Linux Audio

Check our new training course

Loading...
v5.9
  1/******************************************************************************
  2 * Client-facing interface for the Xenbus driver.  In other words, the
  3 * interface between the Xenbus and the device-specific code, be it the
  4 * frontend or the backend of that driver.
  5 *
  6 * Copyright (C) 2005 XenSource Ltd
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License version 2
 10 * as published by the Free Software Foundation; or, when distributed
 11 * separately from the Linux kernel or incorporated into other
 12 * software packages, subject to the following license:
 13 *
 14 * Permission is hereby granted, free of charge, to any person obtaining a copy
 15 * of this source file (the "Software"), to deal in the Software without
 16 * restriction, including without limitation the rights to use, copy, modify,
 17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
 18 * and to permit persons to whom the Software is furnished to do so, subject to
 19 * the following conditions:
 20 *
 21 * The above copyright notice and this permission notice shall be included in
 22 * all copies or substantial portions of the Software.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 30 * IN THE SOFTWARE.
 31 */
 32
 33#include <linux/mm.h>
 34#include <linux/slab.h>
 35#include <linux/types.h>
 36#include <linux/spinlock.h>
 37#include <linux/vmalloc.h>
 38#include <linux/export.h>
 39#include <asm/xen/hypervisor.h>
 40#include <xen/page.h>
 41#include <xen/interface/xen.h>
 42#include <xen/interface/event_channel.h>
 43#include <xen/balloon.h>
 44#include <xen/events.h>
 45#include <xen/grant_table.h>
 46#include <xen/xenbus.h>
 47#include <xen/xen.h>
 48#include <xen/features.h>
 49
 50#include "xenbus.h"
 51
 52#define XENBUS_PAGES(_grants)	(DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
 53
 54#define XENBUS_MAX_RING_PAGES	(XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
 55
 56struct xenbus_map_node {
 57	struct list_head next;
 58	union {
 59		struct {
 60			struct vm_struct *area;
 61		} pv;
 62		struct {
 63			struct page *pages[XENBUS_MAX_RING_PAGES];
 64			unsigned long addrs[XENBUS_MAX_RING_GRANTS];
 65			void *addr;
 66		} hvm;
 67	};
 68	grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
 69	unsigned int   nr_handles;
 70};
 71
 72struct map_ring_valloc {
 73	struct xenbus_map_node *node;
 74
 75	/* Why do we need two arrays? See comment of __xenbus_map_ring */
 76	union {
 77		unsigned long addrs[XENBUS_MAX_RING_GRANTS];
 78		pte_t *ptes[XENBUS_MAX_RING_GRANTS];
 79	};
 80	phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
 81
 82	struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
 83	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
 84
 85	unsigned int idx;	/* HVM only. */
 86};
 87
 88static DEFINE_SPINLOCK(xenbus_valloc_lock);
 89static LIST_HEAD(xenbus_valloc_pages);
 90
 91struct xenbus_ring_ops {
 92	int (*map)(struct xenbus_device *dev, struct map_ring_valloc *info,
 93		   grant_ref_t *gnt_refs, unsigned int nr_grefs,
 94		   void **vaddr);
 95	int (*unmap)(struct xenbus_device *dev, void *vaddr);
 96};
 97
 98static const struct xenbus_ring_ops *ring_ops __read_mostly;
 99
100const char *xenbus_strstate(enum xenbus_state state)
101{
102	static const char *const name[] = {
103		[ XenbusStateUnknown      ] = "Unknown",
104		[ XenbusStateInitialising ] = "Initialising",
105		[ XenbusStateInitWait     ] = "InitWait",
106		[ XenbusStateInitialised  ] = "Initialised",
107		[ XenbusStateConnected    ] = "Connected",
108		[ XenbusStateClosing      ] = "Closing",
109		[ XenbusStateClosed	  ] = "Closed",
110		[XenbusStateReconfiguring] = "Reconfiguring",
111		[XenbusStateReconfigured] = "Reconfigured",
112	};
113	return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
114}
115EXPORT_SYMBOL_GPL(xenbus_strstate);
116
117/**
118 * xenbus_watch_path - register a watch
119 * @dev: xenbus device
120 * @path: path to watch
121 * @watch: watch to register
122 * @callback: callback to register
123 *
124 * Register a @watch on the given path, using the given xenbus_watch structure
125 * for storage, and the given @callback function as the callback.  Return 0 on
126 * success, or -errno on error.  On success, the given @path will be saved as
127 * @watch->node, and remains the caller's to free.  On error, @watch->node will
128 * be NULL, the device will switch to %XenbusStateClosing, and the error will
129 * be saved in the store.
130 */
131int xenbus_watch_path(struct xenbus_device *dev, const char *path,
132		      struct xenbus_watch *watch,
 
 
133		      void (*callback)(struct xenbus_watch *,
134				       const char *, const char *))
135{
136	int err;
137
138	watch->node = path;
 
139	watch->callback = callback;
140
141	err = register_xenbus_watch(watch);
142
143	if (err) {
144		watch->node = NULL;
 
145		watch->callback = NULL;
146		xenbus_dev_fatal(dev, err, "adding watch on %s", path);
147	}
148
149	return err;
150}
151EXPORT_SYMBOL_GPL(xenbus_watch_path);
152
153
154/**
155 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
156 * @dev: xenbus device
157 * @watch: watch to register
158 * @callback: callback to register
159 * @pathfmt: format of path to watch
160 *
161 * Register a watch on the given @path, using the given xenbus_watch
162 * structure for storage, and the given @callback function as the callback.
163 * Return 0 on success, or -errno on error.  On success, the watched path
164 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
165 * kfree().  On error, watch->node will be NULL, so the caller has nothing to
166 * free, the device will switch to %XenbusStateClosing, and the error will be
167 * saved in the store.
168 */
169int xenbus_watch_pathfmt(struct xenbus_device *dev,
170			 struct xenbus_watch *watch,
 
