked compressed
 437	 * but if it is resident the actual data is not compressed so we are
 438	 * ok to ignore the compressed flag here.
 439	 */
 440	if (unlikely(page->index > 0)) {
 441		zero_user(page, 0, PAGE_SIZE);
 442		goto done;
 443	}
 444	if (!NInoAttr(ni))
 445		base_ni = ni;
 446	else
 447		base_ni = ni->ext.base_ntfs_ino;
 448	/* Map, pin, and lock the mft record. */
 449	mrec = map_mft_record(base_ni);
 450	if (IS_ERR(mrec)) {
 451		err = PTR_ERR(mrec);
 452		goto err_out;
 453	}
 454	/*
 455	 * If a parallel write made the attribute non-resident, drop the mft
 456	 * record and retry the read_folio.
 457	 */
 458	if (unlikely(NInoNonResident(ni))) {
 459		unmap_mft_record(base_ni);
 460		goto retry_readpage;
 461	}
 462	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
 463	if (unlikely(!ctx)) {
 464		err = -ENOMEM;
 465		goto unm_err_out;
 466	}
 467	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 468			CASE_SENSITIVE, 0, NULL, 0, ctx);
 469	if (unlikely(err))
 470		goto put_unm_err_out;
 471	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
 472	read_lock_irqsave(&ni->size_lock, flags);
 473	if (unlikely(attr_len > ni->initialized_size))
 474		attr_len = ni->initialized_size;
 475	i_size = i_size_read(vi);
 476	read_unlock_irqrestore(&ni->size_lock, flags);
 477	if (unlikely(attr_len > i_size)) {
 478		/* Race with shrinking truncate. */
 479		attr_len = i_size;
 480	}
 481	addr = kmap_atomic(page);
 482	/* Copy the data to the page. */
 483	memcpy(addr, (u8*)ctx->attr +
 484			le16_to_cpu(ctx->attr->data.resident.value_offset),
 485			attr_len);
 486	/* Zero the remainder of the page. */
 487	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
 488	flush_dcache_page(page);
 489	kunmap_atomic(addr);
 490put_unm_err_out:
 491	ntfs_attr_put_search_ctx(ctx);
 492unm_err_out:
 493	unmap_mft_record(base_ni);
 494done:
 495	SetPageUptodate(page);
 496err_out:
 497	unlock_page(page);
 498	return err;
 499}
 500
 501#ifdef NTFS_RW
 502
 503/**
 504 * ntfs_write_block - write a @folio to the backing store
 505 * @folio:	page cache folio to write out
 506 * @wbc:	writeback control structure
 507 *
 508 * This function is for writing folios belonging to non-resident, non-mst
 509 * protected attributes to their backing store.
 510 *
 511 * For a folio with buffers, map and write the dirty buffers asynchronously
 512 * under folio writeback. For a folio without buffers, create buffers for the
 513 * folio, then proceed as above.
 514 *
 515 * If a folio doesn't have buffers the folio dirty state is definitive. If
 516 * a folio does have buffers, the folio dirty state is just a hint,
 517 * and the buffer dirty state is definitive. (A hint which has rules:
 518 * dirty buffers against a clean folio is illegal. Other combinations are
 519 * legal and need to be handled. In particular a dirty folio containing
 520 * clean buffers for example.)
 521 *
 522 * Return 0 on success and -errno on error.
 523 *
 524 * Based on ntfs_read_block() and __block_write_full_folio().
 525 */
 526static int ntfs_write_block(struct folio *folio, struct writeback_control *wbc)
 527{
 528	VCN vcn;
 529	LCN lcn;
 530	s64 initialized_size;
 531	loff_t i_size;
 532	sector_t block, dblock, iblock;
 533	struct inode *vi;
 534	ntfs_inode *ni;
 535	ntfs_volume *vol;
 536	runlist_element *rl;
 537	struct buffer_head *bh, *head;
 538	unsigned long flags;
 539	unsigned int blocksize, vcn_ofs;
 540	int err;
 541	bool need_end_writeback;
 542	unsigned char blocksize_bits;
 543
 544	vi = folio->mapping->host;
 545	ni = NTFS_I(vi);
 546	vol = ni->vol;
 547
 548	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
 549			"0x%lx.", ni->mft_no, ni->type, folio->index);
 550
 551	BUG_ON(!NInoNonResident(ni));
 552	BUG_ON(NInoMstProtected(ni));
 553	blocksize = vol->sb->s_blocksize;
 554	blocksize_bits = vol->sb->s_blocksize_bits;
 555	head = folio_buffers(folio);
 556	if (!head) {
 557		BUG_ON(!folio_test_uptodate(folio));
 558		head = create_empty_buffers(folio, blocksize,
 559				(1 << BH_Uptodate) | (1 << BH_Dirty));
 
 
 
 
 
 
 
 
 
 
 
 
 560	}
 561	bh = head;
 
 562
 563	/* NOTE: Different naming scheme to ntfs_read_block()! */
 564
 565	/* The first block in the folio. */
 566	block = (s64)folio->index << (PAGE_SHIFT - blocksize_bits);
 567
 568	read_lock_irqsave(&ni->size_lock, flags);
 569	i_size = i_size_read(vi);
 570	initialized_size = ni->initialized_size;
 571	read_unlock_irqrestore(&ni->size_lock, flags);
 572
 573	/* The first out of bounds block for the data size. */
 574	dblock = (i_size + blocksize - 1) >> blocksize_bits;
 575
 576	/* The last (fully or partially) initialized block. */
 577	iblock = initialized_size >> blocksize_bits;
 578
 579	/*
 580	 * Be very careful.  We have no exclusion from block_dirty_folio
 581	 * here, and the (potentially unmapped) buffers may become dirty at
 582	 * any time.  If a buffer becomes dirty here after we've inspected it
 583	 * then we just miss that fact, and the folio stays dirty.
 584	 *
 585	 * Buffers outside i_size may be dirtied by block_dirty_folio;
 586	 * handle that here by just cleaning them.
 587	 */
 588
 589	/*
 590	 * Loop through all the buffers in the folio, mapping all the dirty
 591	 * buffers to disk addresses and handling any aliases from the
 592	 * underlying block device's mapping.
