Loading...
1/*
2 * DRBG: Deterministic Random Bits Generator
3 * Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 * properties:
5 * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 * * with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100#include <crypto/drbg.h>
101#include <linux/kernel.h>
102
103/***************************************************************
104 * Backend cipher definitions available to DRBG
105 ***************************************************************/
106
107/*
108 * The order of the DRBG definitions here matter: every DRBG is registered
109 * as stdrng. Each DRBG receives an increasing cra_priority values the later
110 * they are defined in this array (see drbg_fill_array).
111 *
112 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113 * the SHA256 / AES 256 over other ciphers. Thus, the favored
114 * DRBGs are the latest entries in this array.
115 */
116static const struct drbg_core drbg_cores[] = {
117#ifdef CONFIG_CRYPTO_DRBG_CTR
118 {
119 .flags = DRBG_CTR | DRBG_STRENGTH128,
120 .statelen = 32, /* 256 bits as defined in 10.2.1 */
121 .blocklen_bytes = 16,
122 .cra_name = "ctr_aes128",
123 .backend_cra_name = "aes",
124 }, {
125 .flags = DRBG_CTR | DRBG_STRENGTH192,
126 .statelen = 40, /* 320 bits as defined in 10.2.1 */
127 .blocklen_bytes = 16,
128 .cra_name = "ctr_aes192",
129 .backend_cra_name = "aes",
130 }, {
131 .flags = DRBG_CTR | DRBG_STRENGTH256,
132 .statelen = 48, /* 384 bits as defined in 10.2.1 */
133 .blocklen_bytes = 16,
134 .cra_name = "ctr_aes256",
135 .backend_cra_name = "aes",
136 },
137#endif /* CONFIG_CRYPTO_DRBG_CTR */
138#ifdef CONFIG_CRYPTO_DRBG_HASH
139 {
140 .flags = DRBG_HASH | DRBG_STRENGTH128,
141 .statelen = 55, /* 440 bits */
142 .blocklen_bytes = 20,
143 .cra_name = "sha1",
144 .backend_cra_name = "sha1",
145 }, {
146 .flags = DRBG_HASH | DRBG_STRENGTH256,
147 .statelen = 111, /* 888 bits */
148 .blocklen_bytes = 48,
149 .cra_name = "sha384",
150 .backend_cra_name = "sha384",
151 }, {
152 .flags = DRBG_HASH | DRBG_STRENGTH256,
153 .statelen = 111, /* 888 bits */
154 .blocklen_bytes = 64,
155 .cra_name = "sha512",
156 .backend_cra_name = "sha512",
157 }, {
158 .flags = DRBG_HASH | DRBG_STRENGTH256,
159 .statelen = 55, /* 440 bits */
160 .blocklen_bytes = 32,
161 .cra_name = "sha256",
162 .backend_cra_name = "sha256",
163 },
164#endif /* CONFIG_CRYPTO_DRBG_HASH */
165#ifdef CONFIG_CRYPTO_DRBG_HMAC
166 {
167 .flags = DRBG_HMAC | DRBG_STRENGTH128,
168 .statelen = 20, /* block length of cipher */
169 .blocklen_bytes = 20,
170 .cra_name = "hmac_sha1",
171 .backend_cra_name = "hmac(sha1)",
172 }, {
173 .flags = DRBG_HMAC | DRBG_STRENGTH256,
174 .statelen = 48, /* block length of cipher */
175 .blocklen_bytes = 48,
176 .cra_name = "hmac_sha384",
177 .backend_cra_name = "hmac(sha384)",
178 }, {
179 .flags = DRBG_HMAC | DRBG_STRENGTH256,
180 .statelen = 64, /* block length of cipher */
181 .blocklen_bytes = 64,
182 .cra_name = "hmac_sha512",
183 .backend_cra_name = "hmac(sha512)",
184 }, {
185 .flags = DRBG_HMAC | DRBG_STRENGTH256,
186 .statelen = 32, /* block length of cipher */
187 .blocklen_bytes = 32,
188 .cra_name = "hmac_sha256",
189 .backend_cra_name = "hmac(sha256)",
190 },
191#endif /* CONFIG_CRYPTO_DRBG_HMAC */
192};
193
194static int drbg_uninstantiate(struct drbg_state *drbg);
195
196/******************************************************************
197 * Generic helper functions
198 ******************************************************************/
199
200/*
201 * Return strength of DRBG according to SP800-90A section 8.4
202 *
203 * @flags DRBG flags reference
204 *
205 * Return: normalized strength in *bytes* value or 32 as default
206 * to counter programming errors
207 */
208static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209{
210 switch (flags & DRBG_STRENGTH_MASK) {
211 case DRBG_STRENGTH128:
212 return 16;
213 case DRBG_STRENGTH192:
214 return 24;
215 case DRBG_STRENGTH256:
216 return 32;
217 default:
218 return 32;
219 }
220}
221
222/*
223 * FIPS 140-2 continuous self test for the noise source
224 * The test is performed on the noise source input data. Thus, the function
225 * implicitly knows the size of the buffer to be equal to the security
226 * strength.
227 *
228 * Note, this function disregards the nonce trailing the entropy data during
229 * initial seeding.
230 *
231 * drbg->drbg_mutex must have been taken.
232 *
233 * @drbg DRBG handle
234 * @entropy buffer of seed data to be checked
235 *
236 * return:
237 * 0 on success
238 * -EAGAIN on when the CTRNG is not yet primed
239 * < 0 on error
240 */
241static int drbg_fips_continuous_test(struct drbg_state *drbg,
242 const unsigned char *entropy)
243{
244 unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
245 int ret = 0;
246
247 if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
248 return 0;
249
250 /* skip test if we test the overall system */
251 if (list_empty(&drbg->test_data.list))
252 return 0;
253 /* only perform test in FIPS mode */
254 if (!fips_enabled)
255 return 0;
256
257 if (!drbg->fips_primed) {
258 /* Priming of FIPS test */
259 memcpy(drbg->prev, entropy, entropylen);
260 drbg->fips_primed = true;
261 /* priming: another round is needed */
262 return -EAGAIN;
263 }
264 ret = memcmp(drbg->prev, entropy, entropylen);
265 if (!ret)
266 panic("DRBG continuous self test failed\n");
267 memcpy(drbg->prev, entropy, entropylen);
268
269 /* the test shall pass when the two values are not equal */
270 return 0;
271}
272
273/*
274 * Convert an integer into a byte representation of this integer.
275 * The byte representation is big-endian
276 *
277 * @val value to be converted
278 * @buf buffer holding the converted integer -- caller must ensure that
279 * buffer size is at least 32 bit
280 */
281#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
282static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
283{
284 struct s {
285 __be32 conv;
286 };
287 struct s *conversion = (struct s *) buf;
288
289 conversion->conv = cpu_to_be32(val);
290}
291#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
292
293/******************************************************************
294 * CTR DRBG callback functions
295 ******************************************************************/
296
297#ifdef CONFIG_CRYPTO_DRBG_CTR
298#define CRYPTO_DRBG_CTR_STRING "CTR "
299MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
300MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
301MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
302MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
303MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
304MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
305
306static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
307 const unsigned char *key);
308static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
309 const struct drbg_string *in);
310static int drbg_init_sym_kernel(struct drbg_state *drbg);
311static int drbg_fini_sym_kernel(struct drbg_state *drbg);
312static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
313 u8 *inbuf, u32 inbuflen,
314 u8 *outbuf, u32 outlen);
315#define DRBG_OUTSCRATCHLEN 256
316
317/* BCC function for CTR DRBG as defined in 10.4.3 */
318static int drbg_ctr_bcc(struct drbg_state *drbg,
319 unsigned char *out, const unsigned char *key,
320 struct list_head *in)
321{
322 int ret = 0;
323 struct drbg_string *curr = NULL;
324 struct drbg_string data;
325 short cnt = 0;
326
327 drbg_string_fill(&data, out, drbg_blocklen(drbg));
328
329 /* 10.4.3 step 2 / 4 */
330 drbg_kcapi_symsetkey(drbg, key);
331 list_for_each_entry(curr, in, list) {
332 const unsigned char *pos = curr->buf;
333 size_t len = curr->len;
334 /* 10.4.3 step 4.1 */
335 while (len) {
336 /* 10.4.3 step 4.2 */
337 if (drbg_blocklen(drbg) == cnt) {
338 cnt = 0;
339 ret = drbg_kcapi_sym(drbg, out, &data);
340 if (ret)
341 return ret;
342 }
343 out[cnt] ^= *pos;
344 pos++;
345 cnt++;
346 len--;
347 }
348 }
349 /* 10.4.3 step 4.2 for last block */
350 if (cnt)
351 ret = drbg_kcapi_sym(drbg, out, &data);
352
353 return ret;
354}
355
356/*
357 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
358 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
359 * the scratchpad is used as follows:
360 * drbg_ctr_update:
361 * temp
362 * start: drbg->scratchpad
363 * length: drbg_statelen(drbg) + drbg_blocklen(drbg)
364 * note: the cipher writing into this variable works
365 * blocklen-wise. Now, when the statelen is not a multiple
366 * of blocklen, the generateion loop below "spills over"
367 * by at most blocklen. Thus, we need to give sufficient
368 * memory.
369 * df_data
370 * start: drbg->scratchpad +
371 * drbg_statelen(drbg) + drbg_blocklen(drbg)
372 * length: drbg_statelen(drbg)
373 *
374 * drbg_ctr_df:
375 * pad
376 * start: df_data + drbg_statelen(drbg)
377 * length: drbg_blocklen(drbg)
378 * iv
379 * start: pad + drbg_blocklen(drbg)
380 * length: drbg_blocklen(drbg)
381 * temp
382 * start: iv + drbg_blocklen(drbg)
383 * length: drbg_satelen(drbg) + drbg_blocklen(drbg)
384 * note: temp is the buffer that the BCC function operates
385 * on. BCC operates blockwise. drbg_statelen(drbg)
386 * is sufficient when the DRBG state length is a multiple
387 * of the block size. For AES192 (and maybe other ciphers)
388 * this is not correct and the length for temp is
389 * insufficient (yes, that also means for such ciphers,
390 * the final output of all BCC rounds are truncated).
391 * Therefore, add drbg_blocklen(drbg) to cover all
392 * possibilities.
393 */
394
395/* Derivation Function for CTR DRBG as defined in 10.4.2 */
396static int drbg_ctr_df(struct drbg_state *drbg,
397 unsigned char *df_data, size_t bytes_to_return,
398 struct list_head *seedlist)
399{
400 int ret = -EFAULT;
401 unsigned char L_N[8];
402 /* S3 is input */
403 struct drbg_string S1, S2, S4, cipherin;
404 LIST_HEAD(bcc_list);
405 unsigned char *pad = df_data + drbg_statelen(drbg);
406 unsigned char *iv = pad + drbg_blocklen(drbg);
407 unsigned char *temp = iv + drbg_blocklen(drbg);
408 size_t padlen = 0;
409 unsigned int templen = 0;
410 /* 10.4.2 step 7 */
411 unsigned int i = 0;
412 /* 10.4.2 step 8 */
413 const unsigned char *K = (unsigned char *)
414 "\x00\x01\x02\x03\x04\x05\x06\x07"
415 "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
416 "\x10\x11\x12\x13\x14\x15\x16\x17"
417 "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
418 unsigned char *X;
419 size_t generated_len = 0;
420 size_t inputlen = 0;
421 struct drbg_string *seed = NULL;
422
423 memset(pad, 0, drbg_blocklen(drbg));
424 memset(iv, 0, drbg_blocklen(drbg));
425
426 /* 10.4.2 step 1 is implicit as we work byte-wise */
427
428 /* 10.4.2 step 2 */
429 if ((512/8) < bytes_to_return)
430 return -EINVAL;
431
432 /* 10.4.2 step 2 -- calculate the entire length of all input data */
433 list_for_each_entry(seed, seedlist, list)
434 inputlen += seed->len;
435 drbg_cpu_to_be32(inputlen, &L_N[0]);
436
437 /* 10.4.2 step 3 */
438 drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
439
440 /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
441 padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
442 /* wrap the padlen appropriately */
443 if (padlen)
444 padlen = drbg_blocklen(drbg) - padlen;
445 /*
446 * pad / padlen contains the 0x80 byte and the following zero bytes.
447 * As the calculated padlen value only covers the number of zero
448 * bytes, this value has to be incremented by one for the 0x80 byte.
449 */
450 padlen++;
451 pad[0] = 0x80;
452
453 /* 10.4.2 step 4 -- first fill the linked list and then order it */
454 drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
455 list_add_tail(&S1.list, &bcc_list);
456 drbg_string_fill(&S2, L_N, sizeof(L_N));
457 list_add_tail(&S2.list, &bcc_list);
458 list_splice_tail(seedlist, &bcc_list);
459 drbg_string_fill(&S4, pad, padlen);
460 list_add_tail(&S4.list, &bcc_list);
461
462 /* 10.4.2 step 9 */
463 while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
464 /*
465 * 10.4.2 step 9.1 - the padding is implicit as the buffer
466 * holds zeros after allocation -- even the increment of i
467 * is irrelevant as the increment remains within length of i
468 */
469 drbg_cpu_to_be32(i, iv);
470 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
471 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
472 if (ret)
473 goto out;
474 /* 10.4.2 step 9.3 */
475 i++;
476 templen += drbg_blocklen(drbg);
477 }
478
479 /* 10.4.2 step 11 */
480 X = temp + (drbg_keylen(drbg));
481 drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
482
483 /* 10.4.2 step 12: overwriting of outval is implemented in next step */
484
485 /* 10.4.2 step 13 */
486 drbg_kcapi_symsetkey(drbg, temp);
487 while (generated_len < bytes_to_return) {
488 short blocklen = 0;
489 /*
490 * 10.4.2 step 13.1: the truncation of the key length is
491 * implicit as the key is only drbg_blocklen in size based on
492 * the implementation of the cipher function callback
493 */
494 ret = drbg_kcapi_sym(drbg, X, &cipherin);
495 if (ret)
496 goto out;
497 blocklen = (drbg_blocklen(drbg) <
498 (bytes_to_return - generated_len)) ?
499 drbg_blocklen(drbg) :
500 (bytes_to_return - generated_len);
501 /* 10.4.2 step 13.2 and 14 */
502 memcpy(df_data + generated_len, X, blocklen);
503 generated_len += blocklen;
504 }
505
506 ret = 0;
507
508out:
509 memset(iv, 0, drbg_blocklen(drbg));
510 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
511 memset(pad, 0, drbg_blocklen(drbg));
512 return ret;
513}
514
515/*
516 * update function of CTR DRBG as defined in 10.2.1.2
517 *
518 * The reseed variable has an enhanced meaning compared to the update
519 * functions of the other DRBGs as follows:
520 * 0 => initial seed from initialization
521 * 1 => reseed via drbg_seed
522 * 2 => first invocation from drbg_ctr_update when addtl is present. In
523 * this case, the df_data scratchpad is not deleted so that it is
524 * available for another calls to prevent calling the DF function
525 * again.
526 * 3 => second invocation from drbg_ctr_update. When the update function
527 * was called with addtl, the df_data memory already contains the
528 * DFed addtl information and we do not need to call DF again.
529 */
530static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
531 int reseed)
532{
533 int ret = -EFAULT;
534 /* 10.2.1.2 step 1 */
535 unsigned char *temp = drbg->scratchpad;
536 unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
537 drbg_blocklen(drbg);
538
539 if (3 > reseed)
540 memset(df_data, 0, drbg_statelen(drbg));
541
542 if (!reseed) {
543 /*
544 * The DRBG uses the CTR mode of the underlying AES cipher. The
545 * CTR mode increments the counter value after the AES operation
546 * but SP800-90A requires that the counter is incremented before
547 * the AES operation. Hence, we increment it at the time we set
548 * it by one.
