Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmstat.c
   4 *
   5 *  Manages VM statistics
   6 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   7 *
   8 *  zoned VM statistics
   9 *  Copyright (C) 2006 Silicon Graphics, Inc.,
  10 *		Christoph Lameter <christoph@lameter.com>
  11 *  Copyright (C) 2008-2014 Christoph Lameter
  12 */
  13#include <linux/fs.h>
  14#include <linux/mm.h>
  15#include <linux/err.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/cpu.h>
  19#include <linux/cpumask.h>
  20#include <linux/vmstat.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/debugfs.h>
  24#include <linux/sched.h>
  25#include <linux/math64.h>
  26#include <linux/writeback.h>
  27#include <linux/compaction.h>
  28#include <linux/mm_inline.h>
  29#include <linux/page_ext.h>
  30#include <linux/page_owner.h>
  31
  32#include "internal.h"
  33
  34#define NUMA_STATS_THRESHOLD (U16_MAX - 2)
  35
  36#ifdef CONFIG_NUMA
  37int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
  38
  39/* zero numa counters within a zone */
  40static void zero_zone_numa_counters(struct zone *zone)
  41{
  42	int item, cpu;
  43
  44	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
  45		atomic_long_set(&zone->vm_numa_stat[item], 0);
  46		for_each_online_cpu(cpu)
  47			per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
  48						= 0;
 
  49	}
  50}
  51
  52/* zero numa counters of all the populated zones */
  53static void zero_zones_numa_counters(void)
  54{
  55	struct zone *zone;
  56
  57	for_each_populated_zone(zone)
  58		zero_zone_numa_counters(zone);
  59}
  60
  61/* zero global numa counters */
  62static void zero_global_numa_counters(void)
  63{
  64	int item;
  65
  66	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
  67		atomic_long_set(&vm_numa_stat[item], 0);
  68}
  69
  70static void invalid_numa_statistics(void)
  71{
  72	zero_zones_numa_counters();
  73	zero_global_numa_counters();
  74}
  75
  76static DEFINE_MUTEX(vm_numa_stat_lock);
  77
  78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
  79		void *buffer, size_t *length, loff_t *ppos)
  80{
  81	int ret, oldval;
  82
  83	mutex_lock(&vm_numa_stat_lock);
  84	if (write)
  85		oldval = sysctl_vm_numa_stat;
  86	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  87	if (ret || !write)
  88		goto out;
  89
  90	if (oldval == sysctl_vm_numa_stat)
  91		goto out;
  92	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
  93		static_branch_enable(&vm_numa_stat_key);
  94		pr_info("enable numa statistics\n");
  95	} else {
  96		static_branch_disable(&vm_numa_stat_key);
  97		invalid_numa_statistics();
  98		pr_info("disable numa statistics, and clear numa counters\n");
  99	}
 100
 101out:
 102	mutex_unlock(&vm_numa_stat_lock);
 103	return ret;
 104}
 105#endif
 106
 107#ifdef CONFIG_VM_EVENT_COUNTERS
 108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
 109EXPORT_PER_CPU_SYMBOL(vm_event_states);
 110
 111static void sum_vm_events(unsigned long *ret)
 112{
 113	int cpu;
 114	int i;
 115
 116	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
 117
 118	for_each_online_cpu(cpu) {
 119		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
 120
 121		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 122			ret[i] += this->event[i];
 123	}
 124}
 125
 126/*
 127 * Accumulate the vm event counters across all CPUs.
 128 * The result is unavoidably approximate - it can change
 129 * during and after execution of this function.
 130*/
 131void all_vm_events(unsigned long *ret)
 132{
 133	get_online_cpus();
 134	sum_vm_events(ret);
 135	put_online_cpus();
 136}
 137EXPORT_SYMBOL_GPL(all_vm_events);
 138
 139/*
 140 * Fold the foreign cpu events into our own.
 141 *
 142 * This is adding to the events on one processor
 143 * but keeps the global counts constant.
 144 */
 145void vm_events_fold_cpu(int cpu)
 146{
 147	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
 148	int i;
 149
 150	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
 151		count_vm_events(i, fold_state->event[i]);
 152		fold_state->event[i] = 0;
 153	}
 154}
 155
 156#endif /* CONFIG_VM_EVENT_COUNTERS */
 157
 158/*
 159 * Manage combined zone based / global counters
 160 *
 161 * vm_stat contains the global counters
 162 */
 163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
 164atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
 165atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
 
 166EXPORT_SYMBOL(vm_zone_stat);
 167EXPORT_SYMBOL(vm_numa_stat);
 168EXPORT_SYMBOL(vm_node_stat);
 169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170#ifdef CONFIG_SMP
 171
 172int calculate_pressure_threshold(struct zone *zone)
 173{
 174	int threshold;
 175	int watermark_distance;
 176
 177	/*
 178	 * As vmstats are not up to date, there is drift between the estimated
 179	 * and real values. For high thresholds and a high number of CPUs, it
 180	 * is possible for the min watermark to be breached while the estimated
 181	 * value looks fine. The pressure threshold is a reduced value such
 182	 * that even the maximum amount of drift will not accidentally breach
 183	 * the min watermark
 184	 */
 185	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 186	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 187
 188	/*
 189	 * Maximum threshold is 125
 190	 */
 191	threshold = min(125, threshold);
 192
 193	return threshold;
 194}
 195
 196int calculate_normal_threshold(struct zone *zone)
 197{
 198	int threshold;
 199	int mem;	/* memory in 128 MB units */
 200
 201	/*
 202	 * The threshold scales with the number of processors and the amount
 203	 * of memory per zone. More memory means that we can defer updates for
 204	 * longer, more processors could lead to more contention.
 205 	 * fls() is used to have a cheap way of logarithmic scaling.
 206	 *
 207	 * Some sample thresholds:
 208	 *
 209	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
 210	 * ------------------------------------------------------------------
 211	 * 8		1		1	0.9-1 GB	4
 212	 * 16		2		2	0.9-1 GB	4
 213	 * 20 		2		2	1-2 GB		5
 214	 * 24		2		2	2-4 GB		6
 215	 * 28		2		2	4-8 GB		7
 216	 * 32		2		2	8-16 GB		8
 217	 * 4		2		2	<128M		1
 218	 * 30		4		3	2-4 GB		5
 219	 * 48		4		3	8-16 GB		8
 220	 * 32		8		4	1-2 GB		4
 221	 * 32		8		4	0.9-1GB		4
 222	 * 10		16		5	<128M		1
 223	 * 40		16		5	900M		4
 224	 * 70		64		7	2-4 GB		5
 225	 * 84		64		7	4-8 GB		6
 226	 * 108		512		9	4-8 GB		6
 227	 * 125		1024		10	8-16 GB		8
 228	 * 125		1024		10	16-32 GB	9
 229	 */
 230
 231	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
 232
 233	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 234
 235	/*
 236	 * Maximum threshold is 125
 237	 */
 238	threshold = min(125, threshold);
 239
 240	return threshold;
 241}
 242
 243/*
 244 * Refresh the thresholds for each zone.
 245 */
 246void refresh_zone_stat_thresholds(void)
 247{
 248	struct pglist_data *pgdat;
 249	struct zone *zone;
 250	int cpu;
 251	int threshold;
 252
 253	/* Zero current pgdat thresholds */
 254	for_each_online_pgdat(pgdat) {
 255		for_each_online_cpu(cpu) {
 256			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
 257		}
 258	}
 259
 260	for_each_populated_zone(zone) {
 261		struct pglist_data *pgdat = zone->zone_pgdat;
 262		unsigned long max_drift, tolerate_drift;
 263
 264		threshold = calculate_normal_threshold(zone);
 265
 266		for_each_online_cpu(cpu) {
 267			int pgdat_threshold;
 268
 269			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 270							= threshold;
 271
 272			/* Base nodestat threshold on the largest populated zone. */
 273			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
 274			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
 275				= max(threshold, pgdat_threshold);
 276		}
 277
 278		/*
 279		 * Only set percpu_drift_mark if there is a danger that
 280		 * NR_FREE_PAGES reports the low watermark is ok when in fact
 281		 * the min watermark could be breached by an allocation
 282		 */
 283		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 284		max_drift = num_online_cpus() * threshold;
 285		if (max_drift > tolerate_drift)
 286			zone->percpu_drift_mark = high_wmark_pages(zone) +
 287					max_drift;
 288	}
 289}
 290
 291void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 292				int (*calculate_pressure)(struct zone *))
 293{
 294	struct zone *zone;
 295	int cpu;
 296	int threshold;
 297	int i;
 298
 299	for (i = 0; i < pgdat->nr_zones; i++) {
 300		zone = &pgdat->node_zones[i];
 301		if (!zone->percpu_drift_mark)
 302			continue;
 303
 304		threshold = (*calculate_pressure)(zone);
 305		for_each_online_cpu(cpu)
 306			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 307							= threshold;
 308	}
 309}
 310
 311/*
 312 * For use when we know that interrupts are disabled,
 313 * or when we know that preemption is disabled and that
 314 * particular counter cannot be updated from interrupt context.
 315 */
 316void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 317			   long delta)
 318{
 319	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 320	s8 __percpu *p = pcp->vm_stat_diff + item;
 321	long x;
 322	long t;
 323
 
 
 
 
 
 
 
 
 
 324	x = delta + __this_cpu_read(*p);
 325
 326	t = __this_cpu_read(pcp->stat_threshold);
 327
 328	if (unlikely(x > t || x < -t)) {
 329		zone_page_state_add(x, zone, item);
 330		x = 0;
 331	}
 332	__this_cpu_write(*p, x);
 
 
 333}
 334EXPORT_SYMBOL(__mod_zone_page_state);
 335
 336void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 337				long delta)
 338{
 339	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 340	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 341	long x;
 342	long t;
 343
 344	if (vmstat_item_in_bytes(item)) {
 
 
 
 
 
 
 345		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 346		delta >>= PAGE_SHIFT;
 347	}
 348
 
 
 
 349	x = delta + __this_cpu_read(*p);
 350
 351	t = __this_cpu_read(pcp->stat_threshold);
 352
 353	if (unlikely(x > t || x < -t)) {
 354		node_page_state_add(x, pgdat, item);
 355		x = 0;
 356	}
 357	__this_cpu_write(*p, x);
 
 
 358}
 359EXPORT_SYMBOL(__mod_node_page_state);
 360
 361/*
 362 * Optimized increment and decrement functions.
 363 *
 364 * These are only for a single page and therefore can take a struct page *
 365 * argument instead of struct zone *. This allows the inclusion of the code
 366 * generated for page_zone(page) into the optimized functions.
 367 *
 368 * No overflow check is necessary and therefore the differential can be
 369 * incremented or decremented in place which may allow the compilers to
 370 * generate better code.
 371 * The increment or decrement is known and therefore one boundary check can
 372 * be omitted.
 373 *
 374 * NOTE: These functions are very performance sensitive. Change only
 375 * with care.
 376 *
 377 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 378 * However, the code must first determine the differential location in a zone
 379 * based on the processor number and then inc/dec the counter. There is no
 380 * guarantee without disabling preemption that the processor will not change
 381 * in between and therefore the atomicity vs. interrupt cannot be exploited
 382 * in a useful way here.
 383 */
 384void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 385{
 386	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 387	s8 __percpu *p = pcp->vm_stat_diff + item;
 388	s8 v, t;
 389
 
 
 
 390	v = __this_cpu_inc_return(*p);
 391	t = __this_cpu_read(pcp->stat_threshold);
 392	if (unlikely(v > t)) {
 393		s8 overstep = t >> 1;
 394
 395		zone_page_state_add(v + overstep, zone, item);
 396		__this_cpu_write(*p, -overstep);
 397	}
 
 
 398}
 399
 400void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 401{
 402	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 403	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 404	s8 v, t;
 405
 406	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 407
 
 
 
 408	v = __this_cpu_inc_return(*p);
 409	t = __this_cpu_read(pcp->stat_threshold);
 410	if (unlikely(v > t)) {
 411		s8 overstep = t >> 1;
 412
 413		node_page_state_add(v + overstep, pgdat, item);
 414		__this_cpu_write(*p, -overstep);
 415	}
 
 
 416}
 417
 418void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 419{
 420	__inc_zone_state(page_zone(page), item);
 421}
 422EXPORT_SYMBOL(__inc_zone_page_state);
 423
 424void __inc_node_page_state(struct page *page, enum node_stat_item item)
 425{
 426	__inc_node_state(page_pgdat(page), item);
 427}
 428EXPORT_SYMBOL(__inc_node_page_state);
 429
 430void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 431{
 432	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 433	s8 __percpu *p = pcp->vm_stat_diff + item;
 434	s8 v, t;
 435
 
 
 
 436	v = __this_cpu_dec_return(*p);
 437	t = __this_cpu_read(pcp->stat_threshold);
 438	if (unlikely(v < - t)) {
 439		s8 overstep = t >> 1;
 440
 441		zone_page_state_add(v - overstep, zone, item);
 442		__this_cpu_write(*p, overstep);
 443	}
 
 
 444}
 445
 446void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 447{
 448	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 449	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 450	s8 v, t;
 451
 452	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 453
 
 
 
 454	v = __this_cpu_dec_return(*p);
 455	t = __this_cpu_read(pcp->stat_threshold);
 456	if (unlikely(v < - t)) {
 457		s8 overstep = t >> 1;
 458
 459		node_page_state_add(v - overstep, pgdat, item);
 460		__this_cpu_write(*p, overstep);
 461	}
 
 
 462}
 463
 464void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 465{
 466	__dec_zone_state(page_zone(page), item);
 467}
 468EXPORT_SYMBOL(__dec_zone_page_state);
 469
 470void __dec_node_page_state(struct page *page, enum node_stat_item item)
 471{
 472	__dec_node_state(page_pgdat(page), item);
 473}
 474EXPORT_SYMBOL(__dec_node_page_state);
 475
 476#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 477/*
 478 * If we have cmpxchg_local support then we do not need to incur the overhead
 479 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 480 *
 481 * mod_state() modifies the zone counter state through atomic per cpu
 482 * operations.
 483 *
 484 * Overstep mode specifies how overstep should handled:
 485 *     0       No overstepping
 486 *     1       Overstepping half of threshold
 487 *     -1      Overstepping minus half of threshold
 488*/
 489static inline void mod_zone_state(struct zone *zone,
 490       enum zone_stat_item item, long delta, int overstep_mode)
 491{
 492	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 493	s8 __percpu *p = pcp->vm_stat_diff + item;
 494	long o, n, t, z;
 495
 496	do {
 497		z = 0;  /* overflow to zone counters */
 498
 499		/*
 500		 * The fetching of the stat_threshold is racy. We may apply
 501		 * a counter threshold to the wrong the cpu if we get
 502		 * rescheduled while executing here. However, the next
 503		 * counter update will apply the threshold again and
 504		 * therefore bring the counter under the threshold again.
 505		 *
 506		 * Most of the time the thresholds are the same anyways
 507		 * for all cpus in a zone.
 508		 */
 509		t = this_cpu_read(pcp->stat_threshold);
 510
 511		o = this_cpu_read(*p);
 512		n = delta + o;
 513
 514		if (n > t || n < -t) {
 515			int os = overstep_mode * (t >> 1) ;
 516
 517			/* Overflow must be added to zone counters */
 518			z = n + os;
 519			n = -os;
 520		}
 521	} while (this_cpu_cmpxchg(*p, o, n) != o);
 522
 523	if (z)
 524		zone_page_state_add(z, zone, item);
 525}
 526
 527void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 528			 long delta)
 529{
 530	mod_zone_state(zone, item, delta, 0);
 531}
 532EXPORT_SYMBOL(mod_zone_page_state);
 533
 534void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 535{
 536	mod_zone_state(page_zone(page), item, 1, 1);
 537}
 538EXPORT_SYMBOL(inc_zone_page_state);
 539
 540void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 541{
 542	mod_zone_state(page_zone(page), item, -1, -1);
 543}
 544EXPORT_SYMBOL(dec_zone_page_state);
 545
 546static inline void mod_node_state(struct pglist_data *pgdat,
 547       enum node_stat_item item, int delta, int overstep_mode)
 548{
 549	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 550	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 551	long o, n, t, z;
 552
 553	if (vmstat_item_in_bytes(item)) {
 
 
 
 
 
