Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/delay.h>
5#include <linux/gpio/consumer.h>
6#include <linux/hwmon.h>
7#include <linux/i2c.h>
8#include <linux/interrupt.h>
9#include <linux/jiffies.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "mdio-i2c.h"
20#include "sfp.h"
21#include "swphy.h"
22
23enum {
24 GPIO_MODDEF0,
25 GPIO_LOS,
26 GPIO_TX_FAULT,
27 GPIO_TX_DISABLE,
28 GPIO_RATE_SELECT,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37 SFP_E_INSERT = 0,
38 SFP_E_REMOVE,
39 SFP_E_DEV_ATTACH,
40 SFP_E_DEV_DETACH,
41 SFP_E_DEV_DOWN,
42 SFP_E_DEV_UP,
43 SFP_E_TX_FAULT,
44 SFP_E_TX_CLEAR,
45 SFP_E_LOS_HIGH,
46 SFP_E_LOS_LOW,
47 SFP_E_TIMEOUT,
48
49 SFP_MOD_EMPTY = 0,
50 SFP_MOD_ERROR,
51 SFP_MOD_PROBE,
52 SFP_MOD_WAITDEV,
53 SFP_MOD_HPOWER,
54 SFP_MOD_WAITPWR,
55 SFP_MOD_PRESENT,
56
57 SFP_DEV_DETACHED = 0,
58 SFP_DEV_DOWN,
59 SFP_DEV_UP,
60
61 SFP_S_DOWN = 0,
62 SFP_S_FAIL,
63 SFP_S_WAIT,
64 SFP_S_INIT,
65 SFP_S_INIT_PHY,
66 SFP_S_INIT_TX_FAULT,
67 SFP_S_WAIT_LOS,
68 SFP_S_LINK_UP,
69 SFP_S_TX_FAULT,
70 SFP_S_REINIT,
71 SFP_S_TX_DISABLE,
72};
73
74static const char * const mod_state_strings[] = {
75 [SFP_MOD_EMPTY] = "empty",
76 [SFP_MOD_ERROR] = "error",
77 [SFP_MOD_PROBE] = "probe",
78 [SFP_MOD_WAITDEV] = "waitdev",
79 [SFP_MOD_HPOWER] = "hpower",
80 [SFP_MOD_WAITPWR] = "waitpwr",
81 [SFP_MOD_PRESENT] = "present",
82};
83
84static const char *mod_state_to_str(unsigned short mod_state)
85{
86 if (mod_state >= ARRAY_SIZE(mod_state_strings))
87 return "Unknown module state";
88 return mod_state_strings[mod_state];
89}
90
91static const char * const dev_state_strings[] = {
92 [SFP_DEV_DETACHED] = "detached",
93 [SFP_DEV_DOWN] = "down",
94 [SFP_DEV_UP] = "up",
95};
96
97static const char *dev_state_to_str(unsigned short dev_state)
98{
99 if (dev_state >= ARRAY_SIZE(dev_state_strings))
100 return "Unknown device state";
101 return dev_state_strings[dev_state];
102}
103
104static const char * const event_strings[] = {
105 [SFP_E_INSERT] = "insert",
106 [SFP_E_REMOVE] = "remove",
107 [SFP_E_DEV_ATTACH] = "dev_attach",
108 [SFP_E_DEV_DETACH] = "dev_detach",
109 [SFP_E_DEV_DOWN] = "dev_down",
110 [SFP_E_DEV_UP] = "dev_up",
111 [SFP_E_TX_FAULT] = "tx_fault",
112 [SFP_E_TX_CLEAR] = "tx_clear",
113 [SFP_E_LOS_HIGH] = "los_high",
114 [SFP_E_LOS_LOW] = "los_low",
115 [SFP_E_TIMEOUT] = "timeout",
116};
117
118static const char *event_to_str(unsigned short event)
119{
120 if (event >= ARRAY_SIZE(event_strings))
121 return "Unknown event";
122 return event_strings[event];
123}
124
125static const char * const sm_state_strings[] = {
126 [SFP_S_DOWN] = "down",
127 [SFP_S_FAIL] = "fail",
128 [SFP_S_WAIT] = "wait",
129 [SFP_S_INIT] = "init",
130 [SFP_S_INIT_PHY] = "init_phy",
131 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132 [SFP_S_WAIT_LOS] = "wait_los",
133 [SFP_S_LINK_UP] = "link_up",
134 [SFP_S_TX_FAULT] = "tx_fault",
135 [SFP_S_REINIT] = "reinit",
136 [SFP_S_TX_DISABLE] = "rx_disable",
137};
138
139static const char *sm_state_to_str(unsigned short sm_state)
140{
141 if (sm_state >= ARRAY_SIZE(sm_state_strings))
142 return "Unknown state";
143 return sm_state_strings[sm_state];
144}
145
146static const char *gpio_of_names[] = {
147 "mod-def0",
148 "los",
149 "tx-fault",
150 "tx-disable",
151 "rate-select0",
152};
153
154static const enum gpiod_flags gpio_flags[] = {
155 GPIOD_IN,
156 GPIOD_IN,
157 GPIOD_IN,
158 GPIOD_ASIS,
159 GPIOD_ASIS,
160};
161
162/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163 * non-cooled module to initialise its laser safety circuitry. We wait
164 * an initial T_WAIT period before we check the tx fault to give any PHY
165 * on board (for a copper SFP) time to initialise.
166 */
167#define T_WAIT msecs_to_jiffies(50)
168#define T_START_UP msecs_to_jiffies(300)
169#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
170
171/* t_reset is the time required to assert the TX_DISABLE signal to reset
172 * an indicated TX_FAULT.
173 */
174#define T_RESET_US 10
175#define T_FAULT_RECOVER msecs_to_jiffies(1000)
176
177/* N_FAULT_INIT is the number of recovery attempts at module initialisation
178 * time. If the TX_FAULT signal is not deasserted after this number of
179 * attempts at clearing it, we decide that the module is faulty.
180 * N_FAULT is the same but after the module has initialised.
181 */
182#define N_FAULT_INIT 5
183#define N_FAULT 5
184
185/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186 * R_PHY_RETRY is the number of attempts.
187 */
188#define T_PHY_RETRY msecs_to_jiffies(50)
189#define R_PHY_RETRY 12
190
191/* SFP module presence detection is poor: the three MOD DEF signals are
192 * the same length on the PCB, which means it's possible for MOD DEF 0 to
193 * connect before the I2C bus on MOD DEF 1/2.
194 *
195 * The SFF-8472 specifies t_serial ("Time from power on until module is
196 * ready for data transmission over the two wire serial bus.") as 300ms.
197 */
198#define T_SERIAL msecs_to_jiffies(300)
199#define T_HPOWER_LEVEL msecs_to_jiffies(300)
200#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
201#define R_PROBE_RETRY_INIT 10
202#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
203#define R_PROBE_RETRY_SLOW 12
204
205/* SFP modules appear to always have their PHY configured for bus address
206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207 */
208#define SFP_PHY_ADDR 22
209
210struct sff_data {
211 unsigned int gpios;
212 bool (*module_supported)(const struct sfp_eeprom_id *id);
213};
214
215struct sfp {
216 struct device *dev;
217 struct i2c_adapter *i2c;
218 struct mii_bus *i2c_mii;
219 struct sfp_bus *sfp_bus;
220 struct phy_device *mod_phy;
221 const struct sff_data *type;
222 u32 max_power_mW;
223
224 unsigned int (*get_state)(struct sfp *);
225 void (*set_state)(struct sfp *, unsigned int);
226 int (*read)(struct sfp *, bool, u8, void *, size_t);
227 int (*write)(struct sfp *, bool, u8, void *, size_t);
228
229 struct gpio_desc *gpio[GPIO_MAX];
230 int gpio_irq[GPIO_MAX];
231
232 bool need_poll;
233
234 struct mutex st_mutex; /* Protects state */
235 unsigned int state_soft_mask;
236 unsigned int state;
237 struct delayed_work poll;
238 struct delayed_work timeout;
239 struct mutex sm_mutex; /* Protects state machine */
240 unsigned char sm_mod_state;
241 unsigned char sm_mod_tries_init;
242 unsigned char sm_mod_tries;
243 unsigned char sm_dev_state;
244 unsigned short sm_state;
245 unsigned char sm_fault_retries;
246 unsigned char sm_phy_retries;
247
248 struct sfp_eeprom_id id;
249 unsigned int module_power_mW;
250 unsigned int module_t_start_up;
251
252#if IS_ENABLED(CONFIG_HWMON)
253 struct sfp_diag diag;
254 struct delayed_work hwmon_probe;
255 unsigned int hwmon_tries;
256 struct device *hwmon_dev;
257 char *hwmon_name;
258#endif
259
260};
261
262static bool sff_module_supported(const struct sfp_eeprom_id *id)
263{
264 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
265 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
266}
267
268static const struct sff_data sff_data = {
269 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
270 .module_supported = sff_module_supported,
271};
272
273static bool sfp_module_supported(const struct sfp_eeprom_id *id)
274{
275 return id->base.phys_id == SFF8024_ID_SFP &&
276 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
277}
278
279static const struct sff_data sfp_data = {
280 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
281 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
282 .module_supported = sfp_module_supported,
283};
284
285static const struct of_device_id sfp_of_match[] = {
286 { .compatible = "sff,sff", .data = &sff_data, },
287 { .compatible = "sff,sfp", .data = &sfp_data, },
288 { },
289};
290MODULE_DEVICE_TABLE(of, sfp_of_match);
291
292static unsigned long poll_jiffies;
293
294static unsigned int sfp_gpio_get_state(struct sfp *sfp)
295{
296 unsigned int i, state, v;
297
298 for (i = state = 0; i < GPIO_MAX; i++) {
299 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
300 continue;
301
302 v = gpiod_get_value_cansleep(sfp->gpio[i]);
303 if (v)
304 state |= BIT(i);
305 }
306
307 return state;
308}
309
310static unsigned int sff_gpio_get_state(struct sfp *sfp)
311{
312 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
313}
314
315static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
316{
317 if (state & SFP_F_PRESENT) {
318 /* If the module is present, drive the signals */
319 if (sfp->gpio[GPIO_TX_DISABLE])
320 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
321 state & SFP_F_TX_DISABLE);
322 if (state & SFP_F_RATE_SELECT)
323 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
324 state & SFP_F_RATE_SELECT);
325 } else {
326 /* Otherwise, let them float to the pull-ups */
327 if (sfp->gpio[GPIO_TX_DISABLE])
328 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
329 if (state & SFP_F_RATE_SELECT)
330 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
331 }
332}
333
334static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
335 size_t len)
336{
337 struct i2c_msg msgs[2];
338 u8 bus_addr = a2 ? 0x51 : 0x50;
339 size_t this_len;
340 int ret;
341
342 msgs[0].addr = bus_addr;
343 msgs[0].flags = 0;
344 msgs[0].len = 1;
345 msgs[0].buf = &dev_addr;
346 msgs[1].addr = bus_addr;
347 msgs[1].flags = I2C_M_RD;
348 msgs[1].len = len;
349 msgs[1].buf = buf;
350
351 while (len) {
352 this_len = len;
353 if (this_len > 16)
354 this_len = 16;
355
356 msgs[1].len = this_len;
357
358 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
359 if (ret < 0)
360 return ret;
361
362 if (ret != ARRAY_SIZE(msgs))
363 break;
364
365 msgs[1].buf += this_len;
366 dev_addr += this_len;
367 len -= this_len;
368 }
369
370 return msgs[1].buf - (u8 *)buf;
371}
372
373static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
374 size_t len)
375{
376 struct i2c_msg msgs[1];
377 u8 bus_addr = a2 ? 0x51 : 0x50;
378 int ret;
379
380 msgs[0].addr = bus_addr;
381 msgs[0].flags = 0;
382 msgs[0].len = 1 + len;
383 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
384 if (!msgs[0].buf)
385 return -ENOMEM;
386
387 msgs[0].buf[0] = dev_addr;
388 memcpy(&msgs[0].buf[1], buf, len);
389
390 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
391
392 kfree(msgs[0].buf);
393
394 if (ret < 0)
395 return ret;
396
397 return ret == ARRAY_SIZE(msgs) ? len : 0;
398}
399
400static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
401{
402 struct mii_bus *i2c_mii;
403 int ret;
404
405 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
406 return -EINVAL;
407
408 sfp->i2c = i2c;
409 sfp->read = sfp_i2c_read;
410 sfp->write = sfp_i2c_write;
411
412 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
413 if (IS_ERR(i2c_mii))
414 return PTR_ERR(i2c_mii);
415
416 i2c_mii->name = "SFP I2C Bus";
417 i2c_mii->phy_mask = ~0;
418
419 ret = mdiobus_register(i2c_mii);
420 if (ret < 0) {
421 mdiobus_free(i2c_mii);
422 return ret;
423 }
424
425 sfp->i2c_mii = i2c_mii;
426
427 return 0;
428}
429
430/* Interface */
431static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
432{
433 return sfp->read(sfp, a2, addr, buf, len);
434}
435
436static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
437{
438 return sfp->write(sfp, a2, addr, buf, len);
439}
440
441static unsigned int sfp_soft_get_state(struct sfp *sfp)
442{
443 unsigned int state = 0;
444 u8 status;
445 int ret;
446
447 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
448 if (ret == sizeof(status)) {
449 if (status & SFP_STATUS_RX_LOS)
450 state |= SFP_F_LOS;
451 if (status & SFP_STATUS_TX_FAULT)
452 state |= SFP_F_TX_FAULT;
453 } else {
454 dev_err_ratelimited(sfp->dev,
455 "failed to read SFP soft status: %d\n",
456 ret);
457 /* Preserve the current state */
458 state = sfp->state;
459 }
460
461 return state & sfp->state_soft_mask;
462}
463
464static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
465{
466 u8 status;
467
468 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
469 sizeof(status)) {
470 if (state & SFP_F_TX_DISABLE)
471 status |= SFP_STATUS_TX_DISABLE_FORCE;
472 else
473 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
474
475 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
476 }
477}
478
479static void sfp_soft_start_poll(struct sfp *sfp)
480{
481 const struct sfp_eeprom_id *id = &sfp->id;
482
483 sfp->state_soft_mask = 0;
484 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
485 !sfp->gpio[GPIO_TX_DISABLE])
486 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
487 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
488 !sfp->gpio[GPIO_TX_FAULT])
489 sfp->state_soft_mask |= SFP_F_TX_FAULT;
490 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
491 !sfp->gpio[GPIO_LOS])
492 sfp->state_soft_mask |= SFP_F_LOS;
493
494 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
495 !sfp->need_poll)
496 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
497}
498
499static void sfp_soft_stop_poll(struct sfp *sfp)
500{
501 sfp->state_soft_mask = 0;
502}
503
504static unsigned int sfp_get_state(struct sfp *sfp)
505{
506 unsigned int state = sfp->get_state(sfp);
507
508 if (state & SFP_F_PRESENT &&
509 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
510 state |= sfp_soft_get_state(sfp);
511
512 return state;
513}
514
515static void sfp_set_state(struct sfp *sfp, unsigned int state)
516{
517 sfp->set_state(sfp, state);
518
519 if (state & SFP_F_PRESENT &&
520 sfp->state_soft_mask & SFP_F_TX_DISABLE)
521 sfp_soft_set_state(sfp, state);
522}
523
524static unsigned int sfp_check(void *buf, size_t len)
525{
526 u8 *p, check;
527
528 for (p = buf, check = 0; len; p++, len--)
529 check += *p;
530
531 return check;
532}
533
534/* hwmon */
535#if IS_ENABLED(CONFIG_HWMON)
536static umode_t sfp_hwmon_is_visible(const void *data,
537 enum hwmon_sensor_types type,
538 u32 attr, int channel)
539{
540 const struct sfp *sfp = data;
541
542 switch (type) {
543 case hwmon_temp:
544 switch (attr) {
545 case hwmon_temp_min_alarm:
546 case hwmon_temp_max_alarm:
547 case hwmon_temp_lcrit_alarm:
548 case hwmon_temp_crit_alarm:
549 case hwmon_temp_min:
550 case hwmon_temp_max:
551 case hwmon_temp_lcrit:
552 case hwmon_temp_crit:
553 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
554 return 0;
555 fallthrough;
556 case hwmon_temp_input:
557 case hwmon_temp_label:
558 return 0444;
559 default:
560 return 0;
561 }
562 case hwmon_in:
563 switch (attr) {
564 case hwmon_in_min_alarm:
565 case hwmon_in_max_alarm:
566 case hwmon_in_lcrit_alarm:
567 case hwmon_in_crit_alarm:
568 case hwmon_in_min:
569 case hwmon_in_max:
570 case hwmon_in_lcrit:
571 case hwmon_in_crit:
572 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
573 return 0;
574 fallthrough;
575 case hwmon_in_input:
576 case hwmon_in_label:
577 return 0444;
578 default:
579 return 0;
580 }
581 case hwmon_curr:
582 switch (attr) {
583 case hwmon_curr_min_alarm:
584 case hwmon_curr_max_alarm:
585 case hwmon_curr_lcrit_alarm:
586 case hwmon_curr_crit_alarm:
587 case hwmon_curr_min:
588 case hwmon_curr_max:
589 case hwmon_curr_lcrit:
590 case hwmon_curr_crit:
591 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
592 return 0;
593 fallthrough;
594 case hwmon_curr_input:
595 case hwmon_curr_label:
596 return 0444;
597 default:
598 return 0;
599 }
600 case hwmon_power:
601 /* External calibration of receive power requires
602 * floating point arithmetic. Doing that in the kernel
603 * is not easy, so just skip it. If the module does
604 * not require external calibration, we can however
605 * show receiver power, since FP is then not needed.