549 */
550 crypto_inc(drbg->V, drbg_blocklen(drbg));
551
552 ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
553 drbg_keylen(drbg));
554 if (ret)
555 goto out;
556 }
557
558 /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
559 if (seed) {
560 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
561 if (ret)
562 goto out;
563 }
564
565 ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
566 temp, drbg_statelen(drbg));
567 if (ret)
568 return ret;
569
570 /* 10.2.1.2 step 5 */
571 ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
572 drbg_keylen(drbg));
573 if (ret)
574 goto out;
575 /* 10.2.1.2 step 6 */
576 memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
577 /* See above: increment counter by one to compensate timing of CTR op */
578 crypto_inc(drbg->V, drbg_blocklen(drbg));
579 ret = 0;
580
581out:
582 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
583 if (2 != reseed)
584 memset(df_data, 0, drbg_statelen(drbg));
585 return ret;
586}
587
588/*
589 * scratchpad use: drbg_ctr_update is called independently from
590 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
591 */
592/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
593static int drbg_ctr_generate(struct drbg_state *drbg,
594 unsigned char *buf, unsigned int buflen,
595 struct list_head *addtl)
596{
597 int ret;
598 int len = min_t(int, buflen, INT_MAX);
599
600 /* 10.2.1.5.2 step 2 */
601 if (addtl && !list_empty(addtl)) {
602 ret = drbg_ctr_update(drbg, addtl, 2);
603 if (ret)
604 return 0;
605 }
606
607 /* 10.2.1.5.2 step 4.1 */
608 ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
609 if (ret)
610 return ret;
611
612 /* 10.2.1.5.2 step 6 */
613 ret = drbg_ctr_update(drbg, NULL, 3);
614 if (ret)
615 len = ret;
616
617 return len;
618}
619
620static const struct drbg_state_ops drbg_ctr_ops = {
621 .update = drbg_ctr_update,
622 .generate = drbg_ctr_generate,
623 .crypto_init = drbg_init_sym_kernel,
624 .crypto_fini = drbg_fini_sym_kernel,
625};
626#endif /* CONFIG_CRYPTO_DRBG_CTR */
627
628/******************************************************************
629 * HMAC DRBG callback functions
630 ******************************************************************/
631
632#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
633static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
634 const struct list_head *in);
635static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
636 const unsigned char *key);
637static int drbg_init_hash_kernel(struct drbg_state *drbg);
638static int drbg_fini_hash_kernel(struct drbg_state *drbg);
639#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
640
641#ifdef CONFIG_CRYPTO_DRBG_HMAC
642#define CRYPTO_DRBG_HMAC_STRING "HMAC "
643MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
644MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
645MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
646MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
647MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
648MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
649MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
650MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
651
652/* update function of HMAC DRBG as defined in 10.1.2.2 */
653static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
654 int reseed)
655{
656 int ret = -EFAULT;
657 int i = 0;
658 struct drbg_string seed1, seed2, vdata;
659 LIST_HEAD(seedlist);
660 LIST_HEAD(vdatalist);
661
662 if (!reseed) {
663 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
664 memset(drbg->V, 1, drbg_statelen(drbg));
665 drbg_kcapi_hmacsetkey(drbg, drbg->C);
666 }
667
668 drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
669 list_add_tail(&seed1.list, &seedlist);
670 /* buffer of seed2 will be filled in for loop below with one byte */
671 drbg_string_fill(&seed2, NULL, 1);
672 list_add_tail(&seed2.list, &seedlist);
673 /* input data of seed is allowed to be NULL at this point */
674 if (seed)
675 list_splice_tail(seed, &seedlist);
676
677 drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
678 list_add_tail(&vdata.list, &vdatalist);
679 for (i = 2; 0 < i; i--) {
680 /* first round uses 0x0, second 0x1 */
681 unsigned char prefix = DRBG_PREFIX0;
682 if (1 == i)
683 prefix = DRBG_PREFIX1;
684 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
685 seed2.buf = &prefix;
686 ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
687 if (ret)
688 return ret;
689 drbg_kcapi_hmacsetkey(drbg, drbg->C);
690
691 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
692 ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
693 if (ret)
694 return ret;
695
696 /* 10.1.2.2 step 3 */
697 if (!seed)
698 return ret;
699 }
700
701 return 0;
702}
703
704/* generate function of HMAC DRBG as defined in 10.1.2.5 */
705static int drbg_hmac_generate(struct drbg_state *drbg,
706 unsigned char *buf,
707 unsigned int buflen,
708 struct list_head *addtl)
709{
710 int len = 0;
711 int ret = 0;
712 struct drbg_string data;
713 LIST_HEAD(datalist);
714
715 /* 10.1.2.5 step 2 */
716 if (addtl && !list_empty(addtl)) {
717 ret = drbg_hmac_update(drbg, addtl, 1);
718 if (ret)
719 return ret;
720 }
721
722 drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
723 list_add_tail(&data.list, &datalist);
724 while (len < buflen) {
725 unsigned int outlen = 0;
726 /* 10.1.2.5 step 4.1 */
727 ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
728 if (ret)
729 return ret;
730 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
731 drbg_blocklen(drbg) : (buflen - len);
732
733 /* 10.1.2.5 step 4.2 */
734 memcpy(buf + len, drbg->V, outlen);
735 len += outlen;
736 }
737
738 /* 10.1.2.5 step 6 */
739 if (addtl && !list_empty(addtl))
740 ret = drbg_hmac_update(drbg, addtl, 1);
741 else
742 ret = drbg_hmac_update(drbg, NULL, 1);
743 if (ret)
744 return ret;
745
746 return len;
747}
748
749static const struct drbg_state_ops drbg_hmac_ops = {
750 .update = drbg_hmac_update,
751 .generate = drbg_hmac_generate,
752 .crypto_init = drbg_init_hash_kernel,
753 .crypto_fini = drbg_fini_hash_kernel,
754};
755#endif /* CONFIG_CRYPTO_DRBG_HMAC */
756
757/******************************************************************
758 * Hash DRBG callback functions
759 ******************************************************************/
760
761#ifdef CONFIG_CRYPTO_DRBG_HASH
762#define CRYPTO_DRBG_HASH_STRING "HASH "
763MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
764MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
765MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
766MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
767MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
768MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
769MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
770MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
771
772/*
773 * Increment buffer
774 *
775 * @dst buffer to increment
776 * @add value to add
777 */
778static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
779 const unsigned char *add, size_t addlen)
780{
781 /* implied: dstlen > addlen */
782 unsigned char *dstptr;
783 const unsigned char *addptr;
784 unsigned int remainder = 0;
785 size_t len = addlen;
786
787 dstptr = dst + (dstlen-1);
788 addptr = add + (addlen-1);
789 while (len) {
790 remainder += *dstptr + *addptr;
791 *dstptr = remainder & 0xff;
792 remainder >>= 8;
793 len--; dstptr--; addptr--;
794 }
795 len = dstlen - addlen;
796 while (len && remainder > 0) {
797 remainder = *dstptr + 1;
798 *dstptr = remainder & 0xff;
799 remainder >>= 8;
800 len--; dstptr--;
801 }
802}
803
804/*
805 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
806 * interlinked, the scratchpad is used as follows:
807 * drbg_hash_update
808 * start: drbg->scratchpad
809 * length: drbg_statelen(drbg)
810 * drbg_hash_df:
811 * start: drbg->scratchpad + drbg_statelen(drbg)
812 * length: drbg_blocklen(drbg)
813 *
814 * drbg_hash_process_addtl uses the scratchpad, but fully completes
815 * before either of the functions mentioned before are invoked. Therefore,
816 * drbg_hash_process_addtl does not need to be specifically considered.
817 */
818
819/* Derivation Function for Hash DRBG as defined in 10.4.1 */
820static int drbg_hash_df(struct drbg_state *drbg,
821 unsigned char *outval, size_t outlen,
822 struct list_head *entropylist)
823{
824 int ret = 0;
825 size_t len = 0;
826 unsigned char input[5];
827 unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
828 struct drbg_string data;
829
830 /* 10.4.1 step 3 */
831 input[0] = 1;
832 drbg_cpu_to_be32((outlen * 8), &input[1]);
833
834 /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
835 drbg_string_fill(&data, input, 5);
836 list_add(&data.list, entropylist);
837
838 /* 10.4.1 step 4 */
839 while (len < outlen) {
840 short blocklen = 0;
841 /* 10.4.1 step 4.1 */
842 ret = drbg_kcapi_hash(drbg, tmp, entropylist);
843 if (ret)
844 goto out;
845 /* 10.4.1 step 4.2 */
846 input[0]++;
847 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
848 drbg_blocklen(drbg) : (outlen - len);
849 memcpy(outval + len, tmp, blocklen);
850 len += blocklen;
851 }
852
853out:
854 memset(tmp, 0, drbg_blocklen(drbg));
855 return ret;
856}
857
858/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
859static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
860 int reseed)
861{
862 int ret = 0;
863 struct drbg_string data1, data2;
864 LIST_HEAD(datalist);
865 LIST_HEAD(datalist2);
866 unsigned char *V = drbg->scratchpad;
867 unsigned char prefix = DRBG_PREFIX1;
868
869 if (!seed)
870 return -EINVAL;
871
872 if (reseed) {
873 /* 10.1.1.3 step 1 */
874 memcpy(V, drbg->V, drbg_statelen(drbg));
875 drbg_string_fill(&data1, &prefix, 1);
876 list_add_tail(&data1.list, &datalist);
877 drbg_string_fill(&data2, V, drbg_statelen(drbg));
878 list_add_tail(&data2.list, &datalist);
879 }
880 list_splice_tail(seed, &datalist);
881
882 /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
883 ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
884 if (ret)
885 goto out;
886
887 /* 10.1.1.2 / 10.1.1.3 step 4 */
888 prefix = DRBG_PREFIX0;
889 drbg_string_fill(&data1, &prefix, 1);
890 list_add_tail(&data1.list, &datalist2);
891 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
892 list_add_tail(&data2.list, &datalist2);
893 /* 10.1.1.2 / 10.1.1.3 step 4 */
894 ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
895
896out:
897 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
898 return ret;
899}
900
901/* processing of additional information string for Hash DRBG */
902static int drbg_hash_process_addtl(struct drbg_state *drbg,
903 struct list_head *addtl)
904{
905 int ret = 0;
906 struct drbg_string data1, data2;
907 LIST_HEAD(datalist);
908 unsigned char prefix = DRBG_PREFIX2;
909
910 /* 10.1.1.4 step 2 */
911 if (!addtl || list_empty(addtl))
912 return 0;
913
914 /* 10.1.1.4 step 2a */
915 drbg_string_fill(&data1, &prefix, 1);
916 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
917 list_add_tail(&data1.list, &datalist);
918 list_add_tail(&data2.list, &datalist);
919 list_splice_tail(addtl, &datalist);
920 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
921 if (ret)
922 goto out;
923
924 /* 10.1.1.4 step 2b */
925 drbg_add_buf(drbg->V, drbg_statelen(drbg),
926 drbg->scratchpad, drbg_blocklen(drbg));
927
928out:
929 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
930 return ret;
931}
932
933/* Hashgen defined in 10.1.1.4 */
934static int drbg_hash_hashgen(struct drbg_state *drbg,
935 unsigned char *buf,
936 unsigned int buflen)
937{
938 int len = 0;
939 int ret = 0;
940 unsigned char *src = drbg->scratchpad;
941 unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
942 struct drbg_string data;
943 LIST_HEAD(datalist);
944
945 /* 10.1.1.4 step hashgen 2 */
946 memcpy(src, drbg->V, drbg_statelen(drbg));
947
948 drbg_string_fill(&data, src, drbg_statelen(drbg));
949 list_add_tail(&data.list, &datalist);
950 while (len < buflen) {
951 unsigned int outlen = 0;
952 /* 10.1.1.4 step hashgen 4.1 */
953 ret = drbg_kcapi_hash(drbg, dst, &datalist);
954 if (ret) {
955 len = ret;
956 goto out;
957 }
958 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
959 drbg_blocklen(drbg) : (buflen - len);
960 /* 10.1.1.4 step hashgen 4.2 */
961 memcpy(buf + len, dst, outlen);
962 len += outlen;
963 /* 10.1.1.4 hashgen step 4.3 */
964 if (len < buflen)
965 crypto_inc(src, drbg_statelen(drbg));
966 }
967
968out:
969 memset(drbg->scratchpad, 0,
970 (drbg_statelen(drbg) + drbg_blocklen(drbg)));
971 return len;
972}
973
974/* generate function for Hash DRBG as defined in 10.1.1.4 */
975static int drbg_hash_generate(struct drbg_state *drbg,
976 unsigned char *buf, unsigned int buflen,
977 struct list_head *addtl)
978{
979 int len = 0;
980 int ret = 0;
981 union {
982 unsigned char req[8];
983 __be64 req_int;
984 } u;
985 unsigned char prefix = DRBG_PREFIX3;
986 struct drbg_string data1, data2;
987 LIST_HEAD(datalist);
988
989 /* 10.1.1.4 step 2 */
990 ret = drbg_hash_process_addtl(drbg, addtl);
991 if (ret)
992 return ret;
993 /* 10.1.1.4 step 3 */
994 len = drbg_hash_hashgen(drbg, buf, buflen);
995
996 /* this is the value H as documented in 10.1.1.4 */
997 /* 10.1.1.4 step 4 */
998 drbg_string_fill(&data1, &prefix, 1);
999 list_add_tail(&data1.list, &datalist);
1000 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1001 list_add_tail(&data2.list, &datalist);
1002 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
1003 if (ret) {
1004 len = ret;
1005 goto out;
1006 }
1007
1008 /* 10.1.1.4 step 5 */
1009 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1010 drbg->scratchpad, drbg_blocklen(drbg));
1011 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1012 drbg->C, drbg_statelen(drbg));
1013 u.req_int = cpu_to_be64(drbg->reseed_ctr);
1014 drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1015
1016out:
1017 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1018 return len;
1019}
1020
1021/*
1022 * scratchpad usage: as update and generate are used isolated, both
1023 * can use the scratchpad
1024 */
1025static const struct drbg_state_ops drbg_hash_ops = {
1026 .update = drbg_hash_update,
1027 .generate = drbg_hash_generate,
1028 .crypto_init = drbg_init_hash_kernel,
1029 .crypto_fini = drbg_fini_hash_kernel,
1030};
1031#endif /* CONFIG_CRYPTO_DRBG_HASH */
1032
1033/******************************************************************
1034 * Functions common for DRBG implementations
1035 ******************************************************************/
1036
1037static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1038 int reseed)
1039{
1040 int ret = drbg->d_ops->update(drbg, seed, reseed);
1041
1042 if (ret)
1043 return ret;
1044
1045 drbg->seeded = true;
1046 /* 10.1.1.2 / 10.1.1.3 step 5 */
1047 drbg->reseed_ctr = 1;
1048
1049 return ret;
1050}
1051
1052static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1053 unsigned char *entropy,
1054 unsigned int entropylen)
1055{
1056 int ret;
1057
1058 do {
1059 get_random_bytes(entropy, entropylen);
1060 ret = drbg_fips_continuous_test(drbg, entropy);
1061 if (ret && ret != -EAGAIN)
1062 return ret;
1063 } while (ret);
1064
1065 return 0;
1066}
1067
1068static void drbg_async_seed(struct work_struct *work)
1069{
1070 struct drbg_string data;
1071 LIST_HEAD(seedlist);
1072 struct drbg_state *drbg = container_of(work, struct drbg_state,
1073 seed_work);
1074 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1075 unsigned char entropy[32];
1076 int ret;
1077
1078 BUG_ON(!entropylen);
1079 BUG_ON(entropylen > sizeof(entropy));
1080
1081 drbg_string_fill(&data, entropy, entropylen);
1082 list_add_tail(&data.list, &seedlist);
1083
1084 mutex_lock(&drbg->drbg_mutex);
1085
1086 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1087 if (ret)
1088 goto unlock;
1089
1090 /* Set seeded to false so that if __drbg_seed fails the
1091 * next generate call will trigger a reseed.
1092 */
1093 drbg->seeded = false;
1094
1095 __drbg_seed(drbg, &seedlist, true);
1096
1097 if (drbg->seeded)
1098 drbg->reseed_threshold = drbg_max_requests(drbg);
1099
1100unlock:
1101 mutex_unlock(&drbg->drbg_mutex);
1102
1103 memzero_explicit(entropy, entropylen);
1104}
1105
1106/*
1107 * Seeding or reseeding of the DRBG
1108 *
1109 * @drbg: DRBG state struct
1110 * @pers: personalization / additional information buffer
1111 * @reseed: 0 for initial seed process, 1 for reseeding
1112 *
1113 * return:
1114 * 0 on success
1115 * error value otherwise
1116 */
1117static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1118 bool reseed)
1119{
1120 int ret;
1121 unsigned char entropy[((32 + 16) * 2)];
1122 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1123 struct drbg_string data1;
1124 LIST_HEAD(seedlist);
1125
1126 /* 9.1 / 9.2 / 9.3.1 step 3 */
1127 if (pers && pers->len > (drbg_max_addtl(drbg))) {
1128 pr_devel("DRBG: personalization string too long %zu\n",
1129 pers->len);
1130 return -EINVAL;
1131 }
1132
1133 if (list_empty(&drbg->test_data.list)) {
1134 drbg_string_fill(&data1, drbg->test_data.buf,
1135 drbg->test_data.len);
1136 pr_devel("DRBG: using test entropy\n");
1137 } else {
1138 /*
1139 * Gather entropy equal to the security strength of the DRBG.
