Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/acpi.h>
   3#include <linux/ctype.h>
 
   4#include <linux/delay.h>
   5#include <linux/gpio/consumer.h>
   6#include <linux/hwmon.h>
   7#include <linux/i2c.h>
   8#include <linux/interrupt.h>
   9#include <linux/jiffies.h>
 
  10#include <linux/module.h>
  11#include <linux/mutex.h>
  12#include <linux/of.h>
  13#include <linux/phy.h>
  14#include <linux/platform_device.h>
  15#include <linux/rtnetlink.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18
  19#include "mdio-i2c.h"
  20#include "sfp.h"
  21#include "swphy.h"
  22
  23enum {
  24	GPIO_MODDEF0,
  25	GPIO_LOS,
  26	GPIO_TX_FAULT,
  27	GPIO_TX_DISABLE,
  28	GPIO_RATE_SELECT,
  29	GPIO_MAX,
  30
  31	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  32	SFP_F_LOS = BIT(GPIO_LOS),
  33	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  34	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  35	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  36
  37	SFP_E_INSERT = 0,
  38	SFP_E_REMOVE,
  39	SFP_E_DEV_ATTACH,
  40	SFP_E_DEV_DETACH,
  41	SFP_E_DEV_DOWN,
  42	SFP_E_DEV_UP,
  43	SFP_E_TX_FAULT,
  44	SFP_E_TX_CLEAR,
  45	SFP_E_LOS_HIGH,
  46	SFP_E_LOS_LOW,
  47	SFP_E_TIMEOUT,
  48
  49	SFP_MOD_EMPTY = 0,
  50	SFP_MOD_ERROR,
  51	SFP_MOD_PROBE,
  52	SFP_MOD_WAITDEV,
  53	SFP_MOD_HPOWER,
  54	SFP_MOD_WAITPWR,
  55	SFP_MOD_PRESENT,
  56
  57	SFP_DEV_DETACHED = 0,
  58	SFP_DEV_DOWN,
  59	SFP_DEV_UP,
  60
  61	SFP_S_DOWN = 0,
  62	SFP_S_FAIL,
  63	SFP_S_WAIT,
  64	SFP_S_INIT,
  65	SFP_S_INIT_PHY,
  66	SFP_S_INIT_TX_FAULT,
  67	SFP_S_WAIT_LOS,
  68	SFP_S_LINK_UP,
  69	SFP_S_TX_FAULT,
  70	SFP_S_REINIT,
  71	SFP_S_TX_DISABLE,
  72};
  73
  74static const char  * const mod_state_strings[] = {
  75	[SFP_MOD_EMPTY] = "empty",
  76	[SFP_MOD_ERROR] = "error",
  77	[SFP_MOD_PROBE] = "probe",
  78	[SFP_MOD_WAITDEV] = "waitdev",
  79	[SFP_MOD_HPOWER] = "hpower",
  80	[SFP_MOD_WAITPWR] = "waitpwr",
  81	[SFP_MOD_PRESENT] = "present",
  82};
  83
  84static const char *mod_state_to_str(unsigned short mod_state)
  85{
  86	if (mod_state >= ARRAY_SIZE(mod_state_strings))
  87		return "Unknown module state";
  88	return mod_state_strings[mod_state];
  89}
  90
  91static const char * const dev_state_strings[] = {
  92	[SFP_DEV_DETACHED] = "detached",
  93	[SFP_DEV_DOWN] = "down",
  94	[SFP_DEV_UP] = "up",
  95};
  96
  97static const char *dev_state_to_str(unsigned short dev_state)
  98{
  99	if (dev_state >= ARRAY_SIZE(dev_state_strings))
 100		return "Unknown device state";
 101	return dev_state_strings[dev_state];
 102}
 103
 104static const char * const event_strings[] = {
 105	[SFP_E_INSERT] = "insert",
 106	[SFP_E_REMOVE] = "remove",
 107	[SFP_E_DEV_ATTACH] = "dev_attach",
 108	[SFP_E_DEV_DETACH] = "dev_detach",
 109	[SFP_E_DEV_DOWN] = "dev_down",
 110	[SFP_E_DEV_UP] = "dev_up",
 111	[SFP_E_TX_FAULT] = "tx_fault",
 112	[SFP_E_TX_CLEAR] = "tx_clear",
 113	[SFP_E_LOS_HIGH] = "los_high",
 114	[SFP_E_LOS_LOW] = "los_low",
 115	[SFP_E_TIMEOUT] = "timeout",
 116};
 117
 118static const char *event_to_str(unsigned short event)
 119{
 120	if (event >= ARRAY_SIZE(event_strings))
 121		return "Unknown event";
 122	return event_strings[event];
 123}
 124
 125static const char * const sm_state_strings[] = {
 126	[SFP_S_DOWN] = "down",
 127	[SFP_S_FAIL] = "fail",
 128	[SFP_S_WAIT] = "wait",
 129	[SFP_S_INIT] = "init",
 130	[SFP_S_INIT_PHY] = "init_phy",
 131	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
 132	[SFP_S_WAIT_LOS] = "wait_los",
 133	[SFP_S_LINK_UP] = "link_up",
 134	[SFP_S_TX_FAULT] = "tx_fault",
 135	[SFP_S_REINIT] = "reinit",
 136	[SFP_S_TX_DISABLE] = "rx_disable",
 137};
 138
 139static const char *sm_state_to_str(unsigned short sm_state)
 140{
 141	if (sm_state >= ARRAY_SIZE(sm_state_strings))
 142		return "Unknown state";
 143	return sm_state_strings[sm_state];
 144}
 145
 146static const char *gpio_of_names[] = {
 147	"mod-def0",
 148	"los",
 149	"tx-fault",
 150	"tx-disable",
 151	"rate-select0",
 152};
 153
 154static const enum gpiod_flags gpio_flags[] = {
 155	GPIOD_IN,
 156	GPIOD_IN,
 157	GPIOD_IN,
 158	GPIOD_ASIS,
 159	GPIOD_ASIS,
 160};
 161
 162/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
 163 * non-cooled module to initialise its laser safety circuitry. We wait
 164 * an initial T_WAIT period before we check the tx fault to give any PHY
 165 * on board (for a copper SFP) time to initialise.
 166 */
 167#define T_WAIT			msecs_to_jiffies(50)
 
