Linux Audio

Check our new training course

Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 15#include <linux/siphash.h>
 16#include <crypto/hash.h>
 17#include <linux/blk-crypto.h>
 18
 19#define CONST_STRLEN(str)	(sizeof(str) - 1)
 20
 21#define FSCRYPT_FILE_NONCE_SIZE	16
 22
 
 
 
 
 
 23#define FSCRYPT_MIN_KEY_SIZE	16
 24
 25#define FSCRYPT_CONTEXT_V1	1
 26#define FSCRYPT_CONTEXT_V2	2
 27
 
 
 
 28struct fscrypt_context_v1 {
 29	u8 version; /* FSCRYPT_CONTEXT_V1 */
 30	u8 contents_encryption_mode;
 31	u8 filenames_encryption_mode;
 32	u8 flags;
 33	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 34	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 35};
 36
 37struct fscrypt_context_v2 {
 38	u8 version; /* FSCRYPT_CONTEXT_V2 */
 39	u8 contents_encryption_mode;
 40	u8 filenames_encryption_mode;
 41	u8 flags;
 42	u8 __reserved[4];
 
 43	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 44	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 45};
 46
 47/*
 48 * fscrypt_context - the encryption context of an inode
 49 *
 50 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 51 * encrypted file usually in a hidden extended attribute.  It contains the
 52 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 53 * and key with which the file is encrypted.  It also contains a nonce that was
 54 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 55 * to cause different files to be encrypted differently.
 56 */
 57union fscrypt_context {
 58	u8 version;
 59	struct fscrypt_context_v1 v1;
 60	struct fscrypt_context_v2 v2;
 61};
 62
 63/*
 64 * Return the size expected for the given fscrypt_context based on its version
 65 * number, or 0 if the context version is unrecognized.
 66 */
 67static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 68{
 69	switch (ctx->version) {
 70	case FSCRYPT_CONTEXT_V1:
 71		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 72		return sizeof(ctx->v1);
 73	case FSCRYPT_CONTEXT_V2:
 74		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 75		return sizeof(ctx->v2);
 76	}
 77	return 0;
 78}
 79
 80/* Check whether an fscrypt_context has a recognized version number and size */
 81static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
 82					    int ctx_size)
 83{
 84	return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
 85}
 86
 87/* Retrieve the context's nonce, assuming the context was already validated */
 88static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
 89{
 90	switch (ctx->version) {
 91	case FSCRYPT_CONTEXT_V1:
 92		return ctx->v1.nonce;
 93	case FSCRYPT_CONTEXT_V2:
 94		return ctx->v2.nonce;
 95	}
 96	WARN_ON(1);
 97	return NULL;
 98}
 99
100#undef fscrypt_policy
101union fscrypt_policy {
102	u8 version;
103	struct fscrypt_policy_v1 v1;
104	struct fscrypt_policy_v2 v2;
105};
106
107/*
108 * Return the size expected for the given fscrypt_policy based on its version
109 * number, or 0 if the policy version is unrecognized.
110 */
111static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
112{
113	switch (policy->version) {
114	case FSCRYPT_POLICY_V1:
115		return sizeof(policy->v1);
116	case FSCRYPT_POLICY_V2:
117		return sizeof(policy->v2);
118	}
119	return 0;
120}
121
122/* Return the contents encryption mode of a valid encryption policy */
123static inline u8
124fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
125{
126	switch (policy->version) {
127	case FSCRYPT_POLICY_V1:
128		return policy->v1.contents_encryption_mode;
129	case FSCRYPT_POLICY_V2:
130		return policy->v2.contents_encryption_mode;
131	}
132	BUG();
133}
134
135/* Return the filenames encryption mode of a valid encryption policy */
136static inline u8
137fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
138{
139	switch (policy->version) {
140	case FSCRYPT_POLICY_V1:
141		return policy->v1.filenames_encryption_mode;
142	case FSCRYPT_POLICY_V2:
143		return policy->v2.filenames_encryption_mode;
144	}
145	BUG();
146}
147
148/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
149static inline u8
150fscrypt_policy_flags(const union fscrypt_policy *policy)
151{
152	switch (policy->version) {
153	case FSCRYPT_POLICY_V1:
154		return policy->v1.flags;
155	case FSCRYPT_POLICY_V2:
156		return policy->v2.flags;
157	}
158	BUG();
159}
160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161/*
162 * For encrypted symlinks, the ciphertext length is stored at the beginning
163 * of the string in little-endian format.
164 */
165struct fscrypt_symlink_data {
166	__le16 len;
167	char encrypted_path[1];
168} __packed;
169
170/**
171 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
172 * @tfm: crypto API transform object
173 * @blk_key: key for blk-crypto
174 *
175 * Normally only one of the fields will be non-NULL.
176 */
177struct fscrypt_prepared_key {
178	struct crypto_skcipher *tfm;
179#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
180	struct fscrypt_blk_crypto_key *blk_key;
181#endif
182};
183
184/*
185 * fscrypt_info - the "encryption key" for an inode
186 *
187 * When an encrypted file's key is made available, an instance of this struct is
188 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
189 * inode is evicted.
190 */
191struct fscrypt_info {
192
193	/* The key in a form prepared for actual encryption/decryption */
194	struct fscrypt_prepared_key ci_enc_key;
195
196	/* True if ci_enc_key should be freed when this fscrypt_info is freed */
197	bool ci_owns_key;
198
199#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
200	/*
201	 * True if this inode will use inline encryption (blk-crypto) instead of
202	 * the traditional filesystem-layer encryption.
203	 */
204	bool ci_inlinecrypt;
205#endif
206
207	/*
 
