Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/locks.c
   4 *
   5 *  Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls.
   6 *  Doug Evans (dje@spiff.uucp), August 07, 1992
 
 
   7 *
   8 *  Deadlock detection added.
   9 *  FIXME: one thing isn't handled yet:
  10 *	- mandatory locks (requires lots of changes elsewhere)
  11 *  Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994.
  12 *
  13 *  Miscellaneous edits, and a total rewrite of posix_lock_file() code.
  14 *  Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994
  15 *
  16 *  Converted file_lock_table to a linked list from an array, which eliminates
  17 *  the limits on how many active file locks are open.
  18 *  Chad Page (pageone@netcom.com), November 27, 1994
  19 *
  20 *  Removed dependency on file descriptors. dup()'ed file descriptors now
  21 *  get the same locks as the original file descriptors, and a close() on
  22 *  any file descriptor removes ALL the locks on the file for the current
  23 *  process. Since locks still depend on the process id, locks are inherited
  24 *  after an exec() but not after a fork(). This agrees with POSIX, and both
  25 *  BSD and SVR4 practice.
  26 *  Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995
  27 *
  28 *  Scrapped free list which is redundant now that we allocate locks
  29 *  dynamically with kmalloc()/kfree().
  30 *  Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995
  31 *
  32 *  Implemented two lock personalities - FL_FLOCK and FL_POSIX.
  33 *
  34 *  FL_POSIX locks are created with calls to fcntl() and lockf() through the
  35 *  fcntl() system call. They have the semantics described above.
  36 *
  37 *  FL_FLOCK locks are created with calls to flock(), through the flock()
  38 *  system call, which is new. Old C libraries implement flock() via fcntl()
  39 *  and will continue to use the old, broken implementation.
  40 *
  41 *  FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated
  42 *  with a file pointer (filp). As a result they can be shared by a parent
  43 *  process and its children after a fork(). They are removed when the last
  44 *  file descriptor referring to the file pointer is closed (unless explicitly
  45 *  unlocked).
  46 *
  47 *  FL_FLOCK locks never deadlock, an existing lock is always removed before
  48 *  upgrading from shared to exclusive (or vice versa). When this happens
  49 *  any processes blocked by the current lock are woken up and allowed to
  50 *  run before the new lock is applied.
  51 *  Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995
  52 *
  53 *  Removed some race conditions in flock_lock_file(), marked other possible
  54 *  races. Just grep for FIXME to see them.
  55 *  Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996.
  56 *
  57 *  Addressed Dmitry's concerns. Deadlock checking no longer recursive.
  58 *  Lock allocation changed to GFP_ATOMIC as we can't afford to sleep
  59 *  once we've checked for blocking and deadlocking.
  60 *  Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996.
  61 *
  62 *  Initial implementation of mandatory locks. SunOS turned out to be
  63 *  a rotten model, so I implemented the "obvious" semantics.
  64 *  See 'Documentation/filesystems/mandatory-locking.rst' for details.
  65 *  Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996.
  66 *
  67 *  Don't allow mandatory locks on mmap()'ed files. Added simple functions to
  68 *  check if a file has mandatory locks, used by mmap(), open() and creat() to
  69 *  see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference
  70 *  Manual, Section 2.
  71 *  Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996.
  72 *
  73 *  Tidied up block list handling. Added '/proc/locks' interface.
  74 *  Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996.
  75 *
  76 *  Fixed deadlock condition for pathological code that mixes calls to
  77 *  flock() and fcntl().
  78 *  Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996.
  79 *
  80 *  Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use
  81 *  for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to
  82 *  guarantee sensible behaviour in the case where file system modules might
  83 *  be compiled with different options than the kernel itself.
  84 *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
  85 *
  86 *  Added a couple of missing wake_up() calls. Thanks to Thomas Meckel
  87 *  (Thomas.Meckel@mni.fh-giessen.de) for spotting this.
  88 *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
  89 *
  90 *  Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK
  91 *  locks. Changed process synchronisation to avoid dereferencing locks that
  92 *  have already been freed.
  93 *  Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996.
  94 *
  95 *  Made the block list a circular list to minimise searching in the list.
  96 *  Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996.
  97 *
  98 *  Made mandatory locking a mount option. Default is not to allow mandatory
  99 *  locking.
 100 *  Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996.
 101 *
 102 *  Some adaptations for NFS support.
 103 *  Olaf Kirch (okir@monad.swb.de), Dec 1996,
 104 *
 105 *  Fixed /proc/locks interface so that we can't overrun the buffer we are handed.
 106 *  Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997.
 107 *
 108 *  Use slab allocator instead of kmalloc/kfree.
 109 *  Use generic list implementation from <linux/list.h>.
 110 *  Sped up posix_locks_deadlock by only considering blocked locks.
 111 *  Matthew Wilcox <willy@debian.org>, March, 2000.
 112 *
 113 *  Leases and LOCK_MAND
 114 *  Matthew Wilcox <willy@debian.org>, June, 2000.
 115 *  Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000.
 116 *
 117 * Locking conflicts and dependencies:
 118 * If multiple threads attempt to lock the same byte (or flock the same file)
 119 * only one can be granted the lock, and other must wait their turn.
 120 * The first lock has been "applied" or "granted", the others are "waiting"
 121 * and are "blocked" by the "applied" lock..
 122 *
 123 * Waiting and applied locks are all kept in trees whose properties are:
 124 *
 125 *	- the root of a tree may be an applied or waiting lock.
 126 *	- every other node in the tree is a waiting lock that
 127 *	  conflicts with every ancestor of that node.
 128 *
 129 * Every such tree begins life as a waiting singleton which obviously
 130 * satisfies the above properties.
 131 *
 132 * The only ways we modify trees preserve these properties:
 133 *
 134 *	1. We may add a new leaf node, but only after first verifying that it
 135 *	   conflicts with all of its ancestors.
 136 *	2. We may remove the root of a tree, creating a new singleton
 137 *	   tree from the root and N new trees rooted in the immediate
 138 *	   children.
 139 *	3. If the root of a tree is not currently an applied lock, we may
 140 *	   apply it (if possible).
 141 *	4. We may upgrade the root of the tree (either extend its range,
 142 *	   or upgrade its entire range from read to write).
 143 *
 144 * When an applied lock is modified in a way that reduces or downgrades any
 145 * part of its range, we remove all its children (2 above).  This particularly
 146 * happens when a lock is unlocked.
 147 *
 148 * For each of those child trees we "wake up" the thread which is
 149 * waiting for the lock so it can continue handling as follows: if the
 150 * root of the tree applies, we do so (3).  If it doesn't, it must
 151 * conflict with some applied lock.  We remove (wake up) all of its children
 152 * (2), and add it is a new leaf to the tree rooted in the applied
 153 * lock (1).  We then repeat the process recursively with those
 154 * children.
 155 *
 156 */
 157
 158#include <linux/capability.h>
 159#include <linux/file.h>
 160#include <linux/fdtable.h>
 
 161#include <linux/fs.h>
 162#include <linux/init.h>
 163#include <linux/security.h>
 164#include <linux/slab.h>
 165#include <linux/syscalls.h>
 166#include <linux/time.h>
 167#include <linux/rcupdate.h>
 168#include <linux/pid_namespace.h>
 169#include <linux/hashtable.h>
 170#include <linux/percpu.h>
 
 171
 172#define CREATE_TRACE_POINTS
 173#include <trace/events/filelock.h>
 174
 175#include <linux/uaccess.h>
 176
 177#define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
 178#define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
 179#define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
 180#define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
 181#define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
 182
 183static bool lease_breaking(struct file_lock *fl)
 184{
 185	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
 186}
 187
 188static int target_leasetype(struct file_lock *fl)
 189{
 190	if (fl->fl_flags & FL_UNLOCK_PENDING)
 191		return F_UNLCK;
 192	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
 193		return F_RDLCK;
 194	return fl->fl_type;
 195}
 196
 197int leases_enable = 1;
 198int lease_break_time = 45;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199
 200/*
 201 * The global file_lock_list is only used for displaying /proc/locks, so we
 202 * keep a list on each CPU, with each list protected by its own spinlock.
 203 * Global serialization is done using file_rwsem.
 204 *
 205 * Note that alterations to the list also require that the relevant flc_lock is
 206 * held.
 207 */
 208struct file_lock_list_struct {
 209	spinlock_t		lock;
 210	struct hlist_head	hlist;
 211};
 212static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
 213DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
 214
 215
 216/*
 217 * The blocked_hash is used to find POSIX lock loops for deadlock detection.
 218 * It is protected by blocked_lock_lock.
 219 *
 220 * We hash locks by lockowner in order to optimize searching for the lock a
 221 * particular lockowner is waiting on.
 222 *
 223 * FIXME: make this value scale via some heuristic? We generally will want more
 224 * buckets when we have more lockowners holding locks, but that's a little
 225 * difficult to determine without knowing what the workload will look like.
 226 */
 227#define BLOCKED_HASH_BITS	7
 228static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
 229
 230/*
 231 * This lock protects the blocked_hash. Generally, if you're accessing it, you
 232 * want to be holding this lock.
 233 *
 234 * In addition, it also protects the fl->fl_blocked_requests list, and the
 235 * fl->fl_blocker pointer for file_lock structures that are acting as lock
 236 * requests (in contrast to those that are acting as records of acquired locks).
 237 *
 238 * Note that when we acquire this lock in order to change the above fields,
 239 * we often hold the flc_lock as well. In certain cases, when reading the fields
 240 * protected by this lock, we can skip acquiring it iff we already hold the
 241 * flc_lock.
 242 */
 243static DEFINE_SPINLOCK(blocked_lock_lock);
 244
 245static struct kmem_cache *flctx_cache __read_mostly;
 246static struct kmem_cache *filelock_cache __read_mostly;
 247
 248static struct file_lock_context *
 249locks_get_lock_context(struct inode *inode, int type)
 250{
 251	struct file_lock_context *ctx;
 252
 253	/* paired with cmpxchg() below */
 254	ctx = smp_load_acquire(&inode->i_flctx);
 255	if (likely(ctx) || type == F_UNLCK)
 256		goto out;
 257
 258	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
 259	if (!ctx)
 260		goto out;
 261
 262	spin_lock_init(&ctx->flc_lock);
 263	INIT_LIST_HEAD(&ctx->flc_flock);
 264	INIT_LIST_HEAD(&ctx->flc_posix);
 265	INIT_LIST_HEAD(&ctx->flc_lease);
 266
 267	/*
 268	 * Assign the pointer if it's not already assigned. If it is, then
 269	 * free the context we just allocated.
 270	 */
 271	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
 272		kmem_cache_free(flctx_cache, ctx);
 273		ctx = smp_load_acquire(&inode->i_flctx);
 274	}
 275out:
 276	trace_locks_get_lock_context(inode, type, ctx);
 277	return ctx;
 278}
 279
 280static void
 281locks_dump_ctx_list(struct list_head *list, char *list_type)
 282{
 283	struct file_lock *fl;
 284
 285	list_for_each_entry(fl, list, fl_list) {
 286		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
 287	}
 288}
 289
 290static void
 291locks_check_ctx_lists(struct inode *inode)
 292{
 293	struct file_lock_context *ctx = inode->i_flctx;
 294
 295	if (unlikely(!list_empty(&ctx->flc_flock) ||
 296		     !list_empty(&ctx->flc_posix) ||
 297		     !list_empty(&ctx->flc_lease))) {
 298		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
 299			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
 300			inode->i_ino);
 301		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
 302		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
 303		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
 304	}
 305}
 306
 307static void
 308locks_check_ctx_file_list(struct file *filp, struct list_head *list,
 309				char *list_type)
 310{
 311	struct file_lock *fl;
 312	struct inode *inode = locks_inode(filp);
 313
 314	list_for_each_entry(fl, list, fl_list)
 315		if (fl->fl_file == filp)
 316			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
 317				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
 318				list_type, MAJOR(inode->i_sb->s_dev),
 319				MINOR(inode->i_sb->s_dev), inode->i_ino,
 320				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
 321}
 322
 323void
 324locks_free_lock_context(struct inode *inode)
 325{
 326	struct file_lock_context *ctx = inode->i_flctx;
 327
 328	if (unlikely(ctx)) {
 329		locks_check_ctx_lists(inode);
 330		kmem_cache_free(flctx_cache, ctx);
 331	}
 332}
 333
 334static void locks_init_lock_heads(struct file_lock *fl)
 335{
 336	INIT_HLIST_NODE(&fl->fl_link);
 337	INIT_LIST_HEAD(&fl->fl_list);
 338	INIT_LIST_HEAD(&fl->fl_blocked_requests);
 339	INIT_LIST_HEAD(&fl->fl_blocked_member);
 340	init_waitqueue_head(&fl->fl_wait);
 341}
 342
 343/* Allocate an empty lock structure. */
 344struct file_lock *locks_alloc_lock(void)
 345{
 346	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
 347
 348	if (fl)
 349		locks_init_lock_heads(fl);
 350
 351	return fl;
 352}
 353EXPORT_SYMBOL_GPL(locks_alloc_lock);
 354
 355void locks_release_private(struct file_lock *fl)
 356{
 357	BUG_ON(waitqueue_active(&fl->fl_wait));
 358	BUG_ON(!list_empty(&fl->fl_list));
 359	BUG_ON(!list_empty(&fl->fl_blocked_requests));
 360	BUG_ON(!list_empty(&fl->fl_blocked_member));
 361	BUG_ON(!hlist_unhashed(&fl->fl_link));
 362
 363	if (fl->fl_ops) {
 364		if (fl->fl_ops->fl_release_private)
 365			fl->fl_ops->fl_release_private(fl);
 366		fl->fl_ops = NULL;
 367	}
 368
 369	if (fl->fl_lmops) {
 370		if (fl->fl_lmops->lm_put_owner) {
 371			fl->fl_lmops->lm_put_owner(fl->fl_owner);
 372			fl->fl_owner = NULL;
 373		}
 374		fl->fl_lmops = NULL;
 375	}
 376}
 377EXPORT_SYMBOL_GPL(locks_release_private);
 378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379/* Free a lock which is not in use. */
 380void locks_free_lock(struct file_lock *fl)
 381{
 382	locks_release_private(fl);
 383	kmem_cache_free(filelock_cache, fl);
 384}
 385EXPORT_SYMBOL(locks_free_lock);
 386
 387static void
 388locks_dispose_list(struct list_head *dispose)
 389{
 390	struct file_lock *fl;
 391
 392	while (!list_empty(dispose)) {
 393		fl = list_first_entry(dispose, struct file_lock, fl_list);
 394		list_del_init(&fl->fl_list);
 395		locks_free_lock(fl);
 396	}
 397}
 398
 399void locks_init_lock(struct file_lock *fl)
 400{
 401	memset(fl, 0, sizeof(struct file_lock));
 402	locks_init_lock_heads(fl);
 403}
 404EXPORT_SYMBOL(locks_init_lock);
 405
 406/*
 407 * Initialize a new lock from an existing file_lock structure.
 408 */
 409void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
 410{
 411	new->fl_owner = fl->fl_owner;
 412	new->fl_pid = fl->fl_pid;
 413	new->fl_file = NULL;
 414	new->fl_flags = fl->fl_flags;
 415	new->fl_type = fl->fl_type;
 416	new->fl_start = fl->fl_start;
 417	new->fl_end = fl->fl_end;
 418	new->fl_lmops = fl->fl_lmops;
 419	new->fl_ops = NULL;
 420
 421	if (fl->fl_lmops) {
 422		if (fl->fl_lmops->lm_get_owner)
 423			fl->fl_lmops->lm_get_owner(fl->fl_owner);
 424	}
 425}
 426EXPORT_SYMBOL(locks_copy_conflock);
 427
 428void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
 429{
 430	/* "new" must be a freshly-initialized lock */
 431	WARN_ON_ONCE(new->fl_ops);
 432
 433	locks_copy_conflock(new, fl);
 434
 435	new->fl_file = fl->fl_file;
 436	new->fl_ops = fl->fl_ops;
 437
 438	if (fl->fl_ops) {
 439		if (fl->fl_ops->fl_copy_lock)
 440			fl->fl_ops->fl_copy_lock(new, fl);
 441	}
 442}
 443EXPORT_SYMBOL(locks_copy_lock);
 444
 445static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
 446{
 447	struct file_lock *f;
 448
 449	/*
 450	 * As ctx->flc_lock is held, new requests cannot be added to
 451	 * ->fl_blocked_requests, so we don't need a lock to check if it
 452	 * is empty.
 453	 */
 454	if (list_empty(&fl->fl_blocked_requests))
 455		return;
 456	spin_lock(&blocked_lock_lock);
 457	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
 458	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
 459		f->fl_blocker = new;
 460	spin_unlock(&blocked_lock_lock);
 461}
 462
 463static inline int flock_translate_cmd(int cmd) {
 464	if (cmd & LOCK_MAND)
 465		return cmd & (LOCK_MAND | LOCK_RW);
 466	switch (cmd) {
 467	case LOCK_SH:
 468		return F_RDLCK;
 469	case LOCK_EX:
 470		return F_WRLCK;
 471	case LOCK_UN:
 472		return F_UNLCK;
 473	}
 474	return -EINVAL;
 475}
 476
 477/* Fill in a file_lock structure with an appropriate FLOCK lock. */
 478static struct file_lock *
 479flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl)
 480{
 481	int type = flock_translate_cmd(cmd);
 482
 483	if (type < 0)
 484		return ERR_PTR(type);
 485
 486	if (fl == NULL) {
 487		fl = locks_alloc_lock();
 488		if (fl == NULL)
 489			return ERR_PTR(-ENOMEM);
 490	} else {
 491		locks_init_lock(fl);
 492	}
 493
 494	fl->fl_file = filp;
 495	fl->fl_owner = filp;
 496	fl->fl_pid = current->tgid;
 497	fl->fl_flags = FL_FLOCK;
 498	fl->fl_type = type;
 499	fl->fl_end = OFFSET_MAX;
 500
 501	return fl;
 502}
 503
 504static int assign_type(struct file_lock *fl, long type)
 505{
 506	switch (type) {
 507	case F_RDLCK:
 508	case F_WRLCK:
 509	case F_UNLCK:
 510		fl->fl_type = type;
 511		break;
 512	default:
 513		return -EINVAL;
 514	}
 515	return 0;
 516}
 517
 518static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
 519				 struct flock64 *l)
 520{
 521	switch (l->l_whence) {
 522	case SEEK_SET:
 523		fl->fl_start = 0;
 524		break;
 525	case SEEK_CUR:
 526		fl->fl_start = filp->f_pos;
 527		break;
 528	case SEEK_END:
 529		fl->fl_start = i_size_read(file_inode(filp));
 530		break;
 531	default:
 532		return -EINVAL;
 533	}
 534	if (l->l_start > OFFSET_MAX - fl->fl_start)
 535		return -EOVERFLOW;
 536	fl->fl_start += l->l_start;
 537	if (fl->fl_start < 0)
 538		return -EINVAL;
 539
 540	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
 541	   POSIX-2001 defines it. */
 542	if (l->l_len > 0) {
 543		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
 544			return -EOVERFLOW;
 545		fl->fl_end = fl->fl_start + l->l_len - 1;
 546
 547	} else if (l->l_len < 0) {
 548		if (fl->fl_start + l->l_len < 0)
 549			return -EINVAL;
 550		fl->fl_end = fl->fl_start - 1;
 551		fl->fl_start += l->l_len;
 552	} else
 553		fl->fl_end = OFFSET_MAX;
 554
 555	fl->fl_owner = current->files;
 556	fl->fl_pid = current->tgid;
 557	fl->fl_file = filp;
 558	fl->fl_flags = FL_POSIX;
 559	fl->fl_ops = NULL;
 560	fl->fl_lmops = NULL;
 561
 562	return assign_type(fl, l->l_type);
 563}
 564
 565/* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
 566 * style lock.
 567 */
 568static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
 569			       struct flock *l)
 570{
 571	struct flock64 ll = {
 572		.l_type = l->l_type,
 573		.l_whence = l->l_whence,
 574		.l_start = l->l_start,
 575		.l_len = l->l_len,
 576	};
 577
 578	return flock64_to_posix_lock(filp, fl, &ll);
 579}
 580
 581/* default lease lock manager operations */
 582static bool
 583lease_break_callback(struct file_lock *fl)
 584{
 585	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
 586	return false;
 587}
 588
 589static void
 590lease_setup(struct file_lock *fl, void **priv)
 591{
 592	struct file *filp = fl->fl_file;
 593	struct fasync_struct *fa = *priv;
 594
 595	/*
 596	 * fasync_insert_entry() returns the old entry if any. If there was no
 597	 * old entry, then it used "priv" and inserted it into the fasync list.
 598	 * Clear the pointer to indicate that it shouldn't be freed.
 599	 */
 600	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
 601		*priv = NULL;
 602
 603	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
 604}
 605
 606static const struct lock_manager_operations lease_manager_ops = {
 607	.lm_break = lease_break_callback,
 608	.lm_change = lease_modify,
 609	.lm_setup = lease_setup,
 610};
 611
 612/*
 613 * Initialize a lease, use the default lock manager operations
 614 */
 615static int lease_init(struct file *filp, long type, struct file_lock *fl)
 616{
 617	if (assign_type(fl, type) != 0)
 618		return -EINVAL;
 619
 620	fl->fl_owner = filp;
 621	fl->fl_pid = current->tgid;
 622
 623	fl->fl_file = filp;
 624	fl->fl_flags = FL_LEASE;
 625	fl->fl_start = 0;
 626	fl->fl_end = OFFSET_MAX;
 627	fl->fl_ops = NULL;
 628	fl->fl_lmops = &lease_manager_ops;
 629	return 0;
 630}
 631
 632/* Allocate a file_lock initialised to this type of lease */
 633static struct file_lock *lease_alloc(struct file *filp, long type)
 634{
 635	struct file_lock *fl = locks_alloc_lock();
 636	int error = -ENOMEM;
 637
 638	if (fl == NULL)
 639		return ERR_PTR(error);
 640
 641	error = lease_init(filp, type, fl);
 642	if (error) {
 643		locks_free_lock(fl);
 644		return ERR_PTR(error);
 645	}
 646	return fl;
 647}
 648
 649/* Check if two locks overlap each other.
 650 */
 651static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
 652{
 653	return ((fl1->fl_end >= fl2->fl_start) &&
 654		(fl2->fl_end >= fl1->fl_start));
 655}
 656
 657/*
 658 * Check whether two locks have the same owner.
 659 */
 660static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
 661{
 662	return fl1->fl_owner == fl2->fl_owner;
 663}
 664
 665/* Must be called with the flc_lock held! */
 666static void locks_insert_global_locks(struct file_lock *fl)
 667{
 668	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
 669
 670	percpu_rwsem_assert_held(&file_rwsem);
 671
 672	spin_lock(&fll->lock);
 673	fl->fl_link_cpu = smp_processor_id();
 674	hlist_add_head(&fl->fl_link, &fll->hlist);
 675	spin_unlock(&fll->lock);
 676}
 677
 678/* Must be called with the flc_lock held! */
 679static void locks_delete_global_locks(struct file_lock *fl)
 680{
 681	struct file_lock_list_struct *fll;
 682
 683	percpu_rwsem_assert_held(&file_rwsem);
 684
 685	/*
 686	 * Avoid taking lock if already unhashed. This is safe since this check
 687	 * is done while holding the flc_lock, and new insertions into the list
 688	 * also require that it be held.
 689	 */
 690	if (hlist_unhashed(&fl->fl_link))
 691		return;
 692
 693	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
 694	spin_lock(&fll->lock);
 695	hlist_del_init(&fl->fl_link);
 696	spin_unlock(&fll->lock);
 697}
 698
 699static unsigned long
 700posix_owner_key(struct file_lock *fl)
 701{
 702	return (unsigned long)fl->fl_owner;
 703}
 704
 705static void locks_insert_global_blocked(struct file_lock *waiter)
 706{
 707	lockdep_assert_held(&blocked_lock_lock);
 708
 709	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
 710}
 711
 712static void locks_delete_global_blocked(struct file_lock *waiter)
 713{
 714	lockdep_assert_held(&blocked_lock_lock);
 715
 716	hash_del(&waiter->fl_link);
 717}
 718
 719/* Remove waiter from blocker's block list.
 720 * When blocker ends up pointing to itself then the list is empty.
 721 *
 722 * Must be called with blocked_lock_lock held.
 723 */
 724static void __locks_delete_block(struct file_lock *waiter)
 725{
 726	locks_delete_global_blocked(waiter);
 727	list_del_init(&waiter->fl_blocked_member);
 728}
 729
 730static void __locks_wake_up_blocks(struct file_lock *blocker)
 731{
 732	while (!list_empty(&blocker->fl_blocked_requests)) {
 733		struct file_lock *waiter;
 734
 735		waiter = list_first_entry(&blocker->fl_blocked_requests,
 736					  struct file_lock, fl_blocked_member);
 737		__locks_delete_block(waiter);
 738		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
 739			waiter->fl_lmops->lm_notify(waiter);
 740		else
 741			wake_up(&waiter->fl_wait);
 742
 743		/*
 744		 * The setting of fl_blocker to NULL marks the "done"
 745		 * point in deleting a block. Paired with acquire at the top
 746		 * of locks_delete_block().
 747		 */
 748		smp_store_release(&waiter->fl_blocker, NULL);
 749	}
 750}
 751
 752/**
 753 *	locks_delete_lock - stop waiting for a file lock
 754 *	@waiter: the lock which was waiting
 755 *
 756 *	lockd/nfsd need to disconnect the lock while working on it.
 757 */
 758int locks_delete_block(struct file_lock *waiter)
 759{
 760	int status = -ENOENT;
 761
 762	/*
 763	 * If fl_blocker is NULL, it won't be set again as this thread "owns"
 764	 * the lock and is the only one that might try to claim the lock.
 765	 *
 766	 * We use acquire/release to manage fl_blocker so that we can
 767	 * optimize away taking the blocked_lock_lock in many cases.
 768	 *
 769	 * The smp_load_acquire guarantees two things:
 770	 *
 771	 * 1/ that fl_blocked_requests can be tested locklessly. If something
 772	 * was recently added to that list it must have been in a locked region
 773	 * *before* the locked region when fl_blocker was set to NULL.
 774	 *
 775	 * 2/ that no other thread is accessing 'waiter', so it is safe to free
 776	 * it.  __locks_wake_up_blocks is careful not to touch waiter after
 777	 * fl_blocker is released.
 778	 *
 779	 * If a lockless check of fl_blocker shows it to be NULL, we know that
 780	 * no new locks can be inserted into its fl_blocked_requests list, and
 781	 * can avoid doing anything further if the list is empty.
 782	 */
 783	if (!smp_load_acquire(&waiter->fl_blocker) &&
 784	    list_empty(&waiter->fl_blocked_requests))
 785		return status;
 786
 787	spin_lock(&blocked_lock_lock);
 788	if (waiter->fl_blocker)
 789		status = 0;
 790	__locks_wake_up_blocks(waiter);
 791	__locks_delete_block(waiter);
 792
 793	/*
 794	 * The setting of fl_blocker to NULL marks the "done" point in deleting
 795	 * a block. Paired with acquire at the top of this function.
 796	 */
 797	smp_store_release(&waiter->fl_blocker, NULL);
 798	spin_unlock(&blocked_lock_lock);
 799	return status;
 800}
 801EXPORT_SYMBOL(locks_delete_block);
 802
 803/* Insert waiter into blocker's block list.
 804 * We use a circular list so that processes can be easily woken up in
 805 * the order they blocked. The documentation doesn't require this but
 806 * it seems like the reasonable thing to do.
 807 *
 808 * Must be called with both the flc_lock and blocked_lock_lock held. The
 809 * fl_blocked_requests list itself is protected by the blocked_lock_lock,
 810 * but by ensuring that the flc_lock is also held on insertions we can avoid
 811 * taking the blocked_lock_lock in some cases when we see that the
 812 * fl_blocked_requests list is empty.
 813 *
 814 * Rather than just adding to the list, we check for conflicts with any existing
 815 * waiters, and add beneath any waiter that blocks the new waiter.
 816 * Thus wakeups don't happen until needed.
 817 */
 818static void __locks_insert_block(struct file_lock *blocker,
 819				 struct file_lock *waiter,
 820				 bool conflict(struct file_lock *,
 821					       struct file_lock *))
 822{
 823	struct file_lock *fl;
 824	BUG_ON(!list_empty(&waiter->fl_blocked_member));
 825
 826new_blocker:
 827	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
 828		if (conflict(fl, waiter)) {
 829			blocker =  fl;
 830			goto new_blocker;
 831		}
 832	waiter->fl_blocker = blocker;
 833	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
 834	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
 835		locks_insert_global_blocked(waiter);
 836
 837	/* The requests in waiter->fl_blocked are known to conflict with
 838	 * waiter, but might not conflict with blocker, or the requests
 839	 * and lock which block it.  So they all need to be woken.
 840	 */
 841	__locks_wake_up_blocks(waiter);
 842}
 843
 844/* Must be called with flc_lock held. */
 845static void locks_insert_block(struct file_lock *blocker,
 846			       struct file_lock *waiter,
 847			       bool conflict(struct file_lock *,
 848					     struct file_lock *))
 849{
 850	spin_lock(&blocked_lock_lock);
 851	__locks_insert_block(blocker, waiter, conflict);
 852	spin_unlock(&blocked_lock_lock);
 853}
 854
 855/*
 856 * Wake up processes blocked waiting for blocker.
 857 *
 858 * Must be called with the inode->flc_lock held!
 859 */
 860static void locks_wake_up_blocks(struct file_lock *blocker)
 861{
 862	/*
 863	 * Avoid taking global lock if list is empty. This is safe since new
 864	 * blocked requests are only added to the list under the flc_lock, and
 865	 * the flc_lock is always held here. Note that removal from the
 866	 * fl_blocked_requests list does not require the flc_lock, so we must
 867	 * recheck list_empty() after acquiring the blocked_lock_lock.
 868	 */
 869	if (list_empty(&blocker->fl_blocked_requests))
 870		return;
 871
 872	spin_lock(&blocked_lock_lock);
 873	__locks_wake_up_blocks(blocker);
 874	spin_unlock(&blocked_lock_lock);
 875}
 876
 877static void
 878locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
 879{
 880	list_add_tail(&fl->fl_list, before);
 881	locks_insert_global_locks(fl);
 882}
 883
 884static void
 885locks_unlink_lock_ctx(struct file_lock *fl)
 886{
 887	locks_delete_global_locks(fl);
 888	list_del_init(&fl->fl_list);
 889	locks_wake_up_blocks(fl);
 890}
 891
 892static void
 893locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
 894{
 895	locks_unlink_lock_ctx(fl);
 896	if (dispose)
 897		list_add(&fl->fl_list, dispose);
 898	else
 899		locks_free_lock(fl);
 900}
 901
 902/* Determine if lock sys_fl blocks lock caller_fl. Common functionality
 903 * checks for shared/exclusive status of overlapping locks.
 904 */
 905static bool locks_conflict(struct file_lock *caller_fl,
 906			   struct file_lock *sys_fl)
 907{
 908	if (sys_fl->fl_type == F_WRLCK)
 909		return true;
 910	if (caller_fl->fl_type == F_WRLCK)
 911		return true;
 912	return false;
 913}
 914
 915/* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
 916 * checking before calling the locks_conflict().
 917 */
 918static bool posix_locks_conflict(struct file_lock *caller_fl,
 919				 struct file_lock *sys_fl)
 920{
 921	/* POSIX locks owned by the same process do not conflict with
 922	 * each other.
 923	 */
 924	if (posix_same_owner(caller_fl, sys_fl))
 925		return false;
 926
 927	/* Check whether they overlap */
 928	if (!locks_overlap(caller_fl, sys_fl))
 929		return false;
 930
 931	return locks_conflict(caller_fl, sys_fl);
 932}
 933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934/* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
 935 * checking before calling the locks_conflict().
 936 */
 937static bool flock_locks_conflict(struct file_lock *caller_fl,
 938				 struct file_lock *sys_fl)
 939{
 940	/* FLOCK locks referring to the same filp do not conflict with
 941	 * each other.
 942	 */
 943	if (caller_fl->fl_file == sys_fl->fl_file)
 944		return false;
 945	if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND))
 946		return false;
 947
 948	return locks_conflict(caller_fl, sys_fl);
 949}
 950
 951void
 952posix_test_lock(struct file *filp, struct file_lock *fl)
 953{
 954	struct file_lock *cfl;
 955	struct file_lock_context *ctx;
 956	struct inode *inode = locks_inode(filp);
 