 168#define T_START_UP		msecs_to_jiffies(300)
 169#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
 170
 171/* t_reset is the time required to assert the TX_DISABLE signal to reset
 172 * an indicated TX_FAULT.
 173 */
 174#define T_RESET_US		10
 175#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
 176
 177/* N_FAULT_INIT is the number of recovery attempts at module initialisation
 178 * time. If the TX_FAULT signal is not deasserted after this number of
 179 * attempts at clearing it, we decide that the module is faulty.
 180 * N_FAULT is the same but after the module has initialised.
 181 */
 182#define N_FAULT_INIT		5
 183#define N_FAULT			5
 184
 185/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
 186 * R_PHY_RETRY is the number of attempts.
 187 */
 188#define T_PHY_RETRY		msecs_to_jiffies(50)
 189#define R_PHY_RETRY		12
 190
 191/* SFP module presence detection is poor: the three MOD DEF signals are
 192 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 193 * connect before the I2C bus on MOD DEF 1/2.
 194 *
 195 * The SFF-8472 specifies t_serial ("Time from power on until module is
 196 * ready for data transmission over the two wire serial bus.") as 300ms.
 197 */
 198#define T_SERIAL		msecs_to_jiffies(300)
 199#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
 200#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
 201#define R_PROBE_RETRY_INIT	10
 202#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
 203#define R_PROBE_RETRY_SLOW	12
 204
 205/* SFP modules appear to always have their PHY configured for bus address
 206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 
 
 207 */
 208#define SFP_PHY_ADDR	22
 
 209
 210struct sff_data {
 211	unsigned int gpios;
 212	bool (*module_supported)(const struct sfp_eeprom_id *id);
 213};
 214
 215struct sfp {
 216	struct device *dev;
 217	struct i2c_adapter *i2c;
 218	struct mii_bus *i2c_mii;
 219	struct sfp_bus *sfp_bus;
 
 220	struct phy_device *mod_phy;
 221	const struct sff_data *type;
 