 593	 */
 594	rl = NULL;
 595	err = 0;
 596	do {
 597		bool is_retry = false;
 598
 599		if (unlikely(block >= dblock)) {
 600			/*
 601			 * Mapped buffers outside i_size will occur, because
 602			 * this folio can be outside i_size when there is a
 603			 * truncate in progress. The contents of such buffers
 604			 * were zeroed by ntfs_writepage().
 605			 *
 606			 * FIXME: What about the small race window where
 607			 * ntfs_writepage() has not done any clearing because
 608			 * the folio was within i_size but before we get here,
 609			 * vmtruncate() modifies i_size?
 610			 */
 611			clear_buffer_dirty(bh);
 612			set_buffer_uptodate(bh);
 613			continue;
 614		}
 615
 616		/* Clean buffers are not written out, so no need to map them. */
 617		if (!buffer_dirty(bh))
 618			continue;
 619
 620		/* Make sure we have enough initialized size. */
 621		if (unlikely((block >= iblock) &&
 622				(initialized_size < i_size))) {
 623			/*
 624			 * If this folio is fully outside initialized
 625			 * size, zero out all folios between the current
 626			 * initialized size and the current folio. Just
 627			 * use ntfs_read_folio() to do the zeroing
 628			 * transparently.
 629			 */
 630			if (block > iblock) {
 631				// TODO:
 632				// For each folio do:
 633				// - read_cache_folio()
 634				// Again for each folio do:
 635				// - wait_on_folio_locked()
 636				// - Check (folio_test_uptodate(folio) &&
 637				//		!folio_test_error(folio))
 638				// Update initialized size in the attribute and
 639				// in the inode.
 640				// Again, for each folio do:
 641				//	block_dirty_folio();
 642				// folio_put()
 643				// We don't need to wait on the writes.
 644				// Update iblock.
 645			}
 646			/*
 647			 * The current folio straddles initialized size. Zero
 648			 * all non-uptodate buffers and set them uptodate (and
 649			 * dirty?). Note, there aren't any non-uptodate buffers
 650			 * if the folio is uptodate.
 651			 * FIXME: For an uptodate folio, the buffers may need to
 652			 * be written out because they were not initialized on
 653			 * disk before.
 654			 */
 655			if (!folio_test_uptodate(folio)) {
 656				// TODO:
 657				// Zero any non-uptodate buffers up to i_size.
 658				// Set them uptodate and dirty.
 659			}
 660			// TODO:
 661			// Update initialized size in the attribute and in the
 662			// inode (up to i_size).
 663			// Update iblock.
 664			// FIXME: This is inefficient. Try to batch the two
 665			// size changes to happen in one go.
 666			ntfs_error(vol->sb, "Writing beyond initialized size "
 667					"is not supported yet. Sorry.");
 668			err = -EOPNOTSUPP;
 669			break;
 670			// Do NOT set_buffer_new() BUT DO clear buffer range
 671			// outside write request range.
 672			// set_buffer_uptodate() on complete buffers as well as
 673			// set_buffer_dirty().
 674		}
 675
 676		/* No need to map buffers that are already mapped. */
 677		if (buffer_mapped(bh))
 678			continue;
 679
 680		/* Unmapped, dirty buffer. Need to map it. */
 681		bh->b_bdev = vol->sb->s_bdev;
 682
 683		/* Convert block into corresponding vcn and offset. */
 684		vcn = (VCN)block << blocksize_bits;
 685		vcn_ofs = vcn & vol->cluster_size_mask;
 686		vcn >>= vol->cluster_size_bits;
 687		if (!rl) {
 688lock_retry_remap:
 689			down_read(&ni->runlist.lock);
 690			rl = ni->runlist.rl;
 691		}
 692		if (likely(rl != NULL)) {
 693			/* Seek to element containing target vcn. */
 694			while (rl->length && rl[1].vcn <= vcn)
 695				rl++;
 696			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 697		} else
 698			lcn = LCN_RL_NOT_MAPPED;
 699		/* Successful remap. */
 700		if (lcn >= 0) {
 701			/* Setup buffer head to point to correct block. */
 702			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
 703					vcn_ofs) >> blocksize_bits;
 704			set_buffer_mapped(bh);
 705			continue;
 706		}
 707		/* It is a hole, need to instantiate it. */
 708		if (lcn == LCN_HOLE) {
 709			u8 *kaddr;
 710			unsigned long *bpos, *bend;
 711
 712			/* Check if the buffer is zero. */
 713			kaddr = kmap_local_folio(folio, bh_offset(bh));
 714			bpos = (unsigned long *)kaddr;
 715			bend = (unsigned long *)(kaddr + blocksize);
 716			do {
 717				if (unlikely(*bpos))
 718					break;
 719			} while (likely(++bpos < bend));
 720			kunmap_local(kaddr);
 721			if (bpos == bend) {
 722				/*
 723				 * Buffer is zero and sparse, no need to write
 724				 * it.
 725				 */
 726				bh->b_blocknr = -1;
 727				clear_buffer_dirty(bh);
 728				continue;
 729			}
 730			// TODO: Instantiate the hole.
 731			// clear_buffer_new(bh);
 732			// clean_bdev_bh_alias(bh);
 733			ntfs_error(vol->sb, "Writing into sparse regions is "
 734					"not supported yet. Sorry.");
 735			err = -EOPNOTSUPP;
 736			break;
 737		}
 738		/* If first try and runlist unmapped, map and retry. */
 739		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
 740			is_retry = true;
 741			/*
 742			 * Attempt to map runlist, dropping lock for
 743			 * the duration.
 744			 */
 745			up_read(&ni->runlist.lock);
 746			err = ntfs_map_runlist(ni, vcn);
 747			if (likely(!err))
 748				goto lock_retry_remap;
 749			rl = NULL;
 750		} else if (!rl)
 751			up_read(&ni->runlist.lock);
 752		/*
 753		 * If buffer is outside the runlist, truncate has cut it out
 754		 * of the runlist.  Just clean and clear the buffer and set it
 755		 * uptodate so it can get discarded by the VM.