 
 
 
 
 
 
 
 
 
208	 * Encryption mode used for this inode.  It corresponds to either the
209	 * contents or filenames encryption mode, depending on the inode type.
210	 */
211	struct fscrypt_mode *ci_mode;
212
213	/* Back-pointer to the inode */
214	struct inode *ci_inode;
215
216	/*
217	 * The master key with which this inode was unlocked (decrypted).  This
218	 * will be NULL if the master key was found in a process-subscribed
219	 * keyring rather than in the filesystem-level keyring.
220	 */
221	struct key *ci_master_key;
222
223	/*
224	 * Link in list of inodes that were unlocked with the master key.
225	 * Only used when ->ci_master_key is set.
226	 */
227	struct list_head ci_master_key_link;
228
229	/*
230	 * If non-NULL, then encryption is done using the master key directly
231	 * and ci_enc_key will equal ci_direct_key->dk_key.
232	 */
233	struct fscrypt_direct_key *ci_direct_key;
234
235	/*
236	 * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4
237	 * key.  This is only set for directories that use a keyed dirhash over
238	 * the plaintext filenames -- currently just casefolded directories.
239	 */
240	siphash_key_t ci_dirhash_key;
241	bool ci_dirhash_key_initialized;
242
243	/* The encryption policy used by this inode */
244	union fscrypt_policy ci_policy;
245
246	/* This inode's nonce, copied from the fscrypt_context */
247	u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
248
249	/* Hashed inode number.  Only set for IV_INO_LBLK_32 */
250	u32 ci_hashed_ino;
251};
252
253typedef enum {
254	FS_DECRYPT = 0,
255	FS_ENCRYPT,
256} fscrypt_direction_t;
257
258/* crypto.c */
259extern struct kmem_cache *fscrypt_info_cachep;
260int fscrypt_initialize(unsigned int cop_flags);
261int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
262			u64 lblk_num, struct page *src_page,
263			struct page *dest_page, unsigned int len,
264			unsigned int offs, gfp_t gfp_flags);
 
265struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
266
267void __printf(3, 4) __cold
268fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
269
270#define fscrypt_warn(inode, fmt, ...)		\
271	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
272#define fscrypt_err(inode, fmt, ...)		\
273	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
274
275#define FSCRYPT_MAX_IV_SIZE	32
276
277union fscrypt_iv {
278	struct {
279		/* logical block number within the file */
280		__le64 lblk_num;
281
282		/* per-file nonce; only set in DIRECT_KEY mode */
283		u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
284	};
285	u8 raw[FSCRYPT_MAX_IV_SIZE];
286	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
287};
288
289void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
290			 const struct fscrypt_info *ci);
 
 
 
 
 
 
 
 
 
 
291
292/* fname.c */
293int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
294			  u8 *out, unsigned int olen);
295bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
296				  u32 max_len, u32 *encrypted_len_ret);
297extern const struct dentry_operations fscrypt_d_ops;
298
299/* hkdf.c */
300
301struct fscrypt_hkdf {
302	struct crypto_shash *hmac_tfm;
303};
304
305int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
306		      unsigned int master_key_size);
307
308/*
309 * The list of contexts in which fscrypt uses HKDF.  These values are used as
310 * the first byte of the HKDF application-specific info string to guarantee that
311 * info strings are never repeated between contexts.  This ensures that all HKDF
312 * outputs are unique and cryptographically isolated, i.e. knowledge of one
313 * output doesn't reveal another.
314 */
315#define HKDF_CONTEXT_KEY_IDENTIFIER	1 /* info=<empty>		*/
316#define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/
317#define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/
318#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/
319#define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/
320#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/
321#define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/
322
323int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
324			const u8 *info, unsigned int infolen,
325			u8 *okm, unsigned int okmlen);
326
327void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
328
329/* inline_crypt.c */
330#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
331int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
332
333static inline bool
334fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
335{
336	return ci->ci_inlinecrypt;
337}
338
339int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
340				     const u8 *raw_key,
341				     const struct fscrypt_info *ci);
342
343void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key);
 