606 */
607 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
608 channel == 1)
609 return 0;
610 switch (attr) {
611 case hwmon_power_min_alarm:
612 case hwmon_power_max_alarm:
613 case hwmon_power_lcrit_alarm:
614 case hwmon_power_crit_alarm:
615 case hwmon_power_min:
616 case hwmon_power_max:
617 case hwmon_power_lcrit:
618 case hwmon_power_crit:
619 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
620 return 0;
621 fallthrough;
622 case hwmon_power_input:
623 case hwmon_power_label:
624 return 0444;
625 default:
626 return 0;
627 }
628 default:
629 return 0;
630 }
631}
632
633static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
634{
635 __be16 val;
636 int err;
637
638 err = sfp_read(sfp, true, reg, &val, sizeof(val));
639 if (err < 0)
640 return err;
641
642 *value = be16_to_cpu(val);
643
644 return 0;
645}
646
647static void sfp_hwmon_to_rx_power(long *value)
648{
649 *value = DIV_ROUND_CLOSEST(*value, 10);
650}
651
652static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
653 long *value)
654{
655 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
656 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
657}
658
659static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
660{
661 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
662 be16_to_cpu(sfp->diag.cal_t_offset), value);
663
664 if (*value >= 0x8000)
665 *value -= 0x10000;
666
667 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
668}
669
670static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
671{
672 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
673 be16_to_cpu(sfp->diag.cal_v_offset), value);
674
675 *value = DIV_ROUND_CLOSEST(*value, 10);
676}
677
678static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
679{
680 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
681 be16_to_cpu(sfp->diag.cal_txi_offset), value);
682
683 *value = DIV_ROUND_CLOSEST(*value, 500);
684}
685
686static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
687{
688 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
689 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
690
691 *value = DIV_ROUND_CLOSEST(*value, 10);
692}
693
694static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
695{
696 int err;
697
698 err = sfp_hwmon_read_sensor(sfp, reg, value);
699 if (err < 0)
700 return err;
701
702 sfp_hwmon_calibrate_temp(sfp, value);
703
704 return 0;
705}
706
707static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
708{
709 int err;
710
711 err = sfp_hwmon_read_sensor(sfp, reg, value);
712 if (err < 0)
713 return err;
714
715 sfp_hwmon_calibrate_vcc(sfp, value);
716
717 return 0;
718}
719
720static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
721{
722 int err;
723
724 err = sfp_hwmon_read_sensor(sfp, reg, value);
725 if (err < 0)
726 return err;
727
728 sfp_hwmon_calibrate_bias(sfp, value);
729
730 return 0;
731}
732
733static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
734{
735 int err;
736
737 err = sfp_hwmon_read_sensor(sfp, reg, value);
738 if (err < 0)
739 return err;
740
741 sfp_hwmon_calibrate_tx_power(sfp, value);
742
743 return 0;
744}
745
746static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
747{
748 int err;
749
750 err = sfp_hwmon_read_sensor(sfp, reg, value);
751 if (err < 0)
752 return err;
753
754 sfp_hwmon_to_rx_power(value);
755
756 return 0;
757}
758
759static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
760{
761 u8 status;
762 int err;
763
764 switch (attr) {
765 case hwmon_temp_input:
766 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
767
768 case hwmon_temp_lcrit:
769 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
770 sfp_hwmon_calibrate_temp(sfp, value);
771 return 0;
772
773 case hwmon_temp_min:
774 *value = be16_to_cpu(sfp->diag.temp_low_warn);
775 sfp_hwmon_calibrate_temp(sfp, value);
776 return 0;
777 case hwmon_temp_max:
778 *value = be16_to_cpu(sfp->diag.temp_high_warn);
779 sfp_hwmon_calibrate_temp(sfp, value);
780 return 0;
781
782 case hwmon_temp_crit:
783 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
784 sfp_hwmon_calibrate_temp(sfp, value);
785 return 0;
786
787 case hwmon_temp_lcrit_alarm:
788 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
789 if (err < 0)
790 return err;
791
792 *value = !!(status & SFP_ALARM0_TEMP_LOW);
793 return 0;
794
795 case hwmon_temp_min_alarm:
796 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
797 if (err < 0)
798 return err;
799
800 *value = !!(status & SFP_WARN0_TEMP_LOW);
801 return 0;
802
803 case hwmon_temp_max_alarm:
804 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
805 if (err < 0)
806 return err;
807
808 *value = !!(status & SFP_WARN0_TEMP_HIGH);
809 return 0;
810
811 case hwmon_temp_crit_alarm:
812 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
813 if (err < 0)
814 return err;
815
816 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
817 return 0;
818 default:
819 return -EOPNOTSUPP;
820 }
821
822 return -EOPNOTSUPP;
823}
824
825static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
826{
827 u8 status;
828 int err;
829
830 switch (attr) {
831 case hwmon_in_input:
832 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
833
834 case hwmon_in_lcrit:
835 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
836 sfp_hwmon_calibrate_vcc(sfp, value);
837 return 0;
838
839 case hwmon_in_min:
840 *value = be16_to_cpu(sfp->diag.volt_low_warn);
841 sfp_hwmon_calibrate_vcc(sfp, value);
842 return 0;
843
844 case hwmon_in_max:
845 *value = be16_to_cpu(sfp->diag.volt_high_warn);
846 sfp_hwmon_calibrate_vcc(sfp, value);
847 return 0;
848
849 case hwmon_in_crit:
850 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
851 sfp_hwmon_calibrate_vcc(sfp, value);
852 return 0;
853
854 case hwmon_in_lcrit_alarm:
855 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
856 if (err < 0)
857 return err;
858
859 *value = !!(status & SFP_ALARM0_VCC_LOW);
860 return 0;
861
862 case hwmon_in_min_alarm:
863 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
864 if (err < 0)
865 return err;
866
867 *value = !!(status & SFP_WARN0_VCC_LOW);
868 return 0;
869
870 case hwmon_in_max_alarm:
871 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
872 if (err < 0)
873 return err;
874
875 *value = !!(status & SFP_WARN0_VCC_HIGH);
876 return 0;
877
878 case hwmon_in_crit_alarm:
879 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
880 if (err < 0)
881 return err;
882
883 *value = !!(status & SFP_ALARM0_VCC_HIGH);
884 return 0;
885 default:
886 return -EOPNOTSUPP;
887 }
888
889 return -EOPNOTSUPP;
890}
891
892static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
893{
894 u8 status;
895 int err;
896
897 switch (attr) {
898 case hwmon_curr_input:
899 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
900
901 case hwmon_curr_lcrit:
902 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
903 sfp_hwmon_calibrate_bias(sfp, value);
904 return 0;
905
906 case hwmon_curr_min:
907 *value = be16_to_cpu(sfp->diag.bias_low_warn);
908 sfp_hwmon_calibrate_bias(sfp, value);
909 return 0;
910
911 case hwmon_curr_max:
912 *value = be16_to_cpu(sfp->diag.bias_high_warn);
913 sfp_hwmon_calibrate_bias(sfp, value);
914 return 0;
915
916 case hwmon_curr_crit:
917 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
918 sfp_hwmon_calibrate_bias(sfp, value);
919 return 0;
920
921 case hwmon_curr_lcrit_alarm:
922 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
923 if (err < 0)
924 return err;
925
926 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
927 return 0;
928
929 case hwmon_curr_min_alarm:
930 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
931 if (err < 0)
932 return err;
933
934 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
935 return 0;
936
937 case hwmon_curr_max_alarm:
938 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
939 if (err < 0)
940 return err;
941
942 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
943 return 0;
944
945 case hwmon_curr_crit_alarm:
946 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
947 if (err < 0)
948 return err;
949
950 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
951 return 0;
952 default:
953 return -EOPNOTSUPP;
954 }
955
956 return -EOPNOTSUPP;
957}
958
959static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
960{
961 u8 status;
962 int err;
963
964 switch (attr) {
965 case hwmon_power_input:
966 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
967
968 case hwmon_power_lcrit:
969 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
970 sfp_hwmon_calibrate_tx_power(sfp, value);
971 return 0;
972
973 case hwmon_power_min:
974 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
975 sfp_hwmon_calibrate_tx_power(sfp, value);
976 return 0;
977
978 case hwmon_power_max:
979 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
980 sfp_hwmon_calibrate_tx_power(sfp, value);
981 return 0;
982
983 case hwmon_power_crit:
984 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
985 sfp_hwmon_calibrate_tx_power(sfp, value);
986 return 0;
987
988 case hwmon_power_lcrit_alarm:
989 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
990 if (err < 0)
991 return err;
992
993 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
994 return 0;
995
996 case hwmon_power_min_alarm:
997 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
998 if (err < 0)
999 return err;
1000
1001 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1002 return 0;
1003
1004 case hwmon_power_max_alarm:
1005 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1006 if (err < 0)
1007 return err;
1008
1009 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1010 return 0;
1011
1012 case hwmon_power_crit_alarm:
1013 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1014 if (err < 0)
1015 return err;
1016
1017 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1018 return 0;
1019 default:
1020 return -EOPNOTSUPP;
1021 }
1022
1023 return -EOPNOTSUPP;
1024}
1025
1026static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1027{
1028 u8 status;
1029 int err;
1030
1031 switch (attr) {
1032 case hwmon_power_input:
1033 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1034
1035 case hwmon_power_lcrit:
1036 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1037 sfp_hwmon_to_rx_power(value);
1038 return 0;
1039
1040 case hwmon_power_min:
1041 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1042 sfp_hwmon_to_rx_power(value);
1043 return 0;
1044
1045 case hwmon_power_max:
1046 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1047 sfp_hwmon_to_rx_power(value);
1048 return 0;
1049
1050 case hwmon_power_crit:
1051 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1052 sfp_hwmon_to_rx_power(value);
1053 return 0;
1054
1055 case hwmon_power_lcrit_alarm:
1056 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1057 if (err < 0)
1058 return err;
1059
1060 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1061 return 0;
1062
1063 case hwmon_power_min_alarm:
1064 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1065 if (err < 0)
1066 return err;
1067
1068 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1069 return 0;
1070
1071 case hwmon_power_max_alarm:
1072 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1073 if (err < 0)
1074 return err;
1075
1076 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1077 return 0;
1078
1079 case hwmon_power_crit_alarm:
1080 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1081 if (err < 0)
1082 return err;
1083
1084 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1085 return 0;
1086 default:
1087 return -EOPNOTSUPP;
1088 }
1089
1090 return -EOPNOTSUPP;
1091}
1092
1093static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1094 u32 attr, int channel, long *value)
1095{
1096 struct sfp *sfp = dev_get_drvdata(dev);
1097
1098 switch (type) {
1099 case hwmon_temp:
1100 return sfp_hwmon_temp(sfp, attr, value);
1101 case hwmon_in:
1102 return sfp_hwmon_vcc(sfp, attr, value);
1103 case hwmon_curr:
1104 return sfp_hwmon_bias(sfp, attr, value);
1105 case hwmon_power:
1106 switch (channel) {
1107 case 0:
1108 return sfp_hwmon_tx_power(sfp, attr, value);
1109 case 1:
1110 return sfp_hwmon_rx_power(sfp, attr, value);
1111 default:
1112 return -EOPNOTSUPP;
1113 }
1114 default:
1115 return -EOPNOTSUPP;
1116 }
1117}
1118
1119static const char *const sfp_hwmon_power_labels[] = {
1120 "TX_power",
1121 "RX_power",
1122};
1123
1124static int sfp_hwmon_read_string(struct device *dev,
1125 enum hwmon_sensor_types type,
1126 u32 attr, int channel, const char **str)
1127{
1128 switch (type) {
1129 case hwmon_curr:
1130 switch (attr) {
1131 case hwmon_curr_label:
1132 *str = "bias";
1133 return 0;
1134 default:
1135 return -EOPNOTSUPP;
1136 }
1137 break;
1138 case hwmon_temp:
1139 switch (attr) {
1140 case hwmon_temp_label:
1141 *str = "temperature";
1142 return 0;
1143 default:
1144 return -EOPNOTSUPP;
1145 }
1146 break;
1147 case hwmon_in:
1148 switch (attr) {
1149 case hwmon_in_label:
1150 *str = "VCC";
1151 return 0;
1152 default:
1153 return -EOPNOTSUPP;
1154 }
1155 break;
1156 case hwmon_power:
1157 switch (attr) {
1158 case hwmon_power_label:
1159 *str = sfp_hwmon_power_labels[channel];
1160 return 0;
1161 default:
1162 return -EOPNOTSUPP;
1163 }
1164 break;
1165 default:
1166 return -EOPNOTSUPP;
1167 }
1168
1169 return -EOPNOTSUPP;
1170}
1171
1172static const struct hwmon_ops sfp_hwmon_ops = {
1173 .is_visible = sfp_hwmon_is_visible,
1174 .read = sfp_hwmon_read,
1175 .read_string = sfp_hwmon_read_string,
1176};
1177
1178static u32 sfp_hwmon_chip_config[] = {
1179 HWMON_C_REGISTER_TZ,
1180 0,
1181};
1182
1183static const struct hwmon_channel_info sfp_hwmon_chip = {
1184 .type = hwmon_chip,
1185 .config = sfp_hwmon_chip_config,
1186};
1187
1188static u32 sfp_hwmon_temp_config[] = {
1189 HWMON_T_INPUT |
1190 HWMON_T_MAX | HWMON_T_MIN |
1191 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1192 HWMON_T_CRIT | HWMON_T_LCRIT |
1193 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1194 HWMON_T_LABEL,
1195 0,
1196};
1197
1198static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1199 .type = hwmon_temp,
1200 .config = sfp_hwmon_temp_config,
1201};
1202
1203static u32 sfp_hwmon_vcc_config[] = {
1204 HWMON_I_INPUT |
1205 HWMON_I_MAX | HWMON_I_MIN |
1206 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1207 HWMON_I_CRIT | HWMON_I_LCRIT |
1208 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1209 HWMON_I_LABEL,
1210 0,
1211};
1212
1213static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1214 .type = hwmon_in,
1215 .config = sfp_hwmon_vcc_config,
1216};
1217
1218static u32 sfp_hwmon_bias_config[] = {
1219 HWMON_C_INPUT |
1220 HWMON_C_MAX | HWMON_C_MIN |
1221 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1222 HWMON_C_CRIT | HWMON_C_LCRIT |
1223 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1224 HWMON_C_LABEL,
1225 0,
1226};
1227
1228static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1229 .type = hwmon_curr,
1230 .config = sfp_hwmon_bias_config,
1231};
1232
1233static u32 sfp_hwmon_power_config[] = {
1234 /* Transmit power */
1235 HWMON_P_INPUT |
1236 HWMON_P_MAX | HWMON_P_MIN |
1237 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1238 HWMON_P_CRIT | HWMON_P_LCRIT |
1239 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1240 HWMON_P_LABEL,
1241 /* Receive power */
1242 HWMON_P_INPUT |
1243 HWMON_P_MAX | HWMON_P_MIN |
1244 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1245 HWMON_P_CRIT | HWMON_P_LCRIT |
1246 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1247 HWMON_P_LABEL,
1248 0,
1249};
1250
1251static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1252 .type = hwmon_power,
1253 .config = sfp_hwmon_power_config,
1254};
1255
1256static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1257 &sfp_hwmon_chip,
1258 &sfp_hwmon_vcc_channel_info,
1259 &sfp_hwmon_temp_channel_info,
1260 &sfp_hwmon_bias_channel_info,
1261 &sfp_hwmon_power_channel_info,
1262 NULL,
1263};
1264
1265static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1266 .ops = &sfp_hwmon_ops,
1267 .info = sfp_hwmon_info,
1268};
1269
1270static void sfp_hwmon_probe(struct work_struct *work)
1271{
1272 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1273 int err, i;
1274
1275 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1276 if (err < 0) {
1277 if (sfp->hwmon_tries--) {
1278 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1279 T_PROBE_RETRY_SLOW);
1280 } else {
1281 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1282 }
1283 return;
1284 }
1285
1286 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1287 if (!sfp->hwmon_name) {
1288 dev_err(sfp->dev, "out of memory for hwmon name\n");
1289 return;
1290 }
1291
1292 for (i = 0; sfp->hwmon_name[i]; i++)
1293 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1294 sfp->hwmon_name[i] = '_';
1295
1296 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1297 sfp->hwmon_name, sfp,
1298 &sfp_hwmon_chip_info,
1299 NULL);
1300 if (IS_ERR(sfp->hwmon_dev))
1301 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1302 PTR_ERR(sfp->hwmon_dev));
1303}
1304
1305static int sfp_hwmon_insert(struct sfp *sfp)
1306{
1307 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1308 return 0;
1309
1310 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1311 return 0;
1312
1313 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1314 /* This driver in general does not support address
1315 * change.