1140 * With a derivation function, a nonce is required in addition
1141 * to the entropy. A nonce must be at least 1/2 of the security
1142 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1143 * of the strength. The consideration of a nonce is only
1144 * applicable during initial seeding.
1145 */
1146 BUG_ON(!entropylen);
1147 if (!reseed)
1148 entropylen = ((entropylen + 1) / 2) * 3;
1149 BUG_ON((entropylen * 2) > sizeof(entropy));
1150
1151 /* Get seed from in-kernel /dev/urandom */
1152 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1153 if (ret)
1154 goto out;
1155
1156 if (!drbg->jent) {
1157 drbg_string_fill(&data1, entropy, entropylen);
1158 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1159 entropylen);
1160 } else {
1161 /* Get seed from Jitter RNG */
1162 ret = crypto_rng_get_bytes(drbg->jent,
1163 entropy + entropylen,
1164 entropylen);
1165 if (ret) {
1166 pr_devel("DRBG: jent failed with %d\n", ret);
1167
1168 /*
1169 * Do not treat the transient failure of the
1170 * Jitter RNG as an error that needs to be
1171 * reported. The combined number of the
1172 * maximum reseed threshold times the maximum
1173 * number of Jitter RNG transient errors is
1174 * less than the reseed threshold required by
1175 * SP800-90A allowing us to treat the
1176 * transient errors as such.
1177 *
1178 * However, we mandate that at least the first
1179 * seeding operation must succeed with the
1180 * Jitter RNG.
1181 */
1182 if (!reseed || ret != -EAGAIN)
1183 goto out;
1184 }
1185
1186 drbg_string_fill(&data1, entropy, entropylen * 2);
1187 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1188 entropylen * 2);
1189 }
1190 }
1191 list_add_tail(&data1.list, &seedlist);
1192
1193 /*
1194 * concatenation of entropy with personalization str / addtl input)
1195 * the variable pers is directly handed in by the caller, so check its
1196 * contents whether it is appropriate
1197 */
1198 if (pers && pers->buf && 0 < pers->len) {
1199 list_add_tail(&pers->list, &seedlist);
1200 pr_devel("DRBG: using personalization string\n");
1201 }
1202
1203 if (!reseed) {
1204 memset(drbg->V, 0, drbg_statelen(drbg));
1205 memset(drbg->C, 0, drbg_statelen(drbg));
1206 }
1207
1208 ret = __drbg_seed(drbg, &seedlist, reseed);
1209
1210out:
1211 memzero_explicit(entropy, entropylen * 2);
1212
1213 return ret;
1214}
1215
1216/* Free all substructures in a DRBG state without the DRBG state structure */
1217static inline void drbg_dealloc_state(struct drbg_state *drbg)
1218{
1219 if (!drbg)
1220 return;
1221 kfree_sensitive(drbg->Vbuf);
1222 drbg->Vbuf = NULL;
1223 drbg->V = NULL;
1224 kfree_sensitive(drbg->Cbuf);
1225 drbg->Cbuf = NULL;
1226 drbg->C = NULL;
1227 kfree_sensitive(drbg->scratchpadbuf);
1228 drbg->scratchpadbuf = NULL;
1229 drbg->reseed_ctr = 0;
1230 drbg->d_ops = NULL;
1231 drbg->core = NULL;
1232 if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1233 kfree_sensitive(drbg->prev);
1234 drbg->prev = NULL;
1235 drbg->fips_primed = false;
1236 }
1237}
1238
1239/*
1240 * Allocate all sub-structures for a DRBG state.
1241 * The DRBG state structure must already be allocated.
1242 */
1243static inline int drbg_alloc_state(struct drbg_state *drbg)
1244{
1245 int ret = -ENOMEM;
1246 unsigned int sb_size = 0;
1247
1248 switch (drbg->core->flags & DRBG_TYPE_MASK) {
1249#ifdef CONFIG_CRYPTO_DRBG_HMAC
1250 case DRBG_HMAC:
1251 drbg->d_ops = &drbg_hmac_ops;
1252 break;
1253#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1254#ifdef CONFIG_CRYPTO_DRBG_HASH
1255 case DRBG_HASH:
1256 drbg->d_ops = &drbg_hash_ops;
1257 break;
1258#endif /* CONFIG_CRYPTO_DRBG_HASH */
1259#ifdef CONFIG_CRYPTO_DRBG_CTR
1260 case DRBG_CTR:
1261 drbg->d_ops = &drbg_ctr_ops;
1262 break;
1263#endif /* CONFIG_CRYPTO_DRBG_CTR */
1264 default:
1265 ret = -EOPNOTSUPP;
1266 goto err;
1267 }
1268
1269 ret = drbg->d_ops->crypto_init(drbg);
1270 if (ret < 0)
1271 goto err;
1272
1273 drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1274 if (!drbg->Vbuf) {
1275 ret = -ENOMEM;
1276 goto fini;
1277 }
1278 drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1279 drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1280 if (!drbg->Cbuf) {
1281 ret = -ENOMEM;
1282 goto fini;
1283 }
1284 drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1285 /* scratchpad is only generated for CTR and Hash */
1286 if (drbg->core->flags & DRBG_HMAC)
1287 sb_size = 0;
1288 else if (drbg->core->flags & DRBG_CTR)
1289 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1290 drbg_statelen(drbg) + /* df_data */
1291 drbg_blocklen(drbg) + /* pad */
1292 drbg_blocklen(drbg) + /* iv */
1293 drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1294 else
1295 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1296
1297 if (0 < sb_size) {
1298 drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1299 if (!drbg->scratchpadbuf) {
1300 ret = -ENOMEM;
1301 goto fini;
1302 }
1303 drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1304 }
1305
1306 if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1307 drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1308 GFP_KERNEL);
1309 if (!drbg->prev) {
1310 ret = -ENOMEM;
1311 goto fini;
1312 }
1313 drbg->fips_primed = false;
1314 }
1315
1316 return 0;
1317
1318fini:
1319 drbg->d_ops->crypto_fini(drbg);
1320err:
1321 drbg_dealloc_state(drbg);
1322 return ret;
1323}
1324
1325/*************************************************************************
1326 * DRBG interface functions
1327 *************************************************************************/
1328
1329/*
1330 * DRBG generate function as required by SP800-90A - this function
1331 * generates random numbers
1332 *
1333 * @drbg DRBG state handle
1334 * @buf Buffer where to store the random numbers -- the buffer must already
1335 * be pre-allocated by caller
1336 * @buflen Length of output buffer - this value defines the number of random
1337 * bytes pulled from DRBG
1338 * @addtl Additional input that is mixed into state, may be NULL -- note
1339 * the entropy is pulled by the DRBG internally unconditionally
1340 * as defined in SP800-90A. The additional input is mixed into
1341 * the state in addition to the pulled entropy.
1342 *
1343 * return: 0 when all bytes are generated; < 0 in case of an error
1344 */
1345static int drbg_generate(struct drbg_state *drbg,
1346 unsigned char *buf, unsigned int buflen,
1347 struct drbg_string *addtl)
1348{
1349 int len = 0;
1350 LIST_HEAD(addtllist);
1351
1352 if (!drbg->core) {
1353 pr_devel("DRBG: not yet seeded\n");
1354 return -EINVAL;
1355 }
1356 if (0 == buflen || !buf) {
1357 pr_devel("DRBG: no output buffer provided\n");
1358 return -EINVAL;
1359 }
1360 if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1361 pr_devel("DRBG: wrong format of additional information\n");
1362 return -EINVAL;
1363 }
1364
1365 /* 9.3.1 step 2 */
1366 len = -EINVAL;
1367 if (buflen > (drbg_max_request_bytes(drbg))) {
1368 pr_devel("DRBG: requested random numbers too large %u\n",
1369 buflen);
1370 goto err;
1371 }
1372
1373 /* 9.3.1 step 3 is implicit with the chosen DRBG */
1374
1375 /* 9.3.1 step 4 */
1376 if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1377 pr_devel("DRBG: additional information string too long %zu\n",
1378 addtl->len);
1379 goto err;
1380 }
1381 /* 9.3.1 step 5 is implicit with the chosen DRBG */
1382
1383 /*
1384 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1385 * here. The spec is a bit convoluted here, we make it simpler.
1386 */
1387 if (drbg->reseed_threshold < drbg->reseed_ctr)
1388 drbg->seeded = false;
1389
1390 if (drbg->pr || !drbg->seeded) {
1391 pr_devel("DRBG: reseeding before generation (prediction "
1392 "resistance: %s, state %s)\n",
1393 drbg->pr ? "true" : "false",
1394 drbg->seeded ? "seeded" : "unseeded");
1395 /* 9.3.1 steps 7.1 through 7.3 */
1396 len = drbg_seed(drbg, addtl, true);
1397 if (len)
1398 goto err;
1399 /* 9.3.1 step 7.4 */
1400 addtl = NULL;
1401 }
1402
1403 if (addtl && 0 < addtl->len)
1404 list_add_tail(&addtl->list, &addtllist);
1405 /* 9.3.1 step 8 and 10 */
1406 len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1407
1408 /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1409 drbg->reseed_ctr++;
1410 if (0 >= len)
1411 goto err;
1412
1413 /*
1414 * Section 11.3.3 requires to re-perform self tests after some
1415 * generated random numbers. The chosen value after which self
1416 * test is performed is arbitrary, but it should be reasonable.
1417 * However, we do not perform the self tests because of the following
1418 * reasons: it is mathematically impossible that the initial self tests
1419 * were successfully and the following are not. If the initial would
1420 * pass and the following would not, the kernel integrity is violated.
1421 * In this case, the entire kernel operation is questionable and it
1422 * is unlikely that the integrity violation only affects the
1423 * correct operation of the DRBG.
1424 *
1425 * Albeit the following code is commented out, it is provided in
1426 * case somebody has a need to implement the test of 11.3.3.
1427 */
1428#if 0
1429 if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1430 int err = 0;
1431 pr_devel("DRBG: start to perform self test\n");
1432 if (drbg->core->flags & DRBG_HMAC)
1433 err = alg_test("drbg_pr_hmac_sha256",
1434 "drbg_pr_hmac_sha256", 0, 0);
1435 else if (drbg->core->flags & DRBG_CTR)
1436 err = alg_test("drbg_pr_ctr_aes128",
1437 "drbg_pr_ctr_aes128", 0, 0);
1438 else
1439 err = alg_test("drbg_pr_sha256",
1440 "drbg_pr_sha256", 0, 0);
1441 if (err) {
1442 pr_err("DRBG: periodical self test failed\n");
1443 /*
1444 * uninstantiate implies that from now on, only errors
1445 * are returned when reusing this DRBG cipher handle
1446 */
1447 drbg_uninstantiate(drbg);
1448 return 0;
1449 } else {
1450 pr_devel("DRBG: self test successful\n");
1451 }
1452 }
1453#endif
1454
1455 /*
1456 * All operations were successful, return 0 as mandated by
1457 * the kernel crypto API interface.
1458 */
1459 len = 0;
1460err:
1461 return len;
1462}
1463
1464/*
1465 * Wrapper around drbg_generate which can pull arbitrary long strings
1466 * from the DRBG without hitting the maximum request limitation.
1467 *
1468 * Parameters: see drbg_generate
1469 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1470 * the entire drbg_generate_long request fails
1471 */
1472static int drbg_generate_long(struct drbg_state *drbg,
1473 unsigned char *buf, unsigned int buflen,
1474 struct drbg_string *addtl)
1475{
1476 unsigned int len = 0;
1477 unsigned int slice = 0;
1478 do {
1479 int err = 0;
1480 unsigned int chunk = 0;
1481 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1482 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1483 mutex_lock(&drbg->drbg_mutex);
1484 err = drbg_generate(drbg, buf + len, chunk, addtl);
1485 mutex_unlock(&drbg->drbg_mutex);
1486 if (0 > err)
1487 return err;
1488 len += chunk;
1489 } while (slice > 0 && (len < buflen));
1490 return 0;
1491}
1492
1493static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1494{
1495 struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1496 random_ready);
1497
1498 schedule_work(&drbg->seed_work);
1499}
1500
1501static int drbg_prepare_hrng(struct drbg_state *drbg)
1502{
1503 int err;
1504
1505 /* We do not need an HRNG in test mode. */
1506 if (list_empty(&drbg->test_data.list))
1507 return 0;
1508
1509 drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1510
1511 INIT_WORK(&drbg->seed_work, drbg_async_seed);
1512
1513 drbg->random_ready.owner = THIS_MODULE;
1514 drbg->random_ready.func = drbg_schedule_async_seed;
1515
1516 err = add_random_ready_callback(&drbg->random_ready);
1517
1518 switch (err) {
1519 case 0:
1520 break;
1521
1522 case -EALREADY:
1523 err = 0;
1524 fallthrough;
1525
1526 default:
1527 drbg->random_ready.func = NULL;
1528 return err;
1529 }
1530
1531 /*
1532 * Require frequent reseeds until the seed source is fully
1533 * initialized.
1534 */
1535 drbg->reseed_threshold = 50;
1536
1537 return err;
1538}
1539
1540/*
1541 * DRBG instantiation function as required by SP800-90A - this function
1542 * sets up the DRBG handle, performs the initial seeding and all sanity
1543 * checks required by SP800-90A
1544 *
1545 * @drbg memory of state -- if NULL, new memory is allocated
1546 * @pers Personalization string that is mixed into state, may be NULL -- note
1547 * the entropy is pulled by the DRBG internally unconditionally
1548 * as defined in SP800-90A. The additional input is mixed into
1549 * the state in addition to the pulled entropy.