 
 554		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 555		delta >>= PAGE_SHIFT;
 556	}
 557
 558	do {
 559		z = 0;  /* overflow to node counters */
 560
 561		/*
 562		 * The fetching of the stat_threshold is racy. We may apply
 563		 * a counter threshold to the wrong the cpu if we get
 564		 * rescheduled while executing here. However, the next
 565		 * counter update will apply the threshold again and
 566		 * therefore bring the counter under the threshold again.
 567		 *
 568		 * Most of the time the thresholds are the same anyways
 569		 * for all cpus in a node.
 570		 */
 571		t = this_cpu_read(pcp->stat_threshold);
 572
 573		o = this_cpu_read(*p);
 574		n = delta + o;
 575
 576		if (n > t || n < -t) {
 577			int os = overstep_mode * (t >> 1) ;
 578
 579			/* Overflow must be added to node counters */
 580			z = n + os;
 581			n = -os;
 582		}
 583	} while (this_cpu_cmpxchg(*p, o, n) != o);
 584
 585	if (z)
 586		node_page_state_add(z, pgdat, item);
 587}
 588
 589void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 590					long delta)
 591{
 592	mod_node_state(pgdat, item, delta, 0);
 593}
 594EXPORT_SYMBOL(mod_node_page_state);
 595
 596void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 597{
 598	mod_node_state(pgdat, item, 1, 1);
 599}
 600
 601void inc_node_page_state(struct page *page, enum node_stat_item item)
 602{
 603	mod_node_state(page_pgdat(page), item, 1, 1);
 604}
 605EXPORT_SYMBOL(inc_node_page_state);
 606
 607void dec_node_page_state(struct page *page, enum node_stat_item item)
 608{
 609	mod_node_state(page_pgdat(page), item, -1, -1);
 610}
 611EXPORT_SYMBOL(dec_node_page_state);
 612#else
 613/*
 614 * Use interrupt disable to serialize counter updates
 615 */
 616void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 617			 long delta)
 618{
 619	unsigned long flags;
 620
 621	local_irq_save(flags);
 622	__mod_zone_page_state(zone, item, delta);
 623	local_irq_restore(flags);
 624}
 625EXPORT_SYMBOL(mod_zone_page_state);
 626
 627void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 628{
 629	unsigned long flags;
 630	struct zone *zone;
 631
 632	zone = page_zone(page);
 633	local_irq_save(flags);
 634	__inc_zone_state(zone, item);
 635	local_irq_restore(flags);
 636}
 637EXPORT_SYMBOL(inc_zone_page_state);
 638
 639void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 640{
 641	unsigned long flags;
 642
 643	local_irq_save(flags);
 644	__dec_zone_page_state(page, item);
 645	local_irq_restore(flags);
 646}
 647EXPORT_SYMBOL(dec_zone_page_state);
 648
 649void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 650{
 651	unsigned long flags;
 652
 653	local_irq_save(flags);
 654	__inc_node_state(pgdat, item);
 655	local_irq_restore(flags);
 656}
 657EXPORT_SYMBOL(inc_node_state);
 658
 659void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 660					long delta)
 661{
 662	unsigned long flags;
 663
 664	local_irq_save(flags);
 665	__mod_node_page_state(pgdat, item, delta);
 666	local_irq_restore(flags);
 667}
 668EXPORT_SYMBOL(mod_node_page_state);
 669
 670void inc_node_page_state(struct page *page, enum node_stat_item item)
 671{
 672	unsigned long flags;
 673	struct pglist_data *pgdat;
 674
 675	pgdat = page_pgdat(page);
 676	local_irq_save(flags);
 677	__inc_node_state(pgdat, item);
 678	local_irq_restore(flags);
 679}
 680EXPORT_SYMBOL(inc_node_page_state);
 681
 682void dec_node_page_state(struct page *page, enum node_stat_item item)
 683{
 684	unsigned long flags;
 685
 686	local_irq_save(flags);
 687	__dec_node_page_state(page, item);
 688	local_irq_restore(flags);
 689}
 690EXPORT_SYMBOL(dec_node_page_state);
 691#endif
 692
 693/*
 694 * Fold a differential into the global counters.
 695 * Returns the number of counters updated.
 696 */
 697#ifdef CONFIG_NUMA
 698static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
 699{
 700	int i;
 701	int changes = 0;
 702
 703	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 704		if (zone_diff[i]) {
 705			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 706			changes++;
 707	}
 708
 709	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 710		if (numa_diff[i]) {
 711			atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
 712			changes++;
 713	}
 714
 715	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 716		if (node_diff[i]) {
 717			atomic_long_add(node_diff[i], &vm_node_stat[i]);
 718			changes++;
 719	}
 720	return changes;
 721}
 722#else
 723static int fold_diff(int *zone_diff, int *node_diff)
 724{
 725	int i;
 726	int changes = 0;
 727
 728	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 729		if (zone_diff[i]) {
 730			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 731			changes++;
 732	}
 733
 734	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 735		if (node_diff[i]) {
 736			atomic_long_add(node_diff[i], &vm_node_stat[i]);
 737			changes++;
 738	}
 739	return changes;
 740}
 741#endif /* CONFIG_NUMA */
 742
 743/*
 744 * Update the zone counters for the current cpu.
 745 *
 746 * Note that refresh_cpu_vm_stats strives to only access
 747 * node local memory. The per cpu pagesets on remote zones are placed
 748 * in the memory local to the processor using that pageset. So the
 749 * loop over all zones will access a series of cachelines local to
 750 * the processor.
 751 *
 752 * The call to zone_page_state_add updates the cachelines with the
 753 * statistics in the remote zone struct as well as the global cachelines
 754 * with the global counters. These could cause remote node cache line
 755 * bouncing and will have to be only done when necessary.
 756 *
 757 * The function returns the number of global counters updated.
 758 */
 759static int refresh_cpu_vm_stats(bool do_pagesets)
 760{
 761	struct pglist_data *pgdat;
 762	struct zone *zone;
 763	int i;
 764	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 765#ifdef CONFIG_NUMA
 766	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
 767#endif
 768	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 769	int changes = 0;
 770
 771	for_each_populated_zone(zone) {
 772		struct per_cpu_pageset __percpu *p = zone->pageset;
 
 
 
 773
 774		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 775			int v;
 776
 777			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 778			if (v) {
 779
 780				atomic_long_add(v, &zone->vm_stat[i]);
 781				global_zone_diff[i] += v;
 782#ifdef CONFIG_NUMA
 783				/* 3 seconds idle till flush */
 784				__this_cpu_write(p->expire, 3);
 785#endif
 786			}
 787		}
 788#ifdef CONFIG_NUMA
 789		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
 790			int v;
 791
 792			v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
 793			if (v) {
 794
 795				atomic_long_add(v, &zone->vm_numa_stat[i]);
 796				global_numa_diff[i] += v;
 797				__this_cpu_write(p->expire, 3);
 798			}
 799		}
 800
 801		if (do_pagesets) {
 802			cond_resched();
 803			/*
 804			 * Deal with draining the remote pageset of this
 805			 * processor
 806			 *
 807			 * Check if there are pages remaining in this pageset
 808			 * if not then there is nothing to expire.
 809			 */
 810			if (!__this_cpu_read(p->expire) ||
 811			       !__this_cpu_read(p->pcp.count))
 812				continue;
 813
 814			/*
 815			 * We never drain zones local to this processor.
 816			 */
 817			if (zone_to_nid(zone) == numa_node_id()) {
 818				__this_cpu_write(p->expire, 0);
 819				continue;
 820			}
 821
 822			if (__this_cpu_dec_return(p->expire))
 823				continue;
 824
 825			if (__this_cpu_read(p->pcp.count)) {
 826				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 827				changes++;
 828			}
 829		}
 830#endif
 831	}
 832
 833	for_each_online_pgdat(pgdat) {
 834		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
 835
 836		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
 837			int v;
 838
 839			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
 840			if (v) {
 841				atomic_long_add(v, &pgdat->vm_stat[i]);
 842				global_node_diff[i] += v;
 843			}
 844		}
 845	}
 846
 847#ifdef CONFIG_NUMA
 848	changes += fold_diff(global_zone_diff, global_numa_diff,
 849			     global_node_diff);
 850#else
 851	changes += fold_diff(global_zone_diff, global_node_diff);
 852#endif
 853	return changes;
 854}
 855
 856/*
 857 * Fold the data for an offline cpu into the global array.
 858 * There cannot be any access by the offline cpu and therefore
 859 * synchronization is simplified.
 860 */
 861void cpu_vm_stats_fold(int cpu)
 862{
 863	struct pglist_data *pgdat;
 864	struct zone *zone;
 865	int i;
 866	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 867#ifdef CONFIG_NUMA
 868	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
 869#endif
 870	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 871
 872	for_each_populated_zone(zone) {
 873		struct per_cpu_pageset *p;
 874
 875		p = per_cpu_ptr(zone->pageset, cpu);
 876
 877		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 878			if (p->vm_stat_diff[i]) {
 879				int v;
 880
 881				v = p->vm_stat_diff[i];
 882				p->vm_stat_diff[i] = 0;
 883				atomic_long_add(v, &zone->vm_stat[i]);
 884				global_zone_diff[i] += v;
 885			}
 886
 887#ifdef CONFIG_NUMA
 888		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 889			if (p->vm_numa_stat_diff[i]) {
 890				int v;
 891
 892				v = p->vm_numa_stat_diff[i];
 893				p->vm_numa_stat_diff[i] = 0;
 894				atomic_long_add(v, &zone->vm_numa_stat[i]);
 895				global_numa_diff[i] += v;
 896			}
 
 897#endif
 898	}
 899
 900	for_each_online_pgdat(pgdat) {
 901		struct per_cpu_nodestat *p;
 902
 903		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 904
 905		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 906			if (p->vm_node_stat_diff[i]) {
 907				int v;
 908
 909				v = p->vm_node_stat_diff[i];
 910				p->vm_node_stat_diff[i] = 0;
 911				atomic_long_add(v, &pgdat->vm_stat[i]);
 912				global_node_diff[i] += v;
 913			}
 914	}
 915
 916#ifdef CONFIG_NUMA
 917	fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
 918#else
 919	fold_diff(global_zone_diff, global_node_diff);
 920#endif
 921}
 922
 923/*
 924 * this is only called if !populated_zone(zone), which implies no other users of
 925 * pset->vm_stat_diff[] exsist.
 926 */
 927void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 928{
 
 929	int i;
 930
 931	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 932		if (pset->vm_stat_diff[i]) {
 933			int v = pset->vm_stat_diff[i];
 934			pset->vm_stat_diff[i] = 0;
 935			atomic_long_add(v, &zone->vm_stat[i]);
 936			atomic_long_add(v, &vm_zone_stat[i]);
 937		}
 
 938
 939#ifdef CONFIG_NUMA
 940	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 941		if (pset->vm_numa_stat_diff[i]) {
 942			int v = pset->vm_numa_stat_diff[i];
 943
 944			pset->vm_numa_stat_diff[i] = 0;
 945			atomic_long_add(v, &zone->vm_numa_stat[i]);
 946			atomic_long_add(v, &vm_numa_stat[i]);
 947		}
 
 948#endif
 949}
 950#endif
 951
 952#ifdef CONFIG_NUMA
 953void __inc_numa_state(struct zone *zone,
 954				 enum numa_stat_item item)
 955{
 956	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 957	u16 __percpu *p = pcp->vm_numa_stat_diff + item;
 958	u16 v;
 959
 960	v = __this_cpu_inc_return(*p);
 961
 962	if (unlikely(v > NUMA_STATS_THRESHOLD)) {
 963		zone_numa_state_add(v, zone, item);
 964		__this_cpu_write(*p, 0);
 965	}
 966}
 967
 968/*
 969 * Determine the per node value of a stat item. This function
 970 * is called frequently in a NUMA machine, so try to be as
 971 * frugal as possible.
 972 */
 973unsigned long sum_zone_node_page_state(int node,
 974				 enum zone_stat_item item)
 975{
 976	struct zone *zones = NODE_DATA(node)->node_zones;
 977	int i;
 978	unsigned long count = 0;
 979
 980	for (i = 0; i < MAX_NR_ZONES; i++)
 981		count += zone_page_state(zones + i, item);
 982
 983	return count;
 984}
 985
 986/*
 987 * Determine the per node value of a numa stat item. To avoid deviation,
 988 * the per cpu stat number in vm_numa_stat_diff[] is also included.
 989 */
 990unsigned long sum_zone_numa_state(int node,
 991				 enum numa_stat_item item)
 992{
 993	struct zone *zones = NODE_DATA(node)->node_zones;
 994	int i;
 995	unsigned long count = 0;
 
 996
 997	for (i = 0; i < MAX_NR_ZONES; i++)
 998		count += zone_numa_state_snapshot(zones + i, item);
 999
1000	return count;
1001}
1002
1003/*
1004 * Determine the per node value of a stat item.
1005 */
1006unsigned long node_page_state_pages(struct pglist_data *pgdat,
1007				    enum node_stat_item item)
1008{
1009	long x = atomic_long_read(&pgdat->vm_stat[item]);
1010#ifdef CONFIG_SMP
1011	if (x < 0)
1012		x = 0;
1013#endif
1014	return x;
1015}
1016
1017unsigned long node_page_state(struct pglist_data *pgdat,
1018			      enum node_stat_item item)
1019{
1020	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1021
1022	return node_page_state_pages(pgdat, item);
1023}
1024#endif
1025
1026#ifdef CONFIG_COMPACTION
1027
1028struct contig_page_info {
1029	unsigned long free_pages;
1030	unsigned long free_blocks_total;
1031	unsigned long free_blocks_suitable;
1032};
1033
1034/*
1035 * Calculate the number of free pages in a zone, how many contiguous
1036 * pages are free and how many are large enough to satisfy an allocation of
1037 * the target size. Note that this function makes no attempt to estimate
1038 * how many suitable free blocks there *might* be if MOVABLE pages were
1039 * migrated. Calculating that is possible, but expensive and can be
1040 * figured out from userspace
1041 */
1042static void fill_contig_page_info(struct zone *zone,
1043				unsigned int suitable_order,
1044				struct contig_page_info *info)
1045{
1046	unsigned int order;
1047
1048	info->free_pages = 0;
1049	info->free_blocks_total = 0;
1050	info->free_blocks_suitable = 0;
1051
1052	for (order = 0; order < MAX_ORDER; order++) {
1053		unsigned long blocks;
1054
1055		/* Count number of free blocks */
1056		blocks = zone->free_area[order].nr_free;
 
 
 
 
 
1057		info->free_blocks_total += blocks;
1058
1059		/* Count free base pages */
1060		info->free_pages += blocks << order;
1061
1062		/* Count the suitable free blocks */
1063		if (order >= suitable_order)
1064			info->free_blocks_suitable += blocks <<
1065						(order - suitable_order);
1066	}
1067}
1068
1069/*
1070 * A fragmentation index only makes sense if an allocation of a requested
1071 * size would fail. If that is true, the fragmentation index indicates
1072 * whether external fragmentation or a lack of memory was the problem.
1073 * The value can be used to determine if page reclaim or compaction
1074 * should be used
1075 */
1076static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1077{
1078	unsigned long requested = 1UL << order;
1079
1080	if (WARN_ON_ONCE(order >= MAX_ORDER))
1081		return 0;
1082
1083	if (!info->free_blocks_total)
1084		return 0;
1085
1086	/* Fragmentation index only makes sense when a request would fail */
1087	if (info->free_blocks_suitable)
1088		return -1000;
1089
1090	/*
1091	 * Index is between 0 and 1 so return within 3 decimal places
1092	 *
1093	 * 0 => allocation would fail due to lack of memory
1094	 * 1 => allocation would fail due to fragmentation
1095	 */
1096	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1097}
1098
1099/*
1100 * Calculates external fragmentation within a zone wrt the given order.
1101 * It is defined as the percentage of pages found in blocks of size
1102 * less than 1 << order. It returns values in range [0, 100].
1103 */
1104unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1105{
1106	struct contig_page_info info;
1107
1108	fill_contig_page_info(zone, order, &info);
1109	if (info.free_pages == 0)
1110		return 0;
1111
1112	return div_u64((info.free_pages -
1113			(info.free_blocks_suitable << order)) * 100,
1114			info.free_pages);
1115}
1116
1117/* Same as __fragmentation index but allocs contig_page_info on stack */
1118int fragmentation_index(struct zone *zone, unsigned int order)
1119{
1120	struct contig_page_info info;
1121
1122	fill_contig_page_info(zone, order, &info);
1123	return __fragmentation_index(order, &info);
1124}
1125#endif
1126
1127#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1128    defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1129#ifdef CONFIG_ZONE_DMA
1130#define TEXT_FOR_DMA(xx) xx "_dma",
1131#else
1132#define TEXT_FOR_DMA(xx)
1133#endif
1134
1135#ifdef CONFIG_ZONE_DMA32
1136#define TEXT_FOR_DMA32(xx) xx "_dma32",
1137#else
1138#define TEXT_FOR_DMA32(xx)
1139#endif
1140
1141#ifdef CONFIG_HIGHMEM
1142#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1143#else
1144#define TEXT_FOR_HIGHMEM(xx)
1145#endif
1146
 