 
171			 void (*callback)(struct xenbus_watch *,
172					  const char *, const char *),
173			 const char *pathfmt, ...)
174{
175	int err;
176	va_list ap;
177	char *path;
178
179	va_start(ap, pathfmt);
180	path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
181	va_end(ap);
182
183	if (!path) {
184		xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
185		return -ENOMEM;
186	}
187	err = xenbus_watch_path(dev, path, watch, callback);
188
189	if (err)
190		kfree(path);
191	return err;
192}
193EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
194
195static void xenbus_switch_fatal(struct xenbus_device *, int, int,
196				const char *, ...);
197
198static int
199__xenbus_switch_state(struct xenbus_device *dev,
200		      enum xenbus_state state, int depth)
201{
202	/* We check whether the state is currently set to the given value, and
203	   if not, then the state is set.  We don't want to unconditionally
204	   write the given state, because we don't want to fire watches
205	   unnecessarily.  Furthermore, if the node has gone, we don't write
206	   to it, as the device will be tearing down, and we don't want to
207	   resurrect that directory.
208
209	   Note that, because of this cached value of our state, this
210	   function will not take a caller's Xenstore transaction
211	   (something it was trying to in the past) because dev->state
212	   would not get reset if the transaction was aborted.
213	 */
214
215	struct xenbus_transaction xbt;
216	int current_state;
217	int err, abort;
218
219	if (state == dev->state)
220		return 0;
221
222again:
223	abort = 1;
224
225	err = xenbus_transaction_start(&xbt);
226	if (err) {
227		xenbus_switch_fatal(dev, depth, err, "starting transaction");
228		return 0;
229	}
230
231	err = xenbus_scanf(xbt, dev->nodename, "state", "%d", &current_state);
232	if (err != 1)
233		goto abort;
234
235	err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
236	if (err) {
237		xenbus_switch_fatal(dev, depth, err, "writing new state");
238		goto abort;
239	}
240
241	abort = 0;
242abort:
243	err = xenbus_transaction_end(xbt, abort);
244	if (err) {
245		if (err == -EAGAIN && !abort)
246			goto again;
247		xenbus_switch_fatal(dev, depth, err, "ending transaction");
248	} else
249		dev->state = state;
250
251	return 0;
252}
253
254/**
255 * xenbus_switch_state
256 * @dev: xenbus device
257 * @state: new state
258 *
259 * Advertise in the store a change of the given driver to the given new_state.
260 * Return 0 on success, or -errno on error.  On error, the device will switch
261 * to XenbusStateClosing, and the error will be saved in the store.
262 */
263int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
264{
265	return __xenbus_switch_state(dev, state, 0);
266}
267
268EXPORT_SYMBOL_GPL(xenbus_switch_state);
269
270int xenbus_frontend_closed(struct xenbus_device *dev)
271{
272	xenbus_switch_state(dev, XenbusStateClosed);
273	complete(&dev->down);
274	return 0;
275}
276EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
277
278static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
279				const char *fmt, va_list ap)
280{
281	unsigned int len;
282	char *printf_buffer;
283	char *path_buffer;
284
285#define PRINTF_BUFFER_SIZE 4096
286
287	printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
288	if (!printf_buffer)
289		return;
290
291	len = sprintf(printf_buffer, "%i ", -err);
292	vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
293
294	dev_err(&dev->dev, "%s\n", printf_buffer);
295
296	path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
297	if (path_buffer)
298		xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer);
299
300	kfree(printf_buffer);
301	kfree(path_buffer);
302}
303
304/**
305 * xenbus_dev_error
306 * @dev: xenbus device
307 * @err: error to report
308 * @fmt: error message format
309 *
310 * Report the given negative errno into the store, along with the given
311 * formatted message.
312 */
313void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
314{
315	va_list ap;
316
317	va_start(ap, fmt);
318	xenbus_va_dev_error(dev, err, fmt, ap);
319	va_end(ap);
320}
321EXPORT_SYMBOL_GPL(xenbus_dev_error);
322
323/**
324 * xenbus_dev_fatal
325 * @dev: xenbus device
326 * @err: error to report
327 * @fmt: error message format
328 *
329 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
330 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
331 * closedown of this driver and its peer.
332 */
333
334void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
335{
336	va_list ap;
337
338	va_start(ap, fmt);
339	xenbus_va_dev_error(dev, err, fmt, ap);
340	va_end(ap);
341
342	xenbus_switch_state(dev, XenbusStateClosing);
343}
344EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
345
346/**
347 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
348 * avoiding recursion within xenbus_switch_state.
349 */
350static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
351				const char *fmt, ...)
352{
353	va_list ap;
354
355	va_start(ap, fmt);
356	xenbus_va_dev_error(dev, err, fmt, ap);
357	va_end(ap);
358
359	if (!depth)
360		__xenbus_switch_state(dev, XenbusStateClosing, 1);
361}
362
363/**
364 * xenbus_grant_ring
365 * @dev: xenbus device
366 * @vaddr: starting virtual address of the ring
367 * @nr_pages: number of pages to be granted
368 * @grefs: grant reference array to be filled in
369 *
370 * Grant access to the given @vaddr to the peer of the given device.
371 * Then fill in @grefs with grant references.  Return 0 on success, or
372 * -errno on error.  On error, the device will switch to
373 * XenbusStateClosing, and the error will be saved in the store.
 
374 */
375int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
376		      unsigned int nr_pages, grant_ref_t *grefs)
377{
378	int err;
379	int i, j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380
381	for (i = 0; i < nr_pages; i++) {
382		unsigned long gfn;
383
384		if (is_vmalloc_addr(vaddr))
385			gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr));
386		else
387			gfn = virt_to_gfn(vaddr);
388
389		err = gnttab_grant_foreign_access(dev->otherend_id, gfn, 0);
390		if (err < 0) {
391			xenbus_dev_fatal(dev, err,
392					 "granting access to ring page");
393			goto fail;
394		}
395		grefs[i] = err;
396
397		vaddr = vaddr + XEN_PAGE_SIZE;
398	}
399
400	return 0;
401
402fail:
403	for (j = 0; j < i; j++)
404		gnttab_end_foreign_access_ref(grefs[j], 0);
405	return err;
 
 
 
 
406}
407EXPORT_SYMBOL_GPL(xenbus_grant_ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408
 
 
 
 
 
