Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * PTP 1588 clock support
  4 *
  5 * Copyright (C) 2010 OMICRON electronics GmbH
  6 */
  7#include <linux/idr.h>
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/init.h>
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/posix-clock.h>
 14#include <linux/pps_kernel.h>
 15#include <linux/slab.h>
 16#include <linux/syscalls.h>
 17#include <linux/uaccess.h>
 18#include <uapi/linux/sched/types.h>
 19
 20#include "ptp_private.h"
 21
 22#define PTP_MAX_ALARMS 4
 23#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 24#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 25#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 26
 
 
 27/* private globals */
 28
 29static dev_t ptp_devt;
 30static struct class *ptp_class;
 31
 32static DEFINE_IDA(ptp_clocks_map);
 33
 34/* time stamp event queue operations */
 35
 36static inline int queue_free(struct timestamp_event_queue *q)
 37{
 38	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 39}
 40
 41static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 42				       struct ptp_clock_event *src)
 43{
 44	struct ptp_extts_event *dst;
 45	unsigned long flags;
 46	s64 seconds;
 47	u32 remainder;
 48
 49	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 50
 51	spin_lock_irqsave(&queue->lock, flags);
 52
 53	dst = &queue->buf[queue->tail];
 54	dst->index = src->index;
 55	dst->t.sec = seconds;
 56	dst->t.nsec = remainder;
 57
 58	if (!queue_free(queue))
 59		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
 60
 61	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
 62
 63	spin_unlock_irqrestore(&queue->lock, flags);
 64}
 65
 66s32 scaled_ppm_to_ppb(long ppm)
 67{
 68	/*
 69	 * The 'freq' field in the 'struct timex' is in parts per
 70	 * million, but with a 16 bit binary fractional field.
 71	 *
 72	 * We want to calculate
 73	 *
 74	 *    ppb = scaled_ppm * 1000 / 2^16
 75	 *
 76	 * which simplifies to
 77	 *
 78	 *    ppb = scaled_ppm * 125 / 2^13
 79	 */
 80	s64 ppb = 1 + ppm;
 81	ppb *= 125;
 82	ppb >>= 13;
 83	return (s32) ppb;
 84}
 85EXPORT_SYMBOL(scaled_ppm_to_ppb);
 86
 87/* posix clock implementation */
 88
 89static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
 90{
 91	tp->tv_sec = 0;
 92	tp->tv_nsec = 1;
 93	return 0;
 94}
 95
 96static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
 97{
 98	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 99
 
 
 
 
 
100	return  ptp->info->settime64(ptp->info, tp);
101}
102
103static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
104{
105	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
106	int err;
107
108	if (ptp->info->gettimex64)
109		err = ptp->info->gettimex64(ptp->info, tp, NULL);
110	else
111		err = ptp->info->gettime64(ptp->info, tp);
112	return err;
113}
114
115static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
116{
117	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118	struct ptp_clock_info *ops;
119	int err = -EOPNOTSUPP;
120
 
 
 
 
 