 
 957
 958	ctx = smp_load_acquire(&inode->i_flctx);
 959	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
 960		fl->fl_type = F_UNLCK;
 961		return;
 962	}
 963
 
 964	spin_lock(&ctx->flc_lock);
 965	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
 966		if (posix_locks_conflict(fl, cfl)) {
 967			locks_copy_conflock(fl, cfl);
 968			goto out;
 
 
 
 
 
 
 
 
 969		}
 
 
 970	}
 971	fl->fl_type = F_UNLCK;
 972out:
 973	spin_unlock(&ctx->flc_lock);
 974	return;
 975}
 976EXPORT_SYMBOL(posix_test_lock);
 977
 978/*
 979 * Deadlock detection:
 980 *
 981 * We attempt to detect deadlocks that are due purely to posix file
 982 * locks.
 983 *
 984 * We assume that a task can be waiting for at most one lock at a time.
 985 * So for any acquired lock, the process holding that lock may be
 986 * waiting on at most one other lock.  That lock in turns may be held by
 987 * someone waiting for at most one other lock.  Given a requested lock
 988 * caller_fl which is about to wait for a conflicting lock block_fl, we
 989 * follow this chain of waiters to ensure we are not about to create a
 990 * cycle.
 991 *
 992 * Since we do this before we ever put a process to sleep on a lock, we
 993 * are ensured that there is never a cycle; that is what guarantees that
 994 * the while() loop in posix_locks_deadlock() eventually completes.
 995 *
 996 * Note: the above assumption may not be true when handling lock
 997 * requests from a broken NFS client. It may also fail in the presence
 998 * of tasks (such as posix threads) sharing the same open file table.
 999 * To handle those cases, we just bail out after a few iterations.
1000 *
1001 * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
1002 * Because the owner is not even nominally tied to a thread of
1003 * execution, the deadlock detection below can't reasonably work well. Just
1004 * skip it for those.
1005 *
1006 * In principle, we could do a more limited deadlock detection on FL_OFDLCK
1007 * locks that just checks for the case where two tasks are attempting to
1008 * upgrade from read to write locks on the same inode.
1009 */
1010
1011#define MAX_DEADLK_ITERATIONS 10
1012
1013/* Find a lock that the owner of the given block_fl is blocking on. */
1014static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
1015{
1016	struct file_lock *fl;
1017
1018	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
1019		if (posix_same_owner(fl, block_fl)) {
1020			while (fl->fl_blocker)
1021				fl = fl->fl_blocker;
1022			return fl;
1023		}
1024	}
1025	return NULL;
1026}
1027
1028/* Must be called with the blocked_lock_lock held! */
1029static int posix_locks_deadlock(struct file_lock *caller_fl,
1030				struct file_lock *block_fl)
1031{
1032	int i = 0;
1033
1034	lockdep_assert_held(&blocked_lock_lock);
1035
1036	/*
1037	 * This deadlock detector can't reasonably detect deadlocks with
1038	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1039	 */
1040	if (IS_OFDLCK(caller_fl))
1041		return 0;
1042
1043	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
1044		if (i++ > MAX_DEADLK_ITERATIONS)
1045			return 0;
1046		if (posix_same_owner(caller_fl, block_fl))
1047			return 1;
1048	}
1049	return 0;
1050}
1051
1052/* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1053 * after any leases, but before any posix locks.
1054 *
1055 * Note that if called with an FL_EXISTS argument, the caller may determine
1056 * whether or not a lock was successfully freed by testing the return
1057 * value for -ENOENT.
1058 */
1059static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1060{
1061	struct file_lock *new_fl = NULL;
1062	struct file_lock *fl;
1063	struct file_lock_context *ctx;
1064	int error = 0;
1065	bool found = false;
1066	LIST_HEAD(dispose);
1067
1068	ctx = locks_get_lock_context(inode, request->fl_type);
1069	if (!ctx) {
1070		if (request->fl_type != F_UNLCK)
1071			return -ENOMEM;
1072		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
1073	}
1074
1075	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
1076		new_fl = locks_alloc_lock();
1077		if (!new_fl)
1078			return -ENOMEM;
1079	}
1080
1081	percpu_down_read(&file_rwsem);
1082	spin_lock(&ctx->flc_lock);
1083	if (request->fl_flags & FL_ACCESS)
1084		goto find_conflict;
1085
1086	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1087		if (request->fl_file != fl->fl_file)
1088			continue;
1089		if (request->fl_type == fl->fl_type)
1090			goto out;
1091		found = true;
1092		locks_delete_lock_ctx(fl, &dispose);
1093		break;
1094	}
1095
1096	if (request->fl_type == F_UNLCK) {
1097		if ((request->fl_flags & FL_EXISTS) && !found)
1098			error = -ENOENT;
1099		goto out;
1100	}
1101
1102find_conflict:
1103	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1104		if (!flock_locks_conflict(request, fl))
1105			continue;
1106		error = -EAGAIN;
1107		if (!(request->fl_flags & FL_SLEEP))
1108			goto out;
1109		error = FILE_LOCK_DEFERRED;
1110		locks_insert_block(fl, request, flock_locks_conflict);
1111		goto out;
1112	}
1113	if (request->fl_flags & FL_ACCESS)
1114		goto out;
1115	locks_copy_lock(new_fl, request);
1116	locks_move_blocks(new_fl, request);
1117	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1118	new_fl = NULL;
1119	error = 0;
1120
1121out:
1122	spin_unlock(&ctx->flc_lock);
1123	percpu_up_read(&file_rwsem);
1124	if (new_fl)
1125		locks_free_lock(new_fl);
1126	locks_dispose_list(&dispose);
1127	trace_flock_lock_inode(inode, request, error);
1128	return error;
1129}
1130
1131static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1132			    struct file_lock *conflock)
1133{
1134	struct file_lock *fl, *tmp;
1135	struct file_lock *new_fl = NULL;
1136	struct file_lock *new_fl2 = NULL;
1137	struct file_lock *left = NULL;
1138	struct file_lock *right = NULL;
1139	struct file_lock_context *ctx;
1140	int error;
1141	bool added = false;
1142	LIST_HEAD(dispose);
 
 
1143
1144	ctx = locks_get_lock_context(inode, request->fl_type);
1145	if (!ctx)
1146		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1147
1148	/*
1149	 * We may need two file_lock structures for this operation,
1150	 * so we get them in advance to avoid races.
1151	 *
1152	 * In some cases we can be sure, that no new locks will be needed
1153	 */
1154	if (!(request->fl_flags & FL_ACCESS) &&
1155	    (request->fl_type != F_UNLCK ||
1156	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1157		new_fl = locks_alloc_lock();
1158		new_fl2 = locks_alloc_lock();
1159	}
1160
 
1161	percpu_down_read(&file_rwsem);
1162	spin_lock(&ctx->flc_lock);
1163	/*
1164	 * New lock request. Walk all POSIX locks and look for conflicts. If
1165	 * there are any, either return error or put the request on the
1166	 * blocker's list of waiters and the global blocked_hash.
1167	 */
1168	if (request->fl_type != F_UNLCK) {
1169		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1170			if (!posix_locks_conflict(request, fl))
1171				continue;
 
 
 
 
 
 
 
 
 
 
 
1172			if (conflock)
1173				locks_copy_conflock(conflock, fl);
1174			error = -EAGAIN;
1175			if (!(request->fl_flags & FL_SLEEP))
1176				goto out;
1177			/*
1178			 * Deadlock detection and insertion into the blocked
1179			 * locks list must be done while holding the same lock!
1180			 */
1181			error = -EDEADLK;
1182			spin_lock(&blocked_lock_lock);
1183			/*
1184			 * Ensure that we don't find any locks blocked on this
1185			 * request during deadlock detection.
1186			 */
1187			__locks_wake_up_blocks(request);
1188			if (likely(!posix_locks_deadlock(request, fl))) {
1189				error = FILE_LOCK_DEFERRED;
1190				__locks_insert_block(fl, request,
1191						     posix_locks_conflict);
1192			}
1193			spin_unlock(&blocked_lock_lock);
1194			goto out;
1195		}
1196	}
1197
1198	/* If we're just looking for a conflict, we're done. */
1199	error = 0;
1200	if (request->fl_flags & FL_ACCESS)
1201		goto out;
1202
1203	/* Find the first old lock with the same owner as the new lock */
1204	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1205		if (posix_same_owner(request, fl))
1206			break;
1207	}
1208
1209	/* Process locks with this owner. */
1210	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1211		if (!posix_same_owner(request, fl))
1212			break;
1213
1214		/* Detect adjacent or overlapping regions (if same lock type) */
1215		if (request->fl_type == fl->fl_type) {
1216			/* In all comparisons of start vs end, use
1217			 * "start - 1" rather than "end + 1". If end
1218			 * is OFFSET_MAX, end + 1 will become negative.
1219			 */
1220			if (fl->fl_end < request->fl_start - 1)
1221				continue;
1222			/* If the next lock in the list has entirely bigger
1223			 * addresses than the new one, insert the lock here.
1224			 */
1225			if (fl->fl_start - 1 > request->fl_end)
1226				break;
1227
1228			/* If we come here, the new and old lock are of the
1229			 * same type and adjacent or overlapping. Make one
1230			 * lock yielding from the lower start address of both
1231			 * locks to the higher end address.
1232			 */
1233			if (fl->fl_start > request->fl_start)
1234				fl->fl_start = request->fl_start;
1235			else
1236				request->fl_start = fl->fl_start;
1237			if (fl->fl_end < request->fl_end)
1238				fl->fl_end = request->fl_end;
1239			else
1240				request->fl_end = fl->fl_end;
1241			if (added) {
1242				locks_delete_lock_ctx(fl, &dispose);
1243				continue;
1244			}
1245			request = fl;
1246			added = true;
1247		} else {
1248			/* Processing for different lock types is a bit
1249			 * more complex.
1250			 */
1251			if (fl->fl_end < request->fl_start)
1252				continue;
1253			if (fl->fl_start > request->fl_end)
1254				break;
1255			if (request->fl_type == F_UNLCK)
1256				added = true;
1257			if (fl->fl_start < request->fl_start)
1258				left = fl;
1259			/* If the next lock in the list has a higher end
1260			 * address than the new one, insert the new one here.
1261			 */
1262			if (fl->fl_end > request->fl_end) {
1263				right = fl;
1264				break;
1265			}
1266			if (fl->fl_start >= request->fl_start) {
1267				/* The new lock completely replaces an old
1268				 * one (This may happen several times).
1269				 */
1270				if (added) {
1271					locks_delete_lock_ctx(fl, &dispose);
1272					continue;
1273				}
1274				/*
1275				 * Replace the old lock with new_fl, and
1276				 * remove the old one. It's safe to do the
1277				 * insert here since we know that we won't be
1278				 * using new_fl later, and that the lock is
1279				 * just replacing an existing lock.
1280				 */
1281				error = -ENOLCK;
1282				if (!new_fl)
1283					goto out;
1284				locks_copy_lock(new_fl, request);
1285				locks_move_blocks(new_fl, request);
1286				request = new_fl;
1287				new_fl = NULL;
1288				locks_insert_lock_ctx(request, &fl->fl_list);
1289				locks_delete_lock_ctx(fl, &dispose);
1290				added = true;
1291			}
1292		}
1293	}
1294
1295	/*
1296	 * The above code only modifies existing locks in case of merging or
1297	 * replacing. If new lock(s) need to be inserted all modifications are
1298	 * done below this, so it's safe yet to bail out.
1299	 */
1300	error = -ENOLCK; /* "no luck" */
1301	if (right && left == right && !new_fl2)
1302		goto out;
1303
1304	error = 0;
1305	if (!added) {
1306		if (request->fl_type == F_UNLCK) {
1307			if (request->fl_flags & FL_EXISTS)
1308				error = -ENOENT;
1309			goto out;
1310		}
1311
1312		if (!new_fl) {
1313			error = -ENOLCK;
1314			goto out;
1315		}
1316		locks_copy_lock(new_fl, request);
1317		locks_move_blocks(new_fl, request);
1318		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1319		fl = new_fl;
1320		new_fl = NULL;
1321	}
1322	if (right) {
1323		if (left == right) {
1324			/* The new lock breaks the old one in two pieces,
1325			 * so we have to use the second new lock.
1326			 */
1327			left = new_fl2;
1328			new_fl2 = NULL;
1329			locks_copy_lock(left, right);
1330			locks_insert_lock_ctx(left, &fl->fl_list);
1331		}
1332		right->fl_start = request->fl_end + 1;
1333		locks_wake_up_blocks(right);
1334	}
1335	if (left) {
1336		left->fl_end = request->fl_start - 1;
1337		locks_wake_up_blocks(left);
1338	}
1339 out:
1340	spin_unlock(&ctx->flc_lock);
1341	percpu_up_read(&file_rwsem);
 
