Loading...
Note: File does not exist in v5.9.
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2020 Facebook */
3
4#include <linux/bits.h>
5#include <linux/err.h>
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/debugfs.h>
9#include <linux/init.h>
10#include <linux/pci.h>
11#include <linux/serial_8250.h>
12#include <linux/clkdev.h>
13#include <linux/clk-provider.h>
14#include <linux/platform_device.h>
15#include <linux/platform_data/i2c-xiic.h>
16#include <linux/platform_data/i2c-ocores.h>
17#include <linux/ptp_clock_kernel.h>
18#include <linux/spi/spi.h>
19#include <linux/spi/xilinx_spi.h>
20#include <linux/spi/altera.h>
21#include <net/devlink.h>
22#include <linux/i2c.h>
23#include <linux/mtd/mtd.h>
24#include <linux/nvmem-consumer.h>
25#include <linux/crc16.h>
26
27#define PCI_VENDOR_ID_FACEBOOK 0x1d9b
28#define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
29
30#define PCI_VENDOR_ID_CELESTICA 0x18d4
31#define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
32
33#define PCI_VENDOR_ID_OROLIA 0x1ad7
34#define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000
35
36static struct class timecard_class = {
37 .owner = THIS_MODULE,
38 .name = "timecard",
39};
40
41struct ocp_reg {
42 u32 ctrl;
43 u32 status;
44 u32 select;
45 u32 version;
46 u32 time_ns;
47 u32 time_sec;
48 u32 __pad0[2];
49 u32 adjust_ns;
50 u32 adjust_sec;
51 u32 __pad1[2];
52 u32 offset_ns;
53 u32 offset_window_ns;
54 u32 __pad2[2];
55 u32 drift_ns;
56 u32 drift_window_ns;
57 u32 __pad3[6];
58 u32 servo_offset_p;
59 u32 servo_offset_i;
60 u32 servo_drift_p;
61 u32 servo_drift_i;
62 u32 status_offset;
63 u32 status_drift;
64};
65
66#define OCP_CTRL_ENABLE BIT(0)
67#define OCP_CTRL_ADJUST_TIME BIT(1)
68#define OCP_CTRL_ADJUST_OFFSET BIT(2)
69#define OCP_CTRL_ADJUST_DRIFT BIT(3)
70#define OCP_CTRL_ADJUST_SERVO BIT(8)
71#define OCP_CTRL_READ_TIME_REQ BIT(30)
72#define OCP_CTRL_READ_TIME_DONE BIT(31)
73
74#define OCP_STATUS_IN_SYNC BIT(0)
75#define OCP_STATUS_IN_HOLDOVER BIT(1)
76
77#define OCP_SELECT_CLK_NONE 0
78#define OCP_SELECT_CLK_REG 0xfe
79
80struct tod_reg {
81 u32 ctrl;
82 u32 status;
83 u32 uart_polarity;
84 u32 version;
85 u32 adj_sec;
86 u32 __pad0[3];
87 u32 uart_baud;
88 u32 __pad1[3];
89 u32 utc_status;
90 u32 leap;
91};
92
93#define TOD_CTRL_PROTOCOL BIT(28)
94#define TOD_CTRL_DISABLE_FMT_A BIT(17)
95#define TOD_CTRL_DISABLE_FMT_B BIT(16)
96#define TOD_CTRL_ENABLE BIT(0)
97#define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
98#define TOD_CTRL_GNSS_SHIFT 24
99
100#define TOD_STATUS_UTC_MASK GENMASK(7, 0)
101#define TOD_STATUS_UTC_VALID BIT(8)
102#define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
103#define TOD_STATUS_LEAP_VALID BIT(16)
104
105struct ts_reg {
106 u32 enable;
107 u32 error;
108 u32 polarity;
109 u32 version;
110 u32 __pad0[4];
111 u32 cable_delay;
112 u32 __pad1[3];
113 u32 intr;
114 u32 intr_mask;
115 u32 event_count;
116 u32 __pad2[1];
117 u32 ts_count;
118 u32 time_ns;
119 u32 time_sec;
120 u32 data_width;
121 u32 data;
122};
123
124struct pps_reg {
125 u32 ctrl;
126 u32 status;
127 u32 __pad0[6];
128 u32 cable_delay;
129};
130
131#define PPS_STATUS_FILTER_ERR BIT(0)
132#define PPS_STATUS_SUPERV_ERR BIT(1)
133
134struct img_reg {
135 u32 version;
136};
137
138struct gpio_reg {
139 u32 gpio1;
140 u32 __pad0;
141 u32 gpio2;
142 u32 __pad1;
143};
144
145struct irig_master_reg {
146 u32 ctrl;
147 u32 status;
148 u32 __pad0;
149 u32 version;
150 u32 adj_sec;
151 u32 mode_ctrl;
152};
153
154#define IRIG_M_CTRL_ENABLE BIT(0)
155
156struct irig_slave_reg {
157 u32 ctrl;
158 u32 status;
159 u32 __pad0;
160 u32 version;
161 u32 adj_sec;
162 u32 mode_ctrl;
163};
164
165#define IRIG_S_CTRL_ENABLE BIT(0)
166
167struct dcf_master_reg {
168 u32 ctrl;
169 u32 status;
170 u32 __pad0;
171 u32 version;
172 u32 adj_sec;
173};
174
175#define DCF_M_CTRL_ENABLE BIT(0)
176
177struct dcf_slave_reg {
178 u32 ctrl;
179 u32 status;
180 u32 __pad0;
181 u32 version;
182 u32 adj_sec;
183};
184
185#define DCF_S_CTRL_ENABLE BIT(0)
186
187struct signal_reg {
188 u32 enable;
189 u32 status;
190 u32 polarity;
191 u32 version;
192 u32 __pad0[4];
193 u32 cable_delay;
194 u32 __pad1[3];
195 u32 intr;
196 u32 intr_mask;
197 u32 __pad2[2];
198 u32 start_ns;
199 u32 start_sec;
200 u32 pulse_ns;
201 u32 pulse_sec;
202 u32 period_ns;
203 u32 period_sec;
204 u32 repeat_count;
205};
206
207struct frequency_reg {
208 u32 ctrl;
209 u32 status;
210};
211
212struct board_config_reg {
213 u32 mro50_serial_activate;
214};
215
216#define FREQ_STATUS_VALID BIT(31)
217#define FREQ_STATUS_ERROR BIT(30)
218#define FREQ_STATUS_OVERRUN BIT(29)
219#define FREQ_STATUS_MASK GENMASK(23, 0)
220
221struct ptp_ocp_flash_info {
222 const char *name;
223 int pci_offset;
224 int data_size;
225 void *data;
226};
227
228struct ptp_ocp_firmware_header {
229 char magic[4];
230 __be16 pci_vendor_id;
231 __be16 pci_device_id;
232 __be32 image_size;
233 __be16 hw_revision;
234 __be16 crc;
235};
236
237#define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
238
239struct ptp_ocp_i2c_info {
240 const char *name;
241 unsigned long fixed_rate;
242 size_t data_size;
243 void *data;
244};
245
246struct ptp_ocp_ext_info {
247 int index;
248 irqreturn_t (*irq_fcn)(int irq, void *priv);
249 int (*enable)(void *priv, u32 req, bool enable);
250};
251
252struct ptp_ocp_ext_src {
253 void __iomem *mem;
254 struct ptp_ocp *bp;
255 struct ptp_ocp_ext_info *info;
256 int irq_vec;
257};
258
259enum ptp_ocp_sma_mode {
260 SMA_MODE_IN,
261 SMA_MODE_OUT,
262};
263
264struct ptp_ocp_sma_connector {
265 enum ptp_ocp_sma_mode mode;
266 bool fixed_fcn;
267 bool fixed_dir;
268 bool disabled;
269 u8 default_fcn;
270};
271
272struct ocp_attr_group {
273 u64 cap;
274 const struct attribute_group *group;
275};
276
277#define OCP_CAP_BASIC BIT(0)
278#define OCP_CAP_SIGNAL BIT(1)
279#define OCP_CAP_FREQ BIT(2)
280
281struct ptp_ocp_signal {
282 ktime_t period;
283 ktime_t pulse;
284 ktime_t phase;
285 ktime_t start;
286 int duty;
287 bool polarity;
288 bool running;
289};
290
291struct ptp_ocp_serial_port {
292 int line;
293 int baud;
294};
295
296#define OCP_BOARD_ID_LEN 13
297#define OCP_SERIAL_LEN 6
298
299struct ptp_ocp {
300 struct pci_dev *pdev;
301 struct device dev;
302 spinlock_t lock;
303 struct ocp_reg __iomem *reg;
304 struct tod_reg __iomem *tod;
305 struct pps_reg __iomem *pps_to_ext;
306 struct pps_reg __iomem *pps_to_clk;
307 struct board_config_reg __iomem *board_config;
308 struct gpio_reg __iomem *pps_select;
309 struct gpio_reg __iomem *sma_map1;
310 struct gpio_reg __iomem *sma_map2;
311 struct irig_master_reg __iomem *irig_out;
312 struct irig_slave_reg __iomem *irig_in;
313 struct dcf_master_reg __iomem *dcf_out;
314 struct dcf_slave_reg __iomem *dcf_in;
315 struct tod_reg __iomem *nmea_out;
316 struct frequency_reg __iomem *freq_in[4];
317 struct ptp_ocp_ext_src *signal_out[4];
318 struct ptp_ocp_ext_src *pps;
319 struct ptp_ocp_ext_src *ts0;
320 struct ptp_ocp_ext_src *ts1;
321 struct ptp_ocp_ext_src *ts2;
322 struct ptp_ocp_ext_src *ts3;
323 struct ptp_ocp_ext_src *ts4;
324 struct ocp_art_gpio_reg __iomem *art_sma;
325 struct img_reg __iomem *image;
326 struct ptp_clock *ptp;
327 struct ptp_clock_info ptp_info;
328 struct platform_device *i2c_ctrl;
329 struct platform_device *spi_flash;
330 struct clk_hw *i2c_clk;
331 struct timer_list watchdog;
332 const struct attribute_group **attr_group;
333 const struct ptp_ocp_eeprom_map *eeprom_map;
334 struct dentry *debug_root;
335 time64_t gnss_lost;
336 int id;
337 int n_irqs;
338 struct ptp_ocp_serial_port gnss_port;
339 struct ptp_ocp_serial_port gnss2_port;
340 struct ptp_ocp_serial_port mac_port; /* miniature atomic clock */
341 struct ptp_ocp_serial_port nmea_port;
342 bool fw_loader;
343 u8 fw_tag;
344 u16 fw_version;
345 u8 board_id[OCP_BOARD_ID_LEN];
346 u8 serial[OCP_SERIAL_LEN];
347 bool has_eeprom_data;
348 u32 pps_req_map;
349 int flash_start;
350 u32 utc_tai_offset;
351 u32 ts_window_adjust;
352 u64 fw_cap;
353 struct ptp_ocp_signal signal[4];
354 struct ptp_ocp_sma_connector sma[4];
355 const struct ocp_sma_op *sma_op;
356};
357
358#define OCP_REQ_TIMESTAMP BIT(0)
359#define OCP_REQ_PPS BIT(1)
360
361struct ocp_resource {
362 unsigned long offset;
363 int size;
364 int irq_vec;
365 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
366 void *extra;
367 unsigned long bp_offset;
368 const char * const name;
369};
370
371static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
372static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
373static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
374static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
375static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
376static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
377static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
378static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
379static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
380static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
381 struct ptp_perout_request *req);
382static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
383static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
384
385static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
386
387static const struct ocp_attr_group fb_timecard_groups[];
388
389static const struct ocp_attr_group art_timecard_groups[];
390
391struct ptp_ocp_eeprom_map {
392 u16 off;
393 u16 len;
394 u32 bp_offset;
395 const void * const tag;
396};
397
398#define EEPROM_ENTRY(addr, member) \
399 .off = addr, \
400 .len = sizeof_field(struct ptp_ocp, member), \
401 .bp_offset = offsetof(struct ptp_ocp, member)
402
403#define BP_MAP_ENTRY_ADDR(bp, map) ({ \
404 (void *)((uintptr_t)(bp) + (map)->bp_offset); \
405})
406
407static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
408 { EEPROM_ENTRY(0x43, board_id) },
409 { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
410 { }
411};
412
413static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
414 { EEPROM_ENTRY(0x200 + 0x43, board_id) },
415 { EEPROM_ENTRY(0x200 + 0x63, serial) },
416 { }
417};
418
419#define bp_assign_entry(bp, res, val) ({ \
420 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
421 *(typeof(val) *)addr = val; \
422})
423
424#define OCP_RES_LOCATION(member) \
425 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
426
427#define OCP_MEM_RESOURCE(member) \
428 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
429
430#define OCP_SERIAL_RESOURCE(member) \
431 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
432
433#define OCP_I2C_RESOURCE(member) \
434 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
435
436#define OCP_SPI_RESOURCE(member) \
437 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
438
439#define OCP_EXT_RESOURCE(member) \
440 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
441
442/* This is the MSI vector mapping used.