121	ops = ptp->info;
122
123	if (tx->modes & ADJ_SETOFFSET) {
124		struct timespec64 ts;
125		ktime_t kt;
126		s64 delta;
127
128		ts.tv_sec  = tx->time.tv_sec;
129		ts.tv_nsec = tx->time.tv_usec;
130
131		if (!(tx->modes & ADJ_NANO))
132			ts.tv_nsec *= 1000;
133
134		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
135			return -EINVAL;
136
137		kt = timespec64_to_ktime(ts);
138		delta = ktime_to_ns(kt);
139		err = ops->adjtime(ops, delta);
140	} else if (tx->modes & ADJ_FREQUENCY) {
141		s32 ppb = scaled_ppm_to_ppb(tx->freq);
142		if (ppb > ops->max_adj || ppb < -ops->max_adj)
143			return -ERANGE;
144		if (ops->adjfine)
145			err = ops->adjfine(ops, tx->freq);
146		else
147			err = ops->adjfreq(ops, ppb);
148		ptp->dialed_frequency = tx->freq;
149	} else if (tx->modes & ADJ_OFFSET) {
150		if (ops->adjphase) {
151			s32 offset = tx->offset;
152
153			if (!(tx->modes & ADJ_NANO))
154				offset *= NSEC_PER_USEC;
155
156			err = ops->adjphase(ops, offset);
157		}
158	} else if (tx->modes == 0) {
159		tx->freq = ptp->dialed_frequency;
160		err = 0;
161	}
162
163	return err;
164}
165
166static struct posix_clock_operations ptp_clock_ops = {
167	.owner		= THIS_MODULE,
168	.clock_adjtime	= ptp_clock_adjtime,
169	.clock_gettime	= ptp_clock_gettime,
170	.clock_getres	= ptp_clock_getres,
171	.clock_settime	= ptp_clock_settime,
172	.ioctl		= ptp_ioctl,
173	.open		= ptp_open,
174	.poll		= ptp_poll,
175	.read		= ptp_read,
176};
177
178static void ptp_clock_release(struct device *dev)
179{
180	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
181
182	ptp_cleanup_pin_groups(ptp);
 
183	mutex_destroy(&ptp->tsevq_mux);
184	mutex_destroy(&ptp->pincfg_mux);
185	ida_simple_remove(&ptp_clocks_map, ptp->index);
 
186	kfree(ptp);
187}
188
 
 
 
 
 
 
 
 
189static void ptp_aux_kworker(struct kthread_work *work)
190{
191	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
192					     aux_work.work);
193	struct ptp_clock_info *info = ptp->info;
194	long delay;
195
196	delay = info->do_aux_work(info);
197
198	if (delay >= 0)
199		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
200}
201
202/* public interface */
203
204struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
205				     struct device *parent)
206{
207	struct ptp_clock *ptp;
208	int err = 0, index, major = MAJOR(ptp_devt);
 
209
210	if (info->n_alarm > PTP_MAX_ALARMS)
211		return ERR_PTR(-EINVAL);
212
213	/* Initialize a clock structure. */
214	err = -ENOMEM;
215	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
216	if (ptp == NULL)
217		goto no_memory;
218
219	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
220	if (index < 0) {
221		err = index;
222		goto no_slot;
223	}
224
225	ptp->clock.ops = ptp_clock_ops;
226	ptp->info = info;
227	ptp->devid = MKDEV(major, index);
228	ptp->index = index;
229	spin_lock_init(&ptp->tsevq.lock);
230	mutex_init(&ptp->tsevq_mux);
231	mutex_init(&ptp->pincfg_mux);
 
232	init_waitqueue_head(&ptp->tsev_wq);
233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234	if (ptp->info->do_aux_work) {
235		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
236		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
237		if (IS_ERR(ptp->kworker)) {
238			err = PTR_ERR(ptp->kworker);
239			pr_err("failed to create ptp aux_worker %d\n", err);
240			goto kworker_err;
241		}
242	}
243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244	err = ptp_populate_pin_groups(ptp);
245	if (err)
246		goto no_pin_groups;
247
248	/* Register a new PPS source. */
249	if (info->pps) {
250		struct pps_source_info pps;
251		memset(&pps, 0, sizeof(pps));
252		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
253		pps.mode = PTP_PPS_MODE;
254		pps.owner = info->owner;
255		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
256		if (IS_ERR(ptp->pps_source)) {
257			err = PTR_ERR(ptp->pps_source);
258			pr_err("failed to register pps source\n");
259			goto no_pps;
260		}
 
261	}
262
263	/* Initialize a new device of our class in our clock structure. */
264	device_initialize(&ptp->dev);
265	ptp->dev.devt = ptp->devid;
266	ptp->dev.class = ptp_class;
267	ptp->dev.parent = parent;
268	ptp->dev.groups = ptp->pin_attr_groups;
269	ptp->dev.release = ptp_clock_release;
270	dev_set_drvdata(&ptp->dev, ptp);
271	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
272
273	/* Create a posix clock and link it to the device. */
274	err = posix_clock_register(&ptp->clock, &ptp->dev);
275	if (err) {
 