1550 * @coreref reference to core
1551 * @pr prediction resistance enabled
1552 *
1553 * return
1554 * 0 on success
1555 * error value otherwise
1556 */
1557static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1558 int coreref, bool pr)
1559{
1560 int ret;
1561 bool reseed = true;
1562
1563 pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1564 "%s\n", coreref, pr ? "enabled" : "disabled");
1565 mutex_lock(&drbg->drbg_mutex);
1566
1567 /* 9.1 step 1 is implicit with the selected DRBG type */
1568
1569 /*
1570 * 9.1 step 2 is implicit as caller can select prediction resistance
1571 * and the flag is copied into drbg->flags --
1572 * all DRBG types support prediction resistance
1573 */
1574
1575 /* 9.1 step 4 is implicit in drbg_sec_strength */
1576
1577 if (!drbg->core) {
1578 drbg->core = &drbg_cores[coreref];
1579 drbg->pr = pr;
1580 drbg->seeded = false;
1581 drbg->reseed_threshold = drbg_max_requests(drbg);
1582
1583 ret = drbg_alloc_state(drbg);
1584 if (ret)
1585 goto unlock;
1586
1587 ret = drbg_prepare_hrng(drbg);
1588 if (ret)
1589 goto free_everything;
1590
1591 if (IS_ERR(drbg->jent)) {
1592 ret = PTR_ERR(drbg->jent);
1593 drbg->jent = NULL;
1594 if (fips_enabled || ret != -ENOENT)
1595 goto free_everything;
1596 pr_info("DRBG: Continuing without Jitter RNG\n");
1597 }
1598
1599 reseed = false;
1600 }
1601
1602 ret = drbg_seed(drbg, pers, reseed);
1603
1604 if (ret && !reseed)
1605 goto free_everything;
1606
1607 mutex_unlock(&drbg->drbg_mutex);
1608 return ret;
1609
1610unlock:
1611 mutex_unlock(&drbg->drbg_mutex);
1612 return ret;
1613
1614free_everything:
1615 mutex_unlock(&drbg->drbg_mutex);
1616 drbg_uninstantiate(drbg);
1617 return ret;
1618}
1619
1620/*
1621 * DRBG uninstantiate function as required by SP800-90A - this function
1622 * frees all buffers and the DRBG handle
1623 *
1624 * @drbg DRBG state handle
1625 *
1626 * return
1627 * 0 on success
1628 */
1629static int drbg_uninstantiate(struct drbg_state *drbg)
1630{
1631 if (drbg->random_ready.func) {
1632 del_random_ready_callback(&drbg->random_ready);
1633 cancel_work_sync(&drbg->seed_work);
1634 }
1635
1636 if (!IS_ERR_OR_NULL(drbg->jent))
1637 crypto_free_rng(drbg->jent);
1638 drbg->jent = NULL;
1639
1640 if (drbg->d_ops)
1641 drbg->d_ops->crypto_fini(drbg);
1642 drbg_dealloc_state(drbg);
1643 /* no scrubbing of test_data -- this shall survive an uninstantiate */
1644 return 0;
1645}
1646
1647/*
1648 * Helper function for setting the test data in the DRBG
1649 *
1650 * @drbg DRBG state handle
1651 * @data test data
1652 * @len test data length
1653 */
1654static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1655 const u8 *data, unsigned int len)
1656{
1657 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1658
1659 mutex_lock(&drbg->drbg_mutex);
1660 drbg_string_fill(&drbg->test_data, data, len);
1661 mutex_unlock(&drbg->drbg_mutex);
1662}
1663
1664/***************************************************************
1665 * Kernel crypto API cipher invocations requested by DRBG
1666 ***************************************************************/
1667
1668#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1669struct sdesc {
1670 struct shash_desc shash;
1671 char ctx[];
1672};
1673
1674static int drbg_init_hash_kernel(struct drbg_state *drbg)
1675{
1676 struct sdesc *sdesc;
1677 struct crypto_shash *tfm;
1678
1679 tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1680 if (IS_ERR(tfm)) {
1681 pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1682 drbg->core->backend_cra_name);
1683 return PTR_ERR(tfm);
1684 }
1685 BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1686 sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1687 GFP_KERNEL);
1688 if (!sdesc) {
1689 crypto_free_shash(tfm);
1690 return -ENOMEM;
1691 }
1692
1693 sdesc->shash.tfm = tfm;
1694 drbg->priv_data = sdesc;
1695
1696 return crypto_shash_alignmask(tfm);
1697}
1698
1699static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1700{
1701 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1702 if (sdesc) {
1703 crypto_free_shash(sdesc->shash.tfm);
1704 kfree_sensitive(sdesc);
1705 }
1706 drbg->priv_data = NULL;
1707 return 0;
1708}
1709
1710static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1711 const unsigned char *key)
1712{
1713 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1714
1715 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1716}
1717
1718static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1719 const struct list_head *in)
1720{
1721 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1722 struct drbg_string *input = NULL;
1723
1724 crypto_shash_init(&sdesc->shash);
1725 list_for_each_entry(input, in, list)
1726 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1727 return crypto_shash_final(&sdesc->shash, outval);
1728}
1729#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1730
1731#ifdef CONFIG_CRYPTO_DRBG_CTR
1732static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1733{
1734 struct crypto_cipher *tfm =
1735 (struct crypto_cipher *)drbg->priv_data;
1736 if (tfm)
1737 crypto_free_cipher(tfm);
1738 drbg->priv_data = NULL;
1739
1740 if (drbg->ctr_handle)
1741 crypto_free_skcipher(drbg->ctr_handle);
1742 drbg->ctr_handle = NULL;
1743
1744 if (drbg->ctr_req)
1745 skcipher_request_free(drbg->ctr_req);
1746 drbg->ctr_req = NULL;
1747
1748 kfree(drbg->outscratchpadbuf);
1749 drbg->outscratchpadbuf = NULL;
1750
1751 return 0;
1752}
1753
1754static int drbg_init_sym_kernel(struct drbg_state *drbg)
1755{
1756 struct crypto_cipher *tfm;
1757 struct crypto_skcipher *sk_tfm;
1758 struct skcipher_request *req;
1759 unsigned int alignmask;
1760 char ctr_name[CRYPTO_MAX_ALG_NAME];
1761
1762 tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1763 if (IS_ERR(tfm)) {
1764 pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1765 drbg->core->backend_cra_name);
1766 return PTR_ERR(tfm);
1767 }
1768 BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1769 drbg->priv_data = tfm;
1770
1771 if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1772 drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1773 drbg_fini_sym_kernel(drbg);
1774 return -EINVAL;
1775 }
1776 sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1777 if (IS_ERR(sk_tfm)) {
1778 pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1779 ctr_name);
1780 drbg_fini_sym_kernel(drbg);
1781 return PTR_ERR(sk_tfm);
1782 }
1783 drbg->ctr_handle = sk_tfm;
1784 crypto_init_wait(&drbg->ctr_wait);
1785
1786 req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1787 if (!req) {
1788 pr_info("DRBG: could not allocate request queue\n");
1789 drbg_fini_sym_kernel(drbg);
1790 return -ENOMEM;
1791 }
1792 drbg->ctr_req = req;
1793 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1794 CRYPTO_TFM_REQ_MAY_SLEEP,
1795 crypto_req_done, &drbg->ctr_wait);
1796
1797 alignmask = crypto_skcipher_alignmask(sk_tfm);
1798 drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1799 GFP_KERNEL);
1800 if (!drbg->outscratchpadbuf) {
1801 drbg_fini_sym_kernel(drbg);
1802 return -ENOMEM;
1803 }
1804 drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1805 alignmask + 1);
1806
1807 sg_init_table(&drbg->sg_in, 1);
1808 sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1809
1810 return alignmask;
1811}
1812
1813static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1814 const unsigned char *key)
1815{
1816 struct crypto_cipher *tfm =
1817 (struct crypto_cipher *)drbg->priv_data;
1818
1819 crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1820}
1821
1822static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1823 const struct drbg_string *in)
1824{
1825 struct crypto_cipher *tfm =
1826 (struct crypto_cipher *)drbg->priv_data;
1827
1828 /* there is only component in *in */
1829 BUG_ON(in->len < drbg_blocklen(drbg));
1830 crypto_cipher_encrypt_one(tfm, outval, in->buf);
1831 return 0;
1832}
1833
1834static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1835 u8 *inbuf, u32 inlen,
1836 u8 *outbuf, u32 outlen)
1837{
1838 struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1839 u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1840 int ret;
1841
1842 if (inbuf) {
1843 /* Use caller-provided input buffer */
1844 sg_set_buf(sg_in, inbuf, inlen);
1845 } else {
1846 /* Use scratchpad for in-place operation */
1847 inlen = scratchpad_use;
1848 memset(drbg->outscratchpad, 0, scratchpad_use);
1849 sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1850 }
1851
1852 while (outlen) {
1853 u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1854
1855 /* Output buffer may not be valid for SGL, use scratchpad */
1856 skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1857 cryptlen, drbg->V);
1858 ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1859 &drbg->ctr_wait);
1860 if (ret)
1861 goto out;
1862
1863 crypto_init_wait(&drbg->ctr_wait);
1864
1865 memcpy(outbuf, drbg->outscratchpad, cryptlen);
1866 memzero_explicit(drbg->outscratchpad, cryptlen);
1867
1868 outlen -= cryptlen;
1869 outbuf += cryptlen;
1870 }
1871 ret = 0;
1872
1873out:
1874 return ret;
1875}
1876#endif /* CONFIG_CRYPTO_DRBG_CTR */
1877
1878/***************************************************************
1879 * Kernel crypto API interface to register DRBG
1880 ***************************************************************/
1881
1882/*
1883 * Look up the DRBG flags by given kernel crypto API cra_name
1884 * The code uses the drbg_cores definition to do this
1885 *
1886 * @cra_name kernel crypto API cra_name
1887 * @coreref reference to integer which is filled with the pointer to
1888 * the applicable core
1889 * @pr reference for setting prediction resistance
1890 *
1891 * return: flags
1892 */
1893static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1894 int *coreref, bool *pr)
1895{
1896 int i = 0;
1897 size_t start = 0;
1898 int len = 0;
1899
1900 *pr = true;
1901 /* disassemble the names */
1902 if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1903 start = 10;
1904 *pr = false;
1905 } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1906 start = 8;
1907 } else {
1908 return;
1909 }
1910
1911 /* remove the first part */
1912 len = strlen(cra_driver_name) - start;
1913 for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1914 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1915 len)) {
1916 *coreref = i;
1917 return;
1918 }
1919 }
1920}
1921
1922static int drbg_kcapi_init(struct crypto_tfm *tfm)
1923{
1924 struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1925
1926 mutex_init(&drbg->drbg_mutex);
1927
1928 return 0;
1929}
1930
1931static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1932{
1933 drbg_uninstantiate(crypto_tfm_ctx(tfm));
1934}
1935
1936/*
1937 * Generate random numbers invoked by the kernel crypto API:
1938 * The API of the kernel crypto API is extended as follows:
1939 *
1940 * src is additional input supplied to the RNG.
1941 * slen is the length of src.
1942 * dst is the output buffer where random data is to be stored.
1943 * dlen is the length of dst.
1944 */
1945static int drbg_kcapi_random(struct crypto_rng *tfm,
1946 const u8 *src, unsigned int slen,
1947 u8 *dst, unsigned int dlen)
1948{
1949 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1950 struct drbg_string *addtl = NULL;
1951 struct drbg_string string;
1952
1953 if (slen) {
1954 /* linked list variable is now local to allow modification */
1955 drbg_string_fill(&string, src, slen);
1956 addtl = &string;
1957 }
1958
1959 return drbg_generate_long(drbg, dst, dlen, addtl);
1960}
1961
1962/*
1963 * Seed the DRBG invoked by the kernel crypto API
1964 */
1965static int drbg_kcapi_seed(struct crypto_rng *tfm,
1966 const u8 *seed, unsigned int slen)
1967{
1968 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1969 struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1970 bool pr = false;
1971 struct drbg_string string;
1972 struct drbg_string *seed_string = NULL;
1973 int coreref = 0;
1974
1975 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1976 &pr);
1977 if (0 < slen) {
1978 drbg_string_fill(&string, seed, slen);
1979 seed_string = &string;
1980 }
1981
1982 return drbg_instantiate(drbg, seed_string, coreref, pr);
1983}
1984
1985/***************************************************************
1986 * Kernel module: code to load the module
1987 ***************************************************************/
1988
1989/*
1990 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1991 * of the error handling.
1992 *
1993 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1994 * as seed source of get_random_bytes does not fail.
1995 *
1996 * Note 2: There is no sensible way of testing the reseed counter
1997 * enforcement, so skip it.
1998 */
1999static inline int __init drbg_healthcheck_sanity(void)
2000{
2001 int len = 0;
2002#define OUTBUFLEN 16
2003 unsigned char buf[OUTBUFLEN];
2004 struct drbg_state *drbg = NULL;
2005 int ret = -EFAULT;
2006 int rc = -EFAULT;
2007 bool pr = false;
2008 int coreref = 0;
2009 struct drbg_string addtl;
2010 size_t max_addtllen, max_request_bytes;
2011
2012 /* only perform test in FIPS mode */
2013 if (!fips_enabled)
2014 return 0;
2015
2016#ifdef CONFIG_CRYPTO_DRBG_CTR
2017 drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
2018#elif defined CONFIG_CRYPTO_DRBG_HASH
2019 drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2020#else
2021 drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
2022#endif
2023
2024 drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2025 if (!drbg)
2026 return -ENOMEM;
2027
2028 mutex_init(&drbg->drbg_mutex);
2029 drbg->core = &drbg_cores[coreref];
2030 drbg->reseed_threshold = drbg_max_requests(drbg);
2031
2032 /*
2033 * if the following tests fail, it is likely that there is a buffer
2034 * overflow as buf is much smaller than the requested or provided
2035 * string lengths -- in case the error handling does not succeed
2036 * we may get an OOPS. And we want to get an OOPS as this is a
2037 * grave bug.
2038 */
2039
2040 max_addtllen = drbg_max_addtl(drbg);
2041 max_request_bytes = drbg_max_request_bytes(drbg);
2042 drbg_string_fill(&addtl, buf, max_addtllen + 1);
2043 /* overflow addtllen with additonal info string */
2044 len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2045 BUG_ON(0 < len);
2046 /* overflow max_bits */
2047 len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2048 BUG_ON(0 < len);
2049
2050 /* overflow max addtllen with personalization string */
2051 ret = drbg_seed(drbg, &addtl, false);
2052 BUG_ON(0 == ret);
2053 /* all tests passed */
2054 rc = 0;
2055
2056 pr_devel("DRBG: Sanity tests for failure code paths successfully "
2057 "completed\n");
2058
2059 kfree(drbg);
2060 return rc;
2061}
2062
2063static struct rng_alg drbg_algs[22];
2064
2065/*
2066 * Fill the array drbg_algs used to register the different DRBGs
2067 * with the kernel crypto API. To fill the array, the information
2068 * from drbg_cores[] is used.
2069 */
2070static inline void __init drbg_fill_array(struct rng_alg *alg,
2071 const struct drbg_core *core, int pr)
2072{
2073 int pos = 0;
2074 static int priority = 200;
2075
2076 memcpy(alg->base.cra_name, "stdrng", 6);
2077 if (pr) {
2078 memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2079 pos = 8;
2080 } else {
2081 memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2082 pos = 10;
2083 }
2084 memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2085 strlen(core->cra_name));
2086
2087 alg->base.cra_priority = priority;
2088 priority++;
2089 /*
2090 * If FIPS mode enabled, the selected DRBG shall have the
2091 * highest cra_priority over other stdrng instances to ensure
2092 * it is selected.
2093 */
2094 if (fips_enabled)
2095 alg->base.cra_priority += 200;
2096
2097 alg->base.cra_ctxsize = sizeof(struct drbg_state);
2098 alg->base.cra_module = THIS_MODULE;
2099 alg->base.cra_init = drbg_kcapi_init;
2100 alg->base.cra_exit = drbg_kcapi_cleanup;
2101 alg->generate = drbg_kcapi_random;
2102 alg->seed = drbg_kcapi_seed;
2103 alg->set_ent = drbg_kcapi_set_entropy;
2104 alg->seedsize = 0;
2105}
2106
2107static int __init drbg_init(void)
2108{
2109 unsigned int i = 0; /* pointer to drbg_algs */
2110 unsigned int j = 0; /* pointer to drbg_cores */
2111 int ret;
2112
2113 ret = drbg_healthcheck_sanity();
2114 if (ret)
2115 return ret;
2116
2117 if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2118 pr_info("DRBG: Cannot register all DRBG types"
2119 "(slots needed: %zu, slots available: %zu)\n",
2120 ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2121 return -EFAULT;
2122 }
2123
2124 /*
2125 * each DRBG definition can be used with PR and without PR, thus
2126 * we instantiate each DRBG in drbg_cores[] twice.
2127 *
2128 * As the order of placing them into the drbg_algs array matters
2129 * (the later DRBGs receive a higher cra_priority) we register the
2130 * prediction resistance DRBGs first as the should not be too
2131 * interesting.
2132 */
2133 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2134 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2135 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2136 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2137 return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2138}
2139
2140static void __exit drbg_exit(void)
2141{
2142 crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2143}
2144
2145subsys_initcall(drbg_init);
2146module_exit(drbg_exit);
2147#ifndef CRYPTO_DRBG_HASH_STRING
2148#define CRYPTO_DRBG_HASH_STRING ""
2149#endif
2150#ifndef CRYPTO_DRBG_HMAC_STRING
2151#define CRYPTO_DRBG_HMAC_STRING ""
2152#endif
2153#ifndef CRYPTO_DRBG_CTR_STRING
2154#define CRYPTO_DRBG_CTR_STRING ""
2155#endif
2156MODULE_LICENSE("GPL");
2157MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2158MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2159 "using following cores: "
2160 CRYPTO_DRBG_HASH_STRING
2161 CRYPTO_DRBG_HMAC_STRING
2162 CRYPTO_DRBG_CTR_STRING);
2163MODULE_ALIAS_CRYPTO("stdrng");
1/*
2 * DRBG: Deterministic Random Bits Generator
3 * Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 * properties:
5 * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 * * with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100#include <crypto/drbg.h>
101#include <crypto/internal/cipher.h>
102#include <linux/kernel.h>
103#include <linux/jiffies.h>
104
105/***************************************************************
106 * Backend cipher definitions available to DRBG
107 ***************************************************************/
108
109/*
110 * The order of the DRBG definitions here matter: every DRBG is registered
111 * as stdrng. Each DRBG receives an increasing cra_priority values the later
112 * they are defined in this array (see drbg_fill_array).