443 * 0: PPS (TS5)
444 * 1: TS0
445 * 2: TS1
446 * 3: GNSS1
447 * 4: GNSS2
448 * 5: MAC
449 * 6: TS2
450 * 7: I2C controller
451 * 8: HWICAP (notused)
452 * 9: SPI Flash
453 * 10: NMEA
454 * 11: Signal Generator 1
455 * 12: Signal Generator 2
456 * 13: Signal Generator 3
457 * 14: Signal Generator 4
458 * 15: TS3
459 * 16: TS4
460 --
461 * 8: Orolia TS1
462 * 10: Orolia TS2
463 * 11: Orolia TS0 (GNSS)
464 * 12: Orolia PPS
465 * 14: Orolia TS3
466 * 15: Orolia TS4
467 */
468
469static struct ocp_resource ocp_fb_resource[] = {
470 {
471 OCP_MEM_RESOURCE(reg),
472 .offset = 0x01000000, .size = 0x10000,
473 },
474 {
475 OCP_EXT_RESOURCE(ts0),
476 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
477 .extra = &(struct ptp_ocp_ext_info) {
478 .index = 0,
479 .irq_fcn = ptp_ocp_ts_irq,
480 .enable = ptp_ocp_ts_enable,
481 },
482 },
483 {
484 OCP_EXT_RESOURCE(ts1),
485 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
486 .extra = &(struct ptp_ocp_ext_info) {
487 .index = 1,
488 .irq_fcn = ptp_ocp_ts_irq,
489 .enable = ptp_ocp_ts_enable,
490 },
491 },
492 {
493 OCP_EXT_RESOURCE(ts2),
494 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
495 .extra = &(struct ptp_ocp_ext_info) {
496 .index = 2,
497 .irq_fcn = ptp_ocp_ts_irq,
498 .enable = ptp_ocp_ts_enable,
499 },
500 },
501 {
502 OCP_EXT_RESOURCE(ts3),
503 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
504 .extra = &(struct ptp_ocp_ext_info) {
505 .index = 3,
506 .irq_fcn = ptp_ocp_ts_irq,
507 .enable = ptp_ocp_ts_enable,
508 },
509 },
510 {
511 OCP_EXT_RESOURCE(ts4),
512 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
513 .extra = &(struct ptp_ocp_ext_info) {
514 .index = 4,
515 .irq_fcn = ptp_ocp_ts_irq,
516 .enable = ptp_ocp_ts_enable,
517 },
518 },
519 /* Timestamp for PHC and/or PPS generator */
520 {
521 OCP_EXT_RESOURCE(pps),
522 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
523 .extra = &(struct ptp_ocp_ext_info) {
524 .index = 5,
525 .irq_fcn = ptp_ocp_ts_irq,
526 .enable = ptp_ocp_ts_enable,
527 },
528 },
529 {
530 OCP_EXT_RESOURCE(signal_out[0]),
531 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
532 .extra = &(struct ptp_ocp_ext_info) {
533 .index = 1,
534 .irq_fcn = ptp_ocp_signal_irq,
535 .enable = ptp_ocp_signal_enable,
536 },
537 },
538 {
539 OCP_EXT_RESOURCE(signal_out[1]),
540 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
541 .extra = &(struct ptp_ocp_ext_info) {
542 .index = 2,
543 .irq_fcn = ptp_ocp_signal_irq,
544 .enable = ptp_ocp_signal_enable,
545 },
546 },
547 {
548 OCP_EXT_RESOURCE(signal_out[2]),
549 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
550 .extra = &(struct ptp_ocp_ext_info) {
551 .index = 3,
552 .irq_fcn = ptp_ocp_signal_irq,
553 .enable = ptp_ocp_signal_enable,
554 },
555 },
556 {
557 OCP_EXT_RESOURCE(signal_out[3]),
558 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
559 .extra = &(struct ptp_ocp_ext_info) {
560 .index = 4,
561 .irq_fcn = ptp_ocp_signal_irq,
562 .enable = ptp_ocp_signal_enable,
563 },
564 },
565 {
566 OCP_MEM_RESOURCE(pps_to_ext),
567 .offset = 0x01030000, .size = 0x10000,
568 },
569 {
570 OCP_MEM_RESOURCE(pps_to_clk),
571 .offset = 0x01040000, .size = 0x10000,
572 },
573 {
574 OCP_MEM_RESOURCE(tod),
575 .offset = 0x01050000, .size = 0x10000,
576 },
577 {
578 OCP_MEM_RESOURCE(irig_in),
579 .offset = 0x01070000, .size = 0x10000,
580 },
581 {
582 OCP_MEM_RESOURCE(irig_out),
583 .offset = 0x01080000, .size = 0x10000,
584 },
585 {
586 OCP_MEM_RESOURCE(dcf_in),
587 .offset = 0x01090000, .size = 0x10000,
588 },
589 {
590 OCP_MEM_RESOURCE(dcf_out),
591 .offset = 0x010A0000, .size = 0x10000,
592 },
593 {
594 OCP_MEM_RESOURCE(nmea_out),
595 .offset = 0x010B0000, .size = 0x10000,
596 },
597 {
598 OCP_MEM_RESOURCE(image),
599 .offset = 0x00020000, .size = 0x1000,
600 },
601 {
602 OCP_MEM_RESOURCE(pps_select),
603 .offset = 0x00130000, .size = 0x1000,
604 },
605 {
606 OCP_MEM_RESOURCE(sma_map1),
607 .offset = 0x00140000, .size = 0x1000,
608 },
609 {
610 OCP_MEM_RESOURCE(sma_map2),
611 .offset = 0x00220000, .size = 0x1000,
612 },
613 {
614 OCP_I2C_RESOURCE(i2c_ctrl),
615 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
616 .extra = &(struct ptp_ocp_i2c_info) {
617 .name = "xiic-i2c",
618 .fixed_rate = 50000000,
619 .data_size = sizeof(struct xiic_i2c_platform_data),
620 .data = &(struct xiic_i2c_platform_data) {
621 .num_devices = 2,
622 .devices = (struct i2c_board_info[]) {
623 { I2C_BOARD_INFO("24c02", 0x50) },
624 { I2C_BOARD_INFO("24mac402", 0x58),
625 .platform_data = "mac" },
626 },
627 },
628 },
629 },
630 {
631 OCP_SERIAL_RESOURCE(gnss_port),
632 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
633 .extra = &(struct ptp_ocp_serial_port) {
634 .baud = 115200,
635 },
636 },
637 {
638 OCP_SERIAL_RESOURCE(gnss2_port),
639 .offset = 0x00170000 + 0x1000, .irq_vec = 4,
640 .extra = &(struct ptp_ocp_serial_port) {
641 .baud = 115200,
642 },
643 },
644 {
645 OCP_SERIAL_RESOURCE(mac_port),
646 .offset = 0x00180000 + 0x1000, .irq_vec = 5,
647 .extra = &(struct ptp_ocp_serial_port) {
648 .baud = 57600,
649 },
650 },
651 {
652 OCP_SERIAL_RESOURCE(nmea_port),
653 .offset = 0x00190000 + 0x1000, .irq_vec = 10,
654 },
655 {
656 OCP_SPI_RESOURCE(spi_flash),
657 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
658 .extra = &(struct ptp_ocp_flash_info) {
659 .name = "xilinx_spi", .pci_offset = 0,
660 .data_size = sizeof(struct xspi_platform_data),
661 .data = &(struct xspi_platform_data) {
662 .num_chipselect = 1,
663 .bits_per_word = 8,
664 .num_devices = 1,
665 .devices = &(struct spi_board_info) {
666 .modalias = "spi-nor",
667 },
668 },
669 },
670 },
671 {
672 OCP_MEM_RESOURCE(freq_in[0]),
673 .offset = 0x01200000, .size = 0x10000,
674 },
675 {
676 OCP_MEM_RESOURCE(freq_in[1]),
677 .offset = 0x01210000, .size = 0x10000,
678 },
679 {
680 OCP_MEM_RESOURCE(freq_in[2]),
681 .offset = 0x01220000, .size = 0x10000,
682 },
683 {
684 OCP_MEM_RESOURCE(freq_in[3]),
685 .offset = 0x01230000, .size = 0x10000,
686 },
687 {
688 .setup = ptp_ocp_fb_board_init,
689 },
690 { }
691};
692
693#define OCP_ART_CONFIG_SIZE 144
694#define OCP_ART_TEMP_TABLE_SIZE 368
695
696struct ocp_art_gpio_reg {
697 struct {
698 u32 gpio;
699 u32 __pad[3];
700 } map[4];
701};
702
703static struct ocp_resource ocp_art_resource[] = {
704 {
705 OCP_MEM_RESOURCE(reg),
706 .offset = 0x01000000, .size = 0x10000,
707 },
708 {
709 OCP_SERIAL_RESOURCE(gnss_port),
710 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
711 .extra = &(struct ptp_ocp_serial_port) {
712 .baud = 115200,
713 },
714 },
715 {
716 OCP_MEM_RESOURCE(art_sma),
717 .offset = 0x003C0000, .size = 0x1000,
718 },
719 /* Timestamp associated with GNSS1 receiver PPS */
720 {
721 OCP_EXT_RESOURCE(ts0),
722 .offset = 0x360000, .size = 0x20, .irq_vec = 12,
723 .extra = &(struct ptp_ocp_ext_info) {
724 .index = 0,
725 .irq_fcn = ptp_ocp_ts_irq,
726 .enable = ptp_ocp_ts_enable,
727 },
728 },
729 {
730 OCP_EXT_RESOURCE(ts1),
731 .offset = 0x380000, .size = 0x20, .irq_vec = 8,
732 .extra = &(struct ptp_ocp_ext_info) {
733 .index = 1,
734 .irq_fcn = ptp_ocp_ts_irq,
735 .enable = ptp_ocp_ts_enable,
736 },
737 },
738 {
739 OCP_EXT_RESOURCE(ts2),
740 .offset = 0x390000, .size = 0x20, .irq_vec = 10,
741 .extra = &(struct ptp_ocp_ext_info) {
742 .index = 2,
743 .irq_fcn = ptp_ocp_ts_irq,
744 .enable = ptp_ocp_ts_enable,
745 },
746 },
747 {
748 OCP_EXT_RESOURCE(ts3),
749 .offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
750 .extra = &(struct ptp_ocp_ext_info) {
751 .index = 3,
752 .irq_fcn = ptp_ocp_ts_irq,
753 .enable = ptp_ocp_ts_enable,
754 },
755 },
756 {
757 OCP_EXT_RESOURCE(ts4),
758 .offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
759 .extra = &(struct ptp_ocp_ext_info) {
760 .index = 4,
761 .irq_fcn = ptp_ocp_ts_irq,
762 .enable = ptp_ocp_ts_enable,
763 },
764 },
765 /* Timestamp associated with Internal PPS of the card */
766 {
767 OCP_EXT_RESOURCE(pps),
768 .offset = 0x00330000, .size = 0x20, .irq_vec = 11,
769 .extra = &(struct ptp_ocp_ext_info) {
770 .index = 5,
771 .irq_fcn = ptp_ocp_ts_irq,
772 .enable = ptp_ocp_ts_enable,
773 },
774 },
775 {
776 OCP_SPI_RESOURCE(spi_flash),
777 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
778 .extra = &(struct ptp_ocp_flash_info) {
779 .name = "spi_altera", .pci_offset = 0,
780 .data_size = sizeof(struct altera_spi_platform_data),
781 .data = &(struct altera_spi_platform_data) {
782 .num_chipselect = 1,
783 .num_devices = 1,
784 .devices = &(struct spi_board_info) {
785 .modalias = "spi-nor",
786 },
787 },
788 },
789 },
790 {
791 OCP_I2C_RESOURCE(i2c_ctrl),
792 .offset = 0x350000, .size = 0x100, .irq_vec = 4,
793 .extra = &(struct ptp_ocp_i2c_info) {
794 .name = "ocores-i2c",
795 .fixed_rate = 400000,
796 .data_size = sizeof(struct ocores_i2c_platform_data),
797 .data = &(struct ocores_i2c_platform_data) {
798 .clock_khz = 125000,
799 .bus_khz = 400,
800 .num_devices = 1,
801 .devices = &(struct i2c_board_info) {
802 I2C_BOARD_INFO("24c08", 0x50),
803 },
804 },
805 },
806 },
807 {
808 OCP_SERIAL_RESOURCE(mac_port),
809 .offset = 0x00190000, .irq_vec = 7,
810 .extra = &(struct ptp_ocp_serial_port) {
811 .baud = 9600,
812 },
813 },
814 {
815 OCP_MEM_RESOURCE(board_config),
816 .offset = 0x210000, .size = 0x1000,
817 },
818 {
819 .setup = ptp_ocp_art_board_init,
820 },
821 { }
822};
823
824static const struct pci_device_id ptp_ocp_pcidev_id[] = {
825 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
826 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
827 { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
828 { }
829};
830MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
831
832static DEFINE_MUTEX(ptp_ocp_lock);
833static DEFINE_IDR(ptp_ocp_idr);
834
835struct ocp_selector {
836 const char *name;
837 int value;
838};
839
840static const struct ocp_selector ptp_ocp_clock[] = {
841 { .name = "NONE", .value = 0 },
842 { .name = "TOD", .value = 1 },
843 { .name = "IRIG", .value = 2 },
844 { .name = "PPS", .value = 3 },
845 { .name = "PTP", .value = 4 },
846 { .name = "RTC", .value = 5 },
847 { .name = "DCF", .value = 6 },
848 { .name = "REGS", .value = 0xfe },
849 { .name = "EXT", .value = 0xff },
850 { }
851};
852
853#define SMA_DISABLE BIT(16)
854#define SMA_ENABLE BIT(15)
855#define SMA_SELECT_MASK GENMASK(14, 0)
856
857static const struct ocp_selector ptp_ocp_sma_in[] = {
858 { .name = "10Mhz", .value = 0x0000 },
859 { .name = "PPS1", .value = 0x0001 },
860 { .name = "PPS2", .value = 0x0002 },
861 { .name = "TS1", .value = 0x0004 },
862 { .name = "TS2", .value = 0x0008 },
863 { .name = "IRIG", .value = 0x0010 },
864 { .name = "DCF", .value = 0x0020 },
865 { .name = "TS3", .value = 0x0040 },
866 { .name = "TS4", .value = 0x0080 },
867 { .name = "FREQ1", .value = 0x0100 },
868 { .name = "FREQ2", .value = 0x0200 },
869 { .name = "FREQ3", .value = 0x0400 },
870 { .name = "FREQ4", .value = 0x0800 },
871 { .name = "None", .value = SMA_DISABLE },
872 { }
873};
874
875static const struct ocp_selector ptp_ocp_sma_out[] = {
876 { .name = "10Mhz", .value = 0x0000 },
877 { .name = "PHC", .value = 0x0001 },
878 { .name = "MAC", .value = 0x0002 },
879 { .name = "GNSS1", .value = 0x0004 },
880 { .name = "GNSS2", .value = 0x0008 },
881 { .name = "IRIG", .value = 0x0010 },
882 { .name = "DCF", .value = 0x0020 },
883 { .name = "GEN1", .value = 0x0040 },
884 { .name = "GEN2", .value = 0x0080 },
885 { .name = "GEN3", .value = 0x0100 },
886 { .name = "GEN4", .value = 0x0200 },
887 { .name = "GND", .value = 0x2000 },
888 { .name = "VCC", .value = 0x4000 },
889 { }
890};
891
892static const struct ocp_selector ptp_ocp_art_sma_in[] = {
893 { .name = "PPS1", .value = 0x0001 },
894 { .name = "10Mhz", .value = 0x0008 },
895 { }
896};
897
898static const struct ocp_selector ptp_ocp_art_sma_out[] = {
899 { .name = "PHC", .value = 0x0002 },
900 { .name = "GNSS", .value = 0x0004 },
901 { .name = "10Mhz", .value = 0x0010 },
902 { }
903};
904
905struct ocp_sma_op {
906 const struct ocp_selector *tbl[2];
907 void (*init)(struct ptp_ocp *bp);
908 u32 (*get)(struct ptp_ocp *bp, int sma_nr);
909 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
910 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
911};
912
913static void
914ptp_ocp_sma_init(struct ptp_ocp *bp)
915{
916 return bp->sma_op->init(bp);
917}
918
919static u32
920ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
921{
922 return bp->sma_op->get(bp, sma_nr);
923}
924
925static int
926ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
927{
928 return bp->sma_op->set_inputs(bp, sma_nr, val);
929}
930
931static int
932ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
933{
934 return bp->sma_op->set_output(bp, sma_nr, val);
935}
936
937static const char *
938ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
939{
940 int i;
941
942 for (i = 0; tbl[i].name; i++)
943 if (tbl[i].value == val)
944 return tbl[i].name;
945 return NULL;
946}
947
948static int
949ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
950{
951 const char *select;
952 int i;
953
954 for (i = 0; tbl[i].name; i++) {
955 select = tbl[i].name;
956 if (!strncasecmp(name, select, strlen(select)))
957 return tbl[i].value;
958 }
959 return -EINVAL;
960}
961
962static ssize_t
963ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
964{
965 ssize_t count;
966 int i;
967
968 count = 0;
969 for (i = 0; tbl[i].name; i++)
970 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
971 if (count)
972 count--;
973 count += sysfs_emit_at(buf, count, "\n");
974 return count;
975}
976
977static int
978__ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
979 struct ptp_system_timestamp *sts)
980{
981 u32 ctrl, time_sec, time_ns;
982 int i;
983
984 ptp_read_system_prets(sts);
985
986 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
987 iowrite32(ctrl, &bp->reg->ctrl);
988
989 for (i = 0; i < 100; i++) {
990 ctrl = ioread32(&bp->reg->ctrl);
991 if (ctrl & OCP_CTRL_READ_TIME_DONE)
992 break;
993 }
994 ptp_read_system_postts(sts);
995
996 if (sts && bp->ts_window_adjust) {
997 s64 ns = timespec64_to_ns(&sts->post_ts);
998
999 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1000 }
1001
1002 time_ns = ioread32(&bp->reg->time_ns);
1003 time_sec = ioread32(&bp->reg->time_sec);
1004
1005 ts->tv_sec = time_sec;
1006 ts->tv_nsec = time_ns;
1007
1008 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1009}
1010
1011static int
1012ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1013 struct ptp_system_timestamp *sts)
1014{
1015 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1016 unsigned long flags;
1017 int err;
1018
1019 spin_lock_irqsave(&bp->lock, flags);
1020 err = __ptp_ocp_gettime_locked(bp, ts, sts);
1021 spin_unlock_irqrestore(&bp->lock, flags);
1022
1023 return err;
1024}
1025
1026static void
1027__ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1028{
1029 u32 ctrl, time_sec, time_ns;
1030 u32 select;
1031
1032 time_ns = ts->tv_nsec;
1033 time_sec = ts->tv_sec;
1034
1035 select = ioread32(&bp->reg->select);
1036 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1037
1038 iowrite32(time_ns, &bp->reg->adjust_ns);
1039 iowrite32(time_sec, &bp->reg->adjust_sec);
1040
1041 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1042 iowrite32(ctrl, &bp->reg->ctrl);
1043
1044 /* restore clock selection */
1045 iowrite32(select >> 16, &bp->reg->select);
1046}
1047
1048static int
1049ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1050{
1051 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1052 unsigned long flags;
1053
1054 spin_lock_irqsave(&bp->lock, flags);
1055 __ptp_ocp_settime_locked(bp, ts);
1056 spin_unlock_irqrestore(&bp->lock, flags);
1057
1058 return 0;
1059}
1060
1061static void
1062__ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1063{
1064 u32 select, ctrl;
1065
1066 select = ioread32(&bp->reg->select);
1067 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1068
1069 iowrite32(adj_val, &bp->reg->offset_ns);
1070 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1071
1072 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1073 iowrite32(ctrl, &bp->reg->ctrl);
1074
1075 /* restore clock selection */
1076 iowrite32(select >> 16, &bp->reg->select);
1077}
1078
1079static void
1080ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1081{
1082 struct timespec64 ts;
1083 unsigned long flags;
1084 int err;
1085
1086 spin_lock_irqsave(&bp->lock, flags);
1087 err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1088 if (likely(!err)) {
1089 set_normalized_timespec64(&ts, ts.tv_sec,
1090 ts.tv_nsec + delta_ns);
1091 __ptp_ocp_settime_locked(bp, &ts);
1092 }
1093 spin_unlock_irqrestore(&bp->lock, flags);
1094}
1095
1096static int
1097ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1098{
1099 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1100 unsigned long flags;
1101 u32 adj_ns, sign;
1102
1103 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1104 ptp_ocp_adjtime_coarse(bp, delta_ns);
1105 return 0;
1106 }
1107
1108 sign = delta_ns < 0 ? BIT(31) : 0;
1109 adj_ns = sign ? -delta_ns : delta_ns;
1110
1111 spin_lock_irqsave(&bp->lock, flags);
1112 __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1113 spin_unlock_irqrestore(&bp->lock, flags);
1114
1115 return 0;
1116}
1117
1118static int
1119ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1120{
1121 if (scaled_ppm == 0)
1122 return 0;
1123
1124 return -EOPNOTSUPP;
1125}
1126
1127static int
1128ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1129{
1130 return -EOPNOTSUPP;
1131}
1132
1133static int
1134ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1135 int on)
1136{
1137 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1138 struct ptp_ocp_ext_src *ext = NULL;
1139 u32 req;
1140 int err;
1141
1142 switch (rq->type) {
1143 case PTP_CLK_REQ_EXTTS:
1144 req = OCP_REQ_TIMESTAMP;
1145 switch (rq->extts.index) {
1146 case 0:
1147 ext = bp->ts0;
1148 break;
1149 case 1:
1150 ext = bp->ts1;
1151 break;
1152 case 2:
1153 ext = bp->ts2;
1154 break;
1155 case 3:
1156 ext = bp->ts3;
1157 break;
1158 case 4:
1159 ext = bp->ts4;
1160 break;
1161 case 5:
1162 ext = bp->pps;
1163 break;
1164 }
1165 break;
1166 case PTP_CLK_REQ_PPS:
1167 req = OCP_REQ_PPS;
1168 ext = bp->pps;
1169 break;
1170 case PTP_CLK_REQ_PEROUT:
1171 switch (rq->perout.index) {
1172 case 0:
1173 /* This is a request for 1PPS on an output SMA.