409
410/**
411 * Allocate an event channel for the given xenbus_device, assigning the newly
412 * created local port to *port.  Return 0 on success, or -errno on error.  On
413 * error, the device will switch to XenbusStateClosing, and the error will be
414 * saved in the store.
415 */
416int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port)
417{
418	struct evtchn_alloc_unbound alloc_unbound;
419	int err;
420
421	alloc_unbound.dom = DOMID_SELF;
422	alloc_unbound.remote_dom = dev->otherend_id;
423
424	err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
425					  &alloc_unbound);
426	if (err)
427		xenbus_dev_fatal(dev, err, "allocating event channel");
428	else
429		*port = alloc_unbound.port;
430
431	return err;
432}
433EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
434
435
436/**
437 * Free an existing event channel. Returns 0 on success or -errno on error.
438 */
439int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port)
440{
441	struct evtchn_close close;
442	int err;
443
444	close.port = port;
445
446	err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
447	if (err)
448		xenbus_dev_error(dev, err, "freeing event channel %u", port);
449
450	return err;
451}
452EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
453
454
455/**
456 * xenbus_map_ring_valloc
457 * @dev: xenbus device
458 * @gnt_refs: grant reference array
459 * @nr_grefs: number of grant references
460 * @vaddr: pointer to address to be filled out by mapping
461 *
462 * Map @nr_grefs pages of memory into this domain from another
463 * domain's grant table.  xenbus_map_ring_valloc allocates @nr_grefs
464 * pages of virtual address space, maps the pages to that address, and
465 * sets *vaddr to that address.  Returns 0 on success, and -errno on
466 * error. If an error is returned, device will switch to
467 * XenbusStateClosing and the error message will be saved in XenStore.
468 */
469int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
470			   unsigned int nr_grefs, void **vaddr)
471{
472	int err;
473	struct map_ring_valloc *info;
474
475	*vaddr = NULL;
476
477	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
478		return -EINVAL;
479
480	info = kzalloc(sizeof(*info), GFP_KERNEL);
481	if (!info)
482		return -ENOMEM;
483
484	info->node = kzalloc(sizeof(*info->node), GFP_KERNEL);
485	if (!info->node)
486		err = -ENOMEM;
487	else
488		err = ring_ops->map(dev, info, gnt_refs, nr_grefs, vaddr);
489
490	kfree(info->node);
491	kfree(info);
492	return err;
493}
494EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
495
496/* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
497 * long), e.g. 32-on-64.  Caller is responsible for preparing the
498 * right array to feed into this function */
499static int __xenbus_map_ring(struct xenbus_device *dev,
500			     grant_ref_t *gnt_refs,
501			     unsigned int nr_grefs,
502			     grant_handle_t *handles,
503			     struct map_ring_valloc *info,
504			     unsigned int flags,
505			     bool *leaked)
506{
507	int i, j;
508
509	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
510		return -EINVAL;
511
512	for (i = 0; i < nr_grefs; i++) {
513		gnttab_set_map_op(&info->map[i], info->phys_addrs[i], flags,
514				  gnt_refs[i], dev->otherend_id);
515		handles[i] = INVALID_GRANT_HANDLE;
516	}
517
518	gnttab_batch_map(info->map, i);
519
520	for (i = 0; i < nr_grefs; i++) {
521		if (info->map[i].status != GNTST_okay) {
522			xenbus_dev_fatal(dev, info->map[i].status,
523					 "mapping in shared page %d from domain %d",
524					 gnt_refs[i], dev->otherend_id);
525			goto fail;
526		} else
527			handles[i] = info->map[i].handle;
528	}
529
530	return 0;
531
532 fail:
533	for (i = j = 0; i < nr_grefs; i++) {
534		if (handles[i] != INVALID_GRANT_HANDLE) {
535			gnttab_set_unmap_op(&info->unmap[j],
536					    info->phys_addrs[i],
537					    GNTMAP_host_map, handles[i]);
538			j++;
539		}
540	}
541
542	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, info->unmap, j))
543		BUG();
544
545	*leaked = false;
546	for (i = 0; i < j; i++) {
547		if (info->unmap[i].status != GNTST_okay) {
548			*leaked = true;
549			break;
550		}
551	}
552
553	return -ENOENT;
554}
555
556/**
557 * xenbus_unmap_ring
558 * @dev: xenbus device
559 * @handles: grant handle array
560 * @nr_handles: number of handles in the array
561 * @vaddrs: addresses to unmap
562 *
563 * Unmap memory in this domain that was imported from another domain.
564 * Returns 0 on success and returns GNTST_* on error
565 * (see xen/include/interface/grant_table.h).
566 */
567static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles,
568			     unsigned int nr_handles, unsigned long *vaddrs)
569{
570	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
571	int i;
572	int err;
573
574	if (nr_handles > XENBUS_MAX_RING_GRANTS)
575		return -EINVAL;
576
577	for (i = 0; i < nr_handles; i++)
578		gnttab_set_unmap_op(&unmap[i], vaddrs[i],
579				    GNTMAP_host_map, handles[i]);
580
581	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
582		BUG();
583
584	err = GNTST_okay;
585	for (i = 0; i < nr_handles; i++) {
586		if (unmap[i].status != GNTST_okay) {
587			xenbus_dev_error(dev, unmap[i].status,
588					 "unmapping page at handle %d error %d",
589					 handles[i], unmap[i].status);
590			err = unmap[i].status;
591			break;
592		}
593	}
594
595	return err;
596}
597
598static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
599					    unsigned int goffset,
600					    unsigned int len,
601					    void *data)
602{
603	struct map_ring_valloc *info = data;
604	unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
605
606	info->phys_addrs[info->idx] = vaddr;
607	info->addrs[info->idx] = vaddr;
608
609	info->idx++;
610}
611
612static int xenbus_map_ring_hvm(struct xenbus_device *dev,
613			       struct map_ring_valloc *info,
614			       grant_ref_t *gnt_ref,
615			       unsigned int nr_grefs,
616			       void **vaddr)
617{
618	struct xenbus_map_node *node = info->node;
619	int err;
620	void *addr;
621	bool leaked = false;
622	unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
623
624	err = xen_alloc_unpopulated_pages(nr_pages, node->hvm.pages);
625	if (err)
626		goto out_err;
627
628	gnttab_foreach_grant(node->hvm.pages, nr_grefs,
629			     xenbus_map_ring_setup_grant_hvm,
630			     info);
631
632	err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
633				info, GNTMAP_host_map, &leaked);
634	node->nr_handles = nr_grefs;
635
636	if (err)
637		goto out_free_ballooned_pages;
638
639	addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
640		    PAGE_KERNEL);
641	if (!addr) {
642		err = -ENOMEM;
643		goto out_xenbus_unmap_ring;
644	}
645
646	node->hvm.addr = addr;
647
648	spin_lock(&xenbus_valloc_lock);
649	list_add(&node->next, &xenbus_valloc_pages);
650	spin_unlock(&xenbus_valloc_lock);
651
652	*vaddr = addr;
653	info->node = NULL;
654
655	return 0;
656
657 out_xenbus_unmap_ring:
658	if (!leaked)
659		xenbus_unmap_ring(dev, node->handles, nr_grefs, info->addrs);
660	else
661		pr_alert("leaking %p size %u page(s)",
662			 addr, nr_pages);
663 out_free_ballooned_pages:
664	if (!leaked)
665		xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
666 out_err:
667	return err;
668}
669
670/**
671 * xenbus_unmap_ring_vfree
672 * @dev: xenbus device
673 * @vaddr: addr to unmap
674 *
675 * Based on Rusty Russell's skeleton driver's unmap_page.
676 * Unmap a page of memory in this domain that was imported from another domain.
677 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
678 * xenbus_map_ring_valloc (it will free the virtual address space).
679 * Returns 0 on success and returns GNTST_* on error
680 * (see xen/include/interface/grant_table.h).
681 */
682int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
683{
684	return ring_ops->unmap(dev, vaddr);
685}
686EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
687
688#ifdef CONFIG_XEN_PV
 
 
 
 
 
 
 