 
 
 
 
 
 
 
276		pr_err("failed to create posix clock\n");
277		goto no_clock;
278	}
279
280	return ptp;
281
282no_clock:
283	if (ptp->pps_source)
284		pps_unregister_source(ptp->pps_source);
285no_pps:
286	ptp_cleanup_pin_groups(ptp);
287no_pin_groups:
 
 
288	if (ptp->kworker)
289		kthread_destroy_worker(ptp->kworker);
290kworker_err:
291	mutex_destroy(&ptp->tsevq_mux);
292	mutex_destroy(&ptp->pincfg_mux);
293	ida_simple_remove(&ptp_clocks_map, index);
 
294no_slot:
295	kfree(ptp);
296no_memory:
297	return ERR_PTR(err);
298}
299EXPORT_SYMBOL(ptp_clock_register);
300
 
 
 
 
 
 
 
 
301int ptp_clock_unregister(struct ptp_clock *ptp)
302{
 
 
 
 
303	ptp->defunct = 1;
304	wake_up_interruptible(&ptp->tsev_wq);
305
306	if (ptp->kworker) {
307		kthread_cancel_delayed_work_sync(&ptp->aux_work);
308		kthread_destroy_worker(ptp->kworker);
309	}
310
311	/* Release the clock's resources. */
312	if (ptp->pps_source)
313		pps_unregister_source(ptp->pps_source);
314
315	posix_clock_unregister(&ptp->clock);
316
317	return 0;
318}
319EXPORT_SYMBOL(ptp_clock_unregister);
320
321void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
322{
323	struct pps_event_time evt;
324
325	switch (event->type) {
326
327	case PTP_CLOCK_ALARM:
328		break;
329
330	case PTP_CLOCK_EXTTS:
331		enqueue_external_timestamp(&ptp->tsevq, event);
332		wake_up_interruptible(&ptp->tsev_wq);
333		break;
334
335	case PTP_CLOCK_PPS:
336		pps_get_ts(&evt);
337		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
338		break;
339
340	case PTP_CLOCK_PPSUSR:
341		pps_event(ptp->pps_source, &event->pps_times,
342			  PTP_PPS_EVENT, NULL);
343		break;
344	}
345}
346EXPORT_SYMBOL(ptp_clock_event);
347
348int ptp_clock_index(struct ptp_clock *ptp)
349{
350	return ptp->index;
351}
352EXPORT_SYMBOL(ptp_clock_index);
353
354int ptp_find_pin(struct ptp_clock *ptp,
355		 enum ptp_pin_function func, unsigned int chan)
356{
357	struct ptp_pin_desc *pin = NULL;
358	int i;
359
360	for (i = 0; i < ptp->info->n_pins; i++) {
361		if (ptp->info->pin_config[i].func == func &&
362		    ptp->info->pin_config[i].chan == chan) {
363			pin = &ptp->info->pin_config[i];
364			break;
365		}
366	}
367
368	return pin ? i : -1;
369}
370EXPORT_SYMBOL(ptp_find_pin);
371
372int ptp_find_pin_unlocked(struct ptp_clock *ptp,
373			  enum ptp_pin_function func, unsigned int chan)
374{
375	int result;
376
377	mutex_lock(&ptp->pincfg_mux);
378
379	result = ptp_find_pin(ptp, func, chan);
380
381	mutex_unlock(&ptp->pincfg_mux);
382
383	return result;
384}
385EXPORT_SYMBOL(ptp_find_pin_unlocked);
386
387int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
388{
389	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
390}
391EXPORT_SYMBOL(ptp_schedule_worker);
392
393void ptp_cancel_worker_sync(struct ptp_clock *ptp)
394{
395	kthread_cancel_delayed_work_sync(&ptp->aux_work);
396}
397EXPORT_SYMBOL(ptp_cancel_worker_sync);
398
399/* module operations */
400
401static void __exit ptp_exit(void)
402{
403	class_destroy(ptp_class);
404	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
405	ida_destroy(&ptp_clocks_map);
406}
407
408static int __init ptp_init(void)
409{
410	int err;
411
412	ptp_class = class_create(THIS_MODULE, "ptp");
413	if (IS_ERR(ptp_class)) {
414		pr_err("ptp: failed to allocate class\n");
415		return PTR_ERR(ptp_class);
416	}
417
418	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
419	if (err < 0) {
420		pr_err("ptp: failed to allocate device region\n");
421		goto no_region;
422	}
423
424	ptp_class->dev_groups = ptp_groups;
425	pr_info("PTP clock support registered\n");
426	return 0;
427
428no_region:
429	class_destroy(ptp_class);
430	return err;
431}
432
433subsys_initcall(ptp_init);
434module_exit(ptp_exit);
435
436MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
437MODULE_DESCRIPTION("PTP clocks support");
438MODULE_LICENSE("GPL");
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * PTP 1588 clock support
  4 *
  5 * Copyright (C) 2010 OMICRON electronics GmbH
  6 */
  7#include <linux/idr.h>
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/init.h>
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/posix-clock.h>
 14#include <linux/pps_kernel.h>
 15#include <linux/slab.h>
 16#include <linux/syscalls.h>
 17#include <linux/uaccess.h>
 18#include <uapi/linux/sched/types.h>
 19
 20#include "ptp_private.h"
 21
 22#define PTP_MAX_ALARMS 4
 23#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 24#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 25#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 26
 27struct class *ptp_class;
 28
 29/* private globals */
 30
 31static dev_t ptp_devt;
 