 
 
 
 
 
1147#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1148					TEXT_FOR_HIGHMEM(xx) xx "_movable",
 
1149
1150const char * const vmstat_text[] = {
1151	/* enum zone_stat_item counters */
1152	"nr_free_pages",
1153	"nr_zone_inactive_anon",
1154	"nr_zone_active_anon",
1155	"nr_zone_inactive_file",
1156	"nr_zone_active_file",
1157	"nr_zone_unevictable",
1158	"nr_zone_write_pending",
1159	"nr_mlock",
1160	"nr_page_table_pages",
1161	"nr_bounce",
1162#if IS_ENABLED(CONFIG_ZSMALLOC)
1163	"nr_zspages",
1164#endif
1165	"nr_free_cma",
1166
1167	/* enum numa_stat_item counters */
1168#ifdef CONFIG_NUMA
1169	"numa_hit",
1170	"numa_miss",
1171	"numa_foreign",
1172	"numa_interleave",
1173	"numa_local",
1174	"numa_other",
1175#endif
1176
1177	/* enum node_stat_item counters */
1178	"nr_inactive_anon",
1179	"nr_active_anon",
1180	"nr_inactive_file",
1181	"nr_active_file",
1182	"nr_unevictable",
1183	"nr_slab_reclaimable",
1184	"nr_slab_unreclaimable",
1185	"nr_isolated_anon",
1186	"nr_isolated_file",
1187	"workingset_nodes",
1188	"workingset_refault_anon",
1189	"workingset_refault_file",
1190	"workingset_activate_anon",
1191	"workingset_activate_file",
1192	"workingset_restore_anon",
1193	"workingset_restore_file",
1194	"workingset_nodereclaim",
1195	"nr_anon_pages",
1196	"nr_mapped",
1197	"nr_file_pages",
1198	"nr_dirty",
1199	"nr_writeback",
1200	"nr_writeback_temp",
1201	"nr_shmem",
1202	"nr_shmem_hugepages",
1203	"nr_shmem_pmdmapped",
1204	"nr_file_hugepages",
1205	"nr_file_pmdmapped",
1206	"nr_anon_transparent_hugepages",
1207	"nr_vmscan_write",
1208	"nr_vmscan_immediate_reclaim",
1209	"nr_dirtied",
1210	"nr_written",
 
1211	"nr_kernel_misc_reclaimable",
1212	"nr_foll_pin_acquired",
1213	"nr_foll_pin_released",
1214	"nr_kernel_stack",
1215#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1216	"nr_shadow_call_stack",
1217#endif
 
 
 
 
 
 
 
 
 
1218
1219	/* enum writeback_stat_item counters */
1220	"nr_dirty_threshold",
1221	"nr_dirty_background_threshold",
1222
1223#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1224	/* enum vm_event_item counters */
1225	"pgpgin",
1226	"pgpgout",
1227	"pswpin",
1228	"pswpout",
1229
1230	TEXTS_FOR_ZONES("pgalloc")
1231	TEXTS_FOR_ZONES("allocstall")
1232	TEXTS_FOR_ZONES("pgskip")
1233
1234	"pgfree",
1235	"pgactivate",
1236	"pgdeactivate",
1237	"pglazyfree",
1238
1239	"pgfault",
1240	"pgmajfault",
1241	"pglazyfreed",
1242
1243	"pgrefill",
1244	"pgreuse",
1245	"pgsteal_kswapd",
1246	"pgsteal_direct",
 
 
 
 
1247	"pgscan_kswapd",
1248	"pgscan_direct",
 
1249	"pgscan_direct_throttle",
1250	"pgscan_anon",
1251	"pgscan_file",
1252	"pgsteal_anon",
1253	"pgsteal_file",
1254
1255#ifdef CONFIG_NUMA
1256	"zone_reclaim_failed",
1257#endif
1258	"pginodesteal",
1259	"slabs_scanned",
1260	"kswapd_inodesteal",
1261	"kswapd_low_wmark_hit_quickly",
1262	"kswapd_high_wmark_hit_quickly",
1263	"pageoutrun",
1264
1265	"pgrotated",
1266
1267	"drop_pagecache",
1268	"drop_slab",
1269	"oom_kill",
1270
1271#ifdef CONFIG_NUMA_BALANCING
1272	"numa_pte_updates",
1273	"numa_huge_pte_updates",
1274	"numa_hint_faults",
1275	"numa_hint_faults_local",
1276	"numa_pages_migrated",
1277#endif
1278#ifdef CONFIG_MIGRATION
1279	"pgmigrate_success",
1280	"pgmigrate_fail",
1281	"thp_migration_success",
1282	"thp_migration_fail",
1283	"thp_migration_split",
1284#endif
1285#ifdef CONFIG_COMPACTION
1286	"compact_migrate_scanned",
1287	"compact_free_scanned",
1288	"compact_isolated",
1289	"compact_stall",
1290	"compact_fail",
1291	"compact_success",
1292	"compact_daemon_wake",
1293	"compact_daemon_migrate_scanned",
1294	"compact_daemon_free_scanned",
1295#endif
1296
1297#ifdef CONFIG_HUGETLB_PAGE
1298	"htlb_buddy_alloc_success",
1299	"htlb_buddy_alloc_fail",
1300#endif
 
 
 
 
1301	"unevictable_pgs_culled",
1302	"unevictable_pgs_scanned",
1303	"unevictable_pgs_rescued",
1304	"unevictable_pgs_mlocked",
1305	"unevictable_pgs_munlocked",
1306	"unevictable_pgs_cleared",
1307	"unevictable_pgs_stranded",
1308
1309#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1310	"thp_fault_alloc",
1311	"thp_fault_fallback",
1312	"thp_fault_fallback_charge",
1313	"thp_collapse_alloc",
1314	"thp_collapse_alloc_failed",
1315	"thp_file_alloc",
1316	"thp_file_fallback",
1317	"thp_file_fallback_charge",
1318	"thp_file_mapped",
1319	"thp_split_page",
1320	"thp_split_page_failed",
1321	"thp_deferred_split_page",
1322	"thp_split_pmd",
 
 
 
1323#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1324	"thp_split_pud",
1325#endif
1326	"thp_zero_page_alloc",
1327	"thp_zero_page_alloc_failed",
1328	"thp_swpout",
1329	"thp_swpout_fallback",
1330#endif
1331#ifdef CONFIG_MEMORY_BALLOON
1332	"balloon_inflate",
1333	"balloon_deflate",
1334#ifdef CONFIG_BALLOON_COMPACTION
1335	"balloon_migrate",
1336#endif
1337#endif /* CONFIG_MEMORY_BALLOON */
1338#ifdef CONFIG_DEBUG_TLBFLUSH
1339	"nr_tlb_remote_flush",
1340	"nr_tlb_remote_flush_received",
1341	"nr_tlb_local_flush_all",
1342	"nr_tlb_local_flush_one",
1343#endif /* CONFIG_DEBUG_TLBFLUSH */
1344
1345#ifdef CONFIG_DEBUG_VM_VMACACHE
1346	"vmacache_find_calls",
1347	"vmacache_find_hits",
1348#endif
1349#ifdef CONFIG_SWAP
1350	"swap_ra",
1351	"swap_ra_hit",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1352#endif
1353#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1354};
1355#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1356
1357#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1358     defined(CONFIG_PROC_FS)
1359static void *frag_start(struct seq_file *m, loff_t *pos)
1360{
1361	pg_data_t *pgdat;
1362	loff_t node = *pos;
1363
1364	for (pgdat = first_online_pgdat();
1365	     pgdat && node;
1366	     pgdat = next_online_pgdat(pgdat))
1367		--node;
1368
1369	return pgdat;
1370}
1371
1372static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1373{
1374	pg_data_t *pgdat = (pg_data_t *)arg;
1375
1376	(*pos)++;
1377	return next_online_pgdat(pgdat);
1378}
1379
1380static void frag_stop(struct seq_file *m, void *arg)
1381{
1382}
1383
1384/*
1385 * Walk zones in a node and print using a callback.
1386 * If @assert_populated is true, only use callback for zones that are populated.
1387 */
1388static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1389		bool assert_populated, bool nolock,
1390		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1391{
1392	struct zone *zone;
1393	struct zone *node_zones = pgdat->node_zones;
1394	unsigned long flags;
1395
1396	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1397		if (assert_populated && !populated_zone(zone))
1398			continue;
1399
1400		if (!nolock)
1401			spin_lock_irqsave(&zone->lock, flags);
1402		print(m, pgdat, zone);
1403		if (!nolock)
1404			spin_unlock_irqrestore(&zone->lock, flags);
1405	}
1406}
1407#endif
1408
1409#ifdef CONFIG_PROC_FS
1410static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1411						struct zone *zone)
1412{
1413	int order;
1414
1415	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1416	for (order = 0; order < MAX_ORDER; ++order)
1417		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 
 
 
 
1418	seq_putc(m, '\n');
1419}
1420
1421/*
1422 * This walks the free areas for each zone.
1423 */
1424static int frag_show(struct seq_file *m, void *arg)
1425{
1426	pg_data_t *pgdat = (pg_data_t *)arg;
1427	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1428	return 0;
1429}
1430
1431static void pagetypeinfo_showfree_print(struct seq_file *m,
1432					pg_data_t *pgdat, struct zone *zone)
1433{
1434	int order, mtype;
1435
1436	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1437		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1438					pgdat->node_id,
1439					zone->name,
1440					migratetype_names[mtype]);
1441		for (order = 0; order < MAX_ORDER; ++order) {
1442			unsigned long freecount = 0;
1443			struct free_area *area;
1444			struct list_head *curr;
1445			bool overflow = false;
1446
1447			area = &(zone->free_area[order]);
1448
1449			list_for_each(curr, &area->free_list[mtype]) {
1450				/*
1451				 * Cap the free_list iteration because it might
1452				 * be really large and we are under a spinlock
1453				 * so a long time spent here could trigger a
1454				 * hard lockup detector. Anyway this is a
1455				 * debugging tool so knowing there is a handful
1456				 * of pages of this order should be more than
1457				 * sufficient.
1458				 */
1459				if (++freecount >= 100000) {
1460					overflow = true;
1461					break;
1462				}
1463			}
1464			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1465			spin_unlock_irq(&zone->lock);
1466			cond_resched();
1467			spin_lock_irq(&zone->lock);
1468		}
1469		seq_putc(m, '\n');
1470	}
1471}
1472
1473/* Print out the free pages at each order for each migatetype */
1474static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1475{
1476	int order;
1477	pg_data_t *pgdat = (pg_data_t *)arg;
1478
1479	/* Print header */
1480	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1481	for (order = 0; order < MAX_ORDER; ++order)
1482		seq_printf(m, "%6d ", order);
1483	seq_putc(m, '\n');
1484
1485	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1486
1487	return 0;
1488}
1489
1490static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1491					pg_data_t *pgdat, struct zone *zone)
1492{
1493	int mtype;
1494	unsigned long pfn;
1495	unsigned long start_pfn = zone->zone_start_pfn;
1496	unsigned long end_pfn = zone_end_pfn(zone);
1497	unsigned long count[MIGRATE_TYPES] = { 0, };
1498
1499	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1500		struct page *page;
1501
1502		page = pfn_to_online_page(pfn);
1503		if (!page)
1504			continue;
1505
1506		/* Watch for unexpected holes punched in the memmap */
1507		if (!memmap_valid_within(pfn, page, zone))
1508			continue;
1509
1510		if (page_zone(page) != zone)
1511			continue;
1512
1513		mtype = get_pageblock_migratetype(page);
1514
1515		if (mtype < MIGRATE_TYPES)
1516			count[mtype]++;
1517	}
1518
1519	/* Print counts */
1520	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1521	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1522		seq_printf(m, "%12lu ", count[mtype]);
1523	seq_putc(m, '\n');
1524}
1525
1526/* Print out the number of pageblocks for each migratetype */
1527static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1528{
1529	int mtype;
1530	pg_data_t *pgdat = (pg_data_t *)arg;
1531
1532	seq_printf(m, "\n%-23s", "Number of blocks type ");
1533	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1534		seq_printf(m, "%12s ", migratetype_names[mtype]);
1535	seq_putc(m, '\n');
1536	walk_zones_in_node(m, pgdat, true, false,
1537		pagetypeinfo_showblockcount_print);
1538
1539	return 0;
1540}
1541
1542/*
1543 * Print out the number of pageblocks for each migratetype that contain pages
1544 * of other types. This gives an indication of how well fallbacks are being
1545 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1546 * to determine what is going on
1547 */
1548static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1549{
1550#ifdef CONFIG_PAGE_OWNER
1551	int mtype;
1552
1553	if (!static_branch_unlikely(&page_owner_inited))
1554		return;
1555
1556	drain_all_pages(NULL);
1557
1558	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1559	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1560		seq_printf(m, "%12s ", migratetype_names[mtype]);
1561	seq_putc(m, '\n');
1562
1563	walk_zones_in_node(m, pgdat, true, true,
1564		pagetypeinfo_showmixedcount_print);
1565#endif /* CONFIG_PAGE_OWNER */
1566}
1567
1568/*
1569 * This prints out statistics in relation to grouping pages by mobility.
1570 * It is expensive to collect so do not constantly read the file.
1571 */
1572static int pagetypeinfo_show(struct seq_file *m, void *arg)
1573{
1574	pg_data_t *pgdat = (pg_data_t *)arg;
1575
1576	/* check memoryless node */
1577	if (!node_state(pgdat->node_id, N_MEMORY))
1578		return 0;
1579
1580	seq_printf(m, "Page block order: %d\n", pageblock_order);
1581	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1582	seq_putc(m, '\n');
1583	pagetypeinfo_showfree(m, pgdat);
1584	pagetypeinfo_showblockcount(m, pgdat);
1585	pagetypeinfo_showmixedcount(m, pgdat);
1586
1587	return 0;
1588}
1589
1590static const struct seq_operations fragmentation_op = {
1591	.start	= frag_start,
1592	.next	= frag_next,
1593	.stop	= frag_stop,
1594	.show	= frag_show,
1595};
1596
1597static const struct seq_operations pagetypeinfo_op = {
1598	.start	= frag_start,
1599	.next	= frag_next,
1600	.stop	= frag_stop,
1601	.show	= pagetypeinfo_show,
1602};
1603
1604static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1605{
1606	int zid;
1607
1608	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1609		struct zone *compare = &pgdat->node_zones[zid];
1610
1611		if (populated_zone(compare))
1612			return zone == compare;
1613	}
1614
1615	return false;
1616}
1617
1618static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1619							struct zone *zone)
1620{
1621	int i;
1622	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1623	if (is_zone_first_populated(pgdat, zone)) {
1624		seq_printf(m, "\n  per-node stats");
1625		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
 
 
 
 
1626			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1627				   node_page_state_pages(pgdat, i));
1628		}
1629	}
1630	seq_printf(m,
1631		   "\n  pages free     %lu"
 
1632		   "\n        min      %lu"
1633		   "\n        low      %lu"
1634		   "\n        high     %lu"
1635		   "\n        spanned  %lu"
1636		   "\n        present  %lu"
1637		   "\n        managed  %lu",
 
1638		   zone_page_state(zone, NR_FREE_PAGES),
 
1639		   min_wmark_pages(zone),
1640		   low_wmark_pages(zone),
1641		   high_wmark_pages(zone),
1642		   zone->spanned_pages,
1643		   zone->present_pages,
1644		   zone_managed_pages(zone));
 