 
689static int xenbus_map_ring_pv(struct xenbus_device *dev,
690			      struct map_ring_valloc *info,
691			      grant_ref_t *gnt_refs,
692			      unsigned int nr_grefs,
693			      void **vaddr)
694{
695	struct xenbus_map_node *node = info->node;
696	struct vm_struct *area;
697	int err = GNTST_okay;
698	int i;
699	bool leaked;
700
701	area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, info->ptes);
702	if (!area)
703		return -ENOMEM;
704
705	for (i = 0; i < nr_grefs; i++)
706		info->phys_addrs[i] =
707			arbitrary_virt_to_machine(info->ptes[i]).maddr;
708
709	err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
710				info, GNTMAP_host_map | GNTMAP_contains_pte,
711				&leaked);
712	if (err)
713		goto failed;
714
715	node->nr_handles = nr_grefs;
716	node->pv.area = area;
717
718	spin_lock(&xenbus_valloc_lock);
719	list_add(&node->next, &xenbus_valloc_pages);
720	spin_unlock(&xenbus_valloc_lock);
721
722	*vaddr = area->addr;
723	info->node = NULL;
724
725	return 0;
726
727failed:
728	if (!leaked)
729		free_vm_area(area);
730	else
731		pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
732
733	return err;
734}
735
736static int xenbus_unmap_ring_pv(struct xenbus_device *dev, void *vaddr)
737{
738	struct xenbus_map_node *node;
739	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
740	unsigned int level;
741	int i;
742	bool leaked = false;
743	int err;
744
745	spin_lock(&xenbus_valloc_lock);
746	list_for_each_entry(node, &xenbus_valloc_pages, next) {
747		if (node->pv.area->addr == vaddr) {
748			list_del(&node->next);
749			goto found;
750		}
751	}
752	node = NULL;
753 found:
754	spin_unlock(&xenbus_valloc_lock);
755
756	if (!node) {
757		xenbus_dev_error(dev, -ENOENT,
758				 "can't find mapped virtual address %p", vaddr);
759		return GNTST_bad_virt_addr;
760	}
761
762	for (i = 0; i < node->nr_handles; i++) {
763		unsigned long addr;
764
765		memset(&unmap[i], 0, sizeof(unmap[i]));
766		addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
767		unmap[i].host_addr = arbitrary_virt_to_machine(
768			lookup_address(addr, &level)).maddr;
769		unmap[i].dev_bus_addr = 0;
770		unmap[i].handle = node->handles[i];
771	}
772
773	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
774		BUG();
775
776	err = GNTST_okay;
777	leaked = false;
778	for (i = 0; i < node->nr_handles; i++) {
779		if (unmap[i].status != GNTST_okay) {
780			leaked = true;
781			xenbus_dev_error(dev, unmap[i].status,
782					 "unmapping page at handle %d error %d",
783					 node->handles[i], unmap[i].status);
784			err = unmap[i].status;
785			break;
786		}
787	}
788
789	if (!leaked)
790		free_vm_area(node->pv.area);
791	else
792		pr_alert("leaking VM area %p size %u page(s)",
793			 node->pv.area, node->nr_handles);
794
795	kfree(node);
796	return err;
797}
798
799static const struct xenbus_ring_ops ring_ops_pv = {
800	.map = xenbus_map_ring_pv,
801	.unmap = xenbus_unmap_ring_pv,
802};
803#endif
804
805struct unmap_ring_hvm
806{
807	unsigned int idx;
808	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
809};
810
811static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
812					      unsigned int goffset,
813					      unsigned int len,
814					      void *data)
815{
816	struct unmap_ring_hvm *info = data;
817
818	info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
819
820	info->idx++;
821}
822
823static int xenbus_unmap_ring_hvm(struct xenbus_device *dev, void *vaddr)
824{
825	int rv;
826	struct xenbus_map_node *node;
827	void *addr;
828	struct unmap_ring_hvm info = {
829		.idx = 0,
830	};
831	unsigned int nr_pages;
832
833	spin_lock(&xenbus_valloc_lock);
834	list_for_each_entry(node, &xenbus_valloc_pages, next) {
835		addr = node->hvm.addr;
836		if (addr == vaddr) {
837			list_del(&node->next);
838			goto found;
839		}
840	}
841	node = addr = NULL;
842 found:
843	spin_unlock(&xenbus_valloc_lock);
844
845	if (!node) {
846		xenbus_dev_error(dev, -ENOENT,
847				 "can't find mapped virtual address %p", vaddr);
848		return GNTST_bad_virt_addr;
849	}
850
851	nr_pages = XENBUS_PAGES(node->nr_handles);
852
853	gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
854			     xenbus_unmap_ring_setup_grant_hvm,
855			     &info);
856
857	rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
858			       info.addrs);
859	if (!rv) {
860		vunmap(vaddr);
861		xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
862	}
863	else
864		WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
865
866	kfree(node);
867	return rv;
868}
869
870/**
871 * xenbus_read_driver_state
872 * @path: path for driver
873 *
874 * Return the state of the driver rooted at the given store path, or
875 * XenbusStateUnknown if no state can be read.
876 */
877enum xenbus_state xenbus_read_driver_state(const char *path)
878{
879	enum xenbus_state result;
880	int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
881	if (err)
882		result = XenbusStateUnknown;
883
884	return result;
885}
886EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
887
888static const struct xenbus_ring_ops ring_ops_hvm = {
889	.map = xenbus_map_ring_hvm,
890	.unmap = xenbus_unmap_ring_hvm,
891};
892
893void __init xenbus_ring_ops_init(void)
894{
895#ifdef CONFIG_XEN_PV
896	if (!xen_feature(XENFEAT_auto_translated_physmap))
897		ring_ops = &ring_ops_pv;
898	else
899#endif
900		ring_ops = &ring_ops_hvm;
901}
v6.2
  1/******************************************************************************
  2 * Client-facing interface for the Xenbus driver.  In other words, the
  3 * interface between the Xenbus and the device-specific code, be it the
  4 * frontend or the backend of that driver.
  5 *
  6 * Copyright (C) 2005 XenSource Ltd
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License version 2
 10 * as published by the Free Software Foundation; or, when distributed
 11 * separately from the Linux kernel or incorporated into other
 12 * software packages, subject to the following license:
 13 *
 14 * Permission is hereby granted, free of charge, to any person obtaining a copy
 15 * of this source file (the "Software"), to deal in the Software without
 16 * restriction, including without limitation the rights to use, copy, modify,
 17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
 18 * and to permit persons to whom the Software is furnished to do so, subject to
 19 * the following conditions:
 20 *
 21 * The above copyright notice and this permission notice shall be included in
 22 * all copies or substantial portions of the Software.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 30 * IN THE SOFTWARE.
 31 */
 32
 33#include <linux/mm.h>
 34#include <linux/slab.h>
 35#include <linux/types.h>
 36#include <linux/spinlock.h>
 37#include <linux/vmalloc.h>
 38#include <linux/export.h>
 39#include <asm/xen/hypervisor.h>
 40#include <xen/page.h>
 41#include <xen/interface/xen.h>
 42#include <xen/interface/event_channel.h>
 43#include <xen/balloon.h>
 44#include <xen/events.h>
 45#include <xen/grant_table.h>
 46#include <xen/xenbus.h>
 47#include <xen/xen.h>
 48#include <xen/features.h>
 49
 50#include "xenbus.h"
 51
 52#define XENBUS_PAGES(_grants)	(DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
 53
 54#define XENBUS_MAX_RING_PAGES	(XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
 55
 56struct xenbus_map_node {
 57	struct list_head next;
 58	union {
 59		struct {
 60			struct vm_struct *area;
 61		} pv;
 62		struct {
 63			struct page *pages[XENBUS_MAX_RING_PAGES];
 64			unsigned long addrs[XENBUS_MAX_RING_GRANTS];
 65			void *addr;
 66		} hvm;
 67	};
 68	grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
 69	unsigned int   nr_handles;
 70};
 71
 72struct map_ring_valloc {
 73	struct xenbus_map_node *node;
 74
 75	/* Why do we need two arrays? See comment of __xenbus_map_ring */
 76	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
 