1342	/*
1343	 * Free any unused locks.
1344	 */
1345	if (new_fl)
1346		locks_free_lock(new_fl);
1347	if (new_fl2)
1348		locks_free_lock(new_fl2);
1349	locks_dispose_list(&dispose);
1350	trace_posix_lock_inode(inode, request, error);
1351
1352	return error;
1353}
1354
1355/**
1356 * posix_lock_file - Apply a POSIX-style lock to a file
1357 * @filp: The file to apply the lock to
1358 * @fl: The lock to be applied
1359 * @conflock: Place to return a copy of the conflicting lock, if found.
1360 *
1361 * Add a POSIX style lock to a file.
1362 * We merge adjacent & overlapping locks whenever possible.
1363 * POSIX locks are sorted by owner task, then by starting address
1364 *
1365 * Note that if called with an FL_EXISTS argument, the caller may determine
1366 * whether or not a lock was successfully freed by testing the return
1367 * value for -ENOENT.
1368 */
1369int posix_lock_file(struct file *filp, struct file_lock *fl,
1370			struct file_lock *conflock)
1371{
1372	return posix_lock_inode(locks_inode(filp), fl, conflock);
1373}
1374EXPORT_SYMBOL(posix_lock_file);
1375
1376/**
1377 * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1378 * @inode: inode of file to which lock request should be applied
1379 * @fl: The lock to be applied
1380 *
1381 * Apply a POSIX style lock request to an inode.
1382 */
1383static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1384{
1385	int error;
1386	might_sleep ();
1387	for (;;) {
1388		error = posix_lock_inode(inode, fl, NULL);
1389		if (error != FILE_LOCK_DEFERRED)
1390			break;
1391		error = wait_event_interruptible(fl->fl_wait,
1392					list_empty(&fl->fl_blocked_member));
1393		if (error)
1394			break;
1395	}
1396	locks_delete_block(fl);
1397	return error;
1398}
1399
1400#ifdef CONFIG_MANDATORY_FILE_LOCKING
1401/**
1402 * locks_mandatory_locked - Check for an active lock
1403 * @file: the file to check
1404 *
1405 * Searches the inode's list of locks to find any POSIX locks which conflict.
1406 * This function is called from locks_verify_locked() only.
1407 */
1408int locks_mandatory_locked(struct file *file)
1409{
1410	int ret;
1411	struct inode *inode = locks_inode(file);
1412	struct file_lock_context *ctx;
1413	struct file_lock *fl;
1414
1415	ctx = smp_load_acquire(&inode->i_flctx);
1416	if (!ctx || list_empty_careful(&ctx->flc_posix))
1417		return 0;
1418
1419	/*
1420	 * Search the lock list for this inode for any POSIX locks.
1421	 */
1422	spin_lock(&ctx->flc_lock);
1423	ret = 0;
1424	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1425		if (fl->fl_owner != current->files &&
1426		    fl->fl_owner != file) {
1427			ret = -EAGAIN;
1428			break;
1429		}
1430	}
1431	spin_unlock(&ctx->flc_lock);
1432	return ret;
1433}
1434
1435/**
1436 * locks_mandatory_area - Check for a conflicting lock
1437 * @inode:	the file to check
1438 * @filp:       how the file was opened (if it was)
1439 * @start:	first byte in the file to check
1440 * @end:	lastbyte in the file to check
1441 * @type:	%F_WRLCK for a write lock, else %F_RDLCK
1442 *
1443 * Searches the inode's list of locks to find any POSIX locks which conflict.
1444 */
1445int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start,
1446			 loff_t end, unsigned char type)
1447{
1448	struct file_lock fl;
1449	int error;
1450	bool sleep = false;
1451
1452	locks_init_lock(&fl);
1453	fl.fl_pid = current->tgid;
1454	fl.fl_file = filp;
1455	fl.fl_flags = FL_POSIX | FL_ACCESS;
1456	if (filp && !(filp->f_flags & O_NONBLOCK))
1457		sleep = true;
1458	fl.fl_type = type;
1459	fl.fl_start = start;
1460	fl.fl_end = end;
1461
1462	for (;;) {
1463		if (filp) {
1464			fl.fl_owner = filp;
1465			fl.fl_flags &= ~FL_SLEEP;
1466			error = posix_lock_inode(inode, &fl, NULL);
1467			if (!error)
1468				break;
1469		}
1470
1471		if (sleep)
1472			fl.fl_flags |= FL_SLEEP;
1473		fl.fl_owner = current->files;
1474		error = posix_lock_inode(inode, &fl, NULL);
1475		if (error != FILE_LOCK_DEFERRED)
1476			break;
1477		error = wait_event_interruptible(fl.fl_wait,
1478					list_empty(&fl.fl_blocked_member));
1479		if (!error) {
1480			/*
1481			 * If we've been sleeping someone might have
1482			 * changed the permissions behind our back.
1483			 */
1484			if (__mandatory_lock(inode))
1485				continue;
1486		}
1487
1488		break;
1489	}
1490	locks_delete_block(&fl);
1491
1492	return error;
1493}
1494EXPORT_SYMBOL(locks_mandatory_area);
1495#endif /* CONFIG_MANDATORY_FILE_LOCKING */
1496
1497static void lease_clear_pending(struct file_lock *fl, int arg)
1498{
1499	switch (arg) {
1500	case F_UNLCK:
1501		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1502		fallthrough;
1503	case F_RDLCK:
1504		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1505	}
1506}
1507
1508/* We already had a lease on this file; just change its type */
1509int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1510{
1511	int error = assign_type(fl, arg);
1512
1513	if (error)
1514		return error;
1515	lease_clear_pending(fl, arg);
1516	locks_wake_up_blocks(fl);
1517	if (arg == F_UNLCK) {
1518		struct file *filp = fl->fl_file;
1519
1520		f_delown(filp);
1521		filp->f_owner.signum = 0;
1522		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1523		if (fl->fl_fasync != NULL) {
1524			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1525			fl->fl_fasync = NULL;
1526		}
1527		locks_delete_lock_ctx(fl, dispose);
1528	}
1529	return 0;
1530}
1531EXPORT_SYMBOL(lease_modify);
1532
1533static bool past_time(unsigned long then)
1534{
1535	if (!then)
1536		/* 0 is a special value meaning "this never expires": */
1537		return false;
1538	return time_after(jiffies, then);
1539}
1540
1541static void time_out_leases(struct inode *inode, struct list_head *dispose)
1542{
1543	struct file_lock_context *ctx = inode->i_flctx;
1544	struct file_lock *fl, *tmp;
1545
1546	lockdep_assert_held(&ctx->flc_lock);
1547
1548	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1549		trace_time_out_leases(inode, fl);
1550		if (past_time(fl->fl_downgrade_time))
1551			lease_modify(fl, F_RDLCK, dispose);
1552		if (past_time(fl->fl_break_time))
1553			lease_modify(fl, F_UNLCK, dispose);
1554	}
1555}
1556
1557static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1558{
1559	bool rc;
1560
1561	if (lease->fl_lmops->lm_breaker_owns_lease
1562			&& lease->fl_lmops->lm_breaker_owns_lease(lease))
1563		return false;
1564	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) {
1565		rc = false;
1566		goto trace;
1567	}
1568	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) {
1569		rc = false;
1570		goto trace;
1571	}
1572
1573	rc = locks_conflict(breaker, lease);
1574trace:
1575	trace_leases_conflict(rc, lease, breaker);
1576	return rc;
1577}
1578
1579static bool
1580any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1581{
1582	struct file_lock_context *ctx = inode->i_flctx;
1583	struct file_lock *fl;
1584
1585	lockdep_assert_held(&ctx->flc_lock);
1586
1587	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1588		if (leases_conflict(fl, breaker))
1589			return true;
1590	}
1591	return false;
1592}
1593
1594/**
1595 *	__break_lease	-	revoke all outstanding leases on file
1596 *	@inode: the inode of the file to return
1597 *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1598 *	    break all leases
1599 *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1600 *	    only delegations
1601 *
1602 *	break_lease (inlined for speed) has checked there already is at least
1603 *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1604 *	a call to open() or truncate().  This function can sleep unless you
1605 *	specified %O_NONBLOCK to your open().
1606 */
1607int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1608{
1609	int error = 0;
1610	struct file_lock_context *ctx;
1611	struct file_lock *new_fl, *fl, *tmp;
1612	unsigned long break_time;
1613	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1614	LIST_HEAD(dispose);
1615
1616	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1617	if (IS_ERR(new_fl))
1618		return PTR_ERR(new_fl);
1619	new_fl->fl_flags = type;
1620
1621	/* typically we will check that ctx is non-NULL before calling */
1622	ctx = smp_load_acquire(&inode->i_flctx);
1623	if (!ctx) {
1624		WARN_ON_ONCE(1);
1625		goto free_lock;
1626	}
1627
1628	percpu_down_read(&file_rwsem);
1629	spin_lock(&ctx->flc_lock);
1630
1631	time_out_leases(inode, &dispose);
1632
1633	if (!any_leases_conflict(inode, new_fl))
1634		goto out;
1635
1636	break_time = 0;
1637	if (lease_break_time > 0) {
1638		break_time = jiffies + lease_break_time * HZ;
1639		if (break_time == 0)
1640			break_time++;	/* so that 0 means no break time */
1641	}
1642
1643	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1644		if (!leases_conflict(fl, new_fl))
1645			continue;
1646		if (want_write) {
1647			if (fl->fl_flags & FL_UNLOCK_PENDING)
1648				continue;
1649			fl->fl_flags |= FL_UNLOCK_PENDING;
1650			fl->fl_break_time = break_time;
1651		} else {
1652			if (lease_breaking(fl))
1653				continue;
1654			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1655			fl->fl_downgrade_time = break_time;
1656		}
1657		if (fl->fl_lmops->lm_break(fl))
1658			locks_delete_lock_ctx(fl, &dispose);
1659	}
1660
1661	if (list_empty(&ctx->flc_lease))
1662		goto out;
1663
1664	if (mode & O_NONBLOCK) {
1665		trace_break_lease_noblock(inode, new_fl);
1666		error = -EWOULDBLOCK;
1667		goto out;
1668	}
1669
1670restart:
1671	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1672	break_time = fl->fl_break_time;
1673	if (break_time != 0)
1674		break_time -= jiffies;
1675	if (break_time == 0)
1676		break_time++;
1677	locks_insert_block(fl, new_fl, leases_conflict);
1678	trace_break_lease_block(inode, new_fl);
1679	spin_unlock(&ctx->flc_lock);
1680	percpu_up_read(&file_rwsem);
1681
1682	locks_dispose_list(&dispose);
1683	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1684					list_empty(&new_fl->fl_blocked_member),
1685					break_time);
1686
1687	percpu_down_read(&file_rwsem);
1688	spin_lock(&ctx->flc_lock);
1689	trace_break_lease_unblock(inode, new_fl);
1690	locks_delete_block(new_fl);
1691	if (error >= 0) {
1692		/*
1693		 * Wait for the next conflicting lease that has not been
1694		 * broken yet
1695		 */
1696		if (error == 0)
1697			time_out_leases(inode, &dispose);
1698		if (any_leases_conflict(inode, new_fl))
1699			goto restart;
1700		error = 0;
1701	}
1702out:
1703	spin_unlock(&ctx->flc_lock);
1704	percpu_up_read(&file_rwsem);
1705	locks_dispose_list(&dispose);
1706free_lock:
1707	locks_free_lock(new_fl);
1708	return error;
1709}
1710EXPORT_SYMBOL(__break_lease);
1711
1712/**
1713 *	lease_get_mtime - update modified time of an inode with exclusive lease
1714 *	@inode: the inode
1715 *      @time:  pointer to a timespec which contains the last modified time
1716 *
1717 * This is to force NFS clients to flush their caches for files with
1718 * exclusive leases.  The justification is that if someone has an
1719 * exclusive lease, then they could be modifying it.
1720 */
1721void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1722{
1723	bool has_lease = false;
1724	struct file_lock_context *ctx;
1725	struct file_lock *fl;
1726
1727	ctx = smp_load_acquire(&inode->i_flctx);
1728	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1729		spin_lock(&ctx->flc_lock);
1730		fl = list_first_entry_or_null(&ctx->flc_lease,
1731					      struct file_lock, fl_list);
1732		if (fl && (fl->fl_type == F_WRLCK))
1733			has_lease = true;
1734		spin_unlock(&ctx->flc_lock);
1735	}
1736
1737	if (has_lease)
1738		*time = current_time(inode);
1739}
1740EXPORT_SYMBOL(lease_get_mtime);
1741
1742/**
1743 *	fcntl_getlease - Enquire what lease is currently active
1744 *	@filp: the file
1745 *
1746 *	The value returned by this function will be one of
1747 *	(if no lease break is pending):
1748 *
1749 *	%F_RDLCK to indicate a shared lease is held.
1750 *
1751 *	%F_WRLCK to indicate an exclusive lease is held.
1752 *
1753 *	%F_UNLCK to indicate no lease is held.
1754 *
1755 *	(if a lease break is pending):
1756 *
1757 *	%F_RDLCK to indicate an exclusive lease needs to be
1758 *		changed to a shared lease (or removed).
1759 *
1760 *	%F_UNLCK to indicate the lease needs to be removed.
1761 *
1762 *	XXX: sfr & willy disagree over whether F_INPROGRESS
1763 *	should be returned to userspace.
1764 */
1765int fcntl_getlease(struct file *filp)
1766{
1767	struct file_lock *fl;
1768	struct inode *inode = locks_inode(filp);
1769	struct file_lock_context *ctx;
1770	int type = F_UNLCK;
1771	LIST_HEAD(dispose);
1772
1773	ctx = smp_load_acquire(&inode->i_flctx);
1774	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1775		percpu_down_read(&file_rwsem);
1776		spin_lock(&ctx->flc_lock);
1777		time_out_leases(inode, &dispose);
1778		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1779			if (fl->fl_file != filp)
1780				continue;
1781			type = target_leasetype(fl);
1782			break;
1783		}
1784		spin_unlock(&ctx->flc_lock);
1785		percpu_up_read(&file_rwsem);
1786
1787		locks_dispose_list(&dispose);
1788	}
1789	return type;
1790}
1791
1792/**
1793 * check_conflicting_open - see if the given file points to an inode that has
1794 *			    an existing open that would conflict with the
1795 *			    desired lease.
1796 * @filp:	file to check
1797 * @arg:	type of lease that we're trying to acquire
1798 * @flags:	current lock flags
1799 *
1800 * Check to see if there's an existing open fd on this file that would
1801 * conflict with the lease we're trying to set.
1802 */
1803static int
1804check_conflicting_open(struct file *filp, const long arg, int flags)
1805{
1806	struct inode *inode = locks_inode(filp);
1807	int self_wcount = 0, self_rcount = 0;
1808
1809	if (flags & FL_LAYOUT)
1810		return 0;
1811	if (flags & FL_DELEG)
1812		/* We leave these checks to the caller. */
1813		return 0;
1814
1815	if (arg == F_RDLCK)
1816		return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1817	else if (arg != F_WRLCK)
1818		return 0;
1819
1820	/*
1821	 * Make sure that only read/write count is from lease requestor.
1822	 * Note that this will result in denying write leases when i_writecount
1823	 * is negative, which is what we want.  (We shouldn't grant write leases
1824	 * on files open for execution.)
1825	 */
1826	if (filp->f_mode & FMODE_WRITE)
1827		self_wcount = 1;
1828	else if (filp->f_mode & FMODE_READ)
1829		self_rcount = 1;
1830
1831	if (atomic_read(&inode->i_writecount) != self_wcount ||
1832	    atomic_read(&inode->i_readcount) != self_rcount)
1833		return -EAGAIN;
1834
1835	return 0;
1836}
1837
1838static int
1839generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv)
1840{
1841	struct file_lock *fl, *my_fl = NULL, *lease;
1842	struct inode *inode = locks_inode(filp);
1843	struct file_lock_context *ctx;
1844	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1845	int error;
1846	LIST_HEAD(dispose);
1847
1848	lease = *flp;
1849	trace_generic_add_lease(inode, lease);
1850
1851	/* Note that arg is never F_UNLCK here */
1852	ctx = locks_get_lock_context(inode, arg);
1853	if (!ctx)
1854		return -ENOMEM;
1855
1856	/*
1857	 * In the delegation case we need mutual exclusion with
1858	 * a number of operations that take the i_mutex.  We trylock
1859	 * because delegations are an optional optimization, and if
1860	 * there's some chance of a conflict--we'd rather not
1861	 * bother, maybe that's a sign this just isn't a good file to
1862	 * hand out a delegation on.
1863	 */
1864	if (is_deleg && !inode_trylock(inode))
1865		return -EAGAIN;
1866
1867	if (is_deleg && arg == F_WRLCK) {
1868		/* Write delegations are not currently supported: */
1869		inode_unlock(inode);
1870		WARN_ON_ONCE(1);
1871		return -EINVAL;
1872	}
1873
1874	percpu_down_read(&file_rwsem);
1875	spin_lock(&ctx->flc_lock);
1876	time_out_leases(inode, &dispose);
1877	error = check_conflicting_open(filp, arg, lease->fl_flags);
1878	if (error)
1879		goto out;
1880
1881	/*
1882	 * At this point, we know that if there is an exclusive
1883	 * lease on this file, then we hold it on this filp
1884	 * (otherwise our open of this file would have blocked).
1885	 * And if we are trying to acquire an exclusive lease,
1886	 * then the file is not open by anyone (including us)
1887	 * except for this filp.
1888	 */
1889	error = -EAGAIN;
1890	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1891		if (fl->fl_file == filp &&
1892		    fl->fl_owner == lease->fl_owner) {
1893			my_fl = fl;
1894			continue;
1895		}
1896
1897		/*
1898		 * No exclusive leases if someone else has a lease on
1899		 * this file:
1900		 */
1901		if (arg == F_WRLCK)
1902			goto out;
1903		/*
1904		 * Modifying our existing lease is OK, but no getting a
1905		 * new lease if someone else is opening for write:
1906		 */
1907		if (fl->fl_flags & FL_UNLOCK_PENDING)
1908			goto out;
1909	}
1910
1911	if (my_fl != NULL) {
1912		lease = my_fl;
1913		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1914		if (error)
1915			goto out;
1916		goto out_setup;
1917	}
1918
1919	error = -EINVAL;
1920	if (!leases_enable)
1921		goto out;
1922
1923	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1924	/*
1925	 * The check in break_lease() is lockless. It's possible for another
1926	 * open to race in after we did the earlier check for a conflicting
1927	 * open but before the lease was inserted. Check again for a
1928	 * conflicting open and cancel the lease if there is one.
1929	 *
1930	 * We also add a barrier here to ensure that the insertion of the lock
1931	 * precedes these checks.
1932	 */
1933	smp_mb();
1934	error = check_conflicting_open(filp, arg, lease->fl_flags);
1935	if (error) {
1936		locks_unlink_lock_ctx(lease);
1937		goto out;
1938	}
1939
1940out_setup:
1941	if (lease->fl_lmops->lm_setup)
1942		lease->fl_lmops->lm_setup(lease, priv);
1943out:
1944	spin_unlock(&ctx->flc_lock);
1945	percpu_up_read(&file_rwsem);
1946	locks_dispose_list(&dispose);
1947	if (is_deleg)
1948		inode_unlock(inode);
1949	if (!error && !my_fl)
1950		*flp = NULL;
1951	return error;
1952}
1953
1954static int generic_delete_lease(struct file *filp, void *owner)
1955{
1956	int error = -EAGAIN;
1957	struct file_lock *fl, *victim = NULL;
1958	struct inode *inode = locks_inode(filp);
1959	struct file_lock_context *ctx;
1960	LIST_HEAD(dispose);
1961
1962	ctx = smp_load_acquire(&inode->i_flctx);
1963	if (!ctx) {
1964		trace_generic_delete_lease(inode, NULL);
1965		return error;
1966	}
1967
1968	percpu_down_read(&file_rwsem);
1969	spin_lock(&ctx->flc_lock);
1970	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1971		if (fl->fl_file == filp &&
1972		    fl->fl_owner == owner) {
1973			victim = fl;
1974			break;
1975		}
1976	}
1977	trace_generic_delete_lease(inode, victim);
1978	if (victim)
1979		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1980	spin_unlock(&ctx->flc_lock);
1981	percpu_up_read(&file_rwsem);
1982	locks_dispose_list(&dispose);
1983	return error;
1984}
1985
1986/**
1987 *	generic_setlease	-	sets a lease on an open file
1988 *	@filp:	file pointer
1989 *	@arg:	type of lease to obtain
1990 *	@flp:	input - file_lock to use, output - file_lock inserted
1991 *	@priv:	private data for lm_setup (may be NULL if lm_setup
1992 *		doesn't require it)
1993 *
1994 *	The (input) flp->fl_lmops->lm_break function is required
1995 *	by break_lease().
1996 */
1997int generic_setlease(struct file *filp, long arg, struct file_lock **flp,
1998			void **priv)
1999{
2000	struct inode *inode = locks_inode(filp);
 
2001	int error;
2002
2003	if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
2004		return -EACCES;
2005	if (!S_ISREG(inode->i_mode))
2006		return -EINVAL;
2007	error = security_file_lock(filp, arg);
2008	if (error)
2009		return error;
2010
2011	switch (arg) {
2012	case F_UNLCK:
2013		return generic_delete_lease(filp, *priv);
2014	case F_RDLCK:
2015	case F_WRLCK:
2016		if (!(*flp)->fl_lmops->lm_break) {
2017			WARN_ON_ONCE(1);
2018			return -ENOLCK;
2019		}
2020
2021		return generic_add_lease(filp, arg, flp, priv);
2022	default:
2023		return -EINVAL;
2024	}
2025}
2026EXPORT_SYMBOL(generic_setlease);
2027
2028#if IS_ENABLED(CONFIG_SRCU)
2029/*
2030 * Kernel subsystems can register to be notified on any attempt to set
2031 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
2032 * to close files that it may have cached when there is an attempt to set a
2033 * conflicting lease.
2034 */
2035static struct srcu_notifier_head lease_notifier_chain;
2036
2037static inline void
2038lease_notifier_chain_init(void)
2039{
2040	srcu_init_notifier_head(&lease_notifier_chain);
2041}
2042
2043static inline void
2044setlease_notifier(long arg, struct file_lock *lease)
2045{
2046	if (arg != F_UNLCK)
2047		srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
2048}
2049
2050int lease_register_notifier(struct notifier_block *nb)
2051{
2052	return srcu_notifier_chain_register(&lease_notifier_chain, nb);
2053}
2054EXPORT_SYMBOL_GPL(lease_register_notifier);
2055
2056void lease_unregister_notifier(struct notifier_block *nb)
2057{
2058	srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
2059}
2060EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2061
2062#else /* !IS_ENABLED(CONFIG_SRCU) */
2063static inline void
2064lease_notifier_chain_init(void)
2065{
2066}
2067
2068static inline void
2069setlease_notifier(long arg, struct file_lock *lease)
2070{
2071}
2072
2073int lease_register_notifier(struct notifier_block *nb)
2074{
2075	return 0;
2076}
2077EXPORT_SYMBOL_GPL(lease_register_notifier);
2078
2079void lease_unregister_notifier(struct notifier_block *nb)
2080{
2081}
2082EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2083
2084#endif /* IS_ENABLED(CONFIG_SRCU) */
2085
2086/**
2087 * vfs_setlease        -       sets a lease on an open file
2088 * @filp:	file pointer
2089 * @arg:	type of lease to obtain
2090 * @lease:	file_lock to use when adding a lease
2091 * @priv:	private info for lm_setup when adding a lease (may be
2092 *		NULL if lm_setup doesn't require it)
2093 *
2094 * Call this to establish a lease on the file. The "lease" argument is not
2095 * used for F_UNLCK requests and may be NULL. For commands that set or alter
2096 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
2097 * set; if not, this function will return -ENOLCK (and generate a scary-looking
2098 * stack trace).
2099 *
2100 * The "priv" pointer is passed directly to the lm_setup function as-is. It
2101 * may be NULL if the lm_setup operation doesn't require it.
2102 */
2103int
2104vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv)
2105{
2106	if (lease)
2107		setlease_notifier(arg, *lease);
2108	if (filp->f_op->setlease)
2109		return filp->f_op->setlease(filp, arg, lease, priv);
2110	else
2111		return generic_setlease(filp, arg, lease, priv);
2112}
2113EXPORT_SYMBOL_GPL(vfs_setlease);
2114
2115static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
2116{
2117	struct file_lock *fl;
2118	struct fasync_struct *new;
2119	int error;
2120
2121	fl = lease_alloc(filp, arg);
2122	if (IS_ERR(fl))
2123		return PTR_ERR(fl);
2124
2125	new = fasync_alloc();
2126	if (!new) {
2127		locks_free_lock(fl);
2128		return -ENOMEM;
2129	}
2130	new->fa_fd = fd;
2131
2132	error = vfs_setlease(filp, arg, &fl, (void **)&new);
2133	if (fl)
2134		locks_free_lock(fl);
2135	if (new)
2136		fasync_free(new);
2137	return error;
2138}
2139
2140/**
2141 *	fcntl_setlease	-	sets a lease on an open file
2142 *	@fd: open file descriptor
2143 *	@filp: file pointer
2144 *	@arg: type of lease to obtain
2145 *
2146 *	Call this fcntl to establish a lease on the file.
2147 *	Note that you also need to call %F_SETSIG to
2148 *	receive a signal when the lease is broken.
2149 */
2150int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
2151{
2152	if (arg == F_UNLCK)
2153		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2154	return do_fcntl_add_lease(fd, filp, arg);
2155}
2156
2157/**
2158 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2159 * @inode: inode of the file to apply to
2160 * @fl: The lock to be applied
2161 *
2162 * Apply a FLOCK style lock request to an inode.
2163 */
2164static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2165{
2166	int error;
2167	might_sleep();
2168	for (;;) {
2169		error = flock_lock_inode(inode, fl);
2170		if (error != FILE_LOCK_DEFERRED)
2171			break;
2172		error = wait_event_interruptible(fl->fl_wait,
2173				list_empty(&fl->fl_blocked_member));
2174		if (error)
2175			break;
2176	}
2177	locks_delete_block(fl);
2178	return error;
2179}
2180
2181/**
2182 * locks_lock_inode_wait - Apply a lock to an inode
2183 * @inode: inode of the file to apply to
2184 * @fl: The lock to be applied
2185 *
2186 * Apply a POSIX or FLOCK style lock request to an inode.
2187 */
2188int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2189{
2190	int res = 0;
2191	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2192		case FL_POSIX:
2193			res = posix_lock_inode_wait(inode, fl);
2194			break;
2195		case FL_FLOCK:
2196			res = flock_lock_inode_wait(inode, fl);
2197			break;
2198		default:
2199			BUG();
2200	}
2201	return res;
2202}
2203EXPORT_SYMBOL(locks_lock_inode_wait);
2204
2205/**
2206 *	sys_flock: - flock() system call.
2207 *	@fd: the file descriptor to lock.
2208 *	@cmd: the type of lock to apply.
2209 *
2210 *	Apply a %FL_FLOCK style lock to an open file descriptor.
2211 *	The @cmd can be one of:
2212 *
2213 *	- %LOCK_SH -- a shared lock.
2214 *	- %LOCK_EX -- an exclusive lock.
2215 *	- %LOCK_UN -- remove an existing lock.
2216 *	- %LOCK_MAND -- a 'mandatory' flock.
2217 *	  This exists to emulate Windows Share Modes.
2218 *
2219 *	%LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other
2220 *	processes read and write access respectively.
2221 */
2222SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2223{
2224	struct fd f = fdget(fd);
2225	struct file_lock *lock;
2226	int can_sleep, unlock;
2227	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228
2229	error = -EBADF;
 
