Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
   7 *  DMA uncached mapping support.
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dma-noncoherent.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
  25#include <linux/io.h>
  26#include <linux/vmalloc.h>
  27#include <linux/sizes.h>
  28#include <linux/cma.h>
  29
  30#include <asm/memory.h>
  31#include <asm/highmem.h>
  32#include <asm/cacheflush.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mach/arch.h>
  35#include <asm/dma-iommu.h>
  36#include <asm/mach/map.h>
  37#include <asm/system_info.h>
  38#include <asm/dma-contiguous.h>
  39#include <xen/swiotlb-xen.h>
  40
  41#include "dma.h"
  42#include "mm.h"
  43
  44struct arm_dma_alloc_args {
  45	struct device *dev;
  46	size_t size;
  47	gfp_t gfp;
  48	pgprot_t prot;
  49	const void *caller;
  50	bool want_vaddr;
  51	int coherent_flag;
  52};
  53
  54struct arm_dma_free_args {
  55	struct device *dev;
  56	size_t size;
  57	void *cpu_addr;
  58	struct page *page;
  59	bool want_vaddr;
  60};
  61
  62#define NORMAL	    0
  63#define COHERENT    1
  64
  65struct arm_dma_allocator {
  66	void *(*alloc)(struct arm_dma_alloc_args *args,
  67		       struct page **ret_page);
  68	void (*free)(struct arm_dma_free_args *args);
  69};
  70
  71struct arm_dma_buffer {
  72	struct list_head list;
  73	void *virt;
  74	struct arm_dma_allocator *allocator;
  75};
  76
  77static LIST_HEAD(arm_dma_bufs);
  78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  79
  80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  81{
  82	struct arm_dma_buffer *buf, *found = NULL;
  83	unsigned long flags;
  84
  85	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  86	list_for_each_entry(buf, &arm_dma_bufs, list) {
  87		if (buf->virt == virt) {
  88			list_del(&buf->list);
  89			found = buf;
  90			break;
  91		}
  92	}
  93	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  94	return found;
  95}
  96
  97/*
  98 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  99 * is either exclusively owned by the CPU (and therefore may be accessed
 100 * by it) or exclusively owned by the DMA device.  These helper functions
 101 * represent the transitions between these two ownership states.
 102 *
 103 * Note, however, that on later ARMs, this notion does not work due to
 104 * speculative prefetches.  We model our approach on the assumption that
 105 * the CPU does do speculative prefetches, which means we clean caches
 106 * before transfers and delay cache invalidation until transfer completion.
 107 *
 108 */
 109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 110		size_t, enum dma_data_direction);
 111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 112		size_t, enum dma_data_direction);
 113
 114/**
 115 * arm_dma_map_page - map a portion of a page for streaming DMA
 116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 117 * @page: page that buffer resides in
 118 * @offset: offset into page for start of buffer
 119 * @size: size of buffer to map
 120 * @dir: DMA transfer direction
 121 *
 122 * Ensure that any data held in the cache is appropriately discarded
 123 * or written back.
 124 *
 125 * The device owns this memory once this call has completed.  The CPU
 126 * can regain ownership by calling dma_unmap_page().
 127 */
 128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 129	     unsigned long offset, size_t size, enum dma_data_direction dir,
 130	     unsigned long attrs)
 131{
 132	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 133		__dma_page_cpu_to_dev(page, offset, size, dir);
 134	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 135}
 136
 137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 138	     unsigned long offset, size_t size, enum dma_data_direction dir,
 139	     unsigned long attrs)
 140{
 141	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 142}
 143
 144/**
 145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 147 * @handle: DMA address of buffer
 148 * @size: size of buffer (same as passed to dma_map_page)
 149 * @dir: DMA transfer direction (same as passed to dma_map_page)
 150 *
 151 * Unmap a page streaming mode DMA translation.  The handle and size
 152 * must match what was provided in the previous dma_map_page() call.
 153 * All other usages are undefined.
 154 *
 155 * After this call, reads by the CPU to the buffer are guaranteed to see
 156 * whatever the device wrote there.
 157 */
 158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 159		size_t size, enum dma_data_direction dir, unsigned long attrs)
 160{
 161	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 162		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 163				      handle & ~PAGE_MASK, size, dir);
 164}
 165
 166static void arm_dma_sync_single_for_cpu(struct device *dev,
 167		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 168{
 169	unsigned int offset = handle & (PAGE_SIZE - 1);
 170	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 171	__dma_page_dev_to_cpu(page, offset, size, dir);
 172}
 173
 174static void arm_dma_sync_single_for_device(struct device *dev,
 175		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 176{
 177	unsigned int offset = handle & (PAGE_SIZE - 1);
 178	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 179	__dma_page_cpu_to_dev(page, offset, size, dir);
 180}
 181
 182/*
 183 * Return whether the given device DMA address mask can be supported
 184 * properly.  For example, if your device can only drive the low 24-bits
 185 * during bus mastering, then you would pass 0x00ffffff as the mask
 186 * to this function.
 187 */
 188static int arm_dma_supported(struct device *dev, u64 mask)
 189{
 190	unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
 191
 192	/*
 193	 * Translate the device's DMA mask to a PFN limit.  This
 194	 * PFN number includes the page which we can DMA to.
 195	 */
 196	return dma_to_pfn(dev, mask) >= max_dma_pfn;
 197}
 198
 199const struct dma_map_ops arm_dma_ops = {
 200	.alloc			= arm_dma_alloc,
 201	.free			= arm_dma_free,
 202	.mmap			= arm_dma_mmap,
 203	.get_sgtable		= arm_dma_get_sgtable,
 204	.map_page		= arm_dma_map_page,
 205	.unmap_page		= arm_dma_unmap_page,
 206	.map_sg			= arm_dma_map_sg,
 207	.unmap_sg		= arm_dma_unmap_sg,
 208	.map_resource		= dma_direct_map_resource,
 209	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 210	.sync_single_for_device	= arm_dma_sync_single_for_device,
 211	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 212	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 213	.dma_supported		= arm_dma_supported,
 214	.get_required_mask	= dma_direct_get_required_mask,
 215};
 216EXPORT_SYMBOL(arm_dma_ops);
 217
 218static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 219	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
 220static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 221				  dma_addr_t handle, unsigned long attrs);
 222static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 223		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 224		 unsigned long attrs);
 225
 226const struct dma_map_ops arm_coherent_dma_ops = {
 227	.alloc			= arm_coherent_dma_alloc,
 228	.free			= arm_coherent_dma_free,
 229	.mmap			= arm_coherent_dma_mmap,
 230	.get_sgtable		= arm_dma_get_sgtable,
 231	.map_page		= arm_coherent_dma_map_page,
 232	.map_sg			= arm_dma_map_sg,
 233	.map_resource		= dma_direct_map_resource,
 234	.dma_supported		= arm_dma_supported,
 235	.get_required_mask	= dma_direct_get_required_mask,
 236};
 237EXPORT_SYMBOL(arm_coherent_dma_ops);
 238
 239static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 240{
 241	/*
 242	 * Ensure that the allocated pages are zeroed, and that any data
 243	 * lurking in the kernel direct-mapped region is invalidated.
 244	 */
 245	if (PageHighMem(page)) {
 246		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 247		phys_addr_t end = base + size;
 248		while (size > 0) {
 249			void *ptr = kmap_atomic(page);
 250			memset(ptr, 0, PAGE_SIZE);
 251			if (coherent_flag != COHERENT)
 252				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 253			kunmap_atomic(ptr);
 254			page++;
 255			size -= PAGE_SIZE;
 256		}
 257		if (coherent_flag != COHERENT)
 258			outer_flush_range(base, end);
 259	} else {
 260		void *ptr = page_address(page);
 261		memset(ptr, 0, size);
 262		if (coherent_flag != COHERENT) {
 263			dmac_flush_range(ptr, ptr + size);
 264			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 265		}
 266	}
 267}
 268
 269/*
 270 * Allocate a DMA buffer for 'dev' of size 'size' using the
 271 * specified gfp mask.  Note that 'size' must be page aligned.
 272 */
 273static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 274				       gfp_t gfp, int coherent_flag)
 275{
 276	unsigned long order = get_order(size);
 277	struct page *page, *p, *e;
 278
 279	page = alloc_pages(gfp, order);
 280	if (!page)
 281		return NULL;
 282
 283	/*
 284	 * Now split the huge page and free the excess pages
 285	 */
 286	split_page(page, order);
 287	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 288		__free_page(p);
 289
 290	__dma_clear_buffer(page, size, coherent_flag);
 291
 292	return page;
 293}
 294
 295/*
 296 * Free a DMA buffer.  'size' must be page aligned.
 297 */
 298static void __dma_free_buffer(struct page *page, size_t size)
 299{
 300	struct page *e = page + (size >> PAGE_SHIFT);
 301
 302	while (page < e) {
 303		__free_page(page);
 304		page++;
 305	}
 306}
 307
 308static void *__alloc_from_contiguous(struct device *dev, size_t size,
 309				     pgprot_t prot, struct page **ret_page,
 310				     const void *caller, bool want_vaddr,
 311				     int coherent_flag, gfp_t gfp);
 312
 313static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 314				 pgprot_t prot, struct page **ret_page,
 315				 const void *caller, bool want_vaddr);
 316
 317#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 318static struct gen_pool *atomic_pool __ro_after_init;
 319
 320static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 321
 322static int __init early_coherent_pool(char *p)
 323{
 324	atomic_pool_size = memparse(p, &p);
 325	return 0;
 326}
 327early_param("coherent_pool", early_coherent_pool);
 328
 329/*
 330 * Initialise the coherent pool for atomic allocations.
 331 */
 332static int __init atomic_pool_init(void)
 333{
 334	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 335	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 336	struct page *page;
 337	void *ptr;
 338
 339	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 340	if (!atomic_pool)
 341		goto out;
 342	/*
 343	 * The atomic pool is only used for non-coherent allocations
 344	 * so we must pass NORMAL for coherent_flag.
 345	 */
 346	if (dev_get_cma_area(NULL))
 347		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 348				      &page, atomic_pool_init, true, NORMAL,
 349				      GFP_KERNEL);
 350	else
 351		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 352					   &page, atomic_pool_init, true);
 353	if (ptr) {
 354		int ret;
 355
 356		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 357					page_to_phys(page),
 358					atomic_pool_size, -1);
 359		if (ret)
 360			goto destroy_genpool;
 361
 362		gen_pool_set_algo(atomic_pool,
 363				gen_pool_first_fit_order_align,
 364				NULL);
 365		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 366		       atomic_pool_size / 1024);
 367		return 0;
 368	}
 369
 370destroy_genpool:
 371	gen_pool_destroy(atomic_pool);
 372	atomic_pool = NULL;
 373out:
 374	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 375	       atomic_pool_size / 1024);
 376	return -ENOMEM;
 377}
 378/*
 379 * CMA is activated by core_initcall, so we must be called after it.
 380 */
 381postcore_initcall(atomic_pool_init);
 382
 
 383struct dma_contig_early_reserve {
 384	phys_addr_t base;
 385	unsigned long size;
 386};
 387
 388static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 389
 390static int dma_mmu_remap_num __initdata;
 391
 
 392void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 393{
 394	dma_mmu_remap[dma_mmu_remap_num].base = base;
 395	dma_mmu_remap[dma_mmu_remap_num].size = size;
 396	dma_mmu_remap_num++;
 397}
 
 398
 399void __init dma_contiguous_remap(void)
 400{
 401	int i;
 402	for (i = 0; i < dma_mmu_remap_num; i++) {
 403		phys_addr_t start = dma_mmu_remap[i].base;
 404		phys_addr_t end = start + dma_mmu_remap[i].size;
 405		struct map_desc map;
 406		unsigned long addr;
 407
 408		if (end > arm_lowmem_limit)
 409			end = arm_lowmem_limit;
 410		if (start >= end)
 411			continue;
 412
 413		map.pfn = __phys_to_pfn(start);
 414		map.virtual = __phys_to_virt(start);
 415		map.length = end - start;
 416		map.type = MT_MEMORY_DMA_READY;
 417
 418		/*
 419		 * Clear previous low-memory mapping to ensure that the
 420		 * TLB does not see any conflicting entries, then flush
 421		 * the TLB of the old entries before creating new mappings.
 422		 *
 423		 * This ensures that any speculatively loaded TLB entries
 424		 * (even though they may be rare) can not cause any problems,
 425		 * and ensures that this code is architecturally compliant.
 426		 */
 427		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 428		     addr += PMD_SIZE)
 429			pmd_clear(pmd_off_k(addr));
 430
 431		flush_tlb_kernel_range(__phys_to_virt(start),
 432				       __phys_to_virt(end));
 433
 434		iotable_init(&map, 1);
 435	}
 436}
 