1316 */
1317 return 0;
1318
1319 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1320 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1321
1322 return 0;
1323}
1324
1325static void sfp_hwmon_remove(struct sfp *sfp)
1326{
1327 cancel_delayed_work_sync(&sfp->hwmon_probe);
1328 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1329 hwmon_device_unregister(sfp->hwmon_dev);
1330 sfp->hwmon_dev = NULL;
1331 kfree(sfp->hwmon_name);
1332 }
1333}
1334
1335static int sfp_hwmon_init(struct sfp *sfp)
1336{
1337 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1338
1339 return 0;
1340}
1341
1342static void sfp_hwmon_exit(struct sfp *sfp)
1343{
1344 cancel_delayed_work_sync(&sfp->hwmon_probe);
1345}
1346#else
1347static int sfp_hwmon_insert(struct sfp *sfp)
1348{
1349 return 0;
1350}
1351
1352static void sfp_hwmon_remove(struct sfp *sfp)
1353{
1354}
1355
1356static int sfp_hwmon_init(struct sfp *sfp)
1357{
1358 return 0;
1359}
1360
1361static void sfp_hwmon_exit(struct sfp *sfp)
1362{
1363}
1364#endif
1365
1366/* Helpers */
1367static void sfp_module_tx_disable(struct sfp *sfp)
1368{
1369 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1370 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1371 sfp->state |= SFP_F_TX_DISABLE;
1372 sfp_set_state(sfp, sfp->state);
1373}
1374
1375static void sfp_module_tx_enable(struct sfp *sfp)
1376{
1377 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1378 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1379 sfp->state &= ~SFP_F_TX_DISABLE;
1380 sfp_set_state(sfp, sfp->state);
1381}
1382
1383static void sfp_module_tx_fault_reset(struct sfp *sfp)
1384{
1385 unsigned int state = sfp->state;
1386
1387 if (state & SFP_F_TX_DISABLE)
1388 return;
1389
1390 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1391
1392 udelay(T_RESET_US);
1393
1394 sfp_set_state(sfp, state);
1395}
1396
1397/* SFP state machine */
1398static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1399{
1400 if (timeout)
1401 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1402 timeout);
1403 else
1404 cancel_delayed_work(&sfp->timeout);
1405}
1406
1407static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1408 unsigned int timeout)
1409{
1410 sfp->sm_state = state;
1411 sfp_sm_set_timer(sfp, timeout);
1412}
1413
1414static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1415 unsigned int timeout)
1416{
1417 sfp->sm_mod_state = state;
1418 sfp_sm_set_timer(sfp, timeout);
1419}
1420
1421static void sfp_sm_phy_detach(struct sfp *sfp)
1422{
1423 sfp_remove_phy(sfp->sfp_bus);
1424 phy_device_remove(sfp->mod_phy);
1425 phy_device_free(sfp->mod_phy);
1426 sfp->mod_phy = NULL;
1427}
1428
1429static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1430{
1431 struct phy_device *phy;
1432 int err;
1433
1434 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1435 if (phy == ERR_PTR(-ENODEV))
1436 return PTR_ERR(phy);
1437 if (IS_ERR(phy)) {
1438 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1439 return PTR_ERR(phy);
1440 }
1441
1442 err = phy_device_register(phy);
1443 if (err) {
1444 phy_device_free(phy);
1445 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1446 return err;
1447 }
1448
1449 err = sfp_add_phy(sfp->sfp_bus, phy);
1450 if (err) {
1451 phy_device_remove(phy);
1452 phy_device_free(phy);
1453 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1454 return err;
1455 }
1456
1457 sfp->mod_phy = phy;
1458
1459 return 0;
1460}
1461
1462static void sfp_sm_link_up(struct sfp *sfp)
1463{
1464 sfp_link_up(sfp->sfp_bus);
1465 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1466}
1467
1468static void sfp_sm_link_down(struct sfp *sfp)
1469{
1470 sfp_link_down(sfp->sfp_bus);
1471}
1472
1473static void sfp_sm_link_check_los(struct sfp *sfp)
1474{
1475 unsigned int los = sfp->state & SFP_F_LOS;
1476
1477 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1478 * are set, we assume that no LOS signal is available.
1479 */
1480 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1481 los ^= SFP_F_LOS;
1482 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1483 los = 0;
1484
1485 if (los)
1486 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1487 else
1488 sfp_sm_link_up(sfp);
1489}
1490
1491static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1492{
1493 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1494 event == SFP_E_LOS_LOW) ||
1495 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1496 event == SFP_E_LOS_HIGH);
1497}
1498
1499static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1500{
1501 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1502 event == SFP_E_LOS_HIGH) ||
1503 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1504 event == SFP_E_LOS_LOW);
1505}
1506
1507static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1508{
1509 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1510 dev_err(sfp->dev,
1511 "module persistently indicates fault, disabling\n");
1512 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1513 } else {
1514 if (warn)
1515 dev_err(sfp->dev, "module transmit fault indicated\n");
1516
1517 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1518 }
1519}
1520
1521/* Probe a SFP for a PHY device if the module supports copper - the PHY
1522 * normally sits at I2C bus address 0x56, and may either be a clause 22
1523 * or clause 45 PHY.
1524 *
1525 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1526 * negotiation enabled, but some may be in 1000base-X - which is for the
1527 * PHY driver to determine.
1528 *
1529 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1530 * mode according to the negotiated line speed.
1531 */
1532static int sfp_sm_probe_for_phy(struct sfp *sfp)
1533{
1534 int err = 0;
1535
1536 switch (sfp->id.base.extended_cc) {
1537 case SFF8024_ECC_10GBASE_T_SFI:
1538 case SFF8024_ECC_10GBASE_T_SR:
1539 case SFF8024_ECC_5GBASE_T:
1540 case SFF8024_ECC_2_5GBASE_T:
1541 err = sfp_sm_probe_phy(sfp, true);
1542 break;
1543
1544 default:
1545 if (sfp->id.base.e1000_base_t)
1546 err = sfp_sm_probe_phy(sfp, false);
1547 break;
1548 }
1549 return err;
1550}
1551
1552static int sfp_module_parse_power(struct sfp *sfp)
1553{
1554 u32 power_mW = 1000;
1555
1556 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1557 power_mW = 1500;
1558 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1559 power_mW = 2000;
1560
1561 if (power_mW > sfp->max_power_mW) {
1562 /* Module power specification exceeds the allowed maximum. */
1563 if (sfp->id.ext.sff8472_compliance ==
1564 SFP_SFF8472_COMPLIANCE_NONE &&
1565 !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1566 /* The module appears not to implement bus address
1567 * 0xa2, so assume that the module powers up in the
1568 * indicated mode.
1569 */
1570 dev_err(sfp->dev,
1571 "Host does not support %u.%uW modules\n",
1572 power_mW / 1000, (power_mW / 100) % 10);
1573 return -EINVAL;
1574 } else {
1575 dev_warn(sfp->dev,
1576 "Host does not support %u.%uW modules, module left in power mode 1\n",
1577 power_mW / 1000, (power_mW / 100) % 10);
1578 return 0;
1579 }
1580 }
1581
1582 /* If the module requires a higher power mode, but also requires
1583 * an address change sequence, warn the user that the module may
1584 * not be functional.
1585 */
1586 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1587 dev_warn(sfp->dev,
1588 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1589 power_mW / 1000, (power_mW / 100) % 10);
1590 return 0;
1591 }
1592
1593 sfp->module_power_mW = power_mW;
1594
1595 return 0;
1596}
1597
1598static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1599{
1600 u8 val;
1601 int err;
1602
1603 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1604 if (err != sizeof(val)) {
1605 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1606 return -EAGAIN;
1607 }
1608
1609 /* DM7052 reports as a high power module, responds to reads (with
1610 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1611 * if the bit is already set, we're already in high power mode.
1612 */
1613 if (!!(val & BIT(0)) == enable)
1614 return 0;
1615
1616 if (enable)
1617 val |= BIT(0);
1618 else
1619 val &= ~BIT(0);
1620
1621 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1622 if (err != sizeof(val)) {
1623 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1624 return -EAGAIN;
1625 }
1626
1627 if (enable)
1628 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1629 sfp->module_power_mW / 1000,
1630 (sfp->module_power_mW / 100) % 10);
1631
1632 return 0;
1633}
1634
1635static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1636{
1637 u8 check;
1638 int err;
1639
1640 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1641 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1642 id->base.connector != SFF8024_CONNECTOR_LC) {
1643 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1644 id->base.phys_id = SFF8024_ID_SFF_8472;
1645 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1646 id->base.connector = SFF8024_CONNECTOR_LC;
1647 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1648 if (err != 3) {
1649 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1650 return err;
1651 }
1652
1653 /* Cotsworks modules have been found to require a delay between write operations. */
1654 mdelay(50);
1655
1656 /* Update base structure checksum */
1657 check = sfp_check(&id->base, sizeof(id->base) - 1);
1658 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1659 if (err != 1) {
1660 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1661 return err;
1662 }
1663 }
1664 return 0;
1665}
1666
1667static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1668{
1669 /* SFP module inserted - read I2C data */
1670 struct sfp_eeprom_id id;
1671 bool cotsworks_sfbg;
1672 bool cotsworks;
1673 u8 check;
1674 int ret;
1675
1676 ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1677 if (ret < 0) {
1678 if (report)
1679 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1680 return -EAGAIN;
1681 }
1682
1683 if (ret != sizeof(id)) {
1684 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1685 return -EAGAIN;
1686 }
1687
1688 /* Cotsworks do not seem to update the checksums when they
1689 * do the final programming with the final module part number,
1690 * serial number and date code.
1691 */
1692 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1693 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1694
1695 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1696 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1697 * Cotsworks PN matches and bytes are not correct.
1698 */
1699 if (cotsworks && cotsworks_sfbg) {
1700 ret = sfp_cotsworks_fixup_check(sfp, &id);
1701 if (ret < 0)
1702 return ret;
1703 }
1704
1705 /* Validate the checksum over the base structure */
1706 check = sfp_check(&id.base, sizeof(id.base) - 1);
1707 if (check != id.base.cc_base) {
1708 if (cotsworks) {
1709 dev_warn(sfp->dev,
1710 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1711 check, id.base.cc_base);
1712 } else {
1713 dev_err(sfp->dev,
1714 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1715 check, id.base.cc_base);
1716 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1717 16, 1, &id, sizeof(id), true);
1718 return -EINVAL;
1719 }
1720 }
1721
1722 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1723 if (check != id.ext.cc_ext) {
1724 if (cotsworks) {
1725 dev_warn(sfp->dev,
1726 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1727 check, id.ext.cc_ext);
1728 } else {
1729 dev_err(sfp->dev,
1730 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1731 check, id.ext.cc_ext);
1732 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1733 16, 1, &id, sizeof(id), true);
1734 memset(&id.ext, 0, sizeof(id.ext));
1735 }
1736 }
1737
1738 sfp->id = id;
1739
1740 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1741 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1742 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1743 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1744 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1745 (int)sizeof(id.ext.datecode), id.ext.datecode);
1746
1747 /* Check whether we support this module */
1748 if (!sfp->type->module_supported(&id)) {
1749 dev_err(sfp->dev,
1750 "module is not supported - phys id 0x%02x 0x%02x\n",
1751 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1752 return -EINVAL;
1753 }
1754
1755 /* If the module requires address swap mode, warn about it */
1756 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1757 dev_warn(sfp->dev,
1758 "module address swap to access page 0xA2 is not supported.\n");
1759
1760 /* Parse the module power requirement */
1761 ret = sfp_module_parse_power(sfp);
1762 if (ret < 0)
1763 return ret;
1764
1765 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1766 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1767 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1768 else
1769 sfp->module_t_start_up = T_START_UP;
1770
1771 return 0;
1772}
1773
1774static void sfp_sm_mod_remove(struct sfp *sfp)
1775{
1776 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1777 sfp_module_remove(sfp->sfp_bus);
1778
1779 sfp_hwmon_remove(sfp);
1780
1781 memset(&sfp->id, 0, sizeof(sfp->id));
1782 sfp->module_power_mW = 0;
1783
1784 dev_info(sfp->dev, "module removed\n");
1785}
1786
1787/* This state machine tracks the upstream's state */
1788static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1789{
1790 switch (sfp->sm_dev_state) {
1791 default:
1792 if (event == SFP_E_DEV_ATTACH)
1793 sfp->sm_dev_state = SFP_DEV_DOWN;
1794 break;
1795
1796 case SFP_DEV_DOWN:
1797 if (event == SFP_E_DEV_DETACH)
1798 sfp->sm_dev_state = SFP_DEV_DETACHED;
1799 else if (event == SFP_E_DEV_UP)
1800 sfp->sm_dev_state = SFP_DEV_UP;
1801 break;
1802
1803 case SFP_DEV_UP:
1804 if (event == SFP_E_DEV_DETACH)
1805 sfp->sm_dev_state = SFP_DEV_DETACHED;
1806 else if (event == SFP_E_DEV_DOWN)
1807 sfp->sm_dev_state = SFP_DEV_DOWN;
1808 break;
1809 }
1810}
1811
1812/* This state machine tracks the insert/remove state of the module, probes
1813 * the on-board EEPROM, and sets up the power level.
1814 */
1815static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1816{
1817 int err;
1818
1819 /* Handle remove event globally, it resets this state machine */
1820 if (event == SFP_E_REMOVE) {
1821 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1822 sfp_sm_mod_remove(sfp);
1823 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1824 return;
1825 }
1826
1827 /* Handle device detach globally */
1828 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1829 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1830 if (sfp->module_power_mW > 1000 &&
1831 sfp->sm_mod_state > SFP_MOD_HPOWER)
1832 sfp_sm_mod_hpower(sfp, false);
1833 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1834 return;
1835 }
1836
1837 switch (sfp->sm_mod_state) {
1838 default:
1839 if (event == SFP_E_INSERT) {
1840 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1841 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1842 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1843 }
1844 break;
1845
1846 case SFP_MOD_PROBE:
1847 /* Wait for T_PROBE_INIT to time out */
1848 if (event != SFP_E_TIMEOUT)
1849 break;
1850
1851 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1852 if (err == -EAGAIN) {
1853 if (sfp->sm_mod_tries_init &&
1854 --sfp->sm_mod_tries_init) {
1855 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1856 break;
1857 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1858 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1859 dev_warn(sfp->dev,
1860 "please wait, module slow to respond\n");
1861 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1862 break;
1863 }
1864 }
1865 if (err < 0) {
1866 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1867 break;
1868 }
1869
1870 err = sfp_hwmon_insert(sfp);
1871 if (err)
1872 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1873
1874 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1875 fallthrough;
1876 case SFP_MOD_WAITDEV:
1877 /* Ensure that the device is attached before proceeding */
1878 if (sfp->sm_dev_state < SFP_DEV_DOWN)
1879 break;
1880
1881 /* Report the module insertion to the upstream device */
1882 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1883 if (err < 0) {
1884 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1885 break;
1886 }
1887
1888 /* If this is a power level 1 module, we are done */
1889 if (sfp->module_power_mW <= 1000)
1890 goto insert;
1891
1892 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
1893 fallthrough;
1894 case SFP_MOD_HPOWER:
1895 /* Enable high power mode */
1896 err = sfp_sm_mod_hpower(sfp, true);
1897 if (err < 0) {
1898 if (err != -EAGAIN) {
1899 sfp_module_remove(sfp->sfp_bus);
1900 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1901 } else {
1902 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1903 }
1904 break;
1905 }
1906
1907 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
1908 break;
1909
1910 case SFP_MOD_WAITPWR:
1911 /* Wait for T_HPOWER_LEVEL to time out */
1912 if (event != SFP_E_TIMEOUT)
1913 break;
1914
1915 insert:
1916 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
1917 break;
1918
1919 case SFP_MOD_PRESENT:
1920 case SFP_MOD_ERROR:
1921 break;
1922 }
1923}
1924
1925static void sfp_sm_main(struct sfp *sfp, unsigned int event)
1926{
1927 unsigned long timeout;
1928 int ret;
1929
1930 /* Some events are global */
1931 if (sfp->sm_state != SFP_S_DOWN &&
1932 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1933 sfp->sm_dev_state != SFP_DEV_UP)) {
1934 if (sfp->sm_state == SFP_S_LINK_UP &&
1935 sfp->sm_dev_state == SFP_DEV_UP)
1936 sfp_sm_link_down(sfp);
1937 if (sfp->sm_state > SFP_S_INIT)
1938 sfp_module_stop(sfp->sfp_bus);
1939 if (sfp->mod_phy)
1940 sfp_sm_phy_detach(sfp);
1941 sfp_module_tx_disable(sfp);
1942 sfp_soft_stop_poll(sfp);
1943 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1944 return;
1945 }
1946
1947 /* The main state machine */
1948 switch (sfp->sm_state) {
1949 case SFP_S_DOWN:
1950 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1951 sfp->sm_dev_state != SFP_DEV_UP)
1952 break;
1953
1954 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
1955 sfp_soft_start_poll(sfp);
1956
1957 sfp_module_tx_enable(sfp);
1958
1959 /* Initialise the fault clearance retries */
1960 sfp->sm_fault_retries = N_FAULT_INIT;
1961
1962 /* We need to check the TX_FAULT state, which is not defined
1963 * while TX_DISABLE is asserted. The earliest we want to do
1964 * anything (such as probe for a PHY) is 50ms.
1965 */
1966 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
1967 break;
1968
1969 case SFP_S_WAIT:
1970 if (event != SFP_E_TIMEOUT)
1971 break;
1972
1973 if (sfp->state & SFP_F_TX_FAULT) {
1974 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
1975 * from the TX_DISABLE deassertion for the module to
1976 * initialise, which is indicated by TX_FAULT
1977 * deasserting.
1978 */
1979 timeout = sfp->module_t_start_up;
1980 if (timeout > T_WAIT)
1981 timeout -= T_WAIT;
1982 else
1983 timeout = 1;
1984
1985 sfp_sm_next(sfp, SFP_S_INIT, timeout);
1986 } else {
1987 /* TX_FAULT is not asserted, assume the module has
1988 * finished initialising.
1989 */
1990 goto init_done;
1991 }
1992 break;
1993
1994 case SFP_S_INIT:
1995 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1996 /* TX_FAULT is still asserted after t_init or
1997 * or t_start_up, so assume there is a fault.
1998 */
1999 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2000 sfp->sm_fault_retries == N_FAULT_INIT);
2001 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2002 init_done:
2003 sfp->sm_phy_retries = R_PHY_RETRY;
2004 goto phy_probe;
2005 }
2006 break;
2007
2008 case SFP_S_INIT_PHY:
2009 if (event != SFP_E_TIMEOUT)
2010 break;
2011 phy_probe:
2012 /* TX_FAULT deasserted or we timed out with TX_FAULT
2013 * clear. Probe for the PHY and check the LOS state.