 756		 */
 757		if (err == -ENOENT || lcn == LCN_ENOENT) {
 758			bh->b_blocknr = -1;
 759			clear_buffer_dirty(bh);
 760			folio_zero_range(folio, bh_offset(bh), blocksize);
 761			set_buffer_uptodate(bh);
 762			err = 0;
 763			continue;
 764		}
 765		/* Failed to map the buffer, even after retrying. */
 766		if (!err)
 767			err = -EIO;
 768		bh->b_blocknr = -1;
 769		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
 770				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
 771				"because its location on disk could not be "
 772				"determined%s (error code %i).", ni->mft_no,
 773				ni->type, (unsigned long long)vcn,
 774				vcn_ofs, is_retry ? " even after "
 775				"retrying" : "", err);
 776		break;
 777	} while (block++, (bh = bh->b_this_page) != head);
 778
 779	/* Release the lock if we took it. */
 780	if (rl)
 781		up_read(&ni->runlist.lock);
 782
 783	/* For the error case, need to reset bh to the beginning. */
 784	bh = head;
 785
 786	/* Just an optimization, so ->read_folio() is not called later. */
 787	if (unlikely(!folio_test_uptodate(folio))) {
 788		int uptodate = 1;
 789		do {
 790			if (!buffer_uptodate(bh)) {
 791				uptodate = 0;
 792				bh = head;
 793				break;
 794			}
 795		} while ((bh = bh->b_this_page) != head);
 796		if (uptodate)
 797			folio_mark_uptodate(folio);
 798	}
 799
 800	/* Setup all mapped, dirty buffers for async write i/o. */
 801	do {
 802		if (buffer_mapped(bh) && buffer_dirty(bh)) {
 803			lock_buffer(bh);
 804			if (test_clear_buffer_dirty(bh)) {
 805				BUG_ON(!buffer_uptodate(bh));
 806				mark_buffer_async_write(bh);
 807			} else
 808				unlock_buffer(bh);
 809		} else if (unlikely(err)) {
 810			/*
 811			 * For the error case. The buffer may have been set
 812			 * dirty during attachment to a dirty folio.
 813			 */
 814			if (err != -ENOMEM)
 815				clear_buffer_dirty(bh);
 816		}
 817	} while ((bh = bh->b_this_page) != head);
 818
 819	if (unlikely(err)) {
 820		// TODO: Remove the -EOPNOTSUPP check later on...
 821		if (unlikely(err == -EOPNOTSUPP))
 822			err = 0;
 823		else if (err == -ENOMEM) {
 824			ntfs_warning(vol->sb, "Error allocating memory. "
 825					"Redirtying folio so we try again "
 826					"later.");
 827			/*
 828			 * Put the folio back on mapping->dirty_pages, but
 829			 * leave its buffer's dirty state as-is.
 830			 */
 831			folio_redirty_for_writepage(wbc, folio);
 832			err = 0;
 833		} else
 834			folio_set_error(folio);
 835	}
 836
 837	BUG_ON(folio_test_writeback(folio));
 838	folio_start_writeback(folio);	/* Keeps try_to_free_buffers() away. */
 839
 840	/* Submit the prepared buffers for i/o. */
 841	need_end_writeback = true;
 842	do {
 843		struct buffer_head *next = bh->b_this_page;
 844		if (buffer_async_write(bh)) {
 845			submit_bh(REQ_OP_WRITE, bh);
 846			need_end_writeback = false;
 847		}
 848		bh = next;
 849	} while (bh != head);
 850	folio_unlock(folio);
 851
 852	/* If no i/o was started, need to end writeback here. */
 853	if (unlikely(need_end_writeback))
 854		folio_end_writeback(folio);
 855
 856	ntfs_debug("Done.");
 857	return err;
 858}
 859
 860/**
 861 * ntfs_write_mst_block - write a @page to the backing store
 862 * @page:	page cache page to write out
 863 * @wbc:	writeback control structure
 864 *
 865 * This function is for writing pages belonging to non-resident, mst protected
 866 * attributes to their backing store.  The only supported attributes are index
 867 * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
 868 * supported for the index allocation case.
 869 *
 870 * The page must remain locked for the duration of the write because we apply
 871 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
 872 * page before undoing the fixups, any other user of the page will see the
 873 * page contents as corrupt.
 874 *
 875 * We clear the page uptodate flag for the duration of the function to ensure
 876 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
 877 * are about to apply the mst fixups to.
 878 *
 879 * Return 0 on success and -errno on error.
 880 *
 881 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
 882 * write_mft_record_nolock().
 883 */
 884static int ntfs_write_mst_block(struct page *page,
 885		struct writeback_control *wbc)
 886{
 887	sector_t block, dblock, rec_block;
 888	struct inode *vi = page->mapping->host;
 889	ntfs_inode *ni = NTFS_I(vi);
 890	ntfs_volume *vol = ni->vol;
 891	u8 *kaddr;
 892	unsigned int rec_size = ni->itype.index.block_size;
 893	ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE];
 894	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
 895	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
 896	runlist_element *rl;
 897	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
 898	unsigned bh_size, rec_size_bits;
 899	bool sync, is_mft, page_is_dirty, rec_is_dirty;
 900	unsigned char bh_size_bits;
 901
 902	if (WARN_ON(rec_size < NTFS_BLOCK_SIZE))
 903		return -EINVAL;
 904
 905	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
 906			"0x%lx.", vi->i_ino, ni->type, page->index);
 907	BUG_ON(!NInoNonResident(ni));
 908	BUG_ON(!NInoMstProtected(ni));
 909	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
 910	/*
 911	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
 912	 * in its page cache were to be marked dirty.  However this should
 913	 * never happen with the current driver and considering we do not
 914	 * handle this case here we do want to BUG(), at least for now.