344
345/*
346 * Check whether the crypto transform or blk-crypto key has been allocated in
347 * @prep_key, depending on which encryption implementation the file will use.
348 */
349static inline bool
350fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
351			const struct fscrypt_info *ci)
352{
353	/*
354	 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
355	 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
356	 * I.e., in some cases (namely, if this prep_key is a per-mode
357	 * encryption key) another task can publish blk_key or tfm concurrently,
358	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
359	 * to safely ACQUIRE the memory the other task published.
360	 */
361	if (fscrypt_using_inline_encryption(ci))
362		return smp_load_acquire(&prep_key->blk_key) != NULL;
363	return smp_load_acquire(&prep_key->tfm) != NULL;
364}
365
366#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
367
368static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
369{
370	return 0;
371}
372
373static inline bool
374fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
375{
376	return false;
377}
378
379static inline int
380fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
381				 const u8 *raw_key,
382				 const struct fscrypt_info *ci)
383{
384	WARN_ON(1);
385	return -EOPNOTSUPP;
386}
387
388static inline void
389fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
 
390{
391}
392
393static inline bool
394fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
395			const struct fscrypt_info *ci)
396{
397	return smp_load_acquire(&prep_key->tfm) != NULL;
398}
399#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
400
401/* keyring.c */
402
403/*
404 * fscrypt_master_key_secret - secret key material of an in-use master key
405 */
406struct fscrypt_master_key_secret {
407
408	/*
409	 * For v2 policy keys: HKDF context keyed by this master key.
410	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
411	 */
412	struct fscrypt_hkdf	hkdf;
413
414	/* Size of the raw key in bytes.  Set even if ->raw isn't set. */
 
 
 
 
415	u32			size;
416
417	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
418	u8			raw[FSCRYPT_MAX_KEY_SIZE];
419
420} __randomize_layout;
421
422/*
423 * fscrypt_master_key - an in-use master key
424 *
425 * This represents a master encryption key which has been added to the
426 * filesystem and can be used to "unlock" the encrypted files which were
427 * encrypted with it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428 */
429struct fscrypt_master_key {
430
431	/*
432	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
433	 * executed, this is wiped and no new inodes can be unlocked with this
434	 * key; however, there may still be inodes in ->mk_decrypted_inodes
435	 * which could not be evicted.  As long as some inodes still remain,
436	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
437	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
 
 
 
 
 
 
 
 
 
 
 
438	 *
439	 * Locking: protected by key->sem (outer) and mk_secret_sem (inner).
440	 * The reason for two locks is that key->sem also protects modifying
441	 * mk_users, which ranks it above the semaphore for the keyring key
442	 * type, which is in turn above page faults (via keyring_read).  But
443	 * sometimes filesystems call fscrypt_get_encryption_info() from within
444	 * a transaction, which ranks it below page faults.  So we need a
445	 * separate lock which protects mk_secret but not also mk_users.
 
 
 
 
 
 
 
446	 */
447	struct fscrypt_master_key_secret	mk_secret;
448	struct rw_semaphore			mk_secret_sem;
449
450	/*
451	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
452	 * userspace (->descriptor).
453	 *
454	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
455	 */
456	struct fscrypt_key_specifier		mk_spec;
457
458	/*
459	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
460	 * user who has added this key.  Normally each key will be added by just
461	 * one user, but it's possible that multiple users share a key, and in
462	 * that case we need to keep track of those users so that one user can't
463	 * remove the key before the others want it removed too.
464	 *
465	 * This is NULL for v1 policy keys; those can only be added by root.
466	 *
467	 * Locking: in addition to this keyrings own semaphore, this is
468	 * protected by the master key's key->sem, so we can do atomic
469	 * search+insert.  It can also be searched without taking any locks, but
470	 * in that case the returned key may have already been removed.
471	 */
472	struct key		*mk_users;
473
474	/*
475	 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
476	 * Once this goes to 0, the master key is removed from ->s_master_keys.
477	 * The 'struct fscrypt_master_key' will continue to live as long as the
478	 * 'struct key' whose payload it is, but we won't let this reference
479	 * count rise again.
480	 */
481	refcount_t		mk_refcount;
482
483	/*
484	 * List of inodes that were unlocked using this key.  This allows the
485	 * inodes to be evicted efficiently if the key is removed.
486	 */
487	struct list_head	mk_decrypted_inodes;
488	spinlock_t		mk_decrypted_inodes_lock;
489
490	/*
491	 * Per-mode encryption keys for the various types of encryption policies
492	 * that use them.  Allocated and derived on-demand.
493	 */
494	struct fscrypt_prepared_key mk_direct_keys[__FSCRYPT_MODE_MAX + 1];
495	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[__FSCRYPT_MODE_MAX + 1];
496	struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[__FSCRYPT_MODE_MAX + 1];
497
498	/* Hash key for inode numbers.  Initialized only when needed. */
499	siphash_key_t		mk_ino_hash_key;
500	bool			mk_ino_hash_key_initialized;
501
502} __randomize_layout;
503
504static inline bool
505is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
506{
507	/*
508	 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and
509	 * fscrypt_key_describe().  These run in atomic context, so they can't
510	 * take ->mk_secret_sem and thus 'secret' can change concurrently which
511	 * would be a data race.  But they only need to know whether the secret
512	 * *was* present at the time of check, so READ_ONCE() suffices.
 