 
 
 77	phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
 78
 79	struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
 80	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
 81
 82	unsigned int idx;
 83};
 84
 85static DEFINE_SPINLOCK(xenbus_valloc_lock);
 86static LIST_HEAD(xenbus_valloc_pages);
 87
 88struct xenbus_ring_ops {
 89	int (*map)(struct xenbus_device *dev, struct map_ring_valloc *info,
 90		   grant_ref_t *gnt_refs, unsigned int nr_grefs,
 91		   void **vaddr);
 92	int (*unmap)(struct xenbus_device *dev, void *vaddr);
 93};
 94
 95static const struct xenbus_ring_ops *ring_ops __read_mostly;
 96
 97const char *xenbus_strstate(enum xenbus_state state)
 98{
 99	static const char *const name[] = {
100		[ XenbusStateUnknown      ] = "Unknown",
101		[ XenbusStateInitialising ] = "Initialising",
102		[ XenbusStateInitWait     ] = "InitWait",
103		[ XenbusStateInitialised  ] = "Initialised",
104		[ XenbusStateConnected    ] = "Connected",
105		[ XenbusStateClosing      ] = "Closing",
106		[ XenbusStateClosed	  ] = "Closed",
107		[XenbusStateReconfiguring] = "Reconfiguring",
108		[XenbusStateReconfigured] = "Reconfigured",
109	};
110	return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
111}
112EXPORT_SYMBOL_GPL(xenbus_strstate);
113
114/**
115 * xenbus_watch_path - register a watch
116 * @dev: xenbus device
117 * @path: path to watch
118 * @watch: watch to register
119 * @callback: callback to register
120 *
121 * Register a @watch on the given path, using the given xenbus_watch structure
122 * for storage, and the given @callback function as the callback.  Return 0 on
123 * success, or -errno on error.  On success, the given @path will be saved as
124 * @watch->node, and remains the caller's to free.  On error, @watch->node will
125 * be NULL, the device will switch to %XenbusStateClosing, and the error will
126 * be saved in the store.
127 */
128int xenbus_watch_path(struct xenbus_device *dev, const char *path,
129		      struct xenbus_watch *watch,
130		      bool (*will_handle)(struct xenbus_watch *,
131					  const char *, const char *),
132		      void (*callback)(struct xenbus_watch *,
133				       const char *, const char *))
134{
135	int err;
136
137	watch->node = path;
138	watch->will_handle = will_handle;
139	watch->callback = callback;
140
141	err = register_xenbus_watch(watch);
142
143	if (err) {
144		watch->node = NULL;
145		watch->will_handle = NULL;
146		watch->callback = NULL;
147		xenbus_dev_fatal(dev, err, "adding watch on %s", path);
148	}
149
150	return err;
151}
152EXPORT_SYMBOL_GPL(xenbus_watch_path);
153
154
155/**
156 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
157 * @dev: xenbus device
158 * @watch: watch to register
159 * @callback: callback to register
160 * @pathfmt: format of path to watch
161 *
162 * Register a watch on the given @path, using the given xenbus_watch
163 * structure for storage, and the given @callback function as the callback.
164 * Return 0 on success, or -errno on error.  On success, the watched path
165 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
166 * kfree().  On error, watch->node will be NULL, so the caller has nothing to
167 * free, the device will switch to %XenbusStateClosing, and the error will be
168 * saved in the store.
169 */
170int xenbus_watch_pathfmt(struct xenbus_device *dev,
171			 struct xenbus_watch *watch,
172			 bool (*will_handle)(struct xenbus_watch *,
173					const char *, const char *),
174			 void (*callback)(struct xenbus_watch *,
175					  const char *, const char *),
176			 const char *pathfmt, ...)
177{
178	int err;
179	va_list ap;
180	char *path;
181
182	va_start(ap, pathfmt);
183	path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
184	va_end(ap);
185
186	if (!path) {
187		xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
188		return -ENOMEM;
189	}
190	err = xenbus_watch_path(dev, path, watch, will_handle, callback);
191
192	if (err)
193		kfree(path);
194	return err;
195}
196EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
197
198static void xenbus_switch_fatal(struct xenbus_device *, int, int,
199				const char *, ...);
200
201static int
202__xenbus_switch_state(struct xenbus_device *dev,
203		      enum xenbus_state state, int depth)
204{
205	/* We check whether the state is currently set to the given value, and
206	   if not, then the state is set.  We don't want to unconditionally
207	   write the given state, because we don't want to fire watches
208	   unnecessarily.  Furthermore, if the node has gone, we don't write
209	   to it, as the device will be tearing down, and we don't want to
210	   resurrect that directory.
211
212	   Note that, because of this cached value of our state, this
213	   function will not take a caller's Xenstore transaction
214	   (something it was trying to in the past) because dev->state
215	   would not get reset if the transaction was aborted.
216	 */
217
218	struct xenbus_transaction xbt;
219	int current_state;
220	int err, abort;
221
222	if (state == dev->state)
223		return 0;
224
225again:
226	abort = 1;
227