113 *
114 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and the
115 * HMAC-SHA512 / SHA256 / AES 256 over other ciphers. Thus, the
116 * favored DRBGs are the latest entries in this array.
117 */
118static const struct drbg_core drbg_cores[] = {
119#ifdef CONFIG_CRYPTO_DRBG_CTR
120 {
121 .flags = DRBG_CTR | DRBG_STRENGTH128,
122 .statelen = 32, /* 256 bits as defined in 10.2.1 */
123 .blocklen_bytes = 16,
124 .cra_name = "ctr_aes128",
125 .backend_cra_name = "aes",
126 }, {
127 .flags = DRBG_CTR | DRBG_STRENGTH192,
128 .statelen = 40, /* 320 bits as defined in 10.2.1 */
129 .blocklen_bytes = 16,
130 .cra_name = "ctr_aes192",
131 .backend_cra_name = "aes",
132 }, {
133 .flags = DRBG_CTR | DRBG_STRENGTH256,
134 .statelen = 48, /* 384 bits as defined in 10.2.1 */
135 .blocklen_bytes = 16,
136 .cra_name = "ctr_aes256",
137 .backend_cra_name = "aes",
138 },
139#endif /* CONFIG_CRYPTO_DRBG_CTR */
140#ifdef CONFIG_CRYPTO_DRBG_HASH
141 {
142 .flags = DRBG_HASH | DRBG_STRENGTH256,
143 .statelen = 111, /* 888 bits */
144 .blocklen_bytes = 48,
145 .cra_name = "sha384",
146 .backend_cra_name = "sha384",
147 }, {
148 .flags = DRBG_HASH | DRBG_STRENGTH256,
149 .statelen = 111, /* 888 bits */
150 .blocklen_bytes = 64,
151 .cra_name = "sha512",
152 .backend_cra_name = "sha512",
153 }, {
154 .flags = DRBG_HASH | DRBG_STRENGTH256,
155 .statelen = 55, /* 440 bits */
156 .blocklen_bytes = 32,
157 .cra_name = "sha256",
158 .backend_cra_name = "sha256",
159 },
160#endif /* CONFIG_CRYPTO_DRBG_HASH */
161#ifdef CONFIG_CRYPTO_DRBG_HMAC
162 {
163 .flags = DRBG_HMAC | DRBG_STRENGTH256,
164 .statelen = 48, /* block length of cipher */
165 .blocklen_bytes = 48,
166 .cra_name = "hmac_sha384",
167 .backend_cra_name = "hmac(sha384)",
168 }, {
169 .flags = DRBG_HMAC | DRBG_STRENGTH256,
170 .statelen = 32, /* block length of cipher */
171 .blocklen_bytes = 32,
172 .cra_name = "hmac_sha256",
173 .backend_cra_name = "hmac(sha256)",
174 }, {
175 .flags = DRBG_HMAC | DRBG_STRENGTH256,
176 .statelen = 64, /* block length of cipher */
177 .blocklen_bytes = 64,
178 .cra_name = "hmac_sha512",
179 .backend_cra_name = "hmac(sha512)",
180 },
181#endif /* CONFIG_CRYPTO_DRBG_HMAC */
182};
183
184static int drbg_uninstantiate(struct drbg_state *drbg);
185
186/******************************************************************
187 * Generic helper functions
188 ******************************************************************/
189
190/*
191 * Return strength of DRBG according to SP800-90A section 8.4
192 *
193 * @flags DRBG flags reference
194 *
195 * Return: normalized strength in *bytes* value or 32 as default
196 * to counter programming errors
197 */
198static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
199{
200 switch (flags & DRBG_STRENGTH_MASK) {
201 case DRBG_STRENGTH128:
202 return 16;
203 case DRBG_STRENGTH192:
204 return 24;
205 case DRBG_STRENGTH256:
206 return 32;
207 default:
208 return 32;
209 }
210}
211
212/*
213 * FIPS 140-2 continuous self test for the noise source
214 * The test is performed on the noise source input data. Thus, the function
215 * implicitly knows the size of the buffer to be equal to the security
216 * strength.
217 *
218 * Note, this function disregards the nonce trailing the entropy data during
219 * initial seeding.
220 *
221 * drbg->drbg_mutex must have been taken.
222 *
223 * @drbg DRBG handle
224 * @entropy buffer of seed data to be checked
225 *
226 * return:
227 * 0 on success
228 * -EAGAIN on when the CTRNG is not yet primed
229 * < 0 on error
230 */
231static int drbg_fips_continuous_test(struct drbg_state *drbg,
232 const unsigned char *entropy)
233{
234 unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
235 int ret = 0;
236
237 if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
238 return 0;
239
240 /* skip test if we test the overall system */
241 if (list_empty(&drbg->test_data.list))
242 return 0;
243 /* only perform test in FIPS mode */
244 if (!fips_enabled)
245 return 0;
246
247 if (!drbg->fips_primed) {
248 /* Priming of FIPS test */
249 memcpy(drbg->prev, entropy, entropylen);
250 drbg->fips_primed = true;
251 /* priming: another round is needed */
252 return -EAGAIN;
253 }
254 ret = memcmp(drbg->prev, entropy, entropylen);
255 if (!ret)
256 panic("DRBG continuous self test failed\n");
257 memcpy(drbg->prev, entropy, entropylen);
258
259 /* the test shall pass when the two values are not equal */
260 return 0;
261}
262
263/*
264 * Convert an integer into a byte representation of this integer.
265 * The byte representation is big-endian
266 *
267 * @val value to be converted
268 * @buf buffer holding the converted integer -- caller must ensure that
269 * buffer size is at least 32 bit
270 */
271#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
272static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
273{
274 struct s {
275 __be32 conv;
276 };
277 struct s *conversion = (struct s *) buf;
278
279 conversion->conv = cpu_to_be32(val);
280}
281#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
282
283/******************************************************************
284 * CTR DRBG callback functions
285 ******************************************************************/
286
287#ifdef CONFIG_CRYPTO_DRBG_CTR
288#define CRYPTO_DRBG_CTR_STRING "CTR "
289MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
290MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
291MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
292MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
293MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
294MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
295
296static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
297 const unsigned char *key);
298static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
299 const struct drbg_string *in);
300static int drbg_init_sym_kernel(struct drbg_state *drbg);
301static int drbg_fini_sym_kernel(struct drbg_state *drbg);
302static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
303 u8 *inbuf, u32 inbuflen,
304 u8 *outbuf, u32 outlen);
305#define DRBG_OUTSCRATCHLEN 256
306
307/* BCC function for CTR DRBG as defined in 10.4.3 */
308static int drbg_ctr_bcc(struct drbg_state *drbg,
309 unsigned char *out, const unsigned char *key,
310 struct list_head *in)
311{
312 int ret = 0;
313 struct drbg_string *curr = NULL;
314 struct drbg_string data;
315 short cnt = 0;
316
317 drbg_string_fill(&data, out, drbg_blocklen(drbg));
318
319 /* 10.4.3 step 2 / 4 */
320 drbg_kcapi_symsetkey(drbg, key);
321 list_for_each_entry(curr, in, list) {
322 const unsigned char *pos = curr->buf;
323 size_t len = curr->len;
324 /* 10.4.3 step 4.1 */
325 while (len) {
326 /* 10.4.3 step 4.2 */
327 if (drbg_blocklen(drbg) == cnt) {
328 cnt = 0;
329 ret = drbg_kcapi_sym(drbg, out, &data);
330 if (ret)
331 return ret;
332 }
333 out[cnt] ^= *pos;
334 pos++;
335 cnt++;
336 len--;
337 }
338 }
339 /* 10.4.3 step 4.2 for last block */
340 if (cnt)
341 ret = drbg_kcapi_sym(drbg, out, &data);
342
343 return ret;
344}
345
346/*
347 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
348 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
349 * the scratchpad is used as follows:
350 * drbg_ctr_update:
351 * temp
352 * start: drbg->scratchpad
353 * length: drbg_statelen(drbg) + drbg_blocklen(drbg)
354 * note: the cipher writing into this variable works
355 * blocklen-wise. Now, when the statelen is not a multiple
356 * of blocklen, the generateion loop below "spills over"
357 * by at most blocklen. Thus, we need to give sufficient
358 * memory.
359 * df_data
360 * start: drbg->scratchpad +
361 * drbg_statelen(drbg) + drbg_blocklen(drbg)
362 * length: drbg_statelen(drbg)
363 *
364 * drbg_ctr_df:
365 * pad
366 * start: df_data + drbg_statelen(drbg)
367 * length: drbg_blocklen(drbg)
368 * iv
369 * start: pad + drbg_blocklen(drbg)
370 * length: drbg_blocklen(drbg)
371 * temp
372 * start: iv + drbg_blocklen(drbg)
373 * length: drbg_satelen(drbg) + drbg_blocklen(drbg)
374 * note: temp is the buffer that the BCC function operates
375 * on. BCC operates blockwise. drbg_statelen(drbg)
376 * is sufficient when the DRBG state length is a multiple
377 * of the block size. For AES192 (and maybe other ciphers)
378 * this is not correct and the length for temp is
379 * insufficient (yes, that also means for such ciphers,
380 * the final output of all BCC rounds are truncated).
381 * Therefore, add drbg_blocklen(drbg) to cover all
382 * possibilities.
383 */
384
385/* Derivation Function for CTR DRBG as defined in 10.4.2 */
386static int drbg_ctr_df(struct drbg_state *drbg,
387 unsigned char *df_data, size_t bytes_to_return,
388 struct list_head *seedlist)
389{
390 int ret = -EFAULT;
391 unsigned char L_N[8];
392 /* S3 is input */
393 struct drbg_string S1, S2, S4, cipherin;
394 LIST_HEAD(bcc_list);
395 unsigned char *pad = df_data + drbg_statelen(drbg);
396 unsigned char *iv = pad + drbg_blocklen(drbg);
397 unsigned char *temp = iv + drbg_blocklen(drbg);
398 size_t padlen = 0;
399 unsigned int templen = 0;
400 /* 10.4.2 step 7 */
401 unsigned int i = 0;
402 /* 10.4.2 step 8 */
403 const unsigned char *K = (unsigned char *)
404 "\x00\x01\x02\x03\x04\x05\x06\x07"
405 "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
406 "\x10\x11\x12\x13\x14\x15\x16\x17"
407 "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
408 unsigned char *X;
409 size_t generated_len = 0;
410 size_t inputlen = 0;
411 struct drbg_string *seed = NULL;
412
413 memset(pad, 0, drbg_blocklen(drbg));
414 memset(iv, 0, drbg_blocklen(drbg));
415
416 /* 10.4.2 step 1 is implicit as we work byte-wise */
417
418 /* 10.4.2 step 2 */
419 if ((512/8) < bytes_to_return)
420 return -EINVAL;
421
422 /* 10.4.2 step 2 -- calculate the entire length of all input data */
423 list_for_each_entry(seed, seedlist, list)
424 inputlen += seed->len;
425 drbg_cpu_to_be32(inputlen, &L_N[0]);
426
427 /* 10.4.2 step 3 */
428 drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
429
430 /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
431 padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
432 /* wrap the padlen appropriately */
433 if (padlen)
434 padlen = drbg_blocklen(drbg) - padlen;
435 /*
436 * pad / padlen contains the 0x80 byte and the following zero bytes.
437 * As the calculated padlen value only covers the number of zero
438 * bytes, this value has to be incremented by one for the 0x80 byte.
439 */
440 padlen++;
441 pad[0] = 0x80;
442
443 /* 10.4.2 step 4 -- first fill the linked list and then order it */
444 drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
445 list_add_tail(&S1.list, &bcc_list);
446 drbg_string_fill(&S2, L_N, sizeof(L_N));
447 list_add_tail(&S2.list, &bcc_list);
448 list_splice_tail(seedlist, &bcc_list);
449 drbg_string_fill(&S4, pad, padlen);
450 list_add_tail(&S4.list, &bcc_list);
451
452 /* 10.4.2 step 9 */
453 while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
454 /*
455 * 10.4.2 step 9.1 - the padding is implicit as the buffer
456 * holds zeros after allocation -- even the increment of i
457 * is irrelevant as the increment remains within length of i
458 */
459 drbg_cpu_to_be32(i, iv);
460 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
461 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
462 if (ret)
463 goto out;
464 /* 10.4.2 step 9.3 */
465 i++;
466 templen += drbg_blocklen(drbg);
467 }
468
469 /* 10.4.2 step 11 */
470 X = temp + (drbg_keylen(drbg));
471 drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
472
473 /* 10.4.2 step 12: overwriting of outval is implemented in next step */
474
475 /* 10.4.2 step 13 */
476 drbg_kcapi_symsetkey(drbg, temp);
477 while (generated_len < bytes_to_return) {
478 short blocklen = 0;
479 /*
480 * 10.4.2 step 13.1: the truncation of the key length is
481 * implicit as the key is only drbg_blocklen in size based on
482 * the implementation of the cipher function callback
483 */
484 ret = drbg_kcapi_sym(drbg, X, &cipherin);
485 if (ret)
486 goto out;
487 blocklen = (drbg_blocklen(drbg) <
488 (bytes_to_return - generated_len)) ?
489 drbg_blocklen(drbg) :
490 (bytes_to_return - generated_len);
491 /* 10.4.2 step 13.2 and 14 */
492 memcpy(df_data + generated_len, X, blocklen);
493 generated_len += blocklen;
494 }
495
496 ret = 0;
497
498out:
499 memset(iv, 0, drbg_blocklen(drbg));
500 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
501 memset(pad, 0, drbg_blocklen(drbg));
502 return ret;
503}
504
505/*
506 * update function of CTR DRBG as defined in 10.2.1.2
507 *
508 * The reseed variable has an enhanced meaning compared to the update
509 * functions of the other DRBGs as follows:
510 * 0 => initial seed from initialization
511 * 1 => reseed via drbg_seed
512 * 2 => first invocation from drbg_ctr_update when addtl is present. In
513 * this case, the df_data scratchpad is not deleted so that it is
514 * available for another calls to prevent calling the DF function
515 * again.
516 * 3 => second invocation from drbg_ctr_update. When the update function
517 * was called with addtl, the df_data memory already contains the
518 * DFed addtl information and we do not need to call DF again.
519 */
520static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
521 int reseed)
522{
523 int ret = -EFAULT;
524 /* 10.2.1.2 step 1 */
525 unsigned char *temp = drbg->scratchpad;
526 unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
527 drbg_blocklen(drbg);
528
529 if (3 > reseed)
530 memset(df_data, 0, drbg_statelen(drbg));
531
532 if (!reseed) {
533 /*
534 * The DRBG uses the CTR mode of the underlying AES cipher. The
535 * CTR mode increments the counter value after the AES operation
536 * but SP800-90A requires that the counter is incremented before
537 * the AES operation. Hence, we increment it at the time we set
538 * it by one.