2014 */
2015 ret = sfp_sm_probe_for_phy(sfp);
2016 if (ret == -ENODEV) {
2017 if (--sfp->sm_phy_retries) {
2018 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2019 break;
2020 } else {
2021 dev_info(sfp->dev, "no PHY detected\n");
2022 }
2023 } else if (ret) {
2024 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2025 break;
2026 }
2027 if (sfp_module_start(sfp->sfp_bus)) {
2028 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2029 break;
2030 }
2031 sfp_sm_link_check_los(sfp);
2032
2033 /* Reset the fault retry count */
2034 sfp->sm_fault_retries = N_FAULT;
2035 break;
2036
2037 case SFP_S_INIT_TX_FAULT:
2038 if (event == SFP_E_TIMEOUT) {
2039 sfp_module_tx_fault_reset(sfp);
2040 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2041 }
2042 break;
2043
2044 case SFP_S_WAIT_LOS:
2045 if (event == SFP_E_TX_FAULT)
2046 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2047 else if (sfp_los_event_inactive(sfp, event))
2048 sfp_sm_link_up(sfp);
2049 break;
2050
2051 case SFP_S_LINK_UP:
2052 if (event == SFP_E_TX_FAULT) {
2053 sfp_sm_link_down(sfp);
2054 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2055 } else if (sfp_los_event_active(sfp, event)) {
2056 sfp_sm_link_down(sfp);
2057 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2058 }
2059 break;
2060
2061 case SFP_S_TX_FAULT:
2062 if (event == SFP_E_TIMEOUT) {
2063 sfp_module_tx_fault_reset(sfp);
2064 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2065 }
2066 break;
2067
2068 case SFP_S_REINIT:
2069 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2070 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2071 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2072 dev_info(sfp->dev, "module transmit fault recovered\n");
2073 sfp_sm_link_check_los(sfp);
2074 }
2075 break;
2076
2077 case SFP_S_TX_DISABLE:
2078 break;
2079 }
2080}
2081
2082static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2083{
2084 mutex_lock(&sfp->sm_mutex);
2085
2086 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2087 mod_state_to_str(sfp->sm_mod_state),
2088 dev_state_to_str(sfp->sm_dev_state),
2089 sm_state_to_str(sfp->sm_state),
2090 event_to_str(event));
2091
2092 sfp_sm_device(sfp, event);
2093 sfp_sm_module(sfp, event);
2094 sfp_sm_main(sfp, event);
2095
2096 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2097 mod_state_to_str(sfp->sm_mod_state),
2098 dev_state_to_str(sfp->sm_dev_state),
2099 sm_state_to_str(sfp->sm_state));
2100
2101 mutex_unlock(&sfp->sm_mutex);
2102}
2103
2104static void sfp_attach(struct sfp *sfp)
2105{
2106 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2107}
2108
2109static void sfp_detach(struct sfp *sfp)
2110{
2111 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2112}
2113
2114static void sfp_start(struct sfp *sfp)
2115{
2116 sfp_sm_event(sfp, SFP_E_DEV_UP);
2117}
2118
2119static void sfp_stop(struct sfp *sfp)
2120{
2121 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2122}
2123
2124static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2125{
2126 /* locking... and check module is present */
2127
2128 if (sfp->id.ext.sff8472_compliance &&
2129 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2130 modinfo->type = ETH_MODULE_SFF_8472;
2131 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2132 } else {
2133 modinfo->type = ETH_MODULE_SFF_8079;
2134 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2135 }
2136 return 0;
2137}
2138
2139static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2140 u8 *data)
2141{
2142 unsigned int first, last, len;
2143 int ret;
2144
2145 if (ee->len == 0)
2146 return -EINVAL;
2147
2148 first = ee->offset;
2149 last = ee->offset + ee->len;
2150 if (first < ETH_MODULE_SFF_8079_LEN) {
2151 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2152 len -= first;
2153
2154 ret = sfp_read(sfp, false, first, data, len);
2155 if (ret < 0)
2156 return ret;
2157
2158 first += len;
2159 data += len;
2160 }
2161 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2162 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2163 len -= first;
2164 first -= ETH_MODULE_SFF_8079_LEN;
2165
2166 ret = sfp_read(sfp, true, first, data, len);
2167 if (ret < 0)
2168 return ret;
2169 }
2170 return 0;
2171}
2172
2173static const struct sfp_socket_ops sfp_module_ops = {
2174 .attach = sfp_attach,
2175 .detach = sfp_detach,
2176 .start = sfp_start,
2177 .stop = sfp_stop,
2178 .module_info = sfp_module_info,
2179 .module_eeprom = sfp_module_eeprom,
2180};
2181
2182static void sfp_timeout(struct work_struct *work)
2183{
2184 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2185
2186 rtnl_lock();
2187 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2188 rtnl_unlock();
2189}
2190
2191static void sfp_check_state(struct sfp *sfp)
2192{
2193 unsigned int state, i, changed;
2194
2195 mutex_lock(&sfp->st_mutex);
2196 state = sfp_get_state(sfp);
2197 changed = state ^ sfp->state;
2198 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2199
2200 for (i = 0; i < GPIO_MAX; i++)
2201 if (changed & BIT(i))
2202 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2203 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2204
2205 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2206 sfp->state = state;
2207
2208 rtnl_lock();
2209 if (changed & SFP_F_PRESENT)
2210 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2211 SFP_E_INSERT : SFP_E_REMOVE);
2212
2213 if (changed & SFP_F_TX_FAULT)
2214 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2215 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2216
2217 if (changed & SFP_F_LOS)
2218 sfp_sm_event(sfp, state & SFP_F_LOS ?
2219 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2220 rtnl_unlock();
2221 mutex_unlock(&sfp->st_mutex);
2222}
2223
2224static irqreturn_t sfp_irq(int irq, void *data)
2225{
2226 struct sfp *sfp = data;
2227
2228 sfp_check_state(sfp);
2229
2230 return IRQ_HANDLED;
2231}
2232
2233static void sfp_poll(struct work_struct *work)
2234{
2235 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2236
2237 sfp_check_state(sfp);
2238
2239 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2240 sfp->need_poll)
2241 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2242}
2243
2244static struct sfp *sfp_alloc(struct device *dev)
2245{
2246 struct sfp *sfp;
2247
2248 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2249 if (!sfp)
2250 return ERR_PTR(-ENOMEM);
2251
2252 sfp->dev = dev;
2253
2254 mutex_init(&sfp->sm_mutex);
2255 mutex_init(&sfp->st_mutex);
2256 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2257 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2258
2259 sfp_hwmon_init(sfp);
2260
2261 return sfp;
2262}
2263
2264static void sfp_cleanup(void *data)
2265{
2266 struct sfp *sfp = data;
2267
2268 sfp_hwmon_exit(sfp);
2269
2270 cancel_delayed_work_sync(&sfp->poll);
2271 cancel_delayed_work_sync(&sfp->timeout);
2272 if (sfp->i2c_mii) {
2273 mdiobus_unregister(sfp->i2c_mii);
2274 mdiobus_free(sfp->i2c_mii);
2275 }
2276 if (sfp->i2c)
2277 i2c_put_adapter(sfp->i2c);
2278 kfree(sfp);
2279}
2280
2281static int sfp_probe(struct platform_device *pdev)
2282{
2283 const struct sff_data *sff;
2284 struct i2c_adapter *i2c;
2285 char *sfp_irq_name;
2286 struct sfp *sfp;
2287 int err, i;
2288
2289 sfp = sfp_alloc(&pdev->dev);
2290 if (IS_ERR(sfp))
2291 return PTR_ERR(sfp);
2292
2293 platform_set_drvdata(pdev, sfp);
2294
2295 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2296 if (err < 0)
2297 return err;
2298
2299 sff = sfp->type = &sfp_data;
2300
2301 if (pdev->dev.of_node) {
2302 struct device_node *node = pdev->dev.of_node;
2303 const struct of_device_id *id;
2304 struct device_node *np;
2305
2306 id = of_match_node(sfp_of_match, node);
2307 if (WARN_ON(!id))
2308 return -EINVAL;
2309
2310 sff = sfp->type = id->data;
2311
2312 np = of_parse_phandle(node, "i2c-bus", 0);
2313 if (!np) {
2314 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2315 return -ENODEV;
2316 }
2317
2318 i2c = of_find_i2c_adapter_by_node(np);
2319 of_node_put(np);
2320 } else if (has_acpi_companion(&pdev->dev)) {
2321 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2322 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2323 struct fwnode_reference_args args;
2324 struct acpi_handle *acpi_handle;
2325 int ret;
2326
2327 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2328 if (ret || !is_acpi_device_node(args.fwnode)) {
2329 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2330 return -ENODEV;
2331 }
2332
2333 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2334 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2335 } else {
2336 return -EINVAL;
2337 }
2338
2339 if (!i2c)
2340 return -EPROBE_DEFER;
2341
2342 err = sfp_i2c_configure(sfp, i2c);
2343 if (err < 0) {
2344 i2c_put_adapter(i2c);
2345 return err;
2346 }
2347
2348 for (i = 0; i < GPIO_MAX; i++)
2349 if (sff->gpios & BIT(i)) {
2350 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2351 gpio_of_names[i], gpio_flags[i]);
2352 if (IS_ERR(sfp->gpio[i]))
2353 return PTR_ERR(sfp->gpio[i]);
2354 }
2355
2356 sfp->get_state = sfp_gpio_get_state;
2357 sfp->set_state = sfp_gpio_set_state;
2358
2359 /* Modules that have no detect signal are always present */
2360 if (!(sfp->gpio[GPIO_MODDEF0]))
2361 sfp->get_state = sff_gpio_get_state;
2362
2363 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2364 &sfp->max_power_mW);
2365 if (!sfp->max_power_mW)
2366 sfp->max_power_mW = 1000;
2367
2368 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2369 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2370
2371 /* Get the initial state, and always signal TX disable,
2372 * since the network interface will not be up.
2373 */
2374 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2375
2376 if (sfp->gpio[GPIO_RATE_SELECT] &&
2377 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2378 sfp->state |= SFP_F_RATE_SELECT;
2379 sfp_set_state(sfp, sfp->state);
2380 sfp_module_tx_disable(sfp);
2381 if (sfp->state & SFP_F_PRESENT) {
2382 rtnl_lock();
2383 sfp_sm_event(sfp, SFP_E_INSERT);
2384 rtnl_unlock();
2385 }
2386
2387 for (i = 0; i < GPIO_MAX; i++) {
2388 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2389 continue;
2390
2391 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2392 if (!sfp->gpio_irq[i]) {
2393 sfp->need_poll = true;
2394 continue;
2395 }
2396
2397 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2398 "%s-%s", dev_name(sfp->dev),
2399 gpio_of_names[i]);
2400
2401 if (!sfp_irq_name)
2402 return -ENOMEM;
2403
2404 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2405 NULL, sfp_irq,
2406 IRQF_ONESHOT |
2407 IRQF_TRIGGER_RISING |
2408 IRQF_TRIGGER_FALLING,
2409 sfp_irq_name, sfp);
2410 if (err) {
2411 sfp->gpio_irq[i] = 0;
2412 sfp->need_poll = true;
2413 }
2414 }
2415
2416 if (sfp->need_poll)
2417 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2418
2419 /* We could have an issue in cases no Tx disable pin is available or
2420 * wired as modules using a laser as their light source will continue to
2421 * be active when the fiber is removed. This could be a safety issue and
2422 * we should at least warn the user about that.
2423 */
2424 if (!sfp->gpio[GPIO_TX_DISABLE])
2425 dev_warn(sfp->dev,
2426 "No tx_disable pin: SFP modules will always be emitting.\n");
2427
2428 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2429 if (!sfp->sfp_bus)
2430 return -ENOMEM;
2431
2432 return 0;
2433}
2434
2435static int sfp_remove(struct platform_device *pdev)
2436{
2437 struct sfp *sfp = platform_get_drvdata(pdev);
2438
2439 sfp_unregister_socket(sfp->sfp_bus);
2440
2441 rtnl_lock();
2442 sfp_sm_event(sfp, SFP_E_REMOVE);
2443 rtnl_unlock();
2444
2445 return 0;
2446}
2447
2448static void sfp_shutdown(struct platform_device *pdev)
2449{
2450 struct sfp *sfp = platform_get_drvdata(pdev);
2451 int i;
2452
2453 for (i = 0; i < GPIO_MAX; i++) {
2454 if (!sfp->gpio_irq[i])
2455 continue;
2456
2457 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2458 }
2459
2460 cancel_delayed_work_sync(&sfp->poll);
2461 cancel_delayed_work_sync(&sfp->timeout);
2462}
2463
2464static struct platform_driver sfp_driver = {
2465 .probe = sfp_probe,
2466 .remove = sfp_remove,
2467 .shutdown = sfp_shutdown,
2468 .driver = {
2469 .name = "sfp",
2470 .of_match_table = sfp_of_match,
2471 },
2472};
2473
2474static int sfp_init(void)
2475{
2476 poll_jiffies = msecs_to_jiffies(100);
2477
2478 return platform_driver_register(&sfp_driver);
2479}
2480module_init(sfp_init);
2481
2482static void sfp_exit(void)
2483{
2484 platform_driver_unregister(&sfp_driver);
2485}
2486module_exit(sfp_exit);
2487
2488MODULE_ALIAS("platform:sfp");
2489MODULE_AUTHOR("Russell King");
2490MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/debugfs.h>
5#include <linux/delay.h>
6#include <linux/gpio/consumer.h>
7#include <linux/hwmon.h>
8#include <linux/i2c.h>
9#include <linux/interrupt.h>
10#include <linux/jiffies.h>
11#include <linux/mdio/mdio-i2c.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/of.h>
15#include <linux/phy.h>
16#include <linux/platform_device.h>
17#include <linux/rtnetlink.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20
21#include "sfp.h"
22#include "swphy.h"
23
24enum {
25 GPIO_MODDEF0,
26 GPIO_LOS,
27 GPIO_TX_FAULT,
28 GPIO_TX_DISABLE,
29 GPIO_RATE_SELECT,
30 GPIO_MAX,
31
32 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 SFP_F_LOS = BIT(GPIO_LOS),
34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37
38 SFP_E_INSERT = 0,
39 SFP_E_REMOVE,
40 SFP_E_DEV_ATTACH,
41 SFP_E_DEV_DETACH,
42 SFP_E_DEV_DOWN,
43 SFP_E_DEV_UP,
44 SFP_E_TX_FAULT,
45 SFP_E_TX_CLEAR,
46 SFP_E_LOS_HIGH,
47 SFP_E_LOS_LOW,
48 SFP_E_TIMEOUT,
49
50 SFP_MOD_EMPTY = 0,
51 SFP_MOD_ERROR,
52 SFP_MOD_PROBE,
53 SFP_MOD_WAITDEV,
54 SFP_MOD_HPOWER,
55 SFP_MOD_WAITPWR,
56 SFP_MOD_PRESENT,
57
58 SFP_DEV_DETACHED = 0,
59 SFP_DEV_DOWN,
60 SFP_DEV_UP,
61
62 SFP_S_DOWN = 0,
63 SFP_S_FAIL,
64 SFP_S_WAIT,
65 SFP_S_INIT,
66 SFP_S_INIT_PHY,
67 SFP_S_INIT_TX_FAULT,
68 SFP_S_WAIT_LOS,
69 SFP_S_LINK_UP,
70 SFP_S_TX_FAULT,
71 SFP_S_REINIT,
72 SFP_S_TX_DISABLE,
73};
74
75static const char * const mod_state_strings[] = {
76 [SFP_MOD_EMPTY] = "empty",
77 [SFP_MOD_ERROR] = "error",
78 [SFP_MOD_PROBE] = "probe",
79 [SFP_MOD_WAITDEV] = "waitdev",
80 [SFP_MOD_HPOWER] = "hpower",
81 [SFP_MOD_WAITPWR] = "waitpwr",
82 [SFP_MOD_PRESENT] = "present",
83};
84
85static const char *mod_state_to_str(unsigned short mod_state)
86{
87 if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 return "Unknown module state";
89 return mod_state_strings[mod_state];
90}
91
92static const char * const dev_state_strings[] = {
93 [SFP_DEV_DETACHED] = "detached",
94 [SFP_DEV_DOWN] = "down",
95 [SFP_DEV_UP] = "up",
96};
97
98static const char *dev_state_to_str(unsigned short dev_state)
99{
100 if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 return "Unknown device state";
102 return dev_state_strings[dev_state];
103}
104
105static const char * const event_strings[] = {
106 [SFP_E_INSERT] = "insert",
107 [SFP_E_REMOVE] = "remove",
108 [SFP_E_DEV_ATTACH] = "dev_attach",
109 [SFP_E_DEV_DETACH] = "dev_detach",
110 [SFP_E_DEV_DOWN] = "dev_down",
111 [SFP_E_DEV_UP] = "dev_up",
112 [SFP_E_TX_FAULT] = "tx_fault",
113 [SFP_E_TX_CLEAR] = "tx_clear",
114 [SFP_E_LOS_HIGH] = "los_high",
115 [SFP_E_LOS_LOW] = "los_low",
116 [SFP_E_TIMEOUT] = "timeout",
117};
118
119static const char *event_to_str(unsigned short event)
120{
121 if (event >= ARRAY_SIZE(event_strings))
122 return "Unknown event";
123 return event_strings[event];
124}
125
126static const char * const sm_state_strings[] = {
127 [SFP_S_DOWN] = "down",
128 [SFP_S_FAIL] = "fail",
129 [SFP_S_WAIT] = "wait",
130 [SFP_S_INIT] = "init",
131 [SFP_S_INIT_PHY] = "init_phy",
132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 [SFP_S_WAIT_LOS] = "wait_los",
134 [SFP_S_LINK_UP] = "link_up",
135 [SFP_S_TX_FAULT] = "tx_fault",
136 [SFP_S_REINIT] = "reinit",
137 [SFP_S_TX_DISABLE] = "tx_disable",
138};
139
140static const char *sm_state_to_str(unsigned short sm_state)
141{
142 if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 return "Unknown state";
144 return sm_state_strings[sm_state];
145}
146
147static const char *gpio_of_names[] = {
148 "mod-def0",
149 "los",
150 "tx-fault",
151 "tx-disable",
152 "rate-select0",
153};
154
155static const enum gpiod_flags gpio_flags[] = {
156 GPIOD_IN,
157 GPIOD_IN,
158 GPIOD_IN,
159 GPIOD_ASIS,
160 GPIOD_ASIS,
161};
162
163/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164 * non-cooled module to initialise its laser safety circuitry. We wait
165 * an initial T_WAIT period before we check the tx fault to give any PHY
166 * on board (for a copper SFP) time to initialise.