 437
 438static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 439{
 440	struct page *page = virt_to_page(addr);
 441	pgprot_t prot = *(pgprot_t *)data;
 442
 443	set_pte_ext(pte, mk_pte(page, prot), 0);
 444	return 0;
 445}
 446
 447static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 448{
 449	unsigned long start = (unsigned long) page_address(page);
 450	unsigned end = start + size;
 451
 452	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 453	flush_tlb_kernel_range(start, end);
 454}
 455
 456static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 457				 pgprot_t prot, struct page **ret_page,
 458				 const void *caller, bool want_vaddr)
 459{
 460	struct page *page;
 461	void *ptr = NULL;
 462	/*
 463	 * __alloc_remap_buffer is only called when the device is
 464	 * non-coherent
 465	 */
 466	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 467	if (!page)
 468		return NULL;
 469	if (!want_vaddr)
 470		goto out;
 471
 472	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 473	if (!ptr) {
 474		__dma_free_buffer(page, size);
 475		return NULL;
 476	}
 477
 478 out:
 479	*ret_page = page;
 480	return ptr;
 481}
 482
 483static void *__alloc_from_pool(size_t size, struct page **ret_page)
 484{
 485	unsigned long val;
 486	void *ptr = NULL;
 487
 488	if (!atomic_pool) {
 489		WARN(1, "coherent pool not initialised!\n");
 490		return NULL;
 491	}
 492
 493	val = gen_pool_alloc(atomic_pool, size);
 494	if (val) {
 495		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 496
 497		*ret_page = phys_to_page(phys);
 498		ptr = (void *)val;
 499	}
 500
 501	return ptr;
 502}
 503
 504static bool __in_atomic_pool(void *start, size_t size)
 505{
 506	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 507}
 508
 509static int __free_from_pool(void *start, size_t size)
 510{
 511	if (!__in_atomic_pool(start, size))
 512		return 0;
 513
 514	gen_pool_free(atomic_pool, (unsigned long)start, size);
 515
 516	return 1;
 517}
 518
 519static void *__alloc_from_contiguous(struct device *dev, size_t size,
 520				     pgprot_t prot, struct page **ret_page,
 521				     const void *caller, bool want_vaddr,
 522				     int coherent_flag, gfp_t gfp)
 523{
 524	unsigned long order = get_order(size);
 525	size_t count = size >> PAGE_SHIFT;
 526	struct page *page;
 527	void *ptr = NULL;
 528
 529	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 530	if (!page)
 531		return NULL;
 532
 533	__dma_clear_buffer(page, size, coherent_flag);
 534
 535	if (!want_vaddr)
 536		goto out;
 537
 538	if (PageHighMem(page)) {
 539		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 540		if (!ptr) {
 541			dma_release_from_contiguous(dev, page, count);
 542			return NULL;
 543		}
 544	} else {
 545		__dma_remap(page, size, prot);
 546		ptr = page_address(page);
 547	}
 548
 549 out:
 550	*ret_page = page;
 551	return ptr;
 552}
 553
 554static void __free_from_contiguous(struct device *dev, struct page *page,
 555				   void *cpu_addr, size_t size, bool want_vaddr)
 556{
 557	if (want_vaddr) {
 558		if (PageHighMem(page))
 559			dma_common_free_remap(cpu_addr, size);
 560		else
 561			__dma_remap(page, size, PAGE_KERNEL);
 562	}
 563	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 564}
 565
 566static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 567{
 568	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 569			pgprot_writecombine(prot) :
 570			pgprot_dmacoherent(prot);
 571	return prot;
 572}
 573
 574static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 575				   struct page **ret_page)
 576{
 577	struct page *page;
 578	/* __alloc_simple_buffer is only called when the device is coherent */
 579	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 580	if (!page)
 581		return NULL;
 582
 583	*ret_page = page;
 584	return page_address(page);
 585}
 586
 587static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 588				    struct page **ret_page)
 589{
 590	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 591				     ret_page);
 592}
 593
 594static void simple_allocator_free(struct arm_dma_free_args *args)
 595{
 596	__dma_free_buffer(args->page, args->size);
 597}
 598
 599static struct arm_dma_allocator simple_allocator = {
 600	.alloc = simple_allocator_alloc,
 601	.free = simple_allocator_free,
 602};
 603
 604static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 605				 struct page **ret_page)
 606{
 607	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 608				       ret_page, args->caller,
 609				       args->want_vaddr, args->coherent_flag,
 610				       args->gfp);
 611}
 612
 613static void cma_allocator_free(struct arm_dma_free_args *args)
 614{
 615	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 616			       args->size, args->want_vaddr);
 617}
 618
 619static struct arm_dma_allocator cma_allocator = {
 620	.alloc = cma_allocator_alloc,
 621	.free = cma_allocator_free,
 622};
 623
 624static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 625				  struct page **ret_page)
 626{
 627	return __alloc_from_pool(args->size, ret_page);
 628}
 629
 630static void pool_allocator_free(struct arm_dma_free_args *args)
 631{
 632	__free_from_pool(args->cpu_addr, args->size);
 633}
 634
 635static struct arm_dma_allocator pool_allocator = {
 636	.alloc = pool_allocator_alloc,
 637	.free = pool_allocator_free,
 638};
 639
 640static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 641				   struct page **ret_page)
 642{
 643	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 644				    args->prot, ret_page, args->caller,
 645				    args->want_vaddr);
 646}
 647
 648static void remap_allocator_free(struct arm_dma_free_args *args)
 649{
 650	if (args->want_vaddr)
 651		dma_common_free_remap(args->cpu_addr, args->size);
 652
 653	__dma_free_buffer(args->page, args->size);
 654}
 655
 656static struct arm_dma_allocator remap_allocator = {
 657	.alloc = remap_allocator_alloc,
 658	.free = remap_allocator_free,
 659};
 660
 661static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 662			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 663			 unsigned long attrs, const void *caller)
 664{
 665	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 666	struct page *page = NULL;
 667	void *addr;
 668	bool allowblock, cma;
 669	struct arm_dma_buffer *buf;
 670	struct arm_dma_alloc_args args = {
 671		.dev = dev,
 672		.size = PAGE_ALIGN(size),
 673		.gfp = gfp,
 674		.prot = prot,
 675		.caller = caller,
 676		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 677		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 678	};
 679
 680#ifdef CONFIG_DMA_API_DEBUG
 681	u64 limit = (mask + 1) & ~mask;
 682	if (limit && size >= limit) {
 683		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 684			size, mask);
 685		return NULL;
 686	}
 687#endif
 688
 689	buf = kzalloc(sizeof(*buf),
 690		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 691	if (!buf)
 692		return NULL;
 693
 694	if (mask < 0xffffffffULL)
 695		gfp |= GFP_DMA;
 696
 697	/*
 698	 * Following is a work-around (a.k.a. hack) to prevent pages
 699	 * with __GFP_COMP being passed to split_page() which cannot
 700	 * handle them.  The real problem is that this flag probably
 701	 * should be 0 on ARM as it is not supported on this
 702	 * platform; see CONFIG_HUGETLBFS.
 703	 */
 704	gfp &= ~(__GFP_COMP);
 705	args.gfp = gfp;
 706
 707	*handle = DMA_MAPPING_ERROR;
 708	allowblock = gfpflags_allow_blocking(gfp);
 709	cma = allowblock ? dev_get_cma_area(dev) : false;
 710
 711	if (cma)
 712		buf->allocator = &cma_allocator;
 713	else if (is_coherent)
 714		buf->allocator = &simple_allocator;
 715	else if (allowblock)
 716		buf->allocator = &remap_allocator;
 717	else
 718		buf->allocator = &pool_allocator;
 719
 720	addr = buf->allocator->alloc(&args, &page);
 721
 722	if (page) {
 723		unsigned long flags;
 724
 725		*handle = pfn_to_dma(dev, page_to_pfn(page));
 726		buf->virt = args.want_vaddr ? addr : page;
 727
 728		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 729		list_add(&buf->list, &arm_dma_bufs);
 730		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 731	} else {
 732		kfree(buf);
 733	}
 734
 735	return args.want_vaddr ? addr : page;
 736}
 737
 738/*
 739 * Allocate DMA-coherent memory space and return both the kernel remapped
 740 * virtual and bus address for that space.
 741 */
 742void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 743		    gfp_t gfp, unsigned long attrs)
 744{
 745	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 746
 747	return __dma_alloc(dev, size, handle, gfp, prot, false,
 748			   attrs, __builtin_return_address(0));
 749}
 750
 751static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 752	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 753{
 754	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 755			   attrs, __builtin_return_address(0));
 756}
 757
 758static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 759		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 760		 unsigned long attrs)
 761{
 762	int ret = -ENXIO;
 763	unsigned long nr_vma_pages = vma_pages(vma);
 764	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 765	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 766	unsigned long off = vma->vm_pgoff;
 767
 768	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 769		return ret;
 770
 771	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 772		ret = remap_pfn_range(vma, vma->vm_start,
 773				      pfn + off,
 774				      vma->vm_end - vma->vm_start,
 775				      vma->vm_page_prot);
 776	}
 777
 778	return ret;
 779}
 780
 781/*
 782 * Create userspace mapping for the DMA-coherent memory.
 783 */
 784static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 785		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 786		 unsigned long attrs)
 787{
 788	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 789}
 790
 791int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 792		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 793		 unsigned long attrs)
 794{
 795	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 796	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 797}
 798
 799/*
 800 * Free a buffer as defined by the above mapping.
 801 */
 802static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 803			   dma_addr_t handle, unsigned long attrs,
 804			   bool is_coherent)
 805{
 806	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 807	struct arm_dma_buffer *buf;
 808	struct arm_dma_free_args args = {
 809		.dev = dev,
 810		.size = PAGE_ALIGN(size),
 811		.cpu_addr = cpu_addr,
 812		.page = page,
 813		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 814	};
 815
 816	buf = arm_dma_buffer_find(cpu_addr);
 817	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 818		return;
 819
 820	buf->allocator->free(&args);
 821	kfree(buf);
 822}
 823
 824void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 825		  dma_addr_t handle, unsigned long attrs)
 826{
 827	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 828}
 829
 830static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 831				  dma_addr_t handle, unsigned long attrs)
 832{
 833	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 834}
 835
 836int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 837		 void *cpu_addr, dma_addr_t handle, size_t size,
 838		 unsigned long attrs)
 839{
 840	unsigned long pfn = dma_to_pfn(dev, handle);
 841	struct page *page;
 842	int ret;
 843
 844	/* If the PFN is not valid, we do not have a struct page */
 845	if (!pfn_valid(pfn))
 846		return -ENXIO;
 847
 848	page = pfn_to_page(pfn);
 849
 850	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 851	if (unlikely(ret))
 852		return ret;
 853
 854	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 855	return 0;
 856}
 857
 858static void dma_cache_maint_page(struct page *page, unsigned long offset,
 859	size_t size, enum dma_data_direction dir,
 860	void (*op)(const void *, size_t, int))
 861{
 862	unsigned long pfn;
 863	size_t left = size;
 864
 865	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 866	offset %= PAGE_SIZE;
 867
 868	/*
 869	 * A single sg entry may refer to multiple physically contiguous
 870	 * pages.  But we still need to process highmem pages individually.
 871	 * If highmem is not configured then the bulk of this loop gets
 872	 * optimized out.
 873	 */
 874	do {
 875		size_t len = left;
 876		void *vaddr;
 877
 878		page = pfn_to_page(pfn);
 879
 880		if (PageHighMem(page)) {
 881			if (len + offset > PAGE_SIZE)
 882				len = PAGE_SIZE - offset;
 883
 884			if (cache_is_vipt_nonaliasing()) {
 885				vaddr = kmap_atomic(page);
 886				op(vaddr + offset, len, dir);
 887				kunmap_atomic(vaddr);
 888			} else {
 889				vaddr = kmap_high_get(page);
 890				if (vaddr) {
 891					op(vaddr + offset, len, dir);
 892					kunmap_high(page);
 893				}
 894			}
 895		} else {
 896			vaddr = page_address(page) + offset;
 897			op(vaddr, len, dir);
 898		}
 899		offset = 0;
 900		pfn++;
 901		left -= len;
 902	} while (left);
 903}
 904
 905/*
 906 * Make an area consistent for devices.
 907 * Note: Drivers should NOT use this function directly, as it will break
 908 * platforms with CONFIG_DMABOUNCE.
 909 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 910 */
 911static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 912	size_t size, enum dma_data_direction dir)
 913{
 914	phys_addr_t paddr;
 915
 916	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 917
 918	paddr = page_to_phys(page) + off;
 919	if (dir == DMA_FROM_DEVICE) {
 920		outer_inv_range(paddr, paddr + size);
 921	} else {
 922		outer_clean_range(paddr, paddr + size);
 923	}
 924	/* FIXME: non-speculating: flush on bidirectional mappings? */
 925}
 926
 927static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 928	size_t size, enum dma_data_direction dir)
 929{
 930	phys_addr_t paddr = page_to_phys(page) + off;
 931
 932	/* FIXME: non-speculating: not required */
 933	/* in any case, don't bother invalidating if DMA to device */
 934	if (dir != DMA_TO_DEVICE) {
 935		outer_inv_range(paddr, paddr + size);
 936
 937		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 938	}
 939
 940	/*
 941	 * Mark the D-cache clean for these pages to avoid extra flushing.
 942	 */
 943	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 944		unsigned long pfn;
 945		size_t left = size;
 946
 947		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 948		off %= PAGE_SIZE;
 949		if (off) {
 950			pfn++;
 951			left -= PAGE_SIZE - off;
 952		}
 953		while (left >= PAGE_SIZE) {
 954			page = pfn_to_page(pfn++);
 955			set_bit(PG_dcache_clean, &page->flags);
 956			left -= PAGE_SIZE;
 