1174 * Allow, but assume manual configuration.
1175 */
1176 if (on && (rq->perout.period.sec != 1 ||
1177 rq->perout.period.nsec != 0))
1178 return -EINVAL;
1179 return 0;
1180 case 1:
1181 case 2:
1182 case 3:
1183 case 4:
1184 req = rq->perout.index - 1;
1185 ext = bp->signal_out[req];
1186 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1187 if (err)
1188 return err;
1189 break;
1190 }
1191 break;
1192 default:
1193 return -EOPNOTSUPP;
1194 }
1195
1196 err = -ENXIO;
1197 if (ext)
1198 err = ext->info->enable(ext, req, on);
1199
1200 return err;
1201}
1202
1203static int
1204ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1205 enum ptp_pin_function func, unsigned chan)
1206{
1207 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1208 char buf[16];
1209
1210 switch (func) {
1211 case PTP_PF_NONE:
1212 snprintf(buf, sizeof(buf), "IN: None");
1213 break;
1214 case PTP_PF_EXTTS:
1215 /* Allow timestamps, but require sysfs configuration. */
1216 return 0;
1217 case PTP_PF_PEROUT:
1218 /* channel 0 is 1PPS from PHC.
1219 * channels 1..4 are the frequency generators.
1220 */
1221 if (chan)
1222 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1223 else
1224 snprintf(buf, sizeof(buf), "OUT: PHC");
1225 break;
1226 default:
1227 return -EOPNOTSUPP;
1228 }
1229
1230 return ptp_ocp_sma_store(bp, buf, pin + 1);
1231}
1232
1233static const struct ptp_clock_info ptp_ocp_clock_info = {
1234 .owner = THIS_MODULE,
1235 .name = KBUILD_MODNAME,
1236 .max_adj = 100000000,
1237 .gettimex64 = ptp_ocp_gettimex,
1238 .settime64 = ptp_ocp_settime,
1239 .adjtime = ptp_ocp_adjtime,
1240 .adjfine = ptp_ocp_null_adjfine,
1241 .adjphase = ptp_ocp_null_adjphase,
1242 .enable = ptp_ocp_enable,
1243 .verify = ptp_ocp_verify,
1244 .pps = true,
1245 .n_ext_ts = 6,
1246 .n_per_out = 5,
1247};
1248
1249static void
1250__ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1251{
1252 u32 ctrl, select;
1253
1254 select = ioread32(&bp->reg->select);
1255 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1256
1257 iowrite32(0, &bp->reg->drift_ns);
1258
1259 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1260 iowrite32(ctrl, &bp->reg->ctrl);
1261
1262 /* restore clock selection */
1263 iowrite32(select >> 16, &bp->reg->select);
1264}
1265
1266static void
1267ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1268{
1269 unsigned long flags;
1270
1271 spin_lock_irqsave(&bp->lock, flags);
1272
1273 bp->utc_tai_offset = val;
1274
1275 if (bp->irig_out)
1276 iowrite32(val, &bp->irig_out->adj_sec);
1277 if (bp->dcf_out)
1278 iowrite32(val, &bp->dcf_out->adj_sec);
1279 if (bp->nmea_out)
1280 iowrite32(val, &bp->nmea_out->adj_sec);
1281
1282 spin_unlock_irqrestore(&bp->lock, flags);
1283}
1284
1285static void
1286ptp_ocp_watchdog(struct timer_list *t)
1287{
1288 struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1289 unsigned long flags;
1290 u32 status, utc_offset;
1291
1292 status = ioread32(&bp->pps_to_clk->status);
1293
1294 if (status & PPS_STATUS_SUPERV_ERR) {
1295 iowrite32(status, &bp->pps_to_clk->status);
1296 if (!bp->gnss_lost) {
1297 spin_lock_irqsave(&bp->lock, flags);
1298 __ptp_ocp_clear_drift_locked(bp);
1299 spin_unlock_irqrestore(&bp->lock, flags);
1300 bp->gnss_lost = ktime_get_real_seconds();
1301 }
1302
1303 } else if (bp->gnss_lost) {
1304 bp->gnss_lost = 0;
1305 }
1306
1307 /* if GNSS provides correct data we can rely on
1308 * it to get leap second information
1309 */
1310 if (bp->tod) {
1311 status = ioread32(&bp->tod->utc_status);
1312 utc_offset = status & TOD_STATUS_UTC_MASK;
1313 if (status & TOD_STATUS_UTC_VALID &&
1314 utc_offset != bp->utc_tai_offset)
1315 ptp_ocp_utc_distribute(bp, utc_offset);
1316 }
1317
1318 mod_timer(&bp->watchdog, jiffies + HZ);
1319}
1320
1321static void
1322ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1323{
1324 ktime_t start, end;
1325 ktime_t delay;
1326 u32 ctrl;
1327
1328 ctrl = ioread32(&bp->reg->ctrl);
1329 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1330
1331 iowrite32(ctrl, &bp->reg->ctrl);
1332
1333 start = ktime_get_ns();
1334
1335 ctrl = ioread32(&bp->reg->ctrl);
1336
1337 end = ktime_get_ns();
1338
1339 delay = end - start;
1340 bp->ts_window_adjust = (delay >> 5) * 3;
1341}
1342
1343static int
1344ptp_ocp_init_clock(struct ptp_ocp *bp)
1345{
1346 struct timespec64 ts;
1347 bool sync;
1348 u32 ctrl;
1349
1350 ctrl = OCP_CTRL_ENABLE;
1351 iowrite32(ctrl, &bp->reg->ctrl);
1352
1353 /* NO DRIFT Correction */
1354 /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1355 iowrite32(0x2000, &bp->reg->servo_offset_p);
1356 iowrite32(0x1000, &bp->reg->servo_offset_i);
1357 iowrite32(0, &bp->reg->servo_drift_p);
1358 iowrite32(0, &bp->reg->servo_drift_i);
1359
1360 /* latch servo values */
1361 ctrl |= OCP_CTRL_ADJUST_SERVO;
1362 iowrite32(ctrl, &bp->reg->ctrl);
1363
1364 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1365 dev_err(&bp->pdev->dev, "clock not enabled\n");
1366 return -ENODEV;
1367 }
1368
1369 ptp_ocp_estimate_pci_timing(bp);
1370
1371 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1372 if (!sync) {
1373 ktime_get_clocktai_ts64(&ts);
1374 ptp_ocp_settime(&bp->ptp_info, &ts);
1375 }
1376
1377 /* If there is a clock supervisor, then enable the watchdog */
1378 if (bp->pps_to_clk) {
1379 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1380 mod_timer(&bp->watchdog, jiffies + HZ);
1381 }
1382
1383 return 0;
1384}
1385
1386static void
1387ptp_ocp_tod_init(struct ptp_ocp *bp)
1388{
1389 u32 ctrl, reg;
1390
1391 ctrl = ioread32(&bp->tod->ctrl);
1392 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1393 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1394 iowrite32(ctrl, &bp->tod->ctrl);
1395
1396 reg = ioread32(&bp->tod->utc_status);
1397 if (reg & TOD_STATUS_UTC_VALID)
1398 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1399}
1400
1401static const char *
1402ptp_ocp_tod_proto_name(const int idx)
1403{
1404 static const char * const proto_name[] = {
1405 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1406 "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1407 };
1408 return proto_name[idx];
1409}
1410
1411static const char *
1412ptp_ocp_tod_gnss_name(int idx)
1413{
1414 static const char * const gnss_name[] = {
1415 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1416 "Unknown"
1417 };
1418 if (idx >= ARRAY_SIZE(gnss_name))
1419 idx = ARRAY_SIZE(gnss_name) - 1;
1420 return gnss_name[idx];
1421}
1422
1423struct ptp_ocp_nvmem_match_info {
1424 struct ptp_ocp *bp;
1425 const void * const tag;
1426};
1427
1428static int
1429ptp_ocp_nvmem_match(struct device *dev, const void *data)
1430{
1431 const struct ptp_ocp_nvmem_match_info *info = data;
1432
1433 dev = dev->parent;
1434 if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1435 return 0;
1436
1437 while ((dev = dev->parent))
1438 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1439 return info->bp == dev_get_drvdata(dev);
1440 return 0;
1441}
1442
1443static inline struct nvmem_device *
1444ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1445{
1446 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1447
1448 return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1449}
1450
1451static inline void
1452ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1453{
1454 if (!IS_ERR_OR_NULL(*nvmemp))
1455 nvmem_device_put(*nvmemp);
1456 *nvmemp = NULL;
1457}
1458
1459static void
1460ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1461{
1462 const struct ptp_ocp_eeprom_map *map;
1463 struct nvmem_device *nvmem;
1464 const void *tag;
1465 int ret;
1466
1467 if (!bp->i2c_ctrl)
1468 return;
1469
1470 tag = NULL;
1471 nvmem = NULL;
1472
1473 for (map = bp->eeprom_map; map->len; map++) {
1474 if (map->tag != tag) {
1475 tag = map->tag;
1476 ptp_ocp_nvmem_device_put(&nvmem);
1477 }
1478 if (!nvmem) {
1479 nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1480 if (IS_ERR(nvmem)) {
1481 ret = PTR_ERR(nvmem);
1482 goto fail;
1483 }
1484 }
1485 ret = nvmem_device_read(nvmem, map->off, map->len,
1486 BP_MAP_ENTRY_ADDR(bp, map));
1487 if (ret != map->len)
1488 goto fail;
1489 }
1490
1491 bp->has_eeprom_data = true;
1492
1493out:
1494 ptp_ocp_nvmem_device_put(&nvmem);
1495 return;
1496
1497fail:
1498 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1499 goto out;
1500}
1501
1502static struct device *
1503ptp_ocp_find_flash(struct ptp_ocp *bp)
1504{
1505 struct device *dev, *last;
1506
1507 last = NULL;
1508 dev = &bp->spi_flash->dev;
1509
1510 while ((dev = device_find_any_child(dev))) {
1511 if (!strcmp("mtd", dev_bus_name(dev)))
1512 break;
1513 put_device(last);
1514 last = dev;
1515 }
1516 put_device(last);
1517
1518 return dev;
1519}
1520
1521static int
1522ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1523 const u8 **data, size_t *size)
1524{
1525 struct ptp_ocp *bp = devlink_priv(devlink);
1526 const struct ptp_ocp_firmware_header *hdr;
1527 size_t offset, length;
1528 u16 crc;
1529
1530 hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1531 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1532 devlink_flash_update_status_notify(devlink,
1533 "No firmware header found, cancel firmware upgrade",
1534 NULL, 0, 0);
1535 return -EINVAL;
1536 }
1537
1538 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1539 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1540 devlink_flash_update_status_notify(devlink,
1541 "Firmware image compatibility check failed",
1542 NULL, 0, 0);
1543 return -EINVAL;
1544 }
1545
1546 offset = sizeof(*hdr);
1547 length = be32_to_cpu(hdr->image_size);
1548 if (length != (fw->size - offset)) {
1549 devlink_flash_update_status_notify(devlink,
1550 "Firmware image size check failed",
1551 NULL, 0, 0);
1552 return -EINVAL;
1553 }
1554
1555 crc = crc16(0xffff, &fw->data[offset], length);
1556 if (be16_to_cpu(hdr->crc) != crc) {
1557 devlink_flash_update_status_notify(devlink,
1558 "Firmware image CRC check failed",
1559 NULL, 0, 0);
1560 return -EINVAL;
1561 }
1562
1563 *data = &fw->data[offset];
1564 *size = length;
1565
1566 return 0;
1567}
1568
1569static int
1570ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1571 const struct firmware *fw)
1572{
1573 struct mtd_info *mtd = dev_get_drvdata(dev);
1574 struct ptp_ocp *bp = devlink_priv(devlink);
1575 size_t off, len, size, resid, wrote;
1576 struct erase_info erase;
1577 size_t base, blksz;
1578 const u8 *data;
1579 int err;
1580
1581 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1582 if (err)
1583 goto out;
1584
1585 off = 0;
1586 base = bp->flash_start;
1587 blksz = 4096;
1588 resid = size;
1589
1590 while (resid) {
1591 devlink_flash_update_status_notify(devlink, "Flashing",
1592 NULL, off, size);
1593
1594 len = min_t(size_t, resid, blksz);
1595 erase.addr = base + off;
1596 erase.len = blksz;
1597
1598 err = mtd_erase(mtd, &erase);
1599 if (err)
1600 goto out;
1601
1602 err = mtd_write(mtd, base + off, len, &wrote, data + off);
1603 if (err)
1604 goto out;
1605
1606 off += blksz;
1607 resid -= len;
1608 }
1609out:
1610 return err;
1611}
1612
1613static int
1614ptp_ocp_devlink_flash_update(struct devlink *devlink,
1615 struct devlink_flash_update_params *params,
1616 struct netlink_ext_ack *extack)
1617{
1618 struct ptp_ocp *bp = devlink_priv(devlink);
1619 struct device *dev;
1620 const char *msg;
1621 int err;
1622
1623 dev = ptp_ocp_find_flash(bp);
1624 if (!dev) {
1625 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1626 return -ENODEV;
1627 }
1628
1629 devlink_flash_update_status_notify(devlink, "Preparing to flash",
1630 NULL, 0, 0);
1631
1632 err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1633
1634 msg = err ? "Flash error" : "Flash complete";
1635 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1636
1637 put_device(dev);
1638 return err;
1639}
1640
1641static int
1642ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1643 struct netlink_ext_ack *extack)
1644{
1645 struct ptp_ocp *bp = devlink_priv(devlink);
1646 const char *fw_image;
1647 char buf[32];
1648 int err;
1649
1650 fw_image = bp->fw_loader ? "loader" : "fw";
1651 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1652 err = devlink_info_version_running_put(req, fw_image, buf);
1653 if (err)
1654 return err;
1655
1656 if (!bp->has_eeprom_data) {
1657 ptp_ocp_read_eeprom(bp);
1658 if (!bp->has_eeprom_data)
1659 return 0;
1660 }
1661
1662 sprintf(buf, "%pM", bp->serial);
1663 err = devlink_info_serial_number_put(req, buf);
1664 if (err)
1665 return err;
1666
1667 err = devlink_info_version_fixed_put(req,
1668 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1669 bp->board_id);
1670 if (err)
1671 return err;
1672
1673 return 0;
1674}
1675
1676static const struct devlink_ops ptp_ocp_devlink_ops = {
1677 .flash_update = ptp_ocp_devlink_flash_update,
1678 .info_get = ptp_ocp_devlink_info_get,
1679};
1680
1681static void __iomem *
1682__ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1683{
1684 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1685
1686 return devm_ioremap_resource(&bp->pdev->dev, &res);
1687}
1688
1689static void __iomem *
1690ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1691{
1692 resource_size_t start;
1693
1694 start = pci_resource_start(bp->pdev, 0) + r->offset;
1695 return __ptp_ocp_get_mem(bp, start, r->size);
1696}
1697
1698static void
1699ptp_ocp_set_irq_resource(struct resource *res, int irq)
1700{
1701 struct resource r = DEFINE_RES_IRQ(irq);
1702 *res = r;
1703}
1704
1705static void
1706ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
1707{
1708 struct resource r = DEFINE_RES_MEM(start, size);
1709 *res = r;
1710}
1711
1712static int
1713ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1714{
1715 struct ptp_ocp_flash_info *info;
1716 struct pci_dev *pdev = bp->pdev;
1717 struct platform_device *p;
1718 struct resource res[2];
1719 resource_size_t start;
1720 int id;
1721
1722 start = pci_resource_start(pdev, 0) + r->offset;
1723 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1724 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1725
1726 info = r->extra;
1727 id = pci_dev_id(pdev) << 1;
1728 id += info->pci_offset;
1729
1730 p = platform_device_register_resndata(&pdev->dev, info->name, id,