2230	if (!f.file)
2231		goto out;
2232
2233	can_sleep = !(cmd & LOCK_NB);
2234	cmd &= ~LOCK_NB;
2235	unlock = (cmd == LOCK_UN);
2236
2237	if (!unlock && !(cmd & LOCK_MAND) &&
2238	    !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
2239		goto out_putf;
2240
2241	lock = flock_make_lock(f.file, cmd, NULL);
2242	if (IS_ERR(lock)) {
2243		error = PTR_ERR(lock);
 
2244		goto out_putf;
2245	}
2246
 
2247	if (can_sleep)
2248		lock->fl_flags |= FL_SLEEP;
2249
2250	error = security_file_lock(f.file, lock->fl_type);
2251	if (error)
2252		goto out_free;
2253
2254	if (f.file->f_op->flock)
2255		error = f.file->f_op->flock(f.file,
2256					  (can_sleep) ? F_SETLKW : F_SETLK,
2257					  lock);
2258	else
2259		error = locks_lock_file_wait(f.file, lock);
2260
2261 out_free:
2262	locks_free_lock(lock);
2263
 
2264 out_putf:
2265	fdput(f);
2266 out:
2267	return error;
2268}
2269
2270/**
2271 * vfs_test_lock - test file byte range lock
2272 * @filp: The file to test lock for
2273 * @fl: The lock to test; also used to hold result
2274 *
2275 * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2276 * setting conf->fl_type to something other than F_UNLCK.
2277 */
2278int vfs_test_lock(struct file *filp, struct file_lock *fl)
2279{
 
2280	if (filp->f_op->lock)
2281		return filp->f_op->lock(filp, F_GETLK, fl);
2282	posix_test_lock(filp, fl);
2283	return 0;
2284}
2285EXPORT_SYMBOL_GPL(vfs_test_lock);
2286
2287/**
2288 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2289 * @fl: The file_lock who's fl_pid should be translated
2290 * @ns: The namespace into which the pid should be translated
2291 *
2292 * Used to tranlate a fl_pid into a namespace virtual pid number
2293 */
2294static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2295{
2296	pid_t vnr;
2297	struct pid *pid;
2298
2299	if (IS_OFDLCK(fl))
2300		return -1;
2301	if (IS_REMOTELCK(fl))
2302		return fl->fl_pid;
2303	/*
2304	 * If the flock owner process is dead and its pid has been already
2305	 * freed, the translation below won't work, but we still want to show
2306	 * flock owner pid number in init pidns.
2307	 */
2308	if (ns == &init_pid_ns)
2309		return (pid_t)fl->fl_pid;
2310
2311	rcu_read_lock();
2312	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2313	vnr = pid_nr_ns(pid, ns);
2314	rcu_read_unlock();
2315	return vnr;
2316}
2317
2318static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2319{
2320	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2321#if BITS_PER_LONG == 32
2322	/*
2323	 * Make sure we can represent the posix lock via
2324	 * legacy 32bit flock.
2325	 */
2326	if (fl->fl_start > OFFT_OFFSET_MAX)
2327		return -EOVERFLOW;
2328	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2329		return -EOVERFLOW;
2330#endif
2331	flock->l_start = fl->fl_start;
2332	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2333		fl->fl_end - fl->fl_start + 1;
2334	flock->l_whence = 0;
2335	flock->l_type = fl->fl_type;
2336	return 0;
2337}
2338
2339#if BITS_PER_LONG == 32
2340static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2341{
2342	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2343	flock->l_start = fl->fl_start;
2344	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2345		fl->fl_end - fl->fl_start + 1;
2346	flock->l_whence = 0;
2347	flock->l_type = fl->fl_type;
2348}
2349#endif
2350
2351/* Report the first existing lock that would conflict with l.
2352 * This implements the F_GETLK command of fcntl().
2353 */
2354int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2355{
2356	struct file_lock *fl;
2357	int error;
2358
2359	fl = locks_alloc_lock();
2360	if (fl == NULL)
2361		return -ENOMEM;
2362	error = -EINVAL;
2363	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
 
2364		goto out;
2365
2366	error = flock_to_posix_lock(filp, fl, flock);
2367	if (error)
2368		goto out;
2369
2370	if (cmd == F_OFD_GETLK) {
2371		error = -EINVAL;
2372		if (flock->l_pid != 0)
2373			goto out;
2374
2375		cmd = F_GETLK;
2376		fl->fl_flags |= FL_OFDLCK;
2377		fl->fl_owner = filp;
2378	}
2379
2380	error = vfs_test_lock(filp, fl);
2381	if (error)
2382		goto out;
2383
2384	flock->l_type = fl->fl_type;
2385	if (fl->fl_type != F_UNLCK) {
2386		error = posix_lock_to_flock(flock, fl);
2387		if (error)
2388			goto out;
2389	}
2390out:
2391	locks_free_lock(fl);
2392	return error;
2393}
2394
2395/**
2396 * vfs_lock_file - file byte range lock
2397 * @filp: The file to apply the lock to
2398 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2399 * @fl: The lock to be applied
2400 * @conf: Place to return a copy of the conflicting lock, if found.
2401 *
2402 * A caller that doesn't care about the conflicting lock may pass NULL
2403 * as the final argument.
2404 *
2405 * If the filesystem defines a private ->lock() method, then @conf will
2406 * be left unchanged; so a caller that cares should initialize it to
2407 * some acceptable default.
2408 *
2409 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2410 * locks, the ->lock() interface may return asynchronously, before the lock has
2411 * been granted or denied by the underlying filesystem, if (and only if)
2412 * lm_grant is set. Callers expecting ->lock() to return asynchronously
2413 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
2414 * the request is for a blocking lock. When ->lock() does return asynchronously,
2415 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
2416 * request completes.
 
 
2417 * If the request is for non-blocking lock the file system should return
2418 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2419 * with the result. If the request timed out the callback routine will return a
2420 * nonzero return code and the file system should release the lock. The file
2421 * system is also responsible to keep a corresponding posix lock when it
2422 * grants a lock so the VFS can find out which locks are locally held and do
2423 * the correct lock cleanup when required.
2424 * The underlying filesystem must not drop the kernel lock or call
2425 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2426 * return code.
2427 */
2428int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2429{
 
2430	if (filp->f_op->lock)
2431		return filp->f_op->lock(filp, cmd, fl);
2432	else
2433		return posix_lock_file(filp, fl, conf);
2434}
2435EXPORT_SYMBOL_GPL(vfs_lock_file);
2436
2437static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2438			     struct file_lock *fl)
2439{
2440	int error;
2441
2442	error = security_file_lock(filp, fl->fl_type);
2443	if (error)
2444		return error;
2445
2446	for (;;) {
2447		error = vfs_lock_file(filp, cmd, fl, NULL);
2448		if (error != FILE_LOCK_DEFERRED)
2449			break;
2450		error = wait_event_interruptible(fl->fl_wait,
2451					list_empty(&fl->fl_blocked_member));
2452		if (error)
2453			break;
2454	}
2455	locks_delete_block(fl);
2456
2457	return error;
2458}
2459
2460/* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2461static int
2462check_fmode_for_setlk(struct file_lock *fl)
2463{
2464	switch (fl->fl_type) {
2465	case F_RDLCK:
2466		if (!(fl->fl_file->f_mode & FMODE_READ))
2467			return -EBADF;
2468		break;
2469	case F_WRLCK:
2470		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2471			return -EBADF;
2472	}
2473	return 0;
2474}
2475
2476/* Apply the lock described by l to an open file descriptor.
2477 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2478 */
2479int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2480		struct flock *flock)
2481{
2482	struct file_lock *file_lock = locks_alloc_lock();
2483	struct inode *inode = locks_inode(filp);
2484	struct file *f;
2485	int error;
2486
2487	if (file_lock == NULL)
2488		return -ENOLCK;
2489
2490	/* Don't allow mandatory locks on files that may be memory mapped
2491	 * and shared.
2492	 */
2493	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2494		error = -EAGAIN;
2495		goto out;
2496	}
2497
2498	error = flock_to_posix_lock(filp, file_lock, flock);
2499	if (error)
2500		goto out;
2501
2502	error = check_fmode_for_setlk(file_lock);
2503	if (error)
2504		goto out;
2505
2506	/*
2507	 * If the cmd is requesting file-private locks, then set the
2508	 * FL_OFDLCK flag and override the owner.
2509	 */
2510	switch (cmd) {
2511	case F_OFD_SETLK:
2512		error = -EINVAL;
2513		if (flock->l_pid != 0)
2514			goto out;
2515
2516		cmd = F_SETLK;
2517		file_lock->fl_flags |= FL_OFDLCK;
2518		file_lock->fl_owner = filp;
2519		break;
2520	case F_OFD_SETLKW:
2521		error = -EINVAL;
2522		if (flock->l_pid != 0)
2523			goto out;
2524
2525		cmd = F_SETLKW;
2526		file_lock->fl_flags |= FL_OFDLCK;
2527		file_lock->fl_owner = filp;
2528		fallthrough;
2529	case F_SETLKW:
2530		file_lock->fl_flags |= FL_SLEEP;
2531	}
2532
2533	error = do_lock_file_wait(filp, cmd, file_lock);
2534
2535	/*
2536	 * Attempt to detect a close/fcntl race and recover by releasing the
2537	 * lock that was just acquired. There is no need to do that when we're
2538	 * unlocking though, or for OFD locks.
2539	 */
2540	if (!error && file_lock->fl_type != F_UNLCK &&
2541	    !(file_lock->fl_flags & FL_OFDLCK)) {
 
2542		/*
2543		 * We need that spin_lock here - it prevents reordering between
2544		 * update of i_flctx->flc_posix and check for it done in
2545		 * close(). rcu_read_lock() wouldn't do.
2546		 */
2547		spin_lock(&current->files->file_lock);
2548		f = fcheck(fd);
2549		spin_unlock(&current->files->file_lock);
2550		if (f != filp) {
2551			file_lock->fl_type = F_UNLCK;
2552			error = do_lock_file_wait(filp, cmd, file_lock);
2553			WARN_ON_ONCE(error);
2554			error = -EBADF;
2555		}
2556	}
2557out:
2558	trace_fcntl_setlk(inode, file_lock, error);
2559	locks_free_lock(file_lock);
2560	return error;
2561}
2562
2563#if BITS_PER_LONG == 32
2564/* Report the first existing lock that would conflict with l.
2565 * This implements the F_GETLK command of fcntl().
2566 */
2567int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2568{
2569	struct file_lock *fl;
2570	int error;
2571
2572	fl = locks_alloc_lock();
2573	if (fl == NULL)
2574		return -ENOMEM;
2575
2576	error = -EINVAL;
2577	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
 
2578		goto out;
2579
2580	error = flock64_to_posix_lock(filp, fl, flock);
2581	if (error)
2582		goto out;
2583
2584	if (cmd == F_OFD_GETLK) {
2585		error = -EINVAL;
2586		if (flock->l_pid != 0)
2587			goto out;
2588
2589		cmd = F_GETLK64;
2590		fl->fl_flags |= FL_OFDLCK;
2591		fl->fl_owner = filp;
2592	}
2593
2594	error = vfs_test_lock(filp, fl);
2595	if (error)
2596		goto out;
2597
2598	flock->l_type = fl->fl_type;
2599	if (fl->fl_type != F_UNLCK)
2600		posix_lock_to_flock64(flock, fl);
2601
2602out:
2603	locks_free_lock(fl);
2604	return error;
2605}
2606
2607/* Apply the lock described by l to an open file descriptor.
2608 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2609 */
2610int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2611		struct flock64 *flock)
2612{
2613	struct file_lock *file_lock = locks_alloc_lock();
2614	struct inode *inode = locks_inode(filp);
2615	struct file *f;
2616	int error;
2617
2618	if (file_lock == NULL)
2619		return -ENOLCK;
2620
2621	/* Don't allow mandatory locks on files that may be memory mapped
2622	 * and shared.
2623	 */
2624	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2625		error = -EAGAIN;
2626		goto out;
2627	}
2628
2629	error = flock64_to_posix_lock(filp, file_lock, flock);
2630	if (error)
2631		goto out;
2632
2633	error = check_fmode_for_setlk(file_lock);
2634	if (error)
2635		goto out;
2636
2637	/*
2638	 * If the cmd is requesting file-private locks, then set the
2639	 * FL_OFDLCK flag and override the owner.
2640	 */
2641	switch (cmd) {
2642	case F_OFD_SETLK:
2643		error = -EINVAL;
2644		if (flock->l_pid != 0)
2645			goto out;
2646
2647		cmd = F_SETLK64;
2648		file_lock->fl_flags |= FL_OFDLCK;
2649		file_lock->fl_owner = filp;
2650		break;
2651	case F_OFD_SETLKW:
2652		error = -EINVAL;
2653		if (flock->l_pid != 0)
2654			goto out;
2655
2656		cmd = F_SETLKW64;
2657		file_lock->fl_flags |= FL_OFDLCK;
2658		file_lock->fl_owner = filp;
2659		fallthrough;
2660	case F_SETLKW64:
2661		file_lock->fl_flags |= FL_SLEEP;
2662	}
2663
2664	error = do_lock_file_wait(filp, cmd, file_lock);
2665
2666	/*
2667	 * Attempt to detect a close/fcntl race and recover by releasing the
2668	 * lock that was just acquired. There is no need to do that when we're
2669	 * unlocking though, or for OFD locks.
2670	 */
2671	if (!error && file_lock->fl_type != F_UNLCK &&
2672	    !(file_lock->fl_flags & FL_OFDLCK)) {
 
2673		/*
2674		 * We need that spin_lock here - it prevents reordering between
2675		 * update of i_flctx->flc_posix and check for it done in
2676		 * close(). rcu_read_lock() wouldn't do.
2677		 */
2678		spin_lock(&current->files->file_lock);
2679		f = fcheck(fd);
2680		spin_unlock(&current->files->file_lock);
2681		if (f != filp) {
2682			file_lock->fl_type = F_UNLCK;
2683			error = do_lock_file_wait(filp, cmd, file_lock);
2684			WARN_ON_ONCE(error);
2685			error = -EBADF;
2686		}
2687	}
2688out:
2689	locks_free_lock(file_lock);
2690	return error;
2691}
2692#endif /* BITS_PER_LONG == 32 */
2693
2694/*
2695 * This function is called when the file is being removed
2696 * from the task's fd array.  POSIX locks belonging to this task
2697 * are deleted at this time.
2698 */
2699void locks_remove_posix(struct file *filp, fl_owner_t owner)
2700{
2701	int error;
2702	struct inode *inode = locks_inode(filp);
2703	struct file_lock lock;
2704	struct file_lock_context *ctx;
2705
2706	/*
2707	 * If there are no locks held on this file, we don't need to call
2708	 * posix_lock_file().  Another process could be setting a lock on this
2709	 * file at the same time, but we wouldn't remove that lock anyway.
2710	 */
2711	ctx =  smp_load_acquire(&inode->i_flctx);
2712	if (!ctx || list_empty(&ctx->flc_posix))
2713		return;
2714
2715	locks_init_lock(&lock);
2716	lock.fl_type = F_UNLCK;
2717	lock.fl_flags = FL_POSIX | FL_CLOSE;
2718	lock.fl_start = 0;
2719	lock.fl_end = OFFSET_MAX;
2720	lock.fl_owner = owner;
2721	lock.fl_pid = current->tgid;
2722	lock.fl_file = filp;
2723	lock.fl_ops = NULL;
2724	lock.fl_lmops = NULL;
2725
2726	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2727
2728	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2729		lock.fl_ops->fl_release_private(&lock);
2730	trace_locks_remove_posix(inode, &lock, error);
2731}
2732EXPORT_SYMBOL(locks_remove_posix);
2733
2734/* The i_flctx must be valid when calling into here */
2735static void
2736locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2737{
2738	struct file_lock fl;
2739	struct inode *inode = locks_inode(filp);
2740
2741	if (list_empty(&flctx->flc_flock))
2742		return;
2743
2744	flock_make_lock(filp, LOCK_UN, &fl);
2745	fl.fl_flags |= FL_CLOSE;
2746
2747	if (filp->f_op->flock)
2748		filp->f_op->flock(filp, F_SETLKW, &fl);
2749	else
2750		flock_lock_inode(inode, &fl);
2751
2752	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2753		fl.fl_ops->fl_release_private(&fl);
2754}
2755
2756/* The i_flctx must be valid when calling into here */
2757static void
2758locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2759{
2760	struct file_lock *fl, *tmp;
2761	LIST_HEAD(dispose);
2762
2763	if (list_empty(&ctx->flc_lease))
2764		return;
2765
2766	percpu_down_read(&file_rwsem);
2767	spin_lock(&ctx->flc_lock);
2768	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2769		if (filp == fl->fl_file)
2770			lease_modify(fl, F_UNLCK, &dispose);
2771	spin_unlock(&ctx->flc_lock);
2772	percpu_up_read(&file_rwsem);
2773
2774	locks_dispose_list(&dispose);
2775}
2776
2777/*
2778 * This function is called on the last close of an open file.
2779 */
2780void locks_remove_file(struct file *filp)
2781{
2782	struct file_lock_context *ctx;
2783
2784	ctx = smp_load_acquire(&locks_inode(filp)->i_flctx);
2785	if (!ctx)
2786		return;
2787
2788	/* remove any OFD locks */
2789	locks_remove_posix(filp, filp);
2790
2791	/* remove flock locks */
2792	locks_remove_flock(filp, ctx);
2793
2794	/* remove any leases */
2795	locks_remove_lease(filp, ctx);
2796
2797	spin_lock(&ctx->flc_lock);
2798	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2799	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2800	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2801	spin_unlock(&ctx->flc_lock);
2802}
2803
2804/**
2805 * vfs_cancel_lock - file byte range unblock lock
2806 * @filp: The file to apply the unblock to
2807 * @fl: The lock to be unblocked
2808 *
2809 * Used by lock managers to cancel blocked requests
2810 */
2811int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2812{
 
2813	if (filp->f_op->lock)
2814		return filp->f_op->lock(filp, F_CANCELLK, fl);
2815	return 0;
2816}
2817EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2819#ifdef CONFIG_PROC_FS
2820#include <linux/proc_fs.h>
2821#include <linux/seq_file.h>
2822
2823struct locks_iterator {
2824	int	li_cpu;
2825	loff_t	li_pos;
2826};
2827
2828static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2829			    loff_t id, char *pfx)
2830{
2831	struct inode *inode = NULL;
2832	unsigned int fl_pid;
2833	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
 
2834
2835	fl_pid = locks_translate_pid(fl, proc_pidns);
2836	/*
2837	 * If lock owner is dead (and pid is freed) or not visible in current
2838	 * pidns, zero is shown as a pid value. Check lock info from
2839	 * init_pid_ns to get saved lock pid value.
2840	 */
2841
2842	if (fl->fl_file != NULL)
2843		inode = locks_inode(fl->fl_file);
 
 
 
 
 
2844
2845	seq_printf(f, "%lld:%s ", id, pfx);
2846	if (IS_POSIX(fl)) {
2847		if (fl->fl_flags & FL_ACCESS)
2848			seq_puts(f, "ACCESS");
2849		else if (IS_OFDLCK(fl))
2850			seq_puts(f, "OFDLCK");
2851		else
2852			seq_puts(f, "POSIX ");
2853
2854		seq_printf(f, " %s ",
2855			     (inode == NULL) ? "*NOINODE*" :
2856			     mandatory_lock(inode) ? "MANDATORY" : "ADVISORY ");
2857	} else if (IS_FLOCK(fl)) {
2858		if (fl->fl_type & LOCK_MAND) {
2859			seq_puts(f, "FLOCK  MSNFS     ");
2860		} else {
2861			seq_puts(f, "FLOCK  ADVISORY  ");
2862		}
2863	} else if (IS_LEASE(fl)) {
2864		if (fl->fl_flags & FL_DELEG)
2865			seq_puts(f, "DELEG  ");
2866		else
2867			seq_puts(f, "LEASE  ");
2868
2869		if (lease_breaking(fl))
2870			seq_puts(f, "BREAKING  ");
2871		else if (fl->fl_file)
2872			seq_puts(f, "ACTIVE    ");
2873		else
2874			seq_puts(f, "BREAKER   ");
2875	} else {
2876		seq_puts(f, "UNKNOWN UNKNOWN  ");
2877	}
2878	if (fl->fl_type & LOCK_MAND) {
2879		seq_printf(f, "%s ",
2880			       (fl->fl_type & LOCK_READ)
2881			       ? (fl->fl_type & LOCK_WRITE) ? "RW   " : "READ "
2882			       : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE ");
2883	} else {
2884		int type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type;
2885
2886		seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2887				     (type == F_RDLCK) ? "READ" : "UNLCK");
2888	}
2889	if (inode) {
2890		/* userspace relies on this representation of dev_t */
2891		seq_printf(f, "%d %02x:%02x:%lu ", fl_pid,
2892				MAJOR(inode->i_sb->s_dev),
2893				MINOR(inode->i_sb->s_dev), inode->i_ino);
2894	} else {
2895		seq_printf(f, "%d <none>:0 ", fl_pid);
2896	}
2897	if (IS_POSIX(fl)) {
2898		if (fl->fl_end == OFFSET_MAX)
2899			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2900		else
2901			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2902	} else {
2903		seq_puts(f, "0 EOF\n");
2904	}
2905}
2906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2907static int locks_show(struct seq_file *f, void *v)
2908{
2909	struct locks_iterator *iter = f->private;
2910	struct file_lock *fl, *bfl;
2911	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
 
2912
2913	fl = hlist_entry(v, struct file_lock, fl_link);
2914
2915	if (locks_translate_pid(fl, proc_pidns) == 0)
2916		return 0;
2917
2918	lock_get_status(f, fl, iter->li_pos, "");
 
 
 
 
 
 
 
 
 