513	 */
514	return READ_ONCE(secret->size) != 0;
515}
 
516
517static inline const char *master_key_spec_type(
518				const struct fscrypt_key_specifier *spec)
519{
520	switch (spec->type) {
521	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
522		return "descriptor";
523	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
524		return "identifier";
525	}
526	return "[unknown]";
527}
528
529static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
530{
531	switch (spec->type) {
532	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
533		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
534	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
535		return FSCRYPT_KEY_IDENTIFIER_SIZE;
536	}
537	return 0;
538}
539
540struct key *
 
 
 
 
 
541fscrypt_find_master_key(struct super_block *sb,
542			const struct fscrypt_key_specifier *mk_spec);
543
 
 
 
544int fscrypt_add_test_dummy_key(struct super_block *sb,
545			       struct fscrypt_key_specifier *key_spec);
546
547int fscrypt_verify_key_added(struct super_block *sb,
548			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
549
550int __init fscrypt_init_keyring(void);
551
552/* keysetup.c */
553
554struct fscrypt_mode {
555	const char *friendly_name;
556	const char *cipher_str;
557	int keysize;
558	int ivsize;
559	int logged_impl_name;
 
 
 
560	enum blk_crypto_mode_num blk_crypto_mode;
561};
562
563extern struct fscrypt_mode fscrypt_modes[];
564
565int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
566			const u8 *raw_key, const struct fscrypt_info *ci);
567
568void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key);
 
569
570int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
 
 
 
 
571
572int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
573			       const struct fscrypt_master_key *mk);
574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575/* keysetup_v1.c */
576
577void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
578
579int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
580			      const u8 *raw_master_key);
581
582int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
 
583
584/* policy.c */
585
586bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
587			    const union fscrypt_policy *policy2);
 
 
 
588bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
589			      const struct inode *inode);
590int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
591				const union fscrypt_context *ctx_u,
592				int ctx_size);
 
593
594#endif /* _FSCRYPT_PRIVATE_H */
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fscrypt_private.h
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#ifndef _FSCRYPT_PRIVATE_H
 12#define _FSCRYPT_PRIVATE_H
 13
 14#include <linux/fscrypt.h>
 15#include <linux/siphash.h>
 16#include <crypto/hash.h>
 17#include <linux/blk-crypto.h>
 18
 19#define CONST_STRLEN(str)	(sizeof(str) - 1)
 20
 21#define FSCRYPT_FILE_NONCE_SIZE	16
 22
 23/*
 24 * Minimum size of an fscrypt master key.  Note: a longer key will be required
 25 * if ciphers with a 256-bit security strength are used.  This is just the
 26 * absolute minimum, which applies when only 128-bit encryption is used.
 27 */
 28#define FSCRYPT_MIN_KEY_SIZE	16
 29
 30#define FSCRYPT_CONTEXT_V1	1
 31#define FSCRYPT_CONTEXT_V2	2
 32
 33/* Keep this in sync with include/uapi/linux/fscrypt.h */
 34#define FSCRYPT_MODE_MAX	FSCRYPT_MODE_AES_256_HCTR2
 35
 36struct fscrypt_context_v1 {
 37	u8 version; /* FSCRYPT_CONTEXT_V1 */
 38	u8 contents_encryption_mode;
 39	u8 filenames_encryption_mode;
 40	u8 flags;
 41	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
 42	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 43};
 44
 45struct fscrypt_context_v2 {
 46	u8 version; /* FSCRYPT_CONTEXT_V2 */
 47	u8 contents_encryption_mode;
 48	u8 filenames_encryption_mode;
 49	u8 flags;
 50	u8 log2_data_unit_size;
 51	u8 __reserved[3];
 52	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
 53	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 54};
 55
 56/*
 57 * fscrypt_context - the encryption context of an inode
 58 *
 59 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
 60 * encrypted file usually in a hidden extended attribute.  It contains the
 61 * fields from the fscrypt_policy, in order to identify the encryption algorithm
 62 * and key with which the file is encrypted.  It also contains a nonce that was
 63 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
 64 * to cause different files to be encrypted differently.
 65 */
 66union fscrypt_context {
 67	u8 version;
 68	struct fscrypt_context_v1 v1;
 69	struct fscrypt_context_v2 v2;
 70};
 71
 72/*
 73 * Return the size expected for the given fscrypt_context based on its version
 74 * number, or 0 if the context version is unrecognized.
 75 */
 76static inline int fscrypt_context_size(const union fscrypt_context *ctx)
 77{
 78	switch (ctx->version) {
 79	case FSCRYPT_CONTEXT_V1:
 80		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
 81		return sizeof(ctx->v1);
 82	case FSCRYPT_CONTEXT_V2:
 83		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
 84		return sizeof(ctx->v2);
 85	}
 86	return 0;
 87}
 88
 89/* Check whether an fscrypt_context has a recognized version number and size */
 90static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
 91					    int ctx_size)
 92{
 93	return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
 94}
 95
 96/* Retrieve the context's nonce, assuming the context was already validated */
 97static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
 98{
 99	switch (ctx->version) {
100	case FSCRYPT_CONTEXT_V1:
101		return ctx->v1.nonce;
102	case FSCRYPT_CONTEXT_V2:
103		return ctx->v2.nonce;
104	}
105	WARN_ON_ONCE(1);
106	return NULL;
107}
108
 