1645
1646	seq_printf(m,
1647		   "\n        protection: (%ld",
1648		   zone->lowmem_reserve[0]);
1649	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1650		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1651	seq_putc(m, ')');
1652
1653	/* If unpopulated, no other information is useful */
1654	if (!populated_zone(zone)) {
1655		seq_putc(m, '\n');
1656		return;
1657	}
1658
1659	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1660		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1661			   zone_page_state(zone, i));
1662
1663#ifdef CONFIG_NUMA
1664	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1665		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1666			   zone_numa_state_snapshot(zone, i));
1667#endif
1668
1669	seq_printf(m, "\n  pagesets");
1670	for_each_online_cpu(i) {
1671		struct per_cpu_pageset *pageset;
 
1672
1673		pageset = per_cpu_ptr(zone->pageset, i);
1674		seq_printf(m,
1675			   "\n    cpu: %i"
1676			   "\n              count: %i"
1677			   "\n              high:  %i"
1678			   "\n              batch: %i",
1679			   i,
1680			   pageset->pcp.count,
1681			   pageset->pcp.high,
1682			   pageset->pcp.batch);
1683#ifdef CONFIG_SMP
 
1684		seq_printf(m, "\n  vm stats threshold: %d",
1685				pageset->stat_threshold);
1686#endif
1687	}
1688	seq_printf(m,
1689		   "\n  node_unreclaimable:  %u"
1690		   "\n  start_pfn:           %lu",
1691		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1692		   zone->zone_start_pfn);
1693	seq_putc(m, '\n');
1694}
1695
1696/*
1697 * Output information about zones in @pgdat.  All zones are printed regardless
1698 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1699 * set of all zones and userspace would not be aware of such zones if they are
1700 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1701 */
1702static int zoneinfo_show(struct seq_file *m, void *arg)
1703{
1704	pg_data_t *pgdat = (pg_data_t *)arg;
1705	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1706	return 0;
1707}
1708
1709static const struct seq_operations zoneinfo_op = {
1710	.start	= frag_start, /* iterate over all zones. The same as in
1711			       * fragmentation. */
1712	.next	= frag_next,
1713	.stop	= frag_stop,
1714	.show	= zoneinfo_show,
1715};
1716
1717#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1718			 NR_VM_NUMA_STAT_ITEMS + \
1719			 NR_VM_NODE_STAT_ITEMS + \
1720			 NR_VM_WRITEBACK_STAT_ITEMS + \
1721			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1722			  NR_VM_EVENT_ITEMS : 0))
1723
1724static void *vmstat_start(struct seq_file *m, loff_t *pos)
1725{
1726	unsigned long *v;
1727	int i;
1728
1729	if (*pos >= NR_VMSTAT_ITEMS)
1730		return NULL;
1731
1732	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
 
1733	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1734	m->private = v;
1735	if (!v)
1736		return ERR_PTR(-ENOMEM);
1737	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1738		v[i] = global_zone_page_state(i);
1739	v += NR_VM_ZONE_STAT_ITEMS;
1740
1741#ifdef CONFIG_NUMA
1742	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1743		v[i] = global_numa_state(i);
1744	v += NR_VM_NUMA_STAT_ITEMS;
1745#endif
1746
1747	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1748		v[i] = global_node_page_state_pages(i);
 
 
 
1749	v += NR_VM_NODE_STAT_ITEMS;
1750
1751	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1752			    v + NR_DIRTY_THRESHOLD);
1753	v += NR_VM_WRITEBACK_STAT_ITEMS;
1754
1755#ifdef CONFIG_VM_EVENT_COUNTERS
1756	all_vm_events(v);
1757	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1758	v[PGPGOUT] /= 2;
1759#endif
1760	return (unsigned long *)m->private + *pos;
1761}
1762
1763static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1764{
1765	(*pos)++;
1766	if (*pos >= NR_VMSTAT_ITEMS)
1767		return NULL;
1768	return (unsigned long *)m->private + *pos;
1769}
1770
1771static int vmstat_show(struct seq_file *m, void *arg)
1772{
1773	unsigned long *l = arg;
1774	unsigned long off = l - (unsigned long *)m->private;
1775
1776	seq_puts(m, vmstat_text[off]);
1777	seq_put_decimal_ull(m, " ", *l);
1778	seq_putc(m, '\n');
1779
1780	if (off == NR_VMSTAT_ITEMS - 1) {
1781		/*
1782		 * We've come to the end - add any deprecated counters to avoid
1783		 * breaking userspace which might depend on them being present.
1784		 */
1785		seq_puts(m, "nr_unstable 0\n");
1786	}
1787	return 0;
1788}
1789
1790static void vmstat_stop(struct seq_file *m, void *arg)
1791{
1792	kfree(m->private);
1793	m->private = NULL;
1794}
1795
1796static const struct seq_operations vmstat_op = {
1797	.start	= vmstat_start,
1798	.next	= vmstat_next,
1799	.stop	= vmstat_stop,
1800	.show	= vmstat_show,
1801};
1802#endif /* CONFIG_PROC_FS */
1803
1804#ifdef CONFIG_SMP
1805static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1806int sysctl_stat_interval __read_mostly = HZ;
1807
1808#ifdef CONFIG_PROC_FS
1809static void refresh_vm_stats(struct work_struct *work)
1810{
1811	refresh_cpu_vm_stats(true);
1812}
1813
1814int vmstat_refresh(struct ctl_table *table, int write,
1815		   void *buffer, size_t *lenp, loff_t *ppos)
1816{
1817	long val;
1818	int err;
1819	int i;
1820
1821	/*
1822	 * The regular update, every sysctl_stat_interval, may come later
1823	 * than expected: leaving a significant amount in per_cpu buckets.
1824	 * This is particularly misleading when checking a quantity of HUGE
1825	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1826	 * which can equally be echo'ed to or cat'ted from (by root),
1827	 * can be used to update the stats just before reading them.
1828	 *
1829	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1830	 * transiently negative values, report an error here if any of
1831	 * the stats is negative, so we know to go looking for imbalance.
1832	 */
1833	err = schedule_on_each_cpu(refresh_vm_stats);
1834	if (err)
1835		return err;
1836	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 
 
 
 
 
 
 
 
1837		val = atomic_long_read(&vm_zone_stat[i]);
1838		if (val < 0) {
1839			pr_warn("%s: %s %ld\n",
1840				__func__, zone_stat_name(i), val);
1841			err = -EINVAL;
1842		}
1843	}
1844#ifdef CONFIG_NUMA
1845	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1846		val = atomic_long_read(&vm_numa_stat[i]);
 
 
 
 
 
 
1847		if (val < 0) {
1848			pr_warn("%s: %s %ld\n",
1849				__func__, numa_stat_name(i), val);
1850			err = -EINVAL;
1851		}
1852	}
1853#endif
1854	if (err)
1855		return err;
1856	if (write)
1857		*ppos += *lenp;
1858	else
1859		*lenp = 0;
1860	return 0;
1861}
1862#endif /* CONFIG_PROC_FS */
1863
1864static void vmstat_update(struct work_struct *w)
1865{
1866	if (refresh_cpu_vm_stats(true)) {
1867		/*
1868		 * Counters were updated so we expect more updates
1869		 * to occur in the future. Keep on running the
1870		 * update worker thread.
1871		 */
1872		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1873				this_cpu_ptr(&vmstat_work),
1874				round_jiffies_relative(sysctl_stat_interval));
1875	}
1876}
1877
1878/*
1879 * Switch off vmstat processing and then fold all the remaining differentials
1880 * until the diffs stay at zero. The function is used by NOHZ and can only be
1881 * invoked when tick processing is not active.
1882 */
1883/*
1884 * Check if the diffs for a certain cpu indicate that
1885 * an update is needed.
1886 */
1887static bool need_update(int cpu)
1888{
 
1889	struct zone *zone;
1890
1891	for_each_populated_zone(zone) {
1892		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1893
1894		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1895#ifdef CONFIG_NUMA
1896		BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1897#endif
1898
1899		/*
1900		 * The fast way of checking if there are any vmstat diffs.
1901		 */
1902		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1903			       sizeof(p->vm_stat_diff[0])))
1904			return true;
1905#ifdef CONFIG_NUMA
1906		if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1907			       sizeof(p->vm_numa_stat_diff[0])))
 
 
 
1908			return true;
1909#endif
1910	}
1911	return false;
1912}
1913
1914/*
1915 * Switch off vmstat processing and then fold all the remaining differentials
1916 * until the diffs stay at zero. The function is used by NOHZ and can only be
1917 * invoked when tick processing is not active.
1918 */
1919void quiet_vmstat(void)
1920{
1921	if (system_state != SYSTEM_RUNNING)
1922		return;
1923
1924	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1925		return;
1926
1927	if (!need_update(smp_processor_id()))
1928		return;
1929
1930	/*
1931	 * Just refresh counters and do not care about the pending delayed
1932	 * vmstat_update. It doesn't fire that often to matter and canceling
1933	 * it would be too expensive from this path.
1934	 * vmstat_shepherd will take care about that for us.
1935	 */
1936	refresh_cpu_vm_stats(false);
1937}
1938
1939/*
1940 * Shepherd worker thread that checks the
1941 * differentials of processors that have their worker
1942 * threads for vm statistics updates disabled because of
1943 * inactivity.
1944 */
1945static void vmstat_shepherd(struct work_struct *w);
1946
1947static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1948
1949static void vmstat_shepherd(struct work_struct *w)
1950{
1951	int cpu;
1952
1953	get_online_cpus();
1954	/* Check processors whose vmstat worker threads have been disabled */
1955	for_each_online_cpu(cpu) {
1956		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1957
1958		if (!delayed_work_pending(dw) && need_update(cpu))
1959			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
 
 
1960	}
1961	put_online_cpus();
1962
1963	schedule_delayed_work(&shepherd,
1964		round_jiffies_relative(sysctl_stat_interval));
1965}
1966
1967static void __init start_shepherd_timer(void)
1968{
1969	int cpu;
1970
1971	for_each_possible_cpu(cpu)
1972		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1973			vmstat_update);
1974
1975	schedule_delayed_work(&shepherd,
1976		round_jiffies_relative(sysctl_stat_interval));
1977}
1978
1979static void __init init_cpu_node_state(void)
1980{
1981	int node;
1982
1983	for_each_online_node(node) {
1984		if (cpumask_weight(cpumask_of_node(node)) > 0)
1985			node_set_state(node, N_CPU);
1986	}
1987}
1988
1989static int vmstat_cpu_online(unsigned int cpu)
1990{
1991	refresh_zone_stat_thresholds();
1992	node_set_state(cpu_to_node(cpu), N_CPU);
 
 
 
 
1993	return 0;
1994}
1995
1996static int vmstat_cpu_down_prep(unsigned int cpu)
1997{
1998	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1999	return 0;
2000}
2001
2002static int vmstat_cpu_dead(unsigned int cpu)
2003{
2004	const struct cpumask *node_cpus;
2005	int node;
2006
2007	node = cpu_to_node(cpu);
2008
2009	refresh_zone_stat_thresholds();
2010	node_cpus = cpumask_of_node(node);
2011	if (cpumask_weight(node_cpus) > 0)
2012		return 0;
2013
2014	node_clear_state(node, N_CPU);
 
2015	return 0;
2016}
2017
2018#endif
2019
2020struct workqueue_struct *mm_percpu_wq;
2021
2022void __init init_mm_internals(void)
2023{
2024	int ret __maybe_unused;
2025
2026	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2027
2028#ifdef CONFIG_SMP
2029	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2030					NULL, vmstat_cpu_dead);
2031	if (ret < 0)
2032		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2033
2034	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2035					vmstat_cpu_online,
2036					vmstat_cpu_down_prep);
2037	if (ret < 0)
2038		pr_err("vmstat: failed to register 'online' hotplug state\n");
2039
2040	get_online_cpus();
2041	init_cpu_node_state();
2042	put_online_cpus();
2043
2044	start_shepherd_timer();
2045#endif
2046#ifdef CONFIG_PROC_FS
2047	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2048	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2049	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2050	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2051#endif
2052}
2053
2054#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2055
2056/*
2057 * Return an index indicating how much of the available free memory is
2058 * unusable for an allocation of the requested size.
2059 */
2060static int unusable_free_index(unsigned int order,
2061				struct contig_page_info *info)
2062{
2063	/* No free memory is interpreted as all free memory is unusable */
2064	if (info->free_pages == 0)
2065		return 1000;
2066
2067	/*
2068	 * Index should be a value between 0 and 1. Return a value to 3
2069	 * decimal places.
2070	 *
2071	 * 0 => no fragmentation
2072	 * 1 => high fragmentation
2073	 */
2074	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2075
2076}
2077
2078static void unusable_show_print(struct seq_file *m,
2079					pg_data_t *pgdat, struct zone *zone)
2080{
2081	unsigned int order;
2082	int index;
2083	struct contig_page_info info;
2084
2085	seq_printf(m, "Node %d, zone %8s ",
2086				pgdat->node_id,
2087				zone->name);
2088	for (order = 0; order < MAX_ORDER; ++order) {
2089		fill_contig_page_info(zone, order, &info);
2090		index = unusable_free_index(order, &info);
2091		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2092	}
2093
2094	seq_putc(m, '\n');
2095}
2096
2097/*
2098 * Display unusable free space index
2099 *
2100 * The unusable free space index measures how much of the available free
2101 * memory cannot be used to satisfy an allocation of a given size and is a
2102 * value between 0 and 1. The higher the value, the more of free memory is
2103 * unusable and by implication, the worse the external fragmentation is. This
2104 * can be expressed as a percentage by multiplying by 100.
2105 */
2106static int unusable_show(struct seq_file *m, void *arg)
2107{
2108	pg_data_t *pgdat = (pg_data_t *)arg;
2109
2110	/* check memoryless node */
2111	if (!node_state(pgdat->node_id, N_MEMORY))
2112		return 0;
2113
2114	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2115
2116	return 0;
2117}
2118
2119static const struct seq_operations unusable_sops = {
2120	.start	= frag_start,
2121	.next	= frag_next,
2122	.stop	= frag_stop,
2123	.show	= unusable_show,
2124};
2125
2126DEFINE_SEQ_ATTRIBUTE(unusable);
2127
2128static void extfrag_show_print(struct seq_file *m,
2129					pg_data_t *pgdat, struct zone *zone)
2130{
2131	unsigned int order;
2132	int index;
2133
2134	/* Alloc on stack as interrupts are disabled for zone walk */
2135	struct contig_page_info info;
2136
2137	seq_printf(m, "Node %d, zone %8s ",
2138				pgdat->node_id,
2139				zone->name);
2140	for (order = 0; order < MAX_ORDER; ++order) {
2141		fill_contig_page_info(zone, order, &info);
2142		index = __fragmentation_index(order, &info);
2143		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2144	}
2145
2146	seq_putc(m, '\n');
2147}
2148
2149/*
2150 * Display fragmentation index for orders that allocations would fail for
2151 */
2152static int extfrag_show(struct seq_file *m, void *arg)
2153{
2154	pg_data_t *pgdat = (pg_data_t *)arg;
2155
2156	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2157
2158	return 0;
2159}
2160
2161static const struct seq_operations extfrag_sops = {
2162	.start	= frag_start,
2163	.next	= frag_next,
2164	.stop	= frag_stop,
2165	.show	= extfrag_show,
2166};
2167
2168DEFINE_SEQ_ATTRIBUTE(extfrag);
2169
2170static int __init extfrag_debug_init(void)
2171{
2172	struct dentry *extfrag_debug_root;
2173
2174	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2175
2176	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2177			    &unusable_fops);
2178
2179	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2180			    &extfrag_fops);
2181
2182	return 0;
2183}
2184
2185module_init(extfrag_debug_init);
2186#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmstat.c
   4 *
   5 *  Manages VM statistics
   6 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   7 *
   8 *  zoned VM statistics
   9 *  Copyright (C) 2006 Silicon Graphics, Inc.,
  10 *		Christoph Lameter <christoph@lameter.com>
  11 *  Copyright (C) 2008-2014 Christoph Lameter
  12 */
  13#include <linux/fs.h>
  14#include <linux/mm.h>
  15#include <linux/err.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/cpu.h>
  19#include <linux/cpumask.h>
  20#include <linux/vmstat.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/debugfs.h>
  24#include <linux/sched.h>
  25#include <linux/math64.h>
  26#include <linux/writeback.h>
  27#include <linux/compaction.h>
  28#include <linux/mm_inline.h>
  29#include <linux/page_ext.h>
  30#include <linux/page_owner.h>
  31
  32#include "internal.h"
  33
 