228	err = xenbus_transaction_start(&xbt);
229	if (err) {
230		xenbus_switch_fatal(dev, depth, err, "starting transaction");
231		return 0;
232	}
233
234	err = xenbus_scanf(xbt, dev->nodename, "state", "%d", &current_state);
235	if (err != 1)
236		goto abort;
237
238	err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
239	if (err) {
240		xenbus_switch_fatal(dev, depth, err, "writing new state");
241		goto abort;
242	}
243
244	abort = 0;
245abort:
246	err = xenbus_transaction_end(xbt, abort);
247	if (err) {
248		if (err == -EAGAIN && !abort)
249			goto again;
250		xenbus_switch_fatal(dev, depth, err, "ending transaction");
251	} else
252		dev->state = state;
253
254	return 0;
255}
256
257/**
258 * xenbus_switch_state
259 * @dev: xenbus device
260 * @state: new state
261 *
262 * Advertise in the store a change of the given driver to the given new_state.
263 * Return 0 on success, or -errno on error.  On error, the device will switch
264 * to XenbusStateClosing, and the error will be saved in the store.
265 */
266int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
267{
268	return __xenbus_switch_state(dev, state, 0);
269}
270
271EXPORT_SYMBOL_GPL(xenbus_switch_state);
272
273int xenbus_frontend_closed(struct xenbus_device *dev)
274{
275	xenbus_switch_state(dev, XenbusStateClosed);
276	complete(&dev->down);
277	return 0;
278}
279EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
280
281static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
282				const char *fmt, va_list ap)
283{
284	unsigned int len;
285	char *printf_buffer;
286	char *path_buffer;
287
288#define PRINTF_BUFFER_SIZE 4096
289
290	printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
291	if (!printf_buffer)
292		return;
293
294	len = sprintf(printf_buffer, "%i ", -err);
295	vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
296
297	dev_err(&dev->dev, "%s\n", printf_buffer);
298
299	path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
300	if (path_buffer)
301		xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer);
302
303	kfree(printf_buffer);
304	kfree(path_buffer);
305}
306
307/**
308 * xenbus_dev_error
309 * @dev: xenbus device
310 * @err: error to report
311 * @fmt: error message format
312 *
313 * Report the given negative errno into the store, along with the given
314 * formatted message.
315 */
316void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
317{
318	va_list ap;
319
320	va_start(ap, fmt);
321	xenbus_va_dev_error(dev, err, fmt, ap);
322	va_end(ap);
323}
324EXPORT_SYMBOL_GPL(xenbus_dev_error);
325
326/**
327 * xenbus_dev_fatal
328 * @dev: xenbus device
329 * @err: error to report
330 * @fmt: error message format
331 *
332 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
333 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
334 * closedown of this driver and its peer.
335 */
336
337void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
338{
339	va_list ap;
340
341	va_start(ap, fmt);
342	xenbus_va_dev_error(dev, err, fmt, ap);
343	va_end(ap);
344
345	xenbus_switch_state(dev, XenbusStateClosing);
346}
347EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
348
349/**
350 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
351 * avoiding recursion within xenbus_switch_state.
352 */
353static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
354				const char *fmt, ...)
355{
356	va_list ap;
357
358	va_start(ap, fmt);
359	xenbus_va_dev_error(dev, err, fmt, ap);
360	va_end(ap);
361
362	if (!depth)
363		__xenbus_switch_state(dev, XenbusStateClosing, 1);
364}
365
366/*
367 * xenbus_setup_ring
368 * @dev: xenbus device
369 * @vaddr: pointer to starting virtual address of the ring
370 * @nr_pages: number of pages to be granted
371 * @grefs: grant reference array to be filled in
372 *
373 * Allocate physically contiguous pages for a shared ring buffer and grant it
374 * to the peer of the given device. The ring buffer is initially filled with
375 * zeroes. The virtual address of the ring is stored at @vaddr and the
376 * grant references are stored in the @grefs array. In case of error @vaddr
377 * will be set to NULL and @grefs will be filled with INVALID_GRANT_REF.
378 */
379int xenbus_setup_ring(struct xenbus_device *dev, gfp_t gfp, void **vaddr,
380		      unsigned int nr_pages, grant_ref_t *grefs)
381{
382	unsigned long ring_size = nr_pages * XEN_PAGE_SIZE;
383	grant_ref_t gref_head;
384	unsigned int i;
385	void *addr;
386	int ret;
387
388	addr = *vaddr = alloc_pages_exact(ring_size, gfp | __GFP_ZERO);
389	if (!*vaddr) {
390		ret = -ENOMEM;
391		goto err;
392	}
393
394	ret = gnttab_alloc_grant_references(nr_pages, &gref_head);
395	if (ret) {
396		xenbus_dev_fatal(dev, ret, "granting access to %u ring pages",
397				 nr_pages);
398		goto err;
399	}
400
401	for (i = 0; i < nr_pages; i++) {
402		unsigned long gfn;
403
404		if (is_vmalloc_addr(*vaddr))
405			gfn = pfn_to_gfn(vmalloc_to_pfn(addr));
406		else
407			gfn = virt_to_gfn(addr);
408
409		grefs[i] = gnttab_claim_grant_reference(&gref_head);
410		gnttab_grant_foreign_access_ref(grefs[i], dev->otherend_id,
411						gfn, 0);
 