 222	u32 max_power_mW;
 223
 224	unsigned int (*get_state)(struct sfp *);
 225	void (*set_state)(struct sfp *, unsigned int);
 226	int (*read)(struct sfp *, bool, u8, void *, size_t);
 227	int (*write)(struct sfp *, bool, u8, void *, size_t);
 228
 229	struct gpio_desc *gpio[GPIO_MAX];
 230	int gpio_irq[GPIO_MAX];
 231
 232	bool need_poll;
 233
 234	struct mutex st_mutex;			/* Protects state */
 
 235	unsigned int state_soft_mask;
 236	unsigned int state;
 237	struct delayed_work poll;
 238	struct delayed_work timeout;
 239	struct mutex sm_mutex;			/* Protects state machine */
 240	unsigned char sm_mod_state;
 241	unsigned char sm_mod_tries_init;
 242	unsigned char sm_mod_tries;
 243	unsigned char sm_dev_state;
 244	unsigned short sm_state;
 245	unsigned char sm_fault_retries;
 246	unsigned char sm_phy_retries;
 247
 248	struct sfp_eeprom_id id;
 249	unsigned int module_power_mW;
 250	unsigned int module_t_start_up;
 
 
 
 
 251
 252#if IS_ENABLED(CONFIG_HWMON)
 253	struct sfp_diag diag;
 254	struct delayed_work hwmon_probe;
 255	unsigned int hwmon_tries;
 256	struct device *hwmon_dev;
 257	char *hwmon_name;
 258#endif
 259
 
 
 
 260};
 261
 262static bool sff_module_supported(const struct sfp_eeprom_id *id)
 263{
 264	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
 265	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 266}
 267
 268static const struct sff_data sff_data = {
 269	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 270	.module_supported = sff_module_supported,
 271};
 272
 273static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 274{
 275	return id->base.phys_id == SFF8024_ID_SFP &&
 276	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 277}
 278
 279static const struct sff_data sfp_data = {
 280	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 281		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
 282	.module_supported = sfp_module_supported,
 283};
 284
 285static const struct of_device_id sfp_of_match[] = {
 286	{ .compatible = "sff,sff", .data = &sff_data, },
 287	{ .compatible = "sff,sfp", .data = &sfp_data, },
 288	{ },
 289};
 290MODULE_DEVICE_TABLE(of, sfp_of_match);
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292static unsigned long poll_jiffies;
 293
 294static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 295{
 296	unsigned int i, state, v;
 297
 298	for (i = state = 0; i < GPIO_MAX; i++) {
 299		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 300			continue;
 301
 302		v = gpiod_get_value_cansleep(sfp->gpio[i]);
 303		if (v)
 304			state |= BIT(i);
 305	}
 306
 307	return state;
 308}
 309
 310static unsigned int sff_gpio_get_state(struct sfp *sfp)
 311{
 312	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 313}
 314
 315static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 316{
 317	if (state & SFP_F_PRESENT) {
 318		/* If the module is present, drive the signals */
 319		if (sfp->gpio[GPIO_TX_DISABLE])
 320			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 321					       state & SFP_F_TX_DISABLE);
 322		if (state & SFP_F_RATE_SELECT)
 323			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
 324					       state & SFP_F_RATE_SELECT);
 325	} else {
 326		/* Otherwise, let them float to the pull-ups */
 327		if (sfp->gpio[GPIO_TX_DISABLE])
 328			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 329		if (state & SFP_F_RATE_SELECT)
 330			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
 331	}
 332}
 333
 334static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 335			size_t len)
 336{
 337	struct i2c_msg msgs[2];
 338	u8 bus_addr = a2 ? 0x51 : 0x50;
 