2919
2920	list_for_each_entry(bfl, &fl->fl_blocked_requests, fl_blocked_member)
2921		lock_get_status(f, bfl, iter->li_pos, " ->");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922
2923	return 0;
2924}
2925
2926static void __show_fd_locks(struct seq_file *f,
2927			struct list_head *head, int *id,
2928			struct file *filp, struct files_struct *files)
2929{
2930	struct file_lock *fl;
2931
2932	list_for_each_entry(fl, head, fl_list) {
2933
2934		if (filp != fl->fl_file)
2935			continue;
2936		if (fl->fl_owner != files &&
2937		    fl->fl_owner != filp)
2938			continue;
2939
2940		(*id)++;
2941		seq_puts(f, "lock:\t");
2942		lock_get_status(f, fl, *id, "");
2943	}
2944}
2945
2946void show_fd_locks(struct seq_file *f,
2947		  struct file *filp, struct files_struct *files)
2948{
2949	struct inode *inode = locks_inode(filp);
2950	struct file_lock_context *ctx;
2951	int id = 0;
2952
2953	ctx = smp_load_acquire(&inode->i_flctx);
2954	if (!ctx)
2955		return;
2956
2957	spin_lock(&ctx->flc_lock);
2958	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2959	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2960	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2961	spin_unlock(&ctx->flc_lock);
2962}
2963
2964static void *locks_start(struct seq_file *f, loff_t *pos)
2965	__acquires(&blocked_lock_lock)
2966{
2967	struct locks_iterator *iter = f->private;
2968
2969	iter->li_pos = *pos + 1;
2970	percpu_down_write(&file_rwsem);
2971	spin_lock(&blocked_lock_lock);
2972	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2973}
2974
2975static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2976{
2977	struct locks_iterator *iter = f->private;
2978
2979	++iter->li_pos;
2980	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2981}
2982
2983static void locks_stop(struct seq_file *f, void *v)
2984	__releases(&blocked_lock_lock)
2985{
2986	spin_unlock(&blocked_lock_lock);
2987	percpu_up_write(&file_rwsem);
2988}
2989
2990static const struct seq_operations locks_seq_operations = {
2991	.start	= locks_start,
2992	.next	= locks_next,
2993	.stop	= locks_stop,
2994	.show	= locks_show,
2995};
2996
2997static int __init proc_locks_init(void)
2998{
2999	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
3000			sizeof(struct locks_iterator), NULL);
3001	return 0;
3002}
3003fs_initcall(proc_locks_init);
3004#endif
3005
3006static int __init filelock_init(void)
3007{
3008	int i;
3009
3010	flctx_cache = kmem_cache_create("file_lock_ctx",
3011			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
3012
3013	filelock_cache = kmem_cache_create("file_lock_cache",
3014			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
3015
3016	for_each_possible_cpu(i) {
3017		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
3018
3019		spin_lock_init(&fll->lock);
3020		INIT_HLIST_HEAD(&fll->hlist);
3021	}
3022
3023	lease_notifier_chain_init();
3024	return 0;
3025}
3026core_initcall(filelock_init);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/locks.c
   4 *
   5 * We implement four types of file locks: BSD locks, posix locks, open
   6 * file description locks, and leases.  For details about BSD locks,
   7 * see the flock(2) man page; for details about the other three, see
   8 * fcntl(2).
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 *
  11 * Locking conflicts and dependencies:
  12 * If multiple threads attempt to lock the same byte (or flock the same file)
  13 * only one can be granted the lock, and other must wait their turn.
  14 * The first lock has been "applied" or "granted", the others are "waiting"
  15 * and are "blocked" by the "applied" lock..
  16 *
  17 * Waiting and applied locks are all kept in trees whose properties are:
  18 *
  19 *	- the root of a tree may be an applied or waiting lock.
  20 *	- every other node in the tree is a waiting lock that
  21 *	  conflicts with every ancestor of that node.
  22 *
  23 * Every such tree begins life as a waiting singleton which obviously
  24 * satisfies the above properties.
  25 *
  26 * The only ways we modify trees preserve these properties:
  27 *
  28 *	1. We may add a new leaf node, but only after first verifying that it
  29 *	   conflicts with all of its ancestors.
  30 *	2. We may remove the root of a tree, creating a new singleton
  31 *	   tree from the root and N new trees rooted in the immediate
  32 *	   children.
  33 *	3. If the root of a tree is not currently an applied lock, we may
  34 *	   apply it (if possible).
  35 *	4. We may upgrade the root of the tree (either extend its range,
  36 *	   or upgrade its entire range from read to write).
  37 *
  38 * When an applied lock is modified in a way that reduces or downgrades any
  39 * part of its range, we remove all its children (2 above).  This particularly
  40 * happens when a lock is unlocked.
  41 *
  42 * For each of those child trees we "wake up" the thread which is
  43 * waiting for the lock so it can continue handling as follows: if the
  44 * root of the tree applies, we do so (3).  If it doesn't, it must
  45 * conflict with some applied lock.  We remove (wake up) all of its children
  46 * (2), and add it is a new leaf to the tree rooted in the applied
  47 * lock (1).  We then repeat the process recursively with those
  48 * children.
  49 *
  50 */
  51
  52#include <linux/capability.h>
  53#include <linux/file.h>
  54#include <linux/fdtable.h>
  55#include <linux/filelock.h>
  56#include <linux/fs.h>
  57#include <linux/init.h>
  58#include <linux/security.h>
  59#include <linux/slab.h>
  60#include <linux/syscalls.h>
  61#include <linux/time.h>
  62#include <linux/rcupdate.h>
  63#include <linux/pid_namespace.h>
  64#include <linux/hashtable.h>
  65#include <linux/percpu.h>
  66#include <linux/sysctl.h>
  67
  68#define CREATE_TRACE_POINTS
  69#include <trace/events/filelock.h>
  70
  71#include <linux/uaccess.h>
  72
  73#define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
  74#define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
  75#define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
  76#define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
  77#define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
  78
  79static bool lease_breaking(struct file_lock *fl)
  80{
  81	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
  82}
  83
  84static int target_leasetype(struct file_lock *fl)
  85{
  86	if (fl->fl_flags & FL_UNLOCK_PENDING)
  87		return F_UNLCK;
  88	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
  89		return F_RDLCK;
  90	return fl->fl_type;
  91}
  92
  93static int leases_enable = 1;
  94static int lease_break_time = 45;
  95
  96#ifdef CONFIG_SYSCTL
  97static struct ctl_table locks_sysctls[] = {
  98	{
  99		.procname	= "leases-enable",
 100		.data		= &leases_enable,
 101		.maxlen		= sizeof(int),
 102		.mode		= 0644,
 103		.proc_handler	= proc_dointvec,
 104	},
 105#ifdef CONFIG_MMU
 106	{
 107		.procname	= "lease-break-time",
 108		.data		= &lease_break_time,
 109		.maxlen		= sizeof(int),
 110		.mode		= 0644,
 111		.proc_handler	= proc_dointvec,
 112	},
 113#endif /* CONFIG_MMU */
 114};
 115
 116static int __init init_fs_locks_sysctls(void)
 117{
 118	register_sysctl_init("fs", locks_sysctls);
 119	return 0;
 120}
 121early_initcall(init_fs_locks_sysctls);
 122#endif /* CONFIG_SYSCTL */
 123
 124/*
 125 * The global file_lock_list is only used for displaying /proc/locks, so we
 126 * keep a list on each CPU, with each list protected by its own spinlock.
 127 * Global serialization is done using file_rwsem.
 128 *
 129 * Note that alterations to the list also require that the relevant flc_lock is
 130 * held.
 131 */
 132struct file_lock_list_struct {
 133	spinlock_t		lock;
 134	struct hlist_head	hlist;
 135};
 136static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
 137DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
 138
 139
 140/*
 141 * The blocked_hash is used to find POSIX lock loops for deadlock detection.
 142 * It is protected by blocked_lock_lock.
 143 *
 144 * We hash locks by lockowner in order to optimize searching for the lock a
 145 * particular lockowner is waiting on.
 146 *
 147 * FIXME: make this value scale via some heuristic? We generally will want more
 148 * buckets when we have more lockowners holding locks, but that's a little
 149 * difficult to determine without knowing what the workload will look like.
 150 */
 151#define BLOCKED_HASH_BITS	7
 152static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
 153
 154/*
 155 * This lock protects the blocked_hash. Generally, if you're accessing it, you
 156 * want to be holding this lock.
 157 *
 158 * In addition, it also protects the fl->fl_blocked_requests list, and the
 159 * fl->fl_blocker pointer for file_lock structures that are acting as lock
 160 * requests (in contrast to those that are acting as records of acquired locks).
 161 *
 162 * Note that when we acquire this lock in order to change the above fields,
 163 * we often hold the flc_lock as well. In certain cases, when reading the fields
 164 * protected by this lock, we can skip acquiring it iff we already hold the
 165 * flc_lock.
 166 */
 167static DEFINE_SPINLOCK(blocked_lock_lock);
 168
 169static struct kmem_cache *flctx_cache __ro_after_init;
 170static struct kmem_cache *filelock_cache __ro_after_init;
 171
 172static struct file_lock_context *
 173locks_get_lock_context(struct inode *inode, int type)
 174{
 175	struct file_lock_context *ctx;
 176
 177	/* paired with cmpxchg() below */
 178	ctx = locks_inode_context(inode);
 179	if (likely(ctx) || type == F_UNLCK)
 180		goto out;
 181
 182	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
 183	if (!ctx)
 184		goto out;
 185
 186	spin_lock_init(&ctx->flc_lock);
 187	INIT_LIST_HEAD(&ctx->flc_flock);
 188	INIT_LIST_HEAD(&ctx->flc_posix);
 189	INIT_LIST_HEAD(&ctx->flc_lease);
 190
 191	/*
 192	 * Assign the pointer if it's not already assigned. If it is, then
 193	 * free the context we just allocated.
 194	 */
 195	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
 196		kmem_cache_free(flctx_cache, ctx);
 197		ctx = locks_inode_context(inode);
 198	}
 199out:
 200	trace_locks_get_lock_context(inode, type, ctx);
 201	return ctx;
 202}
 203
 204static void
 205locks_dump_ctx_list(struct list_head *list, char *list_type)
 206{
 207	struct file_lock *fl;
 208
 209	list_for_each_entry(fl, list, fl_list) {
 210		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
 211	}
 212}
 213
 214static void
 215locks_check_ctx_lists(struct inode *inode)
 216{
 217	struct file_lock_context *ctx = inode->i_flctx;
 218
 219	if (unlikely(!list_empty(&ctx->flc_flock) ||
 220		     !list_empty(&ctx->flc_posix) ||
 221		     !list_empty(&ctx->flc_lease))) {
 222		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
 223			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
 224			inode->i_ino);
 225		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
 226		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
 227		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
 228	}
 229}
 230
 231static void
 232locks_check_ctx_file_list(struct file *filp, struct list_head *list,
 233				char *list_type)
 234{
 235	struct file_lock *fl;
 236	struct inode *inode = file_inode(filp);
 237
 238	list_for_each_entry(fl, list, fl_list)
 239		if (fl->fl_file == filp)
 240			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
 241				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
 242				list_type, MAJOR(inode->i_sb->s_dev),
 243				MINOR(inode->i_sb->s_dev), inode->i_ino,
 244				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
 245}
 246
 247void
 248locks_free_lock_context(struct inode *inode)
 249{
 250	struct file_lock_context *ctx = locks_inode_context(inode);
 251
 252	if (unlikely(ctx)) {
 253		locks_check_ctx_lists(inode);
 254		kmem_cache_free(flctx_cache, ctx);
 255	}
 256}
 257
 258static void locks_init_lock_heads(struct file_lock *fl)
 259{
 260	INIT_HLIST_NODE(&fl->fl_link);
 261	INIT_LIST_HEAD(&fl->fl_list);
 262	INIT_LIST_HEAD(&fl->fl_blocked_requests);
 263	INIT_LIST_HEAD(&fl->fl_blocked_member);
 264	init_waitqueue_head(&fl->fl_wait);
 265}
 266
 267/* Allocate an empty lock structure. */
 268struct file_lock *locks_alloc_lock(void)
 269{
 270	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
 271
 272	if (fl)
 273		locks_init_lock_heads(fl);
 274
 275	return fl;
 276}
 277EXPORT_SYMBOL_GPL(locks_alloc_lock);
 278
 279void locks_release_private(struct file_lock *fl)
 280{
 281	BUG_ON(waitqueue_active(&fl->fl_wait));
 282	BUG_ON(!list_empty(&fl->fl_list));
 283	BUG_ON(!list_empty(&fl->fl_blocked_requests));
 284	BUG_ON(!list_empty(&fl->fl_blocked_member));
 285	BUG_ON(!hlist_unhashed(&fl->fl_link));
 286
 287	if (fl->fl_ops) {
 288		if (fl->fl_ops->fl_release_private)
 289			fl->fl_ops->fl_release_private(fl);
 290		fl->fl_ops = NULL;
 291	}
 292
 293	if (fl->fl_lmops) {
 294		if (fl->fl_lmops->lm_put_owner) {
 295			fl->fl_lmops->lm_put_owner(fl->fl_owner);
 296			fl->fl_owner = NULL;
 297		}
 298		fl->fl_lmops = NULL;
 299	}
 300}
 301EXPORT_SYMBOL_GPL(locks_release_private);
 302
 303/**
 304 * locks_owner_has_blockers - Check for blocking lock requests
 305 * @flctx: file lock context
 306 * @owner: lock owner
 307 *
 308 * Return values:
 309 *   %true: @owner has at least one blocker
 310 *   %false: @owner has no blockers
 311 */
 312bool locks_owner_has_blockers(struct file_lock_context *flctx,
 313		fl_owner_t owner)
 314{
 315	struct file_lock *fl;
 316
 317	spin_lock(&flctx->flc_lock);
 318	list_for_each_entry(fl, &flctx->flc_posix, fl_list) {
 319		if (fl->fl_owner != owner)
 320			continue;
 321		if (!list_empty(&fl->fl_blocked_requests)) {
 322			spin_unlock(&flctx->flc_lock);
 323			return true;
 324		}
 325	}
 326	spin_unlock(&flctx->flc_lock);
 327	return false;
 328}
 329EXPORT_SYMBOL_GPL(locks_owner_has_blockers);
 330
 331/* Free a lock which is not in use. */
 332void locks_free_lock(struct file_lock *fl)
 333{
 334	locks_release_private(fl);
 335	kmem_cache_free(filelock_cache, fl);
 336}
 337EXPORT_SYMBOL(locks_free_lock);
 338
 339static void
 340locks_dispose_list(struct list_head *dispose)
 341{
 342	struct file_lock *fl;
 343
 344	while (!list_empty(dispose)) {
 345		fl = list_first_entry(dispose, struct file_lock, fl_list);
 346		list_del_init(&fl->fl_list);
 347		locks_free_lock(fl);
 348	}
 349}
 350
 351void locks_init_lock(struct file_lock *fl)
 352{
 353	memset(fl, 0, sizeof(struct file_lock));
 354	locks_init_lock_heads(fl);
 355}
 356EXPORT_SYMBOL(locks_init_lock);
 357
 358/*
 359 * Initialize a new lock from an existing file_lock structure.
 360 */
 361void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
 362{
 363	new->fl_owner = fl->fl_owner;
 364	new->fl_pid = fl->fl_pid;
 365	new->fl_file = NULL;
 366	new->fl_flags = fl->fl_flags;
 367	new->fl_type = fl->fl_type;
 368	new->fl_start = fl->fl_start;
 369	new->fl_end = fl->fl_end;
 370	new->fl_lmops = fl->fl_lmops;
 371	new->fl_ops = NULL;
 372
 373	if (fl->fl_lmops) {
 374		if (fl->fl_lmops->lm_get_owner)
 375			fl->fl_lmops->lm_get_owner(fl->fl_owner);
 376	}
 377}
 378EXPORT_SYMBOL(locks_copy_conflock);
 379
 380void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
 381{
 382	/* "new" must be a freshly-initialized lock */
 383	WARN_ON_ONCE(new->fl_ops);
 384
 385	locks_copy_conflock(new, fl);
 386
 387	new->fl_file = fl->fl_file;
 388	new->fl_ops = fl->fl_ops;
 389
 390	if (fl->fl_ops) {
 391		if (fl->fl_ops->fl_copy_lock)
 392			fl->fl_ops->fl_copy_lock(new, fl);
 393	}
 394}
 395EXPORT_SYMBOL(locks_copy_lock);
 396
 397static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
 398{
 399	struct file_lock *f;
 400
 401	/*
 402	 * As ctx->flc_lock is held, new requests cannot be added to
 403	 * ->fl_blocked_requests, so we don't need a lock to check if it
 404	 * is empty.
 405	 */
 406	if (list_empty(&fl->fl_blocked_requests))
 407		return;
 408	spin_lock(&blocked_lock_lock);
 409	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
 410	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
 411		f->fl_blocker = new;
 412	spin_unlock(&blocked_lock_lock);
 413}
 414
 415static inline int flock_translate_cmd(int cmd) {
 
 
 416	switch (cmd) {
 417	case LOCK_SH:
 418		return F_RDLCK;
 419	case LOCK_EX:
 420		return F_WRLCK;
 421	case LOCK_UN:
 422		return F_UNLCK;
 423	}
 424	return -EINVAL;
 425}
 426
 427/* Fill in a file_lock structure with an appropriate FLOCK lock. */
 428static void flock_make_lock(struct file *filp, struct file_lock *fl, int type)
 
 429{
 430	locks_init_lock(fl);
 
 
 
 
 
 
 
 
 
 
 
 431
 432	fl->fl_file = filp;
 433	fl->fl_owner = filp;
 434	fl->fl_pid = current->tgid;
 435	fl->fl_flags = FL_FLOCK;
 436	fl->fl_type = type;
 437	fl->fl_end = OFFSET_MAX;
 
 
 438}
 439
 440static int assign_type(struct file_lock *fl, int type)
 441{
 442	switch (type) {
 443	case F_RDLCK:
 444	case F_WRLCK:
 445	case F_UNLCK:
 446		fl->fl_type = type;
 447		break;
 448	default:
 449		return -EINVAL;
 450	}
 451	return 0;
 452}
 453
 454static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
 455				 struct flock64 *l)
 456{
 457	switch (l->l_whence) {
 458	case SEEK_SET:
 459		fl->fl_start = 0;
 460		break;
 461	case SEEK_CUR:
 462		fl->fl_start = filp->f_pos;
 463		break;
 464	case SEEK_END:
 465		fl->fl_start = i_size_read(file_inode(filp));
 466		break;
 467	default:
 468		return -EINVAL;
 469	}
 470	if (l->l_start > OFFSET_MAX - fl->fl_start)
 471		return -EOVERFLOW;
 472	fl->fl_start += l->l_start;
 473	if (fl->fl_start < 0)
 474		return -EINVAL;
 475
 476	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
 477	   POSIX-2001 defines it. */
 478	if (l->l_len > 0) {
 479		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
 480			return -EOVERFLOW;
 481		fl->fl_end = fl->fl_start + (l->l_len - 1);
 482
 483	} else if (l->l_len < 0) {
 484		if (fl->fl_start + l->l_len < 0)
 485			return -EINVAL;
 486		fl->fl_end = fl->fl_start - 1;
 487		fl->fl_start += l->l_len;
 488	} else
 489		fl->fl_end = OFFSET_MAX;
 490
 491	fl->fl_owner = current->files;
 492	fl->fl_pid = current->tgid;
 493	fl->fl_file = filp;
 494	fl->fl_flags = FL_POSIX;
 495	fl->fl_ops = NULL;
 496	fl->fl_lmops = NULL;
 497
 498	return assign_type(fl, l->l_type);
 499}
 500
 501/* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
 502 * style lock.
 503 */
 504static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
 505			       struct flock *l)
 506{
 507	struct flock64 ll = {
 508		.l_type = l->l_type,
 509		.l_whence = l->l_whence,
 510		.l_start = l->l_start,
 511		.l_len = l->l_len,
 512	};
 513
 514	return flock64_to_posix_lock(filp, fl, &ll);
 515}
 516
 517/* default lease lock manager operations */
 518static bool
 519lease_break_callback(struct file_lock *fl)
 520{
 521	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
 522	return false;
 523}
 524
 525static void
 526lease_setup(struct file_lock *fl, void **priv)
 527{
 528	struct file *filp = fl->fl_file;
 529	struct fasync_struct *fa = *priv;
 530
 531	/*
 532	 * fasync_insert_entry() returns the old entry if any. If there was no
 533	 * old entry, then it used "priv" and inserted it into the fasync list.
 534	 * Clear the pointer to indicate that it shouldn't be freed.
 535	 */
 536	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
 537		*priv = NULL;
 538
 539	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
 540}
 541
 542static const struct lock_manager_operations lease_manager_ops = {
 543	.lm_break = lease_break_callback,
 544	.lm_change = lease_modify,
 545	.lm_setup = lease_setup,
 546};
 547
 548/*
 549 * Initialize a lease, use the default lock manager operations
 550 */
 551static int lease_init(struct file *filp, int type, struct file_lock *fl)
 552{
 553	if (assign_type(fl, type) != 0)
 554		return -EINVAL;
 555
 556	fl->fl_owner = filp;
 557	fl->fl_pid = current->tgid;
 558
 559	fl->fl_file = filp;
 560	fl->fl_flags = FL_LEASE;
 561	fl->fl_start = 0;
 562	fl->fl_end = OFFSET_MAX;
 563	fl->fl_ops = NULL;
 564	fl->fl_lmops = &lease_manager_ops;
 565	return 0;
 566}
 567
 568/* Allocate a file_lock initialised to this type of lease */
 569static struct file_lock *lease_alloc(struct file *filp, int type)
 570{
 571	struct file_lock *fl = locks_alloc_lock();
 572	int error = -ENOMEM;
 573
 574	if (fl == NULL)
 575		return ERR_PTR(error);
 576
 577	error = lease_init(filp, type, fl);
 578	if (error) {
 579		locks_free_lock(fl);
 580		return ERR_PTR(error);
 581	}
 582	return fl;
 583}
 584
 585/* Check if two locks overlap each other.
 586 */
 587static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
 588{
 589	return ((fl1->fl_end >= fl2->fl_start) &&
 590		(fl2->fl_end >= fl1->fl_start));
 591}
 592
 593/*
 594 * Check whether two locks have the same owner.
 595 */
 596static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
 597{
 598	return fl1->fl_owner == fl2->fl_owner;
 599}
 600
 601/* Must be called with the flc_lock held! */
 602static void locks_insert_global_locks(struct file_lock *fl)
 603{
 604	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
 605
 606	percpu_rwsem_assert_held(&file_rwsem);
 607
 608	spin_lock(&fll->lock);
 609	fl->fl_link_cpu = smp_processor_id();
 610	hlist_add_head(&fl->fl_link, &fll->hlist);
 611	spin_unlock(&fll->lock);
 612}
 613
 614/* Must be called with the flc_lock held! */
 615static void locks_delete_global_locks(struct file_lock *fl)
 616{
 617	struct file_lock_list_struct *fll;
 618
 619	percpu_rwsem_assert_held(&file_rwsem);
 620
 621	/*
 622	 * Avoid taking lock if already unhashed. This is safe since this check
 623	 * is done while holding the flc_lock, and new insertions into the list
 624	 * also require that it be held.
 625	 */
 626	if (hlist_unhashed(&fl->fl_link))
 627		return;
 628
 629	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
 630	spin_lock(&fll->lock);
 631	hlist_del_init(&fl->fl_link);
 632	spin_unlock(&fll->lock);
 633}
 634
 635static unsigned long
 636posix_owner_key(struct file_lock *fl)
 637{
 638	return (unsigned long)fl->fl_owner;
 639}
 640
 641static void locks_insert_global_blocked(struct file_lock *waiter)
 642{
 643	lockdep_assert_held(&blocked_lock_lock);
 644
 645	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
 646}
 647
 648static void locks_delete_global_blocked(struct file_lock *waiter)
 649{
 650	lockdep_assert_held(&blocked_lock_lock);
 651
 652	hash_del(&waiter->fl_link);
 653}
 654
 655/* Remove waiter from blocker's block list.
 656 * When blocker ends up pointing to itself then the list is empty.
 657 *
 658 * Must be called with blocked_lock_lock held.
 659 */
 660static void __locks_delete_block(struct file_lock *waiter)
 661{
 662	locks_delete_global_blocked(waiter);
 663	list_del_init(&waiter->fl_blocked_member);
 664}
 665
 666static void __locks_wake_up_blocks(struct file_lock *blocker)
 667{
 668	while (!list_empty(&blocker->fl_blocked_requests)) {
 669		struct file_lock *waiter;
 670
 671		waiter = list_first_entry(&blocker->fl_blocked_requests,
 672					  struct file_lock, fl_blocked_member);
 673		__locks_delete_block(waiter);
 674		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
 675			waiter->fl_lmops->lm_notify(waiter);
 676		else
 677			wake_up(&waiter->fl_wait);
 678
 679		/*
 680		 * The setting of fl_blocker to NULL marks the "done"
 681		 * point in deleting a block. Paired with acquire at the top
 682		 * of locks_delete_block().
 683		 */
 684		smp_store_release(&waiter->fl_blocker, NULL);
 685	}
 686}
 687
 688/**
 689 *	locks_delete_block - stop waiting for a file lock
 690 *	@waiter: the lock which was waiting
 691 *
 692 *	lockd/nfsd need to disconnect the lock while working on it.
 693 */
 694int locks_delete_block(struct file_lock *waiter)
 695{
 696	int status = -ENOENT;
 697
 698	/*
 699	 * If fl_blocker is NULL, it won't be set again as this thread "owns"
 700	 * the lock and is the only one that might try to claim the lock.
 701	 *
 702	 * We use acquire/release to manage fl_blocker so that we can
 703	 * optimize away taking the blocked_lock_lock in many cases.
 704	 *
 705	 * The smp_load_acquire guarantees two things:
 706	 *
 707	 * 1/ that fl_blocked_requests can be tested locklessly. If something
 708	 * was recently added to that list it must have been in a locked region
 709	 * *before* the locked region when fl_blocker was set to NULL.
 710	 *
 711	 * 2/ that no other thread is accessing 'waiter', so it is safe to free
 712	 * it.  __locks_wake_up_blocks is careful not to touch waiter after
 713	 * fl_blocker is released.
 714	 *
 715	 * If a lockless check of fl_blocker shows it to be NULL, we know that
 716	 * no new locks can be inserted into its fl_blocked_requests list, and
 717	 * can avoid doing anything further if the list is empty.
 718	 */
 719	if (!smp_load_acquire(&waiter->fl_blocker) &&
 720	    list_empty(&waiter->fl_blocked_requests))
 721		return status;
 722
 723	spin_lock(&blocked_lock_lock);
 724	if (waiter->fl_blocker)
 725		status = 0;
 726	__locks_wake_up_blocks(waiter);
 727	__locks_delete_block(waiter);
 728
 729	/*
 730	 * The setting of fl_blocker to NULL marks the "done" point in deleting
 731	 * a block. Paired with acquire at the top of this function.
 732	 */
 733	smp_store_release(&waiter->fl_blocker, NULL);
 734	spin_unlock(&blocked_lock_lock);
 735	return status;
 736}
 737EXPORT_SYMBOL(locks_delete_block);
 738
 739/* Insert waiter into blocker's block list.
 740 * We use a circular list so that processes can be easily woken up in
 741 * the order they blocked. The documentation doesn't require this but
 742 * it seems like the reasonable thing to do.
 743 *
 744 * Must be called with both the flc_lock and blocked_lock_lock held. The
 745 * fl_blocked_requests list itself is protected by the blocked_lock_lock,
 746 * but by ensuring that the flc_lock is also held on insertions we can avoid
 747 * taking the blocked_lock_lock in some cases when we see that the
 748 * fl_blocked_requests list is empty.
 749 *
 750 * Rather than just adding to the list, we check for conflicts with any existing
 751 * waiters, and add beneath any waiter that blocks the new waiter.
 752 * Thus wakeups don't happen until needed.
 753 */
 754static void __locks_insert_block(struct file_lock *blocker,
 755				 struct file_lock *waiter,
 756				 bool conflict(struct file_lock *,
 757					       struct file_lock *))
 758{
 759	struct file_lock *fl;
 760	BUG_ON(!list_empty(&waiter->fl_blocked_member));
 761
 762new_blocker:
 763	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
 764		if (conflict(fl, waiter)) {
 765			blocker =  fl;
 766			goto new_blocker;
 767		}
 768	waiter->fl_blocker = blocker;
 769	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
 770	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
 771		locks_insert_global_blocked(waiter);
 772
 773	/* The requests in waiter->fl_blocked are known to conflict with
 774	 * waiter, but might not conflict with blocker, or the requests
 775	 * and lock which block it.  So they all need to be woken.
 776	 */
 777	__locks_wake_up_blocks(waiter);
 778}
 779
 780/* Must be called with flc_lock held. */
 781static void locks_insert_block(struct file_lock *blocker,
 782			       struct file_lock *waiter,
 783			       bool conflict(struct file_lock *,
 784					     struct file_lock *))
 785{
 786	spin_lock(&blocked_lock_lock);
 787	__locks_insert_block(blocker, waiter, conflict);
 788	spin_unlock(&blocked_lock_lock);
 789}
 790
 791/*
 792 * Wake up processes blocked waiting for blocker.
 793 *
 794 * Must be called with the inode->flc_lock held!
 795 */
 796static void locks_wake_up_blocks(struct file_lock *blocker)
 797{
 798	/*
 799	 * Avoid taking global lock if list is empty. This is safe since new
 800	 * blocked requests are only added to the list under the flc_lock, and
 801	 * the flc_lock is always held here. Note that removal from the
 802	 * fl_blocked_requests list does not require the flc_lock, so we must
 803	 * recheck list_empty() after acquiring the blocked_lock_lock.
 804	 */
 805	if (list_empty(&blocker->fl_blocked_requests))
 806		return;
 807
 808	spin_lock(&blocked_lock_lock);
 809	__locks_wake_up_blocks(blocker);
 810	spin_unlock(&blocked_lock_lock);
 811}
 812
 813static void
 814locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
 815{
 816	list_add_tail(&fl->fl_list, before);
 817	locks_insert_global_locks(fl);
 818}
 819
 820static void
 821locks_unlink_lock_ctx(struct file_lock *fl)
 822{
 823	locks_delete_global_locks(fl);
 824	list_del_init(&fl->fl_list);
 825	locks_wake_up_blocks(fl);
 826}
 827
 828static void
 829locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
 830{
 831	locks_unlink_lock_ctx(fl);
 832	if (dispose)
 833		list_add(&fl->fl_list, dispose);
 834	else
 835		locks_free_lock(fl);
 836}
 837
 838/* Determine if lock sys_fl blocks lock caller_fl. Common functionality
 839 * checks for shared/exclusive status of overlapping locks.
 840 */
 841static bool locks_conflict(struct file_lock *caller_fl,
 842			   struct file_lock *sys_fl)
 843{
 844	if (sys_fl->fl_type == F_WRLCK)
 845		return true;
 846	if (caller_fl->fl_type == F_WRLCK)
 847		return true;
 848	return false;
 849}
 850
 851/* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
 852 * checking before calling the locks_conflict().
 853 */
 854static bool posix_locks_conflict(struct file_lock *caller_fl,
 855				 struct file_lock *sys_fl)
 856{
 857	/* POSIX locks owned by the same process do not conflict with
 858	 * each other.
 859	 */
 860	if (posix_same_owner(caller_fl, sys_fl))
 861		return false;
 862
 863	/* Check whether they overlap */
 864	if (!locks_overlap(caller_fl, sys_fl))
 865		return false;
 866
 867	return locks_conflict(caller_fl, sys_fl);
 868}
 869
 870/* Determine if lock sys_fl blocks lock caller_fl. Used on xx_GETLK
 871 * path so checks for additional GETLK-specific things like F_UNLCK.
 872 */
 873static bool posix_test_locks_conflict(struct file_lock *caller_fl,
 874				      struct file_lock *sys_fl)
 875{
 876	/* F_UNLCK checks any locks on the same fd. */
 877	if (caller_fl->fl_type == F_UNLCK) {
 878		if (!posix_same_owner(caller_fl, sys_fl))
 879			return false;
 880		return locks_overlap(caller_fl, sys_fl);
 881	}
 882	return posix_locks_conflict(caller_fl, sys_fl);
 883}
 884
 885/* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
 886 * checking before calling the locks_conflict().
 887 */
 888static bool flock_locks_conflict(struct file_lock *caller_fl,
 889				 struct file_lock *sys_fl)
 890{
 891	/* FLOCK locks referring to the same filp do not conflict with
 892	 * each other.
 893	 */
 894	if (caller_fl->fl_file == sys_fl->fl_file)
 895		return false;
 
