Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains core generic KASAN code.
  4 *
  5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  7 *
  8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
  9 *        Andrey Konovalov <andreyknvl@gmail.com>
 10 *
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License version 2 as
 13 * published by the Free Software Foundation.
 14 *
 15 */
 16
 17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 18
 19#include <linux/export.h>
 20#include <linux/interrupt.h>
 21#include <linux/init.h>
 22#include <linux/kasan.h>
 23#include <linux/kernel.h>
 
 24#include <linux/kmemleak.h>
 25#include <linux/linkage.h>
 26#include <linux/memblock.h>
 27#include <linux/memory.h>
 28#include <linux/mm.h>
 29#include <linux/module.h>
 30#include <linux/printk.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/slab.h>
 34#include <linux/stacktrace.h>
 35#include <linux/string.h>
 36#include <linux/types.h>
 37#include <linux/vmalloc.h>
 38#include <linux/bug.h>
 39
 40#include "kasan.h"
 41#include "../slab.h"
 42
 43/*
 44 * All functions below always inlined so compiler could
 45 * perform better optimizations in each of __asan_loadX/__assn_storeX
 46 * depending on memory access size X.
 47 */
 48
 49static __always_inline bool memory_is_poisoned_1(unsigned long addr)
 50{
 51	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
 52
 53	if (unlikely(shadow_value)) {
 54		s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
 55		return unlikely(last_accessible_byte >= shadow_value);
 56	}
 57
 58	return false;
 59}
 60
 61static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
 62						unsigned long size)
 63{
 64	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
 65
 66	/*
 67	 * Access crosses 8(shadow size)-byte boundary. Such access maps
 68	 * into 2 shadow bytes, so we need to check them both.
 69	 */
 70	if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
 71		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
 72
 73	return memory_is_poisoned_1(addr + size - 1);
 74}
 75
 76static __always_inline bool memory_is_poisoned_16(unsigned long addr)
 77{
 78	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
 79
 80	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
 81	if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
 82		return *shadow_addr || memory_is_poisoned_1(addr + 15);
 83
 84	return *shadow_addr;
 85}
 86
 87static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
 88					size_t size)
 89{
 90	while (size) {
 91		if (unlikely(*start))
 92			return (unsigned long)start;
 93		start++;
 94		size--;
 95	}
 96
 97	return 0;
 98}
 99
100static __always_inline unsigned long memory_is_nonzero(const void *start,
101						const void *end)
102{
103	unsigned int words;
104	unsigned long ret;
105	unsigned int prefix = (unsigned long)start % 8;
106
107	if (end - start <= 16)
108		return bytes_is_nonzero(start, end - start);
109
110	if (prefix) {
111		prefix = 8 - prefix;
112		ret = bytes_is_nonzero(start, prefix);
113		if (unlikely(ret))
114			return ret;
115		start += prefix;
116	}
117
118	words = (end - start) / 8;
119	while (words) {
120		if (unlikely(*(u64 *)start))
121			return bytes_is_nonzero(start, 8);
122		start += 8;
123		words--;
124	}
125
126	return bytes_is_nonzero(start, (end - start) % 8);
127}
128
129static __always_inline bool memory_is_poisoned_n(unsigned long addr,
130						size_t size)
131{
132	unsigned long ret;
133
134	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
135			kasan_mem_to_shadow((void *)addr + size - 1) + 1);
136
137	if (unlikely(ret)) {
138		unsigned long last_byte = addr + size - 1;
139		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
140
141		if (unlikely(ret != (unsigned long)last_shadow ||
142			((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
143			return true;
144	}
145	return false;
146}
147
148static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
149{
150	if (__builtin_constant_p(size)) {
151		switch (size) {
152		case 1:
153			return memory_is_poisoned_1(addr);
154		case 2:
155		case 4:
156		case 8:
157			return memory_is_poisoned_2_4_8(addr, size);
158		case 16:
159			return memory_is_poisoned_16(addr);
160		default:
161			BUILD_BUG();
162		}
163	}
164
165	return memory_is_poisoned_n(addr, size);
166}
167
168static __always_inline bool check_memory_region_inline(unsigned long addr,
169						size_t size, bool write,
170						unsigned long ret_ip)
171{
 