 915	 */
 916	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
 917			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
 918	bh_size = vol->sb->s_blocksize;
 919	bh_size_bits = vol->sb->s_blocksize_bits;
 920	max_bhs = PAGE_SIZE / bh_size;
 921	BUG_ON(!max_bhs);
 922	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
 923
 924	/* Were we called for sync purposes? */
 925	sync = (wbc->sync_mode == WB_SYNC_ALL);
 926
 927	/* Make sure we have mapped buffers. */
 928	bh = head = page_buffers(page);
 929	BUG_ON(!bh);
 930
 931	rec_size_bits = ni->itype.index.block_size_bits;
 932	BUG_ON(!(PAGE_SIZE >> rec_size_bits));
 933	bhs_per_rec = rec_size >> bh_size_bits;
 934	BUG_ON(!bhs_per_rec);
 935
 936	/* The first block in the page. */
 937	rec_block = block = (sector_t)page->index <<
 938			(PAGE_SHIFT - bh_size_bits);
 939
 940	/* The first out of bounds block for the data size. */
 941	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
 942
 943	rl = NULL;
 944	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
 945	page_is_dirty = rec_is_dirty = false;
 946	rec_start_bh = NULL;
 947	do {
 948		bool is_retry = false;
 949
 950		if (likely(block < rec_block)) {
 951			if (unlikely(block >= dblock)) {
 952				clear_buffer_dirty(bh);
 953				set_buffer_uptodate(bh);
 954				continue;
 955			}
 956			/*
 957			 * This block is not the first one in the record.  We
 958			 * ignore the buffer's dirty state because we could
 959			 * have raced with a parallel mark_ntfs_record_dirty().
 960			 */
 961			if (!rec_is_dirty)
 962				continue;
 963			if (unlikely(err2)) {
 964				if (err2 != -ENOMEM)
 965					clear_buffer_dirty(bh);
 966				continue;
 967			}
 968		} else /* if (block == rec_block) */ {
 969			BUG_ON(block > rec_block);
 970			/* This block is the first one in the record. */
 971			rec_block += bhs_per_rec;
 972			err2 = 0;
 973			if (unlikely(block >= dblock)) {
 974				clear_buffer_dirty(bh);
 975				continue;
 976			}
 977			if (!buffer_dirty(bh)) {
 978				/* Clean records are not written out. */
 979				rec_is_dirty = false;
 980				continue;
 981			}
 982			rec_is_dirty = true;
 983			rec_start_bh = bh;
 984		}
 985		/* Need to map the buffer if it is not mapped already. */
 986		if (unlikely(!buffer_mapped(bh))) {
 987			VCN vcn;
 988			LCN lcn;
 989			unsigned int vcn_ofs;
 990
 991			bh->b_bdev = vol->sb->s_bdev;
 992			/* Obtain the vcn and offset of the current block. */
 993			vcn = (VCN)block << bh_size_bits;
 994			vcn_ofs = vcn & vol->cluster_size_mask;
 995			vcn >>= vol->cluster_size_bits;
 996			if (!rl) {
 997lock_retry_remap:
 998				down_read(&ni->runlist.lock);
 999				rl = ni->runlist.rl;
1000			}
1001			if (likely(rl != NULL)) {
1002				/* Seek to element containing target vcn. */
1003				while (rl->length && rl[1].vcn <= vcn)
1004					rl++;
1005				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1006			} else
1007				lcn = LCN_RL_NOT_MAPPED;
1008			/* Successful remap. */
1009			if (likely(lcn >= 0)) {
1010				/* Setup buffer head to correct block. */
1011				bh->b_blocknr = ((lcn <<
1012						vol->cluster_size_bits) +
1013						vcn_ofs) >> bh_size_bits;
1014				set_buffer_mapped(bh);
1015			} else {
1016				/*
1017				 * Remap failed.  Retry to map the runlist once
1018				 * unless we are working on $MFT which always
1019				 * has the whole of its runlist in memory.
1020				 */
1021				if (!is_mft && !is_retry &&
1022						lcn == LCN_RL_NOT_MAPPED) {
1023					is_retry = true;
1024					/*
1025					 * Attempt to map runlist, dropping
1026					 * lock for the duration.
1027					 */
1028					up_read(&ni->runlist.lock);
1029					err2 = ntfs_map_runlist(ni, vcn);
1030					if (likely(!err2))
1031						goto lock_retry_remap;
1032					if (err2 == -ENOMEM)
1033						page_is_dirty = true;
1034					lcn = err2;
1035				} else {
1036					err2 = -EIO;
1037					if (!rl)
1038						up_read(&ni->runlist.lock);
1039				}
1040				/* Hard error.  Abort writing this record. */
1041				if (!err || err == -ENOMEM)
1042					err = err2;
1043				bh->b_blocknr = -1;
1044				ntfs_error(vol->sb, "Cannot write ntfs record "
1045						"0x%llx (inode 0x%lx, "
1046						"attribute type 0x%x) because "
1047						"its location on disk could "
1048						"not be determined (error "
1049						"code %lli).",
1050						(long long)block <<
1051						bh_size_bits >>
1052						vol->mft_record_size_bits,
1053						ni->mft_no, ni->type,
1054						(long long)lcn);
1055				/*
1056				 * If this is not the first buffer, remove the
1057				 * buffers in this record from the list of
1058				 * buffers to write and clear their dirty bit
1059				 * if not error -ENOMEM.
1060				 */
1061				if (rec_start_bh != bh) {
1062					while (bhs[--nr_bhs] != rec_start_bh)
1063						;
1064					if (err2 != -ENOMEM) {
1065						do {
1066							clear_buffer_dirty(
1067								rec_start_bh);
1068						} while ((rec_start_bh =
1069								rec_start_bh->
1070								b_this_page) !=
1071								bh);
1072					}
1073				}
1074				continue;
1075			}
1076		}
1077		BUG_ON(!buffer_uptodate(bh));
1078		BUG_ON(nr_bhs >= max_bhs);
1079		bhs[nr_bhs++] = bh;
1080	} while (block++, (bh = bh->b_this_page) != head);
1081	if (unlikely(rl))
1082		up_read(&ni->runlist.lock);
1083	/* If there were no dirty buffers, we are done. */
1084	if (!nr_bhs)
1085		goto done;
1086	/* Map the page so we can access its contents. */
1087	kaddr = kmap(page);
1088	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1089	BUG_ON(!PageUptodate(page));
1090	ClearPageUptodate(page);
1091	for (i = 0; i < nr_bhs; i++) {
1092		unsigned int ofs;
1093
1094		/* Skip buffers which are not at the beginning of records. */
1095		if (i % bhs_per_rec)
1096			continue;
1097		tbh = bhs[i];
1098		ofs = bh_offset(tbh);
1099		if (is_mft) {
1100			ntfs_inode *tni;
1101			unsigned long mft_no;
1102
1103			/* Get the mft record number. */
1104			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1105					>> rec_size_bits;
1106			/* Check whether to write this mft record. */
1107			tni = NULL;
1108			if (!ntfs_may_write_mft_record(vol, mft_no,
1109					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1110				/*
1111				 * The record should not be written.  This
1112				 * means we need to redirty the page before
1113				 * returning.