 
 896
 897	return locks_conflict(caller_fl, sys_fl);
 898}
 899
 900void
 901posix_test_lock(struct file *filp, struct file_lock *fl)
 902{
 903	struct file_lock *cfl;
 904	struct file_lock_context *ctx;
 905	struct inode *inode = file_inode(filp);
 906	void *owner;
 907	void (*func)(void);
 908
 909	ctx = locks_inode_context(inode);
 910	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
 911		fl->fl_type = F_UNLCK;
 912		return;
 913	}
 914
 915retry:
 916	spin_lock(&ctx->flc_lock);
 917	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
 918		if (!posix_test_locks_conflict(fl, cfl))
 919			continue;
 920		if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable
 921			&& (*cfl->fl_lmops->lm_lock_expirable)(cfl)) {
 922			owner = cfl->fl_lmops->lm_mod_owner;
 923			func = cfl->fl_lmops->lm_expire_lock;
 924			__module_get(owner);
 925			spin_unlock(&ctx->flc_lock);
 926			(*func)();
 927			module_put(owner);
 928			goto retry;
 929		}
 930		locks_copy_conflock(fl, cfl);
 931		goto out;
 932	}
 933	fl->fl_type = F_UNLCK;
 934out:
 935	spin_unlock(&ctx->flc_lock);
 936	return;
 937}
 938EXPORT_SYMBOL(posix_test_lock);
 939
 940/*
 941 * Deadlock detection:
 942 *
 943 * We attempt to detect deadlocks that are due purely to posix file
 944 * locks.
 945 *
 946 * We assume that a task can be waiting for at most one lock at a time.
 947 * So for any acquired lock, the process holding that lock may be
 948 * waiting on at most one other lock.  That lock in turns may be held by
 949 * someone waiting for at most one other lock.  Given a requested lock
 950 * caller_fl which is about to wait for a conflicting lock block_fl, we
 951 * follow this chain of waiters to ensure we are not about to create a
 952 * cycle.
 953 *
 954 * Since we do this before we ever put a process to sleep on a lock, we
 955 * are ensured that there is never a cycle; that is what guarantees that
 956 * the while() loop in posix_locks_deadlock() eventually completes.
 957 *
 958 * Note: the above assumption may not be true when handling lock
 959 * requests from a broken NFS client. It may also fail in the presence
 960 * of tasks (such as posix threads) sharing the same open file table.
 961 * To handle those cases, we just bail out after a few iterations.
 962 *
 963 * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
 964 * Because the owner is not even nominally tied to a thread of
 965 * execution, the deadlock detection below can't reasonably work well. Just
 966 * skip it for those.
 967 *
 968 * In principle, we could do a more limited deadlock detection on FL_OFDLCK
 969 * locks that just checks for the case where two tasks are attempting to
 970 * upgrade from read to write locks on the same inode.
 971 */
 972
 973#define MAX_DEADLK_ITERATIONS 10
 974
 975/* Find a lock that the owner of the given block_fl is blocking on. */
 976static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
 977{
 978	struct file_lock *fl;
 979
 980	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
 981		if (posix_same_owner(fl, block_fl)) {
 982			while (fl->fl_blocker)
 983				fl = fl->fl_blocker;
 984			return fl;
 985		}
 986	}
 987	return NULL;
 988}
 989
 990/* Must be called with the blocked_lock_lock held! */
 991static int posix_locks_deadlock(struct file_lock *caller_fl,
 992				struct file_lock *block_fl)
 993{
 994	int i = 0;
 995
 996	lockdep_assert_held(&blocked_lock_lock);
 997
 998	/*
 999	 * This deadlock detector can't reasonably detect deadlocks with
1000	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1001	 */
1002	if (IS_OFDLCK(caller_fl))
1003		return 0;
1004
1005	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
1006		if (i++ > MAX_DEADLK_ITERATIONS)
1007			return 0;
1008		if (posix_same_owner(caller_fl, block_fl))
1009			return 1;
1010	}
1011	return 0;
1012}
1013
1014/* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1015 * after any leases, but before any posix locks.
1016 *
1017 * Note that if called with an FL_EXISTS argument, the caller may determine
1018 * whether or not a lock was successfully freed by testing the return
1019 * value for -ENOENT.
1020 */
1021static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1022{
1023	struct file_lock *new_fl = NULL;
1024	struct file_lock *fl;
1025	struct file_lock_context *ctx;
1026	int error = 0;
1027	bool found = false;
1028	LIST_HEAD(dispose);
1029
1030	ctx = locks_get_lock_context(inode, request->fl_type);
1031	if (!ctx) {
1032		if (request->fl_type != F_UNLCK)
1033			return -ENOMEM;
1034		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
1035	}
1036
1037	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
1038		new_fl = locks_alloc_lock();
1039		if (!new_fl)
1040			return -ENOMEM;
1041	}
1042
1043	percpu_down_read(&file_rwsem);
1044	spin_lock(&ctx->flc_lock);
1045	if (request->fl_flags & FL_ACCESS)
1046		goto find_conflict;
1047
1048	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1049		if (request->fl_file != fl->fl_file)
1050			continue;
1051		if (request->fl_type == fl->fl_type)
1052			goto out;
1053		found = true;
1054		locks_delete_lock_ctx(fl, &dispose);
1055		break;
1056	}
1057
1058	if (request->fl_type == F_UNLCK) {
1059		if ((request->fl_flags & FL_EXISTS) && !found)
1060			error = -ENOENT;
1061		goto out;
1062	}
1063
1064find_conflict:
1065	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1066		if (!flock_locks_conflict(request, fl))
1067			continue;
1068		error = -EAGAIN;
1069		if (!(request->fl_flags & FL_SLEEP))
1070			goto out;
1071		error = FILE_LOCK_DEFERRED;
1072		locks_insert_block(fl, request, flock_locks_conflict);
1073		goto out;
1074	}
1075	if (request->fl_flags & FL_ACCESS)
1076		goto out;
1077	locks_copy_lock(new_fl, request);
1078	locks_move_blocks(new_fl, request);
1079	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1080	new_fl = NULL;
1081	error = 0;
1082
1083out:
1084	spin_unlock(&ctx->flc_lock);
1085	percpu_up_read(&file_rwsem);
1086	if (new_fl)
1087		locks_free_lock(new_fl);
1088	locks_dispose_list(&dispose);
1089	trace_flock_lock_inode(inode, request, error);
1090	return error;
1091}
1092
1093static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1094			    struct file_lock *conflock)
1095{
1096	struct file_lock *fl, *tmp;
1097	struct file_lock *new_fl = NULL;
1098	struct file_lock *new_fl2 = NULL;
1099	struct file_lock *left = NULL;
1100	struct file_lock *right = NULL;
1101	struct file_lock_context *ctx;
1102	int error;
1103	bool added = false;
1104	LIST_HEAD(dispose);
1105	void *owner;
1106	void (*func)(void);
1107
1108	ctx = locks_get_lock_context(inode, request->fl_type);
1109	if (!ctx)
1110		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1111
1112	/*
1113	 * We may need two file_lock structures for this operation,
1114	 * so we get them in advance to avoid races.
1115	 *
1116	 * In some cases we can be sure, that no new locks will be needed
1117	 */
1118	if (!(request->fl_flags & FL_ACCESS) &&
1119	    (request->fl_type != F_UNLCK ||
1120	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1121		new_fl = locks_alloc_lock();
1122		new_fl2 = locks_alloc_lock();
1123	}
1124
1125retry:
1126	percpu_down_read(&file_rwsem);
1127	spin_lock(&ctx->flc_lock);
1128	/*
1129	 * New lock request. Walk all POSIX locks and look for conflicts. If
1130	 * there are any, either return error or put the request on the
1131	 * blocker's list of waiters and the global blocked_hash.
1132	 */
1133	if (request->fl_type != F_UNLCK) {
1134		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1135			if (!posix_locks_conflict(request, fl))
1136				continue;
1137			if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable
1138				&& (*fl->fl_lmops->lm_lock_expirable)(fl)) {
1139				owner = fl->fl_lmops->lm_mod_owner;
1140				func = fl->fl_lmops->lm_expire_lock;
1141				__module_get(owner);
1142				spin_unlock(&ctx->flc_lock);
1143				percpu_up_read(&file_rwsem);
1144				(*func)();
1145				module_put(owner);
1146				goto retry;
1147			}
1148			if (conflock)
1149				locks_copy_conflock(conflock, fl);
1150			error = -EAGAIN;
1151			if (!(request->fl_flags & FL_SLEEP))
1152				goto out;
1153			/*
1154			 * Deadlock detection and insertion into the blocked
1155			 * locks list must be done while holding the same lock!
1156			 */
1157			error = -EDEADLK;
1158			spin_lock(&blocked_lock_lock);
1159			/*
1160			 * Ensure that we don't find any locks blocked on this
1161			 * request during deadlock detection.
1162			 */
1163			__locks_wake_up_blocks(request);
1164			if (likely(!posix_locks_deadlock(request, fl))) {
1165				error = FILE_LOCK_DEFERRED;
1166				__locks_insert_block(fl, request,
1167						     posix_locks_conflict);
1168			}
1169			spin_unlock(&blocked_lock_lock);
1170			goto out;
1171		}
1172	}
1173
1174	/* If we're just looking for a conflict, we're done. */
1175	error = 0;
1176	if (request->fl_flags & FL_ACCESS)
1177		goto out;
1178
1179	/* Find the first old lock with the same owner as the new lock */
1180	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1181		if (posix_same_owner(request, fl))
1182			break;
1183	}
1184
1185	/* Process locks with this owner. */
1186	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1187		if (!posix_same_owner(request, fl))
1188			break;
1189
1190		/* Detect adjacent or overlapping regions (if same lock type) */
1191		if (request->fl_type == fl->fl_type) {
1192			/* In all comparisons of start vs end, use
1193			 * "start - 1" rather than "end + 1". If end
1194			 * is OFFSET_MAX, end + 1 will become negative.
1195			 */
1196			if (fl->fl_end < request->fl_start - 1)
1197				continue;
1198			/* If the next lock in the list has entirely bigger
1199			 * addresses than the new one, insert the lock here.
1200			 */
1201			if (fl->fl_start - 1 > request->fl_end)
1202				break;
1203
1204			/* If we come here, the new and old lock are of the
1205			 * same type and adjacent or overlapping. Make one
1206			 * lock yielding from the lower start address of both
1207			 * locks to the higher end address.
1208			 */
1209			if (fl->fl_start > request->fl_start)
1210				fl->fl_start = request->fl_start;
1211			else
1212				request->fl_start = fl->fl_start;
1213			if (fl->fl_end < request->fl_end)
1214				fl->fl_end = request->fl_end;
1215			else
1216				request->fl_end = fl->fl_end;
1217			if (added) {
1218				locks_delete_lock_ctx(fl, &dispose);
1219				continue;
1220			}
1221			request = fl;
1222			added = true;
1223		} else {
1224			/* Processing for different lock types is a bit
1225			 * more complex.
1226			 */
1227			if (fl->fl_end < request->fl_start)
1228				continue;
1229			if (fl->fl_start > request->fl_end)
1230				break;
1231			if (request->fl_type == F_UNLCK)
1232				added = true;
1233			if (fl->fl_start < request->fl_start)
1234				left = fl;
1235			/* If the next lock in the list has a higher end
1236			 * address than the new one, insert the new one here.
1237			 */
1238			if (fl->fl_end > request->fl_end) {
1239				right = fl;
1240				break;
1241			}
1242			if (fl->fl_start >= request->fl_start) {
1243				/* The new lock completely replaces an old
1244				 * one (This may happen several times).
1245				 */
1246				if (added) {
1247					locks_delete_lock_ctx(fl, &dispose);
1248					continue;
1249				}
1250				/*
1251				 * Replace the old lock with new_fl, and
1252				 * remove the old one. It's safe to do the
1253				 * insert here since we know that we won't be
1254				 * using new_fl later, and that the lock is
1255				 * just replacing an existing lock.
1256				 */
1257				error = -ENOLCK;
1258				if (!new_fl)
1259					goto out;
1260				locks_copy_lock(new_fl, request);
1261				locks_move_blocks(new_fl, request);
1262				request = new_fl;
1263				new_fl = NULL;
1264				locks_insert_lock_ctx(request, &fl->fl_list);
1265				locks_delete_lock_ctx(fl, &dispose);
1266				added = true;
1267			}
1268		}
1269	}
1270
1271	/*
1272	 * The above code only modifies existing locks in case of merging or
1273	 * replacing. If new lock(s) need to be inserted all modifications are
1274	 * done below this, so it's safe yet to bail out.
1275	 */
1276	error = -ENOLCK; /* "no luck" */
1277	if (right && left == right && !new_fl2)
1278		goto out;
1279
1280	error = 0;
1281	if (!added) {
1282		if (request->fl_type == F_UNLCK) {
1283			if (request->fl_flags & FL_EXISTS)
1284				error = -ENOENT;
1285			goto out;
1286		}
1287
1288		if (!new_fl) {
1289			error = -ENOLCK;
1290			goto out;
1291		}
1292		locks_copy_lock(new_fl, request);
1293		locks_move_blocks(new_fl, request);
1294		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1295		fl = new_fl;
1296		new_fl = NULL;
1297	}
1298	if (right) {
1299		if (left == right) {
1300			/* The new lock breaks the old one in two pieces,
1301			 * so we have to use the second new lock.
1302			 */
1303			left = new_fl2;
1304			new_fl2 = NULL;
1305			locks_copy_lock(left, right);
1306			locks_insert_lock_ctx(left, &fl->fl_list);
1307		}
1308		right->fl_start = request->fl_end + 1;
1309		locks_wake_up_blocks(right);
1310	}
1311	if (left) {
1312		left->fl_end = request->fl_start - 1;
1313		locks_wake_up_blocks(left);
1314	}
1315 out:
1316	spin_unlock(&ctx->flc_lock);
1317	percpu_up_read(&file_rwsem);
1318	trace_posix_lock_inode(inode, request, error);
1319	/*
1320	 * Free any unused locks.
1321	 */
1322	if (new_fl)
1323		locks_free_lock(new_fl);
1324	if (new_fl2)
1325		locks_free_lock(new_fl2);
1326	locks_dispose_list(&dispose);
 