1731 res, 2, info->data,
1732 info->data_size);
1733 if (IS_ERR(p))
1734 return PTR_ERR(p);
1735
1736 bp_assign_entry(bp, r, p);
1737
1738 return 0;
1739}
1740
1741static struct platform_device *
1742ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1743{
1744 struct ptp_ocp_i2c_info *info;
1745 struct resource res[2];
1746 resource_size_t start;
1747
1748 info = r->extra;
1749 start = pci_resource_start(pdev, 0) + r->offset;
1750 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1751 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1752
1753 return platform_device_register_resndata(&pdev->dev, info->name,
1754 id, res, 2,
1755 info->data, info->data_size);
1756}
1757
1758static int
1759ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1760{
1761 struct pci_dev *pdev = bp->pdev;
1762 struct ptp_ocp_i2c_info *info;
1763 struct platform_device *p;
1764 struct clk_hw *clk;
1765 char buf[32];
1766 int id;
1767
1768 info = r->extra;
1769 id = pci_dev_id(bp->pdev);
1770
1771 sprintf(buf, "AXI.%d", id);
1772 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1773 info->fixed_rate);
1774 if (IS_ERR(clk))
1775 return PTR_ERR(clk);
1776 bp->i2c_clk = clk;
1777
1778 sprintf(buf, "%s.%d", info->name, id);
1779 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1780 p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1781 if (IS_ERR(p))
1782 return PTR_ERR(p);
1783
1784 bp_assign_entry(bp, r, p);
1785
1786 return 0;
1787}
1788
1789/* The expectation is that this is triggered only on error. */
1790static irqreturn_t
1791ptp_ocp_signal_irq(int irq, void *priv)
1792{
1793 struct ptp_ocp_ext_src *ext = priv;
1794 struct signal_reg __iomem *reg = ext->mem;
1795 struct ptp_ocp *bp = ext->bp;
1796 u32 enable, status;
1797 int gen;
1798
1799 gen = ext->info->index - 1;
1800
1801 enable = ioread32(®->enable);
1802 status = ioread32(®->status);
1803
1804 /* disable generator on error */
1805 if (status || !enable) {
1806 iowrite32(0, ®->intr_mask);
1807 iowrite32(0, ®->enable);
1808 bp->signal[gen].running = false;
1809 }
1810
1811 iowrite32(0, ®->intr); /* ack interrupt */
1812
1813 return IRQ_HANDLED;
1814}
1815
1816static int
1817ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1818{
1819 struct ptp_system_timestamp sts;
1820 struct timespec64 ts;
1821 ktime_t start_ns;
1822 int err;
1823
1824 if (!s->period)
1825 return 0;
1826
1827 if (!s->pulse)
1828 s->pulse = ktime_divns(s->period * s->duty, 100);
1829
1830 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1831 if (err)
1832 return err;
1833
1834 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1835 if (!s->start) {
1836 /* roundup() does not work on 32-bit systems */
1837 s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1838 s->start = ktime_add(s->start, s->phase);
1839 }
1840
1841 if (s->duty < 1 || s->duty > 99)
1842 return -EINVAL;
1843
1844 if (s->pulse < 1 || s->pulse > s->period)
1845 return -EINVAL;
1846
1847 if (s->start < start_ns)
1848 return -EINVAL;
1849
1850 bp->signal[gen] = *s;
1851
1852 return 0;
1853}
1854
1855static int
1856ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1857 struct ptp_perout_request *req)
1858{
1859 struct ptp_ocp_signal s = { };
1860
1861 s.polarity = bp->signal[gen].polarity;
1862 s.period = ktime_set(req->period.sec, req->period.nsec);
1863 if (!s.period)
1864 return 0;
1865
1866 if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1867 s.pulse = ktime_set(req->on.sec, req->on.nsec);
1868 s.duty = ktime_divns(s.pulse * 100, s.period);
1869 }
1870
1871 if (req->flags & PTP_PEROUT_PHASE)
1872 s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1873 else
1874 s.start = ktime_set(req->start.sec, req->start.nsec);
1875
1876 return ptp_ocp_signal_set(bp, gen, &s);
1877}
1878
1879static int
1880ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1881{
1882 struct ptp_ocp_ext_src *ext = priv;
1883 struct signal_reg __iomem *reg = ext->mem;
1884 struct ptp_ocp *bp = ext->bp;
1885 struct timespec64 ts;
1886 int gen;
1887
1888 gen = ext->info->index - 1;
1889
1890 iowrite32(0, ®->intr_mask);
1891 iowrite32(0, ®->enable);
1892 bp->signal[gen].running = false;
1893 if (!enable)
1894 return 0;
1895
1896 ts = ktime_to_timespec64(bp->signal[gen].start);
1897 iowrite32(ts.tv_sec, ®->start_sec);
1898 iowrite32(ts.tv_nsec, ®->start_ns);
1899
1900 ts = ktime_to_timespec64(bp->signal[gen].period);
1901 iowrite32(ts.tv_sec, ®->period_sec);
1902 iowrite32(ts.tv_nsec, ®->period_ns);
1903
1904 ts = ktime_to_timespec64(bp->signal[gen].pulse);
1905 iowrite32(ts.tv_sec, ®->pulse_sec);
1906 iowrite32(ts.tv_nsec, ®->pulse_ns);
1907
1908 iowrite32(bp->signal[gen].polarity, ®->polarity);
1909 iowrite32(0, ®->repeat_count);
1910
1911 iowrite32(0, ®->intr); /* clear interrupt state */
1912 iowrite32(1, ®->intr_mask); /* enable interrupt */
1913 iowrite32(3, ®->enable); /* valid & enable */
1914
1915 bp->signal[gen].running = true;
1916
1917 return 0;
1918}
1919
1920static irqreturn_t
1921ptp_ocp_ts_irq(int irq, void *priv)
1922{
1923 struct ptp_ocp_ext_src *ext = priv;
1924 struct ts_reg __iomem *reg = ext->mem;
1925 struct ptp_clock_event ev;
1926 u32 sec, nsec;
1927
1928 if (ext == ext->bp->pps) {
1929 if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1930 ev.type = PTP_CLOCK_PPS;
1931 ptp_clock_event(ext->bp->ptp, &ev);
1932 }
1933
1934 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1935 goto out;
1936 }
1937
1938 /* XXX should fix API - this converts s/ns -> ts -> s/ns */
1939 sec = ioread32(®->time_sec);
1940 nsec = ioread32(®->time_ns);
1941
1942 ev.type = PTP_CLOCK_EXTTS;
1943 ev.index = ext->info->index;
1944 ev.timestamp = sec * NSEC_PER_SEC + nsec;
1945
1946 ptp_clock_event(ext->bp->ptp, &ev);
1947
1948out:
1949 iowrite32(1, ®->intr); /* write 1 to ack */
1950
1951 return IRQ_HANDLED;
1952}
1953
1954static int
1955ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1956{
1957 struct ptp_ocp_ext_src *ext = priv;
1958 struct ts_reg __iomem *reg = ext->mem;
1959 struct ptp_ocp *bp = ext->bp;
1960
1961 if (ext == bp->pps) {
1962 u32 old_map = bp->pps_req_map;
1963
1964 if (enable)
1965 bp->pps_req_map |= req;
1966 else
1967 bp->pps_req_map &= ~req;
1968
1969 /* if no state change, just return */
1970 if ((!!old_map ^ !!bp->pps_req_map) == 0)
1971 return 0;
1972 }
1973
1974 if (enable) {
1975 iowrite32(1, ®->enable);
1976 iowrite32(1, ®->intr_mask);
1977 iowrite32(1, ®->intr);
1978 } else {
1979 iowrite32(0, ®->intr_mask);
1980 iowrite32(0, ®->enable);
1981 }
1982
1983 return 0;
1984}
1985
1986static void
1987ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
1988{
1989 ext->info->enable(ext, ~0, false);
1990 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
1991 kfree(ext);
1992}
1993
1994static int
1995ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
1996{
1997 struct pci_dev *pdev = bp->pdev;
1998 struct ptp_ocp_ext_src *ext;
1999 int err;
2000
2001 ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2002 if (!ext)
2003 return -ENOMEM;
2004
2005 ext->mem = ptp_ocp_get_mem(bp, r);
2006 if (IS_ERR(ext->mem)) {
2007 err = PTR_ERR(ext->mem);
2008 goto out;
2009 }
2010
2011 ext->bp = bp;
2012 ext->info = r->extra;
2013 ext->irq_vec = r->irq_vec;
2014
2015 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2016 ext, "ocp%d.%s", bp->id, r->name);
2017 if (err) {
2018 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2019 goto out;
2020 }
2021
2022 bp_assign_entry(bp, r, ext);
2023
2024 return 0;
2025
2026out:
2027 kfree(ext);
2028 return err;
2029}
2030
2031static int
2032ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2033{
2034 struct pci_dev *pdev = bp->pdev;
2035 struct uart_8250_port uart;
2036
2037 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2038 * the serial port device claim and release the pci resource.
2039 */
2040 memset(&uart, 0, sizeof(uart));
2041 uart.port.dev = &pdev->dev;
2042 uart.port.iotype = UPIO_MEM;
2043 uart.port.regshift = 2;
2044 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2045 uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2046 uart.port.uartclk = 50000000;
2047 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2048 uart.port.type = PORT_16550A;
2049
2050 return serial8250_register_8250_port(&uart);
2051}
2052
2053static int
2054ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2055{
2056 struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2057 struct ptp_ocp_serial_port port = {};
2058
2059 port.line = ptp_ocp_serial_line(bp, r);
2060 if (port.line < 0)
2061 return port.line;
2062
2063 if (p)
2064 port.baud = p->baud;
2065
2066 bp_assign_entry(bp, r, port);
2067
2068 return 0;
2069}
2070
2071static int
2072ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2073{
2074 void __iomem *mem;
2075
2076 mem = ptp_ocp_get_mem(bp, r);
2077 if (IS_ERR(mem))
2078 return PTR_ERR(mem);
2079
2080 bp_assign_entry(bp, r, mem);
2081
2082 return 0;
2083}
2084
2085static void
2086ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2087{
2088 if (!bp->nmea_out)
2089 return;
2090
2091 iowrite32(0, &bp->nmea_out->ctrl); /* disable */
2092 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
2093 iowrite32(1, &bp->nmea_out->ctrl); /* enable */
2094}
2095
2096static void
2097_ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2098{
2099 u32 val;
2100
2101 iowrite32(0, ®->enable); /* disable */
2102
2103 val = ioread32(®->polarity);
2104 s->polarity = val ? true : false;
2105 s->duty = 50;
2106}
2107
2108static void
2109ptp_ocp_signal_init(struct ptp_ocp *bp)
2110{
2111 int i;
2112
2113 for (i = 0; i < 4; i++)
2114 if (bp->signal_out[i])
2115 _ptp_ocp_signal_init(&bp->signal[i],
2116 bp->signal_out[i]->mem);
2117}
2118
2119static void
2120ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2121{
2122 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2123 kfree(bp->attr_group);
2124}
2125
2126static int
2127ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2128 const struct ocp_attr_group *attr_tbl)
2129{
2130 int count, i;
2131 int err;
2132
2133 count = 0;
2134 for (i = 0; attr_tbl[i].cap; i++)
2135 if (attr_tbl[i].cap & bp->fw_cap)
2136 count++;
2137
2138 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
2139 GFP_KERNEL);
2140 if (!bp->attr_group)
2141 return -ENOMEM;
2142
2143 count = 0;
2144 for (i = 0; attr_tbl[i].cap; i++)
2145 if (attr_tbl[i].cap & bp->fw_cap)
2146 bp->attr_group[count++] = attr_tbl[i].group;
2147
2148 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2149 if (err)
2150 bp->attr_group[0] = NULL;
2151
2152 return err;
2153}
2154
2155static void
2156ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2157{
2158 u32 ctrl;
2159 bool on;
2160
2161 ctrl = ioread32(reg);
2162 on = ctrl & bit;
2163 if (on ^ enable) {
2164 ctrl &= ~bit;
2165 ctrl |= enable ? bit : 0;
2166 iowrite32(ctrl, reg);
2167 }
2168}
2169
2170static void
2171ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2172{
2173 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2174 IRIG_M_CTRL_ENABLE, enable);
2175}
2176
2177static void
2178ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2179{
2180 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2181 IRIG_S_CTRL_ENABLE, enable);
2182}
2183
2184static void
2185ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2186{
2187 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2188 DCF_M_CTRL_ENABLE, enable);
2189}
2190
2191static void
2192ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2193{
2194 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2195 DCF_S_CTRL_ENABLE, enable);
2196}
2197
2198static void
2199__handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2200{
2201 ptp_ocp_irig_out(bp, val & 0x00100010);
2202 ptp_ocp_dcf_out(bp, val & 0x00200020);
2203}
2204
2205static void
2206__handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2207{
2208 ptp_ocp_irig_in(bp, val & 0x00100010);
2209 ptp_ocp_dcf_in(bp, val & 0x00200020);
2210}
2211
2212static u32
2213ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2214{
2215 u32 __iomem *gpio;
2216 u32 shift;
2217
2218 if (bp->sma[sma_nr - 1].fixed_fcn)
2219 return (sma_nr - 1) & 1;
2220
2221 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2222 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2223 else
2224 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2225 shift = sma_nr & 1 ? 0 : 16;
2226
2227 return (ioread32(gpio) >> shift) & 0xffff;
2228}
2229
2230static int
2231ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2232{
2233 u32 reg, mask, shift;
2234 unsigned long flags;
2235 u32 __iomem *gpio;
2236
2237 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2238 shift = sma_nr & 1 ? 0 : 16;
2239
2240 mask = 0xffff << (16 - shift);
2241
2242 spin_lock_irqsave(&bp->lock, flags);
2243
2244 reg = ioread32(gpio);
2245 reg = (reg & mask) | (val << shift);
2246
2247 __handle_signal_outputs(bp, reg);
2248
2249 iowrite32(reg, gpio);
2250
2251 spin_unlock_irqrestore(&bp->lock, flags);
2252
2253 return 0;
2254}
2255
2256static int
2257ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2258{
2259 u32 reg, mask, shift;
2260 unsigned long flags;
2261 u32 __iomem *gpio;
2262
2263 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2264 shift = sma_nr & 1 ? 0 : 16;
2265
2266 mask = 0xffff << (16 - shift);
2267
2268 spin_lock_irqsave(&bp->lock, flags);
2269
2270 reg = ioread32(gpio);
2271 reg = (reg & mask) | (val << shift);
2272
2273 __handle_signal_inputs(bp, reg);
2274
2275 iowrite32(reg, gpio);
2276
2277 spin_unlock_irqrestore(&bp->lock, flags);
2278
2279 return 0;
2280}
2281
2282static void
2283ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2284{
2285 u32 reg;
2286 int i;
2287
2288 /* defaults */
2289 bp->sma[0].mode = SMA_MODE_IN;
2290 bp->sma[1].mode = SMA_MODE_IN;
2291 bp->sma[2].mode = SMA_MODE_OUT;
2292 bp->sma[3].mode = SMA_MODE_OUT;
2293 for (i = 0; i < 4; i++)
2294 bp->sma[i].default_fcn = i & 1;
2295
2296 /* If no SMA1 map, the pin functions and directions are fixed. */
2297 if (!bp->sma_map1) {
2298 for (i = 0; i < 4; i++) {
2299 bp->sma[i].fixed_fcn = true;
2300 bp->sma[i].fixed_dir = true;
2301 }
2302 return;
2303 }
2304
2305 /* If SMA2 GPIO output map is all 1, it is not present.