167 */
168#define T_WAIT msecs_to_jiffies(50)
169#define T_WAIT_ROLLBALL msecs_to_jiffies(25000)
170#define T_START_UP msecs_to_jiffies(300)
171#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
172
173/* t_reset is the time required to assert the TX_DISABLE signal to reset
174 * an indicated TX_FAULT.
175 */
176#define T_RESET_US 10
177#define T_FAULT_RECOVER msecs_to_jiffies(1000)
178
179/* N_FAULT_INIT is the number of recovery attempts at module initialisation
180 * time. If the TX_FAULT signal is not deasserted after this number of
181 * attempts at clearing it, we decide that the module is faulty.
182 * N_FAULT is the same but after the module has initialised.
183 */
184#define N_FAULT_INIT 5
185#define N_FAULT 5
186
187/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
188 * R_PHY_RETRY is the number of attempts.
189 */
190#define T_PHY_RETRY msecs_to_jiffies(50)
191#define R_PHY_RETRY 12
192
193/* SFP module presence detection is poor: the three MOD DEF signals are
194 * the same length on the PCB, which means it's possible for MOD DEF 0 to
195 * connect before the I2C bus on MOD DEF 1/2.
196 *
197 * The SFF-8472 specifies t_serial ("Time from power on until module is
198 * ready for data transmission over the two wire serial bus.") as 300ms.
199 */
200#define T_SERIAL msecs_to_jiffies(300)
201#define T_HPOWER_LEVEL msecs_to_jiffies(300)
202#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
203#define R_PROBE_RETRY_INIT 10
204#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
205#define R_PROBE_RETRY_SLOW 12
206
207/* SFP modules appear to always have their PHY configured for bus address
208 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
209 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
210 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
211 */
212#define SFP_PHY_ADDR 22
213#define SFP_PHY_ADDR_ROLLBALL 17
214
215struct sff_data {
216 unsigned int gpios;
217 bool (*module_supported)(const struct sfp_eeprom_id *id);
218};
219
220struct sfp {
221 struct device *dev;
222 struct i2c_adapter *i2c;
223 struct mii_bus *i2c_mii;
224 struct sfp_bus *sfp_bus;
225 enum mdio_i2c_proto mdio_protocol;
226 struct phy_device *mod_phy;
227 const struct sff_data *type;
228 size_t i2c_block_size;
229 u32 max_power_mW;
230
231 unsigned int (*get_state)(struct sfp *);
232 void (*set_state)(struct sfp *, unsigned int);
233 int (*read)(struct sfp *, bool, u8, void *, size_t);
234 int (*write)(struct sfp *, bool, u8, void *, size_t);
235
236 struct gpio_desc *gpio[GPIO_MAX];
237 int gpio_irq[GPIO_MAX];
238
239 bool need_poll;
240
241 struct mutex st_mutex; /* Protects state */
242 unsigned int state_hw_mask;
243 unsigned int state_soft_mask;
244 unsigned int state;
245 struct delayed_work poll;
246 struct delayed_work timeout;
247 struct mutex sm_mutex; /* Protects state machine */
248 unsigned char sm_mod_state;
249 unsigned char sm_mod_tries_init;
250 unsigned char sm_mod_tries;
251 unsigned char sm_dev_state;
252 unsigned short sm_state;
253 unsigned char sm_fault_retries;
254 unsigned char sm_phy_retries;
255
256 struct sfp_eeprom_id id;
257 unsigned int module_power_mW;
258 unsigned int module_t_start_up;
259 unsigned int module_t_wait;
260 bool tx_fault_ignore;
261
262 const struct sfp_quirk *quirk;
263
264#if IS_ENABLED(CONFIG_HWMON)
265 struct sfp_diag diag;
266 struct delayed_work hwmon_probe;
267 unsigned int hwmon_tries;
268 struct device *hwmon_dev;
269 char *hwmon_name;
270#endif
271
272#if IS_ENABLED(CONFIG_DEBUG_FS)
273 struct dentry *debugfs_dir;
274#endif
275};
276
277static bool sff_module_supported(const struct sfp_eeprom_id *id)
278{
279 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
280 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
281}
282
283static const struct sff_data sff_data = {
284 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
285 .module_supported = sff_module_supported,
286};
287
288static bool sfp_module_supported(const struct sfp_eeprom_id *id)
289{
290 if (id->base.phys_id == SFF8024_ID_SFP &&
291 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
292 return true;
293
294 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
295 * phys id SFF instead of SFP. Therefore mark this module explicitly
296 * as supported based on vendor name and pn match.
297 */
298 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
299 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
300 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
301 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
302 return true;
303
304 return false;
305}
306
307static const struct sff_data sfp_data = {
308 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
309 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
310 .module_supported = sfp_module_supported,
311};
312
313static const struct of_device_id sfp_of_match[] = {
314 { .compatible = "sff,sff", .data = &sff_data, },
315 { .compatible = "sff,sfp", .data = &sfp_data, },
316 { },
317};
318MODULE_DEVICE_TABLE(of, sfp_of_match);
319
320static void sfp_fixup_long_startup(struct sfp *sfp)
321{
322 sfp->module_t_start_up = T_START_UP_BAD_GPON;
323}
324
325static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
326{
327 sfp->tx_fault_ignore = true;
328}
329
330static void sfp_fixup_halny_gsfp(struct sfp *sfp)
331{
332 /* Ignore the TX_FAULT and LOS signals on this module.
333 * these are possibly used for other purposes on this
334 * module, e.g. a serial port.
335 */
336 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
337}
338
339static void sfp_fixup_rollball(struct sfp *sfp)
340{
341 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
342 sfp->module_t_wait = T_WAIT_ROLLBALL;
343}
344
345static void sfp_fixup_rollball_cc(struct sfp *sfp)
346{
347 sfp_fixup_rollball(sfp);
348
349 /* Some RollBall SFPs may have wrong (zero) extended compliance code
350 * burned in EEPROM. For PHY probing we need the correct one.
351 */
352 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
353}
354
355static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
356 unsigned long *modes,
357 unsigned long *interfaces)
358{
359 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
360 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
361}
362
363static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
364 unsigned long *modes,
365 unsigned long *interfaces)
366{
367 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
368 * types including 10G Ethernet which is not truth. So clear all claimed
369 * modes and set only one mode which module supports: 1000baseX_Full.
370 */
371 linkmode_zero(modes);
372 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
373}
374
375#define SFP_QUIRK(_v, _p, _m, _f) \
376 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
377#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
378#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
379
380static const struct sfp_quirk sfp_quirks[] = {
381 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
382 // report 2500MBd NRZ in their EEPROM
383 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
384
385 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
386 // NRZ in their EEPROM
387 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
388 sfp_fixup_long_startup),
389
390 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
391
392 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
393 // their EEPROM
394 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
395 sfp_fixup_ignore_tx_fault),
396
397 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
398 // 2500MBd NRZ in their EEPROM
399 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
400
401 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
402
403 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
404 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
405 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
406 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
407 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
408};
409
410static size_t sfp_strlen(const char *str, size_t maxlen)
411{
412 size_t size, i;
413
414 /* Trailing characters should be filled with space chars, but
415 * some manufacturers can't read SFF-8472 and use NUL.
416 */
417 for (i = 0, size = 0; i < maxlen; i++)
418 if (str[i] != ' ' && str[i] != '\0')
419 size = i + 1;
420
421 return size;
422}
423
424static bool sfp_match(const char *qs, const char *str, size_t len)
425{
426 if (!qs)
427 return true;
428 if (strlen(qs) != len)
429 return false;
430 return !strncmp(qs, str, len);
431}
432
433static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
434{
435 const struct sfp_quirk *q;
436 unsigned int i;
437 size_t vs, ps;
438
439 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
440 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
441
442 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
443 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
444 sfp_match(q->part, id->base.vendor_pn, ps))
445 return q;
446
447 return NULL;
448}
449
450static unsigned long poll_jiffies;
451
452static unsigned int sfp_gpio_get_state(struct sfp *sfp)
453{
454 unsigned int i, state, v;
455
456 for (i = state = 0; i < GPIO_MAX; i++) {
457 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
458 continue;
459
460 v = gpiod_get_value_cansleep(sfp->gpio[i]);
461 if (v)
462 state |= BIT(i);
463 }
464
465 return state;
466}
467
468static unsigned int sff_gpio_get_state(struct sfp *sfp)
469{
470 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
471}
472
473static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
474{
475 if (state & SFP_F_PRESENT) {
476 /* If the module is present, drive the signals */
477 if (sfp->gpio[GPIO_TX_DISABLE])
478 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
479 state & SFP_F_TX_DISABLE);
480 if (state & SFP_F_RATE_SELECT)
481 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
482 state & SFP_F_RATE_SELECT);
483 } else {
484 /* Otherwise, let them float to the pull-ups */
485 if (sfp->gpio[GPIO_TX_DISABLE])
486 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
487 if (state & SFP_F_RATE_SELECT)
488 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
489 }
490}
491
492static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
493 size_t len)
494{
495 struct i2c_msg msgs[2];
496 u8 bus_addr = a2 ? 0x51 : 0x50;
497 size_t block_size = sfp->i2c_block_size;
498 size_t this_len;
499 int ret;
500
501 msgs[0].addr = bus_addr;
502 msgs[0].flags = 0;
503 msgs[0].len = 1;
504 msgs[0].buf = &dev_addr;
505 msgs[1].addr = bus_addr;
506 msgs[1].flags = I2C_M_RD;
507 msgs[1].len = len;
508 msgs[1].buf = buf;
509
510 while (len) {
511 this_len = len;
512 if (this_len > block_size)
513 this_len = block_size;
514
515 msgs[1].len = this_len;
516
517 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
518 if (ret < 0)
519 return ret;
520
521 if (ret != ARRAY_SIZE(msgs))
522 break;
523
524 msgs[1].buf += this_len;
525 dev_addr += this_len;
526 len -= this_len;
527 }
528
529 return msgs[1].buf - (u8 *)buf;
530}
531
532static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
533 size_t len)
534{
535 struct i2c_msg msgs[1];
536 u8 bus_addr = a2 ? 0x51 : 0x50;
537 int ret;
538
539 msgs[0].addr = bus_addr;
540 msgs[0].flags = 0;
541 msgs[0].len = 1 + len;
542 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
543 if (!msgs[0].buf)
544 return -ENOMEM;
545
546 msgs[0].buf[0] = dev_addr;
547 memcpy(&msgs[0].buf[1], buf, len);
548
549 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
550
551 kfree(msgs[0].buf);
552
553 if (ret < 0)
554 return ret;
555
556 return ret == ARRAY_SIZE(msgs) ? len : 0;
557}
558
559static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
560{
561 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
562 return -EINVAL;
563
564 sfp->i2c = i2c;
565 sfp->read = sfp_i2c_read;
566 sfp->write = sfp_i2c_write;
567
568 return 0;
569}
570
571static int sfp_i2c_mdiobus_create(struct sfp *sfp)
572{
573 struct mii_bus *i2c_mii;
574 int ret;
575
576 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
577 if (IS_ERR(i2c_mii))
578 return PTR_ERR(i2c_mii);
579
580 i2c_mii->name = "SFP I2C Bus";
581 i2c_mii->phy_mask = ~0;
582
583 ret = mdiobus_register(i2c_mii);
584 if (ret < 0) {
585 mdiobus_free(i2c_mii);
586 return ret;
587 }
588
589 sfp->i2c_mii = i2c_mii;
590
591 return 0;
592}
593
594static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
595{
596 mdiobus_unregister(sfp->i2c_mii);
597 sfp->i2c_mii = NULL;
598}
599
600/* Interface */
601static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
602{
603 return sfp->read(sfp, a2, addr, buf, len);
604}
605
606static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
607{
608 return sfp->write(sfp, a2, addr, buf, len);
609}
610
611static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
612{
613 int ret;
614 u8 old, v;
615
616 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
617 if (ret != sizeof(old))
618 return ret;
619
620 v = (old & ~mask) | (val & mask);
621 if (v == old)
622 return sizeof(v);
623
624 return sfp_write(sfp, a2, addr, &v, sizeof(v));
625}
626
627static unsigned int sfp_soft_get_state(struct sfp *sfp)
628{
629 unsigned int state = 0;
630 u8 status;
631 int ret;
632
633 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
634 if (ret == sizeof(status)) {
635 if (status & SFP_STATUS_RX_LOS)
636 state |= SFP_F_LOS;
637 if (status & SFP_STATUS_TX_FAULT)
638 state |= SFP_F_TX_FAULT;
639 } else {
640 dev_err_ratelimited(sfp->dev,
641 "failed to read SFP soft status: %pe\n",
642 ERR_PTR(ret));
643 /* Preserve the current state */
644 state = sfp->state;
645 }
646
647 return state & sfp->state_soft_mask;
648}
649
650static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
651{
652 u8 mask = SFP_STATUS_TX_DISABLE_FORCE;
653 u8 val = 0;
654
655 if (state & SFP_F_TX_DISABLE)
656 val |= SFP_STATUS_TX_DISABLE_FORCE;
657
658
659 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
660}
661
662static void sfp_soft_start_poll(struct sfp *sfp)
663{
664 const struct sfp_eeprom_id *id = &sfp->id;
665 unsigned int mask = 0;
666
667 sfp->state_soft_mask = 0;
668 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
669 mask |= SFP_F_TX_DISABLE;
670 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
671 mask |= SFP_F_TX_FAULT;
672 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
673 mask |= SFP_F_LOS;
674
675 // Poll the soft state for hardware pins we want to ignore
676 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
677
678 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
679 !sfp->need_poll)
680 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
681}
682
683static void sfp_soft_stop_poll(struct sfp *sfp)
684{
685 sfp->state_soft_mask = 0;
686}
687
688static unsigned int sfp_get_state(struct sfp *sfp)
689{
690 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
691 unsigned int state;
692
693 state = sfp->get_state(sfp) & sfp->state_hw_mask;
694 if (state & SFP_F_PRESENT && soft)
695 state |= sfp_soft_get_state(sfp);
696
697 return state;
698}
699
700static void sfp_set_state(struct sfp *sfp, unsigned int state)
701{
702 sfp->set_state(sfp, state);
703
704 if (state & SFP_F_PRESENT &&
705 sfp->state_soft_mask & SFP_F_TX_DISABLE)
706 sfp_soft_set_state(sfp, state);
707}
708
709static unsigned int sfp_check(void *buf, size_t len)
710{
711 u8 *p, check;
712
713 for (p = buf, check = 0; len; p++, len--)
714 check += *p;
715
716 return check;
717}
718
719/* hwmon */
720#if IS_ENABLED(CONFIG_HWMON)
721static umode_t sfp_hwmon_is_visible(const void *data,
722 enum hwmon_sensor_types type,
723 u32 attr, int channel)
724{
725 const struct sfp *sfp = data;
726
727 switch (type) {
728 case hwmon_temp:
729 switch (attr) {
730 case hwmon_temp_min_alarm:
731 case hwmon_temp_max_alarm:
732 case hwmon_temp_lcrit_alarm:
733 case hwmon_temp_crit_alarm:
734 case hwmon_temp_min:
735 case hwmon_temp_max:
736 case hwmon_temp_lcrit:
737 case hwmon_temp_crit:
738 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
739 return 0;
740 fallthrough;
741 case hwmon_temp_input:
742 case hwmon_temp_label:
743 return 0444;
744 default:
745 return 0;
746 }
747 case hwmon_in:
748 switch (attr) {
749 case hwmon_in_min_alarm:
750 case hwmon_in_max_alarm:
751 case hwmon_in_lcrit_alarm:
752 case hwmon_in_crit_alarm:
753 case hwmon_in_min:
754 case hwmon_in_max:
755 case hwmon_in_lcrit:
756 case hwmon_in_crit:
757 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
758 return 0;
759 fallthrough;
760 case hwmon_in_input:
761 case hwmon_in_label:
762 return 0444;
763 default:
764 return 0;
765 }
766 case hwmon_curr:
767 switch (attr) {
768 case hwmon_curr_min_alarm:
769 case hwmon_curr_max_alarm:
770 case hwmon_curr_lcrit_alarm:
771 case hwmon_curr_crit_alarm:
772 case hwmon_curr_min:
773 case hwmon_curr_max:
774 case hwmon_curr_lcrit:
775 case hwmon_curr_crit:
776 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
777 return 0;
778 fallthrough;
779 case hwmon_curr_input:
780 case hwmon_curr_label:
781 return 0444;
782 default:
783 return 0;
784 }
785 case hwmon_power:
786 /* External calibration of receive power requires
787 * floating point arithmetic. Doing that in the kernel
788 * is not easy, so just skip it. If the module does
789 * not require external calibration, we can however
790 * show receiver power, since FP is then not needed.