1114				 */
1115				page_is_dirty = true;
1116				/*
1117				 * Remove the buffers in this mft record from
1118				 * the list of buffers to write.
1119				 */
1120				do {
1121					bhs[i] = NULL;
1122				} while (++i % bhs_per_rec);
1123				continue;
1124			}
1125			/*
1126			 * The record should be written.  If a locked ntfs
1127			 * inode was returned, add it to the array of locked
1128			 * ntfs inodes.
1129			 */
1130			if (tni)
1131				locked_nis[nr_locked_nis++] = tni;
1132		}
1133		/* Apply the mst protection fixups. */
1134		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1135				rec_size);
1136		if (unlikely(err2)) {
1137			if (!err || err == -ENOMEM)
1138				err = -EIO;
1139			ntfs_error(vol->sb, "Failed to apply mst fixups "
1140					"(inode 0x%lx, attribute type 0x%x, "
1141					"page index 0x%lx, page offset 0x%x)!"
1142					"  Unmount and run chkdsk.", vi->i_ino,
1143					ni->type, page->index, ofs);
1144			/*
1145			 * Mark all the buffers in this record clean as we do
1146			 * not want to write corrupt data to disk.
1147			 */
1148			do {
1149				clear_buffer_dirty(bhs[i]);
1150				bhs[i] = NULL;
1151			} while (++i % bhs_per_rec);
1152			continue;
1153		}
1154		nr_recs++;
1155	}
1156	/* If no records are to be written out, we are done. */
1157	if (!nr_recs)
1158		goto unm_done;
1159	flush_dcache_page(page);
1160	/* Lock buffers and start synchronous write i/o on them. */
1161	for (i = 0; i < nr_bhs; i++) {
1162		tbh = bhs[i];
1163		if (!tbh)
1164			continue;
1165		if (!trylock_buffer(tbh))
1166			BUG();
1167		/* The buffer dirty state is now irrelevant, just clean it. */
1168		clear_buffer_dirty(tbh);
1169		BUG_ON(!buffer_uptodate(tbh));
1170		BUG_ON(!buffer_mapped(tbh));
1171		get_bh(tbh);
1172		tbh->b_end_io = end_buffer_write_sync;
1173		submit_bh(REQ_OP_WRITE, tbh);
1174	}
1175	/* Synchronize the mft mirror now if not @sync. */
1176	if (is_mft && !sync)
1177		goto do_mirror;
1178do_wait:
1179	/* Wait on i/o completion of buffers. */
1180	for (i = 0; i < nr_bhs; i++) {
1181		tbh = bhs[i];
1182		if (!tbh)
1183			continue;
1184		wait_on_buffer(tbh);
1185		if (unlikely(!buffer_uptodate(tbh))) {
1186			ntfs_error(vol->sb, "I/O error while writing ntfs "
1187					"record buffer (inode 0x%lx, "
1188					"attribute type 0x%x, page index "
1189					"0x%lx, page offset 0x%lx)!  Unmount "
1190					"and run chkdsk.", vi->i_ino, ni->type,
1191					page->index, bh_offset(tbh));
1192			if (!err || err == -ENOMEM)
1193				err = -EIO;
1194			/*
1195			 * Set the buffer uptodate so the page and buffer
1196			 * states do not become out of sync.
1197			 */
1198			set_buffer_uptodate(tbh);
1199		}
1200	}
1201	/* If @sync, now synchronize the mft mirror. */
1202	if (is_mft && sync) {
1203do_mirror:
1204		for (i = 0; i < nr_bhs; i++) {
1205			unsigned long mft_no;
1206			unsigned int ofs;
1207
1208			/*
1209			 * Skip buffers which are not at the beginning of
1210			 * records.
1211			 */
1212			if (i % bhs_per_rec)
1213				continue;
1214			tbh = bhs[i];
1215			/* Skip removed buffers (and hence records). */
1216			if (!tbh)
1217				continue;
1218			ofs = bh_offset(tbh);
1219			/* Get the mft record number. */
1220			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1221					>> rec_size_bits;
1222			if (mft_no < vol->mftmirr_size)
1223				ntfs_sync_mft_mirror(vol, mft_no,
1224						(MFT_RECORD*)(kaddr + ofs),
1225						sync);
1226		}
1227		if (!sync)
1228			goto do_wait;
1229	}
1230	/* Remove the mst protection fixups again. */
1231	for (i = 0; i < nr_bhs; i++) {
1232		if (!(i % bhs_per_rec)) {
1233			tbh = bhs[i];
1234			if (!tbh)
1235				continue;
1236			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1237					bh_offset(tbh)));
1238		}
1239	}
1240	flush_dcache_page(page);
1241unm_done:
1242	/* Unlock any locked inodes. */
1243	while (nr_locked_nis-- > 0) {
1244		ntfs_inode *tni, *base_tni;
1245		
1246		tni = locked_nis[nr_locked_nis];
1247		/* Get the base inode. */
1248		mutex_lock(&tni->extent_lock);
1249		if (tni->nr_extents >= 0)
1250			base_tni = tni;
1251		else {
1252			base_tni = tni->ext.base_ntfs_ino;
1253			BUG_ON(!base_tni);
1254		}
1255		mutex_unlock(&tni->extent_lock);
1256		ntfs_debug("Unlocking %s inode 0x%lx.",
1257				tni == base_tni ? "base" : "extent",
1258				tni->mft_no);
1259		mutex_unlock(&tni->mrec_lock);
1260		atomic_dec(&tni->count);
1261		iput(VFS_I(base_tni));
1262	}
1263	SetPageUptodate(page);
1264	kunmap(page);
1265done:
1266	if (unlikely(err && err != -ENOMEM)) {
1267		/*
1268		 * Set page error if there is only one ntfs record in the page.
1269		 * Otherwise we would loose per-record granularity.