109union fscrypt_policy {
110	u8 version;
111	struct fscrypt_policy_v1 v1;
112	struct fscrypt_policy_v2 v2;
113};
114
115/*
116 * Return the size expected for the given fscrypt_policy based on its version
117 * number, or 0 if the policy version is unrecognized.
118 */
119static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
120{
121	switch (policy->version) {
122	case FSCRYPT_POLICY_V1:
123		return sizeof(policy->v1);
124	case FSCRYPT_POLICY_V2:
125		return sizeof(policy->v2);
126	}
127	return 0;
128}
129
130/* Return the contents encryption mode of a valid encryption policy */
131static inline u8
132fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
133{
134	switch (policy->version) {
135	case FSCRYPT_POLICY_V1:
136		return policy->v1.contents_encryption_mode;
137	case FSCRYPT_POLICY_V2:
138		return policy->v2.contents_encryption_mode;
139	}
140	BUG();
141}
142
143/* Return the filenames encryption mode of a valid encryption policy */
144static inline u8
145fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
146{
147	switch (policy->version) {
148	case FSCRYPT_POLICY_V1:
149		return policy->v1.filenames_encryption_mode;
150	case FSCRYPT_POLICY_V2:
151		return policy->v2.filenames_encryption_mode;
152	}
153	BUG();
154}
155
156/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
157static inline u8
158fscrypt_policy_flags(const union fscrypt_policy *policy)
159{
160	switch (policy->version) {
161	case FSCRYPT_POLICY_V1:
162		return policy->v1.flags;
163	case FSCRYPT_POLICY_V2:
164		return policy->v2.flags;
165	}
166	BUG();
167}
168
169static inline int
170fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy,
171			  const struct inode *inode)
172{
173	return policy->log2_data_unit_size ?: inode->i_blkbits;
174}
175
176static inline int
177fscrypt_policy_du_bits(const union fscrypt_policy *policy,
178		       const struct inode *inode)
179{
180	switch (policy->version) {
181	case FSCRYPT_POLICY_V1:
182		return inode->i_blkbits;
183	case FSCRYPT_POLICY_V2:
184		return fscrypt_policy_v2_du_bits(&policy->v2, inode);
185	}
186	BUG();
187}
188
189/*
190 * For encrypted symlinks, the ciphertext length is stored at the beginning
191 * of the string in little-endian format.
192 */
193struct fscrypt_symlink_data {
194	__le16 len;
195	char encrypted_path[];
196} __packed;
197
198/**
199 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
200 * @tfm: crypto API transform object
201 * @blk_key: key for blk-crypto
202 *
203 * Normally only one of the fields will be non-NULL.
204 */
205struct fscrypt_prepared_key {
206	struct crypto_skcipher *tfm;
207#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
208	struct blk_crypto_key *blk_key;
209#endif
210};
211
212/*
213 * fscrypt_inode_info - the "encryption key" for an inode
214 *
215 * When an encrypted file's key is made available, an instance of this struct is
216 * allocated and stored in ->i_crypt_info.  Once created, it remains until the
217 * inode is evicted.
218 */
219struct fscrypt_inode_info {
220
221	/* The key in a form prepared for actual encryption/decryption */
222	struct fscrypt_prepared_key ci_enc_key;
223
224	/* True if ci_enc_key should be freed when this struct is freed */
225	bool ci_owns_key;
226
227#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
228	/*
229	 * True if this inode will use inline encryption (blk-crypto) instead of
230	 * the traditional filesystem-layer encryption.
231	 */
232	bool ci_inlinecrypt;
233#endif
234
235	/*
236	 * log2 of the data unit size (granularity of contents encryption) of
237	 * this file.  This is computable from ci_policy and ci_inode but is
238	 * cached here for efficiency.  Only used for regular files.
239	 */
240	u8 ci_data_unit_bits;
241
242	/* Cached value: log2 of number of data units per FS block */
243	u8 ci_data_units_per_block_bits;
244
245	/*
246	 * Encryption mode used for this inode.  It corresponds to either the
247	 * contents or filenames encryption mode, depending on the inode type.
248	 */
249	struct fscrypt_mode *ci_mode;
250
251	/* Back-pointer to the inode */
252	struct inode *ci_inode;
253
254	/*
255	 * The master key with which this inode was unlocked (decrypted).  This
256	 * will be NULL if the master key was found in a process-subscribed
257	 * keyring rather than in the filesystem-level keyring.
258	 */
259	struct fscrypt_master_key *ci_master_key;
260
261	/*
262	 * Link in list of inodes that were unlocked with the master key.
263	 * Only used when ->ci_master_key is set.
264	 */
265	struct list_head ci_master_key_link;
266
267	/*
268	 * If non-NULL, then encryption is done using the master key directly
269	 * and ci_enc_key will equal ci_direct_key->dk_key.
270	 */
271	struct fscrypt_direct_key *ci_direct_key;
272
273	/*
274	 * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4
275	 * key.  This is only set for directories that use a keyed dirhash over
276	 * the plaintext filenames -- currently just casefolded directories.
277	 */
278	siphash_key_t ci_dirhash_key;
279	bool ci_dirhash_key_initialized;
280
281	/* The encryption policy used by this inode */
282	union fscrypt_policy ci_policy;
283
284	/* This inode's nonce, copied from the fscrypt_context */
285	u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
286
287	/* Hashed inode number.  Only set for IV_INO_LBLK_32 */
288	u32 ci_hashed_ino;
289};
290
291typedef enum {
292	FS_DECRYPT = 0,
293	FS_ENCRYPT,
294} fscrypt_direction_t;
295
296/* crypto.c */
297extern struct kmem_cache *fscrypt_inode_info_cachep;
298int fscrypt_initialize(struct super_block *sb);
299int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
300			    fscrypt_direction_t rw, u64 index,
301			    struct page *src_page, struct page *dest_page,
302			    unsigned int len, unsigned int offs,
303			    gfp_t gfp_flags);
304struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
305
306void __printf(3, 4) __cold
307fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
308
309#define fscrypt_warn(inode, fmt, ...)		\
310	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
311#define fscrypt_err(inode, fmt, ...)		\
312	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
313
314#define FSCRYPT_MAX_IV_SIZE	32
315
316union fscrypt_iv {
317	struct {
318		/* zero-based index of data unit within the file */
319		__le64 index;
320
321		/* per-file nonce; only set in DIRECT_KEY mode */
322		u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
323	};
324	u8 raw[FSCRYPT_MAX_IV_SIZE];
325	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
326};
327
328void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
329			 const struct fscrypt_inode_info *ci);
330
331/*
332 * Return the number of bits used by the maximum file data unit index that is
333 * possible on the given filesystem, using the given log2 data unit size.
334 */
335static inline int
336fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
337{
338	return fls64(sb->s_maxbytes - 1) - du_bits;
339}
340
341/* fname.c */
342bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
343				    u32 orig_len, u32 max_len,
344				    u32 *encrypted_len_ret);
 