791 */
792 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
793 channel == 1)
794 return 0;
795 switch (attr) {
796 case hwmon_power_min_alarm:
797 case hwmon_power_max_alarm:
798 case hwmon_power_lcrit_alarm:
799 case hwmon_power_crit_alarm:
800 case hwmon_power_min:
801 case hwmon_power_max:
802 case hwmon_power_lcrit:
803 case hwmon_power_crit:
804 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
805 return 0;
806 fallthrough;
807 case hwmon_power_input:
808 case hwmon_power_label:
809 return 0444;
810 default:
811 return 0;
812 }
813 default:
814 return 0;
815 }
816}
817
818static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
819{
820 __be16 val;
821 int err;
822
823 err = sfp_read(sfp, true, reg, &val, sizeof(val));
824 if (err < 0)
825 return err;
826
827 *value = be16_to_cpu(val);
828
829 return 0;
830}
831
832static void sfp_hwmon_to_rx_power(long *value)
833{
834 *value = DIV_ROUND_CLOSEST(*value, 10);
835}
836
837static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
838 long *value)
839{
840 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
841 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
842}
843
844static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
845{
846 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
847 be16_to_cpu(sfp->diag.cal_t_offset), value);
848
849 if (*value >= 0x8000)
850 *value -= 0x10000;
851
852 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
853}
854
855static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
856{
857 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
858 be16_to_cpu(sfp->diag.cal_v_offset), value);
859
860 *value = DIV_ROUND_CLOSEST(*value, 10);
861}
862
863static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
864{
865 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
866 be16_to_cpu(sfp->diag.cal_txi_offset), value);
867
868 *value = DIV_ROUND_CLOSEST(*value, 500);
869}
870
871static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
872{
873 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
874 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
875
876 *value = DIV_ROUND_CLOSEST(*value, 10);
877}
878
879static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
880{
881 int err;
882
883 err = sfp_hwmon_read_sensor(sfp, reg, value);
884 if (err < 0)
885 return err;
886
887 sfp_hwmon_calibrate_temp(sfp, value);
888
889 return 0;
890}
891
892static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
893{
894 int err;
895
896 err = sfp_hwmon_read_sensor(sfp, reg, value);
897 if (err < 0)
898 return err;
899
900 sfp_hwmon_calibrate_vcc(sfp, value);
901
902 return 0;
903}
904
905static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
906{
907 int err;
908
909 err = sfp_hwmon_read_sensor(sfp, reg, value);
910 if (err < 0)
911 return err;
912
913 sfp_hwmon_calibrate_bias(sfp, value);
914
915 return 0;
916}
917
918static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
919{
920 int err;
921
922 err = sfp_hwmon_read_sensor(sfp, reg, value);
923 if (err < 0)
924 return err;
925
926 sfp_hwmon_calibrate_tx_power(sfp, value);
927
928 return 0;
929}
930
931static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
932{
933 int err;
934
935 err = sfp_hwmon_read_sensor(sfp, reg, value);
936 if (err < 0)
937 return err;
938
939 sfp_hwmon_to_rx_power(value);
940
941 return 0;
942}
943
944static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
945{
946 u8 status;
947 int err;
948
949 switch (attr) {
950 case hwmon_temp_input:
951 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
952
953 case hwmon_temp_lcrit:
954 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
955 sfp_hwmon_calibrate_temp(sfp, value);
956 return 0;
957
958 case hwmon_temp_min:
959 *value = be16_to_cpu(sfp->diag.temp_low_warn);
960 sfp_hwmon_calibrate_temp(sfp, value);
961 return 0;
962 case hwmon_temp_max:
963 *value = be16_to_cpu(sfp->diag.temp_high_warn);
964 sfp_hwmon_calibrate_temp(sfp, value);
965 return 0;
966
967 case hwmon_temp_crit:
968 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
969 sfp_hwmon_calibrate_temp(sfp, value);
970 return 0;
971
972 case hwmon_temp_lcrit_alarm:
973 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
974 if (err < 0)
975 return err;
976
977 *value = !!(status & SFP_ALARM0_TEMP_LOW);
978 return 0;
979
980 case hwmon_temp_min_alarm:
981 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
982 if (err < 0)
983 return err;
984
985 *value = !!(status & SFP_WARN0_TEMP_LOW);
986 return 0;
987
988 case hwmon_temp_max_alarm:
989 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
990 if (err < 0)
991 return err;
992
993 *value = !!(status & SFP_WARN0_TEMP_HIGH);
994 return 0;
995
996 case hwmon_temp_crit_alarm:
997 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
998 if (err < 0)
999 return err;
1000
1001 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1002 return 0;
1003 default:
1004 return -EOPNOTSUPP;
1005 }
1006
1007 return -EOPNOTSUPP;
1008}
1009
1010static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1011{
1012 u8 status;
1013 int err;
1014
1015 switch (attr) {
1016 case hwmon_in_input:
1017 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1018
1019 case hwmon_in_lcrit:
1020 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1021 sfp_hwmon_calibrate_vcc(sfp, value);
1022 return 0;
1023
1024 case hwmon_in_min:
1025 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1026 sfp_hwmon_calibrate_vcc(sfp, value);
1027 return 0;
1028
1029 case hwmon_in_max:
1030 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1031 sfp_hwmon_calibrate_vcc(sfp, value);
1032 return 0;
1033
1034 case hwmon_in_crit:
1035 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1036 sfp_hwmon_calibrate_vcc(sfp, value);
1037 return 0;
1038
1039 case hwmon_in_lcrit_alarm:
1040 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1041 if (err < 0)
1042 return err;
1043
1044 *value = !!(status & SFP_ALARM0_VCC_LOW);
1045 return 0;
1046
1047 case hwmon_in_min_alarm:
1048 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1049 if (err < 0)
1050 return err;
1051
1052 *value = !!(status & SFP_WARN0_VCC_LOW);
1053 return 0;
1054
1055 case hwmon_in_max_alarm:
1056 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1057 if (err < 0)
1058 return err;
1059
1060 *value = !!(status & SFP_WARN0_VCC_HIGH);
1061 return 0;
1062
1063 case hwmon_in_crit_alarm:
1064 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1065 if (err < 0)
1066 return err;
1067
1068 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1069 return 0;
1070 default:
1071 return -EOPNOTSUPP;
1072 }
1073
1074 return -EOPNOTSUPP;
1075}
1076
1077static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1078{
1079 u8 status;
1080 int err;
1081
1082 switch (attr) {
1083 case hwmon_curr_input:
1084 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1085
1086 case hwmon_curr_lcrit:
1087 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1088 sfp_hwmon_calibrate_bias(sfp, value);
1089 return 0;
1090
1091 case hwmon_curr_min:
1092 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1093 sfp_hwmon_calibrate_bias(sfp, value);
1094 return 0;
1095
1096 case hwmon_curr_max:
1097 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1098 sfp_hwmon_calibrate_bias(sfp, value);
1099 return 0;
1100
1101 case hwmon_curr_crit:
1102 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1103 sfp_hwmon_calibrate_bias(sfp, value);
1104 return 0;
1105
1106 case hwmon_curr_lcrit_alarm:
1107 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1108 if (err < 0)
1109 return err;
1110
1111 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1112 return 0;
1113
1114 case hwmon_curr_min_alarm:
1115 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1116 if (err < 0)
1117 return err;
1118
1119 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1120 return 0;
1121
1122 case hwmon_curr_max_alarm:
1123 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1124 if (err < 0)
1125 return err;
1126
1127 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1128 return 0;
1129
1130 case hwmon_curr_crit_alarm:
1131 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1132 if (err < 0)
1133 return err;
1134
1135 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1136 return 0;
1137 default:
1138 return -EOPNOTSUPP;
1139 }
1140
1141 return -EOPNOTSUPP;
1142}
1143
1144static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1145{
1146 u8 status;
1147 int err;
1148
1149 switch (attr) {
1150 case hwmon_power_input:
1151 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1152
1153 case hwmon_power_lcrit:
1154 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1155 sfp_hwmon_calibrate_tx_power(sfp, value);
1156 return 0;
1157
1158 case hwmon_power_min:
1159 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1160 sfp_hwmon_calibrate_tx_power(sfp, value);
1161 return 0;
1162
1163 case hwmon_power_max:
1164 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1165 sfp_hwmon_calibrate_tx_power(sfp, value);
1166 return 0;
1167
1168 case hwmon_power_crit:
1169 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1170 sfp_hwmon_calibrate_tx_power(sfp, value);
1171 return 0;
1172
1173 case hwmon_power_lcrit_alarm:
1174 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1175 if (err < 0)
1176 return err;
1177
1178 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1179 return 0;
1180
1181 case hwmon_power_min_alarm:
1182 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1183 if (err < 0)
1184 return err;
1185
1186 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1187 return 0;
1188
1189 case hwmon_power_max_alarm:
1190 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1191 if (err < 0)
1192 return err;
1193
1194 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1195 return 0;
1196
1197 case hwmon_power_crit_alarm:
1198 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1199 if (err < 0)
1200 return err;
1201
1202 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1203 return 0;
1204 default:
1205 return -EOPNOTSUPP;
1206 }
1207
1208 return -EOPNOTSUPP;
1209}
1210
1211static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1212{
1213 u8 status;
1214 int err;
1215
1216 switch (attr) {
1217 case hwmon_power_input:
1218 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1219
1220 case hwmon_power_lcrit:
1221 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1222 sfp_hwmon_to_rx_power(value);
1223 return 0;
1224
1225 case hwmon_power_min:
1226 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1227 sfp_hwmon_to_rx_power(value);
1228 return 0;
1229
1230 case hwmon_power_max:
1231 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1232 sfp_hwmon_to_rx_power(value);
1233 return 0;
1234
1235 case hwmon_power_crit:
1236 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1237 sfp_hwmon_to_rx_power(value);
1238 return 0;
1239
1240 case hwmon_power_lcrit_alarm:
1241 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1242 if (err < 0)
1243 return err;
1244
1245 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1246 return 0;
1247
1248 case hwmon_power_min_alarm:
1249 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1250 if (err < 0)
1251 return err;
1252
1253 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1254 return 0;
1255
1256 case hwmon_power_max_alarm:
1257 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1258 if (err < 0)
1259 return err;
1260
1261 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1262 return 0;
1263
1264 case hwmon_power_crit_alarm:
1265 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1266 if (err < 0)
1267 return err;
1268
1269 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1270 return 0;
1271 default:
1272 return -EOPNOTSUPP;
1273 }
1274
1275 return -EOPNOTSUPP;
1276}
1277
1278static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1279 u32 attr, int channel, long *value)
1280{
1281 struct sfp *sfp = dev_get_drvdata(dev);
1282
1283 switch (type) {
1284 case hwmon_temp:
1285 return sfp_hwmon_temp(sfp, attr, value);
1286 case hwmon_in:
1287 return sfp_hwmon_vcc(sfp, attr, value);
1288 case hwmon_curr:
1289 return sfp_hwmon_bias(sfp, attr, value);
1290 case hwmon_power:
1291 switch (channel) {
1292 case 0:
1293 return sfp_hwmon_tx_power(sfp, attr, value);
1294 case 1:
1295 return sfp_hwmon_rx_power(sfp, attr, value);
1296 default:
1297 return -EOPNOTSUPP;
1298 }
1299 default:
1300 return -EOPNOTSUPP;
1301 }
1302}
1303
1304static const char *const sfp_hwmon_power_labels[] = {
1305 "TX_power",
1306 "RX_power",
1307};
1308
1309static int sfp_hwmon_read_string(struct device *dev,
1310 enum hwmon_sensor_types type,
1311 u32 attr, int channel, const char **str)
1312{
1313 switch (type) {
1314 case hwmon_curr:
1315 switch (attr) {
1316 case hwmon_curr_label:
1317 *str = "bias";
1318 return 0;
1319 default:
1320 return -EOPNOTSUPP;
1321 }
1322 break;
1323 case hwmon_temp:
1324 switch (attr) {
1325 case hwmon_temp_label:
1326 *str = "temperature";
1327 return 0;
1328 default:
1329 return -EOPNOTSUPP;
1330 }
1331 break;
1332 case hwmon_in:
1333 switch (attr) {
1334 case hwmon_in_label:
1335 *str = "VCC";
1336 return 0;
1337 default:
1338 return -EOPNOTSUPP;
1339 }
1340 break;
1341 case hwmon_power:
1342 switch (attr) {
1343 case hwmon_power_label:
1344 *str = sfp_hwmon_power_labels[channel];
1345 return 0;
1346 default:
1347 return -EOPNOTSUPP;
1348 }
1349 break;
1350 default:
1351 return -EOPNOTSUPP;
1352 }
1353
1354 return -EOPNOTSUPP;
1355}
1356
1357static const struct hwmon_ops sfp_hwmon_ops = {
1358 .is_visible = sfp_hwmon_is_visible,
1359 .read = sfp_hwmon_read,
1360 .read_string = sfp_hwmon_read_string,
1361};
1362
1363static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1364 HWMON_CHANNEL_INFO(chip,
1365 HWMON_C_REGISTER_TZ),
1366 HWMON_CHANNEL_INFO(in,
1367 HWMON_I_INPUT |
1368 HWMON_I_MAX | HWMON_I_MIN |
1369 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1370 HWMON_I_CRIT | HWMON_I_LCRIT |
1371 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1372 HWMON_I_LABEL),
1373 HWMON_CHANNEL_INFO(temp,
1374 HWMON_T_INPUT |
1375 HWMON_T_MAX | HWMON_T_MIN |
1376 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1377 HWMON_T_CRIT | HWMON_T_LCRIT |
1378 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1379 HWMON_T_LABEL),
1380 HWMON_CHANNEL_INFO(curr,
1381 HWMON_C_INPUT |
1382 HWMON_C_MAX | HWMON_C_MIN |
1383 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1384 HWMON_C_CRIT | HWMON_C_LCRIT |
1385 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1386 HWMON_C_LABEL),
1387 HWMON_CHANNEL_INFO(power,
1388 /* Transmit power */
1389 HWMON_P_INPUT |
1390 HWMON_P_MAX | HWMON_P_MIN |
1391 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1392 HWMON_P_CRIT | HWMON_P_LCRIT |
1393 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1394 HWMON_P_LABEL,
1395 /* Receive power */
1396 HWMON_P_INPUT |
1397 HWMON_P_MAX | HWMON_P_MIN |
1398 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1399 HWMON_P_CRIT | HWMON_P_LCRIT |
1400 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1401 HWMON_P_LABEL),
1402 NULL,
1403};
1404
1405static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1406 .ops = &sfp_hwmon_ops,
1407 .info = sfp_hwmon_info,
1408};
1409
1410static void sfp_hwmon_probe(struct work_struct *work)
1411{
1412 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1413 int err;
1414
1415 /* hwmon interface needs to access 16bit registers in atomic way to
1416 * guarantee coherency of the diagnostic monitoring data. If it is not
1417 * possible to guarantee coherency because EEPROM is broken in such way
1418 * that does not support atomic 16bit read operation then we have to
1419 * skip registration of hwmon device.
1420 */
1421 if (sfp->i2c_block_size < 2) {
1422 dev_info(sfp->dev,
1423 "skipping hwmon device registration due to broken EEPROM\n");
1424 dev_info(sfp->dev,
1425 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1426 return;
1427 }
1428
1429 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1430 if (err < 0) {
1431 if (sfp->hwmon_tries--) {
1432 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1433 T_PROBE_RETRY_SLOW);
1434 } else {
1435 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1436 ERR_PTR(err));
1437 }
1438 return;
1439 }
1440
1441 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1442 if (IS_ERR(sfp->hwmon_name)) {
1443 dev_err(sfp->dev, "out of memory for hwmon name\n");
1444 return;
1445 }
1446
1447 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1448 sfp->hwmon_name, sfp,
1449 &sfp_hwmon_chip_info,
1450 NULL);
1451 if (IS_ERR(sfp->hwmon_dev))
1452 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1453 PTR_ERR(sfp->hwmon_dev));
1454}
1455
1456static int sfp_hwmon_insert(struct sfp *sfp)
1457{
1458 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1459 return 0;
1460
1461 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1462 return 0;
1463
1464 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1465 /* This driver in general does not support address
1466 * change.
1467 */
1468 return 0;
1469
1470 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1471 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1472
1473 return 0;
1474}
1475
1476static void sfp_hwmon_remove(struct sfp *sfp)
1477{
1478 cancel_delayed_work_sync(&sfp->hwmon_probe);
1479 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1480 hwmon_device_unregister(sfp->hwmon_dev);
1481 sfp->hwmon_dev = NULL;
1482 kfree(sfp->hwmon_name);
1483 }
1484}
1485
1486static int sfp_hwmon_init(struct sfp *sfp)
1487{
1488 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1489
1490 return 0;
1491}
1492
1493static void sfp_hwmon_exit(struct sfp *sfp)
1494{
1495 cancel_delayed_work_sync(&sfp->hwmon_probe);
1496}
1497#else
1498static int sfp_hwmon_insert(struct sfp *sfp)
1499{
1500 return 0;
1501}
1502
1503static void sfp_hwmon_remove(struct sfp *sfp)
1504{
1505}
1506
1507static int sfp_hwmon_init(struct sfp *sfp)
1508{
1509 return 0;
1510}
1511
1512static void sfp_hwmon_exit(struct sfp *sfp)
1513{
1514}
1515#endif
1516
1517/* Helpers */
1518static void sfp_module_tx_disable(struct sfp *sfp)
1519{
1520 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1521 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1522 sfp->state |= SFP_F_TX_DISABLE;
1523 sfp_set_state(sfp, sfp->state);
1524}
1525
1526static void sfp_module_tx_enable(struct sfp *sfp)
1527{
1528 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1529 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1530 sfp->state &= ~SFP_F_TX_DISABLE;
1531 sfp_set_state(sfp, sfp->state);
1532}
1533
1534#if IS_ENABLED(CONFIG_DEBUG_FS)
1535static int sfp_debug_state_show(struct seq_file *s, void *data)
1536{
1537 struct sfp *sfp = s->private;
1538
1539 seq_printf(s, "Module state: %s\n",
1540 mod_state_to_str(sfp->sm_mod_state));
1541 seq_printf(s, "Module probe attempts: %d %d\n",
1542 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1543 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1544 seq_printf(s, "Device state: %s\n",
1545 dev_state_to_str(sfp->sm_dev_state));
1546 seq_printf(s, "Main state: %s\n",
1547 sm_state_to_str(sfp->sm_state));
1548 seq_printf(s, "Fault recovery remaining retries: %d\n",
1549 sfp->sm_fault_retries);
1550 seq_printf(s, "PHY probe remaining retries: %d\n",
1551 sfp->sm_phy_retries);
1552 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1553 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1554 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1555 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1556 return 0;
1557}
1558DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1559
1560static void sfp_debugfs_init(struct sfp *sfp)
1561{
1562 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1563
1564 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1565 &sfp_debug_state_fops);
1566}
1567
1568static void sfp_debugfs_exit(struct sfp *sfp)
1569{
1570 debugfs_remove_recursive(sfp->debugfs_dir);
1571}
1572#else
1573static void sfp_debugfs_init(struct sfp *sfp)
1574{
1575}
1576
1577static void sfp_debugfs_exit(struct sfp *sfp)
1578{
1579}
1580#endif
1581
1582static void sfp_module_tx_fault_reset(struct sfp *sfp)
1583{
1584 unsigned int state = sfp->state;
1585
1586 if (state & SFP_F_TX_DISABLE)
1587 return;
1588
1589 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1590
1591 udelay(T_RESET_US);
1592
1593 sfp_set_state(sfp, state);
1594}
1595
1596/* SFP state machine */
1597static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1598{
1599 if (timeout)
1600 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1601 timeout);
1602 else
1603 cancel_delayed_work(&sfp->timeout);
1604}
1605
1606static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1607 unsigned int timeout)
1608{
1609 sfp->sm_state = state;
1610 sfp_sm_set_timer(sfp, timeout);
1611}
1612
1613static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1614 unsigned int timeout)
1615{
1616 sfp->sm_mod_state = state;
1617 sfp_sm_set_timer(sfp, timeout);
1618}
1619
1620static void sfp_sm_phy_detach(struct sfp *sfp)
1621{
1622 sfp_remove_phy(sfp->sfp_bus);
1623 phy_device_remove(sfp->mod_phy);
1624 phy_device_free(sfp->mod_phy);
1625 sfp->mod_phy = NULL;
1626}
1627
1628static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1629{
1630 struct phy_device *phy;
1631 int err;
1632
1633 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1634 if (phy == ERR_PTR(-ENODEV))
1635 return PTR_ERR(phy);
1636 if (IS_ERR(phy)) {
1637 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1638 return PTR_ERR(phy);
1639 }
1640
1641 err = phy_device_register(phy);
1642 if (err) {
1643 phy_device_free(phy);
1644 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1645 ERR_PTR(err));
1646 return err;
1647 }
1648
1649 err = sfp_add_phy(sfp->sfp_bus, phy);
1650 if (err) {
1651 phy_device_remove(phy);
1652 phy_device_free(phy);
1653 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1654 return err;
1655 }
1656
1657 sfp->mod_phy = phy;
1658
1659 return 0;
1660}
1661
1662static void sfp_sm_link_up(struct sfp *sfp)
1663{
1664 sfp_link_up(sfp->sfp_bus);
1665 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1666}
1667
1668static void sfp_sm_link_down(struct sfp *sfp)
1669{
1670 sfp_link_down(sfp->sfp_bus);
1671}
1672
1673static void sfp_sm_link_check_los(struct sfp *sfp)
1674{
1675 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1676 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1677 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1678 bool los = false;
1679
1680 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1681 * are set, we assume that no LOS signal is available. If both are
1682 * set, we assume LOS is not implemented (and is meaningless.)