 
 
172	if (unlikely(size == 0))
173		return true;
174
175	if (unlikely(addr + size < addr))
176		return !kasan_report(addr, size, write, ret_ip);
177
178	if (unlikely((void *)addr <
179		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
180		return !kasan_report(addr, size, write, ret_ip);
181	}
182
183	if (likely(!memory_is_poisoned(addr, size)))
184		return true;
185
186	return !kasan_report(addr, size, write, ret_ip);
187}
188
189bool check_memory_region(unsigned long addr, size_t size, bool write,
190				unsigned long ret_ip)
 
 
 
 
 
191{
192	return check_memory_region_inline(addr, size, write, ret_ip);
 
 
 
 
 
 
 
193}
194
195void kasan_cache_shrink(struct kmem_cache *cache)
196{
197	quarantine_remove_cache(cache);
198}
199
200void kasan_cache_shutdown(struct kmem_cache *cache)
201{
202	if (!__kmem_cache_empty(cache))
203		quarantine_remove_cache(cache);
204}
205
206static void register_global(struct kasan_global *global)
207{
208	size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
209
210	kasan_unpoison_shadow(global->beg, global->size);
211
212	kasan_poison_shadow(global->beg + aligned_size,
213		global->size_with_redzone - aligned_size,
214		KASAN_GLOBAL_REDZONE);
215}
216
217void __asan_register_globals(struct kasan_global *globals, size_t size)
218{
219	int i;
220
221	for (i = 0; i < size; i++)
222		register_global(&globals[i]);
223}
224EXPORT_SYMBOL(__asan_register_globals);
225
226void __asan_unregister_globals(struct kasan_global *globals, size_t size)
227{
228}
229EXPORT_SYMBOL(__asan_unregister_globals);
230
231#define DEFINE_ASAN_LOAD_STORE(size)					\
232	void __asan_load##size(unsigned long addr)			\
233	{								\
234		check_memory_region_inline(addr, size, false, _RET_IP_);\
235	}								\
236	EXPORT_SYMBOL(__asan_load##size);				\
237	__alias(__asan_load##size)					\
238	void __asan_load##size##_noabort(unsigned long);		\
239	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
240	void __asan_store##size(unsigned long addr)			\
241	{								\
242		check_memory_region_inline(addr, size, true, _RET_IP_);	\
243	}								\
244	EXPORT_SYMBOL(__asan_store##size);				\
245	__alias(__asan_store##size)					\
246	void __asan_store##size##_noabort(unsigned long);		\
247	EXPORT_SYMBOL(__asan_store##size##_noabort)
248
249DEFINE_ASAN_LOAD_STORE(1);
250DEFINE_ASAN_LOAD_STORE(2);
251DEFINE_ASAN_LOAD_STORE(4);
252DEFINE_ASAN_LOAD_STORE(8);
253DEFINE_ASAN_LOAD_STORE(16);
254
255void __asan_loadN(unsigned long addr, size_t size)
256{
257	check_memory_region(addr, size, false, _RET_IP_);
258}
259EXPORT_SYMBOL(__asan_loadN);
260
261__alias(__asan_loadN)
262void __asan_loadN_noabort(unsigned long, size_t);
263EXPORT_SYMBOL(__asan_loadN_noabort);
264
265void __asan_storeN(unsigned long addr, size_t size)
266{
267	check_memory_region(addr, size, true, _RET_IP_);
268}
269EXPORT_SYMBOL(__asan_storeN);
270
271__alias(__asan_storeN)
272void __asan_storeN_noabort(unsigned long, size_t);
273EXPORT_SYMBOL(__asan_storeN_noabort);
274
275/* to shut up compiler complaints */
276void __asan_handle_no_return(void) {}
277EXPORT_SYMBOL(__asan_handle_no_return);
278
279/* Emitted by compiler to poison alloca()ed objects. */
280void __asan_alloca_poison(unsigned long addr, size_t size)
281{
282	size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
283	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
284			rounded_up_size;
285	size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE);
286
287	const void *left_redzone = (const void *)(addr -
288			KASAN_ALLOCA_REDZONE_SIZE);
289	const void *right_redzone = (const void *)(addr + rounded_up_size);
290
291	WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
292
293	kasan_unpoison_shadow((const void *)(addr + rounded_down_size),
294			      size - rounded_down_size);
295	kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
296			KASAN_ALLOCA_LEFT);
297	kasan_poison_shadow(right_redzone,
298			padding_size + KASAN_ALLOCA_REDZONE_SIZE,
299			KASAN_ALLOCA_RIGHT);
300}
301EXPORT_SYMBOL(__asan_alloca_poison);
302
303/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
304void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
305{
306	if (unlikely(!stack_top || stack_top > stack_bottom))
307		return;
308
309	kasan_unpoison_shadow(stack_top, stack_bottom - stack_top);
310}
311EXPORT_SYMBOL(__asan_allocas_unpoison);
312
313/* Emitted by the compiler to [un]poison local variables. */
314#define DEFINE_ASAN_SET_SHADOW(byte) \
315	void __asan_set_shadow_##byte(const void *addr, size_t size)	\
316	{								\
317		__memset((void *)addr, 0x##byte, size);			\
318	}								\
319	EXPORT_SYMBOL(__asan_set_shadow_##byte)
320
321DEFINE_ASAN_SET_SHADOW(00);
322DEFINE_ASAN_SET_SHADOW(f1);
323DEFINE_ASAN_SET_SHADOW(f2);
324DEFINE_ASAN_SET_SHADOW(f3);
325DEFINE_ASAN_SET_SHADOW(f5);
326DEFINE_ASAN_SET_SHADOW(f8);
327
328void kasan_record_aux_stack(void *addr)
 