 
  34#ifdef CONFIG_NUMA
  35int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
  36
  37/* zero numa counters within a zone */
  38static void zero_zone_numa_counters(struct zone *zone)
  39{
  40	int item, cpu;
  41
  42	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
  43		atomic_long_set(&zone->vm_numa_event[item], 0);
  44		for_each_online_cpu(cpu) {
  45			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
  46						= 0;
  47		}
  48	}
  49}
  50
  51/* zero numa counters of all the populated zones */
  52static void zero_zones_numa_counters(void)
  53{
  54	struct zone *zone;
  55
  56	for_each_populated_zone(zone)
  57		zero_zone_numa_counters(zone);
  58}
  59
  60/* zero global numa counters */
  61static void zero_global_numa_counters(void)
  62{
  63	int item;
  64
  65	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
  66		atomic_long_set(&vm_numa_event[item], 0);
  67}
  68
  69static void invalid_numa_statistics(void)
  70{
  71	zero_zones_numa_counters();
  72	zero_global_numa_counters();
  73}
  74
  75static DEFINE_MUTEX(vm_numa_stat_lock);
  76
  77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
  78		void *buffer, size_t *length, loff_t *ppos)
  79{
  80	int ret, oldval;
  81
  82	mutex_lock(&vm_numa_stat_lock);
  83	if (write)
  84		oldval = sysctl_vm_numa_stat;
  85	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  86	if (ret || !write)
  87		goto out;
  88
  89	if (oldval == sysctl_vm_numa_stat)
  90		goto out;
  91	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
  92		static_branch_enable(&vm_numa_stat_key);
  93		pr_info("enable numa statistics\n");
  94	} else {
  95		static_branch_disable(&vm_numa_stat_key);
  96		invalid_numa_statistics();
  97		pr_info("disable numa statistics, and clear numa counters\n");
  98	}
  99
 100out:
 101	mutex_unlock(&vm_numa_stat_lock);
 102	return ret;
 103}
 104#endif
 105
 106#ifdef CONFIG_VM_EVENT_COUNTERS
 107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
 108EXPORT_PER_CPU_SYMBOL(vm_event_states);
 109
 110static void sum_vm_events(unsigned long *ret)
 111{
 112	int cpu;
 113	int i;
 114
 115	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
 116
 117	for_each_online_cpu(cpu) {
 118		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
 119
 120		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 121			ret[i] += this->event[i];
 122	}
 123}
 124
 125/*
 126 * Accumulate the vm event counters across all CPUs.
 127 * The result is unavoidably approximate - it can change
 128 * during and after execution of this function.
 129*/
 130void all_vm_events(unsigned long *ret)
 131{
 132	cpus_read_lock();
 133	sum_vm_events(ret);
 134	cpus_read_unlock();
 135}
 136EXPORT_SYMBOL_GPL(all_vm_events);
 137
 138/*
 139 * Fold the foreign cpu events into our own.
 140 *
 141 * This is adding to the events on one processor
 142 * but keeps the global counts constant.
 143 */
 144void vm_events_fold_cpu(int cpu)
 145{
 146	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
 147	int i;
 148
 149	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
 150		count_vm_events(i, fold_state->event[i]);
 151		fold_state->event[i] = 0;
 152	}
 153}
 154
 155#endif /* CONFIG_VM_EVENT_COUNTERS */
 156
 157/*
 158 * Manage combined zone based / global counters
 159 *
 160 * vm_stat contains the global counters
 161 */
 162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
 
 163atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
 164atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
 165EXPORT_SYMBOL(vm_zone_stat);
 
 166EXPORT_SYMBOL(vm_node_stat);
 167
 168#ifdef CONFIG_NUMA
 169static void fold_vm_zone_numa_events(struct zone *zone)
 170{
 171	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
 172	int cpu;
 173	enum numa_stat_item item;
 174
 175	for_each_online_cpu(cpu) {
 176		struct per_cpu_zonestat *pzstats;
 177
 178		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
 179		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
 180			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
 181	}
 182
 183	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
 184		zone_numa_event_add(zone_numa_events[item], zone, item);
 185}
 186
 187void fold_vm_numa_events(void)
 188{
 189	struct zone *zone;
 190
 191	for_each_populated_zone(zone)
 192		fold_vm_zone_numa_events(zone);
 193}
 194#endif
 195
 196#ifdef CONFIG_SMP
 197
 198int calculate_pressure_threshold(struct zone *zone)
 199{
 200	int threshold;
 201	int watermark_distance;
 202
 203	/*
 204	 * As vmstats are not up to date, there is drift between the estimated
 205	 * and real values. For high thresholds and a high number of CPUs, it
 206	 * is possible for the min watermark to be breached while the estimated
 207	 * value looks fine. The pressure threshold is a reduced value such
 208	 * that even the maximum amount of drift will not accidentally breach
 209	 * the min watermark
 210	 */
 211	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 212	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 213
 214	/*
 215	 * Maximum threshold is 125
 216	 */
 217	threshold = min(125, threshold);
 218
 219	return threshold;
 220}
 221
 222int calculate_normal_threshold(struct zone *zone)
 223{
 224	int threshold;
 225	int mem;	/* memory in 128 MB units */
 226
 227	/*
 228	 * The threshold scales with the number of processors and the amount
 229	 * of memory per zone. More memory means that we can defer updates for
 230	 * longer, more processors could lead to more contention.
 231 	 * fls() is used to have a cheap way of logarithmic scaling.
 232	 *
 233	 * Some sample thresholds:
 234	 *
 235	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
 236	 * ------------------------------------------------------------------
 237	 * 8		1		1	0.9-1 GB	4
 238	 * 16		2		2	0.9-1 GB	4
 239	 * 20 		2		2	1-2 GB		5
 240	 * 24		2		2	2-4 GB		6
 241	 * 28		2		2	4-8 GB		7
 242	 * 32		2		2	8-16 GB		8
 243	 * 4		2		2	<128M		1
 244	 * 30		4		3	2-4 GB		5
 245	 * 48		4		3	8-16 GB		8
 246	 * 32		8		4	1-2 GB		4
 247	 * 32		8		4	0.9-1GB		4
 248	 * 10		16		5	<128M		1
 249	 * 40		16		5	900M		4
 250	 * 70		64		7	2-4 GB		5
 251	 * 84		64		7	4-8 GB		6
 252	 * 108		512		9	4-8 GB		6
 253	 * 125		1024		10	8-16 GB		8
 254	 * 125		1024		10	16-32 GB	9
 255	 */
 256
 257	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
 258
 259	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 260
 261	/*
 262	 * Maximum threshold is 125
 263	 */
 264	threshold = min(125, threshold);
 265
 266	return threshold;
 267}
 268
 269/*
 270 * Refresh the thresholds for each zone.
 271 */
 272void refresh_zone_stat_thresholds(void)
 273{
 274	struct pglist_data *pgdat;
 275	struct zone *zone;
 276	int cpu;
 277	int threshold;
 278
 279	/* Zero current pgdat thresholds */
 280	for_each_online_pgdat(pgdat) {
 281		for_each_online_cpu(cpu) {
 282			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
 283		}
 284	}
 285
 286	for_each_populated_zone(zone) {
 287		struct pglist_data *pgdat = zone->zone_pgdat;
 288		unsigned long max_drift, tolerate_drift;
 289
 290		threshold = calculate_normal_threshold(zone);
 291
 292		for_each_online_cpu(cpu) {
 293			int pgdat_threshold;
 294
 295			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
 296							= threshold;
 297
 298			/* Base nodestat threshold on the largest populated zone. */
 299			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
 300			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
 301				= max(threshold, pgdat_threshold);
 302		}
 303
 304		/*
 305		 * Only set percpu_drift_mark if there is a danger that
 306		 * NR_FREE_PAGES reports the low watermark is ok when in fact
 307		 * the min watermark could be breached by an allocation
 308		 */
 309		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 310		max_drift = num_online_cpus() * threshold;
 311		if (max_drift > tolerate_drift)
 312			zone->percpu_drift_mark = high_wmark_pages(zone) +
 313					max_drift;
 314	}
 315}
 316
 317void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 318				int (*calculate_pressure)(struct zone *))
 319{
 320	struct zone *zone;
 321	int cpu;
 322	int threshold;
 323	int i;
 324
 325	for (i = 0; i < pgdat->nr_zones; i++) {
 326		zone = &pgdat->node_zones[i];
 327		if (!zone->percpu_drift_mark)
 328			continue;
 329
 330		threshold = (*calculate_pressure)(zone);
 331		for_each_online_cpu(cpu)
 332			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
 333							= threshold;
 334	}
 335}
 336
 337/*
 338 * For use when we know that interrupts are disabled,
 339 * or when we know that preemption is disabled and that
 340 * particular counter cannot be updated from interrupt context.
 341 */
 342void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 343			   long delta)
 344{
 345	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 346	s8 __percpu *p = pcp->vm_stat_diff + item;
 347	long x;
 348	long t;
 349
 350	/*
 351	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
 352	 * atomicity is provided by IRQs being disabled -- either explicitly
 353	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
 354	 * CPU migrations and preemption potentially corrupts a counter so
 355	 * disable preemption.
 356	 */
 357	preempt_disable_nested();
 358
 359	x = delta + __this_cpu_read(*p);
 360
 361	t = __this_cpu_read(pcp->stat_threshold);
 362
 363	if (unlikely(abs(x) > t)) {
 364		zone_page_state_add(x, zone, item);
 365		x = 0;
 366	}
 367	__this_cpu_write(*p, x);
 368
 369	preempt_enable_nested();
 370}
 371EXPORT_SYMBOL(__mod_zone_page_state);
 372
 373void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 374				long delta)
 375{
 376	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 377	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 378	long x;
 379	long t;
 380
 381	if (vmstat_item_in_bytes(item)) {
 382		/*
 383		 * Only cgroups use subpage accounting right now; at
 384		 * the global level, these items still change in
 385		 * multiples of whole pages. Store them as pages
 386		 * internally to keep the per-cpu counters compact.
 387		 */
 388		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 389		delta >>= PAGE_SHIFT;
 390	}
 391
 392	/* See __mod_node_page_state */
 393	preempt_disable_nested();
 394
 395	x = delta + __this_cpu_read(*p);
 396
 397	t = __this_cpu_read(pcp->stat_threshold);
 398
 399	if (unlikely(abs(x) > t)) {
 400		node_page_state_add(x, pgdat, item);
 401		x = 0;
 402	}
 403	__this_cpu_write(*p, x);
 404
 405	preempt_enable_nested();
 406}
 407EXPORT_SYMBOL(__mod_node_page_state);
 408
 409/*
 410 * Optimized increment and decrement functions.
 411 *
 412 * These are only for a single page and therefore can take a struct page *
 413 * argument instead of struct zone *. This allows the inclusion of the code
 414 * generated for page_zone(page) into the optimized functions.
 415 *
 416 * No overflow check is necessary and therefore the differential can be
 417 * incremented or decremented in place which may allow the compilers to
 418 * generate better code.
 419 * The increment or decrement is known and therefore one boundary check can
 420 * be omitted.
 421 *
 422 * NOTE: These functions are very performance sensitive. Change only
 423 * with care.
 424 *
 425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 426 * However, the code must first determine the differential location in a zone
 427 * based on the processor number and then inc/dec the counter. There is no
 428 * guarantee without disabling preemption that the processor will not change
 429 * in between and therefore the atomicity vs. interrupt cannot be exploited
 430 * in a useful way here.
 431 */
 432void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 433{
 434	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 435	s8 __percpu *p = pcp->vm_stat_diff + item;
 436	s8 v, t;
 437
 438	/* See __mod_node_page_state */
 439	preempt_disable_nested();
 440
 441	v = __this_cpu_inc_return(*p);
 442	t = __this_cpu_read(pcp->stat_threshold);
 443	if (unlikely(v > t)) {
 444		s8 overstep = t >> 1;
 445
 446		zone_page_state_add(v + overstep, zone, item);
 447		__this_cpu_write(*p, -overstep);
 448	}
 449
 450	preempt_enable_nested();
 451}
 452
 453void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 454{
 455	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 456	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 457	s8 v, t;
 458
 459	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 460
 461	/* See __mod_node_page_state */
 462	preempt_disable_nested();
 463
 464	v = __this_cpu_inc_return(*p);
 465	t = __this_cpu_read(pcp->stat_threshold);
 466	if (unlikely(v > t)) {
 467		s8 overstep = t >> 1;
 468
 469		node_page_state_add(v + overstep, pgdat, item);
 470		__this_cpu_write(*p, -overstep);
 471	}
 472
 473	preempt_enable_nested();
 474}
 475
 476void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 477{
 478	__inc_zone_state(page_zone(page), item);
 479}
 480EXPORT_SYMBOL(__inc_zone_page_state);
 481
 482void __inc_node_page_state(struct page *page, enum node_stat_item item)
 483{
 484	__inc_node_state(page_pgdat(page), item);
 485}
 486EXPORT_SYMBOL(__inc_node_page_state);
 487
 488void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 489{
 490	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 491	s8 __percpu *p = pcp->vm_stat_diff + item;
 492	s8 v, t;
 493
 494	/* See __mod_node_page_state */
 495	preempt_disable_nested();
 496
 497	v = __this_cpu_dec_return(*p);
 498	t = __this_cpu_read(pcp->stat_threshold);
 499	if (unlikely(v < - t)) {
 500		s8 overstep = t >> 1;
 501
 502		zone_page_state_add(v - overstep, zone, item);
 503		__this_cpu_write(*p, overstep);
 504	}
 505
 506	preempt_enable_nested();
 507}
 508
 509void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 510{
 511	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 512	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 513	s8 v, t;
 514
 515	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 516
 517	/* See __mod_node_page_state */
 518	preempt_disable_nested();
 519
 520	v = __this_cpu_dec_return(*p);
 521	t = __this_cpu_read(pcp->stat_threshold);
 522	if (unlikely(v < - t)) {
 523		s8 overstep = t >> 1;
 524
 525		node_page_state_add(v - overstep, pgdat, item);
 526		__this_cpu_write(*p, overstep);
 527	}
 528
 529	preempt_enable_nested();
 530}
 531
 532void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 533{
 534	__dec_zone_state(page_zone(page), item);
 535}
 536EXPORT_SYMBOL(__dec_zone_page_state);
 537
 538void __dec_node_page_state(struct page *page, enum node_stat_item item)
 539{
 540	__dec_node_state(page_pgdat(page), item);
 541}
 542EXPORT_SYMBOL(__dec_node_page_state);
 543
 544#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 545/*
 546 * If we have cmpxchg_local support then we do not need to incur the overhead
 547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 548 *
 549 * mod_state() modifies the zone counter state through atomic per cpu
 550 * operations.
 551 *
 552 * Overstep mode specifies how overstep should handled:
 553 *     0       No overstepping
 554 *     1       Overstepping half of threshold
 555 *     -1      Overstepping minus half of threshold
 556*/
 557static inline void mod_zone_state(struct zone *zone,
 558       enum zone_stat_item item, long delta, int overstep_mode)
 559{
 560	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 561	s8 __percpu *p = pcp->vm_stat_diff + item;
 562	long o, n, t, z;
 563
 564	do {
 565		z = 0;  /* overflow to zone counters */
 566
 567		/*
 568		 * The fetching of the stat_threshold is racy. We may apply
 569		 * a counter threshold to the wrong the cpu if we get
 570		 * rescheduled while executing here. However, the next
 571		 * counter update will apply the threshold again and
 572		 * therefore bring the counter under the threshold again.
 573		 *
 574		 * Most of the time the thresholds are the same anyways
 575		 * for all cpus in a zone.
 576		 */
 577		t = this_cpu_read(pcp->stat_threshold);
 578
 579		o = this_cpu_read(*p);
 580		n = delta + o;
 581
 582		if (abs(n) > t) {
 583			int os = overstep_mode * (t >> 1) ;
 584
 585			/* Overflow must be added to zone counters */
 586			z = n + os;
 587			n = -os;
 588		}
 589	} while (this_cpu_cmpxchg(*p, o, n) != o);
 590
 591	if (z)
 592		zone_page_state_add(z, zone, item);
 593}
 594
 595void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 596			 long delta)
 597{
 598	mod_zone_state(zone, item, delta, 0);
 599}
 600EXPORT_SYMBOL(mod_zone_page_state);
 601
 602void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 603{
 604	mod_zone_state(page_zone(page), item, 1, 1);
 605}
 606EXPORT_SYMBOL(inc_zone_page_state);
 607
 608void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 609{
 610	mod_zone_state(page_zone(page), item, -1, -1);
 611}
 612EXPORT_SYMBOL(dec_zone_page_state);
 613
 614static inline void mod_node_state(struct pglist_data *pgdat,
 615       enum node_stat_item item, int delta, int overstep_mode)
 616{
 617	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 618	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 619	long o, n, t, z;
 620
 621	if (vmstat_item_in_bytes(item)) {
 622		/*
 623		 * Only cgroups use subpage accounting right now; at
 624		 * the global level, these items still change in
 625		 * multiples of whole pages. Store them as pages
 626		 * internally to keep the per-cpu counters compact.
 627		 */
 628		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 629		delta >>= PAGE_SHIFT;
 630	}
 631
 632	do {
 633		z = 0;  /* overflow to node counters */
 634
 635		/*
 636		 * The fetching of the stat_threshold is racy. We may apply
 637		 * a counter threshold to the wrong the cpu if we get
 638		 * rescheduled while executing here. However, the next
 639		 * counter update will apply the threshold again and
 640		 * therefore bring the counter under the threshold again.
 641		 *
 642		 * Most of the time the thresholds are the same anyways
 643		 * for all cpus in a node.
 644		 */
 645		t = this_cpu_read(pcp->stat_threshold);
 646
 647		o = this_cpu_read(*p);
 648		n = delta + o;
 649
 650		if (abs(n) > t) {
 651			int os = overstep_mode * (t >> 1) ;
 652
 653			/* Overflow must be added to node counters */
 654			z = n + os;
 655			n = -os;
 656		}
 657	} while (this_cpu_cmpxchg(*p, o, n) != o);
 658
 659	if (z)
 660		node_page_state_add(z, pgdat, item);
 661}
 662
 663void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 664					long delta)
 665{
 666	mod_node_state(pgdat, item, delta, 0);
 667}
 668EXPORT_SYMBOL(mod_node_page_state);
 669
 670void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 671{
 672	mod_node_state(pgdat, item, 1, 1);
 673}
 674
 675void inc_node_page_state(struct page *page, enum node_stat_item item)
 676{
 677	mod_node_state(page_pgdat(page), item, 1, 1);
 678}
 679EXPORT_SYMBOL(inc_node_page_state);
 680
 681void dec_node_page_state(struct page *page, enum node_stat_item item)
 682{
 683	mod_node_state(page_pgdat(page), item, -1, -1);
 684}
 685EXPORT_SYMBOL(dec_node_page_state);
 686#else
 687/*
 688 * Use interrupt disable to serialize counter updates
 689 */
 690void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 691			 long delta)
 692{
 693	unsigned long flags;
 694
 695	local_irq_save(flags);
 696	__mod_zone_page_state(zone, item, delta);
 697	local_irq_restore(flags);
 698}
 699EXPORT_SYMBOL(mod_zone_page_state);
 700
 701void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 702{
 703	unsigned long flags;
 704	struct zone *zone;
 705
 706	zone = page_zone(page);
 707	local_irq_save(flags);
 708	__inc_zone_state(zone, item);
 709	local_irq_restore(flags);
 710}
 711EXPORT_SYMBOL(inc_zone_page_state);
 712
 713void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 714{
 715	unsigned long flags;
 716
 717	local_irq_save(flags);
 718	__dec_zone_page_state(page, item);
 719	local_irq_restore(flags);
 720}
 721EXPORT_SYMBOL(dec_zone_page_state);
 722
 723void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 724{
 725	unsigned long flags;
 726
 727	local_irq_save(flags);
 728	__inc_node_state(pgdat, item);
 729	local_irq_restore(flags);
 730}
 731EXPORT_SYMBOL(inc_node_state);
 732
 733void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 734					long delta)
 735{
 736	unsigned long flags;
 737
 738	local_irq_save(flags);
 739	__mod_node_page_state(pgdat, item, delta);
 740	local_irq_restore(flags);
 741}
 742EXPORT_SYMBOL(mod_node_page_state);
 743
 744void inc_node_page_state(struct page *page, enum node_stat_item item)
 745{
 746	unsigned long flags;
 747	struct pglist_data *pgdat;
 748
 749	pgdat = page_pgdat(page);
 750	local_irq_save(flags);
 751	__inc_node_state(pgdat, item);
 752	local_irq_restore(flags);
 753}
 754EXPORT_SYMBOL(inc_node_page_state);
 755
 756void dec_node_page_state(struct page *page, enum node_stat_item item)
 757{
 758	unsigned long flags;
 759
 760	local_irq_save(flags);
 761	__dec_node_page_state(page, item);
 762	local_irq_restore(flags);
 763}
 764EXPORT_SYMBOL(dec_node_page_state);
 765#endif
 766
 767/*
 768 * Fold a differential into the global counters.
 769 * Returns the number of counters updated.
 770 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771static int fold_diff(int *zone_diff, int *node_diff)
 772{
 773	int i;
 774	int changes = 0;
 775
 776	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 777		if (zone_diff[i]) {
 778			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 779			changes++;
 780	}
 781
 782	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 783		if (node_diff[i]) {
 784			atomic_long_add(node_diff[i], &vm_node_stat[i]);
 785			changes++;
 786	}
 787	return changes;
 788}
 