 
 
 
412
413		addr += XEN_PAGE_SIZE;
414	}
415
416	return 0;
417
418 err:
419	if (*vaddr)
420		free_pages_exact(*vaddr, ring_size);
421	for (i = 0; i < nr_pages; i++)
422		grefs[i] = INVALID_GRANT_REF;
423	*vaddr = NULL;
424
425	return ret;
426}
427EXPORT_SYMBOL_GPL(xenbus_setup_ring);
428
429/*
430 * xenbus_teardown_ring
431 * @vaddr: starting virtual address of the ring
432 * @nr_pages: number of pages
433 * @grefs: grant reference array
434 *
435 * Remove grants for the shared ring buffer and free the associated memory.
436 * On return the grant reference array is filled with INVALID_GRANT_REF.
437 */
438void xenbus_teardown_ring(void **vaddr, unsigned int nr_pages,
439			  grant_ref_t *grefs)
440{
441	unsigned int i;
442
443	for (i = 0; i < nr_pages; i++) {
444		if (grefs[i] != INVALID_GRANT_REF) {
445			gnttab_end_foreign_access(grefs[i], NULL);
446			grefs[i] = INVALID_GRANT_REF;
447		}
448	}
449
450	if (*vaddr)
451		free_pages_exact(*vaddr, nr_pages * XEN_PAGE_SIZE);
452	*vaddr = NULL;
453}
454EXPORT_SYMBOL_GPL(xenbus_teardown_ring);
455
456/**
457 * Allocate an event channel for the given xenbus_device, assigning the newly
458 * created local port to *port.  Return 0 on success, or -errno on error.  On
459 * error, the device will switch to XenbusStateClosing, and the error will be
460 * saved in the store.
461 */
462int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port)
463{
464	struct evtchn_alloc_unbound alloc_unbound;
465	int err;
466
467	alloc_unbound.dom = DOMID_SELF;
468	alloc_unbound.remote_dom = dev->otherend_id;
469
470	err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
471					  &alloc_unbound);
472	if (err)
473		xenbus_dev_fatal(dev, err, "allocating event channel");
474	else
475		*port = alloc_unbound.port;
476
477	return err;
478}
479EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
480
481
482/**
483 * Free an existing event channel. Returns 0 on success or -errno on error.
484 */
485int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port)
486{
487	struct evtchn_close close;
488	int err;
489
490	close.port = port;
491
492	err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
493	if (err)
494		xenbus_dev_error(dev, err, "freeing event channel %u", port);
495
496	return err;
497}
498EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
499
500
501/**
502 * xenbus_map_ring_valloc
503 * @dev: xenbus device
504 * @gnt_refs: grant reference array
505 * @nr_grefs: number of grant references
506 * @vaddr: pointer to address to be filled out by mapping
507 *
508 * Map @nr_grefs pages of memory into this domain from another
509 * domain's grant table.  xenbus_map_ring_valloc allocates @nr_grefs
510 * pages of virtual address space, maps the pages to that address, and
511 * sets *vaddr to that address.  Returns 0 on success, and -errno on
512 * error. If an error is returned, device will switch to
513 * XenbusStateClosing and the error message will be saved in XenStore.
514 */
515int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
516			   unsigned int nr_grefs, void **vaddr)
517{
518	int err;
519	struct map_ring_valloc *info;
520
521	*vaddr = NULL;
522
523	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
524		return -EINVAL;
525
526	info = kzalloc(sizeof(*info), GFP_KERNEL);
527	if (!info)
528		return -ENOMEM;
529
530	info->node = kzalloc(sizeof(*info->node), GFP_KERNEL);
531	if (!info->node)
532		err = -ENOMEM;
533	else
534		err = ring_ops->map(dev, info, gnt_refs, nr_grefs, vaddr);
535
536	kfree(info->node);
537	kfree(info);
538	return err;
539}
540EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
541
542/* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
543 * long), e.g. 32-on-64.  Caller is responsible for preparing the
544 * right array to feed into this function */
545static int __xenbus_map_ring(struct xenbus_device *dev,
546			     grant_ref_t *gnt_refs,
547			     unsigned int nr_grefs,
548			     grant_handle_t *handles,
549			     struct map_ring_valloc *info,
550			     unsigned int flags,
551			     bool *leaked)
552{
553	int i, j;
554
555	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
556		return -EINVAL;
557
558	for (i = 0; i < nr_grefs; i++) {
559		gnttab_set_map_op(&info->map[i], info->phys_addrs[i], flags,
560				  gnt_refs[i], dev->otherend_id);
561		handles[i] = INVALID_GRANT_HANDLE;
562	}
563
564	gnttab_batch_map(info->map, i);
565
566	for (i = 0; i < nr_grefs; i++) {
567		if (info->map[i].status != GNTST_okay) {
568			xenbus_dev_fatal(dev, info->map[i].status,
569					 "mapping in shared page %d from domain %d",
570					 gnt_refs[i], dev->otherend_id);
571			goto fail;
572		} else
573			handles[i] = info->map[i].handle;
574	}
575
576	return 0;
577
578 fail:
579	for (i = j = 0; i < nr_grefs; i++) {
580		if (handles[i] != INVALID_GRANT_HANDLE) {
581			gnttab_set_unmap_op(&info->unmap[j],
582					    info->phys_addrs[i],
583					    GNTMAP_host_map, handles[i]);
584			j++;
585		}
586	}
587
588	BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, info->unmap, j));
 
589
590	*leaked = false;
591	for (i = 0; i < j; i++) {
592		if (info->unmap[i].status != GNTST_okay) {
593			*leaked = true;
594			break;
595		}
596	}
597
598	return -ENOENT;
599}
600
601/**
602 * xenbus_unmap_ring
603 * @dev: xenbus device
604 * @handles: grant handle array
605 * @nr_handles: number of handles in the array
606 * @vaddrs: addresses to unmap
607 *
608 * Unmap memory in this domain that was imported from another domain.
609 * Returns 0 on success and returns GNTST_* on error
610 * (see xen/include/interface/grant_table.h).
611 */
612static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles,
613			     unsigned int nr_handles, unsigned long *vaddrs)
614{
615	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
616	int i;
617	int err;
618
619	if (nr_handles > XENBUS_MAX_RING_GRANTS)
620		return -EINVAL;
621
622	for (i = 0; i < nr_handles; i++)
623		gnttab_set_unmap_op(&unmap[i], vaddrs[i],
624				    GNTMAP_host_map, handles[i]);
625
626	BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
 
627
628	err = GNTST_okay;
629	for (i = 0; i < nr_handles; i++) {
630		if (unmap[i].status != GNTST_okay) {
631			xenbus_dev_error(dev, unmap[i].status,
632					 "unmapping page at handle %d error %d",
633					 handles[i], unmap[i].status);
634			err = unmap[i].status;
635			break;
636		}
637	}
638
639	return err;
640}
641
642static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
643					    unsigned int goffset,
644					    unsigned int len,
645					    void *data)
646{
647	struct map_ring_valloc *info = data;
648	unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
649
650	info->phys_addrs[info->idx] = vaddr;
651	info->addrs[info->idx] = vaddr;
652
653	info->idx++;
654}
655
656static int xenbus_map_ring_hvm(struct xenbus_device *dev,
657			       struct map_ring_valloc *info,
658			       grant_ref_t *gnt_ref,
659			       unsigned int nr_grefs,
660			       void **vaddr)
661{
662	struct xenbus_map_node *node = info->node;
663	int err;
664	void *addr;
665	bool leaked = false;
666	unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
667
668	err = xen_alloc_unpopulated_pages(nr_pages, node->hvm.pages);
669	if (err)
670		goto out_err;
671
672	gnttab_foreach_grant(node->hvm.pages, nr_grefs,
673			     xenbus_map_ring_setup_grant_hvm,
674			     info);
675
676	err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
677				info, GNTMAP_host_map, &leaked);
678	node->nr_handles = nr_grefs;
679
680	if (err)
681		goto out_free_ballooned_pages;
682
683	addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
684		    PAGE_KERNEL);
685	if (!addr) {
686		err = -ENOMEM;
687		goto out_xenbus_unmap_ring;
688	}
689
690	node->hvm.addr = addr;
691
692	spin_lock(&xenbus_valloc_lock);
693	list_add(&node->next, &xenbus_valloc_pages);
694	spin_unlock(&xenbus_valloc_lock);
695
696	*vaddr = addr;
697	info->node = NULL;
698
699	return 0;
700
701 out_xenbus_unmap_ring:
702	if (!leaked)
703		xenbus_unmap_ring(dev, node->handles, nr_grefs, info->addrs);
704	else
705		pr_alert("leaking %p size %u page(s)",
706			 addr, nr_pages);
707 out_free_ballooned_pages:
708	if (!leaked)
709		xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
710 out_err:
711	return err;
712}
713
714/**
715 * xenbus_unmap_ring_vfree
716 * @dev: xenbus device
717 * @vaddr: addr to unmap
718 *
719 * Based on Rusty Russell's skeleton driver's unmap_page.
720 * Unmap a page of memory in this domain that was imported from another domain.
721 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
722 * xenbus_map_ring_valloc (it will free the virtual address space).
723 * Returns 0 on success and returns GNTST_* on error
724 * (see xen/include/interface/grant_table.h).
725 */
726int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
727{
728	return ring_ops->unmap(dev, vaddr);
729}
730EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
731
732#ifdef CONFIG_XEN_PV
733static int map_ring_apply(pte_t *pte, unsigned long addr, void *data)
734{
735	struct map_ring_valloc *info = data;
736
737	info->phys_addrs[info->idx++] = arbitrary_virt_to_machine(pte).maddr;
738	return 0;
739}
740
741static int xenbus_map_ring_pv(struct xenbus_device *dev,
742			      struct map_ring_valloc *info,
743			      grant_ref_t *gnt_refs,
744			      unsigned int nr_grefs,
745			      void **vaddr)
746{
747	struct xenbus_map_node *node = info->node;
748	struct vm_struct *area;
749	bool leaked = false;
750	int err = -ENOMEM;
 