 339	size_t this_len;
 340	int ret;
 341
 342	msgs[0].addr = bus_addr;
 343	msgs[0].flags = 0;
 344	msgs[0].len = 1;
 345	msgs[0].buf = &dev_addr;
 346	msgs[1].addr = bus_addr;
 347	msgs[1].flags = I2C_M_RD;
 348	msgs[1].len = len;
 349	msgs[1].buf = buf;
 350
 351	while (len) {
 352		this_len = len;
 353		if (this_len > 16)
 354			this_len = 16;
 355
 356		msgs[1].len = this_len;
 357
 358		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 359		if (ret < 0)
 360			return ret;
 361
 362		if (ret != ARRAY_SIZE(msgs))
 363			break;
 364
 365		msgs[1].buf += this_len;
 366		dev_addr += this_len;
 367		len -= this_len;
 368	}
 369
 370	return msgs[1].buf - (u8 *)buf;
 371}
 372
 373static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 374	size_t len)
 375{
 376	struct i2c_msg msgs[1];
 377	u8 bus_addr = a2 ? 0x51 : 0x50;
 378	int ret;
 379
 380	msgs[0].addr = bus_addr;
 381	msgs[0].flags = 0;
 382	msgs[0].len = 1 + len;
 383	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 384	if (!msgs[0].buf)
 385		return -ENOMEM;
 386
 387	msgs[0].buf[0] = dev_addr;
 388	memcpy(&msgs[0].buf[1], buf, len);
 389
 390	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 391
 392	kfree(msgs[0].buf);
 393
 394	if (ret < 0)
 395		return ret;
 396
 397	return ret == ARRAY_SIZE(msgs) ? len : 0;
 398}
 399
 400static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 401{
 402	struct mii_bus *i2c_mii;
 403	int ret;
 404
 405	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 406		return -EINVAL;
 407
 408	sfp->i2c = i2c;
 409	sfp->read = sfp_i2c_read;
 410	sfp->write = sfp_i2c_write;
 411
 412	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
 
 
 
 
 
 
 
 
 413	if (IS_ERR(i2c_mii))
 414		return PTR_ERR(i2c_mii);
 415
 416	i2c_mii->name = "SFP I2C Bus";
 417	i2c_mii->phy_mask = ~0;
 418
 419	ret = mdiobus_register(i2c_mii);
 420	if (ret < 0) {
 421		mdiobus_free(i2c_mii);
 422		return ret;
 423	}
 424
 425	sfp->i2c_mii = i2c_mii;
 426
 427	return 0;
 428}
 429
 
 
 
 
 
 
 430/* Interface */
 431static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 432{
 433	return sfp->read(sfp, a2, addr, buf, len);
 434}
 435
 436static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 437{
 438	return sfp->write(sfp, a2, addr, buf, len);
 439}
 440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441static unsigned int sfp_soft_get_state(struct sfp *sfp)
 442{
 443	unsigned int state = 0;
 444	u8 status;
 445	int ret;
 446
 447	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
 448	if (ret == sizeof(status)) {
 449		if (status & SFP_STATUS_RX_LOS)
 450			state |= SFP_F_LOS;
 451		if (status & SFP_STATUS_TX_FAULT)
 452			state |= SFP_F_TX_FAULT;
 453	} else {
 454		dev_err_ratelimited(sfp->dev,
 455				    "failed to read SFP soft status: %d\n",
 456				    ret);
 457		/* Preserve the current state */
 458		state = sfp->state;
 459	}
 460
 461	return state & sfp->state_soft_mask;
 462}
 463
 464static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
 465{
 466	u8 status;
 
 467
 468	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
 469		     sizeof(status)) {
 470		if (state & SFP_F_TX_DISABLE)
 471			status |= SFP_STATUS_TX_DISABLE_FORCE;
 472		else
 473			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
 474
 475		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
 476	}
 477}
 478
 479static void sfp_soft_start_poll(struct sfp *sfp)
 480{
 481	const struct sfp_eeprom_id *id = &sfp->id;
 
 482
 483	sfp->state_soft_mask = 0;
 484	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
 485	    !sfp->gpio[GPIO_TX_DISABLE])
 486		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
 487	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
 488	    !sfp->gpio[GPIO_TX_FAULT])
 489		sfp->state_soft_mask |= SFP_F_TX_FAULT;
 490	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
 491	    !sfp->gpio[GPIO_LOS])
 492		sfp->state_soft_mask |= SFP_F_LOS;
 493
 494	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
 495	    !sfp->need_poll)
 496		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 497}
 498
 499static void sfp_soft_stop_poll(struct sfp *sfp)
 500{
 501	sfp->state_soft_mask = 0;
 502}
 503
 504static unsigned int sfp_get_state(struct sfp *sfp)
 505{
 506	unsigned int state = sfp->get_state(sfp);
 