 789
 790/*
 791 * Update the zone counters for the current cpu.
 792 *
 793 * Note that refresh_cpu_vm_stats strives to only access
 794 * node local memory. The per cpu pagesets on remote zones are placed
 795 * in the memory local to the processor using that pageset. So the
 796 * loop over all zones will access a series of cachelines local to
 797 * the processor.
 798 *
 799 * The call to zone_page_state_add updates the cachelines with the
 800 * statistics in the remote zone struct as well as the global cachelines
 801 * with the global counters. These could cause remote node cache line
 802 * bouncing and will have to be only done when necessary.
 803 *
 804 * The function returns the number of global counters updated.
 805 */
 806static int refresh_cpu_vm_stats(bool do_pagesets)
 807{
 808	struct pglist_data *pgdat;
 809	struct zone *zone;
 810	int i;
 811	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 
 
 
 812	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 813	int changes = 0;
 814
 815	for_each_populated_zone(zone) {
 816		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
 817#ifdef CONFIG_NUMA
 818		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
 819#endif
 820
 821		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 822			int v;
 823
 824			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
 825			if (v) {
 826
 827				atomic_long_add(v, &zone->vm_stat[i]);
 828				global_zone_diff[i] += v;
 829#ifdef CONFIG_NUMA
 830				/* 3 seconds idle till flush */
 831				__this_cpu_write(pcp->expire, 3);
 832#endif
 833			}
 834		}
 835#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 836
 837		if (do_pagesets) {
 838			cond_resched();
 839			/*
 840			 * Deal with draining the remote pageset of this
 841			 * processor
 842			 *
 843			 * Check if there are pages remaining in this pageset
 844			 * if not then there is nothing to expire.
 845			 */
 846			if (!__this_cpu_read(pcp->expire) ||
 847			       !__this_cpu_read(pcp->count))
 848				continue;
 849
 850			/*
 851			 * We never drain zones local to this processor.
 852			 */
 853			if (zone_to_nid(zone) == numa_node_id()) {
 854				__this_cpu_write(pcp->expire, 0);
 855				continue;
 856			}
 857
 858			if (__this_cpu_dec_return(pcp->expire))
 859				continue;
 860
 861			if (__this_cpu_read(pcp->count)) {
 862				drain_zone_pages(zone, this_cpu_ptr(pcp));
 863				changes++;
 864			}
 865		}
 866#endif
 867	}
 868
 869	for_each_online_pgdat(pgdat) {
 870		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
 871
 872		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
 873			int v;
 874
 875			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
 876			if (v) {
 877				atomic_long_add(v, &pgdat->vm_stat[i]);
 878				global_node_diff[i] += v;
 879			}
 880		}
 881	}
 882
 
 
 
 
 883	changes += fold_diff(global_zone_diff, global_node_diff);
 
 884	return changes;
 885}
 886
 887/*
 888 * Fold the data for an offline cpu into the global array.
 889 * There cannot be any access by the offline cpu and therefore
 890 * synchronization is simplified.
 891 */
 892void cpu_vm_stats_fold(int cpu)
 893{
 894	struct pglist_data *pgdat;
 895	struct zone *zone;
 896	int i;
 897	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 
 
 
 898	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 899
 900	for_each_populated_zone(zone) {
 901		struct per_cpu_zonestat *pzstats;
 902
 903		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
 904
 905		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 906			if (pzstats->vm_stat_diff[i]) {
 907				int v;
 908
 909				v = pzstats->vm_stat_diff[i];
 910				pzstats->vm_stat_diff[i] = 0;
 911				atomic_long_add(v, &zone->vm_stat[i]);
 912				global_zone_diff[i] += v;
 913			}
 914		}
 915#ifdef CONFIG_NUMA
 916		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
 917			if (pzstats->vm_numa_event[i]) {
 918				unsigned long v;
 919
 920				v = pzstats->vm_numa_event[i];
 921				pzstats->vm_numa_event[i] = 0;
 922				zone_numa_event_add(v, zone, i);
 
 923			}
 924		}
 925#endif
 926	}
 927
 928	for_each_online_pgdat(pgdat) {
 929		struct per_cpu_nodestat *p;
 930
 931		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 932
 933		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 934			if (p->vm_node_stat_diff[i]) {
 935				int v;
 936
 937				v = p->vm_node_stat_diff[i];
 938				p->vm_node_stat_diff[i] = 0;
 939				atomic_long_add(v, &pgdat->vm_stat[i]);
 940				global_node_diff[i] += v;
 941			}
 942	}
 943
 
 
 
 944	fold_diff(global_zone_diff, global_node_diff);
 
 945}
 946
 947/*
 948 * this is only called if !populated_zone(zone), which implies no other users of
 949 * pset->vm_stat_diff[] exist.
 950 */
 951void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
 952{
 953	unsigned long v;
 954	int i;
 955
 956	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 957		if (pzstats->vm_stat_diff[i]) {
 958			v = pzstats->vm_stat_diff[i];
 959			pzstats->vm_stat_diff[i] = 0;
 960			zone_page_state_add(v, zone, i);
 
 961		}
 962	}
 963
 964#ifdef CONFIG_NUMA
 965	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
 966		if (pzstats->vm_numa_event[i]) {
 967			v = pzstats->vm_numa_event[i];
 968			pzstats->vm_numa_event[i] = 0;
 969			zone_numa_event_add(v, zone, i);
 
 
 970		}
 971	}
 972#endif
 973}
 974#endif
 975
 976#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977/*
 978 * Determine the per node value of a stat item. This function
 979 * is called frequently in a NUMA machine, so try to be as
 980 * frugal as possible.
 981 */
 982unsigned long sum_zone_node_page_state(int node,
 983				 enum zone_stat_item item)
 984{
 985	struct zone *zones = NODE_DATA(node)->node_zones;
 986	int i;
 987	unsigned long count = 0;
 988
 989	for (i = 0; i < MAX_NR_ZONES; i++)
 990		count += zone_page_state(zones + i, item);
 991
 992	return count;
 993}
 994
 995/* Determine the per node value of a numa stat item. */
 996unsigned long sum_zone_numa_event_state(int node,
 
 
 
 997				 enum numa_stat_item item)
 998{
 999	struct zone *zones = NODE_DATA(node)->node_zones;
 
1000	unsigned long count = 0;
1001	int i;
1002
1003	for (i = 0; i < MAX_NR_ZONES; i++)
1004		count += zone_numa_event_state(zones + i, item);
1005
1006	return count;
1007}
1008
1009/*
1010 * Determine the per node value of a stat item.
1011 */
1012unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013				    enum node_stat_item item)
1014{
1015	long x = atomic_long_read(&pgdat->vm_stat[item]);
1016#ifdef CONFIG_SMP
1017	if (x < 0)
1018		x = 0;
1019#endif
1020	return x;
1021}
1022
1023unsigned long node_page_state(struct pglist_data *pgdat,
1024			      enum node_stat_item item)
1025{
1026	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1027
1028	return node_page_state_pages(pgdat, item);
1029}
1030#endif
1031
1032#ifdef CONFIG_COMPACTION
1033
1034struct contig_page_info {
1035	unsigned long free_pages;
1036	unsigned long free_blocks_total;
1037	unsigned long free_blocks_suitable;
1038};
1039
1040/*
1041 * Calculate the number of free pages in a zone, how many contiguous
1042 * pages are free and how many are large enough to satisfy an allocation of
1043 * the target size. Note that this function makes no attempt to estimate
1044 * how many suitable free blocks there *might* be if MOVABLE pages were
1045 * migrated. Calculating that is possible, but expensive and can be
1046 * figured out from userspace
1047 */
1048static void fill_contig_page_info(struct zone *zone,
1049				unsigned int suitable_order,
1050				struct contig_page_info *info)
1051{
1052	unsigned int order;
1053
1054	info->free_pages = 0;
1055	info->free_blocks_total = 0;
1056	info->free_blocks_suitable = 0;
1057
1058	for (order = 0; order < MAX_ORDER; order++) {
1059		unsigned long blocks;
1060
1061		/*
1062		 * Count number of free blocks.
1063		 *
1064		 * Access to nr_free is lockless as nr_free is used only for
1065		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1066		 */
1067		blocks = data_race(zone->free_area[order].nr_free);
1068		info->free_blocks_total += blocks;
1069
1070		/* Count free base pages */
1071		info->free_pages += blocks << order;
1072
1073		/* Count the suitable free blocks */
1074		if (order >= suitable_order)
1075			info->free_blocks_suitable += blocks <<
1076						(order - suitable_order);
1077	}
1078}
1079
1080/*
1081 * A fragmentation index only makes sense if an allocation of a requested
1082 * size would fail. If that is true, the fragmentation index indicates
1083 * whether external fragmentation or a lack of memory was the problem.
1084 * The value can be used to determine if page reclaim or compaction
1085 * should be used
1086 */
1087static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1088{
1089	unsigned long requested = 1UL << order;
1090
1091	if (WARN_ON_ONCE(order >= MAX_ORDER))
1092		return 0;
1093
1094	if (!info->free_blocks_total)
1095		return 0;
1096
1097	/* Fragmentation index only makes sense when a request would fail */
1098	if (info->free_blocks_suitable)
1099		return -1000;
1100
1101	/*
1102	 * Index is between 0 and 1 so return within 3 decimal places
1103	 *
1104	 * 0 => allocation would fail due to lack of memory
1105	 * 1 => allocation would fail due to fragmentation
1106	 */
1107	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1108}
1109
1110/*
1111 * Calculates external fragmentation within a zone wrt the given order.
1112 * It is defined as the percentage of pages found in blocks of size
1113 * less than 1 << order. It returns values in range [0, 100].
1114 */
1115unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1116{
1117	struct contig_page_info info;
1118
1119	fill_contig_page_info(zone, order, &info);
1120	if (info.free_pages == 0)
1121		return 0;
1122
1123	return div_u64((info.free_pages -
1124			(info.free_blocks_suitable << order)) * 100,
1125			info.free_pages);
1126}
1127
1128/* Same as __fragmentation index but allocs contig_page_info on stack */
1129int fragmentation_index(struct zone *zone, unsigned int order)
1130{
1131	struct contig_page_info info;
1132
1133	fill_contig_page_info(zone, order, &info);
1134	return __fragmentation_index(order, &info);
1135}
1136#endif
1137
1138#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139    defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140#ifdef CONFIG_ZONE_DMA
1141#define TEXT_FOR_DMA(xx) xx "_dma",
1142#else
1143#define TEXT_FOR_DMA(xx)
1144#endif
1145
1146#ifdef CONFIG_ZONE_DMA32
1147#define TEXT_FOR_DMA32(xx) xx "_dma32",
1148#else
1149#define TEXT_FOR_DMA32(xx)
1150#endif
1151
1152#ifdef CONFIG_HIGHMEM
1153#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1154#else
1155#define TEXT_FOR_HIGHMEM(xx)
1156#endif
1157
1158#ifdef CONFIG_ZONE_DEVICE
1159#define TEXT_FOR_DEVICE(xx) xx "_device",
1160#else
1161#define TEXT_FOR_DEVICE(xx)
1162#endif
1163
1164#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165					TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1166					TEXT_FOR_DEVICE(xx)
1167
1168const char * const vmstat_text[] = {
1169	/* enum zone_stat_item counters */
1170	"nr_free_pages",
1171	"nr_zone_inactive_anon",
1172	"nr_zone_active_anon",
1173	"nr_zone_inactive_file",
1174	"nr_zone_active_file",
1175	"nr_zone_unevictable",
1176	"nr_zone_write_pending",
1177	"nr_mlock",
 