 32
 33static DEFINE_IDA(ptp_clocks_map);
 34
 35/* time stamp event queue operations */
 36
 37static inline int queue_free(struct timestamp_event_queue *q)
 38{
 39	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 40}
 41
 42static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 43				       struct ptp_clock_event *src)
 44{
 45	struct ptp_extts_event *dst;
 46	unsigned long flags;
 47	s64 seconds;
 48	u32 remainder;
 49
 50	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 51
 52	spin_lock_irqsave(&queue->lock, flags);
 53
 54	dst = &queue->buf[queue->tail];
 55	dst->index = src->index;
 56	dst->t.sec = seconds;
 57	dst->t.nsec = remainder;
 58
 59	if (!queue_free(queue))
 60		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
 61
 62	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
 63
 64	spin_unlock_irqrestore(&queue->lock, flags);
 65}
 66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67/* posix clock implementation */
 68
 69static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
 70{
 71	tp->tv_sec = 0;
 72	tp->tv_nsec = 1;
 73	return 0;
 74}
 75
 76static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
 77{
 78	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 79
 80	if (ptp_clock_freerun(ptp)) {
 81		pr_err("ptp: physical clock is free running\n");
 82		return -EBUSY;
 83	}
 84
 85	return  ptp->info->settime64(ptp->info, tp);
 86}
 87
 88static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
 89{
 90	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 91	int err;
 92
 93	if (ptp->info->gettimex64)
 94		err = ptp->info->gettimex64(ptp->info, tp, NULL);
 95	else
 96		err = ptp->info->gettime64(ptp->info, tp);
 97	return err;
 98}
 99
100static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
101{
102	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
103	struct ptp_clock_info *ops;
104	int err = -EOPNOTSUPP;
105
106	if (ptp_clock_freerun(ptp)) {
107		pr_err("ptp: physical clock is free running\n");
108		return -EBUSY;
109	}
110
111	ops = ptp->info;
112
113	if (tx->modes & ADJ_SETOFFSET) {
114		struct timespec64 ts;
115		ktime_t kt;
116		s64 delta;
117
118		ts.tv_sec  = tx->time.tv_sec;
119		ts.tv_nsec = tx->time.tv_usec;
120
121		if (!(tx->modes & ADJ_NANO))
122			ts.tv_nsec *= 1000;
123
124		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
125			return -EINVAL;
126
127		kt = timespec64_to_ktime(ts);
128		delta = ktime_to_ns(kt);
129		err = ops->adjtime(ops, delta);
130	} else if (tx->modes & ADJ_FREQUENCY) {
131		long ppb = scaled_ppm_to_ppb(tx->freq);
132		if (ppb > ops->max_adj || ppb < -ops->max_adj)
133			return -ERANGE;
134		err = ops->adjfine(ops, tx->freq);
 