 507
 508	if (state & SFP_F_PRESENT &&
 509	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
 510		state |= sfp_soft_get_state(sfp);
 511
 512	return state;
 513}
 514
 515static void sfp_set_state(struct sfp *sfp, unsigned int state)
 516{
 517	sfp->set_state(sfp, state);
 518
 519	if (state & SFP_F_PRESENT &&
 520	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
 521		sfp_soft_set_state(sfp, state);
 522}
 523
 524static unsigned int sfp_check(void *buf, size_t len)
 525{
 526	u8 *p, check;
 527
 528	for (p = buf, check = 0; len; p++, len--)
 529		check += *p;
 530
 531	return check;
 532}
 533
 534/* hwmon */
 535#if IS_ENABLED(CONFIG_HWMON)
 536static umode_t sfp_hwmon_is_visible(const void *data,
 537				    enum hwmon_sensor_types type,
 538				    u32 attr, int channel)
 539{
 540	const struct sfp *sfp = data;
 541
 542	switch (type) {
 543	case hwmon_temp:
 544		switch (attr) {
 545		case hwmon_temp_min_alarm:
 546		case hwmon_temp_max_alarm:
 547		case hwmon_temp_lcrit_alarm:
 548		case hwmon_temp_crit_alarm:
 549		case hwmon_temp_min:
 550		case hwmon_temp_max:
 551		case hwmon_temp_lcrit:
 552		case hwmon_temp_crit:
 553			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 554				return 0;
 555			fallthrough;
 556		case hwmon_temp_input:
 557		case hwmon_temp_label:
 558			return 0444;
 559		default:
 560			return 0;
 561		}
 562	case hwmon_in:
 563		switch (attr) {
 564		case hwmon_in_min_alarm:
 565		case hwmon_in_max_alarm:
 566		case hwmon_in_lcrit_alarm:
 567		case hwmon_in_crit_alarm:
 568		case hwmon_in_min:
 569		case hwmon_in_max:
 570		case hwmon_in_lcrit:
 571		case hwmon_in_crit:
 572			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 573				return 0;
 574			fallthrough;
 575		case hwmon_in_input:
 576		case hwmon_in_label:
 577			return 0444;
 578		default:
 579			return 0;
 580		}
 581	case hwmon_curr:
 582		switch (attr) {
 583		case hwmon_curr_min_alarm:
 584		case hwmon_curr_max_alarm:
 585		case hwmon_curr_lcrit_alarm:
 586		case hwmon_curr_crit_alarm:
 587		case hwmon_curr_min:
 588		case hwmon_curr_max:
 589		case hwmon_curr_lcrit:
 590		case hwmon_curr_crit:
 591			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 592				return 0;
 593			fallthrough;
 594		case hwmon_curr_input:
 595		case hwmon_curr_label:
 596			return 0444;
 597		default:
 598			return 0;
 599		}
 600	case hwmon_power:
 601		/* External calibration of receive power requires
 602		 * floating point arithmetic. Doing that in the kernel
 603		 * is not easy, so just skip it. If the module does
 604		 * not require external calibration, we can however
 605		 * show receiver power, since FP is then not needed.
 606		 */
 607		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 608		    channel == 1)
 609			return 0;
 610		switch (attr) {
 611		case hwmon_power_min_alarm:
 612		case hwmon_power_max_alarm:
 613		case hwmon_power_lcrit_alarm:
 614		case hwmon_power_crit_alarm:
 615		case hwmon_power_min:
 616		case hwmon_power_max:
 617		case hwmon_power_lcrit:
 618		case hwmon_power_crit:
 619			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 620				return 0;
 621			fallthrough;
 622		case hwmon_power_input:
 623		case hwmon_power_label:
 624			return 0444;
 625		default:
 626			return 0;
 627		}
 628	default:
 629		return 0;
 630	}
 631}
 632
 633static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 634{
 635	__be16 val;
 636	int err;
 637
 638	err = sfp_read(sfp, true, reg, &val, sizeof(val));
 639	if (err < 0)
 640		return err;
 641
 642	*value = be16_to_cpu(val);
 643
 644	return 0;
 645}
 646
 647static void sfp_hwmon_to_rx_power(long *value)
 648{
 649	*value = DIV_ROUND_CLOSEST(*value, 10);
 650}
 651
 652static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 653				long *value)
 654{
 655	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
 656		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
 657}
 658
 659static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
 660{
 661	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
 662			    be16_to_cpu(sfp->diag.cal_t_offset), value);
 663
 664	if (*value >= 0x8000)
 665		*value -= 0x10000;
 666
 667	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
 668}
 669
 670static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
 671{
 672	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