329{
330	struct page *page = kasan_addr_to_page(addr);
331	struct kmem_cache *cache;
332	struct kasan_alloc_meta *alloc_info;
333	void *object;
334
335	if (!(page && PageSlab(page)))
336		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
337
338	cache = page->slab_cache;
339	object = nearest_obj(cache, page, addr);
340	alloc_info = get_alloc_info(cache, object);
 
 
 
 
 
341
342	/*
343	 * record the last two call_rcu() call stacks.
 
 
 
 
 
 
344	 */
345	alloc_info->aux_stack[1] = alloc_info->aux_stack[0];
346	alloc_info->aux_stack[0] = kasan_save_stack(GFP_NOWAIT);
347}
348
349void kasan_set_free_info(struct kmem_cache *cache,
350				void *object, u8 tag)
351{
352	struct kasan_free_meta *free_meta;
353
354	free_meta = get_free_info(cache, object);
355	kasan_set_track(&free_meta->free_track, GFP_NOWAIT);
 
356
357	/*
358	 *  the object was freed and has free track set
 
 
 
359	 */
360	*(u8 *)kasan_mem_to_shadow(object) = KASAN_KMALLOC_FREETRACK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361}
362
363struct kasan_track *kasan_get_free_track(struct kmem_cache *cache,
364				void *object, u8 tag)
365{
366	if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_KMALLOC_FREETRACK)
367		return NULL;
368	return &get_free_info(cache, object)->free_track;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains core generic KASAN code.
  4 *
  5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  7 *
  8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
  9 *        Andrey Konovalov <andreyknvl@gmail.com>
 
 
 
 
 