1270		 */
1271		if (ni->itype.index.block_size == PAGE_SIZE)
1272			SetPageError(page);
1273		NVolSetErrors(vol);
1274	}
1275	if (page_is_dirty) {
1276		ntfs_debug("Page still contains one or more dirty ntfs "
1277				"records.  Redirtying the page starting at "
1278				"record 0x%lx.", page->index <<
1279				(PAGE_SHIFT - rec_size_bits));
1280		redirty_page_for_writepage(wbc, page);
1281		unlock_page(page);
1282	} else {
1283		/*
1284		 * Keep the VM happy.  This must be done otherwise the
1285		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1286		 * the page is clean.
1287		 */
1288		BUG_ON(PageWriteback(page));
1289		set_page_writeback(page);
1290		unlock_page(page);
1291		end_page_writeback(page);
1292	}
1293	if (likely(!err))
1294		ntfs_debug("Done.");
1295	return err;
1296}
1297
1298/**
1299 * ntfs_writepage - write a @page to the backing store
1300 * @page:	page cache page to write out
1301 * @wbc:	writeback control structure
1302 *
1303 * This is called from the VM when it wants to have a dirty ntfs page cache
1304 * page cleaned.  The VM has already locked the page and marked it clean.
1305 *
1306 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1307 * the ntfs version of the generic block_write_full_folio() function,
1308 * ntfs_write_block(), which in turn if necessary creates and writes the
1309 * buffers associated with the page asynchronously.
1310 *
1311 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1312 * the data to the mft record (which at this stage is most likely in memory).
1313 * The mft record is then marked dirty and written out asynchronously via the
1314 * vfs inode dirty code path for the inode the mft record belongs to or via the
1315 * vm page dirty code path for the page the mft record is in.
1316 *
1317 * Based on ntfs_read_folio() and fs/buffer.c::block_write_full_folio().
1318 *
1319 * Return 0 on success and -errno on error.
1320 */
1321static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1322{
1323	struct folio *folio = page_folio(page);
1324	loff_t i_size;
1325	struct inode *vi = folio->mapping->host;
1326	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1327	char *addr;
1328	ntfs_attr_search_ctx *ctx = NULL;
1329	MFT_RECORD *m = NULL;
1330	u32 attr_len;
1331	int err;
1332
1333retry_writepage:
1334	BUG_ON(!folio_test_locked(folio));
1335	i_size = i_size_read(vi);
1336	/* Is the folio fully outside i_size? (truncate in progress) */
1337	if (unlikely(folio->index >= (i_size + PAGE_SIZE - 1) >>
1338			PAGE_SHIFT)) {
1339		/*
1340		 * The folio may have dirty, unmapped buffers.  Make them
1341		 * freeable here, so the page does not leak.
1342		 */
1343		block_invalidate_folio(folio, 0, folio_size(folio));
1344		folio_unlock(folio);
1345		ntfs_debug("Write outside i_size - truncated?");
1346		return 0;
1347	}
1348	/*
1349	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1350	 * attributes can be compressed.  Index root can have the flags set but
1351	 * this means to create compressed/encrypted files, not that the
1352	 * attribute is compressed/encrypted.  Note we need to check for
1353	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1354	 * index inodes.
1355	 */
1356	if (ni->type != AT_INDEX_ALLOCATION) {
1357		/* If file is encrypted, deny access, just like NT4. */
1358		if (NInoEncrypted(ni)) {
1359			folio_unlock(folio);
1360			BUG_ON(ni->type != AT_DATA);
1361			ntfs_debug("Denying write access to encrypted file.");
1362			return -EACCES;
1363		}
1364		/* Compressed data streams are handled in compress.c. */
1365		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1366			BUG_ON(ni->type != AT_DATA);
1367			BUG_ON(ni->name_len);
1368			// TODO: Implement and replace this with
1369			// return ntfs_write_compressed_block(page);
1370			folio_unlock(folio);
1371			ntfs_error(vi->i_sb, "Writing to compressed files is "
1372					"not supported yet.  Sorry.");
1373			return -EOPNOTSUPP;
1374		}
1375		// TODO: Implement and remove this check.
1376		if (NInoNonResident(ni) && NInoSparse(ni)) {
1377			folio_unlock(folio);
1378			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1379					"supported yet.  Sorry.");
1380			return -EOPNOTSUPP;
1381		}
1382	}
1383	/* NInoNonResident() == NInoIndexAllocPresent() */
1384	if (NInoNonResident(ni)) {
1385		/* We have to zero every time due to mmap-at-end-of-file. */
1386		if (folio->index >= (i_size >> PAGE_SHIFT)) {
1387			/* The folio straddles i_size. */
1388			unsigned int ofs = i_size & (folio_size(folio) - 1);
1389			folio_zero_segment(folio, ofs, folio_size(folio));
1390		}
1391		/* Handle mst protected attributes. */
1392		if (NInoMstProtected(ni))
1393			return ntfs_write_mst_block(page, wbc);
1394		/* Normal, non-resident data stream. */
1395		return ntfs_write_block(folio, wbc);
1396	}
1397	/*
1398	 * Attribute is resident, implying it is not compressed, encrypted, or
1399	 * mst protected.  This also means the attribute is smaller than an mft
1400	 * record and hence smaller than a folio, so can simply return error on
1401	 * any folios with index above 0.  Note the attribute can actually be
1402	 * marked compressed but if it is resident the actual data is not
1403	 * compressed so we are ok to ignore the compressed flag here.
1404	 */
1405	BUG_ON(folio_buffers(folio));
1406	BUG_ON(!folio_test_uptodate(folio));
1407	if (unlikely(folio->index > 0)) {
1408		ntfs_error(vi->i_sb, "BUG()! folio->index (0x%lx) > 0.  "
1409				"Aborting write.", folio->index);
1410		BUG_ON(folio_test_writeback(folio));
1411		folio_start_writeback(folio);
1412		folio_unlock(folio);
1413		folio_end_writeback(folio);
1414		return -EIO;
1415	}
1416	if (!NInoAttr(ni))
1417		base_ni = ni;
1418	else
1419		base_ni = ni->ext.base_ntfs_ino;
1420	/* Map, pin, and lock the mft record. */
1421	m = map_mft_record(base_ni);
1422	if (IS_ERR(m)) {
1423		err = PTR_ERR(m);
1424		m = NULL;
1425		ctx = NULL;
1426		goto err_out;
1427	}
1428	/*
1429	 * If a parallel write made the attribute non-resident, drop the mft
1430	 * record and retry the writepage.