539 */
540 crypto_inc(drbg->V, drbg_blocklen(drbg));
541
542 ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
543 drbg_keylen(drbg));
544 if (ret)
545 goto out;
546 }
547
548 /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
549 if (seed) {
550 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
551 if (ret)
552 goto out;
553 }
554
555 ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
556 temp, drbg_statelen(drbg));
557 if (ret)
558 return ret;
559
560 /* 10.2.1.2 step 5 */
561 ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
562 drbg_keylen(drbg));
563 if (ret)
564 goto out;
565 /* 10.2.1.2 step 6 */
566 memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
567 /* See above: increment counter by one to compensate timing of CTR op */
568 crypto_inc(drbg->V, drbg_blocklen(drbg));
569 ret = 0;
570
571out:
572 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
573 if (2 != reseed)
574 memset(df_data, 0, drbg_statelen(drbg));
575 return ret;
576}
577
578/*
579 * scratchpad use: drbg_ctr_update is called independently from
580 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
581 */
582/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
583static int drbg_ctr_generate(struct drbg_state *drbg,
584 unsigned char *buf, unsigned int buflen,
585 struct list_head *addtl)
586{
587 int ret;
588 int len = min_t(int, buflen, INT_MAX);
589
590 /* 10.2.1.5.2 step 2 */
591 if (addtl && !list_empty(addtl)) {
592 ret = drbg_ctr_update(drbg, addtl, 2);
593 if (ret)
594 return 0;
595 }
596
597 /* 10.2.1.5.2 step 4.1 */
598 ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
599 if (ret)
600 return ret;
601
602 /* 10.2.1.5.2 step 6 */
603 ret = drbg_ctr_update(drbg, NULL, 3);
604 if (ret)
605 len = ret;
606
607 return len;
608}
609
610static const struct drbg_state_ops drbg_ctr_ops = {
611 .update = drbg_ctr_update,
612 .generate = drbg_ctr_generate,
613 .crypto_init = drbg_init_sym_kernel,
614 .crypto_fini = drbg_fini_sym_kernel,
615};
616#endif /* CONFIG_CRYPTO_DRBG_CTR */
617
618/******************************************************************
619 * HMAC DRBG callback functions
620 ******************************************************************/
621
622#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
623static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
624 const struct list_head *in);
625static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
626 const unsigned char *key);
627static int drbg_init_hash_kernel(struct drbg_state *drbg);
628static int drbg_fini_hash_kernel(struct drbg_state *drbg);
629#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
630
631#ifdef CONFIG_CRYPTO_DRBG_HMAC
632#define CRYPTO_DRBG_HMAC_STRING "HMAC "
633MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
634MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
635MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
636MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
637MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
638MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
639
640/* update function of HMAC DRBG as defined in 10.1.2.2 */
641static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
642 int reseed)
643{
644 int ret = -EFAULT;
645 int i = 0;
646 struct drbg_string seed1, seed2, vdata;
647 LIST_HEAD(seedlist);
648 LIST_HEAD(vdatalist);
649
650 if (!reseed) {
651 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
652 memset(drbg->V, 1, drbg_statelen(drbg));
653 drbg_kcapi_hmacsetkey(drbg, drbg->C);
654 }
655
656 drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
657 list_add_tail(&seed1.list, &seedlist);
658 /* buffer of seed2 will be filled in for loop below with one byte */
659 drbg_string_fill(&seed2, NULL, 1);
660 list_add_tail(&seed2.list, &seedlist);
661 /* input data of seed is allowed to be NULL at this point */
662 if (seed)
663 list_splice_tail(seed, &seedlist);
664
665 drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
666 list_add_tail(&vdata.list, &vdatalist);
667 for (i = 2; 0 < i; i--) {
668 /* first round uses 0x0, second 0x1 */
669 unsigned char prefix = DRBG_PREFIX0;
670 if (1 == i)
671 prefix = DRBG_PREFIX1;
672 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
673 seed2.buf = &prefix;
674 ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
675 if (ret)
676 return ret;
677 drbg_kcapi_hmacsetkey(drbg, drbg->C);
678
679 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
680 ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
681 if (ret)
682 return ret;
683
684 /* 10.1.2.2 step 3 */
685 if (!seed)
686 return ret;
687 }
688
689 return 0;
690}
691
692/* generate function of HMAC DRBG as defined in 10.1.2.5 */
693static int drbg_hmac_generate(struct drbg_state *drbg,
694 unsigned char *buf,
695 unsigned int buflen,
696 struct list_head *addtl)
697{
698 int len = 0;
699 int ret = 0;
700 struct drbg_string data;
701 LIST_HEAD(datalist);
702
703 /* 10.1.2.5 step 2 */
704 if (addtl && !list_empty(addtl)) {
705 ret = drbg_hmac_update(drbg, addtl, 1);
706 if (ret)
707 return ret;
708 }
709
710 drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
711 list_add_tail(&data.list, &datalist);
712 while (len < buflen) {
713 unsigned int outlen = 0;
714 /* 10.1.2.5 step 4.1 */
715 ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
716 if (ret)
717 return ret;
718 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
719 drbg_blocklen(drbg) : (buflen - len);
720
721 /* 10.1.2.5 step 4.2 */
722 memcpy(buf + len, drbg->V, outlen);
723 len += outlen;
724 }
725
726 /* 10.1.2.5 step 6 */
727 if (addtl && !list_empty(addtl))
728 ret = drbg_hmac_update(drbg, addtl, 1);
729 else
730 ret = drbg_hmac_update(drbg, NULL, 1);
731 if (ret)
732 return ret;
733
734 return len;
735}
736
737static const struct drbg_state_ops drbg_hmac_ops = {
738 .update = drbg_hmac_update,
739 .generate = drbg_hmac_generate,
740 .crypto_init = drbg_init_hash_kernel,
741 .crypto_fini = drbg_fini_hash_kernel,
742};
743#endif /* CONFIG_CRYPTO_DRBG_HMAC */
744
745/******************************************************************
746 * Hash DRBG callback functions
747 ******************************************************************/
748
749#ifdef CONFIG_CRYPTO_DRBG_HASH
750#define CRYPTO_DRBG_HASH_STRING "HASH "
751MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
752MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
753MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
754MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
755MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
756MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
757
758/*
759 * Increment buffer
760 *
761 * @dst buffer to increment
762 * @add value to add
763 */
764static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
765 const unsigned char *add, size_t addlen)
766{
767 /* implied: dstlen > addlen */
768 unsigned char *dstptr;
769 const unsigned char *addptr;
770 unsigned int remainder = 0;
771 size_t len = addlen;
772
773 dstptr = dst + (dstlen-1);
774 addptr = add + (addlen-1);
775 while (len) {
776 remainder += *dstptr + *addptr;
777 *dstptr = remainder & 0xff;
778 remainder >>= 8;
779 len--; dstptr--; addptr--;
780 }
781 len = dstlen - addlen;
782 while (len && remainder > 0) {
783 remainder = *dstptr + 1;
784 *dstptr = remainder & 0xff;
785 remainder >>= 8;
786 len--; dstptr--;
787 }
788}
789
790/*
791 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
792 * interlinked, the scratchpad is used as follows:
793 * drbg_hash_update
794 * start: drbg->scratchpad
795 * length: drbg_statelen(drbg)
796 * drbg_hash_df:
797 * start: drbg->scratchpad + drbg_statelen(drbg)
798 * length: drbg_blocklen(drbg)
799 *
800 * drbg_hash_process_addtl uses the scratchpad, but fully completes
801 * before either of the functions mentioned before are invoked. Therefore,
802 * drbg_hash_process_addtl does not need to be specifically considered.
803 */
804
805/* Derivation Function for Hash DRBG as defined in 10.4.1 */
806static int drbg_hash_df(struct drbg_state *drbg,
807 unsigned char *outval, size_t outlen,
808 struct list_head *entropylist)
809{
810 int ret = 0;
811 size_t len = 0;
812 unsigned char input[5];
813 unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
814 struct drbg_string data;
815
816 /* 10.4.1 step 3 */
817 input[0] = 1;
818 drbg_cpu_to_be32((outlen * 8), &input[1]);
819
820 /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
821 drbg_string_fill(&data, input, 5);
822 list_add(&data.list, entropylist);
823
824 /* 10.4.1 step 4 */
825 while (len < outlen) {
826 short blocklen = 0;
827 /* 10.4.1 step 4.1 */
828 ret = drbg_kcapi_hash(drbg, tmp, entropylist);
829 if (ret)
830 goto out;
831 /* 10.4.1 step 4.2 */
832 input[0]++;
833 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
834 drbg_blocklen(drbg) : (outlen - len);
835 memcpy(outval + len, tmp, blocklen);
836 len += blocklen;
837 }
838
839out:
840 memset(tmp, 0, drbg_blocklen(drbg));
841 return ret;
842}
843
844/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
845static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
846 int reseed)
847{
848 int ret = 0;
849 struct drbg_string data1, data2;
850 LIST_HEAD(datalist);
851 LIST_HEAD(datalist2);
852 unsigned char *V = drbg->scratchpad;
853 unsigned char prefix = DRBG_PREFIX1;
854
855 if (!seed)
856 return -EINVAL;
857
858 if (reseed) {
859 /* 10.1.1.3 step 1 */
860 memcpy(V, drbg->V, drbg_statelen(drbg));
861 drbg_string_fill(&data1, &prefix, 1);
862 list_add_tail(&data1.list, &datalist);
863 drbg_string_fill(&data2, V, drbg_statelen(drbg));
864 list_add_tail(&data2.list, &datalist);
865 }
866 list_splice_tail(seed, &datalist);
867
868 /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
869 ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
870 if (ret)
871 goto out;
872
873 /* 10.1.1.2 / 10.1.1.3 step 4 */
874 prefix = DRBG_PREFIX0;
875 drbg_string_fill(&data1, &prefix, 1);
876 list_add_tail(&data1.list, &datalist2);
877 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
878 list_add_tail(&data2.list, &datalist2);
879 /* 10.1.1.2 / 10.1.1.3 step 4 */
880 ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
881
882out:
883 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
884 return ret;
885}
886
887/* processing of additional information string for Hash DRBG */
888static int drbg_hash_process_addtl(struct drbg_state *drbg,
889 struct list_head *addtl)
890{
891 int ret = 0;
892 struct drbg_string data1, data2;
893 LIST_HEAD(datalist);
894 unsigned char prefix = DRBG_PREFIX2;
895
896 /* 10.1.1.4 step 2 */
897 if (!addtl || list_empty(addtl))
898 return 0;
899
900 /* 10.1.1.4 step 2a */
901 drbg_string_fill(&data1, &prefix, 1);
902 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
903 list_add_tail(&data1.list, &datalist);
904 list_add_tail(&data2.list, &datalist);
905 list_splice_tail(addtl, &datalist);
906 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
907 if (ret)
908 goto out;
909
910 /* 10.1.1.4 step 2b */
911 drbg_add_buf(drbg->V, drbg_statelen(drbg),
912 drbg->scratchpad, drbg_blocklen(drbg));
913
914out:
915 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
916 return ret;
917}
918
919/* Hashgen defined in 10.1.1.4 */
920static int drbg_hash_hashgen(struct drbg_state *drbg,
921 unsigned char *buf,
922 unsigned int buflen)
923{
924 int len = 0;
925 int ret = 0;
926 unsigned char *src = drbg->scratchpad;
927 unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
928 struct drbg_string data;
929 LIST_HEAD(datalist);
930
931 /* 10.1.1.4 step hashgen 2 */
932 memcpy(src, drbg->V, drbg_statelen(drbg));
933
934 drbg_string_fill(&data, src, drbg_statelen(drbg));
935 list_add_tail(&data.list, &datalist);
936 while (len < buflen) {
937 unsigned int outlen = 0;
938 /* 10.1.1.4 step hashgen 4.1 */
939 ret = drbg_kcapi_hash(drbg, dst, &datalist);
940 if (ret) {
941 len = ret;
942 goto out;
943 }
944 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
945 drbg_blocklen(drbg) : (buflen - len);
946 /* 10.1.1.4 step hashgen 4.2 */
947 memcpy(buf + len, dst, outlen);
948 len += outlen;
949 /* 10.1.1.4 hashgen step 4.3 */
950 if (len < buflen)
951 crypto_inc(src, drbg_statelen(drbg));
952 }
953
954out:
955 memset(drbg->scratchpad, 0,
956 (drbg_statelen(drbg) + drbg_blocklen(drbg)));
957 return len;
958}
959
960/* generate function for Hash DRBG as defined in 10.1.1.4 */
961static int drbg_hash_generate(struct drbg_state *drbg,
962 unsigned char *buf, unsigned int buflen,
963 struct list_head *addtl)
964{
965 int len = 0;
966 int ret = 0;
967 union {
968 unsigned char req[8];
969 __be64 req_int;
970 } u;
971 unsigned char prefix = DRBG_PREFIX3;
972 struct drbg_string data1, data2;
973 LIST_HEAD(datalist);
974
975 /* 10.1.1.4 step 2 */
976 ret = drbg_hash_process_addtl(drbg, addtl);
977 if (ret)
978 return ret;
979 /* 10.1.1.4 step 3 */
980 len = drbg_hash_hashgen(drbg, buf, buflen);
981
982 /* this is the value H as documented in 10.1.1.4 */
983 /* 10.1.1.4 step 4 */
984 drbg_string_fill(&data1, &prefix, 1);
985 list_add_tail(&data1.list, &datalist);
986 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
987 list_add_tail(&data2.list, &datalist);
988 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
989 if (ret) {
990 len = ret;
991 goto out;
992 }
993
994 /* 10.1.1.4 step 5 */
995 drbg_add_buf(drbg->V, drbg_statelen(drbg),
996 drbg->scratchpad, drbg_blocklen(drbg));
997 drbg_add_buf(drbg->V, drbg_statelen(drbg),
998 drbg->C, drbg_statelen(drbg));
999 u.req_int = cpu_to_be64(drbg->reseed_ctr);
1000 drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1001
1002out:
1003 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1004 return len;
1005}
1006
1007/*
1008 * scratchpad usage: as update and generate are used isolated, both
1009 * can use the scratchpad
1010 */
1011static const struct drbg_state_ops drbg_hash_ops = {
1012 .update = drbg_hash_update,
1013 .generate = drbg_hash_generate,
1014 .crypto_init = drbg_init_hash_kernel,
1015 .crypto_fini = drbg_fini_hash_kernel,
1016};
1017#endif /* CONFIG_CRYPTO_DRBG_HASH */
1018
1019/******************************************************************
1020 * Functions common for DRBG implementations
1021 ******************************************************************/
1022
1023static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1024 int reseed, enum drbg_seed_state new_seed_state)
1025{
1026 int ret = drbg->d_ops->update(drbg, seed, reseed);
1027
1028 if (ret)
1029 return ret;
1030
1031 drbg->seeded = new_seed_state;
1032 drbg->last_seed_time = jiffies;
1033 /* 10.1.1.2 / 10.1.1.3 step 5 */
1034 drbg->reseed_ctr = 1;
1035
1036 switch (drbg->seeded) {
1037 case DRBG_SEED_STATE_UNSEEDED:
1038 /* Impossible, but handle it to silence compiler warnings. */
1039 fallthrough;
1040 case DRBG_SEED_STATE_PARTIAL:
1041 /*
1042 * Require frequent reseeds until the seed source is
1043 * fully initialized.
1044 */
1045 drbg->reseed_threshold = 50;
1046 break;
1047
1048 case DRBG_SEED_STATE_FULL:
1049 /*
1050 * Seed source has become fully initialized, frequent
1051 * reseeds no longer required.
1052 */
1053 drbg->reseed_threshold = drbg_max_requests(drbg);
1054 break;
1055 }
1056
1057 return ret;
1058}
1059
1060static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1061 unsigned char *entropy,
1062 unsigned int entropylen)
1063{
1064 int ret;
1065
1066 do {
1067 get_random_bytes(entropy, entropylen);
1068 ret = drbg_fips_continuous_test(drbg, entropy);
1069 if (ret && ret != -EAGAIN)
1070 return ret;
1071 } while (ret);
1072
1073 return 0;
1074}
1075
1076static int drbg_seed_from_random(struct drbg_state *drbg)
1077{
1078 struct drbg_string data;
1079 LIST_HEAD(seedlist);
1080 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1081 unsigned char entropy[32];
1082 int ret;
1083
1084 BUG_ON(!entropylen);
1085 BUG_ON(entropylen > sizeof(entropy));
1086
1087 drbg_string_fill(&data, entropy, entropylen);
1088 list_add_tail(&data.list, &seedlist);
1089
1090 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1091 if (ret)
1092 goto out;
1093
1094 ret = __drbg_seed(drbg, &seedlist, true, DRBG_SEED_STATE_FULL);
1095
1096out:
1097 memzero_explicit(entropy, entropylen);
1098 return ret;
1099}
1100
1101static bool drbg_nopr_reseed_interval_elapsed(struct drbg_state *drbg)
1102{
1103 unsigned long next_reseed;
1104
1105 /* Don't ever reseed from get_random_bytes() in test mode. */
1106 if (list_empty(&drbg->test_data.list))
1107 return false;
1108
1109 /*
1110 * Obtain fresh entropy for the nopr DRBGs after 300s have
1111 * elapsed in order to still achieve sort of partial
1112 * prediction resistance over the time domain at least. Note
1113 * that the period of 300s has been chosen to match the
1114 * CRNG_RESEED_INTERVAL of the get_random_bytes()' chacha
1115 * rngs.