 
 957		}
 958	}
 959}
 960
 961/**
 962 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 963 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 964 * @sg: list of buffers
 965 * @nents: number of buffers to map
 966 * @dir: DMA transfer direction
 967 *
 968 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 969 * This is the scatter-gather version of the dma_map_single interface.
 970 * Here the scatter gather list elements are each tagged with the
 971 * appropriate dma address and length.  They are obtained via
 972 * sg_dma_{address,length}.
 973 *
 974 * Device ownership issues as mentioned for dma_map_single are the same
 975 * here.
 976 */
 977int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 978		enum dma_data_direction dir, unsigned long attrs)
 979{
 980	const struct dma_map_ops *ops = get_dma_ops(dev);
 981	struct scatterlist *s;
 982	int i, j;
 983
 984	for_each_sg(sg, s, nents, i) {
 985#ifdef CONFIG_NEED_SG_DMA_LENGTH
 986		s->dma_length = s->length;
 987#endif
 988		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 989						s->length, dir, attrs);
 990		if (dma_mapping_error(dev, s->dma_address))
 991			goto bad_mapping;
 992	}
 993	return nents;
 994
 995 bad_mapping:
 996	for_each_sg(sg, s, i, j)
 997		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 998	return 0;
 999}
1000
1001/**
1002 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1003 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1004 * @sg: list of buffers
1005 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1006 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1007 *
1008 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1009 * rules concerning calls here are the same as for dma_unmap_single().
1010 */
1011void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1012		enum dma_data_direction dir, unsigned long attrs)
1013{
1014	const struct dma_map_ops *ops = get_dma_ops(dev);
1015	struct scatterlist *s;
1016
1017	int i;
1018
1019	for_each_sg(sg, s, nents, i)
1020		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1021}
1022
1023/**
1024 * arm_dma_sync_sg_for_cpu
1025 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1026 * @sg: list of buffers
1027 * @nents: number of buffers to map (returned from dma_map_sg)
1028 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1029 */
1030void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1031			int nents, enum dma_data_direction dir)
1032{
1033	const struct dma_map_ops *ops = get_dma_ops(dev);
1034	struct scatterlist *s;
1035	int i;
1036
1037	for_each_sg(sg, s, nents, i)
1038		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1039					 dir);
1040}
1041
1042/**
1043 * arm_dma_sync_sg_for_device
1044 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1045 * @sg: list of buffers
1046 * @nents: number of buffers to map (returned from dma_map_sg)
1047 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1048 */
1049void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1050			int nents, enum dma_data_direction dir)
1051{
1052	const struct dma_map_ops *ops = get_dma_ops(dev);
1053	struct scatterlist *s;
1054	int i;
1055
1056	for_each_sg(sg, s, nents, i)
1057		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1058					    dir);
1059}
1060
1061static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1062{
1063	/*
1064	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1065	 * 32-bits, which then can't be addressed by devices that only support
1066	 * 32-bit DMA.
1067	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1068	 * handles bounce buffering for us.
1069	 */
1070	if (IS_ENABLED(CONFIG_ARM_LPAE))
1071		return NULL;
1072	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1073}
1074
1075#ifdef CONFIG_ARM_DMA_USE_IOMMU
1076
1077static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1078{
1079	int prot = 0;
1080
1081	if (attrs & DMA_ATTR_PRIVILEGED)
1082		prot |= IOMMU_PRIV;
1083
1084	switch (dir) {
1085	case DMA_BIDIRECTIONAL:
1086		return prot | IOMMU_READ | IOMMU_WRITE;
1087	case DMA_TO_DEVICE:
1088		return prot | IOMMU_READ;
1089	case DMA_FROM_DEVICE:
1090		return prot | IOMMU_WRITE;
1091	default:
1092		return prot;
1093	}
1094}
1095
1096/* IOMMU */
1097
1098static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1099
1100static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1101				      size_t size)
1102{
1103	unsigned int order = get_order(size);
1104	unsigned int align = 0;
1105	unsigned int count, start;
1106	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1107	unsigned long flags;
1108	dma_addr_t iova;
1109	int i;
1110
1111	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1112		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1113
1114	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1115	align = (1 << order) - 1;
1116
1117	spin_lock_irqsave(&mapping->lock, flags);
1118	for (i = 0; i < mapping->nr_bitmaps; i++) {
1119		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1120				mapping->bits, 0, count, align);
1121
1122		if (start > mapping->bits)
1123			continue;
1124
1125		bitmap_set(mapping->bitmaps[i], start, count);
1126		break;
1127	}
1128
1129	/*
1130	 * No unused range found. Try to extend the existing mapping
1131	 * and perform a second attempt to reserve an IO virtual
1132	 * address range of size bytes.
1133	 */
1134	if (i == mapping->nr_bitmaps) {
1135		if (extend_iommu_mapping(mapping)) {
1136			spin_unlock_irqrestore(&mapping->lock, flags);
1137			return DMA_MAPPING_ERROR;
1138		}
1139
1140		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1141				mapping->bits, 0, count, align);
1142
1143		if (start > mapping->bits) {
1144			spin_unlock_irqrestore(&mapping->lock, flags);
1145			return DMA_MAPPING_ERROR;
1146		}
1147
1148		bitmap_set(mapping->bitmaps[i], start, count);
1149	}
1150	spin_unlock_irqrestore(&mapping->lock, flags);
1151
1152	iova = mapping->base + (mapping_size * i);
1153	iova += start << PAGE_SHIFT;
1154
1155	return iova;
1156}
1157
1158static inline void __free_iova(struct dma_iommu_mapping *mapping,
1159			       dma_addr_t addr, size_t size)
1160{
1161	unsigned int start, count;
1162	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1163	unsigned long flags;
1164	dma_addr_t bitmap_base;
1165	u32 bitmap_index;
1166
1167	if (!size)
1168		return;
1169
1170	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1171	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1172
1173	bitmap_base = mapping->base + mapping_size * bitmap_index;
1174
1175	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1176
1177	if (addr + size > bitmap_base + mapping_size) {
1178		/*
1179		 * The address range to be freed reaches into the iova
1180		 * range of the next bitmap. This should not happen as
1181		 * we don't allow this in __alloc_iova (at the
1182		 * moment).
1183		 */
1184		BUG();
1185	} else
1186		count = size >> PAGE_SHIFT;
1187
1188	spin_lock_irqsave(&mapping->lock, flags);
1189	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1190	spin_unlock_irqrestore(&mapping->lock, flags);
1191}
1192
1193/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1194static const int iommu_order_array[] = { 9, 8, 4, 0 };
1195
1196static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1197					  gfp_t gfp, unsigned long attrs,
1198					  int coherent_flag)
1199{
1200	struct page **pages;
1201	int count = size >> PAGE_SHIFT;
1202	int array_size = count * sizeof(struct page *);
1203	int i = 0;
1204	int order_idx = 0;
1205
1206	if (array_size <= PAGE_SIZE)
1207		pages = kzalloc(array_size, GFP_KERNEL);
1208	else
1209		pages = vzalloc(array_size);
1210	if (!pages)
1211		return NULL;
1212
1213	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1214	{
1215		unsigned long order = get_order(size);
1216		struct page *page;
1217
1218		page = dma_alloc_from_contiguous(dev, count, order,
1219						 gfp & __GFP_NOWARN);
1220		if (!page)
1221			goto error;
1222
1223		__dma_clear_buffer(page, size, coherent_flag);
1224
1225		for (i = 0; i < count; i++)
1226			pages[i] = page + i;
1227
1228		return pages;
1229	}
1230
1231	/* Go straight to 4K chunks if caller says it's OK. */
1232	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1233		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1234
1235	/*
1236	 * IOMMU can map any pages, so himem can also be used here
1237	 */
1238	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1239
1240	while (count) {
1241		int j, order;
1242
1243		order = iommu_order_array[order_idx];
1244
1245		/* Drop down when we get small */
1246		if (__fls(count) < order) {
1247			order_idx++;
1248			continue;
1249		}
1250
1251		if (order) {
1252			/* See if it's easy to allocate a high-order chunk */
1253			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1254
1255			/* Go down a notch at first sign of pressure */
1256			if (!pages[i]) {
1257				order_idx++;
1258				continue;
1259			}
1260		} else {
1261			pages[i] = alloc_pages(gfp, 0);
1262			if (!pages[i])
1263				goto error;
1264		}
1265
1266		if (order) {
1267			split_page(pages[i], order);
1268			j = 1 << order;
1269			while (--j)
1270				pages[i + j] = pages[i] + j;
1271		}
1272
1273		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1274		i += 1 << order;
1275		count -= 1 << order;
1276	}
1277
1278	return pages;
1279error:
1280	while (i--)
1281		if (pages[i])
1282			__free_pages(pages[i], 0);
1283	kvfree(pages);
1284	return NULL;
1285}
1286
1287static int __iommu_free_buffer(struct device *dev, struct page **pages,
1288			       size_t size, unsigned long attrs)
1289{
1290	int count = size >> PAGE_SHIFT;
1291	int i;
1292
1293	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1294		dma_release_from_contiguous(dev, pages[0], count);
1295	} else {
1296		for (i = 0; i < count; i++)
1297			if (pages[i])
1298				__free_pages(pages[i], 0);
1299	}
1300
1301	kvfree(pages);
1302	return 0;
1303}
1304
1305/*
1306 * Create a mapping in device IO address space for specified pages
1307 */
1308static dma_addr_t
1309__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1310		       unsigned long attrs)
1311{
1312	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1313	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1314	dma_addr_t dma_addr, iova;
1315	int i;
1316
1317	dma_addr = __alloc_iova(mapping, size);
1318	if (dma_addr == DMA_MAPPING_ERROR)
1319		return dma_addr;
1320
1321	iova = dma_addr;
1322	for (i = 0; i < count; ) {
1323		int ret;
1324
1325		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1326		phys_addr_t phys = page_to_phys(pages[i]);
1327		unsigned int len, j;
1328
1329		for (j = i + 1; j < count; j++, next_pfn++)
1330			if (page_to_pfn(pages[j]) != next_pfn)
1331				break;
1332
1333		len = (j - i) << PAGE_SHIFT;
1334		ret = iommu_map(mapping->domain, iova, phys, len,
1335				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
 
1336		if (ret < 0)
1337			goto fail;
1338		iova += len;
1339		i = j;
1340	}
1341	return dma_addr;
1342fail:
1343	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1344	__free_iova(mapping, dma_addr, size);
1345	return DMA_MAPPING_ERROR;
1346}
1347
1348static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1349{
1350	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1351
1352	/*
1353	 * add optional in-page offset from iova to size and align
1354	 * result to page size
1355	 */
1356	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1357	iova &= PAGE_MASK;
1358
1359	iommu_unmap(mapping->domain, iova, size);
1360	__free_iova(mapping, iova, size);
1361	return 0;
1362}
1363
1364static struct page **__atomic_get_pages(void *addr)
1365{
1366	struct page *page;
1367	phys_addr_t phys;
1368
1369	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1370	page = phys_to_page(phys);
1371
1372	return (struct page **)page;
1373}
1374
1375static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1376{
1377	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1378		return __atomic_get_pages(cpu_addr);
1379
1380	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1381		return cpu_addr;
1382
1383	return dma_common_find_pages(cpu_addr);
1384}
1385
1386static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1387				  dma_addr_t *handle, int coherent_flag,
1388				  unsigned long attrs)
1389{
1390	struct page *page;
1391	void *addr;
1392
1393	if (coherent_flag  == COHERENT)
1394		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1395	else
1396		addr = __alloc_from_pool(size, &page);
1397	if (!addr)
1398		return NULL;
1399
1400	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1401	if (*handle == DMA_MAPPING_ERROR)
1402		goto err_mapping;
1403
1404	return addr;
1405
1406err_mapping:
1407	__free_from_pool(addr, size);
1408	return NULL;
1409}
1410
1411static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1412			dma_addr_t handle, size_t size, int coherent_flag)
1413{
1414	__iommu_remove_mapping(dev, handle, size);
1415	if (coherent_flag == COHERENT)
1416		__dma_free_buffer(virt_to_page(cpu_addr), size);
1417	else
1418		__free_from_pool(cpu_addr, size);
1419}
1420
1421static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1422	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1423	    int coherent_flag)
1424{
1425	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1426	struct page **pages;
1427	void *addr = NULL;
 
1428
1429	*handle = DMA_MAPPING_ERROR;
1430	size = PAGE_ALIGN(size);
1431
1432	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1433		return __iommu_alloc_simple(dev, size, gfp, handle,
1434					    coherent_flag, attrs);
1435
1436	/*
1437	 * Following is a work-around (a.k.a. hack) to prevent pages
1438	 * with __GFP_COMP being passed to split_page() which cannot
1439	 * handle them.  The real problem is that this flag probably
1440	 * should be 0 on ARM as it is not supported on this
1441	 * platform; see CONFIG_HUGETLBFS.
1442	 */
1443	gfp &= ~(__GFP_COMP);
1444
1445	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1446	if (!pages)
1447		return NULL;
1448
1449	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1450	if (*handle == DMA_MAPPING_ERROR)
1451		goto err_buffer;
1452
1453	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1454		return pages;
1455
1456	addr = dma_common_pages_remap(pages, size, prot,
1457				   __builtin_return_address(0));
1458	if (!addr)
1459		goto err_mapping;
1460
1461	return addr;
1462
1463err_mapping:
1464	__iommu_remove_mapping(dev, *handle, size);
1465err_buffer:
1466	__iommu_free_buffer(dev, pages, size, attrs);
1467	return NULL;
1468}
1469
1470static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1471	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1472{
1473	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1474}
1475
1476static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1477		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1478{
1479	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1480}
1481
1482static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1483		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1484		    unsigned long attrs)
1485{
1486	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1487	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1488	int err;
1489
1490	if (!pages)
1491		return -ENXIO;
1492
1493	if (vma->vm_pgoff >= nr_pages)
1494		return -ENXIO;
1495
 
 
 
1496	err = vm_map_pages(vma, pages, nr_pages);
1497	if (err)
1498		pr_err("Remapping memory failed: %d\n", err);
1499
1500	return err;
1501}
1502static int arm_iommu_mmap_attrs(struct device *dev,
1503		struct vm_area_struct *vma, void *cpu_addr,
1504		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1505{
1506	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1507
1508	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1509}
1510
1511static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1512		struct vm_area_struct *vma, void *cpu_addr,
1513		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1514{
1515	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1516}
1517
1518/*
1519 * free a page as defined by the above mapping.
1520 * Must not be called with IRQs disabled.
1521 */
1522static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1523	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1524{
 
1525	struct page **pages;
1526	size = PAGE_ALIGN(size);
1527
1528	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1529		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1530		return;
1531	}
1532
1533	pages = __iommu_get_pages(cpu_addr, attrs);
1534	if (!pages) {
1535		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1536		return;
1537	}
1538
1539	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1540		dma_common_free_remap(cpu_addr, size);
1541
1542	__iommu_remove_mapping(dev, handle, size);
1543	__iommu_free_buffer(dev, pages, size, attrs);
1544}
1545
1546static void arm_iommu_free_attrs(struct device *dev, size_t size,
1547				 void *cpu_addr, dma_addr_t handle,
1548				 unsigned long attrs)
1549{
1550	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1551}
1552
1553static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1554		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1555{
1556	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1557}
1558
1559static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1560				 void *cpu_addr, dma_addr_t dma_addr,
1561				 size_t size, unsigned long attrs)
1562{
1563	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1564	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1565
1566	if (!pages)
1567		return -ENXIO;
1568
1569	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1570					 GFP_KERNEL);
1571}
1572
1573/*
1574 * Map a part of the scatter-gather list into contiguous io address space
1575 */
1576static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1577			  size_t size, dma_addr_t *handle,
1578			  enum dma_data_direction dir, unsigned long attrs,
1579			  bool is_coherent)
1580{
1581	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1582	dma_addr_t iova, iova_base;
1583	int ret = 0;
1584	unsigned int count;
1585	struct scatterlist *s;
1586	int prot;
1587
1588	size = PAGE_ALIGN(size);
1589	*handle = DMA_MAPPING_ERROR;
1590
1591	iova_base = iova = __alloc_iova(mapping, size);
1592	if (iova == DMA_MAPPING_ERROR)
1593		return -ENOMEM;
1594
1595	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1596		phys_addr_t phys = page_to_phys(sg_page(s));
1597		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1598
1599		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1600			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1601
1602		prot = __dma_info_to_prot(dir, attrs);
1603
1604		ret = iommu_map(mapping->domain, iova, phys, len, prot);
 