 
345
346/* hkdf.c */
 
347struct fscrypt_hkdf {
348	struct crypto_shash *hmac_tfm;
349};
350
351int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
352		      unsigned int master_key_size);
353
354/*
355 * The list of contexts in which fscrypt uses HKDF.  These values are used as
356 * the first byte of the HKDF application-specific info string to guarantee that
357 * info strings are never repeated between contexts.  This ensures that all HKDF
358 * outputs are unique and cryptographically isolated, i.e. knowledge of one
359 * output doesn't reveal another.
360 */
361#define HKDF_CONTEXT_KEY_IDENTIFIER	1 /* info=<empty>		*/
362#define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/
363#define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/
364#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/
365#define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/
366#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/
367#define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/
368
369int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
370			const u8 *info, unsigned int infolen,
371			u8 *okm, unsigned int okmlen);
372
373void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
374
375/* inline_crypt.c */
376#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
377int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci);
378
379static inline bool
380fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
381{
382	return ci->ci_inlinecrypt;
383}
384
385int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
386				     const u8 *raw_key,
387				     const struct fscrypt_inode_info *ci);
388
389void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
390				      struct fscrypt_prepared_key *prep_key);
391
392/*
393 * Check whether the crypto transform or blk-crypto key has been allocated in
394 * @prep_key, depending on which encryption implementation the file will use.
395 */
396static inline bool
397fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
398			const struct fscrypt_inode_info *ci)
399{
400	/*
401	 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
402	 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
403	 * I.e., in some cases (namely, if this prep_key is a per-mode
404	 * encryption key) another task can publish blk_key or tfm concurrently,
405	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
406	 * to safely ACQUIRE the memory the other task published.
407	 */
408	if (fscrypt_using_inline_encryption(ci))
409		return smp_load_acquire(&prep_key->blk_key) != NULL;
410	return smp_load_acquire(&prep_key->tfm) != NULL;
411}
412
413#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
414
415static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci)
416{
417	return 0;
418}
419
420static inline bool
421fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
422{
423	return false;
424}
425
426static inline int
427fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
428				 const u8 *raw_key,
429				 const struct fscrypt_inode_info *ci)
430{
431	WARN_ON_ONCE(1);
432	return -EOPNOTSUPP;
433}
434
435static inline void
436fscrypt_destroy_inline_crypt_key(struct super_block *sb,
437				 struct fscrypt_prepared_key *prep_key)
438{
439}
440
441static inline bool
442fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
443			const struct fscrypt_inode_info *ci)
444{
445	return smp_load_acquire(&prep_key->tfm) != NULL;
446}
447#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
448
449/* keyring.c */
450
451/*
452 * fscrypt_master_key_secret - secret key material of an in-use master key
453 */
454struct fscrypt_master_key_secret {
455
456	/*
457	 * For v2 policy keys: HKDF context keyed by this master key.
458	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
459	 */
460	struct fscrypt_hkdf	hkdf;
461
462	/*
463	 * Size of the raw key in bytes.  This remains set even if ->raw was
464	 * zeroized due to no longer being needed.  I.e. we still remember the