 673			    be16_to_cpu(sfp->diag.cal_v_offset), value);
 674
 675	*value = DIV_ROUND_CLOSEST(*value, 10);
 676}
 677
 678static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
 679{
 680	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
 681			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
 682
 683	*value = DIV_ROUND_CLOSEST(*value, 500);
 684}
 685
 686static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
 687{
 688	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
 689			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
 690
 691	*value = DIV_ROUND_CLOSEST(*value, 10);
 692}
 693
 694static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
 695{
 696	int err;
 697
 698	err = sfp_hwmon_read_sensor(sfp, reg, value);
 699	if (err < 0)
 700		return err;
 701
 702	sfp_hwmon_calibrate_temp(sfp, value);
 703
 704	return 0;
 705}
 706
 707static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
 708{
 709	int err;
 710
 711	err = sfp_hwmon_read_sensor(sfp, reg, value);
 712	if (err < 0)
 713		return err;
 714
 715	sfp_hwmon_calibrate_vcc(sfp, value);
 716
 717	return 0;
 718}
 719
 720static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
 721{
 722	int err;
 723
 724	err = sfp_hwmon_read_sensor(sfp, reg, value);
 725	if (err < 0)
 726		return err;
 727
 728	sfp_hwmon_calibrate_bias(sfp, value);
 729
 730	return 0;
 731}
 732
 733static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
 734{
 735	int err;
 736
 737	err = sfp_hwmon_read_sensor(sfp, reg, value);
 738	if (err < 0)
 739		return err;
 740
 741	sfp_hwmon_calibrate_tx_power(sfp, value);
 742
 743	return 0;
 744}
 745
 746static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
 747{
 748	int err;
 749
 750	err = sfp_hwmon_read_sensor(sfp, reg, value);
 751	if (err < 0)
 752		return err;
 753
 754	sfp_hwmon_to_rx_power(value);
 755
 756	return 0;
 757}
 758
 759static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
 760{
 761	u8 status;
 762	int err;
 763
 764	switch (attr) {
 765	case hwmon_temp_input:
 766		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
 767
 768	case hwmon_temp_lcrit:
 769		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
 770		sfp_hwmon_calibrate_temp(sfp, value);
 771		return 0;
 772
 773	case hwmon_temp_min:
 774		*value = be16_to_cpu(sfp->diag.temp_low_warn);
 775		sfp_hwmon_calibrate_temp(sfp, value);
 776		return 0;
 777	case hwmon_temp_max:
 778		*value = be16_to_cpu(sfp->diag.temp_high_warn);
 779		sfp_hwmon_calibrate_temp(sfp, value);
 780		return 0;
 781
 782	case hwmon_temp_crit:
 783		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
 784		sfp_hwmon_calibrate_temp(sfp, value);
 785		return 0;
 786
 787	case hwmon_temp_lcrit_alarm:
 788		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 789		if (err < 0)
 790			return err;
 791
 792		*value = !!(status & SFP_ALARM0_TEMP_LOW);
 793		return 0;
 794
 795	case hwmon_temp_min_alarm:
 796		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 797		if (err < 0)
 798			return err;
 799
 800		*value = !!(status & SFP_WARN0_TEMP_LOW);
 801		return 0;
 802
 803	case hwmon_temp_max_alarm:
 804		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 805		if (err < 0)
 806			return err;
 807
 808		*value = !!(status & SFP_WARN0_TEMP_HIGH);
 809		return 0;
 810
 811	case hwmon_temp_crit_alarm:
 812		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 813		if (err < 0)
 814			return err;
 815
 816		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
 817		return 0;
 818	default:
 819		return -EOPNOTSUPP;
 820	}
 821
 822	return -EOPNOTSUPP;
 823}
 824
 825static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
 826{
 827	u8 status;
 828	int err;
 829
 830	switch (attr) {
 831	case hwmon_in_input:
 832		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
 833
 834	case hwmon_in_lcrit:
 835		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
 836		sfp_hwmon_calibrate_vcc(sfp, value);
 837		return 0;
 838
 839	case hwmon_in_min:
 840		*value = be16_to_cpu(sfp->diag.volt_low_warn);
 841		sfp_hwmon_calibrate_vcc(sfp, value);
 842		return 0;
 843
 844	case hwmon_in_max:
 845		*value = be16_to_cpu(sfp->diag.volt_high_warn);
 846		sfp_hwmon_calibrate_vcc(sfp, value);
 847		return 0;
 848
 849	case hwmon_in_crit:
 850		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
 851		sfp_hwmon_calibrate_vcc(sfp, value);
 852		return 0;