1178	"nr_bounce",
1179#if IS_ENABLED(CONFIG_ZSMALLOC)
1180	"nr_zspages",
1181#endif
1182	"nr_free_cma",
1183
1184	/* enum numa_stat_item counters */
1185#ifdef CONFIG_NUMA
1186	"numa_hit",
1187	"numa_miss",
1188	"numa_foreign",
1189	"numa_interleave",
1190	"numa_local",
1191	"numa_other",
1192#endif
1193
1194	/* enum node_stat_item counters */
1195	"nr_inactive_anon",
1196	"nr_active_anon",
1197	"nr_inactive_file",
1198	"nr_active_file",
1199	"nr_unevictable",
1200	"nr_slab_reclaimable",
1201	"nr_slab_unreclaimable",
1202	"nr_isolated_anon",
1203	"nr_isolated_file",
1204	"workingset_nodes",
1205	"workingset_refault_anon",
1206	"workingset_refault_file",
1207	"workingset_activate_anon",
1208	"workingset_activate_file",
1209	"workingset_restore_anon",
1210	"workingset_restore_file",
1211	"workingset_nodereclaim",
1212	"nr_anon_pages",
1213	"nr_mapped",
1214	"nr_file_pages",
1215	"nr_dirty",
1216	"nr_writeback",
1217	"nr_writeback_temp",
1218	"nr_shmem",
1219	"nr_shmem_hugepages",
1220	"nr_shmem_pmdmapped",
1221	"nr_file_hugepages",
1222	"nr_file_pmdmapped",
1223	"nr_anon_transparent_hugepages",
1224	"nr_vmscan_write",
1225	"nr_vmscan_immediate_reclaim",
1226	"nr_dirtied",
1227	"nr_written",
1228	"nr_throttled_written",
1229	"nr_kernel_misc_reclaimable",
1230	"nr_foll_pin_acquired",
1231	"nr_foll_pin_released",
1232	"nr_kernel_stack",
1233#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1234	"nr_shadow_call_stack",
1235#endif
1236	"nr_page_table_pages",
1237	"nr_sec_page_table_pages",
1238#ifdef CONFIG_SWAP
1239	"nr_swapcached",
1240#endif
1241#ifdef CONFIG_NUMA_BALANCING
1242	"pgpromote_success",
1243	"pgpromote_candidate",
1244#endif
1245
1246	/* enum writeback_stat_item counters */
1247	"nr_dirty_threshold",
1248	"nr_dirty_background_threshold",
1249
1250#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251	/* enum vm_event_item counters */
1252	"pgpgin",
1253	"pgpgout",
1254	"pswpin",
1255	"pswpout",
1256
1257	TEXTS_FOR_ZONES("pgalloc")
1258	TEXTS_FOR_ZONES("allocstall")
1259	TEXTS_FOR_ZONES("pgskip")
1260
1261	"pgfree",
1262	"pgactivate",
1263	"pgdeactivate",
1264	"pglazyfree",
1265
1266	"pgfault",
1267	"pgmajfault",
1268	"pglazyfreed",
1269
1270	"pgrefill",
1271	"pgreuse",
1272	"pgsteal_kswapd",
1273	"pgsteal_direct",
1274	"pgsteal_khugepaged",
1275	"pgdemote_kswapd",
1276	"pgdemote_direct",
1277	"pgdemote_khugepaged",
1278	"pgscan_kswapd",
1279	"pgscan_direct",
1280	"pgscan_khugepaged",
1281	"pgscan_direct_throttle",
1282	"pgscan_anon",
1283	"pgscan_file",
1284	"pgsteal_anon",
1285	"pgsteal_file",
1286
1287#ifdef CONFIG_NUMA
1288	"zone_reclaim_failed",
1289#endif
1290	"pginodesteal",
1291	"slabs_scanned",
1292	"kswapd_inodesteal",
1293	"kswapd_low_wmark_hit_quickly",
1294	"kswapd_high_wmark_hit_quickly",
1295	"pageoutrun",
1296
1297	"pgrotated",
1298
1299	"drop_pagecache",
1300	"drop_slab",
1301	"oom_kill",
1302
1303#ifdef CONFIG_NUMA_BALANCING
1304	"numa_pte_updates",
1305	"numa_huge_pte_updates",
1306	"numa_hint_faults",
1307	"numa_hint_faults_local",
1308	"numa_pages_migrated",
1309#endif
1310#ifdef CONFIG_MIGRATION
1311	"pgmigrate_success",
1312	"pgmigrate_fail",
1313	"thp_migration_success",
1314	"thp_migration_fail",
1315	"thp_migration_split",
1316#endif
1317#ifdef CONFIG_COMPACTION
1318	"compact_migrate_scanned",
1319	"compact_free_scanned",
1320	"compact_isolated",
1321	"compact_stall",
1322	"compact_fail",
1323	"compact_success",
1324	"compact_daemon_wake",
1325	"compact_daemon_migrate_scanned",
1326	"compact_daemon_free_scanned",
1327#endif
1328
1329#ifdef CONFIG_HUGETLB_PAGE
1330	"htlb_buddy_alloc_success",
1331	"htlb_buddy_alloc_fail",
1332#endif
1333#ifdef CONFIG_CMA
1334	"cma_alloc_success",
1335	"cma_alloc_fail",
1336#endif
1337	"unevictable_pgs_culled",
1338	"unevictable_pgs_scanned",
1339	"unevictable_pgs_rescued",
1340	"unevictable_pgs_mlocked",
1341	"unevictable_pgs_munlocked",
1342	"unevictable_pgs_cleared",
1343	"unevictable_pgs_stranded",
1344
1345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1346	"thp_fault_alloc",
1347	"thp_fault_fallback",
1348	"thp_fault_fallback_charge",
1349	"thp_collapse_alloc",
1350	"thp_collapse_alloc_failed",
1351	"thp_file_alloc",
1352	"thp_file_fallback",
1353	"thp_file_fallback_charge",
1354	"thp_file_mapped",
1355	"thp_split_page",
1356	"thp_split_page_failed",
1357	"thp_deferred_split_page",
1358	"thp_split_pmd",
1359	"thp_scan_exceed_none_pte",
1360	"thp_scan_exceed_swap_pte",
1361	"thp_scan_exceed_share_pte",
1362#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1363	"thp_split_pud",
1364#endif
1365	"thp_zero_page_alloc",
1366	"thp_zero_page_alloc_failed",
1367	"thp_swpout",
1368	"thp_swpout_fallback",
1369#endif
1370#ifdef CONFIG_MEMORY_BALLOON
1371	"balloon_inflate",
1372	"balloon_deflate",
1373#ifdef CONFIG_BALLOON_COMPACTION
1374	"balloon_migrate",
1375#endif
1376#endif /* CONFIG_MEMORY_BALLOON */
1377#ifdef CONFIG_DEBUG_TLBFLUSH
1378	"nr_tlb_remote_flush",
1379	"nr_tlb_remote_flush_received",
1380	"nr_tlb_local_flush_all",
1381	"nr_tlb_local_flush_one",
1382#endif /* CONFIG_DEBUG_TLBFLUSH */
1383
 
 
 
 
1384#ifdef CONFIG_SWAP
1385	"swap_ra",
1386	"swap_ra_hit",
1387#ifdef CONFIG_KSM
1388	"ksm_swpin_copy",
1389#endif
1390#endif
1391#ifdef CONFIG_KSM
1392	"cow_ksm",
1393#endif
1394#ifdef CONFIG_ZSWAP
1395	"zswpin",
1396	"zswpout",
1397#endif
1398#ifdef CONFIG_X86
1399	"direct_map_level2_splits",
1400	"direct_map_level3_splits",
1401#endif
1402#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1403};
1404#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1405
1406#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1407     defined(CONFIG_PROC_FS)
1408static void *frag_start(struct seq_file *m, loff_t *pos)
1409{
1410	pg_data_t *pgdat;
1411	loff_t node = *pos;
1412
1413	for (pgdat = first_online_pgdat();
1414	     pgdat && node;
1415	     pgdat = next_online_pgdat(pgdat))
1416		--node;
1417
1418	return pgdat;
1419}
1420
1421static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1422{
1423	pg_data_t *pgdat = (pg_data_t *)arg;
1424
1425	(*pos)++;
1426	return next_online_pgdat(pgdat);
1427}
1428
1429static void frag_stop(struct seq_file *m, void *arg)
1430{
1431}
1432
1433/*
1434 * Walk zones in a node and print using a callback.
1435 * If @assert_populated is true, only use callback for zones that are populated.
1436 */
1437static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1438		bool assert_populated, bool nolock,
1439		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1440{
1441	struct zone *zone;
1442	struct zone *node_zones = pgdat->node_zones;
1443	unsigned long flags;
1444
1445	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1446		if (assert_populated && !populated_zone(zone))
1447			continue;
1448
1449		if (!nolock)
1450			spin_lock_irqsave(&zone->lock, flags);
1451		print(m, pgdat, zone);
1452		if (!nolock)
1453			spin_unlock_irqrestore(&zone->lock, flags);
1454	}
1455}
1456#endif
1457
1458#ifdef CONFIG_PROC_FS
1459static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1460						struct zone *zone)
1461{
1462	int order;
1463
1464	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1465	for (order = 0; order < MAX_ORDER; ++order)
1466		/*
1467		 * Access to nr_free is lockless as nr_free is used only for
1468		 * printing purposes. Use data_race to avoid KCSAN warning.
1469		 */
1470		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1471	seq_putc(m, '\n');
1472}
1473
1474/*
1475 * This walks the free areas for each zone.
1476 */
1477static int frag_show(struct seq_file *m, void *arg)
1478{
1479	pg_data_t *pgdat = (pg_data_t *)arg;
1480	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1481	return 0;
1482}
1483
1484static void pagetypeinfo_showfree_print(struct seq_file *m,
1485					pg_data_t *pgdat, struct zone *zone)
1486{
1487	int order, mtype;
1488
1489	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1490		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1491					pgdat->node_id,
1492					zone->name,
1493					migratetype_names[mtype]);
1494		for (order = 0; order < MAX_ORDER; ++order) {
1495			unsigned long freecount = 0;
1496			struct free_area *area;
1497			struct list_head *curr;
1498			bool overflow = false;
1499
1500			area = &(zone->free_area[order]);
1501
1502			list_for_each(curr, &area->free_list[mtype]) {
1503				/*
1504				 * Cap the free_list iteration because it might
1505				 * be really large and we are under a spinlock
1506				 * so a long time spent here could trigger a
1507				 * hard lockup detector. Anyway this is a
1508				 * debugging tool so knowing there is a handful
1509				 * of pages of this order should be more than
1510				 * sufficient.
1511				 */
1512				if (++freecount >= 100000) {
1513					overflow = true;
1514					break;
1515				}
1516			}
1517			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1518			spin_unlock_irq(&zone->lock);
1519			cond_resched();
1520			spin_lock_irq(&zone->lock);
1521		}
1522		seq_putc(m, '\n');
1523	}
1524}
1525
1526/* Print out the free pages at each order for each migatetype */
1527static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1528{
1529	int order;
1530	pg_data_t *pgdat = (pg_data_t *)arg;
1531
1532	/* Print header */
1533	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1534	for (order = 0; order < MAX_ORDER; ++order)
1535		seq_printf(m, "%6d ", order);
1536	seq_putc(m, '\n');
1537
1538	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
 
 
1539}
1540
1541static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1542					pg_data_t *pgdat, struct zone *zone)
1543{
1544	int mtype;
1545	unsigned long pfn;
1546	unsigned long start_pfn = zone->zone_start_pfn;
1547	unsigned long end_pfn = zone_end_pfn(zone);
1548	unsigned long count[MIGRATE_TYPES] = { 0, };
1549
1550	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1551		struct page *page;
1552
1553		page = pfn_to_online_page(pfn);
1554		if (!page)
1555			continue;
1556
 
 
 
 
1557		if (page_zone(page) != zone)
1558			continue;
1559
1560		mtype = get_pageblock_migratetype(page);
1561
1562		if (mtype < MIGRATE_TYPES)
1563			count[mtype]++;
1564	}
1565
1566	/* Print counts */
1567	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1568	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1569		seq_printf(m, "%12lu ", count[mtype]);
1570	seq_putc(m, '\n');
1571}
1572
1573/* Print out the number of pageblocks for each migratetype */
1574static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1575{
1576	int mtype;
1577	pg_data_t *pgdat = (pg_data_t *)arg;
1578
1579	seq_printf(m, "\n%-23s", "Number of blocks type ");
1580	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1581		seq_printf(m, "%12s ", migratetype_names[mtype]);
1582	seq_putc(m, '\n');
1583	walk_zones_in_node(m, pgdat, true, false,
1584		pagetypeinfo_showblockcount_print);
 