1431	 */
1432	if (unlikely(NInoNonResident(ni))) {
1433		unmap_mft_record(base_ni);
1434		goto retry_writepage;
1435	}
1436	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1437	if (unlikely(!ctx)) {
1438		err = -ENOMEM;
1439		goto err_out;
1440	}
1441	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1442			CASE_SENSITIVE, 0, NULL, 0, ctx);
1443	if (unlikely(err))
1444		goto err_out;
1445	/*
1446	 * Keep the VM happy.  This must be done otherwise
1447	 * PAGECACHE_TAG_DIRTY remains set even though the folio is clean.
1448	 */
1449	BUG_ON(folio_test_writeback(folio));
1450	folio_start_writeback(folio);
1451	folio_unlock(folio);
1452	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1453	i_size = i_size_read(vi);
1454	if (unlikely(attr_len > i_size)) {
1455		/* Race with shrinking truncate or a failed truncate. */
1456		attr_len = i_size;
1457		/*
1458		 * If the truncate failed, fix it up now.  If a concurrent
1459		 * truncate, we do its job, so it does not have to do anything.
1460		 */
1461		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1462				attr_len);
1463		/* Shrinking cannot fail. */
1464		BUG_ON(err);
1465	}
1466	addr = kmap_local_folio(folio, 0);
1467	/* Copy the data from the folio to the mft record. */
1468	memcpy((u8*)ctx->attr +
1469			le16_to_cpu(ctx->attr->data.resident.value_offset),
1470			addr, attr_len);
1471	/* Zero out of bounds area in the page cache folio. */
1472	memset(addr + attr_len, 0, folio_size(folio) - attr_len);
1473	kunmap_local(addr);
1474	flush_dcache_folio(folio);
1475	flush_dcache_mft_record_page(ctx->ntfs_ino);
1476	/* We are done with the folio. */
1477	folio_end_writeback(folio);
1478	/* Finally, mark the mft record dirty, so it gets written back. */
1479	mark_mft_record_dirty(ctx->ntfs_ino);
1480	ntfs_attr_put_search_ctx(ctx);
1481	unmap_mft_record(base_ni);
1482	return 0;
1483err_out:
1484	if (err == -ENOMEM) {
1485		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1486				"page so we try again later.");
1487		/*
1488		 * Put the folio back on mapping->dirty_pages, but leave its
1489		 * buffers' dirty state as-is.
1490		 */
1491		folio_redirty_for_writepage(wbc, folio);
1492		err = 0;
1493	} else {
1494		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1495				"error %i.", err);
1496		folio_set_error(folio);
1497		NVolSetErrors(ni->vol);
1498	}
1499	folio_unlock(folio);
1500	if (ctx)
1501		ntfs_attr_put_search_ctx(ctx);
1502	if (m)
1503		unmap_mft_record(base_ni);
1504	return err;
1505}
1506
1507#endif	/* NTFS_RW */
1508
1509/**
1510 * ntfs_bmap - map logical file block to physical device block
1511 * @mapping:	address space mapping to which the block to be mapped belongs
1512 * @block:	logical block to map to its physical device block
1513 *
1514 * For regular, non-resident files (i.e. not compressed and not encrypted), map
1515 * the logical @block belonging to the file described by the address space
1516 * mapping @mapping to its physical device block.
1517 *
1518 * The size of the block is equal to the @s_blocksize field of the super block
1519 * of the mounted file system which is guaranteed to be smaller than or equal
1520 * to the cluster size thus the block is guaranteed to fit entirely inside the
1521 * cluster which means we do not need to care how many contiguous bytes are
1522 * available after the beginning of the block.
1523 *
1524 * Return the physical device block if the mapping succeeded or 0 if the block
1525 * is sparse or there was an error.
1526 *
1527 * Note: This is a problem if someone tries to run bmap() on $Boot system file
1528 * as that really is in block zero but there is nothing we can do.  bmap() is
1529 * just broken in that respect (just like it cannot distinguish sparse from
1530 * not available or error).
1531 */
1532static sector_t ntfs_bmap(struct address_space *mapping, sector_t block)
1533{
1534	s64 ofs, size;
1535	loff_t i_size;
1536	LCN lcn;
1537	unsigned long blocksize, flags;
1538	ntfs_inode *ni = NTFS_I(mapping->host);
1539	ntfs_volume *vol = ni->vol;
1540	unsigned delta;
1541	unsigned char blocksize_bits, cluster_size_shift;
1542
1543	ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.",
1544			ni->mft_no, (unsigned long long)block);
1545	if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) {
1546		ntfs_error(vol->sb, "BMAP does not make sense for %s "
1547				"attributes, returning 0.",
1548				(ni->type != AT_DATA) ? "non-data" :
1549				(!NInoNonResident(ni) ? "resident" :
1550				"encrypted"));
1551		return 0;
1552	}
1553	/* None of these can happen. */
1554	BUG_ON(NInoCompressed(ni));
1555	BUG_ON(NInoMstProtected(ni));
1556	blocksize = vol->sb->s_blocksize;
1557	blocksize_bits = vol->sb->s_blocksize_bits;
1558	ofs = (s64)block << blocksize_bits;
1559	read_lock_irqsave(&ni->size_lock, flags);
1560	size = ni->initialized_size;
1561	i_size = i_size_read(VFS_I(ni));
1562	read_unlock_irqrestore(&ni->size_lock, flags);
1563	/*
1564	 * If the offset is outside the initialized size or the block straddles
1565	 * the initialized size then pretend it is a hole unless the
1566	 * initialized size equals the file size.
1567	 */
1568	if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size)))
1569		goto hole;
1570	cluster_size_shift = vol->cluster_size_bits;
1571	down_read(&ni->runlist.lock);
1572	lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false);
1573	up_read(&ni->runlist.lock);
1574	if (unlikely(lcn < LCN_HOLE)) {
1575		/*
1576		 * Step down to an integer to avoid gcc doing a long long
1577		 * comparision in the switch when we know @lcn is between
1578		 * LCN_HOLE and LCN_EIO (i.e. -1 to -5).
1579		 *
1580		 * Otherwise older gcc (at least on some architectures) will
1581		 * try to use __cmpdi2() which is of course not available in
1582		 * the kernel.