1605		if (ret < 0)
1606			goto fail;
1607		count += len >> PAGE_SHIFT;
1608		iova += len;
1609	}
1610	*handle = iova_base;
1611
1612	return 0;
1613fail:
1614	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1615	__free_iova(mapping, iova_base, size);
1616	return ret;
1617}
1618
1619static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1620		     enum dma_data_direction dir, unsigned long attrs,
1621		     bool is_coherent)
 
 
 
 
 
 
 
 
 
 
 
1622{
1623	struct scatterlist *s = sg, *dma = sg, *start = sg;
1624	int i, count = 0;
1625	unsigned int offset = s->offset;
1626	unsigned int size = s->offset + s->length;
1627	unsigned int max = dma_get_max_seg_size(dev);
1628
1629	for (i = 1; i < nents; i++) {
1630		s = sg_next(s);
1631
1632		s->dma_address = DMA_MAPPING_ERROR;
1633		s->dma_length = 0;
1634
1635		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1636			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1637			    dir, attrs, is_coherent) < 0)
 
1638				goto bad_mapping;
1639
1640			dma->dma_address += offset;
1641			dma->dma_length = size - offset;
1642
1643			size = offset = s->offset;
1644			start = s;
1645			dma = sg_next(dma);
1646			count += 1;
1647		}
1648		size += s->length;
1649	}
1650	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1651		is_coherent) < 0)
1652		goto bad_mapping;
1653
1654	dma->dma_address += offset;
1655	dma->dma_length = size - offset;
1656
1657	return count+1;
1658
1659bad_mapping:
1660	for_each_sg(sg, s, count, i)
1661		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1662	return 0;
1663}
1664
1665/**
1666 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1667 * @dev: valid struct device pointer
1668 * @sg: list of buffers
1669 * @nents: number of buffers to map
1670 * @dir: DMA transfer direction
1671 *
1672 * Map a set of i/o coherent buffers described by scatterlist in streaming
1673 * mode for DMA. The scatter gather list elements are merged together (if
1674 * possible) and tagged with the appropriate dma address and length. They are
1675 * obtained via sg_dma_{address,length}.
1676 */
1677static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1678		int nents, enum dma_data_direction dir, unsigned long attrs)
1679{
1680	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1681}
1682
1683/**
1684 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1685 * @dev: valid struct device pointer
1686 * @sg: list of buffers
1687 * @nents: number of buffers to map
1688 * @dir: DMA transfer direction
1689 *
1690 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1691 * The scatter gather list elements are merged together (if possible) and
1692 * tagged with the appropriate dma address and length. They are obtained via
1693 * sg_dma_{address,length}.
1694 */
1695static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1696		int nents, enum dma_data_direction dir, unsigned long attrs)
1697{
1698	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1699}
1700
1701static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1702		int nents, enum dma_data_direction dir,
1703		unsigned long attrs, bool is_coherent)
1704{
1705	struct scatterlist *s;
1706	int i;
1707
1708	for_each_sg(sg, s, nents, i) {
1709		if (sg_dma_len(s))
1710			__iommu_remove_mapping(dev, sg_dma_address(s),
1711					       sg_dma_len(s));
1712		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1713			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1714					      s->length, dir);
1715	}
1716}
1717
1718/**
1719 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1720 * @dev: valid struct device pointer
1721 * @sg: list of buffers
1722 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1723 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1724 *
1725 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1726 * rules concerning calls here are the same as for dma_unmap_single().
1727 */
1728static void arm_coherent_iommu_unmap_sg(struct device *dev,
1729		struct scatterlist *sg, int nents, enum dma_data_direction dir,
1730		unsigned long attrs)
1731{
1732	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1733}
1734
1735/**
1736 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1737 * @dev: valid struct device pointer
1738 * @sg: list of buffers
1739 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1740 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1741 *
1742 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1743 * rules concerning calls here are the same as for dma_unmap_single().
1744 */
1745static void arm_iommu_unmap_sg(struct device *dev,
1746			       struct scatterlist *sg, int nents,
1747			       enum dma_data_direction dir,
1748			       unsigned long attrs)
1749{
1750	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1751}
1752
1753/**
1754 * arm_iommu_sync_sg_for_cpu
1755 * @dev: valid struct device pointer
1756 * @sg: list of buffers
1757 * @nents: number of buffers to map (returned from dma_map_sg)
1758 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1759 */
1760static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1761			struct scatterlist *sg,
1762			int nents, enum dma_data_direction dir)
1763{
1764	struct scatterlist *s;
1765	int i;
1766
 
 
 
1767	for_each_sg(sg, s, nents, i)
1768		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1769
1770}
1771
1772/**
1773 * arm_iommu_sync_sg_for_device
1774 * @dev: valid struct device pointer
1775 * @sg: list of buffers
1776 * @nents: number of buffers to map (returned from dma_map_sg)
1777 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1778 */
1779static void arm_iommu_sync_sg_for_device(struct device *dev,
1780			struct scatterlist *sg,
1781			int nents, enum dma_data_direction dir)
1782{
1783	struct scatterlist *s;
1784	int i;
1785
 
 
 
1786	for_each_sg(sg, s, nents, i)
1787		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1788}
1789
1790
1791/**
1792 * arm_coherent_iommu_map_page
1793 * @dev: valid struct device pointer
1794 * @page: page that buffer resides in
1795 * @offset: offset into page for start of buffer
1796 * @size: size of buffer to map
1797 * @dir: DMA transfer direction
1798 *
1799 * Coherent IOMMU aware version of arm_dma_map_page()
1800 */
1801static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1802	     unsigned long offset, size_t size, enum dma_data_direction dir,
1803	     unsigned long attrs)
1804{
1805	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1806	dma_addr_t dma_addr;
1807	int ret, prot, len = PAGE_ALIGN(size + offset);
1808
 
 
 
1809	dma_addr = __alloc_iova(mapping, len);
1810	if (dma_addr == DMA_MAPPING_ERROR)
1811		return dma_addr;
1812
1813	prot = __dma_info_to_prot(dir, attrs);
1814
1815	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
 
1816	if (ret < 0)
1817		goto fail;
1818
1819	return dma_addr + offset;
1820fail:
1821	__free_iova(mapping, dma_addr, len);
1822	return DMA_MAPPING_ERROR;
1823}
1824
1825/**
1826 * arm_iommu_map_page
1827 * @dev: valid struct device pointer
1828 * @page: page that buffer resides in
1829 * @offset: offset into page for start of buffer
1830 * @size: size of buffer to map
1831 * @dir: DMA transfer direction
1832 *
1833 * IOMMU aware version of arm_dma_map_page()
1834 */
1835static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1836	     unsigned long offset, size_t size, enum dma_data_direction dir,
1837	     unsigned long attrs)
1838{
1839	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1840		__dma_page_cpu_to_dev(page, offset, size, dir);
1841
1842	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1843}
1844
1845/**
1846 * arm_coherent_iommu_unmap_page
1847 * @dev: valid struct device pointer
1848 * @handle: DMA address of buffer
1849 * @size: size of buffer (same as passed to dma_map_page)
1850 * @dir: DMA transfer direction (same as passed to dma_map_page)
1851 *
1852 * Coherent IOMMU aware version of arm_dma_unmap_page()
1853 */
1854static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1855		size_t size, enum dma_data_direction dir, unsigned long attrs)
1856{
1857	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1858	dma_addr_t iova = handle & PAGE_MASK;
1859	int offset = handle & ~PAGE_MASK;
1860	int len = PAGE_ALIGN(size + offset);
1861
1862	if (!iova)
1863		return;
1864
1865	iommu_unmap(mapping->domain, iova, len);
1866	__free_iova(mapping, iova, len);
1867}
1868
1869/**
1870 * arm_iommu_unmap_page
1871 * @dev: valid struct device pointer
1872 * @handle: DMA address of buffer
1873 * @size: size of buffer (same as passed to dma_map_page)
1874 * @dir: DMA transfer direction (same as passed to dma_map_page)
1875 *
1876 * IOMMU aware version of arm_dma_unmap_page()
1877 */
1878static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1879		size_t size, enum dma_data_direction dir, unsigned long attrs)
1880{
1881	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1882	dma_addr_t iova = handle & PAGE_MASK;
1883	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1884	int offset = handle & ~PAGE_MASK;
1885	int len = PAGE_ALIGN(size + offset);
1886
1887	if (!iova)
1888		return;
1889
1890	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 
1891		__dma_page_dev_to_cpu(page, offset, size, dir);
 
1892
1893	iommu_unmap(mapping->domain, iova, len);
1894	__free_iova(mapping, iova, len);
1895}
1896
1897/**
1898 * arm_iommu_map_resource - map a device resource for DMA
1899 * @dev: valid struct device pointer
1900 * @phys_addr: physical address of resource
1901 * @size: size of resource to map
1902 * @dir: DMA transfer direction
1903 */
1904static dma_addr_t arm_iommu_map_resource(struct device *dev,
1905		phys_addr_t phys_addr, size_t size,
1906		enum dma_data_direction dir, unsigned long attrs)
1907{
1908	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1909	dma_addr_t dma_addr;
1910	int ret, prot;
1911	phys_addr_t addr = phys_addr & PAGE_MASK;
1912	unsigned int offset = phys_addr & ~PAGE_MASK;
1913	size_t len = PAGE_ALIGN(size + offset);
1914
1915	dma_addr = __alloc_iova(mapping, len);
1916	if (dma_addr == DMA_MAPPING_ERROR)
1917		return dma_addr;
1918
1919	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1920
1921	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1922	if (ret < 0)
1923		goto fail;
1924
1925	return dma_addr + offset;
1926fail:
1927	__free_iova(mapping, dma_addr, len);
1928	return DMA_MAPPING_ERROR;
1929}
1930
1931/**
1932 * arm_iommu_unmap_resource - unmap a device DMA resource
1933 * @dev: valid struct device pointer
1934 * @dma_handle: DMA address to resource
1935 * @size: size of resource to map
1936 * @dir: DMA transfer direction
1937 */
1938static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1939		size_t size, enum dma_data_direction dir,
1940		unsigned long attrs)
1941{
1942	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1943	dma_addr_t iova = dma_handle & PAGE_MASK;
1944	unsigned int offset = dma_handle & ~PAGE_MASK;
1945	size_t len = PAGE_ALIGN(size + offset);
1946
1947	if (!iova)
1948		return;
1949
1950	iommu_unmap(mapping->domain, iova, len);
1951	__free_iova(mapping, iova, len);
1952}
1953
1954static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1956{
1957	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1958	dma_addr_t iova = handle & PAGE_MASK;
1959	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960	unsigned int offset = handle & ~PAGE_MASK;
1961
1962	if (!iova)
1963		return;
1964
 
1965	__dma_page_dev_to_cpu(page, offset, size, dir);
1966}
1967
1968static void arm_iommu_sync_single_for_device(struct device *dev,
1969		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1970{
1971	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1972	dma_addr_t iova = handle & PAGE_MASK;
1973	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974	unsigned int offset = handle & ~PAGE_MASK;
1975
1976	if (!iova)
1977		return;
1978
 