 10 */
 11
 
 
 12#include <linux/export.h>
 13#include <linux/interrupt.h>
 14#include <linux/init.h>
 15#include <linux/kasan.h>
 16#include <linux/kernel.h>
 17#include <linux/kfence.h>
 18#include <linux/kmemleak.h>
 19#include <linux/linkage.h>
 20#include <linux/memblock.h>
 21#include <linux/memory.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/printk.h>
 25#include <linux/sched.h>
 26#include <linux/sched/task_stack.h>
 27#include <linux/slab.h>
 28#include <linux/stacktrace.h>
 29#include <linux/string.h>
 30#include <linux/types.h>
 31#include <linux/vmalloc.h>
 32#include <linux/bug.h>
 33
 34#include "kasan.h"
 35#include "../slab.h"
 36
 37/*
 38 * All functions below always inlined so compiler could
 39 * perform better optimizations in each of __asan_loadX/__assn_storeX
 40 * depending on memory access size X.
 41 */
 42
 43static __always_inline bool memory_is_poisoned_1(unsigned long addr)
 44{
 45	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
 46
 47	if (unlikely(shadow_value)) {
 48		s8 last_accessible_byte = addr & KASAN_GRANULE_MASK;
 49		return unlikely(last_accessible_byte >= shadow_value);
 50	}
 51
 52	return false;
 53}
 54
 55static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
 56						unsigned long size)
 57{
 58	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
 59
 60	/*
 61	 * Access crosses 8(shadow size)-byte boundary. Such access maps
 62	 * into 2 shadow bytes, so we need to check them both.
 63	 */
 64	if (unlikely(((addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
 65		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
 66
 67	return memory_is_poisoned_1(addr + size - 1);
 68}
 69
 70static __always_inline bool memory_is_poisoned_16(unsigned long addr)
 71{
 72	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
 73
 74	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
 75	if (unlikely(!IS_ALIGNED(addr, KASAN_GRANULE_SIZE)))
 76		return *shadow_addr || memory_is_poisoned_1(addr + 15);
 77
 78	return *shadow_addr;
 79}
 80
 81static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
 82					size_t size)
 83{
 84	while (size) {
 85		if (unlikely(*start))
 86			return (unsigned long)start;
 87		start++;
 88		size--;
 89	}
 90
 91	return 0;
 92}
 93
 94static __always_inline unsigned long memory_is_nonzero(const void *start,
 95						const void *end)
 96{
 97	unsigned int words;
 98	unsigned long ret;
 99	unsigned int prefix = (unsigned long)start % 8;
100
101	if (end - start <= 16)
102		return bytes_is_nonzero(start, end - start);
103
104	if (prefix) {
105		prefix = 8 - prefix;
106		ret = bytes_is_nonzero(start, prefix);
107		if (unlikely(ret))
108			return ret;
109		start += prefix;
110	}
111
112	words = (end - start) / 8;
113	while (words) {
114		if (unlikely(*(u64 *)start))
115			return bytes_is_nonzero(start, 8);
116		start += 8;
117		words--;
118	}
119
120	return bytes_is_nonzero(start, (end - start) % 8);
121}
122
123static __always_inline bool memory_is_poisoned_n(unsigned long addr,
124						size_t size)
125{
126	unsigned long ret;
127
128	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
129			kasan_mem_to_shadow((void *)addr + size - 1) + 1);
130
131	if (unlikely(ret)) {
132		unsigned long last_byte = addr + size - 1;
133		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
134
135		if (unlikely(ret != (unsigned long)last_shadow ||
136			((long)(last_byte & KASAN_GRANULE_MASK) >= *last_shadow)))
137			return true;
138	}
139	return false;
140}
141
142static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
143{
144	if (__builtin_constant_p(size)) {
145		switch (size) {
146		case 1:
147			return memory_is_poisoned_1(addr);
148		case 2:
149		case 4:
150		case 8:
151			return memory_is_poisoned_2_4_8(addr, size);
152		case 16:
153			return memory_is_poisoned_16(addr);
154		default:
155			BUILD_BUG();
156		}
157	}
158
159	return memory_is_poisoned_n(addr, size);
160}
161
162static __always_inline bool check_region_inline(unsigned long addr,
163						size_t size, bool write,
164						unsigned long ret_ip)
165{
166	if (!kasan_arch_is_ready())
167		return true;
168
169	if (unlikely(size == 0))
170		return true;