1327
1328	return error;
1329}
1330
1331/**
1332 * posix_lock_file - Apply a POSIX-style lock to a file
1333 * @filp: The file to apply the lock to
1334 * @fl: The lock to be applied
1335 * @conflock: Place to return a copy of the conflicting lock, if found.
1336 *
1337 * Add a POSIX style lock to a file.
1338 * We merge adjacent & overlapping locks whenever possible.
1339 * POSIX locks are sorted by owner task, then by starting address
1340 *
1341 * Note that if called with an FL_EXISTS argument, the caller may determine
1342 * whether or not a lock was successfully freed by testing the return
1343 * value for -ENOENT.
1344 */
1345int posix_lock_file(struct file *filp, struct file_lock *fl,
1346			struct file_lock *conflock)
1347{
1348	return posix_lock_inode(file_inode(filp), fl, conflock);
1349}
1350EXPORT_SYMBOL(posix_lock_file);
1351
1352/**
1353 * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1354 * @inode: inode of file to which lock request should be applied
1355 * @fl: The lock to be applied
1356 *
1357 * Apply a POSIX style lock request to an inode.
1358 */
1359static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1360{
1361	int error;
1362	might_sleep ();
1363	for (;;) {
1364		error = posix_lock_inode(inode, fl, NULL);
1365		if (error != FILE_LOCK_DEFERRED)
1366			break;
1367		error = wait_event_interruptible(fl->fl_wait,
1368					list_empty(&fl->fl_blocked_member));
1369		if (error)
1370			break;
1371	}
1372	locks_delete_block(fl);
1373	return error;
1374}
1375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376static void lease_clear_pending(struct file_lock *fl, int arg)
1377{
1378	switch (arg) {
1379	case F_UNLCK:
1380		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1381		fallthrough;
1382	case F_RDLCK:
1383		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1384	}
1385}
1386
1387/* We already had a lease on this file; just change its type */
1388int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1389{
1390	int error = assign_type(fl, arg);
1391
1392	if (error)
1393		return error;
1394	lease_clear_pending(fl, arg);
1395	locks_wake_up_blocks(fl);
1396	if (arg == F_UNLCK) {
1397		struct file *filp = fl->fl_file;
1398
1399		f_delown(filp);
1400		filp->f_owner.signum = 0;
1401		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1402		if (fl->fl_fasync != NULL) {
1403			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1404			fl->fl_fasync = NULL;
1405		}
1406		locks_delete_lock_ctx(fl, dispose);
1407	}
1408	return 0;
1409}
1410EXPORT_SYMBOL(lease_modify);
1411
1412static bool past_time(unsigned long then)
1413{
1414	if (!then)
1415		/* 0 is a special value meaning "this never expires": */
1416		return false;
1417	return time_after(jiffies, then);
1418}
1419
1420static void time_out_leases(struct inode *inode, struct list_head *dispose)
1421{
1422	struct file_lock_context *ctx = inode->i_flctx;
1423	struct file_lock *fl, *tmp;
1424
1425	lockdep_assert_held(&ctx->flc_lock);
1426
1427	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1428		trace_time_out_leases(inode, fl);
1429		if (past_time(fl->fl_downgrade_time))
1430			lease_modify(fl, F_RDLCK, dispose);
1431		if (past_time(fl->fl_break_time))
1432			lease_modify(fl, F_UNLCK, dispose);
1433	}
1434}
1435
1436static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1437{
1438	bool rc;
1439
1440	if (lease->fl_lmops->lm_breaker_owns_lease
1441			&& lease->fl_lmops->lm_breaker_owns_lease(lease))
1442		return false;
1443	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) {
1444		rc = false;
1445		goto trace;
1446	}
1447	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) {
1448		rc = false;
1449		goto trace;
1450	}
1451
1452	rc = locks_conflict(breaker, lease);
1453trace:
1454	trace_leases_conflict(rc, lease, breaker);
1455	return rc;
1456}
1457
1458static bool
1459any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1460{
1461	struct file_lock_context *ctx = inode->i_flctx;
1462	struct file_lock *fl;
1463
1464	lockdep_assert_held(&ctx->flc_lock);
1465
1466	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1467		if (leases_conflict(fl, breaker))
1468			return true;
1469	}
1470	return false;
1471}
1472
1473/**
1474 *	__break_lease	-	revoke all outstanding leases on file
1475 *	@inode: the inode of the file to return
1476 *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1477 *	    break all leases
1478 *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1479 *	    only delegations
1480 *
1481 *	break_lease (inlined for speed) has checked there already is at least
1482 *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1483 *	a call to open() or truncate().  This function can sleep unless you
1484 *	specified %O_NONBLOCK to your open().
1485 */
1486int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1487{
1488	int error = 0;
1489	struct file_lock_context *ctx;
1490	struct file_lock *new_fl, *fl, *tmp;
1491	unsigned long break_time;
1492	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1493	LIST_HEAD(dispose);
1494
1495	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1496	if (IS_ERR(new_fl))
1497		return PTR_ERR(new_fl);
1498	new_fl->fl_flags = type;
1499
1500	/* typically we will check that ctx is non-NULL before calling */
1501	ctx = locks_inode_context(inode);
1502	if (!ctx) {
1503		WARN_ON_ONCE(1);
1504		goto free_lock;
1505	}
1506
1507	percpu_down_read(&file_rwsem);
1508	spin_lock(&ctx->flc_lock);
1509
1510	time_out_leases(inode, &dispose);
1511
1512	if (!any_leases_conflict(inode, new_fl))
1513		goto out;
1514
1515	break_time = 0;
1516	if (lease_break_time > 0) {
1517		break_time = jiffies + lease_break_time * HZ;
1518		if (break_time == 0)
1519			break_time++;	/* so that 0 means no break time */
1520	}
1521
1522	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1523		if (!leases_conflict(fl, new_fl))
1524			continue;
1525		if (want_write) {
1526			if (fl->fl_flags & FL_UNLOCK_PENDING)
1527				continue;
1528			fl->fl_flags |= FL_UNLOCK_PENDING;
1529			fl->fl_break_time = break_time;
1530		} else {
1531			if (lease_breaking(fl))
1532				continue;
1533			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1534			fl->fl_downgrade_time = break_time;
1535		}
1536		if (fl->fl_lmops->lm_break(fl))
1537			locks_delete_lock_ctx(fl, &dispose);
1538	}
1539
1540	if (list_empty(&ctx->flc_lease))
1541		goto out;
1542
1543	if (mode & O_NONBLOCK) {
1544		trace_break_lease_noblock(inode, new_fl);
1545		error = -EWOULDBLOCK;
1546		goto out;
1547	}
1548
1549restart:
1550	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1551	break_time = fl->fl_break_time;
1552	if (break_time != 0)
1553		break_time -= jiffies;
1554	if (break_time == 0)
1555		break_time++;
1556	locks_insert_block(fl, new_fl, leases_conflict);
1557	trace_break_lease_block(inode, new_fl);
1558	spin_unlock(&ctx->flc_lock);
1559	percpu_up_read(&file_rwsem);
1560
1561	locks_dispose_list(&dispose);
1562	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1563					list_empty(&new_fl->fl_blocked_member),
1564					break_time);
1565
1566	percpu_down_read(&file_rwsem);
1567	spin_lock(&ctx->flc_lock);
1568	trace_break_lease_unblock(inode, new_fl);
1569	locks_delete_block(new_fl);
1570	if (error >= 0) {
1571		/*
1572		 * Wait for the next conflicting lease that has not been
1573		 * broken yet
1574		 */
1575		if (error == 0)
1576			time_out_leases(inode, &dispose);
1577		if (any_leases_conflict(inode, new_fl))
1578			goto restart;
1579		error = 0;
1580	}
1581out:
1582	spin_unlock(&ctx->flc_lock);
1583	percpu_up_read(&file_rwsem);
1584	locks_dispose_list(&dispose);
1585free_lock:
1586	locks_free_lock(new_fl);
1587	return error;
1588}
1589EXPORT_SYMBOL(__break_lease);
1590
1591/**
1592 *	lease_get_mtime - update modified time of an inode with exclusive lease
1593 *	@inode: the inode
1594 *      @time:  pointer to a timespec which contains the last modified time
1595 *
1596 * This is to force NFS clients to flush their caches for files with
1597 * exclusive leases.  The justification is that if someone has an
1598 * exclusive lease, then they could be modifying it.
1599 */
1600void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1601{
1602	bool has_lease = false;
1603	struct file_lock_context *ctx;
1604	struct file_lock *fl;
1605
1606	ctx = locks_inode_context(inode);
1607	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1608		spin_lock(&ctx->flc_lock);
1609		fl = list_first_entry_or_null(&ctx->flc_lease,
1610					      struct file_lock, fl_list);
1611		if (fl && (fl->fl_type == F_WRLCK))
1612			has_lease = true;
1613		spin_unlock(&ctx->flc_lock);
1614	}
1615
1616	if (has_lease)
1617		*time = current_time(inode);
1618}
1619EXPORT_SYMBOL(lease_get_mtime);
1620
1621/**
1622 *	fcntl_getlease - Enquire what lease is currently active
1623 *	@filp: the file
1624 *
1625 *	The value returned by this function will be one of
1626 *	(if no lease break is pending):
1627 *
1628 *	%F_RDLCK to indicate a shared lease is held.
1629 *
1630 *	%F_WRLCK to indicate an exclusive lease is held.
1631 *
1632 *	%F_UNLCK to indicate no lease is held.
1633 *
1634 *	(if a lease break is pending):
1635 *
1636 *	%F_RDLCK to indicate an exclusive lease needs to be
1637 *		changed to a shared lease (or removed).
1638 *
1639 *	%F_UNLCK to indicate the lease needs to be removed.
1640 *
1641 *	XXX: sfr & willy disagree over whether F_INPROGRESS
1642 *	should be returned to userspace.
1643 */
1644int fcntl_getlease(struct file *filp)
1645{
1646	struct file_lock *fl;
1647	struct inode *inode = file_inode(filp);
1648	struct file_lock_context *ctx;
1649	int type = F_UNLCK;
1650	LIST_HEAD(dispose);
1651
1652	ctx = locks_inode_context(inode);
1653	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1654		percpu_down_read(&file_rwsem);
1655		spin_lock(&ctx->flc_lock);
1656		time_out_leases(inode, &dispose);
1657		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1658			if (fl->fl_file != filp)
1659				continue;
1660			type = target_leasetype(fl);
1661			break;
1662		}
1663		spin_unlock(&ctx->flc_lock);
1664		percpu_up_read(&file_rwsem);
1665
1666		locks_dispose_list(&dispose);
1667	}
1668	return type;
1669}
1670
1671/**
1672 * check_conflicting_open - see if the given file points to an inode that has
1673 *			    an existing open that would conflict with the
1674 *			    desired lease.
1675 * @filp:	file to check
1676 * @arg:	type of lease that we're trying to acquire
1677 * @flags:	current lock flags
1678 *
1679 * Check to see if there's an existing open fd on this file that would
1680 * conflict with the lease we're trying to set.
1681 */
1682static int
1683check_conflicting_open(struct file *filp, const int arg, int flags)
1684{
1685	struct inode *inode = file_inode(filp);
1686	int self_wcount = 0, self_rcount = 0;
1687
1688	if (flags & FL_LAYOUT)
1689		return 0;
1690	if (flags & FL_DELEG)
1691		/* We leave these checks to the caller */
1692		return 0;
1693
1694	if (arg == F_RDLCK)
1695		return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1696	else if (arg != F_WRLCK)
1697		return 0;
1698
1699	/*
1700	 * Make sure that only read/write count is from lease requestor.
1701	 * Note that this will result in denying write leases when i_writecount
1702	 * is negative, which is what we want.  (We shouldn't grant write leases
1703	 * on files open for execution.)
1704	 */
1705	if (filp->f_mode & FMODE_WRITE)
1706		self_wcount = 1;
1707	else if (filp->f_mode & FMODE_READ)
1708		self_rcount = 1;
1709
1710	if (atomic_read(&inode->i_writecount) != self_wcount ||
1711	    atomic_read(&inode->i_readcount) != self_rcount)
1712		return -EAGAIN;
1713
1714	return 0;
1715}
1716
1717static int
1718generic_add_lease(struct file *filp, int arg, struct file_lock **flp, void **priv)
1719{
1720	struct file_lock *fl, *my_fl = NULL, *lease;
1721	struct inode *inode = file_inode(filp);
1722	struct file_lock_context *ctx;
1723	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1724	int error;
1725	LIST_HEAD(dispose);
1726
1727	lease = *flp;
1728	trace_generic_add_lease(inode, lease);
1729
1730	/* Note that arg is never F_UNLCK here */
1731	ctx = locks_get_lock_context(inode, arg);
1732	if (!ctx)
1733		return -ENOMEM;
1734
1735	/*
1736	 * In the delegation case we need mutual exclusion with
1737	 * a number of operations that take the i_mutex.  We trylock
1738	 * because delegations are an optional optimization, and if
1739	 * there's some chance of a conflict--we'd rather not
1740	 * bother, maybe that's a sign this just isn't a good file to
1741	 * hand out a delegation on.
1742	 */
1743	if (is_deleg && !inode_trylock(inode))
1744		return -EAGAIN;
1745
 
 
 
 
 
 
 
1746	percpu_down_read(&file_rwsem);
1747	spin_lock(&ctx->flc_lock);
1748	time_out_leases(inode, &dispose);
1749	error = check_conflicting_open(filp, arg, lease->fl_flags);
1750	if (error)
1751		goto out;
1752
1753	/*
1754	 * At this point, we know that if there is an exclusive
1755	 * lease on this file, then we hold it on this filp
1756	 * (otherwise our open of this file would have blocked).
1757	 * And if we are trying to acquire an exclusive lease,
1758	 * then the file is not open by anyone (including us)
1759	 * except for this filp.
1760	 */
1761	error = -EAGAIN;
1762	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1763		if (fl->fl_file == filp &&
1764		    fl->fl_owner == lease->fl_owner) {
1765			my_fl = fl;
1766			continue;
1767		}
1768
1769		/*
1770		 * No exclusive leases if someone else has a lease on
1771		 * this file:
1772		 */
1773		if (arg == F_WRLCK)
1774			goto out;
1775		/*
1776		 * Modifying our existing lease is OK, but no getting a
1777		 * new lease if someone else is opening for write:
1778		 */
1779		if (fl->fl_flags & FL_UNLOCK_PENDING)
1780			goto out;
1781	}
1782
1783	if (my_fl != NULL) {
1784		lease = my_fl;
1785		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1786		if (error)
1787			goto out;
1788		goto out_setup;
1789	}
1790
1791	error = -EINVAL;
1792	if (!leases_enable)
1793		goto out;
1794
1795	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1796	/*
1797	 * The check in break_lease() is lockless. It's possible for another
1798	 * open to race in after we did the earlier check for a conflicting
1799	 * open but before the lease was inserted. Check again for a
1800	 * conflicting open and cancel the lease if there is one.
1801	 *
1802	 * We also add a barrier here to ensure that the insertion of the lock
1803	 * precedes these checks.
1804	 */
1805	smp_mb();
1806	error = check_conflicting_open(filp, arg, lease->fl_flags);
1807	if (error) {
1808		locks_unlink_lock_ctx(lease);
1809		goto out;
1810	}
1811
1812out_setup:
1813	if (lease->fl_lmops->lm_setup)
1814		lease->fl_lmops->lm_setup(lease, priv);
1815out:
1816	spin_unlock(&ctx->flc_lock);
1817	percpu_up_read(&file_rwsem);
1818	locks_dispose_list(&dispose);
1819	if (is_deleg)
1820		inode_unlock(inode);
1821	if (!error && !my_fl)
1822		*flp = NULL;
1823	return error;
1824}
1825
1826static int generic_delete_lease(struct file *filp, void *owner)
1827{
1828	int error = -EAGAIN;
1829	struct file_lock *fl, *victim = NULL;
1830	struct inode *inode = file_inode(filp);
1831	struct file_lock_context *ctx;
1832	LIST_HEAD(dispose);
1833
1834	ctx = locks_inode_context(inode);
1835	if (!ctx) {
1836		trace_generic_delete_lease(inode, NULL);
1837		return error;
1838	}
1839
1840	percpu_down_read(&file_rwsem);
1841	spin_lock(&ctx->flc_lock);
1842	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1843		if (fl->fl_file == filp &&
1844		    fl->fl_owner == owner) {
1845			victim = fl;
1846			break;
1847		}
1848	}
1849	trace_generic_delete_lease(inode, victim);
1850	if (victim)
1851		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1852	spin_unlock(&ctx->flc_lock);
1853	percpu_up_read(&file_rwsem);
1854	locks_dispose_list(&dispose);
1855	return error;
1856}
1857
1858/**
1859 *	generic_setlease	-	sets a lease on an open file
1860 *	@filp:	file pointer
1861 *	@arg:	type of lease to obtain
1862 *	@flp:	input - file_lock to use, output - file_lock inserted
1863 *	@priv:	private data for lm_setup (may be NULL if lm_setup
1864 *		doesn't require it)
1865 *
1866 *	The (input) flp->fl_lmops->lm_break function is required
1867 *	by break_lease().
1868 */
1869int generic_setlease(struct file *filp, int arg, struct file_lock **flp,
1870			void **priv)
1871{
1872	struct inode *inode = file_inode(filp);
1873	vfsuid_t vfsuid = i_uid_into_vfsuid(file_mnt_idmap(filp), inode);
1874	int error;
1875
1876	if ((!vfsuid_eq_kuid(vfsuid, current_fsuid())) && !capable(CAP_LEASE))
1877		return -EACCES;
1878	if (!S_ISREG(inode->i_mode))
1879		return -EINVAL;
1880	error = security_file_lock(filp, arg);
1881	if (error)
1882		return error;
1883
1884	switch (arg) {
1885	case F_UNLCK:
1886		return generic_delete_lease(filp, *priv);
1887	case F_RDLCK:
1888	case F_WRLCK:
1889		if (!(*flp)->fl_lmops->lm_break) {
1890			WARN_ON_ONCE(1);
1891			return -ENOLCK;
1892		}
1893
1894		return generic_add_lease(filp, arg, flp, priv);
1895	default:
1896		return -EINVAL;
1897	}
1898}
1899EXPORT_SYMBOL(generic_setlease);
1900
 
1901/*
1902 * Kernel subsystems can register to be notified on any attempt to set
1903 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
1904 * to close files that it may have cached when there is an attempt to set a
1905 * conflicting lease.
1906 */
1907static struct srcu_notifier_head lease_notifier_chain;
1908
1909static inline void
1910lease_notifier_chain_init(void)
1911{
1912	srcu_init_notifier_head(&lease_notifier_chain);
1913}
1914
1915static inline void
1916setlease_notifier(int arg, struct file_lock *lease)
1917{
1918	if (arg != F_UNLCK)
1919		srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
1920}
1921
1922int lease_register_notifier(struct notifier_block *nb)
1923{
1924	return srcu_notifier_chain_register(&lease_notifier_chain, nb);
1925}
1926EXPORT_SYMBOL_GPL(lease_register_notifier);
1927
1928void lease_unregister_notifier(struct notifier_block *nb)
1929{
1930	srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
1931}
1932EXPORT_SYMBOL_GPL(lease_unregister_notifier);
1933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934/**
1935 * vfs_setlease        -       sets a lease on an open file
1936 * @filp:	file pointer
1937 * @arg:	type of lease to obtain
1938 * @lease:	file_lock to use when adding a lease
1939 * @priv:	private info for lm_setup when adding a lease (may be
1940 *		NULL if lm_setup doesn't require it)
1941 *
1942 * Call this to establish a lease on the file. The "lease" argument is not
1943 * used for F_UNLCK requests and may be NULL. For commands that set or alter
1944 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
1945 * set; if not, this function will return -ENOLCK (and generate a scary-looking
1946 * stack trace).
1947 *
1948 * The "priv" pointer is passed directly to the lm_setup function as-is. It
1949 * may be NULL if the lm_setup operation doesn't require it.
1950 */
1951int
1952vfs_setlease(struct file *filp, int arg, struct file_lock **lease, void **priv)
1953{
1954	if (lease)
1955		setlease_notifier(arg, *lease);
1956	if (filp->f_op->setlease)
1957		return filp->f_op->setlease(filp, arg, lease, priv);
1958	else
1959		return generic_setlease(filp, arg, lease, priv);
1960}
1961EXPORT_SYMBOL_GPL(vfs_setlease);
1962
1963static int do_fcntl_add_lease(unsigned int fd, struct file *filp, int arg)
1964{
1965	struct file_lock *fl;
1966	struct fasync_struct *new;
1967	int error;
1968
1969	fl = lease_alloc(filp, arg);
1970	if (IS_ERR(fl))
1971		return PTR_ERR(fl);
1972
1973	new = fasync_alloc();
1974	if (!new) {
1975		locks_free_lock(fl);
1976		return -ENOMEM;
1977	}
1978	new->fa_fd = fd;
1979
1980	error = vfs_setlease(filp, arg, &fl, (void **)&new);
1981	if (fl)
1982		locks_free_lock(fl);
1983	if (new)
1984		fasync_free(new);
1985	return error;
1986}
1987
1988/**
1989 *	fcntl_setlease	-	sets a lease on an open file
1990 *	@fd: open file descriptor
1991 *	@filp: file pointer
1992 *	@arg: type of lease to obtain
1993 *
1994 *	Call this fcntl to establish a lease on the file.
1995 *	Note that you also need to call %F_SETSIG to
1996 *	receive a signal when the lease is broken.
1997 */
1998int fcntl_setlease(unsigned int fd, struct file *filp, int arg)
1999{
2000	if (arg == F_UNLCK)
2001		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2002	return do_fcntl_add_lease(fd, filp, arg);
2003}
2004
2005/**
2006 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2007 * @inode: inode of the file to apply to
2008 * @fl: The lock to be applied
2009 *
2010 * Apply a FLOCK style lock request to an inode.
2011 */
2012static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2013{
2014	int error;
2015	might_sleep();
2016	for (;;) {
2017		error = flock_lock_inode(inode, fl);
2018		if (error != FILE_LOCK_DEFERRED)
2019			break;
2020		error = wait_event_interruptible(fl->fl_wait,
2021				list_empty(&fl->fl_blocked_member));
2022		if (error)
2023			break;
2024	}
2025	locks_delete_block(fl);
2026	return error;
2027}
2028
2029/**
2030 * locks_lock_inode_wait - Apply a lock to an inode
2031 * @inode: inode of the file to apply to
2032 * @fl: The lock to be applied
2033 *
2034 * Apply a POSIX or FLOCK style lock request to an inode.
2035 */
2036int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2037{
2038	int res = 0;
2039	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2040		case FL_POSIX:
2041			res = posix_lock_inode_wait(inode, fl);
2042			break;
2043		case FL_FLOCK:
2044			res = flock_lock_inode_wait(inode, fl);
2045			break;
2046		default:
2047			BUG();
2048	}
2049	return res;
2050}
2051EXPORT_SYMBOL(locks_lock_inode_wait);
2052
2053/**
2054 *	sys_flock: - flock() system call.
2055 *	@fd: the file descriptor to lock.
2056 *	@cmd: the type of lock to apply.
2057 *
2058 *	Apply a %FL_FLOCK style lock to an open file descriptor.
2059 *	The @cmd can be one of:
2060 *
2061 *	- %LOCK_SH -- a shared lock.
2062 *	- %LOCK_EX -- an exclusive lock.
2063 *	- %LOCK_UN -- remove an existing lock.
2064 *	- %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED)
 
2065 *
2066 *	%LOCK_MAND support has been removed from the kernel.
 