 
 
135		ptp->dialed_frequency = tx->freq;
136	} else if (tx->modes & ADJ_OFFSET) {
137		if (ops->adjphase) {
138			s32 offset = tx->offset;
139
140			if (!(tx->modes & ADJ_NANO))
141				offset *= NSEC_PER_USEC;
142
143			err = ops->adjphase(ops, offset);
144		}
145	} else if (tx->modes == 0) {
146		tx->freq = ptp->dialed_frequency;
147		err = 0;
148	}
149
150	return err;
151}
152
153static struct posix_clock_operations ptp_clock_ops = {
154	.owner		= THIS_MODULE,
155	.clock_adjtime	= ptp_clock_adjtime,
156	.clock_gettime	= ptp_clock_gettime,
157	.clock_getres	= ptp_clock_getres,
158	.clock_settime	= ptp_clock_settime,
159	.ioctl		= ptp_ioctl,
160	.open		= ptp_open,
161	.poll		= ptp_poll,
162	.read		= ptp_read,
163};
164
165static void ptp_clock_release(struct device *dev)
166{
167	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
168
169	ptp_cleanup_pin_groups(ptp);
170	kfree(ptp->vclock_index);
171	mutex_destroy(&ptp->tsevq_mux);
172	mutex_destroy(&ptp->pincfg_mux);
173	mutex_destroy(&ptp->n_vclocks_mux);
174	ida_free(&ptp_clocks_map, ptp->index);
175	kfree(ptp);
176}
177
178static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
179{
180	if (info->getcyclesx64)
181		return info->getcyclesx64(info, ts, NULL);
182	else
183		return info->gettime64(info, ts);
184}
185
186static void ptp_aux_kworker(struct kthread_work *work)
187{
188	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
189					     aux_work.work);
190	struct ptp_clock_info *info = ptp->info;
191	long delay;
192
193	delay = info->do_aux_work(info);
194
195	if (delay >= 0)
196		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
197}
198
199/* public interface */
200
201struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
202				     struct device *parent)
203{
204	struct ptp_clock *ptp;
205	int err = 0, index, major = MAJOR(ptp_devt);
206	size_t size;
207
208	if (info->n_alarm > PTP_MAX_ALARMS)
209		return ERR_PTR(-EINVAL);
210
211	/* Initialize a clock structure. */
212	err = -ENOMEM;
213	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
214	if (ptp == NULL)
215		goto no_memory;
216
217	index = ida_alloc_max(&ptp_clocks_map, MINORMASK, GFP_KERNEL);
218	if (index < 0) {
219		err = index;
220		goto no_slot;
221	}
222
223	ptp->clock.ops = ptp_clock_ops;
224	ptp->info = info;
225	ptp->devid = MKDEV(major, index);
226	ptp->index = index;
227	spin_lock_init(&ptp->tsevq.lock);
228	mutex_init(&ptp->tsevq_mux);
229	mutex_init(&ptp->pincfg_mux);
230	mutex_init(&ptp->n_vclocks_mux);
231	init_waitqueue_head(&ptp->tsev_wq);
232
233	if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
234		ptp->has_cycles = true;