2306 * This indicates the firmware has fixed direction SMA pins.
2307 */
2308 reg = ioread32(&bp->sma_map2->gpio2);
2309 if (reg == 0xffffffff) {
2310 for (i = 0; i < 4; i++)
2311 bp->sma[i].fixed_dir = true;
2312 } else {
2313 reg = ioread32(&bp->sma_map1->gpio1);
2314 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2315 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2316
2317 reg = ioread32(&bp->sma_map1->gpio2);
2318 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2319 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2320 }
2321}
2322
2323static const struct ocp_sma_op ocp_fb_sma_op = {
2324 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
2325 .init = ptp_ocp_sma_fb_init,
2326 .get = ptp_ocp_sma_fb_get,
2327 .set_inputs = ptp_ocp_sma_fb_set_inputs,
2328 .set_output = ptp_ocp_sma_fb_set_output,
2329};
2330
2331static int
2332ptp_ocp_fb_set_pins(struct ptp_ocp *bp)
2333{
2334 struct ptp_pin_desc *config;
2335 int i;
2336
2337 config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2338 if (!config)
2339 return -ENOMEM;
2340
2341 for (i = 0; i < 4; i++) {
2342 sprintf(config[i].name, "sma%d", i + 1);
2343 config[i].index = i;
2344 }
2345
2346 bp->ptp_info.n_pins = 4;
2347 bp->ptp_info.pin_config = config;
2348
2349 return 0;
2350}
2351
2352static void
2353ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2354{
2355 u64 cap = OCP_CAP_BASIC;
2356 u32 version;
2357
2358 version = ioread32(&bp->image->version);
2359
2360 /* if lower 16 bits are empty, this is the fw loader. */
2361 if ((version & 0xffff) == 0) {
2362 version = version >> 16;
2363 bp->fw_loader = true;
2364 }
2365
2366 bp->fw_tag = version >> 15;
2367 bp->fw_version = version & 0x7fff;
2368
2369 if (bp->fw_tag) {
2370 /* FPGA firmware */
2371 if (version >= 5)
2372 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2373 } else {
2374 /* SOM firmware */
2375 if (version >= 19)
2376 cap |= OCP_CAP_SIGNAL;
2377 if (version >= 20)
2378 cap |= OCP_CAP_FREQ;
2379 }
2380
2381 bp->fw_cap = cap;
2382}
2383
2384/* FB specific board initializers; last "resource" registered. */
2385static int
2386ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2387{
2388 int err;
2389
2390 bp->flash_start = 1024 * 4096;
2391 bp->eeprom_map = fb_eeprom_map;
2392 bp->fw_version = ioread32(&bp->image->version);
2393 bp->sma_op = &ocp_fb_sma_op;
2394
2395 ptp_ocp_fb_set_version(bp);
2396
2397 ptp_ocp_tod_init(bp);
2398 ptp_ocp_nmea_out_init(bp);
2399 ptp_ocp_sma_init(bp);
2400 ptp_ocp_signal_init(bp);
2401
2402 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2403 if (err)
2404 return err;
2405
2406 err = ptp_ocp_fb_set_pins(bp);
2407 if (err)
2408 return err;
2409
2410 return ptp_ocp_init_clock(bp);
2411}
2412
2413static bool
2414ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2415{
2416 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2417
2418 if (!allow)
2419 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2420 r->irq_vec, r->name);
2421 return allow;
2422}
2423
2424static int
2425ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2426{
2427 struct ocp_resource *r, *table;
2428 int err = 0;
2429
2430 table = (struct ocp_resource *)driver_data;
2431 for (r = table; r->setup; r++) {
2432 if (!ptp_ocp_allow_irq(bp, r))
2433 continue;
2434 err = r->setup(bp, r);
2435 if (err) {
2436 dev_err(&bp->pdev->dev,
2437 "Could not register %s: err %d\n",
2438 r->name, err);
2439 break;
2440 }
2441 }
2442 return err;
2443}
2444
2445static void
2446ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2447{
2448 u32 reg;
2449 int i;
2450
2451 /* defaults */
2452 bp->sma[0].mode = SMA_MODE_IN;
2453 bp->sma[1].mode = SMA_MODE_IN;
2454 bp->sma[2].mode = SMA_MODE_OUT;
2455 bp->sma[3].mode = SMA_MODE_OUT;
2456
2457 bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */
2458 bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */
2459 bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */
2460 bp->sma[3].default_fcn = 0x02; /* OUT: PHC */
2461
2462 /* If no SMA map, the pin functions and directions are fixed. */
2463 if (!bp->art_sma) {
2464 for (i = 0; i < 4; i++) {
2465 bp->sma[i].fixed_fcn = true;
2466 bp->sma[i].fixed_dir = true;
2467 }
2468 return;
2469 }
2470
2471 for (i = 0; i < 4; i++) {
2472 reg = ioread32(&bp->art_sma->map[i].gpio);
2473
2474 switch (reg & 0xff) {
2475 case 0:
2476 bp->sma[i].fixed_fcn = true;
2477 bp->sma[i].fixed_dir = true;
2478 break;
2479 case 1:
2480 case 8:
2481 bp->sma[i].mode = SMA_MODE_IN;
2482 break;
2483 default:
2484 bp->sma[i].mode = SMA_MODE_OUT;
2485 break;
2486 }
2487 }
2488}
2489
2490static u32
2491ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2492{
2493 if (bp->sma[sma_nr - 1].fixed_fcn)
2494 return bp->sma[sma_nr - 1].default_fcn;
2495
2496 return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2497}
2498
2499/* note: store 0 is considered invalid. */
2500static int
2501ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2502{
2503 unsigned long flags;
2504 u32 __iomem *gpio;
2505 int err = 0;
2506 u32 reg;
2507
2508 val &= SMA_SELECT_MASK;
2509 if (hweight32(val) > 1)
2510 return -EINVAL;
2511
2512 gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2513
2514 spin_lock_irqsave(&bp->lock, flags);
2515 reg = ioread32(gpio);
2516 if (((reg >> 16) & val) == 0) {
2517 err = -EOPNOTSUPP;
2518 } else {
2519 reg = (reg & 0xff00) | (val & 0xff);
2520 iowrite32(reg, gpio);
2521 }
2522 spin_unlock_irqrestore(&bp->lock, flags);
2523
2524 return err;
2525}
2526
2527static const struct ocp_sma_op ocp_art_sma_op = {
2528 .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2529 .init = ptp_ocp_art_sma_init,
2530 .get = ptp_ocp_art_sma_get,
2531 .set_inputs = ptp_ocp_art_sma_set,
2532 .set_output = ptp_ocp_art_sma_set,
2533};
2534
2535/* ART specific board initializers; last "resource" registered. */
2536static int
2537ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2538{
2539 int err;
2540
2541 bp->flash_start = 0x1000000;
2542 bp->eeprom_map = art_eeprom_map;
2543 bp->fw_cap = OCP_CAP_BASIC;
2544 bp->fw_version = ioread32(&bp->reg->version);
2545 bp->fw_tag = 2;
2546 bp->sma_op = &ocp_art_sma_op;
2547
2548 /* Enable MAC serial port during initialisation */
2549 iowrite32(1, &bp->board_config->mro50_serial_activate);
2550
2551 ptp_ocp_sma_init(bp);
2552
2553 err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2554 if (err)
2555 return err;
2556
2557 return ptp_ocp_init_clock(bp);
2558}
2559
2560static ssize_t
2561ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2562 int def_val)
2563{
2564 const char *name;
2565 ssize_t count;
2566
2567 count = sysfs_emit(buf, "OUT: ");
2568 name = ptp_ocp_select_name_from_val(tbl, val);
2569 if (!name)
2570 name = ptp_ocp_select_name_from_val(tbl, def_val);
2571 count += sysfs_emit_at(buf, count, "%s\n", name);
2572 return count;
2573}
2574
2575static ssize_t
2576ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2577 int def_val)
2578{
2579 const char *name;
2580 ssize_t count;
2581 int i;
2582
2583 count = sysfs_emit(buf, "IN: ");
2584 for (i = 0; tbl[i].name; i++) {
2585 if (val & tbl[i].value) {
2586 name = tbl[i].name;
2587 count += sysfs_emit_at(buf, count, "%s ", name);
2588 }
2589 }
2590 if (!val && def_val >= 0) {
2591 name = ptp_ocp_select_name_from_val(tbl, def_val);
2592 count += sysfs_emit_at(buf, count, "%s ", name);
2593 }
2594 if (count)
2595 count--;
2596 count += sysfs_emit_at(buf, count, "\n");
2597 return count;
2598}
2599
2600static int
2601sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2602 enum ptp_ocp_sma_mode *mode)
2603{
2604 int idx, count, dir;
2605 char **argv;
2606 int ret;
2607
2608 argv = argv_split(GFP_KERNEL, buf, &count);
2609 if (!argv)
2610 return -ENOMEM;
2611
2612 ret = -EINVAL;
2613 if (!count)
2614 goto out;
2615
2616 idx = 0;
2617 dir = *mode == SMA_MODE_IN ? 0 : 1;
2618 if (!strcasecmp("IN:", argv[0])) {
2619 dir = 0;
2620 idx++;
2621 }
2622 if (!strcasecmp("OUT:", argv[0])) {
2623 dir = 1;
2624 idx++;
2625 }
2626 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2627
2628 ret = 0;
2629 for (; idx < count; idx++)
2630 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2631 if (ret < 0)
2632 ret = -EINVAL;
2633
2634out:
2635 argv_free(argv);
2636 return ret;
2637}
2638
2639static ssize_t
2640ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2641 int default_in_val, int default_out_val)
2642{
2643 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2644 const struct ocp_selector * const *tbl;
2645 u32 val;
2646
2647 tbl = bp->sma_op->tbl;
2648 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2649
2650 if (sma->mode == SMA_MODE_IN) {
2651 if (sma->disabled)
2652 val = SMA_DISABLE;
2653 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2654 }
2655
2656 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2657}
2658
2659static ssize_t
2660sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2661{
2662 struct ptp_ocp *bp = dev_get_drvdata(dev);
2663
2664 return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2665}
2666
2667static ssize_t
2668sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2669{
2670 struct ptp_ocp *bp = dev_get_drvdata(dev);
2671
2672 return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2673}
2674
2675static ssize_t
2676sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2677{
2678 struct ptp_ocp *bp = dev_get_drvdata(dev);
2679
2680 return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2681}
2682
2683static ssize_t
2684sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2685{
2686 struct ptp_ocp *bp = dev_get_drvdata(dev);
2687
2688 return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2689}
2690
2691static int
2692ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2693{
2694 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2695 enum ptp_ocp_sma_mode mode;
2696 int val;
2697
2698 mode = sma->mode;
2699 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2700 if (val < 0)
2701 return val;
2702
2703 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2704 return -EOPNOTSUPP;
2705
2706 if (sma->fixed_fcn) {
2707 if (val != sma->default_fcn)
2708 return -EOPNOTSUPP;
2709 return 0;
2710 }
2711
2712 sma->disabled = !!(val & SMA_DISABLE);
2713
2714 if (mode != sma->mode) {
2715 if (mode == SMA_MODE_IN)
2716 ptp_ocp_sma_set_output(bp, sma_nr, 0);
2717 else
2718 ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2719 sma->mode = mode;
2720 }
2721
2722 if (!sma->fixed_dir)
2723 val |= SMA_ENABLE; /* add enable bit */
2724
2725 if (sma->disabled)
2726 val = 0;
2727
2728 if (mode == SMA_MODE_IN)
2729 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2730 else
2731 val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2732
2733 return val;
2734}
2735
2736static ssize_t
2737sma1_store(struct device *dev, struct device_attribute *attr,
2738 const char *buf, size_t count)
2739{
2740 struct ptp_ocp *bp = dev_get_drvdata(dev);
2741 int err;
2742
2743 err = ptp_ocp_sma_store(bp, buf, 1);
2744 return err ? err : count;
2745}
2746
2747static ssize_t
2748sma2_store(struct device *dev, struct device_attribute *attr,
2749 const char *buf, size_t count)
2750{
2751 struct ptp_ocp *bp = dev_get_drvdata(dev);
2752 int err;
2753
2754 err = ptp_ocp_sma_store(bp, buf, 2);
2755 return err ? err : count;
2756}
2757
2758static ssize_t
2759sma3_store(struct device *dev, struct device_attribute *attr,
2760 const char *buf, size_t count)
2761{
2762 struct ptp_ocp *bp = dev_get_drvdata(dev);
2763 int err;
2764
2765 err = ptp_ocp_sma_store(bp, buf, 3);
2766 return err ? err : count;
2767}
2768
2769static ssize_t
2770sma4_store(struct device *dev, struct device_attribute *attr,
2771 const char *buf, size_t count)
2772{
2773 struct ptp_ocp *bp = dev_get_drvdata(dev);
2774 int err;
2775
2776 err = ptp_ocp_sma_store(bp, buf, 4);
2777 return err ? err : count;
2778}
2779static DEVICE_ATTR_RW(sma1);
2780static DEVICE_ATTR_RW(sma2);
2781static DEVICE_ATTR_RW(sma3);
2782static DEVICE_ATTR_RW(sma4);
2783
2784static ssize_t
2785available_sma_inputs_show(struct device *dev,
2786 struct device_attribute *attr, char *buf)
2787{
2788 struct ptp_ocp *bp = dev_get_drvdata(dev);
2789
2790 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2791}
2792static DEVICE_ATTR_RO(available_sma_inputs);
2793
2794static ssize_t
2795available_sma_outputs_show(struct device *dev,
2796 struct device_attribute *attr, char *buf)
2797{
2798 struct ptp_ocp *bp = dev_get_drvdata(dev);
2799
2800 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2801}
2802static DEVICE_ATTR_RO(available_sma_outputs);
2803
2804#define EXT_ATTR_RO(_group, _name, _val) \
2805 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2806 { __ATTR_RO(_name), (void *)_val }
2807#define EXT_ATTR_RW(_group, _name, _val) \
2808 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2809 { __ATTR_RW(_name), (void *)_val }
2810#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2811
2812/* period [duty [phase [polarity]]] */
2813static ssize_t
2814signal_store(struct device *dev, struct device_attribute *attr,
2815 const char *buf, size_t count)
2816{
2817 struct dev_ext_attribute *ea = to_ext_attr(attr);
2818 struct ptp_ocp *bp = dev_get_drvdata(dev);
2819 struct ptp_ocp_signal s = { };
2820 int gen = (uintptr_t)ea->var;
2821 int argc, err;
2822 char **argv;
2823
2824 argv = argv_split(GFP_KERNEL, buf, &argc);
2825 if (!argv)
2826 return -ENOMEM;
2827
2828 err = -EINVAL;
2829 s.duty = bp->signal[gen].duty;
2830 s.phase = bp->signal[gen].phase;
2831 s.period = bp->signal[gen].period;
2832 s.polarity = bp->signal[gen].polarity;
2833
2834 switch (argc) {
2835 case 4:
2836 argc--;
2837 err = kstrtobool(argv[argc], &s.polarity);
2838 if (err)
2839 goto out;
2840 fallthrough;
2841 case 3:
2842 argc--;
2843 err = kstrtou64(argv[argc], 0, &s.phase);
2844 if (err)