 
1585}
1586
1587/*
1588 * Print out the number of pageblocks for each migratetype that contain pages
1589 * of other types. This gives an indication of how well fallbacks are being
1590 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1591 * to determine what is going on
1592 */
1593static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1594{
1595#ifdef CONFIG_PAGE_OWNER
1596	int mtype;
1597
1598	if (!static_branch_unlikely(&page_owner_inited))
1599		return;
1600
1601	drain_all_pages(NULL);
1602
1603	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1604	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1605		seq_printf(m, "%12s ", migratetype_names[mtype]);
1606	seq_putc(m, '\n');
1607
1608	walk_zones_in_node(m, pgdat, true, true,
1609		pagetypeinfo_showmixedcount_print);
1610#endif /* CONFIG_PAGE_OWNER */
1611}
1612
1613/*
1614 * This prints out statistics in relation to grouping pages by mobility.
1615 * It is expensive to collect so do not constantly read the file.
1616 */
1617static int pagetypeinfo_show(struct seq_file *m, void *arg)
1618{
1619	pg_data_t *pgdat = (pg_data_t *)arg;
1620
1621	/* check memoryless node */
1622	if (!node_state(pgdat->node_id, N_MEMORY))
1623		return 0;
1624
1625	seq_printf(m, "Page block order: %d\n", pageblock_order);
1626	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1627	seq_putc(m, '\n');
1628	pagetypeinfo_showfree(m, pgdat);
1629	pagetypeinfo_showblockcount(m, pgdat);
1630	pagetypeinfo_showmixedcount(m, pgdat);
1631
1632	return 0;
1633}
1634
1635static const struct seq_operations fragmentation_op = {
1636	.start	= frag_start,
1637	.next	= frag_next,
1638	.stop	= frag_stop,
1639	.show	= frag_show,
1640};
1641
1642static const struct seq_operations pagetypeinfo_op = {
1643	.start	= frag_start,
1644	.next	= frag_next,
1645	.stop	= frag_stop,
1646	.show	= pagetypeinfo_show,
1647};
1648
1649static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1650{
1651	int zid;
1652
1653	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654		struct zone *compare = &pgdat->node_zones[zid];
1655
1656		if (populated_zone(compare))
1657			return zone == compare;
1658	}
1659
1660	return false;
1661}
1662
1663static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1664							struct zone *zone)
1665{
1666	int i;
1667	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1668	if (is_zone_first_populated(pgdat, zone)) {
1669		seq_printf(m, "\n  per-node stats");
1670		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1671			unsigned long pages = node_page_state_pages(pgdat, i);
1672
1673			if (vmstat_item_print_in_thp(i))
1674				pages /= HPAGE_PMD_NR;
1675			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1676				   pages);
1677		}
1678	}
1679	seq_printf(m,
1680		   "\n  pages free     %lu"
1681		   "\n        boost    %lu"
1682		   "\n        min      %lu"
1683		   "\n        low      %lu"
1684		   "\n        high     %lu"
1685		   "\n        spanned  %lu"
1686		   "\n        present  %lu"
1687		   "\n        managed  %lu"
1688		   "\n        cma      %lu",
1689		   zone_page_state(zone, NR_FREE_PAGES),
1690		   zone->watermark_boost,
1691		   min_wmark_pages(zone),
1692		   low_wmark_pages(zone),
1693		   high_wmark_pages(zone),
1694		   zone->spanned_pages,
1695		   zone->present_pages,
1696		   zone_managed_pages(zone),
1697		   zone_cma_pages(zone));
1698
1699	seq_printf(m,
1700		   "\n        protection: (%ld",
1701		   zone->lowmem_reserve[0]);
1702	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1703		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1704	seq_putc(m, ')');
1705
1706	/* If unpopulated, no other information is useful */
1707	if (!populated_zone(zone)) {
1708		seq_putc(m, '\n');
1709		return;
1710	}
1711
1712	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1713		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1714			   zone_page_state(zone, i));
1715
1716#ifdef CONFIG_NUMA
1717	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1718		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1719			   zone_numa_event_state(zone, i));
1720#endif
1721
1722	seq_printf(m, "\n  pagesets");
1723	for_each_online_cpu(i) {
1724		struct per_cpu_pages *pcp;
1725		struct per_cpu_zonestat __maybe_unused *pzstats;
1726
1727		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1728		seq_printf(m,
1729			   "\n    cpu: %i"
1730			   "\n              count: %i"
1731			   "\n              high:  %i"
1732			   "\n              batch: %i",
1733			   i,
1734			   pcp->count,
1735			   pcp->high,
1736			   pcp->batch);
1737#ifdef CONFIG_SMP
1738		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1739		seq_printf(m, "\n  vm stats threshold: %d",
1740				pzstats->stat_threshold);
1741#endif
1742	}
1743	seq_printf(m,
1744		   "\n  node_unreclaimable:  %u"
1745		   "\n  start_pfn:           %lu",
1746		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1747		   zone->zone_start_pfn);
1748	seq_putc(m, '\n');
1749}
1750
1751/*
1752 * Output information about zones in @pgdat.  All zones are printed regardless
1753 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1754 * set of all zones and userspace would not be aware of such zones if they are
1755 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1756 */
1757static int zoneinfo_show(struct seq_file *m, void *arg)
1758{
1759	pg_data_t *pgdat = (pg_data_t *)arg;
1760	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1761	return 0;
1762}
1763
1764static const struct seq_operations zoneinfo_op = {
1765	.start	= frag_start, /* iterate over all zones. The same as in
1766			       * fragmentation. */
1767	.next	= frag_next,
1768	.stop	= frag_stop,
1769	.show	= zoneinfo_show,
1770};
1771
1772#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1773			 NR_VM_NUMA_EVENT_ITEMS + \
1774			 NR_VM_NODE_STAT_ITEMS + \
1775			 NR_VM_WRITEBACK_STAT_ITEMS + \
1776			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1777			  NR_VM_EVENT_ITEMS : 0))
1778
1779static void *vmstat_start(struct seq_file *m, loff_t *pos)
1780{
1781	unsigned long *v;
1782	int i;
1783
1784	if (*pos >= NR_VMSTAT_ITEMS)
1785		return NULL;
1786
1787	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1788	fold_vm_numa_events();
1789	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1790	m->private = v;
1791	if (!v)
1792		return ERR_PTR(-ENOMEM);
1793	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1794		v[i] = global_zone_page_state(i);
1795	v += NR_VM_ZONE_STAT_ITEMS;
1796
1797#ifdef CONFIG_NUMA
1798	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1799		v[i] = global_numa_event_state(i);
1800	v += NR_VM_NUMA_EVENT_ITEMS;
1801#endif
1802
1803	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1804		v[i] = global_node_page_state_pages(i);
1805		if (vmstat_item_print_in_thp(i))
1806			v[i] /= HPAGE_PMD_NR;
1807	}
1808	v += NR_VM_NODE_STAT_ITEMS;
1809
1810	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1811			    v + NR_DIRTY_THRESHOLD);
1812	v += NR_VM_WRITEBACK_STAT_ITEMS;
1813
1814#ifdef CONFIG_VM_EVENT_COUNTERS
1815	all_vm_events(v);
1816	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1817	v[PGPGOUT] /= 2;
1818#endif
1819	return (unsigned long *)m->private + *pos;
1820}
1821
1822static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1823{
1824	(*pos)++;
1825	if (*pos >= NR_VMSTAT_ITEMS)
1826		return NULL;
1827	return (unsigned long *)m->private + *pos;
1828}
1829
1830static int vmstat_show(struct seq_file *m, void *arg)
1831{
1832	unsigned long *l = arg;
1833	unsigned long off = l - (unsigned long *)m->private;
1834
1835	seq_puts(m, vmstat_text[off]);
1836	seq_put_decimal_ull(m, " ", *l);
1837	seq_putc(m, '\n');
1838
1839	if (off == NR_VMSTAT_ITEMS - 1) {
1840		/*
1841		 * We've come to the end - add any deprecated counters to avoid
1842		 * breaking userspace which might depend on them being present.
1843		 */
1844		seq_puts(m, "nr_unstable 0\n");
1845	}
1846	return 0;
1847}
1848
1849static void vmstat_stop(struct seq_file *m, void *arg)
1850{
1851	kfree(m->private);
1852	m->private = NULL;
1853}
1854
1855static const struct seq_operations vmstat_op = {
1856	.start	= vmstat_start,
1857	.next	= vmstat_next,
1858	.stop	= vmstat_stop,
1859	.show	= vmstat_show,
1860};
1861#endif /* CONFIG_PROC_FS */
1862
1863#ifdef CONFIG_SMP
1864static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1865int sysctl_stat_interval __read_mostly = HZ;
1866
1867#ifdef CONFIG_PROC_FS
1868static void refresh_vm_stats(struct work_struct *work)
1869{
1870	refresh_cpu_vm_stats(true);
1871}
1872
1873int vmstat_refresh(struct ctl_table *table, int write,
1874		   void *buffer, size_t *lenp, loff_t *ppos)
1875{
1876	long val;
1877	int err;
1878	int i;
1879
1880	/*
1881	 * The regular update, every sysctl_stat_interval, may come later
1882	 * than expected: leaving a significant amount in per_cpu buckets.
1883	 * This is particularly misleading when checking a quantity of HUGE
1884	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1885	 * which can equally be echo'ed to or cat'ted from (by root),
1886	 * can be used to update the stats just before reading them.
1887	 *
1888	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1889	 * transiently negative values, report an error here if any of
1890	 * the stats is negative, so we know to go looking for imbalance.
1891	 */
1892	err = schedule_on_each_cpu(refresh_vm_stats);
1893	if (err)
1894		return err;
1895	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1896		/*
1897		 * Skip checking stats known to go negative occasionally.
1898		 */
1899		switch (i) {
1900		case NR_ZONE_WRITE_PENDING:
1901		case NR_FREE_CMA_PAGES:
1902			continue;
1903		}
1904		val = atomic_long_read(&vm_zone_stat[i]);
1905		if (val < 0) {
1906			pr_warn("%s: %s %ld\n",
1907				__func__, zone_stat_name(i), val);
 
1908		}
1909	}
1910	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1911		/*
1912		 * Skip checking stats known to go negative occasionally.
1913		 */
1914		switch (i) {
1915		case NR_WRITEBACK:
1916			continue;
1917		}
1918		val = atomic_long_read(&vm_node_stat[i]);
1919		if (val < 0) {
1920			pr_warn("%s: %s %ld\n",
1921				__func__, node_stat_name(i), val);
 
1922		}
1923	}
 
 
 
1924	if (write)
1925		*ppos += *lenp;
1926	else
1927		*lenp = 0;
1928	return 0;
1929}
1930#endif /* CONFIG_PROC_FS */
1931
1932static void vmstat_update(struct work_struct *w)
1933{
1934	if (refresh_cpu_vm_stats(true)) {
1935		/*
1936		 * Counters were updated so we expect more updates
1937		 * to occur in the future. Keep on running the
1938		 * update worker thread.
1939		 */
1940		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1941				this_cpu_ptr(&vmstat_work),
1942				round_jiffies_relative(sysctl_stat_interval));
1943	}
1944}
1945
1946/*
 
 
 
 
 
1947 * Check if the diffs for a certain cpu indicate that
1948 * an update is needed.
1949 */
1950static bool need_update(int cpu)
1951{
1952	pg_data_t *last_pgdat = NULL;
1953	struct zone *zone;
1954
1955	for_each_populated_zone(zone) {
1956		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1957		struct per_cpu_nodestat *n;
 
 
 
 
1958
1959		/*
1960		 * The fast way of checking if there are any vmstat diffs.
1961		 */
1962		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
 
1963			return true;
1964
1965		if (last_pgdat == zone->zone_pgdat)
1966			continue;
1967		last_pgdat = zone->zone_pgdat;
1968		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1969		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1970			return true;
 
1971	}
1972	return false;
1973}
1974
1975/*
1976 * Switch off vmstat processing and then fold all the remaining differentials
1977 * until the diffs stay at zero. The function is used by NOHZ and can only be
1978 * invoked when tick processing is not active.
1979 */
1980void quiet_vmstat(void)
1981{
1982	if (system_state != SYSTEM_RUNNING)
1983		return;
1984
1985	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1986		return;
1987
1988	if (!need_update(smp_processor_id()))
1989		return;
1990
1991	/*
1992	 * Just refresh counters and do not care about the pending delayed
1993	 * vmstat_update. It doesn't fire that often to matter and canceling
1994	 * it would be too expensive from this path.
1995	 * vmstat_shepherd will take care about that for us.
1996	 */
1997	refresh_cpu_vm_stats(false);
1998}
1999
2000/*
2001 * Shepherd worker thread that checks the
2002 * differentials of processors that have their worker
2003 * threads for vm statistics updates disabled because of
2004 * inactivity.
2005 */
2006static void vmstat_shepherd(struct work_struct *w);
2007
2008static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2009
2010static void vmstat_shepherd(struct work_struct *w)
2011{
2012	int cpu;
2013
2014	cpus_read_lock();
2015	/* Check processors whose vmstat worker threads have been disabled */
2016	for_each_online_cpu(cpu) {
2017		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2018
2019		if (!delayed_work_pending(dw) && need_update(cpu))
2020			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2021
2022		cond_resched();
2023	}
2024	cpus_read_unlock();
2025
2026	schedule_delayed_work(&shepherd,
2027		round_jiffies_relative(sysctl_stat_interval));
2028}
2029
2030static void __init start_shepherd_timer(void)
2031{
2032	int cpu;
2033
2034	for_each_possible_cpu(cpu)
2035		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2036			vmstat_update);
2037
2038	schedule_delayed_work(&shepherd,
2039		round_jiffies_relative(sysctl_stat_interval));
2040}
2041
2042static void __init init_cpu_node_state(void)
2043{
2044	int node;
2045
2046	for_each_online_node(node) {
2047		if (!cpumask_empty(cpumask_of_node(node)))
2048			node_set_state(node, N_CPU);
2049	}
2050}
2051
2052static int vmstat_cpu_online(unsigned int cpu)
2053{
2054	refresh_zone_stat_thresholds();
2055
2056	if (!node_state(cpu_to_node(cpu), N_CPU)) {
2057		node_set_state(cpu_to_node(cpu), N_CPU);
2058	}
2059
2060	return 0;
2061}
2062
2063static int vmstat_cpu_down_prep(unsigned int cpu)
2064{
2065	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2066	return 0;
2067}
2068
2069static int vmstat_cpu_dead(unsigned int cpu)
2070{
2071	const struct cpumask *node_cpus;
2072	int node;
2073
2074	node = cpu_to_node(cpu);
2075
2076	refresh_zone_stat_thresholds();
2077	node_cpus = cpumask_of_node(node);
2078	if (!cpumask_empty(node_cpus))
2079		return 0;
2080
2081	node_clear_state(node, N_CPU);
2082
2083	return 0;
2084}
2085
2086#endif
2087
2088struct workqueue_struct *mm_percpu_wq;
2089
2090void __init init_mm_internals(void)
2091{
2092	int ret __maybe_unused;
2093
2094	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2095
2096#ifdef CONFIG_SMP
2097	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2098					NULL, vmstat_cpu_dead);
2099	if (ret < 0)
2100		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2101
2102	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2103					vmstat_cpu_online,
2104					vmstat_cpu_down_prep);
2105	if (ret < 0)
2106		pr_err("vmstat: failed to register 'online' hotplug state\n");
2107
2108	cpus_read_lock();
2109	init_cpu_node_state();
2110	cpus_read_unlock();
2111
2112	start_shepherd_timer();
2113#endif
2114#ifdef CONFIG_PROC_FS
2115	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2116	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2117	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2118	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2119#endif
2120}
2121
2122#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2123
2124/*
2125 * Return an index indicating how much of the available free memory is
2126 * unusable for an allocation of the requested size.
2127 */
2128static int unusable_free_index(unsigned int order,
2129				struct contig_page_info *info)
2130{
2131	/* No free memory is interpreted as all free memory is unusable */
2132	if (info->free_pages == 0)
2133		return 1000;
2134
2135	/*
2136	 * Index should be a value between 0 and 1. Return a value to 3
2137	 * decimal places.
2138	 *
2139	 * 0 => no fragmentation
2140	 * 1 => high fragmentation
2141	 */
2142	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2143
2144}
2145
2146static void unusable_show_print(struct seq_file *m,
2147					pg_data_t *pgdat, struct zone *zone)
2148{
2149	unsigned int order;
2150	int index;
2151	struct contig_page_info info;
2152
2153	seq_printf(m, "Node %d, zone %8s ",
2154				pgdat->node_id,
2155				zone->name);
2156	for (order = 0; order < MAX_ORDER; ++order) {
2157		fill_contig_page_info(zone, order, &info);
2158		index = unusable_free_index(order, &info);
2159		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2160	}
2161
2162	seq_putc(m, '\n');
2163}
2164
2165/*
2166 * Display unusable free space index
2167 *
2168 * The unusable free space index measures how much of the available free
2169 * memory cannot be used to satisfy an allocation of a given size and is a
2170 * value between 0 and 1. The higher the value, the more of free memory is
2171 * unusable and by implication, the worse the external fragmentation is. This
2172 * can be expressed as a percentage by multiplying by 100.
2173 */
2174static int unusable_show(struct seq_file *m, void *arg)
2175{
2176	pg_data_t *pgdat = (pg_data_t *)arg;
2177
2178	/* check memoryless node */
2179	if (!node_state(pgdat->node_id, N_MEMORY))
2180		return 0;
2181
2182	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2183
2184	return 0;
2185}
2186
2187static const struct seq_operations unusable_sops = {
2188	.start	= frag_start,
2189	.next	= frag_next,
2190	.stop	= frag_stop,
2191	.show	= unusable_show,
2192};
2193
2194DEFINE_SEQ_ATTRIBUTE(unusable);
2195
2196static void extfrag_show_print(struct seq_file *m,
2197					pg_data_t *pgdat, struct zone *zone)
2198{
2199	unsigned int order;
2200	int index;
2201
2202	/* Alloc on stack as interrupts are disabled for zone walk */
2203	struct contig_page_info info;
2204
2205	seq_printf(m, "Node %d, zone %8s ",
2206				pgdat->node_id,
2207				zone->name);
2208	for (order = 0; order < MAX_ORDER; ++order) {
2209		fill_contig_page_info(zone, order, &info);
2210		index = __fragmentation_index(order, &info);
2211		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2212	}
2213
2214	seq_putc(m, '\n');
2215}
2216
2217/*
2218 * Display fragmentation index for orders that allocations would fail for
2219 */
2220static int extfrag_show(struct seq_file *m, void *arg)
2221{
2222	pg_data_t *pgdat = (pg_data_t *)arg;
2223
2224	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2225
2226	return 0;
2227}
2228
2229static const struct seq_operations extfrag_sops = {
2230	.start	= frag_start,
2231	.next	= frag_next,
2232	.stop	= frag_stop,
2233	.show	= extfrag_show,
2234};
2235
2236DEFINE_SEQ_ATTRIBUTE(extfrag);
2237
2238static int __init extfrag_debug_init(void)
2239{
2240	struct dentry *extfrag_debug_root;
2241
2242	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2243
2244	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2245			    &unusable_fops);
2246
2247	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2248			    &extfrag_fops);
2249
2250	return 0;
2251}
2252
2253module_init(extfrag_debug_init);
2254#endif