1979	__dma_page_cpu_to_dev(page, offset, size, dir);
1980}
1981
1982static const struct dma_map_ops iommu_ops = {
1983	.alloc		= arm_iommu_alloc_attrs,
1984	.free		= arm_iommu_free_attrs,
1985	.mmap		= arm_iommu_mmap_attrs,
1986	.get_sgtable	= arm_iommu_get_sgtable,
1987
1988	.map_page		= arm_iommu_map_page,
1989	.unmap_page		= arm_iommu_unmap_page,
1990	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1991	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1992
1993	.map_sg			= arm_iommu_map_sg,
1994	.unmap_sg		= arm_iommu_unmap_sg,
1995	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1996	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1997
1998	.map_resource		= arm_iommu_map_resource,
1999	.unmap_resource		= arm_iommu_unmap_resource,
2000
2001	.dma_supported		= arm_dma_supported,
2002};
2003
2004static const struct dma_map_ops iommu_coherent_ops = {
2005	.alloc		= arm_coherent_iommu_alloc_attrs,
2006	.free		= arm_coherent_iommu_free_attrs,
2007	.mmap		= arm_coherent_iommu_mmap_attrs,
2008	.get_sgtable	= arm_iommu_get_sgtable,
2009
2010	.map_page	= arm_coherent_iommu_map_page,
2011	.unmap_page	= arm_coherent_iommu_unmap_page,
2012
2013	.map_sg		= arm_coherent_iommu_map_sg,
2014	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2015
2016	.map_resource	= arm_iommu_map_resource,
2017	.unmap_resource	= arm_iommu_unmap_resource,
2018
2019	.dma_supported		= arm_dma_supported,
2020};
2021
2022/**
2023 * arm_iommu_create_mapping
2024 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2025 * @base: start address of the valid IO address space
2026 * @size: maximum size of the valid IO address space
2027 *
2028 * Creates a mapping structure which holds information about used/unused
2029 * IO address ranges, which is required to perform memory allocation and
2030 * mapping with IOMMU aware functions.
2031 *
2032 * The client device need to be attached to the mapping with
2033 * arm_iommu_attach_device function.
2034 */
2035struct dma_iommu_mapping *
2036arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2037{
2038	unsigned int bits = size >> PAGE_SHIFT;
2039	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2040	struct dma_iommu_mapping *mapping;
2041	int extensions = 1;
2042	int err = -ENOMEM;
2043
2044	/* currently only 32-bit DMA address space is supported */
2045	if (size > DMA_BIT_MASK(32) + 1)
2046		return ERR_PTR(-ERANGE);
2047
2048	if (!bitmap_size)
2049		return ERR_PTR(-EINVAL);
2050
2051	if (bitmap_size > PAGE_SIZE) {
2052		extensions = bitmap_size / PAGE_SIZE;
2053		bitmap_size = PAGE_SIZE;
2054	}
2055
2056	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2057	if (!mapping)
2058		goto err;
2059
2060	mapping->bitmap_size = bitmap_size;
2061	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2062				   GFP_KERNEL);
2063	if (!mapping->bitmaps)
2064		goto err2;
2065
2066	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2067	if (!mapping->bitmaps[0])
2068		goto err3;
2069
2070	mapping->nr_bitmaps = 1;
2071	mapping->extensions = extensions;
2072	mapping->base = base;
2073	mapping->bits = BITS_PER_BYTE * bitmap_size;
2074
2075	spin_lock_init(&mapping->lock);
2076
2077	mapping->domain = iommu_domain_alloc(bus);
2078	if (!mapping->domain)
2079		goto err4;
2080
2081	kref_init(&mapping->kref);
2082	return mapping;
2083err4:
2084	kfree(mapping->bitmaps[0]);
2085err3:
2086	kfree(mapping->bitmaps);
2087err2:
2088	kfree(mapping);
2089err:
2090	return ERR_PTR(err);
2091}
2092EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2093
2094static void release_iommu_mapping(struct kref *kref)
2095{
2096	int i;
2097	struct dma_iommu_mapping *mapping =
2098		container_of(kref, struct dma_iommu_mapping, kref);
2099
2100	iommu_domain_free(mapping->domain);
2101	for (i = 0; i < mapping->nr_bitmaps; i++)
2102		kfree(mapping->bitmaps[i]);
2103	kfree(mapping->bitmaps);
2104	kfree(mapping);
2105}
2106
2107static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2108{
2109	int next_bitmap;
2110
2111	if (mapping->nr_bitmaps >= mapping->extensions)
2112		return -EINVAL;
2113
2114	next_bitmap = mapping->nr_bitmaps;
2115	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2116						GFP_ATOMIC);
2117	if (!mapping->bitmaps[next_bitmap])
2118		return -ENOMEM;
2119
2120	mapping->nr_bitmaps++;
2121
2122	return 0;
2123}
2124
2125void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2126{
2127	if (mapping)
2128		kref_put(&mapping->kref, release_iommu_mapping);
2129}
2130EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2131
2132static int __arm_iommu_attach_device(struct device *dev,
2133				     struct dma_iommu_mapping *mapping)
2134{
2135	int err;
2136
2137	err = iommu_attach_device(mapping->domain, dev);
2138	if (err)
2139		return err;
2140
2141	kref_get(&mapping->kref);
2142	to_dma_iommu_mapping(dev) = mapping;
2143
2144	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2145	return 0;
2146}
2147
2148/**
2149 * arm_iommu_attach_device
2150 * @dev: valid struct device pointer
2151 * @mapping: io address space mapping structure (returned from
2152 *	arm_iommu_create_mapping)
2153 *
2154 * Attaches specified io address space mapping to the provided device.
2155 * This replaces the dma operations (dma_map_ops pointer) with the
2156 * IOMMU aware version.
2157 *
2158 * More than one client might be attached to the same io address space
2159 * mapping.
2160 */
2161int arm_iommu_attach_device(struct device *dev,
2162			    struct dma_iommu_mapping *mapping)
2163{
2164	int err;
2165
2166	err = __arm_iommu_attach_device(dev, mapping);
2167	if (err)
2168		return err;
2169
2170	set_dma_ops(dev, &iommu_ops);
2171	return 0;
2172}
2173EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2174
2175/**
2176 * arm_iommu_detach_device
2177 * @dev: valid struct device pointer
2178 *
2179 * Detaches the provided device from a previously attached map.
2180 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2181 */
2182void arm_iommu_detach_device(struct device *dev)
2183{
2184	struct dma_iommu_mapping *mapping;
2185
2186	mapping = to_dma_iommu_mapping(dev);
2187	if (!mapping) {
2188		dev_warn(dev, "Not attached\n");
2189		return;
2190	}
2191
2192	iommu_detach_device(mapping->domain, dev);
2193	kref_put(&mapping->kref, release_iommu_mapping);
2194	to_dma_iommu_mapping(dev) = NULL;
2195	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2196
2197	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2198}
2199EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2200
2201static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2202{
2203	return coherent ? &iommu_coherent_ops : &iommu_ops;
2204}
2205
2206static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2207				    const struct iommu_ops *iommu)
2208{
2209	struct dma_iommu_mapping *mapping;
2210
2211	if (!iommu)
2212		return false;
2213
2214	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2215	if (IS_ERR(mapping)) {
2216		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2217				size, dev_name(dev));
2218		return false;
2219	}
2220
2221	if (__arm_iommu_attach_device(dev, mapping)) {
2222		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2223				dev_name(dev));
2224		arm_iommu_release_mapping(mapping);
2225		return false;
2226	}
2227
2228	return true;
2229}
2230
2231static void arm_teardown_iommu_dma_ops(struct device *dev)
2232{
2233	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2234
2235	if (!mapping)
2236		return;
2237
2238	arm_iommu_detach_device(dev);
2239	arm_iommu_release_mapping(mapping);
2240}
2241
2242#else
2243
2244static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2245				    const struct iommu_ops *iommu)
2246{
2247	return false;
2248}
2249
2250static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2251
2252#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2253
2254#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2255
2256void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2257			const struct iommu_ops *iommu, bool coherent)
2258{
2259	const struct dma_map_ops *dma_ops;
2260
2261	dev->archdata.dma_coherent = coherent;
2262#ifdef CONFIG_SWIOTLB
2263	dev->dma_coherent = coherent;
2264#endif
 
 
2265
2266	/*
2267	 * Don't override the dma_ops if they have already been set. Ideally
2268	 * this should be the only location where dma_ops are set, remove this
2269	 * check when all other callers of set_dma_ops will have disappeared.
2270	 */
2271	if (dev->dma_ops)
2272		return;
2273
2274	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2275		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2276	else
2277		dma_ops = arm_get_dma_map_ops(coherent);
2278
2279	set_dma_ops(dev, dma_ops);
2280
2281#ifdef CONFIG_XEN
2282	if (xen_initial_domain())
2283		dev->dma_ops = &xen_swiotlb_dma_ops;
2284#endif
2285	dev->archdata.dma_ops_setup = true;
2286}
2287
2288void arch_teardown_dma_ops(struct device *dev)
2289{
2290	if (!dev->archdata.dma_ops_setup)
2291		return;
2292
2293	arm_teardown_iommu_dma_ops(dev);
2294	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2295	set_dma_ops(dev, NULL);
2296}
2297
2298#ifdef CONFIG_SWIOTLB
2299void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2300		enum dma_data_direction dir)
2301{
2302	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2303			      size, dir);
2304}
2305
2306void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2307		enum dma_data_direction dir)
2308{
2309	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2310			      size, dir);
2311}
2312
2313void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2314		gfp_t gfp, unsigned long attrs)
2315{
2316	return __dma_alloc(dev, size, dma_handle, gfp,
2317			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2318			   attrs, __builtin_return_address(0));
2319}
2320
2321void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2322		dma_addr_t dma_handle, unsigned long attrs)
2323{
2324	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2325}
2326#endif /* CONFIG_SWIOTLB */
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
   7 *  DMA uncached mapping support.
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-map-ops.h>
 
 
  19#include <linux/highmem.h>
  20#include <linux/memblock.h>
  21#include <linux/slab.h>
  22#include <linux/iommu.h>
  23#include <linux/io.h>
  24#include <linux/vmalloc.h>
  25#include <linux/sizes.h>
  26#include <linux/cma.h>
  27
  28#include <asm/page.h>
  29#include <asm/highmem.h>
  30#include <asm/cacheflush.h>
  31#include <asm/tlbflush.h>
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <asm/xen/xen-ops.h>
 