465	 * size of the key even if we don't need to remember the key itself.
466	 */
467	u32			size;
468
469	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
470	u8			raw[FSCRYPT_MAX_KEY_SIZE];
471
472} __randomize_layout;
473
474/*
475 * fscrypt_master_key - an in-use master key
476 *
477 * This represents a master encryption key which has been added to the
478 * filesystem.  There are three high-level states that a key can be in:
479 *
480 * FSCRYPT_KEY_STATUS_PRESENT
481 *	Key is fully usable; it can be used to unlock inodes that are encrypted
482 *	with it (this includes being able to create new inodes).  ->mk_present
483 *	indicates whether the key is in this state.  ->mk_secret exists, the key
484 *	is in the keyring, and ->mk_active_refs > 0 due to ->mk_present.
485 *
486 * FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED
487 *	Removal of this key has been initiated, but some inodes that were
488 *	unlocked with it are still in-use.  Like ABSENT, ->mk_secret is wiped,
489 *	and the key can no longer be used to unlock inodes.  Unlike ABSENT, the
490 *	key is still in the keyring; ->mk_decrypted_inodes is nonempty; and
491 *	->mk_active_refs > 0, being equal to the size of ->mk_decrypted_inodes.
492 *
493 *	This state transitions to ABSENT if ->mk_decrypted_inodes becomes empty,
494 *	or to PRESENT if FS_IOC_ADD_ENCRYPTION_KEY is called again for this key.
495 *
496 * FSCRYPT_KEY_STATUS_ABSENT
497 *	Key is fully removed.  The key is no longer in the keyring,
498 *	->mk_decrypted_inodes is empty, ->mk_active_refs == 0, ->mk_secret is
499 *	wiped, and the key can no longer be used to unlock inodes.
500 */
501struct fscrypt_master_key {
502
503	/*
504	 * Link in ->s_master_keys->key_hashtable.
505	 * Only valid if ->mk_active_refs > 0.
506	 */
507	struct hlist_node			mk_node;
508
509	/* Semaphore that protects ->mk_secret, ->mk_users, and ->mk_present */
510	struct rw_semaphore			mk_sem;
511
512	/*
513	 * Active and structural reference counts.  An active ref guarantees
514	 * that the struct continues to exist, continues to be in the keyring
515	 * ->s_master_keys, and that any embedded subkeys (e.g.
516	 * ->mk_direct_keys) that have been prepared continue to exist.
517	 * A structural ref only guarantees that the struct continues to exist.
518	 *
519	 * There is one active ref associated with ->mk_present being true, and
520	 * one active ref for each inode in ->mk_decrypted_inodes.
521	 *
522	 * There is one structural ref associated with the active refcount being
523	 * nonzero.  Finding a key in the keyring also takes a structural ref,
524	 * which is then held temporarily while the key is operated on.
525	 */
526	refcount_t				mk_active_refs;
527	refcount_t				mk_struct_refs;
528
529	struct rcu_head				mk_rcu_head;
530
531	/*
532	 * The secret key material.  Wiped as soon as it is no longer needed;
533	 * for details, see the fscrypt_master_key struct comment.
534	 *
535	 * Locking: protected by ->mk_sem.
536	 */
537	struct fscrypt_master_key_secret	mk_secret;
 
538
539	/*
540	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
541	 * userspace (->descriptor).
542	 *
543	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
544	 */
545	struct fscrypt_key_specifier		mk_spec;
546
547	/*
548	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
549	 * user who has added this key.  Normally each key will be added by just
550	 * one user, but it's possible that multiple users share a key, and in
551	 * that case we need to keep track of those users so that one user can't
552	 * remove the key before the others want it removed too.
553	 *
554	 * This is NULL for v1 policy keys; those can only be added by root.
555	 *
556	 * Locking: protected by ->mk_sem.  (We don't just rely on the keyrings
557	 * subsystem semaphore ->mk_users->sem, as we need support for atomic
558	 * search+insert along with proper synchronization with other fields.)
 