2845 goto out;
2846 fallthrough;
2847 case 2:
2848 argc--;
2849 err = kstrtoint(argv[argc], 0, &s.duty);
2850 if (err)
2851 goto out;
2852 fallthrough;
2853 case 1:
2854 argc--;
2855 err = kstrtou64(argv[argc], 0, &s.period);
2856 if (err)
2857 goto out;
2858 break;
2859 default:
2860 goto out;
2861 }
2862
2863 err = ptp_ocp_signal_set(bp, gen, &s);
2864 if (err)
2865 goto out;
2866
2867 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2868
2869out:
2870 argv_free(argv);
2871 return err ? err : count;
2872}
2873
2874static ssize_t
2875signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2876{
2877 struct dev_ext_attribute *ea = to_ext_attr(attr);
2878 struct ptp_ocp *bp = dev_get_drvdata(dev);
2879 struct ptp_ocp_signal *signal;
2880 struct timespec64 ts;
2881 ssize_t count;
2882 int i;
2883
2884 i = (uintptr_t)ea->var;
2885 signal = &bp->signal[i];
2886
2887 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2888 signal->duty, signal->phase, signal->polarity);
2889
2890 ts = ktime_to_timespec64(signal->start);
2891 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2892
2893 return count;
2894}
2895static EXT_ATTR_RW(signal, signal, 0);
2896static EXT_ATTR_RW(signal, signal, 1);
2897static EXT_ATTR_RW(signal, signal, 2);
2898static EXT_ATTR_RW(signal, signal, 3);
2899
2900static ssize_t
2901duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2902{
2903 struct dev_ext_attribute *ea = to_ext_attr(attr);
2904 struct ptp_ocp *bp = dev_get_drvdata(dev);
2905 int i = (uintptr_t)ea->var;
2906
2907 return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2908}
2909static EXT_ATTR_RO(signal, duty, 0);
2910static EXT_ATTR_RO(signal, duty, 1);
2911static EXT_ATTR_RO(signal, duty, 2);
2912static EXT_ATTR_RO(signal, duty, 3);
2913
2914static ssize_t
2915period_show(struct device *dev, struct device_attribute *attr, char *buf)
2916{
2917 struct dev_ext_attribute *ea = to_ext_attr(attr);
2918 struct ptp_ocp *bp = dev_get_drvdata(dev);
2919 int i = (uintptr_t)ea->var;
2920
2921 return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2922}
2923static EXT_ATTR_RO(signal, period, 0);
2924static EXT_ATTR_RO(signal, period, 1);
2925static EXT_ATTR_RO(signal, period, 2);
2926static EXT_ATTR_RO(signal, period, 3);
2927
2928static ssize_t
2929phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2930{
2931 struct dev_ext_attribute *ea = to_ext_attr(attr);
2932 struct ptp_ocp *bp = dev_get_drvdata(dev);
2933 int i = (uintptr_t)ea->var;
2934
2935 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2936}
2937static EXT_ATTR_RO(signal, phase, 0);
2938static EXT_ATTR_RO(signal, phase, 1);
2939static EXT_ATTR_RO(signal, phase, 2);
2940static EXT_ATTR_RO(signal, phase, 3);
2941
2942static ssize_t
2943polarity_show(struct device *dev, struct device_attribute *attr,
2944 char *buf)
2945{
2946 struct dev_ext_attribute *ea = to_ext_attr(attr);
2947 struct ptp_ocp *bp = dev_get_drvdata(dev);
2948 int i = (uintptr_t)ea->var;
2949
2950 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
2951}
2952static EXT_ATTR_RO(signal, polarity, 0);
2953static EXT_ATTR_RO(signal, polarity, 1);
2954static EXT_ATTR_RO(signal, polarity, 2);
2955static EXT_ATTR_RO(signal, polarity, 3);
2956
2957static ssize_t
2958running_show(struct device *dev, struct device_attribute *attr, char *buf)
2959{
2960 struct dev_ext_attribute *ea = to_ext_attr(attr);
2961 struct ptp_ocp *bp = dev_get_drvdata(dev);
2962 int i = (uintptr_t)ea->var;
2963
2964 return sysfs_emit(buf, "%d\n", bp->signal[i].running);
2965}
2966static EXT_ATTR_RO(signal, running, 0);
2967static EXT_ATTR_RO(signal, running, 1);
2968static EXT_ATTR_RO(signal, running, 2);
2969static EXT_ATTR_RO(signal, running, 3);
2970
2971static ssize_t
2972start_show(struct device *dev, struct device_attribute *attr, char *buf)
2973{
2974 struct dev_ext_attribute *ea = to_ext_attr(attr);
2975 struct ptp_ocp *bp = dev_get_drvdata(dev);
2976 int i = (uintptr_t)ea->var;
2977 struct timespec64 ts;
2978
2979 ts = ktime_to_timespec64(bp->signal[i].start);
2980 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
2981}
2982static EXT_ATTR_RO(signal, start, 0);
2983static EXT_ATTR_RO(signal, start, 1);
2984static EXT_ATTR_RO(signal, start, 2);
2985static EXT_ATTR_RO(signal, start, 3);
2986
2987static ssize_t
2988seconds_store(struct device *dev, struct device_attribute *attr,
2989 const char *buf, size_t count)
2990{
2991 struct dev_ext_attribute *ea = to_ext_attr(attr);
2992 struct ptp_ocp *bp = dev_get_drvdata(dev);
2993 int idx = (uintptr_t)ea->var;
2994 u32 val;
2995 int err;
2996
2997 err = kstrtou32(buf, 0, &val);
2998 if (err)
2999 return err;
3000 if (val > 0xff)
3001 return -EINVAL;
3002
3003 if (val)
3004 val = (val << 8) | 0x1;
3005
3006 iowrite32(val, &bp->freq_in[idx]->ctrl);
3007
3008 return count;
3009}
3010
3011static ssize_t
3012seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3013{
3014 struct dev_ext_attribute *ea = to_ext_attr(attr);
3015 struct ptp_ocp *bp = dev_get_drvdata(dev);
3016 int idx = (uintptr_t)ea->var;
3017 u32 val;
3018
3019 val = ioread32(&bp->freq_in[idx]->ctrl);
3020 if (val & 1)
3021 val = (val >> 8) & 0xff;
3022 else
3023 val = 0;
3024
3025 return sysfs_emit(buf, "%u\n", val);
3026}
3027static EXT_ATTR_RW(freq, seconds, 0);
3028static EXT_ATTR_RW(freq, seconds, 1);
3029static EXT_ATTR_RW(freq, seconds, 2);
3030static EXT_ATTR_RW(freq, seconds, 3);
3031
3032static ssize_t
3033frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3034{
3035 struct dev_ext_attribute *ea = to_ext_attr(attr);
3036 struct ptp_ocp *bp = dev_get_drvdata(dev);
3037 int idx = (uintptr_t)ea->var;
3038 u32 val;
3039
3040 val = ioread32(&bp->freq_in[idx]->status);
3041 if (val & FREQ_STATUS_ERROR)
3042 return sysfs_emit(buf, "error\n");
3043 if (val & FREQ_STATUS_OVERRUN)
3044 return sysfs_emit(buf, "overrun\n");
3045 if (val & FREQ_STATUS_VALID)
3046 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3047 return 0;
3048}
3049static EXT_ATTR_RO(freq, frequency, 0);
3050static EXT_ATTR_RO(freq, frequency, 1);
3051static EXT_ATTR_RO(freq, frequency, 2);
3052static EXT_ATTR_RO(freq, frequency, 3);
3053
3054static ssize_t
3055serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3056{
3057 struct ptp_ocp *bp = dev_get_drvdata(dev);
3058
3059 if (!bp->has_eeprom_data)
3060 ptp_ocp_read_eeprom(bp);
3061
3062 return sysfs_emit(buf, "%pM\n", bp->serial);
3063}
3064static DEVICE_ATTR_RO(serialnum);
3065
3066static ssize_t
3067gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3068{
3069 struct ptp_ocp *bp = dev_get_drvdata(dev);
3070 ssize_t ret;
3071
3072 if (bp->gnss_lost)
3073 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3074 else
3075 ret = sysfs_emit(buf, "SYNC\n");
3076
3077 return ret;
3078}
3079static DEVICE_ATTR_RO(gnss_sync);
3080
3081static ssize_t
3082utc_tai_offset_show(struct device *dev,
3083 struct device_attribute *attr, char *buf)
3084{
3085 struct ptp_ocp *bp = dev_get_drvdata(dev);
3086
3087 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3088}
3089
3090static ssize_t
3091utc_tai_offset_store(struct device *dev,
3092 struct device_attribute *attr,
3093 const char *buf, size_t count)
3094{
3095 struct ptp_ocp *bp = dev_get_drvdata(dev);
3096 int err;
3097 u32 val;
3098
3099 err = kstrtou32(buf, 0, &val);
3100 if (err)
3101 return err;
3102
3103 ptp_ocp_utc_distribute(bp, val);
3104
3105 return count;
3106}
3107static DEVICE_ATTR_RW(utc_tai_offset);
3108
3109static ssize_t
3110ts_window_adjust_show(struct device *dev,
3111 struct device_attribute *attr, char *buf)
3112{
3113 struct ptp_ocp *bp = dev_get_drvdata(dev);
3114
3115 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3116}
3117
3118static ssize_t
3119ts_window_adjust_store(struct device *dev,
3120 struct device_attribute *attr,
3121 const char *buf, size_t count)
3122{
3123 struct ptp_ocp *bp = dev_get_drvdata(dev);
3124 int err;
3125 u32 val;
3126
3127 err = kstrtou32(buf, 0, &val);
3128 if (err)
3129 return err;
3130
3131 bp->ts_window_adjust = val;
3132
3133 return count;
3134}
3135static DEVICE_ATTR_RW(ts_window_adjust);
3136
3137static ssize_t
3138irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3139{
3140 struct ptp_ocp *bp = dev_get_drvdata(dev);
3141 u32 val;
3142
3143 val = ioread32(&bp->irig_out->ctrl);
3144 val = (val >> 16) & 0x07;
3145 return sysfs_emit(buf, "%d\n", val);
3146}
3147
3148static ssize_t
3149irig_b_mode_store(struct device *dev,
3150 struct device_attribute *attr,
3151 const char *buf, size_t count)
3152{
3153 struct ptp_ocp *bp = dev_get_drvdata(dev);
3154 unsigned long flags;
3155 int err;
3156 u32 reg;
3157 u8 val;
3158
3159 err = kstrtou8(buf, 0, &val);
3160 if (err)
3161 return err;
3162 if (val > 7)
3163 return -EINVAL;
3164
3165 reg = ((val & 0x7) << 16);
3166
3167 spin_lock_irqsave(&bp->lock, flags);
3168 iowrite32(0, &bp->irig_out->ctrl); /* disable */
3169 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
3170 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3171 spin_unlock_irqrestore(&bp->lock, flags);
3172
3173 return count;
3174}
3175static DEVICE_ATTR_RW(irig_b_mode);
3176
3177static ssize_t
3178clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3179{
3180 struct ptp_ocp *bp = dev_get_drvdata(dev);
3181 const char *p;
3182 u32 select;
3183
3184 select = ioread32(&bp->reg->select);
3185 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3186
3187 return sysfs_emit(buf, "%s\n", p);
3188}
3189
3190static ssize_t
3191clock_source_store(struct device *dev, struct device_attribute *attr,
3192 const char *buf, size_t count)
3193{
3194 struct ptp_ocp *bp = dev_get_drvdata(dev);
3195 unsigned long flags;
3196 int val;
3197
3198 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3199 if (val < 0)
3200 return val;
3201
3202 spin_lock_irqsave(&bp->lock, flags);
3203 iowrite32(val, &bp->reg->select);
3204 spin_unlock_irqrestore(&bp->lock, flags);
3205
3206 return count;
3207}
3208static DEVICE_ATTR_RW(clock_source);
3209
3210static ssize_t
3211available_clock_sources_show(struct device *dev,
3212 struct device_attribute *attr, char *buf)
3213{
3214 return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3215}
3216static DEVICE_ATTR_RO(available_clock_sources);
3217
3218static ssize_t
3219clock_status_drift_show(struct device *dev,
3220 struct device_attribute *attr, char *buf)
3221{
3222 struct ptp_ocp *bp = dev_get_drvdata(dev);
3223 u32 val;
3224 int res;
3225
3226 val = ioread32(&bp->reg->status_drift);
3227 res = (val & ~INT_MAX) ? -1 : 1;
3228 res *= (val & INT_MAX);
3229 return sysfs_emit(buf, "%d\n", res);
3230}
3231static DEVICE_ATTR_RO(clock_status_drift);
3232
3233static ssize_t
3234clock_status_offset_show(struct device *dev,
3235 struct device_attribute *attr, char *buf)
3236{
3237 struct ptp_ocp *bp = dev_get_drvdata(dev);
3238 u32 val;
3239 int res;
3240
3241 val = ioread32(&bp->reg->status_offset);
3242 res = (val & ~INT_MAX) ? -1 : 1;
3243 res *= (val & INT_MAX);
3244 return sysfs_emit(buf, "%d\n", res);
3245}
3246static DEVICE_ATTR_RO(clock_status_offset);
3247
3248static ssize_t
3249tod_correction_show(struct device *dev,
3250 struct device_attribute *attr, char *buf)
3251{
3252 struct ptp_ocp *bp = dev_get_drvdata(dev);
3253 u32 val;
3254 int res;
3255
3256 val = ioread32(&bp->tod->adj_sec);
3257 res = (val & ~INT_MAX) ? -1 : 1;
3258 res *= (val & INT_MAX);
3259 return sysfs_emit(buf, "%d\n", res);
3260}
3261
3262static ssize_t
3263tod_correction_store(struct device *dev, struct device_attribute *attr,
3264 const char *buf, size_t count)
3265{
3266 struct ptp_ocp *bp = dev_get_drvdata(dev);
3267 unsigned long flags;
3268 int err, res;
3269 u32 val = 0;
3270
3271 err = kstrtos32(buf, 0, &res);
3272 if (err)
3273 return err;
3274 if (res < 0) {
3275 res *= -1;
3276 val |= BIT(31);
3277 }
3278 val |= res;
3279
3280 spin_lock_irqsave(&bp->lock, flags);
3281 iowrite32(val, &bp->tod->adj_sec);
3282 spin_unlock_irqrestore(&bp->lock, flags);
3283
3284 return count;
3285}
3286static DEVICE_ATTR_RW(tod_correction);
3287
3288#define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
3289 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
3290 &dev_attr_signal##_nr##_signal.attr.attr, \
3291 &dev_attr_signal##_nr##_duty.attr.attr, \
3292 &dev_attr_signal##_nr##_phase.attr.attr, \
3293 &dev_attr_signal##_nr##_period.attr.attr, \
3294 &dev_attr_signal##_nr##_polarity.attr.attr, \
3295 &dev_attr_signal##_nr##_running.attr.attr, \
3296 &dev_attr_signal##_nr##_start.attr.attr, \
3297 NULL, \
3298 }
3299
3300#define DEVICE_SIGNAL_GROUP(_name, _nr) \
3301 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
3302 static const struct attribute_group \
3303 fb_timecard_signal##_nr##_group = { \
3304 .name = #_name, \
3305 .attrs = fb_timecard_signal##_nr##_attrs, \
3306}
3307
3308DEVICE_SIGNAL_GROUP(gen1, 0);
3309DEVICE_SIGNAL_GROUP(gen2, 1);
3310DEVICE_SIGNAL_GROUP(gen3, 2);
3311DEVICE_SIGNAL_GROUP(gen4, 3);
3312
3313#define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
3314 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
3315 &dev_attr_freq##_nr##_seconds.attr.attr, \
3316 &dev_attr_freq##_nr##_frequency.attr.attr, \
3317 NULL, \
3318 }
3319
3320#define DEVICE_FREQ_GROUP(_name, _nr) \
3321 _DEVICE_FREQ_GROUP_ATTRS(_nr); \
3322 static const struct attribute_group \
3323 fb_timecard_freq##_nr##_group = { \
3324 .name = #_name, \
3325 .attrs = fb_timecard_freq##_nr##_attrs, \
3326}
3327
3328DEVICE_FREQ_GROUP(freq1, 0);
3329DEVICE_FREQ_GROUP(freq2, 1);
3330DEVICE_FREQ_GROUP(freq3, 2);
3331DEVICE_FREQ_GROUP(freq4, 3);
3332
3333static ssize_t
3334disciplining_config_read(struct file *filp, struct kobject *kobj,
3335 struct bin_attribute *bin_attr, char *buf,
3336 loff_t off, size_t count)
3337{
3338 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3339 size_t size = OCP_ART_CONFIG_SIZE;