171
172	if (unlikely(addr + size < addr))
173		return !kasan_report(addr, size, write, ret_ip);
174
175	if (unlikely((void *)addr <
176		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
177		return !kasan_report(addr, size, write, ret_ip);
178	}
179
180	if (likely(!memory_is_poisoned(addr, size)))
181		return true;
182
183	return !kasan_report(addr, size, write, ret_ip);
184}
185
186bool kasan_check_range(unsigned long addr, size_t size, bool write,
187					unsigned long ret_ip)
188{
189	return check_region_inline(addr, size, write, ret_ip);
190}
191
192bool kasan_byte_accessible(const void *addr)
193{
194	s8 shadow_byte;
195
196	if (!kasan_arch_is_ready())
197		return true;
198
199	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
200
201	return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
202}
203
204void kasan_cache_shrink(struct kmem_cache *cache)
205{
206	kasan_quarantine_remove_cache(cache);
207}
208
209void kasan_cache_shutdown(struct kmem_cache *cache)
210{
211	if (!__kmem_cache_empty(cache))
212		kasan_quarantine_remove_cache(cache);
213}
214
215static void register_global(struct kasan_global *global)
216{
217	size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
218
219	kasan_unpoison(global->beg, global->size, false);
220
221	kasan_poison(global->beg + aligned_size,
222		     global->size_with_redzone - aligned_size,
223		     KASAN_GLOBAL_REDZONE, false);
224}
225
226void __asan_register_globals(struct kasan_global *globals, size_t size)
227{
228	int i;
229
230	for (i = 0; i < size; i++)
231		register_global(&globals[i]);
232}
233EXPORT_SYMBOL(__asan_register_globals);
234
235void __asan_unregister_globals(struct kasan_global *globals, size_t size)
236{
237}
238EXPORT_SYMBOL(__asan_unregister_globals);
239
240#define DEFINE_ASAN_LOAD_STORE(size)					\
241	void __asan_load##size(unsigned long addr)			\
242	{								\
243		check_region_inline(addr, size, false, _RET_IP_);	\
244	}								\
245	EXPORT_SYMBOL(__asan_load##size);				\
246	__alias(__asan_load##size)					\
247	void __asan_load##size##_noabort(unsigned long);		\
248	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
249	void __asan_store##size(unsigned long addr)			\
250	{								\
251		check_region_inline(addr, size, true, _RET_IP_);	\
252	}								\
253	EXPORT_SYMBOL(__asan_store##size);				\
254	__alias(__asan_store##size)					\
255	void __asan_store##size##_noabort(unsigned long);		\
256	EXPORT_SYMBOL(__asan_store##size##_noabort)
257
258DEFINE_ASAN_LOAD_STORE(1);
259DEFINE_ASAN_LOAD_STORE(2);
260DEFINE_ASAN_LOAD_STORE(4);
261DEFINE_ASAN_LOAD_STORE(8);
262DEFINE_ASAN_LOAD_STORE(16);
263
264void __asan_loadN(unsigned long addr, size_t size)
265{
266	kasan_check_range(addr, size, false, _RET_IP_);
267}
268EXPORT_SYMBOL(__asan_loadN);
269
270__alias(__asan_loadN)
271void __asan_loadN_noabort(unsigned long, size_t);
272EXPORT_SYMBOL(__asan_loadN_noabort);
273
274void __asan_storeN(unsigned long addr, size_t size)
275{
276	kasan_check_range(addr, size, true, _RET_IP_);
277}
278EXPORT_SYMBOL(__asan_storeN);
279
280__alias(__asan_storeN)
281void __asan_storeN_noabort(unsigned long, size_t);
282EXPORT_SYMBOL(__asan_storeN_noabort);
283
284/* to shut up compiler complaints */
285void __asan_handle_no_return(void) {}
286EXPORT_SYMBOL(__asan_handle_no_return);
287
288/* Emitted by compiler to poison alloca()ed objects. */
289void __asan_alloca_poison(unsigned long addr, size_t size)
290{
291	size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
292	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
293			rounded_up_size;
294	size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
295
296	const void *left_redzone = (const void *)(addr -
297			KASAN_ALLOCA_REDZONE_SIZE);
298	const void *right_redzone = (const void *)(addr + rounded_up_size);
299
300	WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
301
302	kasan_unpoison((const void *)(addr + rounded_down_size),
303			size - rounded_down_size, false);
304	kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
305		     KASAN_ALLOCA_LEFT, false);
306	kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
307		     KASAN_ALLOCA_RIGHT, false);
 