1116 */
1117 next_reseed = drbg->last_seed_time + 300 * HZ;
1118 return time_after(jiffies, next_reseed);
1119}
1120
1121/*
1122 * Seeding or reseeding of the DRBG
1123 *
1124 * @drbg: DRBG state struct
1125 * @pers: personalization / additional information buffer
1126 * @reseed: 0 for initial seed process, 1 for reseeding
1127 *
1128 * return:
1129 * 0 on success
1130 * error value otherwise
1131 */
1132static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1133 bool reseed)
1134{
1135 int ret;
1136 unsigned char entropy[((32 + 16) * 2)];
1137 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1138 struct drbg_string data1;
1139 LIST_HEAD(seedlist);
1140 enum drbg_seed_state new_seed_state = DRBG_SEED_STATE_FULL;
1141
1142 /* 9.1 / 9.2 / 9.3.1 step 3 */
1143 if (pers && pers->len > (drbg_max_addtl(drbg))) {
1144 pr_devel("DRBG: personalization string too long %zu\n",
1145 pers->len);
1146 return -EINVAL;
1147 }
1148
1149 if (list_empty(&drbg->test_data.list)) {
1150 drbg_string_fill(&data1, drbg->test_data.buf,
1151 drbg->test_data.len);
1152 pr_devel("DRBG: using test entropy\n");
1153 } else {
1154 /*
1155 * Gather entropy equal to the security strength of the DRBG.
1156 * With a derivation function, a nonce is required in addition
1157 * to the entropy. A nonce must be at least 1/2 of the security
1158 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1159 * of the strength. The consideration of a nonce is only
1160 * applicable during initial seeding.
1161 */
1162 BUG_ON(!entropylen);
1163 if (!reseed)
1164 entropylen = ((entropylen + 1) / 2) * 3;
1165 BUG_ON((entropylen * 2) > sizeof(entropy));
1166
1167 /* Get seed from in-kernel /dev/urandom */
1168 if (!rng_is_initialized())
1169 new_seed_state = DRBG_SEED_STATE_PARTIAL;
1170
1171 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1172 if (ret)
1173 goto out;
1174
1175 if (!drbg->jent) {
1176 drbg_string_fill(&data1, entropy, entropylen);
1177 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1178 entropylen);
1179 } else {
1180 /*
1181 * Get seed from Jitter RNG, failures are
1182 * fatal only in FIPS mode.
1183 */
1184 ret = crypto_rng_get_bytes(drbg->jent,
1185 entropy + entropylen,
1186 entropylen);
1187 if (fips_enabled && ret) {
1188 pr_devel("DRBG: jent failed with %d\n", ret);
1189
1190 /*
1191 * Do not treat the transient failure of the
1192 * Jitter RNG as an error that needs to be
1193 * reported. The combined number of the
1194 * maximum reseed threshold times the maximum
1195 * number of Jitter RNG transient errors is
1196 * less than the reseed threshold required by
1197 * SP800-90A allowing us to treat the
1198 * transient errors as such.
1199 *
1200 * However, we mandate that at least the first
1201 * seeding operation must succeed with the
1202 * Jitter RNG.
1203 */
1204 if (!reseed || ret != -EAGAIN)
1205 goto out;
1206 }
1207
1208 drbg_string_fill(&data1, entropy, entropylen * 2);
1209 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1210 entropylen * 2);
1211 }
1212 }
1213 list_add_tail(&data1.list, &seedlist);
1214
1215 /*
1216 * concatenation of entropy with personalization str / addtl input)
1217 * the variable pers is directly handed in by the caller, so check its
1218 * contents whether it is appropriate
1219 */
1220 if (pers && pers->buf && 0 < pers->len) {
1221 list_add_tail(&pers->list, &seedlist);
1222 pr_devel("DRBG: using personalization string\n");
1223 }
1224
1225 if (!reseed) {
1226 memset(drbg->V, 0, drbg_statelen(drbg));
1227 memset(drbg->C, 0, drbg_statelen(drbg));
1228 }
1229
1230 ret = __drbg_seed(drbg, &seedlist, reseed, new_seed_state);
1231
1232out:
1233 memzero_explicit(entropy, entropylen * 2);
1234
1235 return ret;
1236}
1237
1238/* Free all substructures in a DRBG state without the DRBG state structure */
1239static inline void drbg_dealloc_state(struct drbg_state *drbg)
1240{
1241 if (!drbg)
1242 return;
1243 kfree_sensitive(drbg->Vbuf);
1244 drbg->Vbuf = NULL;
1245 drbg->V = NULL;
1246 kfree_sensitive(drbg->Cbuf);
1247 drbg->Cbuf = NULL;
1248 drbg->C = NULL;
1249 kfree_sensitive(drbg->scratchpadbuf);
1250 drbg->scratchpadbuf = NULL;
1251 drbg->reseed_ctr = 0;
1252 drbg->d_ops = NULL;
1253 drbg->core = NULL;
1254 if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1255 kfree_sensitive(drbg->prev);
1256 drbg->prev = NULL;
1257 drbg->fips_primed = false;
1258 }
1259}
1260
1261/*
1262 * Allocate all sub-structures for a DRBG state.
1263 * The DRBG state structure must already be allocated.
1264 */
1265static inline int drbg_alloc_state(struct drbg_state *drbg)
1266{
1267 int ret = -ENOMEM;
1268 unsigned int sb_size = 0;
1269
1270 switch (drbg->core->flags & DRBG_TYPE_MASK) {
1271#ifdef CONFIG_CRYPTO_DRBG_HMAC
1272 case DRBG_HMAC:
1273 drbg->d_ops = &drbg_hmac_ops;
1274 break;
1275#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1276#ifdef CONFIG_CRYPTO_DRBG_HASH
1277 case DRBG_HASH:
1278 drbg->d_ops = &drbg_hash_ops;
1279 break;
1280#endif /* CONFIG_CRYPTO_DRBG_HASH */
1281#ifdef CONFIG_CRYPTO_DRBG_CTR
1282 case DRBG_CTR:
1283 drbg->d_ops = &drbg_ctr_ops;
1284 break;
1285#endif /* CONFIG_CRYPTO_DRBG_CTR */
1286 default:
1287 ret = -EOPNOTSUPP;
1288 goto err;
1289 }
1290
1291 ret = drbg->d_ops->crypto_init(drbg);
1292 if (ret < 0)
1293 goto err;
1294
1295 drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1296 if (!drbg->Vbuf) {
1297 ret = -ENOMEM;
1298 goto fini;
1299 }
1300 drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1301 drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1302 if (!drbg->Cbuf) {
1303 ret = -ENOMEM;
1304 goto fini;
1305 }
1306 drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1307 /* scratchpad is only generated for CTR and Hash */
1308 if (drbg->core->flags & DRBG_HMAC)
1309 sb_size = 0;
1310 else if (drbg->core->flags & DRBG_CTR)
1311 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1312 drbg_statelen(drbg) + /* df_data */
1313 drbg_blocklen(drbg) + /* pad */
1314 drbg_blocklen(drbg) + /* iv */
1315 drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1316 else
1317 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1318
1319 if (0 < sb_size) {
1320 drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1321 if (!drbg->scratchpadbuf) {
1322 ret = -ENOMEM;
1323 goto fini;
1324 }
1325 drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1326 }
1327
1328 if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1329 drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1330 GFP_KERNEL);
1331 if (!drbg->prev) {
1332 ret = -ENOMEM;
1333 goto fini;
1334 }
1335 drbg->fips_primed = false;
1336 }
1337
1338 return 0;
1339
1340fini:
1341 drbg->d_ops->crypto_fini(drbg);
1342err:
1343 drbg_dealloc_state(drbg);
1344 return ret;
1345}
1346
1347/*************************************************************************
1348 * DRBG interface functions
1349 *************************************************************************/
1350
1351/*
1352 * DRBG generate function as required by SP800-90A - this function
1353 * generates random numbers
1354 *
1355 * @drbg DRBG state handle
1356 * @buf Buffer where to store the random numbers -- the buffer must already
1357 * be pre-allocated by caller
1358 * @buflen Length of output buffer - this value defines the number of random
1359 * bytes pulled from DRBG
1360 * @addtl Additional input that is mixed into state, may be NULL -- note
1361 * the entropy is pulled by the DRBG internally unconditionally
1362 * as defined in SP800-90A. The additional input is mixed into
1363 * the state in addition to the pulled entropy.
1364 *
1365 * return: 0 when all bytes are generated; < 0 in case of an error
1366 */
1367static int drbg_generate(struct drbg_state *drbg,
1368 unsigned char *buf, unsigned int buflen,
1369 struct drbg_string *addtl)
1370{
1371 int len = 0;
1372 LIST_HEAD(addtllist);
1373
1374 if (!drbg->core) {
1375 pr_devel("DRBG: not yet seeded\n");
1376 return -EINVAL;
1377 }
1378 if (0 == buflen || !buf) {
1379 pr_devel("DRBG: no output buffer provided\n");
1380 return -EINVAL;
1381 }
1382 if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1383 pr_devel("DRBG: wrong format of additional information\n");
1384 return -EINVAL;
1385 }
1386
1387 /* 9.3.1 step 2 */
1388 len = -EINVAL;
1389 if (buflen > (drbg_max_request_bytes(drbg))) {
1390 pr_devel("DRBG: requested random numbers too large %u\n",
1391 buflen);
1392 goto err;
1393 }
1394
1395 /* 9.3.1 step 3 is implicit with the chosen DRBG */
1396
1397 /* 9.3.1 step 4 */
1398 if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1399 pr_devel("DRBG: additional information string too long %zu\n",
1400 addtl->len);
1401 goto err;
1402 }
1403 /* 9.3.1 step 5 is implicit with the chosen DRBG */
1404
1405 /*
1406 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1407 * here. The spec is a bit convoluted here, we make it simpler.
1408 */
1409 if (drbg->reseed_threshold < drbg->reseed_ctr)
1410 drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1411
1412 if (drbg->pr || drbg->seeded == DRBG_SEED_STATE_UNSEEDED) {
1413 pr_devel("DRBG: reseeding before generation (prediction "
1414 "resistance: %s, state %s)\n",
1415 drbg->pr ? "true" : "false",
1416 (drbg->seeded == DRBG_SEED_STATE_FULL ?
1417 "seeded" : "unseeded"));
1418 /* 9.3.1 steps 7.1 through 7.3 */
1419 len = drbg_seed(drbg, addtl, true);
1420 if (len)
1421 goto err;
1422 /* 9.3.1 step 7.4 */
1423 addtl = NULL;
1424 } else if (rng_is_initialized() &&
1425 (drbg->seeded == DRBG_SEED_STATE_PARTIAL ||
1426 drbg_nopr_reseed_interval_elapsed(drbg))) {
1427 len = drbg_seed_from_random(drbg);
1428 if (len)
1429 goto err;
1430 }
1431
1432 if (addtl && 0 < addtl->len)
1433 list_add_tail(&addtl->list, &addtllist);
1434 /* 9.3.1 step 8 and 10 */
1435 len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1436
1437 /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1438 drbg->reseed_ctr++;
1439 if (0 >= len)
1440 goto err;
1441
1442 /*
1443 * Section 11.3.3 requires to re-perform self tests after some
1444 * generated random numbers. The chosen value after which self
1445 * test is performed is arbitrary, but it should be reasonable.
1446 * However, we do not perform the self tests because of the following
1447 * reasons: it is mathematically impossible that the initial self tests
1448 * were successfully and the following are not. If the initial would
1449 * pass and the following would not, the kernel integrity is violated.
1450 * In this case, the entire kernel operation is questionable and it
1451 * is unlikely that the integrity violation only affects the
1452 * correct operation of the DRBG.
1453 *
1454 * Albeit the following code is commented out, it is provided in
1455 * case somebody has a need to implement the test of 11.3.3.
1456 */
1457#if 0
1458 if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1459 int err = 0;
1460 pr_devel("DRBG: start to perform self test\n");
1461 if (drbg->core->flags & DRBG_HMAC)
1462 err = alg_test("drbg_pr_hmac_sha512",
1463 "drbg_pr_hmac_sha512", 0, 0);
1464 else if (drbg->core->flags & DRBG_CTR)
1465 err = alg_test("drbg_pr_ctr_aes256",
1466 "drbg_pr_ctr_aes256", 0, 0);
1467 else
1468 err = alg_test("drbg_pr_sha256",
1469 "drbg_pr_sha256", 0, 0);
1470 if (err) {
1471 pr_err("DRBG: periodical self test failed\n");
1472 /*
1473 * uninstantiate implies that from now on, only errors
1474 * are returned when reusing this DRBG cipher handle
1475 */
1476 drbg_uninstantiate(drbg);
1477 return 0;
1478 } else {
1479 pr_devel("DRBG: self test successful\n");
1480 }
1481 }
1482#endif
1483
1484 /*
1485 * All operations were successful, return 0 as mandated by
1486 * the kernel crypto API interface.
1487 */
1488 len = 0;
1489err:
1490 return len;
1491}
1492
1493/*
1494 * Wrapper around drbg_generate which can pull arbitrary long strings
1495 * from the DRBG without hitting the maximum request limitation.
1496 *
1497 * Parameters: see drbg_generate
1498 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1499 * the entire drbg_generate_long request fails
1500 */
1501static int drbg_generate_long(struct drbg_state *drbg,
1502 unsigned char *buf, unsigned int buflen,
1503 struct drbg_string *addtl)
1504{
1505 unsigned int len = 0;
1506 unsigned int slice = 0;
1507 do {
1508 int err = 0;
1509 unsigned int chunk = 0;
1510 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1511 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1512 mutex_lock(&drbg->drbg_mutex);
1513 err = drbg_generate(drbg, buf + len, chunk, addtl);
1514 mutex_unlock(&drbg->drbg_mutex);
1515 if (0 > err)
1516 return err;
1517 len += chunk;
1518 } while (slice > 0 && (len < buflen));
1519 return 0;
1520}
1521
1522static int drbg_prepare_hrng(struct drbg_state *drbg)
1523{
1524 /* We do not need an HRNG in test mode. */
1525 if (list_empty(&drbg->test_data.list))
1526 return 0;
1527
1528 drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1529 if (IS_ERR(drbg->jent)) {
1530 const int err = PTR_ERR(drbg->jent);
1531
1532 drbg->jent = NULL;
1533 if (fips_enabled)
1534 return err;
1535 pr_info("DRBG: Continuing without Jitter RNG\n");
1536 }
1537
1538 return 0;
1539}
1540
1541/*
1542 * DRBG instantiation function as required by SP800-90A - this function
1543 * sets up the DRBG handle, performs the initial seeding and all sanity
1544 * checks required by SP800-90A
1545 *
1546 * @drbg memory of state -- if NULL, new memory is allocated
1547 * @pers Personalization string that is mixed into state, may be NULL -- note
1548 * the entropy is pulled by the DRBG internally unconditionally
1549 * as defined in SP800-90A. The additional input is mixed into
1550 * the state in addition to the pulled entropy.