2067 */
2068SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2069{
2070	int can_sleep, error, type;
2071	struct file_lock fl;
2072	struct fd f;
2073
2074	/*
2075	 * LOCK_MAND locks were broken for a long time in that they never
2076	 * conflicted with one another and didn't prevent any sort of open,
2077	 * read or write activity.
2078	 *
2079	 * Just ignore these requests now, to preserve legacy behavior, but
2080	 * throw a warning to let people know that they don't actually work.
2081	 */
2082	if (cmd & LOCK_MAND) {
2083		pr_warn_once("%s(%d): Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n", current->comm, current->pid);
2084		return 0;
2085	}
2086
2087	type = flock_translate_cmd(cmd & ~LOCK_NB);
2088	if (type < 0)
2089		return type;
2090
2091	error = -EBADF;
2092	f = fdget(fd);
2093	if (!f.file)
2094		return error;
 
 
 
 
2095
2096	if (type != F_UNLCK && !(f.file->f_mode & (FMODE_READ | FMODE_WRITE)))
 
2097		goto out_putf;
2098
2099	flock_make_lock(f.file, &fl, type);
2100
2101	error = security_file_lock(f.file, fl.fl_type);
2102	if (error)
2103		goto out_putf;
 
2104
2105	can_sleep = !(cmd & LOCK_NB);
2106	if (can_sleep)
2107		fl.fl_flags |= FL_SLEEP;
 
 
 
 
2108
2109	if (f.file->f_op->flock)
2110		error = f.file->f_op->flock(f.file,
2111					    (can_sleep) ? F_SETLKW : F_SETLK,
2112					    &fl);
2113	else
2114		error = locks_lock_file_wait(f.file, &fl);
 
 
 
2115
2116	locks_release_private(&fl);
2117 out_putf:
2118	fdput(f);
2119
2120	return error;
2121}
2122
2123/**
2124 * vfs_test_lock - test file byte range lock
2125 * @filp: The file to test lock for
2126 * @fl: The lock to test; also used to hold result
2127 *
2128 * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2129 * setting conf->fl_type to something other than F_UNLCK.
2130 */
2131int vfs_test_lock(struct file *filp, struct file_lock *fl)
2132{
2133	WARN_ON_ONCE(filp != fl->fl_file);
2134	if (filp->f_op->lock)
2135		return filp->f_op->lock(filp, F_GETLK, fl);
2136	posix_test_lock(filp, fl);
2137	return 0;
2138}
2139EXPORT_SYMBOL_GPL(vfs_test_lock);
2140
2141/**
2142 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2143 * @fl: The file_lock who's fl_pid should be translated
2144 * @ns: The namespace into which the pid should be translated
2145 *
2146 * Used to translate a fl_pid into a namespace virtual pid number
2147 */
2148static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2149{
2150	pid_t vnr;
2151	struct pid *pid;
2152
2153	if (IS_OFDLCK(fl))
2154		return -1;
2155	if (IS_REMOTELCK(fl))
2156		return fl->fl_pid;
2157	/*
2158	 * If the flock owner process is dead and its pid has been already
2159	 * freed, the translation below won't work, but we still want to show
2160	 * flock owner pid number in init pidns.
2161	 */
2162	if (ns == &init_pid_ns)
2163		return (pid_t)fl->fl_pid;
2164
2165	rcu_read_lock();
2166	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2167	vnr = pid_nr_ns(pid, ns);
2168	rcu_read_unlock();
2169	return vnr;
2170}
2171
2172static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2173{
2174	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2175#if BITS_PER_LONG == 32
2176	/*
2177	 * Make sure we can represent the posix lock via
2178	 * legacy 32bit flock.
2179	 */
2180	if (fl->fl_start > OFFT_OFFSET_MAX)
2181		return -EOVERFLOW;
2182	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2183		return -EOVERFLOW;
2184#endif
2185	flock->l_start = fl->fl_start;
2186	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2187		fl->fl_end - fl->fl_start + 1;
2188	flock->l_whence = 0;
2189	flock->l_type = fl->fl_type;
2190	return 0;
2191}
2192
2193#if BITS_PER_LONG == 32
2194static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2195{
2196	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2197	flock->l_start = fl->fl_start;
2198	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2199		fl->fl_end - fl->fl_start + 1;
2200	flock->l_whence = 0;
2201	flock->l_type = fl->fl_type;
2202}
2203#endif
2204
2205/* Report the first existing lock that would conflict with l.
2206 * This implements the F_GETLK command of fcntl().
2207 */
2208int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2209{
2210	struct file_lock *fl;
2211	int error;
2212
2213	fl = locks_alloc_lock();
2214	if (fl == NULL)
2215		return -ENOMEM;
2216	error = -EINVAL;
2217	if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2218			&& flock->l_type != F_WRLCK)
2219		goto out;
2220
2221	error = flock_to_posix_lock(filp, fl, flock);
2222	if (error)
2223		goto out;
2224
2225	if (cmd == F_OFD_GETLK) {
2226		error = -EINVAL;
2227		if (flock->l_pid != 0)
2228			goto out;
2229
 
2230		fl->fl_flags |= FL_OFDLCK;
2231		fl->fl_owner = filp;
2232	}
2233
2234	error = vfs_test_lock(filp, fl);
2235	if (error)
2236		goto out;
2237
2238	flock->l_type = fl->fl_type;
2239	if (fl->fl_type != F_UNLCK) {
2240		error = posix_lock_to_flock(flock, fl);
2241		if (error)
2242			goto out;
2243	}
2244out:
2245	locks_free_lock(fl);
2246	return error;
2247}
2248
2249/**
2250 * vfs_lock_file - file byte range lock
2251 * @filp: The file to apply the lock to
2252 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2253 * @fl: The lock to be applied
2254 * @conf: Place to return a copy of the conflicting lock, if found.
2255 *
2256 * A caller that doesn't care about the conflicting lock may pass NULL
2257 * as the final argument.
2258 *
2259 * If the filesystem defines a private ->lock() method, then @conf will
2260 * be left unchanged; so a caller that cares should initialize it to
2261 * some acceptable default.
2262 *
2263 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2264 * locks, the ->lock() interface may return asynchronously, before the lock has
2265 * been granted or denied by the underlying filesystem, if (and only if)
2266 * lm_grant is set. Additionally EXPORT_OP_ASYNC_LOCK in export_operations
2267 * flags need to be set.
2268 *
2269 * Callers expecting ->lock() to return asynchronously will only use F_SETLK,
2270 * not F_SETLKW; they will set FL_SLEEP if (and only if) the request is for a
2271 * blocking lock. When ->lock() does return asynchronously, it must return
2272 * FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock request completes.
2273 * If the request is for non-blocking lock the file system should return
2274 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2275 * with the result. If the request timed out the callback routine will return a
2276 * nonzero return code and the file system should release the lock. The file
2277 * system is also responsible to keep a corresponding posix lock when it
2278 * grants a lock so the VFS can find out which locks are locally held and do
2279 * the correct lock cleanup when required.
2280 * The underlying filesystem must not drop the kernel lock or call
2281 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2282 * return code.
2283 */
2284int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2285{
2286	WARN_ON_ONCE(filp != fl->fl_file);
2287	if (filp->f_op->lock)
2288		return filp->f_op->lock(filp, cmd, fl);
2289	else
2290		return posix_lock_file(filp, fl, conf);
2291}
2292EXPORT_SYMBOL_GPL(vfs_lock_file);
2293
2294static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2295			     struct file_lock *fl)
2296{
2297	int error;
2298
2299	error = security_file_lock(filp, fl->fl_type);
2300	if (error)
2301		return error;
2302
2303	for (;;) {
2304		error = vfs_lock_file(filp, cmd, fl, NULL);
2305		if (error != FILE_LOCK_DEFERRED)
2306			break;
2307		error = wait_event_interruptible(fl->fl_wait,
2308					list_empty(&fl->fl_blocked_member));
2309		if (error)
2310			break;
2311	}
2312	locks_delete_block(fl);
2313
2314	return error;
2315}
2316
2317/* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2318static int
2319check_fmode_for_setlk(struct file_lock *fl)
2320{
2321	switch (fl->fl_type) {
2322	case F_RDLCK:
2323		if (!(fl->fl_file->f_mode & FMODE_READ))
2324			return -EBADF;
2325		break;
2326	case F_WRLCK:
2327		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2328			return -EBADF;
2329	}
2330	return 0;
2331}
2332
2333/* Apply the lock described by l to an open file descriptor.
2334 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2335 */
2336int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2337		struct flock *flock)
2338{
2339	struct file_lock *file_lock = locks_alloc_lock();
2340	struct inode *inode = file_inode(filp);
2341	struct file *f;
2342	int error;
2343
2344	if (file_lock == NULL)
2345		return -ENOLCK;
2346
 
 
 
 
 
 
 
 
2347	error = flock_to_posix_lock(filp, file_lock, flock);
2348	if (error)
2349		goto out;
2350
2351	error = check_fmode_for_setlk(file_lock);
2352	if (error)
2353		goto out;
2354
2355	/*
2356	 * If the cmd is requesting file-private locks, then set the
2357	 * FL_OFDLCK flag and override the owner.
2358	 */
2359	switch (cmd) {
2360	case F_OFD_SETLK:
2361		error = -EINVAL;
2362		if (flock->l_pid != 0)
2363			goto out;
2364
2365		cmd = F_SETLK;
2366		file_lock->fl_flags |= FL_OFDLCK;
2367		file_lock->fl_owner = filp;
2368		break;
2369	case F_OFD_SETLKW:
2370		error = -EINVAL;
2371		if (flock->l_pid != 0)
2372			goto out;
2373
2374		cmd = F_SETLKW;
2375		file_lock->fl_flags |= FL_OFDLCK;
2376		file_lock->fl_owner = filp;
2377		fallthrough;
2378	case F_SETLKW:
2379		file_lock->fl_flags |= FL_SLEEP;
2380	}
2381
2382	error = do_lock_file_wait(filp, cmd, file_lock);
2383
2384	/*
2385	 * Attempt to detect a close/fcntl race and recover by releasing the
2386	 * lock that was just acquired. There is no need to do that when we're
2387	 * unlocking though, or for OFD locks.
2388	 */
2389	if (!error && file_lock->fl_type != F_UNLCK &&
2390	    !(file_lock->fl_flags & FL_OFDLCK)) {
2391		struct files_struct *files = current->files;
2392		/*
2393		 * We need that spin_lock here - it prevents reordering between
2394		 * update of i_flctx->flc_posix and check for it done in
2395		 * close(). rcu_read_lock() wouldn't do.
2396		 */
2397		spin_lock(&files->file_lock);
2398		f = files_lookup_fd_locked(files, fd);
2399		spin_unlock(&files->file_lock);
2400		if (f != filp) {
2401			file_lock->fl_type = F_UNLCK;
2402			error = do_lock_file_wait(filp, cmd, file_lock);
2403			WARN_ON_ONCE(error);
2404			error = -EBADF;
2405		}
2406	}
2407out:
2408	trace_fcntl_setlk(inode, file_lock, error);
2409	locks_free_lock(file_lock);
2410	return error;
2411}
2412
2413#if BITS_PER_LONG == 32
2414/* Report the first existing lock that would conflict with l.
2415 * This implements the F_GETLK command of fcntl().
2416 */
2417int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2418{
2419	struct file_lock *fl;
2420	int error;
2421
2422	fl = locks_alloc_lock();
2423	if (fl == NULL)
2424		return -ENOMEM;
2425
2426	error = -EINVAL;
2427	if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2428			&& flock->l_type != F_WRLCK)
2429		goto out;
2430
2431	error = flock64_to_posix_lock(filp, fl, flock);
2432	if (error)
2433		goto out;
2434
2435	if (cmd == F_OFD_GETLK) {
2436		error = -EINVAL;
2437		if (flock->l_pid != 0)
2438			goto out;
2439
 
2440		fl->fl_flags |= FL_OFDLCK;
2441		fl->fl_owner = filp;
2442	}
2443
2444	error = vfs_test_lock(filp, fl);
2445	if (error)
2446		goto out;
2447
2448	flock->l_type = fl->fl_type;
2449	if (fl->fl_type != F_UNLCK)
2450		posix_lock_to_flock64(flock, fl);
2451
2452out:
2453	locks_free_lock(fl);
2454	return error;
2455}
2456
2457/* Apply the lock described by l to an open file descriptor.
2458 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2459 */
2460int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2461		struct flock64 *flock)
2462{
2463	struct file_lock *file_lock = locks_alloc_lock();
 
2464	struct file *f;
2465	int error;
2466
2467	if (file_lock == NULL)
2468		return -ENOLCK;
2469
 
 
 
 
 
 
 
 
2470	error = flock64_to_posix_lock(filp, file_lock, flock);
2471	if (error)
2472		goto out;
2473
2474	error = check_fmode_for_setlk(file_lock);
2475	if (error)
2476		goto out;
2477
2478	/*
2479	 * If the cmd is requesting file-private locks, then set the
2480	 * FL_OFDLCK flag and override the owner.
2481	 */
2482	switch (cmd) {
2483	case F_OFD_SETLK:
2484		error = -EINVAL;
2485		if (flock->l_pid != 0)
2486			goto out;
2487
2488		cmd = F_SETLK64;
2489		file_lock->fl_flags |= FL_OFDLCK;
2490		file_lock->fl_owner = filp;
2491		break;
2492	case F_OFD_SETLKW:
2493		error = -EINVAL;
2494		if (flock->l_pid != 0)
2495			goto out;
2496
2497		cmd = F_SETLKW64;
2498		file_lock->fl_flags |= FL_OFDLCK;
2499		file_lock->fl_owner = filp;
2500		fallthrough;
2501	case F_SETLKW64:
2502		file_lock->fl_flags |= FL_SLEEP;
2503	}
2504
2505	error = do_lock_file_wait(filp, cmd, file_lock);
2506
2507	/*
2508	 * Attempt to detect a close/fcntl race and recover by releasing the
2509	 * lock that was just acquired. There is no need to do that when we're
2510	 * unlocking though, or for OFD locks.
2511	 */
2512	if (!error && file_lock->fl_type != F_UNLCK &&
2513	    !(file_lock->fl_flags & FL_OFDLCK)) {
2514		struct files_struct *files = current->files;
2515		/*
2516		 * We need that spin_lock here - it prevents reordering between
2517		 * update of i_flctx->flc_posix and check for it done in
2518		 * close(). rcu_read_lock() wouldn't do.
2519		 */
2520		spin_lock(&files->file_lock);
2521		f = files_lookup_fd_locked(files, fd);
2522		spin_unlock(&files->file_lock);
2523		if (f != filp) {
2524			file_lock->fl_type = F_UNLCK;
2525			error = do_lock_file_wait(filp, cmd, file_lock);
2526			WARN_ON_ONCE(error);
2527			error = -EBADF;
2528		}
2529	}
2530out:
2531	locks_free_lock(file_lock);
2532	return error;
2533}
2534#endif /* BITS_PER_LONG == 32 */
2535
2536/*
2537 * This function is called when the file is being removed
2538 * from the task's fd array.  POSIX locks belonging to this task
2539 * are deleted at this time.
2540 */
2541void locks_remove_posix(struct file *filp, fl_owner_t owner)
2542{
2543	int error;
2544	struct inode *inode = file_inode(filp);
2545	struct file_lock lock;
2546	struct file_lock_context *ctx;
2547
2548	/*
2549	 * If there are no locks held on this file, we don't need to call
2550	 * posix_lock_file().  Another process could be setting a lock on this
2551	 * file at the same time, but we wouldn't remove that lock anyway.
2552	 */
2553	ctx = locks_inode_context(inode);
2554	if (!ctx || list_empty(&ctx->flc_posix))
2555		return;
2556
2557	locks_init_lock(&lock);
2558	lock.fl_type = F_UNLCK;
2559	lock.fl_flags = FL_POSIX | FL_CLOSE;
2560	lock.fl_start = 0;
2561	lock.fl_end = OFFSET_MAX;
2562	lock.fl_owner = owner;
2563	lock.fl_pid = current->tgid;
2564	lock.fl_file = filp;
2565	lock.fl_ops = NULL;
2566	lock.fl_lmops = NULL;
2567
2568	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2569
2570	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2571		lock.fl_ops->fl_release_private(&lock);
2572	trace_locks_remove_posix(inode, &lock, error);
2573}
2574EXPORT_SYMBOL(locks_remove_posix);
2575
2576/* The i_flctx must be valid when calling into here */
2577static void
2578locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2579{
2580	struct file_lock fl;
2581	struct inode *inode = file_inode(filp);
2582
2583	if (list_empty(&flctx->flc_flock))
2584		return;
2585
2586	flock_make_lock(filp, &fl, F_UNLCK);
2587	fl.fl_flags |= FL_CLOSE;
2588
2589	if (filp->f_op->flock)
2590		filp->f_op->flock(filp, F_SETLKW, &fl);
2591	else
2592		flock_lock_inode(inode, &fl);
2593
2594	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2595		fl.fl_ops->fl_release_private(&fl);
2596}
2597
2598/* The i_flctx must be valid when calling into here */
2599static void
2600locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2601{
2602	struct file_lock *fl, *tmp;
2603	LIST_HEAD(dispose);
2604
2605	if (list_empty(&ctx->flc_lease))
2606		return;
2607
2608	percpu_down_read(&file_rwsem);
2609	spin_lock(&ctx->flc_lock);
2610	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2611		if (filp == fl->fl_file)
2612			lease_modify(fl, F_UNLCK, &dispose);
2613	spin_unlock(&ctx->flc_lock);
2614	percpu_up_read(&file_rwsem);
2615
2616	locks_dispose_list(&dispose);
2617}
2618
2619/*
2620 * This function is called on the last close of an open file.
2621 */
2622void locks_remove_file(struct file *filp)
2623{
2624	struct file_lock_context *ctx;
2625
2626	ctx = locks_inode_context(file_inode(filp));
2627	if (!ctx)
2628		return;
2629
2630	/* remove any OFD locks */
2631	locks_remove_posix(filp, filp);
2632
2633	/* remove flock locks */
2634	locks_remove_flock(filp, ctx);
2635
2636	/* remove any leases */
2637	locks_remove_lease(filp, ctx);
2638
2639	spin_lock(&ctx->flc_lock);
2640	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2641	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2642	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2643	spin_unlock(&ctx->flc_lock);
2644}
2645
2646/**
2647 * vfs_cancel_lock - file byte range unblock lock
2648 * @filp: The file to apply the unblock to
2649 * @fl: The lock to be unblocked
2650 *
2651 * Used by lock managers to cancel blocked requests
2652 */
2653int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2654{
2655	WARN_ON_ONCE(filp != fl->fl_file);
2656	if (filp->f_op->lock)
2657		return filp->f_op->lock(filp, F_CANCELLK, fl);
2658	return 0;
2659}
2660EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2661
2662/**
2663 * vfs_inode_has_locks - are any file locks held on @inode?
2664 * @inode: inode to check for locks
2665 *
2666 * Return true if there are any FL_POSIX or FL_FLOCK locks currently
2667 * set on @inode.
2668 */
2669bool vfs_inode_has_locks(struct inode *inode)
2670{
2671	struct file_lock_context *ctx;
2672	bool ret;
2673
2674	ctx = locks_inode_context(inode);
2675	if (!ctx)
2676		return false;
2677
2678	spin_lock(&ctx->flc_lock);
2679	ret = !list_empty(&ctx->flc_posix) || !list_empty(&ctx->flc_flock);
2680	spin_unlock(&ctx->flc_lock);
2681	return ret;
2682}
2683EXPORT_SYMBOL_GPL(vfs_inode_has_locks);
2684
2685#ifdef CONFIG_PROC_FS
2686#include <linux/proc_fs.h>
2687#include <linux/seq_file.h>
2688
2689struct locks_iterator {
2690	int	li_cpu;
2691	loff_t	li_pos;
2692};
2693
2694static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2695			    loff_t id, char *pfx, int repeat)
2696{
2697	struct inode *inode = NULL;
2698	unsigned int fl_pid;
2699	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2700	int type;
2701
2702	fl_pid = locks_translate_pid(fl, proc_pidns);
2703	/*
2704	 * If lock owner is dead (and pid is freed) or not visible in current
2705	 * pidns, zero is shown as a pid value. Check lock info from
2706	 * init_pid_ns to get saved lock pid value.
2707	 */
2708
2709	if (fl->fl_file != NULL)
2710		inode = file_inode(fl->fl_file);
2711
2712	seq_printf(f, "%lld: ", id);
2713
2714	if (repeat)
2715		seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx);
2716
 
2717	if (IS_POSIX(fl)) {
2718		if (fl->fl_flags & FL_ACCESS)
2719			seq_puts(f, "ACCESS");
2720		else if (IS_OFDLCK(fl))
2721			seq_puts(f, "OFDLCK");
2722		else
2723			seq_puts(f, "POSIX ");
2724
2725		seq_printf(f, " %s ",
2726			     (inode == NULL) ? "*NOINODE*" : "ADVISORY ");
 
2727	} else if (IS_FLOCK(fl)) {
2728		seq_puts(f, "FLOCK  ADVISORY  ");
 
 
 
 
2729	} else if (IS_LEASE(fl)) {
2730		if (fl->fl_flags & FL_DELEG)
2731			seq_puts(f, "DELEG  ");
2732		else
2733			seq_puts(f, "LEASE  ");
2734
2735		if (lease_breaking(fl))
2736			seq_puts(f, "BREAKING  ");
2737		else if (fl->fl_file)
2738			seq_puts(f, "ACTIVE    ");
2739		else
2740			seq_puts(f, "BREAKER   ");
2741	} else {
2742		seq_puts(f, "UNKNOWN UNKNOWN  ");
2743	}
2744	type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type;
 
 
 
 
 
 
2745
2746	seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2747			     (type == F_RDLCK) ? "READ" : "UNLCK");
 
2748	if (inode) {
2749		/* userspace relies on this representation of dev_t */
2750		seq_printf(f, "%d %02x:%02x:%lu ", fl_pid,
2751				MAJOR(inode->i_sb->s_dev),
2752				MINOR(inode->i_sb->s_dev), inode->i_ino);
2753	} else {
2754		seq_printf(f, "%d <none>:0 ", fl_pid);
2755	}
2756	if (IS_POSIX(fl)) {
2757		if (fl->fl_end == OFFSET_MAX)
2758			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2759		else
2760			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2761	} else {
2762		seq_puts(f, "0 EOF\n");
2763	}
2764}
2765
2766static struct file_lock *get_next_blocked_member(struct file_lock *node)
2767{
2768	struct file_lock *tmp;
2769
2770	/* NULL node or root node */
2771	if (node == NULL || node->fl_blocker == NULL)
2772		return NULL;
2773
2774	/* Next member in the linked list could be itself */
2775	tmp = list_next_entry(node, fl_blocked_member);
2776	if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member)
2777		|| tmp == node) {
2778		return NULL;
2779	}
2780
2781	return tmp;
2782}
2783
2784static int locks_show(struct seq_file *f, void *v)
2785{
2786	struct locks_iterator *iter = f->private;
2787	struct file_lock *cur, *tmp;
2788	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2789	int level = 0;
2790
2791	cur = hlist_entry(v, struct file_lock, fl_link);
2792
2793	if (locks_translate_pid(cur, proc_pidns) == 0)
2794		return 0;
2795
2796	/* View this crossed linked list as a binary tree, the first member of fl_blocked_requests
2797	 * is the left child of current node, the next silibing in fl_blocked_member is the
2798	 * right child, we can alse get the parent of current node from fl_blocker, so this
2799	 * question becomes traversal of a binary tree
2800	 */
2801	while (cur != NULL) {
2802		if (level)
2803			lock_get_status(f, cur, iter->li_pos, "-> ", level);
2804		else
2805			lock_get_status(f, cur, iter->li_pos, "", level);
2806
2807		if (!list_empty(&cur->fl_blocked_requests)) {
2808			/* Turn left */
2809			cur = list_first_entry_or_null(&cur->fl_blocked_requests,
2810				struct file_lock, fl_blocked_member);
2811			level++;
2812		} else {
2813			/* Turn right */
2814			tmp = get_next_blocked_member(cur);
2815			/* Fall back to parent node */
2816			while (tmp == NULL && cur->fl_blocker != NULL) {
2817				cur = cur->fl_blocker;
2818				level--;
2819				tmp = get_next_blocked_member(cur);
2820			}
2821			cur = tmp;
2822		}
2823	}
2824
2825	return 0;
2826}
2827
2828static void __show_fd_locks(struct seq_file *f,
2829			struct list_head *head, int *id,
2830			struct file *filp, struct files_struct *files)
2831{
2832	struct file_lock *fl;
2833
2834	list_for_each_entry(fl, head, fl_list) {
2835
2836		if (filp != fl->fl_file)
2837			continue;
2838		if (fl->fl_owner != files &&
2839		    fl->fl_owner != filp)
2840			continue;
2841
2842		(*id)++;
2843		seq_puts(f, "lock:\t");
2844		lock_get_status(f, fl, *id, "", 0);
2845	}
2846}
2847
2848void show_fd_locks(struct seq_file *f,
2849		  struct file *filp, struct files_struct *files)
2850{
2851	struct inode *inode = file_inode(filp);
2852	struct file_lock_context *ctx;
2853	int id = 0;
2854
2855	ctx = locks_inode_context(inode);
2856	if (!ctx)
2857		return;
2858
2859	spin_lock(&ctx->flc_lock);
2860	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2861	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2862	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2863	spin_unlock(&ctx->flc_lock);
2864}
2865
2866static void *locks_start(struct seq_file *f, loff_t *pos)
2867	__acquires(&blocked_lock_lock)
2868{
2869	struct locks_iterator *iter = f->private;
2870
2871	iter->li_pos = *pos + 1;
2872	percpu_down_write(&file_rwsem);
2873	spin_lock(&blocked_lock_lock);
2874	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2875}
2876
2877static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2878{
2879	struct locks_iterator *iter = f->private;
2880
2881	++iter->li_pos;
2882	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2883}
2884
2885static void locks_stop(struct seq_file *f, void *v)
2886	__releases(&blocked_lock_lock)
2887{
2888	spin_unlock(&blocked_lock_lock);
2889	percpu_up_write(&file_rwsem);
2890}
2891
2892static const struct seq_operations locks_seq_operations = {
2893	.start	= locks_start,
2894	.next	= locks_next,
2895	.stop	= locks_stop,
2896	.show	= locks_show,
2897};
2898
2899static int __init proc_locks_init(void)
2900{
2901	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2902			sizeof(struct locks_iterator), NULL);
2903	return 0;
2904}
2905fs_initcall(proc_locks_init);
2906#endif
2907
2908static int __init filelock_init(void)
2909{
2910	int i;
2911
2912	flctx_cache = kmem_cache_create("file_lock_ctx",
2913			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
2914
2915	filelock_cache = kmem_cache_create("file_lock_cache",
2916			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2917
2918	for_each_possible_cpu(i) {
2919		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
2920
2921		spin_lock_init(&fll->lock);
2922		INIT_HLIST_HEAD(&fll->hlist);
2923	}
2924
2925	lease_notifier_chain_init();
2926	return 0;
2927}
2928core_initcall(filelock_init);