308}
309EXPORT_SYMBOL(__asan_alloca_poison);
310
311/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
312void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
313{
314	if (unlikely(!stack_top || stack_top > stack_bottom))
315		return;
316
317	kasan_unpoison(stack_top, stack_bottom - stack_top, false);
318}
319EXPORT_SYMBOL(__asan_allocas_unpoison);
320
321/* Emitted by the compiler to [un]poison local variables. */
322#define DEFINE_ASAN_SET_SHADOW(byte) \
323	void __asan_set_shadow_##byte(const void *addr, size_t size)	\
324	{								\
325		__memset((void *)addr, 0x##byte, size);			\
326	}								\
327	EXPORT_SYMBOL(__asan_set_shadow_##byte)
328
329DEFINE_ASAN_SET_SHADOW(00);
330DEFINE_ASAN_SET_SHADOW(f1);
331DEFINE_ASAN_SET_SHADOW(f2);
332DEFINE_ASAN_SET_SHADOW(f3);
333DEFINE_ASAN_SET_SHADOW(f5);
334DEFINE_ASAN_SET_SHADOW(f8);
335
336/* Only allow cache merging when no per-object metadata is present. */
337slab_flags_t kasan_never_merge(void)
338{
339	if (!kasan_requires_meta())
340		return 0;
341	return SLAB_KASAN;
342}
343
344/*
345 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
346 * For larger allocations larger redzones are used.
347 */
348static inline unsigned int optimal_redzone(unsigned int object_size)
349{
350	return
351		object_size <= 64        - 16   ? 16 :
352		object_size <= 128       - 32   ? 32 :
353		object_size <= 512       - 64   ? 64 :
354		object_size <= 4096      - 128  ? 128 :
355		object_size <= (1 << 14) - 256  ? 256 :
356		object_size <= (1 << 15) - 512  ? 512 :
357		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
358}
359
360void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
361			  slab_flags_t *flags)
362{
363	unsigned int ok_size;
364	unsigned int optimal_size;
365
366	if (!kasan_requires_meta())
367		return;
368
369	/*
370	 * SLAB_KASAN is used to mark caches that are sanitized by KASAN
371	 * and that thus have per-object metadata.
372	 * Currently this flag is used in two places:
373	 * 1. In slab_ksize() to account for per-object metadata when
374	 *    calculating the size of the accessible memory within the object.
375	 * 2. In slab_common.c via kasan_never_merge() to prevent merging of
376	 *    caches with per-object metadata.
377	 */
378	*flags |= SLAB_KASAN;
 
 
379
380	ok_size = *size;
 
 
 