  37
  38#include "dma.h"
  39#include "mm.h"
  40
  41struct arm_dma_alloc_args {
  42	struct device *dev;
  43	size_t size;
  44	gfp_t gfp;
  45	pgprot_t prot;
  46	const void *caller;
  47	bool want_vaddr;
  48	int coherent_flag;
  49};
  50
  51struct arm_dma_free_args {
  52	struct device *dev;
  53	size_t size;
  54	void *cpu_addr;
  55	struct page *page;
  56	bool want_vaddr;
  57};
  58
  59#define NORMAL	    0
  60#define COHERENT    1
  61
  62struct arm_dma_allocator {
  63	void *(*alloc)(struct arm_dma_alloc_args *args,
  64		       struct page **ret_page);
  65	void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69	struct list_head list;
  70	void *virt;
  71	struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79	struct arm_dma_buffer *buf, *found = NULL;
  80	unsigned long flags;
  81
  82	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83	list_for_each_entry(buf, &arm_dma_bufs, list) {
  84		if (buf->virt == virt) {
  85			list_del(&buf->list);
  86			found = buf;
  87			break;
  88		}
  89	}
  90	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91	return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 108{
 109	/*
 110	 * Ensure that the allocated pages are zeroed, and that any data
 111	 * lurking in the kernel direct-mapped region is invalidated.
 112	 */
 113	if (PageHighMem(page)) {
 114		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 115		phys_addr_t end = base + size;
 116		while (size > 0) {
 117			void *ptr = kmap_atomic(page);
 118			memset(ptr, 0, PAGE_SIZE);
 119			if (coherent_flag != COHERENT)
 120				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 121			kunmap_atomic(ptr);
 122			page++;
 123			size -= PAGE_SIZE;
 124		}
 125		if (coherent_flag != COHERENT)
 126			outer_flush_range(base, end);
 127	} else {
 128		void *ptr = page_address(page);
 129		memset(ptr, 0, size);
 130		if (coherent_flag != COHERENT) {
 131			dmac_flush_range(ptr, ptr + size);
 132			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 133		}
 134	}
 135}
 136
 137/*
 138 * Allocate a DMA buffer for 'dev' of size 'size' using the
 139 * specified gfp mask.  Note that 'size' must be page aligned.
 140 */
 141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 142				       gfp_t gfp, int coherent_flag)
 143{
 144	unsigned long order = get_order(size);
 145	struct page *page, *p, *e;
 146
 147	page = alloc_pages(gfp, order);
 148	if (!page)
 149		return NULL;
 150
 151	/*
 152	 * Now split the huge page and free the excess pages
 153	 */
 154	split_page(page, order);
 155	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 156		__free_page(p);
 157
 158	__dma_clear_buffer(page, size, coherent_flag);
 159
 160	return page;
 161}
 162
 163/*
 164 * Free a DMA buffer.  'size' must be page aligned.
 165 */
 166static void __dma_free_buffer(struct page *page, size_t size)
 167{
 168	struct page *e = page + (size >> PAGE_SHIFT);
 169
 170	while (page < e) {
 171		__free_page(page);
 172		page++;
 173	}
 174}
 175
 176static void *__alloc_from_contiguous(struct device *dev, size_t size,
 177				     pgprot_t prot, struct page **ret_page,
 178				     const void *caller, bool want_vaddr,
 179				     int coherent_flag, gfp_t gfp);
 180
 181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 182				 pgprot_t prot, struct page **ret_page,
 183				 const void *caller, bool want_vaddr);
 184
 185#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 186static struct gen_pool *atomic_pool __ro_after_init;
 187
 188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 189
 190static int __init early_coherent_pool(char *p)
 191{
 192	atomic_pool_size = memparse(p, &p);
 193	return 0;
 194}
 195early_param("coherent_pool", early_coherent_pool);
 196
 197/*
 198 * Initialise the coherent pool for atomic allocations.
 199 */
 200static int __init atomic_pool_init(void)
 201{
 202	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 203	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 204	struct page *page;
 205	void *ptr;
 206
 207	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 208	if (!atomic_pool)
 209		goto out;
 210	/*
 211	 * The atomic pool is only used for non-coherent allocations
 212	 * so we must pass NORMAL for coherent_flag.
 213	 */
 214	if (dev_get_cma_area(NULL))
 215		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 216				      &page, atomic_pool_init, true, NORMAL,
 217				      GFP_KERNEL);
 218	else
 219		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 220					   &page, atomic_pool_init, true);
 221	if (ptr) {
 222		int ret;
 223
 224		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 225					page_to_phys(page),
 226					atomic_pool_size, -1);
 227		if (ret)
 228			goto destroy_genpool;
 229
 230		gen_pool_set_algo(atomic_pool,
 231				gen_pool_first_fit_order_align,
 232				NULL);
 233		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 234		       atomic_pool_size / 1024);
 235		return 0;
 236	}
 237
 238destroy_genpool:
 239	gen_pool_destroy(atomic_pool);
 240	atomic_pool = NULL;
 241out:
 242	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 243	       atomic_pool_size / 1024);
 244	return -ENOMEM;
 245}
 246/*
 247 * CMA is activated by core_initcall, so we must be called after it.
 248 */
 249postcore_initcall(atomic_pool_init);
 250
 251#ifdef CONFIG_CMA_AREAS
 252struct dma_contig_early_reserve {
 253	phys_addr_t base;
 254	unsigned long size;
 255};
 256
 257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 258
 259static int dma_mmu_remap_num __initdata;
 260
 261#ifdef CONFIG_DMA_CMA
 262void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 263{
 264	dma_mmu_remap[dma_mmu_remap_num].base = base;
 265	dma_mmu_remap[dma_mmu_remap_num].size = size;
 266	dma_mmu_remap_num++;
 267}
 268#endif
 269
 270void __init dma_contiguous_remap(void)
 271{
 272	int i;
 273	for (i = 0; i < dma_mmu_remap_num; i++) {
 274		phys_addr_t start = dma_mmu_remap[i].base;
 275		phys_addr_t end = start + dma_mmu_remap[i].size;
 276		struct map_desc map;
 277		unsigned long addr;
 278
 279		if (end > arm_lowmem_limit)
 280			end = arm_lowmem_limit;
 281		if (start >= end)
 282			continue;
 283
 284		map.pfn = __phys_to_pfn(start);
 285		map.virtual = __phys_to_virt(start);
 286		map.length = end - start;
 287		map.type = MT_MEMORY_DMA_READY;
 288
 289		/*
 290		 * Clear previous low-memory mapping to ensure that the
 291		 * TLB does not see any conflicting entries, then flush
 292		 * the TLB of the old entries before creating new mappings.
 293		 *
 294		 * This ensures that any speculatively loaded TLB entries
 295		 * (even though they may be rare) can not cause any problems,
 296		 * and ensures that this code is architecturally compliant.
 297		 */
 298		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 299		     addr += PMD_SIZE)
 300			pmd_clear(pmd_off_k(addr));
 301
 302		flush_tlb_kernel_range(__phys_to_virt(start),
 303				       __phys_to_virt(end));
 304
 305		iotable_init(&map, 1);
 306	}
 307}
 308#endif
 309
 310static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 311{
 312	struct page *page = virt_to_page((void *)addr);
 313	pgprot_t prot = *(pgprot_t *)data;
 314
 315	set_pte_ext(pte, mk_pte(page, prot), 0);
 316	return 0;
 317}
 318
 319static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 320{
 321	unsigned long start = (unsigned long) page_address(page);
 322	unsigned end = start + size;
 323
 324	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 325	flush_tlb_kernel_range(start, end);
 326}
 327
 328static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 329				 pgprot_t prot, struct page **ret_page,
 330				 const void *caller, bool want_vaddr)
 331{
 332	struct page *page;
 333	void *ptr = NULL;
 334	/*
 335	 * __alloc_remap_buffer is only called when the device is
 336	 * non-coherent
 337	 */
 338	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 339	if (!page)
 340		return NULL;
 341	if (!want_vaddr)
 342		goto out;
 343
 344	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 345	if (!ptr) {
 346		__dma_free_buffer(page, size);
 347		return NULL;
 348	}
 349
 350 out:
 351	*ret_page = page;
 352	return ptr;
 353}
 354
 355static void *__alloc_from_pool(size_t size, struct page **ret_page)
 356{
 357	unsigned long val;
 358	void *ptr = NULL;
 359
 360	if (!atomic_pool) {
 361		WARN(1, "coherent pool not initialised!\n");
 362		return NULL;
 363	}
 364
 365	val = gen_pool_alloc(atomic_pool, size);
 366	if (val) {
 367		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 368
 369		*ret_page = phys_to_page(phys);
 370		ptr = (void *)val;
 371	}
 372
 373	return ptr;
 374}
 375
 376static bool __in_atomic_pool(void *start, size_t size)
 377{
 378	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 379}
 380
 381static int __free_from_pool(void *start, size_t size)
 382{
 383	if (!__in_atomic_pool(start, size))
 384		return 0;
 385
 386	gen_pool_free(atomic_pool, (unsigned long)start, size);
 387
 388	return 1;
 389}
 390
 391static void *__alloc_from_contiguous(struct device *dev, size_t size,
 392				     pgprot_t prot, struct page **ret_page,
 393				     const void *caller, bool want_vaddr,
 394				     int coherent_flag, gfp_t gfp)
 395{
 396	unsigned long order = get_order(size);
 397	size_t count = size >> PAGE_SHIFT;
 398	struct page *page;
 399	void *ptr = NULL;
 400
 401	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 402	if (!page)
 403		return NULL;
 404
 405	__dma_clear_buffer(page, size, coherent_flag);
 406
 407	if (!want_vaddr)
 408		goto out;
 409
 410	if (PageHighMem(page)) {
 411		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 412		if (!ptr) {
 413			dma_release_from_contiguous(dev, page, count);
 414			return NULL;
 415		}
 416	} else {
 417		__dma_remap(page, size, prot);
 418		ptr = page_address(page);
 419	}
 420
 421 out:
 422	*ret_page = page;
 423	return ptr;
 424}
 425
 426static void __free_from_contiguous(struct device *dev, struct page *page,
 427				   void *cpu_addr, size_t size, bool want_vaddr)
 428{
 429	if (want_vaddr) {
 430		if (PageHighMem(page))
 431			dma_common_free_remap(cpu_addr, size);
 432		else
 433			__dma_remap(page, size, PAGE_KERNEL);
 434	}
 435	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 436}
 437
 438static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 439{
 440	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 441			pgprot_writecombine(prot) :
 442			pgprot_dmacoherent(prot);
 443	return prot;
 444}
 445
 446static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 447				   struct page **ret_page)
 448{
 449	struct page *page;
 450	/* __alloc_simple_buffer is only called when the device is coherent */
 451	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 452	if (!page)
 453		return NULL;
 454
 455	*ret_page = page;
 456	return page_address(page);
 457}
 458
 459static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 460				    struct page **ret_page)
 461{
 462	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 463				     ret_page);
 464}
 465
 466static void simple_allocator_free(struct arm_dma_free_args *args)
 467{
 468	__dma_free_buffer(args->page, args->size);
 469}
 470
 471static struct arm_dma_allocator simple_allocator = {
 472	.alloc = simple_allocator_alloc,
 473	.free = simple_allocator_free,
 474};
 475
 476static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 477				 struct page **ret_page)
 478{
 479	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 480				       ret_page, args->caller,
 481				       args->want_vaddr, args->coherent_flag,
 482				       args->gfp);
 483}
 484
 485static void cma_allocator_free(struct arm_dma_free_args *args)
 486{
 487	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 488			       args->size, args->want_vaddr);
 489}
 490
 491static struct arm_dma_allocator cma_allocator = {
 492	.alloc = cma_allocator_alloc,
 493	.free = cma_allocator_free,
 494};
 495
 496static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 497				  struct page **ret_page)
 498{
 499	return __alloc_from_pool(args->size, ret_page);
 500}
 501
 502static void pool_allocator_free(struct arm_dma_free_args *args)
 503{
 504	__free_from_pool(args->cpu_addr, args->size);
 505}
 506
 507static struct arm_dma_allocator pool_allocator = {
 508	.alloc = pool_allocator_alloc,
 509	.free = pool_allocator_free,
 510};
 511
 512static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 513				   struct page **ret_page)
 514{
 515	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 516				    args->prot, ret_page, args->caller,
 517				    args->want_vaddr);
 518}
 519
 520static void remap_allocator_free(struct arm_dma_free_args *args)
 521{
 522	if (args->want_vaddr)
 523		dma_common_free_remap(args->cpu_addr, args->size);
 524
 525	__dma_free_buffer(args->page, args->size);
 526}
 527
 528static struct arm_dma_allocator remap_allocator = {
 529	.alloc = remap_allocator_alloc,
 530	.free = remap_allocator_free,
 531};
 532
 533static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 534			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 535			 unsigned long attrs, const void *caller)
 536{
 537	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 538	struct page *page = NULL;
 539	void *addr;
 540	bool allowblock, cma;
 541	struct arm_dma_buffer *buf;
 542	struct arm_dma_alloc_args args = {
 543		.dev = dev,
 544		.size = PAGE_ALIGN(size),
 545		.gfp = gfp,
 546		.prot = prot,
 547		.caller = caller,
 548		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 549		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 550	};
 551
 552#ifdef CONFIG_DMA_API_DEBUG
 553	u64 limit = (mask + 1) & ~mask;
 554	if (limit && size >= limit) {
 555		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 556			size, mask);
 557		return NULL;
 558	}
 559#endif
 560
 561	buf = kzalloc(sizeof(*buf),
 562		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 563	if (!buf)
 564		return NULL;
 565
 566	if (mask < 0xffffffffULL)
 567		gfp |= GFP_DMA;
 568
 
 
 
 
 
 
 
 
 569	args.gfp = gfp;
 570
 571	*handle = DMA_MAPPING_ERROR;
 572	allowblock = gfpflags_allow_blocking(gfp);
 573	cma = allowblock ? dev_get_cma_area(dev) : NULL;
 574
 575	if (cma)
 576		buf->allocator = &cma_allocator;
 577	else if (is_coherent)
 578		buf->allocator = &simple_allocator;
 579	else if (allowblock)
 580		buf->allocator = &remap_allocator;
 581	else
 582		buf->allocator = &pool_allocator;
 583
 584	addr = buf->allocator->alloc(&args, &page);
 585
 586	if (page) {
 587		unsigned long flags;
 588
 589		*handle = phys_to_dma(dev, page_to_phys(page));
 590		buf->virt = args.want_vaddr ? addr : page;
 591
 592		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 593		list_add(&buf->list, &arm_dma_bufs);
 594		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 595	} else {
 596		kfree(buf);
 597	}
 598
 599	return args.want_vaddr ? addr : page;
 600}
 601
 602/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603 * Free a buffer as defined by the above mapping.
 604 */
 605static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 606			   dma_addr_t handle, unsigned long attrs,
 607			   bool is_coherent)
 608{
 609	struct page *page = phys_to_page(dma_to_phys(dev, handle));
 610	struct arm_dma_buffer *buf;
 611	struct arm_dma_free_args args = {
 612		.dev = dev,
 613		.size = PAGE_ALIGN(size),
 614		.cpu_addr = cpu_addr,
 615		.page = page,
 616		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 617	};
 618
 619	buf = arm_dma_buffer_find(cpu_addr);
 620	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 621		return;
 622
 623	buf->allocator->free(&args);
 624	kfree(buf);
 625}
 626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627static void dma_cache_maint_page(struct page *page, unsigned long offset,
 628	size_t size, enum dma_data_direction dir,
 629	void (*op)(const void *, size_t, int))
 630{
 631	unsigned long pfn;
 632	size_t left = size;
 633
 634	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 635	offset %= PAGE_SIZE;
 636
 637	/*
 638	 * A single sg entry may refer to multiple physically contiguous
 639	 * pages.  But we still need to process highmem pages individually.
 640	 * If highmem is not configured then the bulk of this loop gets
 641	 * optimized out.
 642	 */
 643	do {
 644		size_t len = left;
 645		void *vaddr;
 646
 647		page = pfn_to_page(pfn);
 648
 649		if (PageHighMem(page)) {
 650			if (len + offset > PAGE_SIZE)
 651				len = PAGE_SIZE - offset;
 652
 653			if (cache_is_vipt_nonaliasing()) {
 654				vaddr = kmap_atomic(page);
 655				op(vaddr + offset, len, dir);
 656				kunmap_atomic(vaddr);
 657			} else {
 658				vaddr = kmap_high_get(page);
 659				if (vaddr) {
 660					op(vaddr + offset, len, dir);
 661					kunmap_high(page);
 662				}
 663			}
 664		} else {
 665			vaddr = page_address(page) + offset;
 666			op(vaddr, len, dir);
 667		}
 668		offset = 0;
 669		pfn++;
 670		left -= len;
 671	} while (left);
 672}
 673
 674/*
 675 * Make an area consistent for devices.
 676 * Note: Drivers should NOT use this function directly.
 
 677 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 678 */
 679static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 680	size_t size, enum dma_data_direction dir)
 681{
 682	phys_addr_t paddr;
 683
 684	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 685
 686	paddr = page_to_phys(page) + off;
 687	if (dir == DMA_FROM_DEVICE) {
 688		outer_inv_range(paddr, paddr + size);
 689	} else {
 690		outer_clean_range(paddr, paddr + size);
 691	}
 692	/* FIXME: non-speculating: flush on bidirectional mappings? */
 693}
 694
 695static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 696	size_t size, enum dma_data_direction dir)
 697{
 698	phys_addr_t paddr = page_to_phys(page) + off;
 699
 700	/* FIXME: non-speculating: not required */
 701	/* in any case, don't bother invalidating if DMA to device */
 702	if (dir != DMA_TO_DEVICE) {
 703		outer_inv_range(paddr, paddr + size);
 704
 705		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 706	}
 707
 708	/*
 709	 * Mark the D-cache clean for these pages to avoid extra flushing.
 710	 */
 711	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 712		struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
 713		size_t offset = offset_in_folio(folio, paddr);
 714
 715		for (;;) {
 716			size_t sz = folio_size(folio) - offset;
 717
 718			if (size < sz)
 719				break;
 720			if (!offset)
 721				set_bit(PG_dcache_clean, &folio->flags);
 722			offset = 0;
 723			size -= sz;
 724			if (!size)
 725				break;
 726			folio = folio_next(folio);
 727		}
 728	}
 729}
 730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731#ifdef CONFIG_ARM_DMA_USE_IOMMU
 732
 733static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
 734{
 735	int prot = 0;
 736
 737	if (attrs & DMA_ATTR_PRIVILEGED)
 738		prot |= IOMMU_PRIV;
 739
 740	switch (dir) {
 741	case DMA_BIDIRECTIONAL:
 742		return prot | IOMMU_READ | IOMMU_WRITE;
 743	case DMA_TO_DEVICE:
 744		return prot | IOMMU_READ;
 745	case DMA_FROM_DEVICE:
 746		return prot | IOMMU_WRITE;
 747	default:
 748		return prot;
 749	}
 750}
 751
 752/* IOMMU */
 753
 754static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
 755
 756static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
 757				      size_t size)
 758{
 759	unsigned int order = get_order(size);
 760	unsigned int align = 0;
 761	unsigned int count, start;
 762	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 763	unsigned long flags;
 764	dma_addr_t iova;
 765	int i;
 766
 767	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
 768		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
 769
 770	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 771	align = (1 << order) - 1;
 772
 773	spin_lock_irqsave(&mapping->lock, flags);
 774	for (i = 0; i < mapping->nr_bitmaps; i++) {
 775		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 776				mapping->bits, 0, count, align);
 777
 778		if (start > mapping->bits)
 779			continue;
 780
 781		bitmap_set(mapping->bitmaps[i], start, count);
 782		break;
 783	}
 784
 785	/*
 786	 * No unused range found. Try to extend the existing mapping
 787	 * and perform a second attempt to reserve an IO virtual
 788	 * address range of size bytes.
 789	 */
 790	if (i == mapping->nr_bitmaps) {
 791		if (extend_iommu_mapping(mapping)) {
 792			spin_unlock_irqrestore(&mapping->lock, flags);
 793			return DMA_MAPPING_ERROR;
 794		}
 795
 796		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 797				mapping->bits, 0, count, align);
 798
 799		if (start > mapping->bits) {
 800			spin_unlock_irqrestore(&mapping->lock, flags);
 801			return DMA_MAPPING_ERROR;
 802		}
 803
 804		bitmap_set(mapping->bitmaps[i], start, count);
 805	}
 806	spin_unlock_irqrestore(&mapping->lock, flags);
 807
 808	iova = mapping->base + (mapping_size * i);
 809	iova += start << PAGE_SHIFT;
 810
 811	return iova;
 812}
 813
 814static inline void __free_iova(struct dma_iommu_mapping *mapping,
 815			       dma_addr_t addr, size_t size)
 816{
 817	unsigned int start, count;
 818	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 819	unsigned long flags;
 820	dma_addr_t bitmap_base;
 821	u32 bitmap_index;
 822
 823	if (!size)
 824		return;
 825
 826	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
 827	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
 828
 829	bitmap_base = mapping->base + mapping_size * bitmap_index;
 830
 831	start = (addr - bitmap_base) >>	PAGE_SHIFT;
 832
 833	if (addr + size > bitmap_base + mapping_size) {
 834		/*
 835		 * The address range to be freed reaches into the iova
 836		 * range of the next bitmap. This should not happen as
 837		 * we don't allow this in __alloc_iova (at the
 838		 * moment).
 839		 */
 840		BUG();
 841	} else
 842		count = size >> PAGE_SHIFT;
 843
 844	spin_lock_irqsave(&mapping->lock, flags);
 845	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
 846	spin_unlock_irqrestore(&mapping->lock, flags);
 847}
 848
 849/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
 850static const int iommu_order_array[] = { 9, 8, 4, 0 };
 851
 852static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
 853					  gfp_t gfp, unsigned long attrs,
 854					  int coherent_flag)
 855{
 856	struct page **pages;
 857	int count = size >> PAGE_SHIFT;
 858	int array_size = count * sizeof(struct page *);
 859	int i = 0;
 860	int order_idx = 0;
 861
 862	pages = kvzalloc(array_size, GFP_KERNEL);
 