235		if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
236			ptp->info->getcycles64 = ptp_getcycles64;
237	} else {
238		/* Free running cycle counter not supported, use time. */
239		ptp->info->getcycles64 = ptp_getcycles64;
240
241		if (ptp->info->gettimex64)
242			ptp->info->getcyclesx64 = ptp->info->gettimex64;
243
244		if (ptp->info->getcrosststamp)
245			ptp->info->getcrosscycles = ptp->info->getcrosststamp;
246	}
247
248	if (ptp->info->do_aux_work) {
249		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
250		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
251		if (IS_ERR(ptp->kworker)) {
252			err = PTR_ERR(ptp->kworker);
253			pr_err("failed to create ptp aux_worker %d\n", err);
254			goto kworker_err;
255		}
256	}
257
258	/* PTP virtual clock is being registered under physical clock */
259	if (parent && parent->class && parent->class->name &&
260	    strcmp(parent->class->name, "ptp") == 0)
261		ptp->is_virtual_clock = true;
262
263	if (!ptp->is_virtual_clock) {
264		ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
265
266		size = sizeof(int) * ptp->max_vclocks;
267		ptp->vclock_index = kzalloc(size, GFP_KERNEL);
268		if (!ptp->vclock_index) {
269			err = -ENOMEM;
270			goto no_mem_for_vclocks;
271		}
272	}
273
274	err = ptp_populate_pin_groups(ptp);
275	if (err)
276		goto no_pin_groups;
277
278	/* Register a new PPS source. */
279	if (info->pps) {
280		struct pps_source_info pps;
281		memset(&pps, 0, sizeof(pps));
282		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
283		pps.mode = PTP_PPS_MODE;
284		pps.owner = info->owner;
285		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
286		if (IS_ERR(ptp->pps_source)) {
287			err = PTR_ERR(ptp->pps_source);
288			pr_err("failed to register pps source\n");
289			goto no_pps;
290		}
291		ptp->pps_source->lookup_cookie = ptp;
292	}
293
294	/* Initialize a new device of our class in our clock structure. */
295	device_initialize(&ptp->dev);
296	ptp->dev.devt = ptp->devid;
297	ptp->dev.class = ptp_class;
298	ptp->dev.parent = parent;
299	ptp->dev.groups = ptp->pin_attr_groups;
300	ptp->dev.release = ptp_clock_release;
301	dev_set_drvdata(&ptp->dev, ptp);
302	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
303
304	/* Create a posix clock and link it to the device. */
305	err = posix_clock_register(&ptp->clock, &ptp->dev);
306	if (err) {
307		if (ptp->pps_source)
308			pps_unregister_source(ptp->pps_source);
309
310		if (ptp->kworker)
311			kthread_destroy_worker(ptp->kworker);
312
313		put_device(&ptp->dev);
314
315		pr_err("failed to create posix clock\n");
316		return ERR_PTR(err);
317	}
318
319	return ptp;
320
 