3340 struct nvmem_device *nvmem;
3341 ssize_t err;
3342
3343 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3344 if (IS_ERR(nvmem))
3345 return PTR_ERR(nvmem);
3346
3347 if (off > size) {
3348 err = 0;
3349 goto out;
3350 }
3351
3352 if (off + count > size)
3353 count = size - off;
3354
3355 // the configuration is in the very beginning of the EEPROM
3356 err = nvmem_device_read(nvmem, off, count, buf);
3357 if (err != count) {
3358 err = -EFAULT;
3359 goto out;
3360 }
3361
3362out:
3363 ptp_ocp_nvmem_device_put(&nvmem);
3364
3365 return err;
3366}
3367
3368static ssize_t
3369disciplining_config_write(struct file *filp, struct kobject *kobj,
3370 struct bin_attribute *bin_attr, char *buf,
3371 loff_t off, size_t count)
3372{
3373 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3374 struct nvmem_device *nvmem;
3375 ssize_t err;
3376
3377 /* Allow write of the whole area only */
3378 if (off || count != OCP_ART_CONFIG_SIZE)
3379 return -EFAULT;
3380
3381 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3382 if (IS_ERR(nvmem))
3383 return PTR_ERR(nvmem);
3384
3385 err = nvmem_device_write(nvmem, 0x00, count, buf);
3386 if (err != count)
3387 err = -EFAULT;
3388
3389 ptp_ocp_nvmem_device_put(&nvmem);
3390
3391 return err;
3392}
3393static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3394
3395static ssize_t
3396temperature_table_read(struct file *filp, struct kobject *kobj,
3397 struct bin_attribute *bin_attr, char *buf,
3398 loff_t off, size_t count)
3399{
3400 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3401 size_t size = OCP_ART_TEMP_TABLE_SIZE;
3402 struct nvmem_device *nvmem;
3403 ssize_t err;
3404
3405 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3406 if (IS_ERR(nvmem))
3407 return PTR_ERR(nvmem);
3408
3409 if (off > size) {
3410 err = 0;
3411 goto out;
3412 }
3413
3414 if (off + count > size)
3415 count = size - off;
3416
3417 // the configuration is in the very beginning of the EEPROM
3418 err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3419 if (err != count) {
3420 err = -EFAULT;
3421 goto out;
3422 }
3423
3424out:
3425 ptp_ocp_nvmem_device_put(&nvmem);
3426
3427 return err;
3428}
3429
3430static ssize_t
3431temperature_table_write(struct file *filp, struct kobject *kobj,
3432 struct bin_attribute *bin_attr, char *buf,
3433 loff_t off, size_t count)
3434{
3435 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3436 struct nvmem_device *nvmem;
3437 ssize_t err;
3438
3439 /* Allow write of the whole area only */
3440 if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3441 return -EFAULT;
3442
3443 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3444 if (IS_ERR(nvmem))
3445 return PTR_ERR(nvmem);
3446
3447 err = nvmem_device_write(nvmem, 0x90, count, buf);
3448 if (err != count)
3449 err = -EFAULT;
3450
3451 ptp_ocp_nvmem_device_put(&nvmem);
3452
3453 return err;
3454}
3455static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3456
3457static struct attribute *fb_timecard_attrs[] = {
3458 &dev_attr_serialnum.attr,
3459 &dev_attr_gnss_sync.attr,
3460 &dev_attr_clock_source.attr,
3461 &dev_attr_available_clock_sources.attr,
3462 &dev_attr_sma1.attr,
3463 &dev_attr_sma2.attr,
3464 &dev_attr_sma3.attr,
3465 &dev_attr_sma4.attr,
3466 &dev_attr_available_sma_inputs.attr,
3467 &dev_attr_available_sma_outputs.attr,
3468 &dev_attr_clock_status_drift.attr,
3469 &dev_attr_clock_status_offset.attr,
3470 &dev_attr_irig_b_mode.attr,
3471 &dev_attr_utc_tai_offset.attr,
3472 &dev_attr_ts_window_adjust.attr,
3473 &dev_attr_tod_correction.attr,
3474 NULL,
3475};
3476
3477static const struct attribute_group fb_timecard_group = {
3478 .attrs = fb_timecard_attrs,
3479};
3480
3481static const struct ocp_attr_group fb_timecard_groups[] = {
3482 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
3483 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
3484 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
3485 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
3486 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
3487 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
3488 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
3489 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
3490 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
3491 { },
3492};
3493
3494static struct attribute *art_timecard_attrs[] = {
3495 &dev_attr_serialnum.attr,
3496 &dev_attr_clock_source.attr,
3497 &dev_attr_available_clock_sources.attr,
3498 &dev_attr_utc_tai_offset.attr,
3499 &dev_attr_ts_window_adjust.attr,
3500 &dev_attr_sma1.attr,
3501 &dev_attr_sma2.attr,
3502 &dev_attr_sma3.attr,
3503 &dev_attr_sma4.attr,
3504 &dev_attr_available_sma_inputs.attr,
3505 &dev_attr_available_sma_outputs.attr,
3506 NULL,
3507};
3508
3509static struct bin_attribute *bin_art_timecard_attrs[] = {
3510 &bin_attr_disciplining_config,
3511 &bin_attr_temperature_table,
3512 NULL,
3513};
3514
3515static const struct attribute_group art_timecard_group = {
3516 .attrs = art_timecard_attrs,
3517 .bin_attrs = bin_art_timecard_attrs,
3518};
3519
3520static const struct ocp_attr_group art_timecard_groups[] = {
3521 { .cap = OCP_CAP_BASIC, .group = &art_timecard_group },
3522 { },
3523};
3524
3525static void
3526gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3527 const char *def)
3528{
3529 int i;
3530
3531 for (i = 0; i < 4; i++) {
3532 if (bp->sma[i].mode != SMA_MODE_IN)
3533 continue;
3534 if (map[i][0] & (1 << bit)) {
3535 sprintf(buf, "sma%d", i + 1);
3536 return;
3537 }
3538 }
3539 if (!def)
3540 def = "----";
3541 strcpy(buf, def);
3542}
3543
3544static void
3545gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3546{
3547 char *ans = buf;
3548 int i;
3549
3550 strcpy(ans, "----");
3551 for (i = 0; i < 4; i++) {
3552 if (bp->sma[i].mode != SMA_MODE_OUT)
3553 continue;
3554 if (map[i][1] & (1 << bit))
3555 ans += sprintf(ans, "sma%d ", i + 1);
3556 }
3557}
3558
3559static void
3560_signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3561{
3562 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3563 struct ptp_ocp_signal *signal = &bp->signal[nr];
3564 char label[8];
3565 bool on;
3566 u32 val;
3567
3568 if (!signal)
3569 return;
3570
3571 on = signal->running;
3572 sprintf(label, "GEN%d", nr + 1);
3573 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3574 label, on ? " ON" : "OFF",
3575 signal->period, signal->duty, signal->phase,
3576 signal->polarity);
3577
3578 val = ioread32(®->enable);
3579 seq_printf(s, " [%x", val);
3580 val = ioread32(®->status);
3581 seq_printf(s, " %x]", val);
3582
3583 seq_printf(s, " start:%llu\n", signal->start);
3584}
3585
3586static void
3587_frequency_summary_show(struct seq_file *s, int nr,
3588 struct frequency_reg __iomem *reg)
3589{
3590 char label[8];
3591 bool on;
3592 u32 val;
3593
3594 if (!reg)
3595 return;
3596
3597 sprintf(label, "FREQ%d", nr + 1);
3598 val = ioread32(®->ctrl);
3599 on = val & 1;
3600 val = (val >> 8) & 0xff;
3601 seq_printf(s, "%7s: %s, sec:%u",
3602 label,
3603 on ? " ON" : "OFF",
3604 val);
3605
3606 val = ioread32(®->status);
3607 if (val & FREQ_STATUS_ERROR)
3608 seq_printf(s, ", error");
3609 if (val & FREQ_STATUS_OVERRUN)
3610 seq_printf(s, ", overrun");
3611 if (val & FREQ_STATUS_VALID)
3612 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3613 seq_printf(s, " reg:%x\n", val);
3614}
3615
3616static int
3617ptp_ocp_summary_show(struct seq_file *s, void *data)
3618{
3619 struct device *dev = s->private;
3620 struct ptp_system_timestamp sts;
3621 struct ts_reg __iomem *ts_reg;
3622 char *buf, *src, *mac_src;
3623 struct timespec64 ts;
3624 struct ptp_ocp *bp;
3625 u16 sma_val[4][2];
3626 u32 ctrl, val;
3627 bool on, map;
3628 int i;
3629
3630 buf = (char *)__get_free_page(GFP_KERNEL);
3631 if (!buf)
3632 return -ENOMEM;
3633
3634 bp = dev_get_drvdata(dev);
3635
3636 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3637 if (bp->gnss_port.line != -1)
3638 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1",
3639 bp->gnss_port.line);
3640 if (bp->gnss2_port.line != -1)
3641 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2",
3642 bp->gnss2_port.line);
3643 if (bp->mac_port.line != -1)
3644 seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line);
3645 if (bp->nmea_port.line != -1)
3646 seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line);
3647
3648 memset(sma_val, 0xff, sizeof(sma_val));
3649 if (bp->sma_map1) {
3650 u32 reg;
3651
3652 reg = ioread32(&bp->sma_map1->gpio1);
3653 sma_val[0][0] = reg & 0xffff;
3654 sma_val[1][0] = reg >> 16;
3655
3656 reg = ioread32(&bp->sma_map1->gpio2);
3657 sma_val[2][1] = reg & 0xffff;
3658 sma_val[3][1] = reg >> 16;
3659
3660 reg = ioread32(&bp->sma_map2->gpio1);
3661 sma_val[2][0] = reg & 0xffff;
3662 sma_val[3][0] = reg >> 16;
3663
3664 reg = ioread32(&bp->sma_map2->gpio2);
3665 sma_val[0][1] = reg & 0xffff;
3666 sma_val[1][1] = reg >> 16;
3667 }
3668
3669 sma1_show(dev, NULL, buf);
3670 seq_printf(s, " sma1: %04x,%04x %s",
3671 sma_val[0][0], sma_val[0][1], buf);
3672
3673 sma2_show(dev, NULL, buf);
3674 seq_printf(s, " sma2: %04x,%04x %s",
3675 sma_val[1][0], sma_val[1][1], buf);
3676
3677 sma3_show(dev, NULL, buf);
3678 seq_printf(s, " sma3: %04x,%04x %s",
3679 sma_val[2][0], sma_val[2][1], buf);
3680
3681 sma4_show(dev, NULL, buf);
3682 seq_printf(s, " sma4: %04x,%04x %s",
3683 sma_val[3][0], sma_val[3][1], buf);
3684
3685 if (bp->ts0) {
3686 ts_reg = bp->ts0->mem;
3687 on = ioread32(&ts_reg->enable);
3688 src = "GNSS1";
3689 seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3690 on ? " ON" : "OFF", src);
3691 }
3692
3693 if (bp->ts1) {
3694 ts_reg = bp->ts1->mem;
3695 on = ioread32(&ts_reg->enable);
3696 gpio_input_map(buf, bp, sma_val, 2, NULL);
3697 seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3698 on ? " ON" : "OFF", buf);
3699 }
3700
3701 if (bp->ts2) {
3702 ts_reg = bp->ts2->mem;
3703 on = ioread32(&ts_reg->enable);
3704 gpio_input_map(buf, bp, sma_val, 3, NULL);
3705 seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3706 on ? " ON" : "OFF", buf);
3707 }
3708
3709 if (bp->ts3) {
3710 ts_reg = bp->ts3->mem;
3711 on = ioread32(&ts_reg->enable);
3712 gpio_input_map(buf, bp, sma_val, 6, NULL);
3713 seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3714 on ? " ON" : "OFF", buf);
3715 }
3716
3717 if (bp->ts4) {
3718 ts_reg = bp->ts4->mem;
3719 on = ioread32(&ts_reg->enable);
3720 gpio_input_map(buf, bp, sma_val, 7, NULL);
3721 seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3722 on ? " ON" : "OFF", buf);
3723 }
3724
3725 if (bp->pps) {
3726 ts_reg = bp->pps->mem;
3727 src = "PHC";
3728 on = ioread32(&ts_reg->enable);
3729 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3730 seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3731 on && map ? " ON" : "OFF", src);
3732
3733 map = !!(bp->pps_req_map & OCP_REQ_PPS);
3734 seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3735 on && map ? " ON" : "OFF", src);
3736 }
3737
3738 if (bp->fw_cap & OCP_CAP_SIGNAL)
3739 for (i = 0; i < 4; i++)
3740 _signal_summary_show(s, bp, i);
3741
3742 if (bp->fw_cap & OCP_CAP_FREQ)
3743 for (i = 0; i < 4; i++)
3744 _frequency_summary_show(s, i, bp->freq_in[i]);
3745
3746 if (bp->irig_out) {
3747 ctrl = ioread32(&bp->irig_out->ctrl);
3748 on = ctrl & IRIG_M_CTRL_ENABLE;
3749 val = ioread32(&bp->irig_out->status);
3750 gpio_output_map(buf, bp, sma_val, 4);
3751 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3752 on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3753 }
3754
3755 if (bp->irig_in) {
3756 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3757 val = ioread32(&bp->irig_in->status);
3758 gpio_input_map(buf, bp, sma_val, 4, NULL);
3759 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3760 on ? " ON" : "OFF", val, buf);
3761 }
3762
3763 if (bp->dcf_out) {
3764 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3765 val = ioread32(&bp->dcf_out->status);
3766 gpio_output_map(buf, bp, sma_val, 5);
3767 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3768 on ? " ON" : "OFF", val, buf);
3769 }
3770
3771 if (bp->dcf_in) {
3772 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3773 val = ioread32(&bp->dcf_in->status);
3774 gpio_input_map(buf, bp, sma_val, 5, NULL);
3775 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3776 on ? " ON" : "OFF", val, buf);
3777 }
3778
3779 if (bp->nmea_out) {
3780 on = ioread32(&bp->nmea_out->ctrl) & 1;
3781 val = ioread32(&bp->nmea_out->status);
3782 seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3783 on ? " ON" : "OFF", val);
3784 }
3785
3786 /* compute src for PPS1, used below. */
3787 if (bp->pps_select) {
3788 val = ioread32(&bp->pps_select->gpio1);
3789 src = &buf[80];
3790 mac_src = "GNSS1";
3791 if (val & 0x01) {
3792 gpio_input_map(src, bp, sma_val, 0, NULL);
3793 mac_src = src;
3794 } else if (val & 0x02) {
3795 src = "MAC";
3796 } else if (val & 0x04) {
3797 src = "GNSS1";
3798 } else {
3799 src = "----";
3800 mac_src = src;
3801 }
3802 } else {
3803 src = "?";
3804 mac_src = src;
3805 }
3806 seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3807
3808 gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3809 seq_printf(s, "MAC PPS2 src: %s\n", buf);
3810
3811 /* assumes automatic switchover/selection */
3812 val = ioread32(&bp->reg->select);
3813 switch (val >> 16) {
3814 case 0:
3815 sprintf(buf, "----");
3816 break;
3817 case 2:
3818 sprintf(buf, "IRIG");
3819 break;
3820 case 3:
3821 sprintf(buf, "%s via PPS1", src);
3822 break;
3823 case 6:
3824 sprintf(buf, "DCF");
3825 break;
3826 default:
3827 strcpy(buf, "unknown");
3828 break;
3829 }
3830 val = ioread32(&bp->reg->status);
3831 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3832 val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
3833