 
 
 863	if (!pages)
 864		return NULL;
 865
 866	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
 867	{
 868		unsigned long order = get_order(size);
 869		struct page *page;
 870
 871		page = dma_alloc_from_contiguous(dev, count, order,
 872						 gfp & __GFP_NOWARN);
 873		if (!page)
 874			goto error;
 875
 876		__dma_clear_buffer(page, size, coherent_flag);
 877
 878		for (i = 0; i < count; i++)
 879			pages[i] = page + i;
 880
 881		return pages;
 882	}
 883
 884	/* Go straight to 4K chunks if caller says it's OK. */
 885	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 886		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
 887
 888	/*
 889	 * IOMMU can map any pages, so himem can also be used here
 890	 */
 891	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 892
 893	while (count) {
 894		int j, order;
 895
 896		order = iommu_order_array[order_idx];
 897
 898		/* Drop down when we get small */
 899		if (__fls(count) < order) {
 900			order_idx++;
 901			continue;
 902		}
 903
 904		if (order) {
 905			/* See if it's easy to allocate a high-order chunk */
 906			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
 907
 908			/* Go down a notch at first sign of pressure */
 909			if (!pages[i]) {
 910				order_idx++;
 911				continue;
 912			}
 913		} else {
 914			pages[i] = alloc_pages(gfp, 0);
 915			if (!pages[i])
 916				goto error;
 917		}
 918
 919		if (order) {
 920			split_page(pages[i], order);
 921			j = 1 << order;
 922			while (--j)
 923				pages[i + j] = pages[i] + j;
 924		}
 925
 926		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
 927		i += 1 << order;
 928		count -= 1 << order;
 929	}
 930
 931	return pages;
 932error:
 933	while (i--)
 934		if (pages[i])
 935			__free_pages(pages[i], 0);
 936	kvfree(pages);
 937	return NULL;
 938}
 939
 940static int __iommu_free_buffer(struct device *dev, struct page **pages,
 941			       size_t size, unsigned long attrs)
 942{
 943	int count = size >> PAGE_SHIFT;
 944	int i;
 945
 946	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
 947		dma_release_from_contiguous(dev, pages[0], count);
 948	} else {
 949		for (i = 0; i < count; i++)
 950			if (pages[i])
 951				__free_pages(pages[i], 0);
 952	}
 953
 954	kvfree(pages);
 955	return 0;
 956}
 957
 958/*
 959 * Create a mapping in device IO address space for specified pages
 960 */
 961static dma_addr_t
 962__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
 963		       unsigned long attrs)
 964{
 965	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
 966	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 967	dma_addr_t dma_addr, iova;
 968	int i;
 969
 970	dma_addr = __alloc_iova(mapping, size);
 971	if (dma_addr == DMA_MAPPING_ERROR)
 972		return dma_addr;
 973
 974	iova = dma_addr;
 975	for (i = 0; i < count; ) {
 976		int ret;
 977
 978		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
 979		phys_addr_t phys = page_to_phys(pages[i]);
 980		unsigned int len, j;
 981
 982		for (j = i + 1; j < count; j++, next_pfn++)
 983			if (page_to_pfn(pages[j]) != next_pfn)
 984				break;
 985
 986		len = (j - i) << PAGE_SHIFT;
 987		ret = iommu_map(mapping->domain, iova, phys, len,
 988				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
 989				GFP_KERNEL);
 990		if (ret < 0)
 991			goto fail;
 992		iova += len;
 993		i = j;
 994	}
 995	return dma_addr;
 996fail:
 997	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
 998	__free_iova(mapping, dma_addr, size);
 999	return DMA_MAPPING_ERROR;
1000}
1001
1002static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1003{
1004	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1005
1006	/*
1007	 * add optional in-page offset from iova to size and align
1008	 * result to page size
1009	 */
1010	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1011	iova &= PAGE_MASK;
1012
1013	iommu_unmap(mapping->domain, iova, size);
1014	__free_iova(mapping, iova, size);
1015	return 0;
1016}
1017
1018static struct page **__atomic_get_pages(void *addr)
1019{
1020	struct page *page;
1021	phys_addr_t phys;
1022
1023	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1024	page = phys_to_page(phys);
1025
1026	return (struct page **)page;
1027}
1028
1029static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1030{
1031	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1032		return __atomic_get_pages(cpu_addr);
1033
1034	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1035		return cpu_addr;
1036
1037	return dma_common_find_pages(cpu_addr);
1038}
1039
1040static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1041				  dma_addr_t *handle, int coherent_flag,
1042				  unsigned long attrs)
1043{
1044	struct page *page;
1045	void *addr;
1046
1047	if (coherent_flag  == COHERENT)
1048		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1049	else
1050		addr = __alloc_from_pool(size, &page);
1051	if (!addr)
1052		return NULL;
1053
1054	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1055	if (*handle == DMA_MAPPING_ERROR)
1056		goto err_mapping;
1057
1058	return addr;
1059
1060err_mapping:
1061	__free_from_pool(addr, size);
1062	return NULL;
1063}
1064
1065static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1066			dma_addr_t handle, size_t size, int coherent_flag)
1067{
1068	__iommu_remove_mapping(dev, handle, size);
1069	if (coherent_flag == COHERENT)
1070		__dma_free_buffer(virt_to_page(cpu_addr), size);
1071	else
1072		__free_from_pool(cpu_addr, size);
1073}
1074
1075static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1076	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 
1077{
1078	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1079	struct page **pages;
1080	void *addr = NULL;
1081	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1082
1083	*handle = DMA_MAPPING_ERROR;
1084	size = PAGE_ALIGN(size);
1085
1086	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1087		return __iommu_alloc_simple(dev, size, gfp, handle,
1088					    coherent_flag, attrs);
1089
 
 
 
 
 
 
 
 
 
1090	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1091	if (!pages)
1092		return NULL;
1093
1094	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1095	if (*handle == DMA_MAPPING_ERROR)
1096		goto err_buffer;
1097
1098	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1099		return pages;
1100
1101	addr = dma_common_pages_remap(pages, size, prot,
1102				   __builtin_return_address(0));
1103	if (!addr)
1104		goto err_mapping;
1105
1106	return addr;
1107
1108err_mapping:
1109	__iommu_remove_mapping(dev, *handle, size);
1110err_buffer:
1111	__iommu_free_buffer(dev, pages, size, attrs);
1112	return NULL;
1113}
1114
1115static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
 
 
 
 
 
 
 
 
 
 
 
 
1116		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1117		    unsigned long attrs)
1118{
1119	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1120	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1121	int err;
1122
1123	if (!pages)
1124		return -ENXIO;
1125
1126	if (vma->vm_pgoff >= nr_pages)
1127		return -ENXIO;
1128
1129	if (!dev->dma_coherent)
1130		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1131
1132	err = vm_map_pages(vma, pages, nr_pages);
1133	if (err)
1134		pr_err("Remapping memory failed: %d\n", err);
1135
1136	return err;
1137}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138
1139/*
1140 * free a page as defined by the above mapping.
1141 * Must not be called with IRQs disabled.
1142 */
1143static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1144	dma_addr_t handle, unsigned long attrs)
1145{
1146	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1147	struct page **pages;
1148	size = PAGE_ALIGN(size);
1149
1150	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1151		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1152		return;
1153	}
1154
1155	pages = __iommu_get_pages(cpu_addr, attrs);
1156	if (!pages) {
1157		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1158		return;
1159	}
1160
1161	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1162		dma_common_free_remap(cpu_addr, size);
1163
1164	__iommu_remove_mapping(dev, handle, size);
1165	__iommu_free_buffer(dev, pages, size, attrs);
1166}
1167
 
 
 
 
 
 
 
 
 
 
 
 
 
1168static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1169				 void *cpu_addr, dma_addr_t dma_addr,
1170				 size_t size, unsigned long attrs)
1171{
1172	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1173	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1174
1175	if (!pages)
1176		return -ENXIO;
1177
1178	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1179					 GFP_KERNEL);
1180}
1181
1182/*
1183 * Map a part of the scatter-gather list into contiguous io address space
1184 */
1185static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1186			  size_t size, dma_addr_t *handle,
1187			  enum dma_data_direction dir, unsigned long attrs)
 
1188{
1189	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1190	dma_addr_t iova, iova_base;
1191	int ret = 0;
1192	unsigned int count;
1193	struct scatterlist *s;
1194	int prot;
1195
1196	size = PAGE_ALIGN(size);
1197	*handle = DMA_MAPPING_ERROR;
1198
1199	iova_base = iova = __alloc_iova(mapping, size);
1200	if (iova == DMA_MAPPING_ERROR)
1201		return -ENOMEM;
1202
1203	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1204		phys_addr_t phys = page_to_phys(sg_page(s));
1205		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1206
1207		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1208			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1209
1210		prot = __dma_info_to_prot(dir, attrs);
1211
1212		ret = iommu_map(mapping->domain, iova, phys, len, prot,
1213				GFP_KERNEL);
1214		if (ret < 0)
1215			goto fail;
1216		count += len >> PAGE_SHIFT;
1217		iova += len;
1218	}
1219	*handle = iova_base;
1220
1221	return 0;
1222fail:
1223	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1224	__free_iova(mapping, iova_base, size);
1225	return ret;
1226}
1227
1228/**
1229 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1230 * @dev: valid struct device pointer
1231 * @sg: list of buffers
1232 * @nents: number of buffers to map
1233 * @dir: DMA transfer direction
1234 *
1235 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1236 * The scatter gather list elements are merged together (if possible) and
1237 * tagged with the appropriate dma address and length. They are obtained via
1238 * sg_dma_{address,length}.
1239 */
1240static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1241		int nents, enum dma_data_direction dir, unsigned long attrs)
1242{
1243	struct scatterlist *s = sg, *dma = sg, *start = sg;
1244	int i, count = 0, ret;
1245	unsigned int offset = s->offset;
1246	unsigned int size = s->offset + s->length;
1247	unsigned int max = dma_get_max_seg_size(dev);
1248
1249	for (i = 1; i < nents; i++) {
1250		s = sg_next(s);
1251
 
1252		s->dma_length = 0;
1253
1254		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1255			ret = __map_sg_chunk(dev, start, size,
1256					     &dma->dma_address, dir, attrs);
1257			if (ret < 0)
1258				goto bad_mapping;
1259
1260			dma->dma_address += offset;
1261			dma->dma_length = size - offset;
1262
1263			size = offset = s->offset;
1264			start = s;
1265			dma = sg_next(dma);
1266			count += 1;
1267		}
1268		size += s->length;
1269	}
1270	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1271	if (ret < 0)
1272		goto bad_mapping;
1273
1274	dma->dma_address += offset;
1275	dma->dma_length = size - offset;
1276
1277	return count+1;
1278
1279bad_mapping:
1280	for_each_sg(sg, s, count, i)
1281		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1282	if (ret == -ENOMEM)
1283		return ret;
1284	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285}
1286
1287/**
1288 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1289 * @dev: valid struct device pointer
1290 * @sg: list of buffers
1291 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1292 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1293 *
1294 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1295 * rules concerning calls here are the same as for dma_unmap_single().
 