751
752	area = get_vm_area(XEN_PAGE_SIZE * nr_grefs, VM_IOREMAP);
753	if (!area)
754		return -ENOMEM;
755	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
756				XEN_PAGE_SIZE * nr_grefs, map_ring_apply, info))
757		goto failed;
 
 
758	err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
759				info, GNTMAP_host_map | GNTMAP_contains_pte,
760				&leaked);
761	if (err)
762		goto failed;
763
764	node->nr_handles = nr_grefs;
765	node->pv.area = area;
766
767	spin_lock(&xenbus_valloc_lock);
768	list_add(&node->next, &xenbus_valloc_pages);
769	spin_unlock(&xenbus_valloc_lock);
770
771	*vaddr = area->addr;
772	info->node = NULL;
773
774	return 0;
775
776failed:
777	if (!leaked)
778		free_vm_area(area);
779	else
780		pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
781
782	return err;
783}
784
785static int xenbus_unmap_ring_pv(struct xenbus_device *dev, void *vaddr)
786{
787	struct xenbus_map_node *node;
788	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
789	unsigned int level;
790	int i;
791	bool leaked = false;
792	int err;
793
794	spin_lock(&xenbus_valloc_lock);
795	list_for_each_entry(node, &xenbus_valloc_pages, next) {
796		if (node->pv.area->addr == vaddr) {
797			list_del(&node->next);
798			goto found;
799		}
800	}
801	node = NULL;
802 found:
803	spin_unlock(&xenbus_valloc_lock);
804
805	if (!node) {
806		xenbus_dev_error(dev, -ENOENT,
807				 "can't find mapped virtual address %p", vaddr);
808		return GNTST_bad_virt_addr;
809	}
810
811	for (i = 0; i < node->nr_handles; i++) {
812		unsigned long addr;
813
814		memset(&unmap[i], 0, sizeof(unmap[i]));
815		addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
816		unmap[i].host_addr = arbitrary_virt_to_machine(
817			lookup_address(addr, &level)).maddr;
818		unmap[i].dev_bus_addr = 0;
819		unmap[i].handle = node->handles[i];
820	}
821
822	BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
 
823
824	err = GNTST_okay;
825	leaked = false;
826	for (i = 0; i < node->nr_handles; i++) {
827		if (unmap[i].status != GNTST_okay) {
828			leaked = true;
829			xenbus_dev_error(dev, unmap[i].status,
830					 "unmapping page at handle %d error %d",
831					 node->handles[i], unmap[i].status);
832			err = unmap[i].status;
833			break;
834		}
835	}
836
837	if (!leaked)
838		free_vm_area(node->pv.area);
839	else
840		pr_alert("leaking VM area %p size %u page(s)",
841			 node->pv.area, node->nr_handles);
842
843	kfree(node);
844	return err;
845}
846
847static const struct xenbus_ring_ops ring_ops_pv = {
848	.map = xenbus_map_ring_pv,
849	.unmap = xenbus_unmap_ring_pv,
850};
851#endif
852
853struct unmap_ring_hvm
854{
855	unsigned int idx;
856	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
857};
858
859static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
860					      unsigned int goffset,
861					      unsigned int len,
862					      void *data)
863{
864	struct unmap_ring_hvm *info = data;
865
866	info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
867
868	info->idx++;
869}
870
871static int xenbus_unmap_ring_hvm(struct xenbus_device *dev, void *vaddr)
872{
873	int rv;
874	struct xenbus_map_node *node;
875	void *addr;
876	struct unmap_ring_hvm info = {
877		.idx = 0,
878	};
879	unsigned int nr_pages;
880
881	spin_lock(&xenbus_valloc_lock);
882	list_for_each_entry(node, &xenbus_valloc_pages, next) {
883		addr = node->hvm.addr;
884		if (addr == vaddr) {
885			list_del(&node->next);
886			goto found;
887		}
888	}
889	node = addr = NULL;
890 found:
891	spin_unlock(&xenbus_valloc_lock);
892
893	if (!node) {
894		xenbus_dev_error(dev, -ENOENT,
895				 "can't find mapped virtual address %p", vaddr);
896		return GNTST_bad_virt_addr;
897	}
898
899	nr_pages = XENBUS_PAGES(node->nr_handles);
900
901	gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
902			     xenbus_unmap_ring_setup_grant_hvm,
903			     &info);
904
905	rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
906			       info.addrs);
907	if (!rv) {
908		vunmap(vaddr);
909		xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
910	}
911	else
912		WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
913
914	kfree(node);
915	return rv;
916}
917
918/**
919 * xenbus_read_driver_state
920 * @path: path for driver
921 *
922 * Return the state of the driver rooted at the given store path, or
923 * XenbusStateUnknown if no state can be read.
924 */
925enum xenbus_state xenbus_read_driver_state(const char *path)
926{
927	enum xenbus_state result;
928	int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
929	if (err)
930		result = XenbusStateUnknown;
931
932	return result;
933}
934EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
935
936static const struct xenbus_ring_ops ring_ops_hvm = {
937	.map = xenbus_map_ring_hvm,
938	.unmap = xenbus_unmap_ring_hvm,
939};
940
941void __init xenbus_ring_ops_init(void)
942{
943#ifdef CONFIG_XEN_PV
944	if (!xen_feature(XENFEAT_auto_translated_physmap))
945		ring_ops = &ring_ops_pv;
946	else
947#endif
948		ring_ops = &ring_ops_hvm;
949}