1683 */
1684 if (los_options == los_inverted)
1685 los = !(sfp->state & SFP_F_LOS);
1686 else if (los_options == los_normal)
1687 los = !!(sfp->state & SFP_F_LOS);
1688
1689 if (los)
1690 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1691 else
1692 sfp_sm_link_up(sfp);
1693}
1694
1695static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1696{
1697 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1698 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1699 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1700
1701 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1702 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1703}
1704
1705static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1706{
1707 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1708 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1709 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1710
1711 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1712 (los_options == los_normal && event == SFP_E_LOS_LOW);
1713}
1714
1715static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1716{
1717 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1718 dev_err(sfp->dev,
1719 "module persistently indicates fault, disabling\n");
1720 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1721 } else {
1722 if (warn)
1723 dev_err(sfp->dev, "module transmit fault indicated\n");
1724
1725 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1726 }
1727}
1728
1729static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1730{
1731 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1732 return sfp_i2c_mdiobus_create(sfp);
1733
1734 return 0;
1735}
1736
1737/* Probe a SFP for a PHY device if the module supports copper - the PHY
1738 * normally sits at I2C bus address 0x56, and may either be a clause 22
1739 * or clause 45 PHY.
1740 *
1741 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1742 * negotiation enabled, but some may be in 1000base-X - which is for the
1743 * PHY driver to determine.
1744 *
1745 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1746 * mode according to the negotiated line speed.
1747 */
1748static int sfp_sm_probe_for_phy(struct sfp *sfp)
1749{
1750 int err = 0;
1751
1752 switch (sfp->mdio_protocol) {
1753 case MDIO_I2C_NONE:
1754 break;
1755
1756 case MDIO_I2C_MARVELL_C22:
1757 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1758 break;
1759
1760 case MDIO_I2C_C45:
1761 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1762 break;
1763
1764 case MDIO_I2C_ROLLBALL:
1765 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1766 break;
1767 }
1768
1769 return err;
1770}
1771
1772static int sfp_module_parse_power(struct sfp *sfp)
1773{
1774 u32 power_mW = 1000;
1775 bool supports_a2;
1776
1777 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1778 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1779 power_mW = 1500;
1780 /* Added in Rev 11.9, but there is no compliance code for this */
1781 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1782 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1783 power_mW = 2000;
1784
1785 /* Power level 1 modules (max. 1W) are always supported. */
1786 if (power_mW <= 1000) {
1787 sfp->module_power_mW = power_mW;
1788 return 0;
1789 }
1790
1791 supports_a2 = sfp->id.ext.sff8472_compliance !=
1792 SFP_SFF8472_COMPLIANCE_NONE ||
1793 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1794
1795 if (power_mW > sfp->max_power_mW) {
1796 /* Module power specification exceeds the allowed maximum. */
1797 if (!supports_a2) {
1798 /* The module appears not to implement bus address
1799 * 0xa2, so assume that the module powers up in the
1800 * indicated mode.
1801 */
1802 dev_err(sfp->dev,
1803 "Host does not support %u.%uW modules\n",
1804 power_mW / 1000, (power_mW / 100) % 10);
1805 return -EINVAL;
1806 } else {
1807 dev_warn(sfp->dev,
1808 "Host does not support %u.%uW modules, module left in power mode 1\n",
1809 power_mW / 1000, (power_mW / 100) % 10);
1810 return 0;
1811 }
1812 }
1813
1814 if (!supports_a2) {
1815 /* The module power level is below the host maximum and the
1816 * module appears not to implement bus address 0xa2, so assume
1817 * that the module powers up in the indicated mode.
1818 */
1819 return 0;
1820 }
1821
1822 /* If the module requires a higher power mode, but also requires
1823 * an address change sequence, warn the user that the module may
1824 * not be functional.
1825 */
1826 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1827 dev_warn(sfp->dev,
1828 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1829 power_mW / 1000, (power_mW / 100) % 10);
1830 return 0;
1831 }
1832
1833 sfp->module_power_mW = power_mW;
1834
1835 return 0;
1836}
1837
1838static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1839{
1840 int err;
1841
1842 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1843 SFP_EXT_STATUS_PWRLVL_SELECT,
1844 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1845 if (err != sizeof(u8)) {
1846 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1847 enable ? "en" : "dis", ERR_PTR(err));
1848 return -EAGAIN;
1849 }
1850
1851 if (enable)
1852 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1853 sfp->module_power_mW / 1000,
1854 (sfp->module_power_mW / 100) % 10);
1855
1856 return 0;
1857}
1858
1859/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1860 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1861 * not support multibyte reads from the EEPROM. Each multi-byte read
1862 * operation returns just one byte of EEPROM followed by zeros. There is
1863 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1864 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1865 * name and vendor id into EEPROM, so there is even no way to detect if
1866 * module is V-SOL V2801F. Therefore check for those zeros in the read
1867 * data and then based on check switch to reading EEPROM to one byte
1868 * at a time.
1869 */
1870static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1871{
1872 size_t i, block_size = sfp->i2c_block_size;
1873
1874 /* Already using byte IO */
1875 if (block_size == 1)
1876 return false;
1877
1878 for (i = 1; i < len; i += block_size) {
1879 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1880 return false;
1881 }
1882 return true;
1883}
1884
1885static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1886{
1887 u8 check;
1888 int err;
1889
1890 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1891 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1892 id->base.connector != SFF8024_CONNECTOR_LC) {
1893 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1894 id->base.phys_id = SFF8024_ID_SFF_8472;
1895 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1896 id->base.connector = SFF8024_CONNECTOR_LC;
1897 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1898 if (err != 3) {
1899 dev_err(sfp->dev,
1900 "Failed to rewrite module EEPROM: %pe\n",
1901 ERR_PTR(err));
1902 return err;
1903 }
1904
1905 /* Cotsworks modules have been found to require a delay between write operations. */
1906 mdelay(50);
1907
1908 /* Update base structure checksum */
1909 check = sfp_check(&id->base, sizeof(id->base) - 1);
1910 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1911 if (err != 1) {
1912 dev_err(sfp->dev,
1913 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1914 ERR_PTR(err));
1915 return err;
1916 }
1917 }
1918 return 0;
1919}
1920
1921static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1922{
1923 /* SFP module inserted - read I2C data */
1924 struct sfp_eeprom_id id;
1925 bool cotsworks_sfbg;
1926 bool cotsworks;
1927 u8 check;
1928 int ret;
1929
1930 /* Some SFP modules and also some Linux I2C drivers do not like reads
1931 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1932 * a time.
1933 */
1934 sfp->i2c_block_size = 16;
1935
1936 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1937 if (ret < 0) {
1938 if (report)
1939 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1940 ERR_PTR(ret));
1941 return -EAGAIN;
1942 }
1943
1944 if (ret != sizeof(id.base)) {
1945 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1946 return -EAGAIN;
1947 }
1948
1949 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1950 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1951 * that EEPROM supports atomic 16bit read operation for diagnostic
1952 * fields, so do not switch to one byte reading at a time unless it
1953 * is really required and we have no other option.
1954 */
1955 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1956 dev_info(sfp->dev,
1957 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1958 dev_info(sfp->dev,
1959 "Switching to reading EEPROM to one byte at a time\n");
1960 sfp->i2c_block_size = 1;
1961
1962 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1963 if (ret < 0) {
1964 if (report)
1965 dev_err(sfp->dev,
1966 "failed to read EEPROM: %pe\n",
1967 ERR_PTR(ret));
1968 return -EAGAIN;
1969 }
1970
1971 if (ret != sizeof(id.base)) {
1972 dev_err(sfp->dev, "EEPROM short read: %pe\n",
1973 ERR_PTR(ret));
1974 return -EAGAIN;
1975 }
1976 }
1977
1978 /* Cotsworks do not seem to update the checksums when they
1979 * do the final programming with the final module part number,
1980 * serial number and date code.
1981 */
1982 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1983 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1984
1985 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1986 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1987 * Cotsworks PN matches and bytes are not correct.
1988 */
1989 if (cotsworks && cotsworks_sfbg) {
1990 ret = sfp_cotsworks_fixup_check(sfp, &id);
1991 if (ret < 0)
1992 return ret;
1993 }
1994
1995 /* Validate the checksum over the base structure */
1996 check = sfp_check(&id.base, sizeof(id.base) - 1);
1997 if (check != id.base.cc_base) {
1998 if (cotsworks) {
1999 dev_warn(sfp->dev,
2000 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2001 check, id.base.cc_base);
2002 } else {
2003 dev_err(sfp->dev,
2004 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2005 check, id.base.cc_base);
2006 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2007 16, 1, &id, sizeof(id), true);
2008 return -EINVAL;
2009 }
2010 }
2011
2012 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2013 if (ret < 0) {
2014 if (report)
2015 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2016 ERR_PTR(ret));
2017 return -EAGAIN;
2018 }
2019
2020 if (ret != sizeof(id.ext)) {
2021 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2022 return -EAGAIN;
2023 }
2024
2025 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2026 if (check != id.ext.cc_ext) {
2027 if (cotsworks) {
2028 dev_warn(sfp->dev,
2029 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2030 check, id.ext.cc_ext);
2031 } else {
2032 dev_err(sfp->dev,
2033 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2034 check, id.ext.cc_ext);
2035 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2036 16, 1, &id, sizeof(id), true);
2037 memset(&id.ext, 0, sizeof(id.ext));
2038 }
2039 }
2040
2041 sfp->id = id;
2042
2043 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2044 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2045 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2046 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2047 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2048 (int)sizeof(id.ext.datecode), id.ext.datecode);
2049
2050 /* Check whether we support this module */
2051 if (!sfp->type->module_supported(&id)) {
2052 dev_err(sfp->dev,
2053 "module is not supported - phys id 0x%02x 0x%02x\n",
2054 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2055 return -EINVAL;
2056 }
2057
2058 /* If the module requires address swap mode, warn about it */
2059 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2060 dev_warn(sfp->dev,
2061 "module address swap to access page 0xA2 is not supported.\n");
2062
2063 /* Parse the module power requirement */
2064 ret = sfp_module_parse_power(sfp);
2065 if (ret < 0)
2066 return ret;
2067
2068 /* Initialise state bits to use from hardware */
2069 sfp->state_hw_mask = SFP_F_PRESENT;
2070 if (sfp->gpio[GPIO_TX_DISABLE])
2071 sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2072 if (sfp->gpio[GPIO_TX_FAULT])
2073 sfp->state_hw_mask |= SFP_F_TX_FAULT;
2074 if (sfp->gpio[GPIO_LOS])
2075 sfp->state_hw_mask |= SFP_F_LOS;
2076
2077 sfp->module_t_start_up = T_START_UP;
2078 sfp->module_t_wait = T_WAIT;
2079
2080 sfp->tx_fault_ignore = false;
2081
2082 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2083 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2084 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2085 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2086 sfp->mdio_protocol = MDIO_I2C_C45;
2087 else if (sfp->id.base.e1000_base_t)
2088 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2089 else
2090 sfp->mdio_protocol = MDIO_I2C_NONE;
2091
2092 sfp->quirk = sfp_lookup_quirk(&id);
2093 if (sfp->quirk && sfp->quirk->fixup)
2094 sfp->quirk->fixup(sfp);
2095
2096 return 0;
2097}
2098
2099static void sfp_sm_mod_remove(struct sfp *sfp)
2100{
2101 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2102 sfp_module_remove(sfp->sfp_bus);
2103
2104 sfp_hwmon_remove(sfp);
2105
2106 memset(&sfp->id, 0, sizeof(sfp->id));
2107 sfp->module_power_mW = 0;
2108
2109 dev_info(sfp->dev, "module removed\n");
2110}
2111
2112/* This state machine tracks the upstream's state */
2113static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2114{
2115 switch (sfp->sm_dev_state) {
2116 default:
2117 if (event == SFP_E_DEV_ATTACH)
2118 sfp->sm_dev_state = SFP_DEV_DOWN;
2119 break;
2120
2121 case SFP_DEV_DOWN:
2122 if (event == SFP_E_DEV_DETACH)
2123 sfp->sm_dev_state = SFP_DEV_DETACHED;
2124 else if (event == SFP_E_DEV_UP)
2125 sfp->sm_dev_state = SFP_DEV_UP;
2126 break;
2127
2128 case SFP_DEV_UP:
2129 if (event == SFP_E_DEV_DETACH)
2130 sfp->sm_dev_state = SFP_DEV_DETACHED;
2131 else if (event == SFP_E_DEV_DOWN)
2132 sfp->sm_dev_state = SFP_DEV_DOWN;
2133 break;
2134 }
2135}
2136
2137/* This state machine tracks the insert/remove state of the module, probes
2138 * the on-board EEPROM, and sets up the power level.
2139 */
2140static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2141{
2142 int err;
2143
2144 /* Handle remove event globally, it resets this state machine */
2145 if (event == SFP_E_REMOVE) {
2146 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2147 sfp_sm_mod_remove(sfp);
2148 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2149 return;
2150 }
2151
2152 /* Handle device detach globally */
2153 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2154 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2155 if (sfp->module_power_mW > 1000 &&
2156 sfp->sm_mod_state > SFP_MOD_HPOWER)
2157 sfp_sm_mod_hpower(sfp, false);
2158 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2159 return;
2160 }
2161
2162 switch (sfp->sm_mod_state) {
2163 default:
2164 if (event == SFP_E_INSERT) {
2165 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2166 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2167 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2168 }
2169 break;
2170
2171 case SFP_MOD_PROBE:
2172 /* Wait for T_PROBE_INIT to time out */
2173 if (event != SFP_E_TIMEOUT)
2174 break;
2175
2176 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2177 if (err == -EAGAIN) {
2178 if (sfp->sm_mod_tries_init &&
2179 --sfp->sm_mod_tries_init) {
2180 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2181 break;
2182 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2183 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2184 dev_warn(sfp->dev,
2185 "please wait, module slow to respond\n");
2186 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2187 break;
2188 }
2189 }
2190 if (err < 0) {
2191 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2192 break;
2193 }
2194
2195 err = sfp_hwmon_insert(sfp);
2196 if (err)
2197 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2198 ERR_PTR(err));
2199
2200 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2201 fallthrough;
2202 case SFP_MOD_WAITDEV:
2203 /* Ensure that the device is attached before proceeding */
2204 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2205 break;
2206
2207 /* Report the module insertion to the upstream device */
2208 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2209 sfp->quirk);
2210 if (err < 0) {
2211 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2212 break;
2213 }
2214
2215 /* If this is a power level 1 module, we are done */
2216 if (sfp->module_power_mW <= 1000)
2217 goto insert;
2218
2219 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2220 fallthrough;
2221 case SFP_MOD_HPOWER:
2222 /* Enable high power mode */
2223 err = sfp_sm_mod_hpower(sfp, true);
2224 if (err < 0) {
2225 if (err != -EAGAIN) {
2226 sfp_module_remove(sfp->sfp_bus);
2227 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2228 } else {
2229 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2230 }
2231 break;
2232 }
2233
2234 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2235 break;
2236
2237 case SFP_MOD_WAITPWR:
2238 /* Wait for T_HPOWER_LEVEL to time out */
2239 if (event != SFP_E_TIMEOUT)
2240 break;
2241
2242 insert:
2243 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2244 break;
2245
2246 case SFP_MOD_PRESENT:
2247 case SFP_MOD_ERROR:
2248 break;
2249 }
2250}
2251
2252static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2253{
2254 unsigned long timeout;
2255 int ret;
2256
2257 /* Some events are global */
2258 if (sfp->sm_state != SFP_S_DOWN &&
2259 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2260 sfp->sm_dev_state != SFP_DEV_UP)) {
2261 if (sfp->sm_state == SFP_S_LINK_UP &&
2262 sfp->sm_dev_state == SFP_DEV_UP)
2263 sfp_sm_link_down(sfp);
2264 if (sfp->sm_state > SFP_S_INIT)
2265 sfp_module_stop(sfp->sfp_bus);
2266 if (sfp->mod_phy)
2267 sfp_sm_phy_detach(sfp);
2268 if (sfp->i2c_mii)
2269 sfp_i2c_mdiobus_destroy(sfp);
2270 sfp_module_tx_disable(sfp);
2271 sfp_soft_stop_poll(sfp);
2272 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2273 return;
2274 }
2275
2276 /* The main state machine */
2277 switch (sfp->sm_state) {
2278 case SFP_S_DOWN:
2279 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2280 sfp->sm_dev_state != SFP_DEV_UP)
2281 break;
2282
2283 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2284 sfp_soft_start_poll(sfp);
2285
2286 sfp_module_tx_enable(sfp);
2287
2288 /* Initialise the fault clearance retries */
2289 sfp->sm_fault_retries = N_FAULT_INIT;
2290
2291 /* We need to check the TX_FAULT state, which is not defined
2292 * while TX_DISABLE is asserted. The earliest we want to do
2293 * anything (such as probe for a PHY) is 50ms (or more on
2294 * specific modules).