1551 * @coreref reference to core
1552 * @pr prediction resistance enabled
1553 *
1554 * return
1555 * 0 on success
1556 * error value otherwise
1557 */
1558static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1559 int coreref, bool pr)
1560{
1561 int ret;
1562 bool reseed = true;
1563
1564 pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1565 "%s\n", coreref, pr ? "enabled" : "disabled");
1566 mutex_lock(&drbg->drbg_mutex);
1567
1568 /* 9.1 step 1 is implicit with the selected DRBG type */
1569
1570 /*
1571 * 9.1 step 2 is implicit as caller can select prediction resistance
1572 * and the flag is copied into drbg->flags --
1573 * all DRBG types support prediction resistance
1574 */
1575
1576 /* 9.1 step 4 is implicit in drbg_sec_strength */
1577
1578 if (!drbg->core) {
1579 drbg->core = &drbg_cores[coreref];
1580 drbg->pr = pr;
1581 drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1582 drbg->last_seed_time = 0;
1583 drbg->reseed_threshold = drbg_max_requests(drbg);
1584
1585 ret = drbg_alloc_state(drbg);
1586 if (ret)
1587 goto unlock;
1588
1589 ret = drbg_prepare_hrng(drbg);
1590 if (ret)
1591 goto free_everything;
1592
1593 reseed = false;
1594 }
1595
1596 ret = drbg_seed(drbg, pers, reseed);
1597
1598 if (ret && !reseed)
1599 goto free_everything;
1600
1601 mutex_unlock(&drbg->drbg_mutex);
1602 return ret;
1603
1604unlock:
1605 mutex_unlock(&drbg->drbg_mutex);
1606 return ret;
1607
1608free_everything:
1609 mutex_unlock(&drbg->drbg_mutex);
1610 drbg_uninstantiate(drbg);
1611 return ret;
1612}
1613
1614/*
1615 * DRBG uninstantiate function as required by SP800-90A - this function
1616 * frees all buffers and the DRBG handle
1617 *
1618 * @drbg DRBG state handle
1619 *
1620 * return
1621 * 0 on success
1622 */
1623static int drbg_uninstantiate(struct drbg_state *drbg)
1624{
1625 if (!IS_ERR_OR_NULL(drbg->jent))
1626 crypto_free_rng(drbg->jent);
1627 drbg->jent = NULL;
1628
1629 if (drbg->d_ops)
1630 drbg->d_ops->crypto_fini(drbg);
1631 drbg_dealloc_state(drbg);
1632 /* no scrubbing of test_data -- this shall survive an uninstantiate */
1633 return 0;
1634}
1635
1636/*
1637 * Helper function for setting the test data in the DRBG
1638 *
1639 * @drbg DRBG state handle
1640 * @data test data
1641 * @len test data length
1642 */
1643static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1644 const u8 *data, unsigned int len)
1645{
1646 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1647
1648 mutex_lock(&drbg->drbg_mutex);
1649 drbg_string_fill(&drbg->test_data, data, len);
1650 mutex_unlock(&drbg->drbg_mutex);
1651}
1652
1653/***************************************************************
1654 * Kernel crypto API cipher invocations requested by DRBG
1655 ***************************************************************/
1656
1657#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1658struct sdesc {
1659 struct shash_desc shash;
1660 char ctx[];
1661};
1662
1663static int drbg_init_hash_kernel(struct drbg_state *drbg)
1664{
1665 struct sdesc *sdesc;
1666 struct crypto_shash *tfm;
1667
1668 tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1669 if (IS_ERR(tfm)) {
1670 pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1671 drbg->core->backend_cra_name);
1672 return PTR_ERR(tfm);
1673 }
1674 BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1675 sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1676 GFP_KERNEL);
1677 if (!sdesc) {
1678 crypto_free_shash(tfm);
1679 return -ENOMEM;
1680 }
1681
1682 sdesc->shash.tfm = tfm;
1683 drbg->priv_data = sdesc;
1684
1685 return 0;
1686}
1687
1688static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1689{
1690 struct sdesc *sdesc = drbg->priv_data;
1691 if (sdesc) {
1692 crypto_free_shash(sdesc->shash.tfm);
1693 kfree_sensitive(sdesc);
1694 }
1695 drbg->priv_data = NULL;
1696 return 0;
1697}
1698
1699static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1700 const unsigned char *key)
1701{
1702 struct sdesc *sdesc = drbg->priv_data;
1703
1704 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1705}
1706
1707static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1708 const struct list_head *in)
1709{
1710 struct sdesc *sdesc = drbg->priv_data;
1711 struct drbg_string *input = NULL;
1712
1713 crypto_shash_init(&sdesc->shash);
1714 list_for_each_entry(input, in, list)
1715 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1716 return crypto_shash_final(&sdesc->shash, outval);
1717}
1718#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1719
1720#ifdef CONFIG_CRYPTO_DRBG_CTR
1721static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1722{
1723 struct crypto_cipher *tfm =
1724 (struct crypto_cipher *)drbg->priv_data;
1725 if (tfm)
1726 crypto_free_cipher(tfm);
1727 drbg->priv_data = NULL;
1728
1729 if (drbg->ctr_handle)
1730 crypto_free_skcipher(drbg->ctr_handle);
1731 drbg->ctr_handle = NULL;
1732
1733 if (drbg->ctr_req)
1734 skcipher_request_free(drbg->ctr_req);
1735 drbg->ctr_req = NULL;
1736
1737 kfree(drbg->outscratchpadbuf);
1738 drbg->outscratchpadbuf = NULL;
1739
1740 return 0;
1741}
1742
1743static int drbg_init_sym_kernel(struct drbg_state *drbg)
1744{
1745 struct crypto_cipher *tfm;
1746 struct crypto_skcipher *sk_tfm;
1747 struct skcipher_request *req;
1748 unsigned int alignmask;
1749 char ctr_name[CRYPTO_MAX_ALG_NAME];
1750
1751 tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1752 if (IS_ERR(tfm)) {
1753 pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1754 drbg->core->backend_cra_name);
1755 return PTR_ERR(tfm);
1756 }
1757 BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1758 drbg->priv_data = tfm;
1759
1760 if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1761 drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1762 drbg_fini_sym_kernel(drbg);
1763 return -EINVAL;
1764 }
1765 sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1766 if (IS_ERR(sk_tfm)) {
1767 pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1768 ctr_name);
1769 drbg_fini_sym_kernel(drbg);
1770 return PTR_ERR(sk_tfm);
1771 }
1772 drbg->ctr_handle = sk_tfm;
1773 crypto_init_wait(&drbg->ctr_wait);
1774
1775 req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1776 if (!req) {
1777 pr_info("DRBG: could not allocate request queue\n");
1778 drbg_fini_sym_kernel(drbg);
1779 return -ENOMEM;
1780 }
1781 drbg->ctr_req = req;
1782 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1783 CRYPTO_TFM_REQ_MAY_SLEEP,
1784 crypto_req_done, &drbg->ctr_wait);
1785
1786 alignmask = crypto_skcipher_alignmask(sk_tfm);
1787 drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1788 GFP_KERNEL);
1789 if (!drbg->outscratchpadbuf) {
1790 drbg_fini_sym_kernel(drbg);
1791 return -ENOMEM;
1792 }
1793 drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1794 alignmask + 1);
1795
1796 sg_init_table(&drbg->sg_in, 1);
1797 sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1798
1799 return alignmask;
1800}
1801
1802static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1803 const unsigned char *key)
1804{
1805 struct crypto_cipher *tfm = drbg->priv_data;
1806
1807 crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1808}
1809
1810static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1811 const struct drbg_string *in)
1812{
1813 struct crypto_cipher *tfm = drbg->priv_data;
1814
1815 /* there is only component in *in */
1816 BUG_ON(in->len < drbg_blocklen(drbg));
1817 crypto_cipher_encrypt_one(tfm, outval, in->buf);
1818 return 0;
1819}
1820
1821static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1822 u8 *inbuf, u32 inlen,
1823 u8 *outbuf, u32 outlen)
1824{
1825 struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1826 u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1827 int ret;
1828
1829 if (inbuf) {
1830 /* Use caller-provided input buffer */
1831 sg_set_buf(sg_in, inbuf, inlen);
1832 } else {
1833 /* Use scratchpad for in-place operation */
1834 inlen = scratchpad_use;
1835 memset(drbg->outscratchpad, 0, scratchpad_use);
1836 sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1837 }
1838
1839 while (outlen) {
1840 u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1841
1842 /* Output buffer may not be valid for SGL, use scratchpad */
1843 skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1844 cryptlen, drbg->V);
1845 ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1846 &drbg->ctr_wait);
1847 if (ret)
1848 goto out;
1849
1850 crypto_init_wait(&drbg->ctr_wait);
1851
1852 memcpy(outbuf, drbg->outscratchpad, cryptlen);
1853 memzero_explicit(drbg->outscratchpad, cryptlen);
1854
1855 outlen -= cryptlen;
1856 outbuf += cryptlen;
1857 }
1858 ret = 0;
1859
1860out:
1861 return ret;
1862}
1863#endif /* CONFIG_CRYPTO_DRBG_CTR */
1864
1865/***************************************************************
1866 * Kernel crypto API interface to register DRBG
1867 ***************************************************************/
1868
1869/*
1870 * Look up the DRBG flags by given kernel crypto API cra_name
1871 * The code uses the drbg_cores definition to do this
1872 *
1873 * @cra_name kernel crypto API cra_name
1874 * @coreref reference to integer which is filled with the pointer to
1875 * the applicable core
1876 * @pr reference for setting prediction resistance
1877 *
1878 * return: flags
1879 */
1880static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1881 int *coreref, bool *pr)
1882{
1883 int i = 0;
1884 size_t start = 0;
1885 int len = 0;
1886
1887 *pr = true;
1888 /* disassemble the names */
1889 if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1890 start = 10;
1891 *pr = false;
1892 } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1893 start = 8;
1894 } else {
1895 return;
1896 }
1897
1898 /* remove the first part */
1899 len = strlen(cra_driver_name) - start;
1900 for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1901 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1902 len)) {
1903 *coreref = i;
1904 return;
1905 }
1906 }
1907}
1908
1909static int drbg_kcapi_init(struct crypto_tfm *tfm)
1910{
1911 struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1912
1913 mutex_init(&drbg->drbg_mutex);
1914
1915 return 0;
1916}
1917
1918static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1919{
1920 drbg_uninstantiate(crypto_tfm_ctx(tfm));
1921}
1922
1923/*
1924 * Generate random numbers invoked by the kernel crypto API:
1925 * The API of the kernel crypto API is extended as follows:
1926 *
1927 * src is additional input supplied to the RNG.
1928 * slen is the length of src.
1929 * dst is the output buffer where random data is to be stored.
1930 * dlen is the length of dst.
1931 */
1932static int drbg_kcapi_random(struct crypto_rng *tfm,
1933 const u8 *src, unsigned int slen,
1934 u8 *dst, unsigned int dlen)
1935{
1936 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1937 struct drbg_string *addtl = NULL;
1938 struct drbg_string string;
1939
1940 if (slen) {
1941 /* linked list variable is now local to allow modification */
1942 drbg_string_fill(&string, src, slen);
1943 addtl = &string;
1944 }
1945
1946 return drbg_generate_long(drbg, dst, dlen, addtl);
1947}
1948
1949/*
1950 * Seed the DRBG invoked by the kernel crypto API
1951 */
1952static int drbg_kcapi_seed(struct crypto_rng *tfm,
1953 const u8 *seed, unsigned int slen)
1954{
1955 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1956 struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1957 bool pr = false;
1958 struct drbg_string string;
1959 struct drbg_string *seed_string = NULL;
1960 int coreref = 0;
1961
1962 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1963 &pr);
1964 if (0 < slen) {
1965 drbg_string_fill(&string, seed, slen);
1966 seed_string = &string;
1967 }
1968
1969 return drbg_instantiate(drbg, seed_string, coreref, pr);
1970}
1971
1972/***************************************************************
1973 * Kernel module: code to load the module
1974 ***************************************************************/
1975
1976/*
1977 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1978 * of the error handling.
1979 *
1980 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1981 * as seed source of get_random_bytes does not fail.
1982 *
1983 * Note 2: There is no sensible way of testing the reseed counter
1984 * enforcement, so skip it.
1985 */
1986static inline int __init drbg_healthcheck_sanity(void)
1987{
1988 int len = 0;
1989#define OUTBUFLEN 16
1990 unsigned char buf[OUTBUFLEN];
1991 struct drbg_state *drbg = NULL;
1992 int ret;
1993 int rc = -EFAULT;
1994 bool pr = false;
1995 int coreref = 0;
1996 struct drbg_string addtl;
1997 size_t max_addtllen, max_request_bytes;
1998
1999 /* only perform test in FIPS mode */
2000 if (!fips_enabled)
2001 return 0;
2002
2003#ifdef CONFIG_CRYPTO_DRBG_CTR
2004 drbg_convert_tfm_core("drbg_nopr_ctr_aes256", &coreref, &pr);
2005#endif
2006#ifdef CONFIG_CRYPTO_DRBG_HASH
2007 drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2008#endif
2009#ifdef CONFIG_CRYPTO_DRBG_HMAC
2010 drbg_convert_tfm_core("drbg_nopr_hmac_sha512", &coreref, &pr);
2011#endif
2012
2013 drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2014 if (!drbg)
2015 return -ENOMEM;
2016
2017 mutex_init(&drbg->drbg_mutex);
2018 drbg->core = &drbg_cores[coreref];
2019 drbg->reseed_threshold = drbg_max_requests(drbg);
2020
2021 /*
2022 * if the following tests fail, it is likely that there is a buffer
2023 * overflow as buf is much smaller than the requested or provided
2024 * string lengths -- in case the error handling does not succeed
2025 * we may get an OOPS. And we want to get an OOPS as this is a
2026 * grave bug.
2027 */
2028
2029 max_addtllen = drbg_max_addtl(drbg);
2030 max_request_bytes = drbg_max_request_bytes(drbg);
2031 drbg_string_fill(&addtl, buf, max_addtllen + 1);
2032 /* overflow addtllen with additonal info string */
2033 len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2034 BUG_ON(0 < len);
2035 /* overflow max_bits */
2036 len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2037 BUG_ON(0 < len);
2038
2039 /* overflow max addtllen with personalization string */
2040 ret = drbg_seed(drbg, &addtl, false);
2041 BUG_ON(0 == ret);
2042 /* all tests passed */
2043 rc = 0;
2044
2045 pr_devel("DRBG: Sanity tests for failure code paths successfully "
2046 "completed\n");
2047
2048 kfree(drbg);
2049 return rc;
2050}
2051
2052static struct rng_alg drbg_algs[22];
2053
2054/*
2055 * Fill the array drbg_algs used to register the different DRBGs
2056 * with the kernel crypto API. To fill the array, the information
2057 * from drbg_cores[] is used.
2058 */
2059static inline void __init drbg_fill_array(struct rng_alg *alg,
2060 const struct drbg_core *core, int pr)
2061{
2062 int pos = 0;
2063 static int priority = 200;
2064
2065 memcpy(alg->base.cra_name, "stdrng", 6);
2066 if (pr) {
2067 memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2068 pos = 8;
2069 } else {
2070 memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2071 pos = 10;
2072 }
2073 memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2074 strlen(core->cra_name));
2075
2076 alg->base.cra_priority = priority;
2077 priority++;
2078 /*
2079 * If FIPS mode enabled, the selected DRBG shall have the
2080 * highest cra_priority over other stdrng instances to ensure
2081 * it is selected.
2082 */
2083 if (fips_enabled)
2084 alg->base.cra_priority += 200;
2085
2086 alg->base.cra_ctxsize = sizeof(struct drbg_state);
2087 alg->base.cra_module = THIS_MODULE;
2088 alg->base.cra_init = drbg_kcapi_init;
2089 alg->base.cra_exit = drbg_kcapi_cleanup;
2090 alg->generate = drbg_kcapi_random;
2091 alg->seed = drbg_kcapi_seed;
2092 alg->set_ent = drbg_kcapi_set_entropy;
2093 alg->seedsize = 0;
2094}
2095
2096static int __init drbg_init(void)
2097{
2098 unsigned int i = 0; /* pointer to drbg_algs */
2099 unsigned int j = 0; /* pointer to drbg_cores */
2100 int ret;
2101
2102 ret = drbg_healthcheck_sanity();
2103 if (ret)
2104 return ret;
2105
2106 if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2107 pr_info("DRBG: Cannot register all DRBG types"
2108 "(slots needed: %zu, slots available: %zu)\n",
2109 ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2110 return -EFAULT;
2111 }
2112
2113 /*
2114 * each DRBG definition can be used with PR and without PR, thus
2115 * we instantiate each DRBG in drbg_cores[] twice.
2116 *
2117 * As the order of placing them into the drbg_algs array matters
2118 * (the later DRBGs receive a higher cra_priority) we register the
2119 * prediction resistance DRBGs first as the should not be too
2120 * interesting.
2121 */
2122 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2123 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2124 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2125 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2126 return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2127}
2128
2129static void __exit drbg_exit(void)
2130{
2131 crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2132}
2133
2134subsys_initcall(drbg_init);
2135module_exit(drbg_exit);
2136#ifndef CRYPTO_DRBG_HASH_STRING
2137#define CRYPTO_DRBG_HASH_STRING ""
2138#endif
2139#ifndef CRYPTO_DRBG_HMAC_STRING
2140#define CRYPTO_DRBG_HMAC_STRING ""
2141#endif
2142#ifndef CRYPTO_DRBG_CTR_STRING
2143#define CRYPTO_DRBG_CTR_STRING ""
2144#endif
2145MODULE_LICENSE("GPL");
2146MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2147MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2148 "using following cores: "
2149 CRYPTO_DRBG_HASH_STRING
2150 CRYPTO_DRBG_HMAC_STRING
2151 CRYPTO_DRBG_CTR_STRING);
2152MODULE_ALIAS_CRYPTO("stdrng");
2153MODULE_IMPORT_NS(CRYPTO_INTERNAL);