381
382	/* Add alloc meta into redzone. */
383	cache->kasan_info.alloc_meta_offset = *size;
384	*size += sizeof(struct kasan_alloc_meta);
385
386	/*
387	 * If alloc meta doesn't fit, don't add it.
388	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
389	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
390	 * larger sizes.
391	 */
392	if (*size > KMALLOC_MAX_SIZE) {
393		cache->kasan_info.alloc_meta_offset = 0;
394		*size = ok_size;
395		/* Continue, since free meta might still fit. */
396	}
397
398	/*
399	 * Add free meta into redzone when it's not possible to store
400	 * it in the object. This is the case when:
401	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
402	 *    be touched after it was freed, or
403	 * 2. Object has a constructor, which means it's expected to
404	 *    retain its content until the next allocation, or
405	 * 3. Object is too small.
406	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
407	 */
408	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
409	    cache->object_size < sizeof(struct kasan_free_meta)) {
410		ok_size = *size;
411
412		cache->kasan_info.free_meta_offset = *size;
413		*size += sizeof(struct kasan_free_meta);
414
415		/* If free meta doesn't fit, don't add it. */
416		if (*size > KMALLOC_MAX_SIZE) {
417			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
418			*size = ok_size;
419		}
420	}
421
422	/* Calculate size with optimal redzone. */
423	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
424	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
425	if (optimal_size > KMALLOC_MAX_SIZE)
426		optimal_size = KMALLOC_MAX_SIZE;
427	/* Use optimal size if the size with added metas is not large enough. */
428	if (*size < optimal_size)
429		*size = optimal_size;
430}
431
432struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
433					      const void *object)
434{
435	if (!cache->kasan_info.alloc_meta_offset)
436		return NULL;
437	return (void *)object + cache->kasan_info.alloc_meta_offset;
438}
439
440struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
441					    const void *object)
442{
443	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
444	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
445		return NULL;
446	return (void *)object + cache->kasan_info.free_meta_offset;
447}
448
449void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
450{
451	struct kasan_alloc_meta *alloc_meta;
452
453	alloc_meta = kasan_get_alloc_meta(cache, object);
454	if (alloc_meta)
455		__memset(alloc_meta, 0, sizeof(*alloc_meta));
456}
457
458size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
459{
460	struct kasan_cache *info = &cache->kasan_info;
461
462	if (!kasan_requires_meta())
463		return 0;
464
465	if (in_object)
466		return (info->free_meta_offset ?
467			0 : sizeof(struct kasan_free_meta));
468	else
469		return (info->alloc_meta_offset ?
470			sizeof(struct kasan_alloc_meta) : 0) +
471			((info->free_meta_offset &&
472			info->free_meta_offset != KASAN_NO_FREE_META) ?
473			sizeof(struct kasan_free_meta) : 0);
474}
475
476static void __kasan_record_aux_stack(void *addr, bool can_alloc)
477{
478	struct slab *slab = kasan_addr_to_slab(addr);
479	struct kmem_cache *cache;
480	struct kasan_alloc_meta *alloc_meta;
481	void *object;
482
483	if (is_kfence_address(addr) || !slab)
484		return;
485
486	cache = slab->slab_cache;
487	object = nearest_obj(cache, slab, addr);
488	alloc_meta = kasan_get_alloc_meta(cache, object);
489	if (!alloc_meta)
490		return;
491
492	alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
493	alloc_meta->aux_stack[0] = kasan_save_stack(GFP_NOWAIT, can_alloc);
494}
495
496void kasan_record_aux_stack(void *addr)
497{
498	return __kasan_record_aux_stack(addr, true);
499}
500
501void kasan_record_aux_stack_noalloc(void *addr)
502{
503	return __kasan_record_aux_stack(addr, false);
504}
505
506void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
507{
508	struct kasan_alloc_meta *alloc_meta;
509
510	alloc_meta = kasan_get_alloc_meta(cache, object);
511	if (alloc_meta)
512		kasan_set_track(&alloc_meta->alloc_track, flags);
513}
514
515void kasan_save_free_info(struct kmem_cache *cache, void *object)
516{
517	struct kasan_free_meta *free_meta;
518
519	free_meta = kasan_get_free_meta(cache, object);
520	if (!free_meta)
521		return;
522
523	kasan_set_track(&free_meta->free_track, GFP_NOWAIT);
524	/* The object was freed and has free track set. */
525	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREETRACK;
526}