3834 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3835 struct timespec64 sys_ts;
3836 s64 pre_ns, post_ns, ns;
3837
3838 pre_ns = timespec64_to_ns(&sts.pre_ts);
3839 post_ns = timespec64_to_ns(&sts.post_ts);
3840 ns = (pre_ns + post_ns) / 2;
3841 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3842 sys_ts = ns_to_timespec64(ns);
3843
3844 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3845 ts.tv_sec, ts.tv_nsec, &ts);
3846 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3847 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3848 bp->utc_tai_offset);
3849 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
3850 timespec64_to_ns(&ts) - ns,
3851 post_ns - pre_ns);
3852 }
3853
3854 free_page((unsigned long)buf);
3855 return 0;
3856}
3857DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3858
3859static int
3860ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3861{
3862 struct device *dev = s->private;
3863 struct ptp_ocp *bp;
3864 u32 val;
3865 int idx;
3866
3867 bp = dev_get_drvdata(dev);
3868
3869 val = ioread32(&bp->tod->ctrl);
3870 if (!(val & TOD_CTRL_ENABLE)) {
3871 seq_printf(s, "TOD Slave disabled\n");
3872 return 0;
3873 }
3874 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3875
3876 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3877 idx += (val >> 16) & 3;
3878 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3879
3880 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3881 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3882
3883 val = ioread32(&bp->tod->version);
3884 seq_printf(s, "TOD Version %d.%d.%d\n",
3885 val >> 24, (val >> 16) & 0xff, val & 0xffff);
3886
3887 val = ioread32(&bp->tod->status);
3888 seq_printf(s, "Status register: 0x%08X\n", val);
3889
3890 val = ioread32(&bp->tod->adj_sec);
3891 idx = (val & ~INT_MAX) ? -1 : 1;
3892 idx *= (val & INT_MAX);
3893 seq_printf(s, "Correction seconds: %d\n", idx);
3894
3895 val = ioread32(&bp->tod->utc_status);
3896 seq_printf(s, "UTC status register: 0x%08X\n", val);
3897 seq_printf(s, "UTC offset: %ld valid:%d\n",
3898 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3899 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3900 val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3901 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3902
3903 val = ioread32(&bp->tod->leap);
3904 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3905
3906 return 0;
3907}
3908DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3909
3910static struct dentry *ptp_ocp_debugfs_root;
3911
3912static void
3913ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3914{
3915 struct dentry *d;
3916
3917 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3918 bp->debug_root = d;
3919 debugfs_create_file("summary", 0444, bp->debug_root,
3920 &bp->dev, &ptp_ocp_summary_fops);
3921 if (bp->tod)
3922 debugfs_create_file("tod_status", 0444, bp->debug_root,
3923 &bp->dev, &ptp_ocp_tod_status_fops);
3924}
3925
3926static void
3927ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3928{
3929 debugfs_remove_recursive(bp->debug_root);
3930}
3931
3932static void
3933ptp_ocp_debugfs_init(void)
3934{
3935 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3936}
3937
3938static void
3939ptp_ocp_debugfs_fini(void)
3940{
3941 debugfs_remove_recursive(ptp_ocp_debugfs_root);
3942}
3943
3944static void
3945ptp_ocp_dev_release(struct device *dev)
3946{
3947 struct ptp_ocp *bp = dev_get_drvdata(dev);
3948
3949 mutex_lock(&ptp_ocp_lock);
3950 idr_remove(&ptp_ocp_idr, bp->id);
3951 mutex_unlock(&ptp_ocp_lock);
3952}
3953
3954static int
3955ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
3956{
3957 int err;
3958
3959 mutex_lock(&ptp_ocp_lock);
3960 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
3961 mutex_unlock(&ptp_ocp_lock);
3962 if (err < 0) {
3963 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
3964 return err;
3965 }
3966 bp->id = err;
3967
3968 bp->ptp_info = ptp_ocp_clock_info;
3969 spin_lock_init(&bp->lock);
3970 bp->gnss_port.line = -1;
3971 bp->gnss2_port.line = -1;
3972 bp->mac_port.line = -1;
3973 bp->nmea_port.line = -1;
3974 bp->pdev = pdev;
3975
3976 device_initialize(&bp->dev);
3977 dev_set_name(&bp->dev, "ocp%d", bp->id);
3978 bp->dev.class = &timecard_class;
3979 bp->dev.parent = &pdev->dev;
3980 bp->dev.release = ptp_ocp_dev_release;
3981 dev_set_drvdata(&bp->dev, bp);
3982
3983 err = device_add(&bp->dev);
3984 if (err) {
3985 dev_err(&bp->dev, "device add failed: %d\n", err);
3986 goto out;
3987 }
3988
3989 pci_set_drvdata(pdev, bp);
3990
3991 return 0;
3992
3993out:
3994 ptp_ocp_dev_release(&bp->dev);
3995 put_device(&bp->dev);
3996 return err;
3997}
3998
3999static void
4000ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4001{
4002 struct device *dev = &bp->dev;
4003
4004 if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4005 dev_err(dev, "%s symlink failed\n", link);
4006}
4007
4008static void
4009ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4010{
4011 struct device *dev, *child;
4012
4013 dev = &bp->pdev->dev;
4014
4015 child = device_find_child_by_name(dev, name);
4016 if (!child) {
4017 dev_err(dev, "Could not find device %s\n", name);
4018 return;
4019 }
4020
4021 ptp_ocp_symlink(bp, child, link);
4022 put_device(child);
4023}
4024
4025static int
4026ptp_ocp_complete(struct ptp_ocp *bp)
4027{
4028 struct pps_device *pps;
4029 char buf[32];
4030
4031 if (bp->gnss_port.line != -1) {
4032 sprintf(buf, "ttyS%d", bp->gnss_port.line);
4033 ptp_ocp_link_child(bp, buf, "ttyGNSS");
4034 }
4035 if (bp->gnss2_port.line != -1) {
4036 sprintf(buf, "ttyS%d", bp->gnss2_port.line);
4037 ptp_ocp_link_child(bp, buf, "ttyGNSS2");
4038 }
4039 if (bp->mac_port.line != -1) {
4040 sprintf(buf, "ttyS%d", bp->mac_port.line);
4041 ptp_ocp_link_child(bp, buf, "ttyMAC");
4042 }
4043 if (bp->nmea_port.line != -1) {
4044 sprintf(buf, "ttyS%d", bp->nmea_port.line);
4045 ptp_ocp_link_child(bp, buf, "ttyNMEA");
4046 }
4047 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4048 ptp_ocp_link_child(bp, buf, "ptp");
4049
4050 pps = pps_lookup_dev(bp->ptp);
4051 if (pps)
4052 ptp_ocp_symlink(bp, pps->dev, "pps");
4053
4054 ptp_ocp_debugfs_add_device(bp);
4055
4056 return 0;
4057}
4058
4059static void
4060ptp_ocp_phc_info(struct ptp_ocp *bp)
4061{
4062 struct timespec64 ts;
4063 u32 version, select;
4064 bool sync;
4065
4066 version = ioread32(&bp->reg->version);
4067 select = ioread32(&bp->reg->select);
4068 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4069 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4070 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4071 ptp_clock_index(bp->ptp));
4072
4073 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
4074 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4075 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4076 ts.tv_sec, ts.tv_nsec,
4077 sync ? "in-sync" : "UNSYNCED");
4078}
4079
4080static void
4081ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4082{
4083 if (port != -1)
4084 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4085}
4086
4087static void
4088ptp_ocp_info(struct ptp_ocp *bp)
4089{
4090 static int nmea_baud[] = {
4091 1200, 2400, 4800, 9600, 19200, 38400,
4092 57600, 115200, 230400, 460800, 921600,
4093 1000000, 2000000
4094 };
4095 struct device *dev = &bp->pdev->dev;
4096 u32 reg;
4097
4098 ptp_ocp_phc_info(bp);
4099
4100 ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line,
4101 bp->gnss_port.baud);
4102 ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line,
4103 bp->gnss2_port.baud);
4104 ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud);
4105 if (bp->nmea_out && bp->nmea_port.line != -1) {
4106 bp->nmea_port.baud = -1;
4107
4108 reg = ioread32(&bp->nmea_out->uart_baud);
4109 if (reg < ARRAY_SIZE(nmea_baud))
4110 bp->nmea_port.baud = nmea_baud[reg];
4111
4112 ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line,
4113 bp->nmea_port.baud);
4114 }
4115}
4116
4117static void
4118ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4119{
4120 struct device *dev = &bp->dev;
4121
4122 sysfs_remove_link(&dev->kobj, "ttyGNSS");
4123 sysfs_remove_link(&dev->kobj, "ttyGNSS2");
4124 sysfs_remove_link(&dev->kobj, "ttyMAC");
4125 sysfs_remove_link(&dev->kobj, "ptp");
4126 sysfs_remove_link(&dev->kobj, "pps");
4127}
4128
4129static void
4130ptp_ocp_detach(struct ptp_ocp *bp)
4131{
4132 int i;
4133
4134 ptp_ocp_debugfs_remove_device(bp);
4135 ptp_ocp_detach_sysfs(bp);
4136 ptp_ocp_attr_group_del(bp);
4137 if (timer_pending(&bp->watchdog))
4138 del_timer_sync(&bp->watchdog);
4139 if (bp->ts0)
4140 ptp_ocp_unregister_ext(bp->ts0);
4141 if (bp->ts1)
4142 ptp_ocp_unregister_ext(bp->ts1);
4143 if (bp->ts2)
4144 ptp_ocp_unregister_ext(bp->ts2);
4145 if (bp->ts3)
4146 ptp_ocp_unregister_ext(bp->ts3);
4147 if (bp->ts4)
4148 ptp_ocp_unregister_ext(bp->ts4);
4149 if (bp->pps)
4150 ptp_ocp_unregister_ext(bp->pps);
4151 for (i = 0; i < 4; i++)
4152 if (bp->signal_out[i])
4153 ptp_ocp_unregister_ext(bp->signal_out[i]);
4154 if (bp->gnss_port.line != -1)
4155 serial8250_unregister_port(bp->gnss_port.line);
4156 if (bp->gnss2_port.line != -1)
4157 serial8250_unregister_port(bp->gnss2_port.line);
4158 if (bp->mac_port.line != -1)
4159 serial8250_unregister_port(bp->mac_port.line);
4160 if (bp->nmea_port.line != -1)
4161 serial8250_unregister_port(bp->nmea_port.line);
4162 platform_device_unregister(bp->spi_flash);
4163 platform_device_unregister(bp->i2c_ctrl);
4164 if (bp->i2c_clk)
4165 clk_hw_unregister_fixed_rate(bp->i2c_clk);
4166 if (bp->n_irqs)
4167 pci_free_irq_vectors(bp->pdev);
4168 if (bp->ptp)
4169 ptp_clock_unregister(bp->ptp);
4170 kfree(bp->ptp_info.pin_config);
4171 device_unregister(&bp->dev);
4172}
4173
4174static int
4175ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4176{
4177 struct devlink *devlink;
4178 struct ptp_ocp *bp;
4179 int err;
4180
4181 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4182 if (!devlink) {
4183 dev_err(&pdev->dev, "devlink_alloc failed\n");
4184 return -ENOMEM;
4185 }
4186
4187 err = pci_enable_device(pdev);
4188 if (err) {
4189 dev_err(&pdev->dev, "pci_enable_device\n");
4190 goto out_free;
4191 }
4192
4193 bp = devlink_priv(devlink);
4194 err = ptp_ocp_device_init(bp, pdev);
4195 if (err)
4196 goto out_disable;
4197
4198 /* compat mode.
4199 * Older FPGA firmware only returns 2 irq's.
4200 * allow this - if not all of the IRQ's are returned, skip the
4201 * extra devices and just register the clock.
4202 */
4203 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4204 if (err < 0) {
4205 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4206 goto out;
4207 }
4208 bp->n_irqs = err;
4209 pci_set_master(pdev);
4210
4211 err = ptp_ocp_register_resources(bp, id->driver_data);
4212 if (err)
4213 goto out;
4214
4215 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4216 if (IS_ERR(bp->ptp)) {
4217 err = PTR_ERR(bp->ptp);
4218 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4219 bp->ptp = NULL;
4220 goto out;
4221 }
4222
4223 err = ptp_ocp_complete(bp);
4224 if (err)
4225 goto out;
4226
4227 ptp_ocp_info(bp);
4228 devlink_register(devlink);
4229 return 0;
4230
4231out:
4232 ptp_ocp_detach(bp);
4233out_disable:
4234 pci_disable_device(pdev);
4235out_free:
4236 devlink_free(devlink);
4237 return err;
4238}
4239
4240static void
4241ptp_ocp_remove(struct pci_dev *pdev)
4242{
4243 struct ptp_ocp *bp = pci_get_drvdata(pdev);
4244 struct devlink *devlink = priv_to_devlink(bp);
4245
4246 devlink_unregister(devlink);
4247 ptp_ocp_detach(bp);
4248 pci_disable_device(pdev);
4249
4250 devlink_free(devlink);
4251}
4252
4253static struct pci_driver ptp_ocp_driver = {
4254 .name = KBUILD_MODNAME,
4255 .id_table = ptp_ocp_pcidev_id,
4256 .probe = ptp_ocp_probe,
4257 .remove = ptp_ocp_remove,
4258};
4259
4260static int
4261ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4262 unsigned long action, void *data)
4263{
4264 struct device *dev, *child = data;
4265 struct ptp_ocp *bp;
4266 bool add;
4267
4268 switch (action) {
4269 case BUS_NOTIFY_ADD_DEVICE:
4270 case BUS_NOTIFY_DEL_DEVICE:
4271 add = action == BUS_NOTIFY_ADD_DEVICE;
4272 break;
4273 default:
4274 return 0;
4275 }
4276
4277 if (!i2c_verify_adapter(child))
4278 return 0;
4279
4280 dev = child;
4281 while ((dev = dev->parent))
4282 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4283 goto found;
4284 return 0;
4285
4286found:
4287 bp = dev_get_drvdata(dev);
4288 if (add)
4289 ptp_ocp_symlink(bp, child, "i2c");
4290 else
4291 sysfs_remove_link(&bp->dev.kobj, "i2c");
4292
4293 return 0;
4294}
4295
4296static struct notifier_block ptp_ocp_i2c_notifier = {
4297 .notifier_call = ptp_ocp_i2c_notifier_call,
4298};
4299
4300static int __init
4301ptp_ocp_init(void)
4302{
4303 const char *what;
4304 int err;
4305
4306 ptp_ocp_debugfs_init();
4307
4308 what = "timecard class";
4309 err = class_register(&timecard_class);
4310 if (err)
4311 goto out;
4312
4313 what = "i2c notifier";
4314 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4315 if (err)
4316 goto out_notifier;
4317
4318 what = "ptp_ocp driver";
4319 err = pci_register_driver(&ptp_ocp_driver);
4320 if (err)
4321 goto out_register;
4322
4323 return 0;
4324
4325out_register:
4326 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4327out_notifier:
4328 class_unregister(&timecard_class);
4329out:
4330 ptp_ocp_debugfs_fini();
4331 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4332 return err;
4333}
4334
4335static void __exit
4336ptp_ocp_fini(void)
4337{
4338 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4339 pci_unregister_driver(&ptp_ocp_driver);
4340 class_unregister(&timecard_class);
4341 ptp_ocp_debugfs_fini();
4342}
4343
4344module_init(ptp_ocp_init);
4345module_exit(ptp_ocp_fini);
4346
4347MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4348MODULE_LICENSE("GPL v2");