2295 */
2296 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2297 break;
2298
2299 case SFP_S_WAIT:
2300 if (event != SFP_E_TIMEOUT)
2301 break;
2302
2303 if (sfp->state & SFP_F_TX_FAULT) {
2304 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2305 * from the TX_DISABLE deassertion for the module to
2306 * initialise, which is indicated by TX_FAULT
2307 * deasserting.
2308 */
2309 timeout = sfp->module_t_start_up;
2310 if (timeout > sfp->module_t_wait)
2311 timeout -= sfp->module_t_wait;
2312 else
2313 timeout = 1;
2314
2315 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2316 } else {
2317 /* TX_FAULT is not asserted, assume the module has
2318 * finished initialising.
2319 */
2320 goto init_done;
2321 }
2322 break;
2323
2324 case SFP_S_INIT:
2325 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2326 /* TX_FAULT is still asserted after t_init
2327 * or t_start_up, so assume there is a fault.
2328 */
2329 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2330 sfp->sm_fault_retries == N_FAULT_INIT);
2331 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2332 init_done:
2333 /* Create mdiobus and start trying for PHY */
2334 ret = sfp_sm_add_mdio_bus(sfp);
2335 if (ret < 0) {
2336 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2337 break;
2338 }
2339 sfp->sm_phy_retries = R_PHY_RETRY;
2340 goto phy_probe;
2341 }
2342 break;
2343
2344 case SFP_S_INIT_PHY:
2345 if (event != SFP_E_TIMEOUT)
2346 break;
2347 phy_probe:
2348 /* TX_FAULT deasserted or we timed out with TX_FAULT
2349 * clear. Probe for the PHY and check the LOS state.
2350 */
2351 ret = sfp_sm_probe_for_phy(sfp);
2352 if (ret == -ENODEV) {
2353 if (--sfp->sm_phy_retries) {
2354 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2355 break;
2356 } else {
2357 dev_info(sfp->dev, "no PHY detected\n");
2358 }
2359 } else if (ret) {
2360 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2361 break;
2362 }
2363 if (sfp_module_start(sfp->sfp_bus)) {
2364 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2365 break;
2366 }
2367 sfp_sm_link_check_los(sfp);
2368
2369 /* Reset the fault retry count */
2370 sfp->sm_fault_retries = N_FAULT;
2371 break;
2372
2373 case SFP_S_INIT_TX_FAULT:
2374 if (event == SFP_E_TIMEOUT) {
2375 sfp_module_tx_fault_reset(sfp);
2376 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2377 }
2378 break;
2379
2380 case SFP_S_WAIT_LOS:
2381 if (event == SFP_E_TX_FAULT)
2382 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2383 else if (sfp_los_event_inactive(sfp, event))
2384 sfp_sm_link_up(sfp);
2385 break;
2386
2387 case SFP_S_LINK_UP:
2388 if (event == SFP_E_TX_FAULT) {
2389 sfp_sm_link_down(sfp);
2390 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2391 } else if (sfp_los_event_active(sfp, event)) {
2392 sfp_sm_link_down(sfp);
2393 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2394 }
2395 break;
2396
2397 case SFP_S_TX_FAULT:
2398 if (event == SFP_E_TIMEOUT) {
2399 sfp_module_tx_fault_reset(sfp);
2400 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2401 }
2402 break;
2403
2404 case SFP_S_REINIT:
2405 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2406 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2407 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2408 dev_info(sfp->dev, "module transmit fault recovered\n");
2409 sfp_sm_link_check_los(sfp);
2410 }
2411 break;
2412
2413 case SFP_S_TX_DISABLE:
2414 break;
2415 }
2416}
2417
2418static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2419{
2420 mutex_lock(&sfp->sm_mutex);
2421
2422 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2423 mod_state_to_str(sfp->sm_mod_state),
2424 dev_state_to_str(sfp->sm_dev_state),
2425 sm_state_to_str(sfp->sm_state),
2426 event_to_str(event));
2427
2428 sfp_sm_device(sfp, event);
2429 sfp_sm_module(sfp, event);
2430 sfp_sm_main(sfp, event);
2431
2432 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2433 mod_state_to_str(sfp->sm_mod_state),
2434 dev_state_to_str(sfp->sm_dev_state),
2435 sm_state_to_str(sfp->sm_state));
2436
2437 mutex_unlock(&sfp->sm_mutex);
2438}
2439
2440static void sfp_attach(struct sfp *sfp)
2441{
2442 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2443}
2444
2445static void sfp_detach(struct sfp *sfp)
2446{
2447 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2448}
2449
2450static void sfp_start(struct sfp *sfp)
2451{
2452 sfp_sm_event(sfp, SFP_E_DEV_UP);
2453}
2454
2455static void sfp_stop(struct sfp *sfp)
2456{
2457 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2458}
2459
2460static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2461{
2462 /* locking... and check module is present */
2463
2464 if (sfp->id.ext.sff8472_compliance &&
2465 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2466 modinfo->type = ETH_MODULE_SFF_8472;
2467 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2468 } else {
2469 modinfo->type = ETH_MODULE_SFF_8079;
2470 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2471 }
2472 return 0;
2473}
2474
2475static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2476 u8 *data)
2477{
2478 unsigned int first, last, len;
2479 int ret;
2480
2481 if (ee->len == 0)
2482 return -EINVAL;
2483
2484 first = ee->offset;
2485 last = ee->offset + ee->len;
2486 if (first < ETH_MODULE_SFF_8079_LEN) {
2487 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2488 len -= first;
2489
2490 ret = sfp_read(sfp, false, first, data, len);
2491 if (ret < 0)
2492 return ret;
2493
2494 first += len;
2495 data += len;
2496 }
2497 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2498 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2499 len -= first;
2500 first -= ETH_MODULE_SFF_8079_LEN;
2501
2502 ret = sfp_read(sfp, true, first, data, len);
2503 if (ret < 0)
2504 return ret;
2505 }
2506 return 0;
2507}
2508
2509static int sfp_module_eeprom_by_page(struct sfp *sfp,
2510 const struct ethtool_module_eeprom *page,
2511 struct netlink_ext_ack *extack)
2512{
2513 if (page->bank) {
2514 NL_SET_ERR_MSG(extack, "Banks not supported");
2515 return -EOPNOTSUPP;
2516 }
2517
2518 if (page->page) {
2519 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2520 return -EOPNOTSUPP;
2521 }
2522
2523 if (page->i2c_address != 0x50 &&
2524 page->i2c_address != 0x51) {
2525 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2526 return -EOPNOTSUPP;
2527 }
2528
2529 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2530 page->data, page->length);
2531};
2532
2533static const struct sfp_socket_ops sfp_module_ops = {
2534 .attach = sfp_attach,
2535 .detach = sfp_detach,
2536 .start = sfp_start,
2537 .stop = sfp_stop,
2538 .module_info = sfp_module_info,
2539 .module_eeprom = sfp_module_eeprom,
2540 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2541};
2542
2543static void sfp_timeout(struct work_struct *work)
2544{
2545 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2546
2547 rtnl_lock();
2548 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2549 rtnl_unlock();
2550}
2551
2552static void sfp_check_state(struct sfp *sfp)
2553{
2554 unsigned int state, i, changed;
2555
2556 mutex_lock(&sfp->st_mutex);
2557 state = sfp_get_state(sfp);
2558 changed = state ^ sfp->state;
2559 if (sfp->tx_fault_ignore)
2560 changed &= SFP_F_PRESENT | SFP_F_LOS;
2561 else
2562 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2563
2564 for (i = 0; i < GPIO_MAX; i++)
2565 if (changed & BIT(i))
2566 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2567 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2568
2569 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2570 sfp->state = state;
2571
2572 rtnl_lock();
2573 if (changed & SFP_F_PRESENT)
2574 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2575 SFP_E_INSERT : SFP_E_REMOVE);
2576
2577 if (changed & SFP_F_TX_FAULT)
2578 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2579 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2580
2581 if (changed & SFP_F_LOS)
2582 sfp_sm_event(sfp, state & SFP_F_LOS ?
2583 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2584 rtnl_unlock();
2585 mutex_unlock(&sfp->st_mutex);
2586}
2587
2588static irqreturn_t sfp_irq(int irq, void *data)
2589{
2590 struct sfp *sfp = data;
2591
2592 sfp_check_state(sfp);
2593
2594 return IRQ_HANDLED;
2595}
2596
2597static void sfp_poll(struct work_struct *work)
2598{
2599 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2600
2601 sfp_check_state(sfp);
2602
2603 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2604 sfp->need_poll)
2605 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2606}
2607
2608static struct sfp *sfp_alloc(struct device *dev)
2609{
2610 struct sfp *sfp;
2611
2612 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2613 if (!sfp)
2614 return ERR_PTR(-ENOMEM);
2615
2616 sfp->dev = dev;
2617
2618 mutex_init(&sfp->sm_mutex);
2619 mutex_init(&sfp->st_mutex);
2620 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2621 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2622
2623 sfp_hwmon_init(sfp);
2624
2625 return sfp;
2626}
2627
2628static void sfp_cleanup(void *data)
2629{
2630 struct sfp *sfp = data;
2631
2632 sfp_hwmon_exit(sfp);
2633
2634 cancel_delayed_work_sync(&sfp->poll);
2635 cancel_delayed_work_sync(&sfp->timeout);
2636 if (sfp->i2c_mii) {
2637 mdiobus_unregister(sfp->i2c_mii);
2638 mdiobus_free(sfp->i2c_mii);
2639 }
2640 if (sfp->i2c)
2641 i2c_put_adapter(sfp->i2c);
2642 kfree(sfp);
2643}
2644
2645static int sfp_i2c_get(struct sfp *sfp)
2646{
2647 struct acpi_handle *acpi_handle;
2648 struct fwnode_handle *h;
2649 struct i2c_adapter *i2c;
2650 struct device_node *np;
2651 int err;
2652
2653 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2654 if (IS_ERR(h)) {
2655 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2656 return -ENODEV;
2657 }
2658
2659 if (is_acpi_device_node(h)) {
2660 acpi_handle = ACPI_HANDLE_FWNODE(h);
2661 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2662 } else if ((np = to_of_node(h)) != NULL) {
2663 i2c = of_find_i2c_adapter_by_node(np);
2664 } else {
2665 err = -EINVAL;
2666 goto put;
2667 }
2668
2669 if (!i2c) {
2670 err = -EPROBE_DEFER;
2671 goto put;
2672 }
2673
2674 err = sfp_i2c_configure(sfp, i2c);
2675 if (err)
2676 i2c_put_adapter(i2c);
2677put:
2678 fwnode_handle_put(h);
2679 return err;
2680}
2681
2682static int sfp_probe(struct platform_device *pdev)
2683{
2684 const struct sff_data *sff;
2685 char *sfp_irq_name;
2686 struct sfp *sfp;
2687 int err, i;
2688
2689 sfp = sfp_alloc(&pdev->dev);
2690 if (IS_ERR(sfp))
2691 return PTR_ERR(sfp);
2692
2693 platform_set_drvdata(pdev, sfp);
2694
2695 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2696 if (err < 0)
2697 return err;
2698
2699 sff = sfp->type = &sfp_data;
2700
2701 if (pdev->dev.of_node) {
2702 const struct of_device_id *id;
2703
2704 id = of_match_node(sfp_of_match, pdev->dev.of_node);
2705 if (WARN_ON(!id))
2706 return -EINVAL;
2707
2708 sff = sfp->type = id->data;
2709 } else if (!has_acpi_companion(&pdev->dev)) {
2710 return -EINVAL;
2711 }
2712
2713 err = sfp_i2c_get(sfp);
2714 if (err)
2715 return err;
2716
2717 for (i = 0; i < GPIO_MAX; i++)
2718 if (sff->gpios & BIT(i)) {
2719 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2720 gpio_of_names[i], gpio_flags[i]);
2721 if (IS_ERR(sfp->gpio[i]))
2722 return PTR_ERR(sfp->gpio[i]);
2723 }
2724
2725 sfp->state_hw_mask = SFP_F_PRESENT;
2726
2727 sfp->get_state = sfp_gpio_get_state;
2728 sfp->set_state = sfp_gpio_set_state;
2729
2730 /* Modules that have no detect signal are always present */
2731 if (!(sfp->gpio[GPIO_MODDEF0]))
2732 sfp->get_state = sff_gpio_get_state;
2733
2734 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2735 &sfp->max_power_mW);
2736 if (sfp->max_power_mW < 1000) {
2737 if (sfp->max_power_mW)
2738 dev_warn(sfp->dev,
2739 "Firmware bug: host maximum power should be at least 1W\n");
2740 sfp->max_power_mW = 1000;
2741 }
2742
2743 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2744 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2745
2746 /* Get the initial state, and always signal TX disable,
2747 * since the network interface will not be up.
2748 */
2749 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2750
2751 if (sfp->gpio[GPIO_RATE_SELECT] &&
2752 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2753 sfp->state |= SFP_F_RATE_SELECT;
2754 sfp_set_state(sfp, sfp->state);
2755 sfp_module_tx_disable(sfp);
2756 if (sfp->state & SFP_F_PRESENT) {
2757 rtnl_lock();
2758 sfp_sm_event(sfp, SFP_E_INSERT);
2759 rtnl_unlock();
2760 }
2761
2762 for (i = 0; i < GPIO_MAX; i++) {
2763 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2764 continue;
2765
2766 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2767 if (sfp->gpio_irq[i] < 0) {
2768 sfp->gpio_irq[i] = 0;
2769 sfp->need_poll = true;
2770 continue;
2771 }
2772
2773 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2774 "%s-%s", dev_name(sfp->dev),
2775 gpio_of_names[i]);
2776
2777 if (!sfp_irq_name)
2778 return -ENOMEM;
2779
2780 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2781 NULL, sfp_irq,
2782 IRQF_ONESHOT |
2783 IRQF_TRIGGER_RISING |
2784 IRQF_TRIGGER_FALLING,
2785 sfp_irq_name, sfp);
2786 if (err) {
2787 sfp->gpio_irq[i] = 0;
2788 sfp->need_poll = true;
2789 }
2790 }
2791
2792 if (sfp->need_poll)
2793 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2794
2795 /* We could have an issue in cases no Tx disable pin is available or
2796 * wired as modules using a laser as their light source will continue to
2797 * be active when the fiber is removed. This could be a safety issue and
2798 * we should at least warn the user about that.
2799 */
2800 if (!sfp->gpio[GPIO_TX_DISABLE])
2801 dev_warn(sfp->dev,
2802 "No tx_disable pin: SFP modules will always be emitting.\n");
2803
2804 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2805 if (!sfp->sfp_bus)
2806 return -ENOMEM;
2807
2808 sfp_debugfs_init(sfp);
2809
2810 return 0;
2811}
2812
2813static int sfp_remove(struct platform_device *pdev)
2814{
2815 struct sfp *sfp = platform_get_drvdata(pdev);
2816
2817 sfp_debugfs_exit(sfp);
2818 sfp_unregister_socket(sfp->sfp_bus);
2819
2820 rtnl_lock();
2821 sfp_sm_event(sfp, SFP_E_REMOVE);
2822 rtnl_unlock();
2823
2824 return 0;
2825}
2826
2827static void sfp_shutdown(struct platform_device *pdev)
2828{
2829 struct sfp *sfp = platform_get_drvdata(pdev);
2830 int i;
2831
2832 for (i = 0; i < GPIO_MAX; i++) {
2833 if (!sfp->gpio_irq[i])
2834 continue;
2835
2836 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2837 }
2838
2839 cancel_delayed_work_sync(&sfp->poll);
2840 cancel_delayed_work_sync(&sfp->timeout);
2841}
2842
2843static struct platform_driver sfp_driver = {
2844 .probe = sfp_probe,
2845 .remove = sfp_remove,
2846 .shutdown = sfp_shutdown,
2847 .driver = {
2848 .name = "sfp",
2849 .of_match_table = sfp_of_match,
2850 },
2851};
2852
2853static int sfp_init(void)
2854{
2855 poll_jiffies = msecs_to_jiffies(100);
2856
2857 return platform_driver_register(&sfp_driver);
2858}
2859module_init(sfp_init);
2860
2861static void sfp_exit(void)
2862{
2863 platform_driver_unregister(&sfp_driver);
2864}
2865module_exit(sfp_exit);
2866
2867MODULE_ALIAS("platform:sfp");
2868MODULE_AUTHOR("Russell King");
2869MODULE_LICENSE("GPL v2");