 
 
321no_pps:
322	ptp_cleanup_pin_groups(ptp);
323no_pin_groups:
324	kfree(ptp->vclock_index);
325no_mem_for_vclocks:
326	if (ptp->kworker)
327		kthread_destroy_worker(ptp->kworker);
328kworker_err:
329	mutex_destroy(&ptp->tsevq_mux);
330	mutex_destroy(&ptp->pincfg_mux);
331	mutex_destroy(&ptp->n_vclocks_mux);
332	ida_free(&ptp_clocks_map, index);
333no_slot:
334	kfree(ptp);
335no_memory:
336	return ERR_PTR(err);
337}
338EXPORT_SYMBOL(ptp_clock_register);
339
340static int unregister_vclock(struct device *dev, void *data)
341{
342	struct ptp_clock *ptp = dev_get_drvdata(dev);
343
344	ptp_vclock_unregister(info_to_vclock(ptp->info));
345	return 0;
346}
347
348int ptp_clock_unregister(struct ptp_clock *ptp)
349{
350	if (ptp_vclock_in_use(ptp)) {
351		device_for_each_child(&ptp->dev, NULL, unregister_vclock);
352	}
353
354	ptp->defunct = 1;
355	wake_up_interruptible(&ptp->tsev_wq);
356
357	if (ptp->kworker) {
358		kthread_cancel_delayed_work_sync(&ptp->aux_work);
359		kthread_destroy_worker(ptp->kworker);
360	}
361
362	/* Release the clock's resources. */
363	if (ptp->pps_source)
364		pps_unregister_source(ptp->pps_source);
365
366	posix_clock_unregister(&ptp->clock);
367
368	return 0;
369}
370EXPORT_SYMBOL(ptp_clock_unregister);
371
372void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
373{
374	struct pps_event_time evt;
375
376	switch (event->type) {
377
378	case PTP_CLOCK_ALARM:
379		break;
380
381	case PTP_CLOCK_EXTTS:
382		enqueue_external_timestamp(&ptp->tsevq, event);
383		wake_up_interruptible(&ptp->tsev_wq);
384		break;
385
386	case PTP_CLOCK_PPS:
387		pps_get_ts(&evt);
388		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
389		break;
390
391	case PTP_CLOCK_PPSUSR:
392		pps_event(ptp->pps_source, &event->pps_times,
393			  PTP_PPS_EVENT, NULL);
394		break;
395	}
396}
397EXPORT_SYMBOL(ptp_clock_event);
398
399int ptp_clock_index(struct ptp_clock *ptp)
400{
401	return ptp->index;
402}
403EXPORT_SYMBOL(ptp_clock_index);
404
405int ptp_find_pin(struct ptp_clock *ptp,
406		 enum ptp_pin_function func, unsigned int chan)
407{
408	struct ptp_pin_desc *pin = NULL;
409	int i;
410
411	for (i = 0; i < ptp->info->n_pins; i++) {
412		if (ptp->info->pin_config[i].func == func &&
413		    ptp->info->pin_config[i].chan == chan) {
414			pin = &ptp->info->pin_config[i];
415			break;
416		}
417	}
418
419	return pin ? i : -1;
420}
421EXPORT_SYMBOL(ptp_find_pin);
422
423int ptp_find_pin_unlocked(struct ptp_clock *ptp,
424			  enum ptp_pin_function func, unsigned int chan)
425{
426	int result;
427
428	mutex_lock(&ptp->pincfg_mux);
429
430	result = ptp_find_pin(ptp, func, chan);
431
432	mutex_unlock(&ptp->pincfg_mux);
433
434	return result;
435}
436EXPORT_SYMBOL(ptp_find_pin_unlocked);
437
438int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
439{
440	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
441}
442EXPORT_SYMBOL(ptp_schedule_worker);
443
444void ptp_cancel_worker_sync(struct ptp_clock *ptp)
445{
446	kthread_cancel_delayed_work_sync(&ptp->aux_work);
447}
448EXPORT_SYMBOL(ptp_cancel_worker_sync);
449
450/* module operations */
451
452static void __exit ptp_exit(void)
453{
454	class_destroy(ptp_class);
455	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
456	ida_destroy(&ptp_clocks_map);
457}
458
459static int __init ptp_init(void)
460{
461	int err;
462
463	ptp_class = class_create(THIS_MODULE, "ptp");
464	if (IS_ERR(ptp_class)) {
465		pr_err("ptp: failed to allocate class\n");
466		return PTR_ERR(ptp_class);
467	}
468
469	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
470	if (err < 0) {
471		pr_err("ptp: failed to allocate device region\n");
472		goto no_region;
473	}
474
475	ptp_class->dev_groups = ptp_groups;
476	pr_info("PTP clock support registered\n");
477	return 0;
478
479no_region:
480	class_destroy(ptp_class);
481	return err;
482}
483
484subsys_initcall(ptp_init);
485module_exit(ptp_exit);
486
487MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
488MODULE_DESCRIPTION("PTP clocks support");
489MODULE_LICENSE("GPL");