 
1296 */
1297static void arm_iommu_unmap_sg(struct device *dev,
1298			       struct scatterlist *sg, int nents,
1299			       enum dma_data_direction dir,
1300			       unsigned long attrs)
 
 
 
 
 
1301{
1302	struct scatterlist *s;
1303	int i;
1304
1305	for_each_sg(sg, s, nents, i) {
1306		if (sg_dma_len(s))
1307			__iommu_remove_mapping(dev, sg_dma_address(s),
1308					       sg_dma_len(s));
1309		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1310			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1311					      s->length, dir);
1312	}
1313}
1314
1315/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316 * arm_iommu_sync_sg_for_cpu
1317 * @dev: valid struct device pointer
1318 * @sg: list of buffers
1319 * @nents: number of buffers to map (returned from dma_map_sg)
1320 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1321 */
1322static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1323			struct scatterlist *sg,
1324			int nents, enum dma_data_direction dir)
1325{
1326	struct scatterlist *s;
1327	int i;
1328
1329	if (dev->dma_coherent)
1330		return;
1331
1332	for_each_sg(sg, s, nents, i)
1333		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1334
1335}
1336
1337/**
1338 * arm_iommu_sync_sg_for_device
1339 * @dev: valid struct device pointer
1340 * @sg: list of buffers
1341 * @nents: number of buffers to map (returned from dma_map_sg)
1342 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343 */
1344static void arm_iommu_sync_sg_for_device(struct device *dev,
1345			struct scatterlist *sg,
1346			int nents, enum dma_data_direction dir)
1347{
1348	struct scatterlist *s;
1349	int i;
1350
1351	if (dev->dma_coherent)
1352		return;
1353
1354	for_each_sg(sg, s, nents, i)
1355		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1356}
1357
 
1358/**
1359 * arm_iommu_map_page
1360 * @dev: valid struct device pointer
1361 * @page: page that buffer resides in
1362 * @offset: offset into page for start of buffer
1363 * @size: size of buffer to map
1364 * @dir: DMA transfer direction
1365 *
1366 * IOMMU aware version of arm_dma_map_page()
1367 */
1368static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1369	     unsigned long offset, size_t size, enum dma_data_direction dir,
1370	     unsigned long attrs)
1371{
1372	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1373	dma_addr_t dma_addr;
1374	int ret, prot, len = PAGE_ALIGN(size + offset);
1375
1376	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1377		__dma_page_cpu_to_dev(page, offset, size, dir);
1378
1379	dma_addr = __alloc_iova(mapping, len);
1380	if (dma_addr == DMA_MAPPING_ERROR)
1381		return dma_addr;
1382
1383	prot = __dma_info_to_prot(dir, attrs);
1384
1385	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1386			prot, GFP_KERNEL);
1387	if (ret < 0)
1388		goto fail;
1389
1390	return dma_addr + offset;
1391fail:
1392	__free_iova(mapping, dma_addr, len);
1393	return DMA_MAPPING_ERROR;
1394}
1395
1396/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397 * arm_iommu_unmap_page
1398 * @dev: valid struct device pointer
1399 * @handle: DMA address of buffer
1400 * @size: size of buffer (same as passed to dma_map_page)
1401 * @dir: DMA transfer direction (same as passed to dma_map_page)
1402 *
1403 * IOMMU aware version of arm_dma_unmap_page()
1404 */
1405static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1406		size_t size, enum dma_data_direction dir, unsigned long attrs)
1407{
1408	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1409	dma_addr_t iova = handle & PAGE_MASK;
1410	struct page *page;
1411	int offset = handle & ~PAGE_MASK;
1412	int len = PAGE_ALIGN(size + offset);
1413
1414	if (!iova)
1415		return;
1416
1417	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1418		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1419		__dma_page_dev_to_cpu(page, offset, size, dir);
1420	}
1421
1422	iommu_unmap(mapping->domain, iova, len);
1423	__free_iova(mapping, iova, len);
1424}
1425
1426/**
1427 * arm_iommu_map_resource - map a device resource for DMA
1428 * @dev: valid struct device pointer
1429 * @phys_addr: physical address of resource
1430 * @size: size of resource to map
1431 * @dir: DMA transfer direction
1432 */
1433static dma_addr_t arm_iommu_map_resource(struct device *dev,
1434		phys_addr_t phys_addr, size_t size,
1435		enum dma_data_direction dir, unsigned long attrs)
1436{
1437	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438	dma_addr_t dma_addr;
1439	int ret, prot;
1440	phys_addr_t addr = phys_addr & PAGE_MASK;
1441	unsigned int offset = phys_addr & ~PAGE_MASK;
1442	size_t len = PAGE_ALIGN(size + offset);
1443
1444	dma_addr = __alloc_iova(mapping, len);
1445	if (dma_addr == DMA_MAPPING_ERROR)
1446		return dma_addr;
1447
1448	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1449
1450	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1451	if (ret < 0)
1452		goto fail;
1453
1454	return dma_addr + offset;
1455fail:
1456	__free_iova(mapping, dma_addr, len);
1457	return DMA_MAPPING_ERROR;
1458}
1459
1460/**
1461 * arm_iommu_unmap_resource - unmap a device DMA resource
1462 * @dev: valid struct device pointer
1463 * @dma_handle: DMA address to resource
1464 * @size: size of resource to map
1465 * @dir: DMA transfer direction
1466 */
1467static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1468		size_t size, enum dma_data_direction dir,
1469		unsigned long attrs)
1470{
1471	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1472	dma_addr_t iova = dma_handle & PAGE_MASK;
1473	unsigned int offset = dma_handle & ~PAGE_MASK;
1474	size_t len = PAGE_ALIGN(size + offset);
1475
1476	if (!iova)
1477		return;
1478
1479	iommu_unmap(mapping->domain, iova, len);
1480	__free_iova(mapping, iova, len);
1481}
1482
1483static void arm_iommu_sync_single_for_cpu(struct device *dev,
1484		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1485{
1486	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1487	dma_addr_t iova = handle & PAGE_MASK;
1488	struct page *page;
1489	unsigned int offset = handle & ~PAGE_MASK;
1490
1491	if (dev->dma_coherent || !iova)
1492		return;
1493
1494	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1495	__dma_page_dev_to_cpu(page, offset, size, dir);
1496}
1497
1498static void arm_iommu_sync_single_for_device(struct device *dev,
1499		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1500{
1501	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1502	dma_addr_t iova = handle & PAGE_MASK;
1503	struct page *page;
1504	unsigned int offset = handle & ~PAGE_MASK;
1505
1506	if (dev->dma_coherent || !iova)
1507		return;
1508
1509	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1510	__dma_page_cpu_to_dev(page, offset, size, dir);
1511}
1512
1513static const struct dma_map_ops iommu_ops = {
1514	.alloc		= arm_iommu_alloc_attrs,
1515	.free		= arm_iommu_free_attrs,
1516	.mmap		= arm_iommu_mmap_attrs,
1517	.get_sgtable	= arm_iommu_get_sgtable,
1518
1519	.map_page		= arm_iommu_map_page,
1520	.unmap_page		= arm_iommu_unmap_page,
1521	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1522	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1523
1524	.map_sg			= arm_iommu_map_sg,
1525	.unmap_sg		= arm_iommu_unmap_sg,
1526	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1527	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1528
1529	.map_resource		= arm_iommu_map_resource,
1530	.unmap_resource		= arm_iommu_unmap_resource,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531};
1532
1533/**
1534 * arm_iommu_create_mapping
1535 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1536 * @base: start address of the valid IO address space
1537 * @size: maximum size of the valid IO address space
1538 *
1539 * Creates a mapping structure which holds information about used/unused
1540 * IO address ranges, which is required to perform memory allocation and
1541 * mapping with IOMMU aware functions.
1542 *
1543 * The client device need to be attached to the mapping with
1544 * arm_iommu_attach_device function.
1545 */
1546struct dma_iommu_mapping *
1547arm_iommu_create_mapping(const struct bus_type *bus, dma_addr_t base, u64 size)
1548{
1549	unsigned int bits = size >> PAGE_SHIFT;
1550	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1551	struct dma_iommu_mapping *mapping;
1552	int extensions = 1;
1553	int err = -ENOMEM;
1554
1555	/* currently only 32-bit DMA address space is supported */
1556	if (size > DMA_BIT_MASK(32) + 1)
1557		return ERR_PTR(-ERANGE);
1558
1559	if (!bitmap_size)
1560		return ERR_PTR(-EINVAL);
1561
1562	if (bitmap_size > PAGE_SIZE) {
1563		extensions = bitmap_size / PAGE_SIZE;
1564		bitmap_size = PAGE_SIZE;
1565	}
1566
1567	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1568	if (!mapping)
1569		goto err;
1570
1571	mapping->bitmap_size = bitmap_size;
1572	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1573				   GFP_KERNEL);
1574	if (!mapping->bitmaps)
1575		goto err2;
1576
1577	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1578	if (!mapping->bitmaps[0])
1579		goto err3;
1580
1581	mapping->nr_bitmaps = 1;
1582	mapping->extensions = extensions;
1583	mapping->base = base;
1584	mapping->bits = BITS_PER_BYTE * bitmap_size;
1585
1586	spin_lock_init(&mapping->lock);
1587
1588	mapping->domain = iommu_domain_alloc(bus);
1589	if (!mapping->domain)
1590		goto err4;
1591
1592	kref_init(&mapping->kref);
1593	return mapping;
1594err4:
1595	kfree(mapping->bitmaps[0]);
1596err3:
1597	kfree(mapping->bitmaps);
1598err2:
1599	kfree(mapping);
1600err:
1601	return ERR_PTR(err);
1602}
1603EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1604
1605static void release_iommu_mapping(struct kref *kref)
1606{
1607	int i;
1608	struct dma_iommu_mapping *mapping =
1609		container_of(kref, struct dma_iommu_mapping, kref);
1610
1611	iommu_domain_free(mapping->domain);
1612	for (i = 0; i < mapping->nr_bitmaps; i++)
1613		kfree(mapping->bitmaps[i]);
1614	kfree(mapping->bitmaps);
1615	kfree(mapping);
1616}
1617
1618static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1619{
1620	int next_bitmap;
1621
1622	if (mapping->nr_bitmaps >= mapping->extensions)
1623		return -EINVAL;
1624
1625	next_bitmap = mapping->nr_bitmaps;
1626	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1627						GFP_ATOMIC);
1628	if (!mapping->bitmaps[next_bitmap])
1629		return -ENOMEM;
1630
1631	mapping->nr_bitmaps++;
1632
1633	return 0;
1634}
1635
1636void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1637{
1638	if (mapping)
1639		kref_put(&mapping->kref, release_iommu_mapping);
1640}
1641EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1642
1643static int __arm_iommu_attach_device(struct device *dev,
1644				     struct dma_iommu_mapping *mapping)
1645{
1646	int err;
1647
1648	err = iommu_attach_device(mapping->domain, dev);
1649	if (err)
1650		return err;
1651
1652	kref_get(&mapping->kref);
1653	to_dma_iommu_mapping(dev) = mapping;
1654
1655	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1656	return 0;
1657}
1658
1659/**
1660 * arm_iommu_attach_device
1661 * @dev: valid struct device pointer
1662 * @mapping: io address space mapping structure (returned from
1663 *	arm_iommu_create_mapping)
1664 *
1665 * Attaches specified io address space mapping to the provided device.
1666 * This replaces the dma operations (dma_map_ops pointer) with the
1667 * IOMMU aware version.
1668 *
1669 * More than one client might be attached to the same io address space
1670 * mapping.
1671 */
1672int arm_iommu_attach_device(struct device *dev,
1673			    struct dma_iommu_mapping *mapping)
1674{
1675	int err;
1676
1677	err = __arm_iommu_attach_device(dev, mapping);
1678	if (err)
1679		return err;
1680
1681	set_dma_ops(dev, &iommu_ops);
1682	return 0;
1683}
1684EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1685
1686/**
1687 * arm_iommu_detach_device
1688 * @dev: valid struct device pointer
1689 *
1690 * Detaches the provided device from a previously attached map.
1691 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1692 */
1693void arm_iommu_detach_device(struct device *dev)
1694{
1695	struct dma_iommu_mapping *mapping;
1696
1697	mapping = to_dma_iommu_mapping(dev);
1698	if (!mapping) {
1699		dev_warn(dev, "Not attached\n");
1700		return;
1701	}
1702
1703	iommu_detach_device(mapping->domain, dev);
1704	kref_put(&mapping->kref, release_iommu_mapping);
1705	to_dma_iommu_mapping(dev) = NULL;
1706	set_dma_ops(dev, NULL);
1707
1708	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1709}
1710EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1711
1712static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1713				    bool coherent)
 
 
 
 
 
1714{
1715	struct dma_iommu_mapping *mapping;
1716
 
 
 
1717	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1718	if (IS_ERR(mapping)) {
1719		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1720				size, dev_name(dev));
1721		return;
1722	}
1723
1724	if (__arm_iommu_attach_device(dev, mapping)) {
1725		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1726				dev_name(dev));
1727		arm_iommu_release_mapping(mapping);
1728		return;
1729	}
1730
1731	set_dma_ops(dev, &iommu_ops);
1732}
1733
1734static void arm_teardown_iommu_dma_ops(struct device *dev)
1735{
1736	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1737
1738	if (!mapping)
1739		return;
1740
1741	arm_iommu_detach_device(dev);
1742	arm_iommu_release_mapping(mapping);
1743}
1744
1745#else
1746
1747static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1748				    bool coherent)
1749{
 
1750}
1751
1752static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1753
 
 
1754#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
1755
1756void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1757			bool coherent)
1758{
1759	/*
1760	 * Due to legacy code that sets the ->dma_coherent flag from a bus
1761	 * notifier we can't just assign coherent to the ->dma_coherent flag
1762	 * here, but instead have to make sure we only set but never clear it
1763	 * for now.
1764	 */
1765	if (coherent)
1766		dev->dma_coherent = true;
1767
1768	/*
1769	 * Don't override the dma_ops if they have already been set. Ideally
1770	 * this should be the only location where dma_ops are set, remove this
1771	 * check when all other callers of set_dma_ops will have disappeared.
1772	 */
1773	if (dev->dma_ops)
1774		return;
1775
1776	if (device_iommu_mapped(dev))
1777		arm_setup_iommu_dma_ops(dev, dma_base, size, coherent);
 
 
1778
1779	xen_setup_dma_ops(dev);
 
 
 
 
 
1780	dev->archdata.dma_ops_setup = true;
1781}
1782
1783void arch_teardown_dma_ops(struct device *dev)
1784{
1785	if (!dev->archdata.dma_ops_setup)
1786		return;
1787
1788	arm_teardown_iommu_dma_ops(dev);
1789	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1790	set_dma_ops(dev, NULL);
1791}
1792
 
1793void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1794		enum dma_data_direction dir)
1795{
1796	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1797			      size, dir);
1798}
1799
1800void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1801		enum dma_data_direction dir)
1802{
1803	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1804			      size, dir);
1805}
1806
1807void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1808		gfp_t gfp, unsigned long attrs)
1809{
1810	return __dma_alloc(dev, size, dma_handle, gfp,
1811			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1812			   attrs, __builtin_return_address(0));
1813}
1814
1815void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1816		dma_addr_t dma_handle, unsigned long attrs)
1817{
1818	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1819}