1583		 */
1584		switch ((int)lcn) {
1585		case LCN_ENOENT:
1586			/*
1587			 * If the offset is out of bounds then pretend it is a
1588			 * hole.
1589			 */
1590			goto hole;
1591		case LCN_ENOMEM:
1592			ntfs_error(vol->sb, "Not enough memory to complete "
1593					"mapping for inode 0x%lx.  "
1594					"Returning 0.", ni->mft_no);
1595			break;
1596		default:
1597			ntfs_error(vol->sb, "Failed to complete mapping for "
1598					"inode 0x%lx.  Run chkdsk.  "
1599					"Returning 0.", ni->mft_no);
1600			break;
1601		}
1602		return 0;
1603	}
1604	if (lcn < 0) {
1605		/* It is a hole. */
1606hole:
1607		ntfs_debug("Done (returning hole).");
1608		return 0;
1609	}
1610	/*
1611	 * The block is really allocated and fullfils all our criteria.
1612	 * Convert the cluster to units of block size and return the result.
1613	 */
1614	delta = ofs & vol->cluster_size_mask;
1615	if (unlikely(sizeof(block) < sizeof(lcn))) {
1616		block = lcn = ((lcn << cluster_size_shift) + delta) >>
1617				blocksize_bits;
1618		/* If the block number was truncated return 0. */
1619		if (unlikely(block != lcn)) {
1620			ntfs_error(vol->sb, "Physical block 0x%llx is too "
1621					"large to be returned, returning 0.",
1622					(long long)lcn);
1623			return 0;
1624		}
1625	} else
1626		block = ((lcn << cluster_size_shift) + delta) >>
1627				blocksize_bits;
1628	ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn);
1629	return block;
1630}
1631
1632/*
1633 * ntfs_normal_aops - address space operations for normal inodes and attributes
1634 *
1635 * Note these are not used for compressed or mst protected inodes and
1636 * attributes.
1637 */
1638const struct address_space_operations ntfs_normal_aops = {
1639	.read_folio	= ntfs_read_folio,
1640#ifdef NTFS_RW
1641	.writepage	= ntfs_writepage,
1642	.dirty_folio	= block_dirty_folio,
1643#endif /* NTFS_RW */
1644	.bmap		= ntfs_bmap,
1645	.migrate_folio	= buffer_migrate_folio,
1646	.is_partially_uptodate = block_is_partially_uptodate,
1647	.error_remove_folio = generic_error_remove_folio,
1648};
1649
1650/*
1651 * ntfs_compressed_aops - address space operations for compressed inodes
1652 */
1653const struct address_space_operations ntfs_compressed_aops = {
1654	.read_folio	= ntfs_read_folio,
1655#ifdef NTFS_RW
1656	.writepage	= ntfs_writepage,
1657	.dirty_folio	= block_dirty_folio,
1658#endif /* NTFS_RW */
1659	.migrate_folio	= buffer_migrate_folio,
1660	.is_partially_uptodate = block_is_partially_uptodate,
1661	.error_remove_folio = generic_error_remove_folio,
1662};
1663
1664/*
1665 * ntfs_mst_aops - general address space operations for mst protecteed inodes
1666 *			  and attributes
1667 */
1668const struct address_space_operations ntfs_mst_aops = {
1669	.read_folio	= ntfs_read_folio,	/* Fill page with data. */
1670#ifdef NTFS_RW
1671	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1672	.dirty_folio	= filemap_dirty_folio,
 
 
1673#endif /* NTFS_RW */
1674	.migrate_folio	= buffer_migrate_folio,
1675	.is_partially_uptodate	= block_is_partially_uptodate,
1676	.error_remove_folio = generic_error_remove_folio,
1677};
1678
1679#ifdef NTFS_RW
1680
1681/**
1682 * mark_ntfs_record_dirty - mark an ntfs record dirty
1683 * @page:	page containing the ntfs record to mark dirty
1684 * @ofs:	byte offset within @page at which the ntfs record begins
1685 *
1686 * Set the buffers and the page in which the ntfs record is located dirty.
1687 *
1688 * The latter also marks the vfs inode the ntfs record belongs to dirty
1689 * (I_DIRTY_PAGES only).
1690 *
1691 * If the page does not have buffers, we create them and set them uptodate.
1692 * The page may not be locked which is why we need to handle the buffers under
1693 * the mapping->i_private_lock.  Once the buffers are marked dirty we no longer
1694 * need the lock since try_to_free_buffers() does not free dirty buffers.
1695 */
1696void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1697	struct address_space *mapping = page->mapping;
1698	ntfs_inode *ni = NTFS_I(mapping->host);
1699	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1700	unsigned int end, bh_size, bh_ofs;
1701
1702	BUG_ON(!PageUptodate(page));
1703	end = ofs + ni->itype.index.block_size;
1704	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1705	spin_lock(&mapping->i_private_lock);
1706	if (unlikely(!page_has_buffers(page))) {
1707		spin_unlock(&mapping->i_private_lock);
1708		bh = head = alloc_page_buffers(page, bh_size, true);
1709		spin_lock(&mapping->i_private_lock);
1710		if (likely(!page_has_buffers(page))) {
1711			struct buffer_head *tail;
1712
1713			do {
1714				set_buffer_uptodate(bh);
1715				tail = bh;
1716				bh = bh->b_this_page;
1717			} while (bh);
1718			tail->b_this_page = head;
1719			attach_page_private(page, head);
1720		} else
1721			buffers_to_free = bh;
1722	}
1723	bh = head = page_buffers(page);
1724	BUG_ON(!bh);
1725	do {
1726		bh_ofs = bh_offset(bh);
1727		if (bh_ofs + bh_size <= ofs)
1728			continue;
1729		if (unlikely(bh_ofs >= end))
1730			break;
1731		set_buffer_dirty(bh);
1732	} while ((bh = bh->b_this_page) != head);
1733	spin_unlock(&mapping->i_private_lock);
1734	filemap_dirty_folio(mapping, page_folio(page));
1735	if (unlikely(buffers_to_free)) {
1736		do {
1737			bh = buffers_to_free->b_this_page;
1738			free_buffer_head(buffers_to_free);
1739			buffers_to_free = bh;
1740		} while (buffers_to_free);
1741	}
1742}
1743
1744#endif /* NTFS_RW */