559	 */
560	struct key		*mk_users;
561
562	/*
 
 
 
 
 
 
 
 
 
563	 * List of inodes that were unlocked using this key.  This allows the
564	 * inodes to be evicted efficiently if the key is removed.
565	 */
566	struct list_head	mk_decrypted_inodes;
567	spinlock_t		mk_decrypted_inodes_lock;
568
569	/*
570	 * Per-mode encryption keys for the various types of encryption policies
571	 * that use them.  Allocated and derived on-demand.
572	 */
573	struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
574	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
575	struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
576
577	/* Hash key for inode numbers.  Initialized only when needed. */
578	siphash_key_t		mk_ino_hash_key;
579	bool			mk_ino_hash_key_initialized;
580
 
 
 
 
 
581	/*
582	 * Whether this key is in the "present" state, i.e. fully usable.  For
583	 * details, see the fscrypt_master_key struct comment.
584	 *
585	 * Locking: protected by ->mk_sem, but can be read locklessly using
586	 * READ_ONCE().  Writers must use WRITE_ONCE() when concurrent readers
587	 * are possible.
588	 */
589	bool			mk_present;
590
591} __randomize_layout;
592
593static inline const char *master_key_spec_type(
594				const struct fscrypt_key_specifier *spec)
595{
596	switch (spec->type) {
597	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
598		return "descriptor";
599	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
600		return "identifier";
601	}
602	return "[unknown]";
603}
604
605static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
606{
607	switch (spec->type) {
608	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
609		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
610	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
611		return FSCRYPT_KEY_IDENTIFIER_SIZE;
612	}
613	return 0;
614}
615
616void fscrypt_put_master_key(struct fscrypt_master_key *mk);
617
618void fscrypt_put_master_key_activeref(struct super_block *sb,
619				      struct fscrypt_master_key *mk);
620
621struct fscrypt_master_key *
622fscrypt_find_master_key(struct super_block *sb,
623			const struct fscrypt_key_specifier *mk_spec);
624
625int fscrypt_get_test_dummy_key_identifier(
626			  u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
627
628int fscrypt_add_test_dummy_key(struct super_block *sb,
629			       struct fscrypt_key_specifier *key_spec);
630
631int fscrypt_verify_key_added(struct super_block *sb,
632			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
633
634int __init fscrypt_init_keyring(void);
635
636/* keysetup.c */
637
638struct fscrypt_mode {
639	const char *friendly_name;
640	const char *cipher_str;
641	int keysize;		/* key size in bytes */
642	int security_strength;	/* security strength in bytes */
643	int ivsize;		/* IV size in bytes */
644	int logged_cryptoapi_impl;
645	int logged_blk_crypto_native;
646	int logged_blk_crypto_fallback;
647	enum blk_crypto_mode_num blk_crypto_mode;
648};
649
650extern struct fscrypt_mode fscrypt_modes[];
651
652int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
653			const u8 *raw_key, const struct fscrypt_inode_info *ci);
654
655void fscrypt_destroy_prepared_key(struct super_block *sb,
656				  struct fscrypt_prepared_key *prep_key);
657
658int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
659				 const u8 *raw_key);
660
661int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
662			       const struct fscrypt_master_key *mk);
663
664void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
665			       const struct fscrypt_master_key *mk);
666
667int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
668
669/**
670 * fscrypt_require_key() - require an inode's encryption key
671 * @inode: the inode we need the key for
672 *
673 * If the inode is encrypted, set up its encryption key if not already done.
674 * Then require that the key be present and return -ENOKEY otherwise.
675 *
676 * No locks are needed, and the key will live as long as the struct inode --- so
677 * it won't go away from under you.
678 *
679 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
680 * if a problem occurred while setting up the encryption key.
681 */
682static inline int fscrypt_require_key(struct inode *inode)
683{
684	if (IS_ENCRYPTED(inode)) {
685		int err = fscrypt_get_encryption_info(inode, false);
686
687		if (err)
688			return err;
689		if (!fscrypt_has_encryption_key(inode))
690			return -ENOKEY;
691	}
692	return 0;
693}
694
695/* keysetup_v1.c */
696
697void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
698
699int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci,
700			      const u8 *raw_master_key);
701
702int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
703				struct fscrypt_inode_info *ci);
704
705/* policy.c */
706
707bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
708			    const union fscrypt_policy *policy2);
709int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
710			       struct fscrypt_key_specifier *key_spec);
711const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb);
712bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
713			      const struct inode *inode);
714int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
715				const union fscrypt_context *ctx_u,
716				int ctx_size);
717const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
718
719#endif /* _FSCRYPT_PRIVATE_H */