 853
 854	case hwmon_in_lcrit_alarm:
 855		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 856		if (err < 0)
 857			return err;
 858
 859		*value = !!(status & SFP_ALARM0_VCC_LOW);
 860		return 0;
 861
 862	case hwmon_in_min_alarm:
 863		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 864		if (err < 0)
 865			return err;
 866
 867		*value = !!(status & SFP_WARN0_VCC_LOW);
 868		return 0;
 869
 870	case hwmon_in_max_alarm:
 871		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 872		if (err < 0)
 873			return err;
 874
 875		*value = !!(status & SFP_WARN0_VCC_HIGH);
 876		return 0;
 877
 878	case hwmon_in_crit_alarm:
 879		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 880		if (err < 0)
 881			return err;
 882
 883		*value = !!(status & SFP_ALARM0_VCC_HIGH);
 884		return 0;
 885	default:
 886		return -EOPNOTSUPP;
 887	}
 888
 889	return -EOPNOTSUPP;
 890}
 891
 892static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
 893{
 894	u8 status;
 895	int err;
 896
 897	switch (attr) {
 898	case hwmon_curr_input:
 899		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
 900
 901	case hwmon_curr_lcrit:
 902		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
 903		sfp_hwmon_calibrate_bias(sfp, value);
 904		return 0;
 905
 906	case hwmon_curr_min:
 907		*value = be16_to_cpu(sfp->diag.bias_low_warn);
 908		sfp_hwmon_calibrate_bias(sfp, value);
 909		return 0;
 910
 911	case hwmon_curr_max:
 912		*value = be16_to_cpu(sfp->diag.bias_high_warn);
 913		sfp_hwmon_calibrate_bias(sfp, value);
 914		return 0;
 915
 916	case hwmon_curr_crit:
 917		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
 918		sfp_hwmon_calibrate_bias(sfp, value);
 919		return 0;
 920
 921	case hwmon_curr_lcrit_alarm:
 922		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 923		if (err < 0)
 924			return err;
 925
 926		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
 927		return 0;
 928
 929	case hwmon_curr_min_alarm:
 930		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 931		if (err < 0)
 932			return err;
 933
 934		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
 935		return 0;
 936
 937	case hwmon_curr_max_alarm:
 938		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 939		if (err < 0)
 940			return err;
 941
 942		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
 943		return 0;
 944
 945	case hwmon_curr_crit_alarm:
 946		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 947		if (err < 0)
 948			return err;
 949
 950		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
 951		return 0;
 952	default:
 953		return -EOPNOTSUPP;
 954	}
 955
 956	return -EOPNOTSUPP;
 957}
 958
 959static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
 960{
 961	u8 status;
 962	int err;
 963
 964	switch (attr) {
 965	case hwmon_power_input:
 966		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
 967
 968	case hwmon_power_lcrit:
 969		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
 970		sfp_hwmon_calibrate_tx_power(sfp, value);
 971		return 0;
 972
 973	case hwmon_power_min:
 974		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
 975		sfp_hwmon_calibrate_tx_power(sfp, value);
 976		return 0;
 977
 978	case hwmon_power_max:
 979		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
 980		sfp_hwmon_calibrate_tx_power(sfp, value);
 981		return 0;
 982
 983	case hwmon_power_crit:
 984		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
 985		sfp_hwmon_calibrate_tx_power(sfp, value);
 986		return 0;
 987
 988	case hwmon_power_lcrit_alarm:
 989		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 990		if (err < 0)
 991			return err;
 992
 993		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
 994		return 0;
 995
 996	case hwmon_power_min_alarm:
 997		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 998		if (err < 0)
 999			return err;
1000
1001		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1002		return 0;
1003
1004	case hwmon_power_max_alarm:
1005		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1006		if (err < 0)
1007			return err;
1008
1009		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1010		return 0;
1011
1012	case hwmon_power_crit_alarm:
1013		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1014		if (err < 0)
1015			return err;
1016
1017		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1018		return 0;
1019	default:
1020		return -EOPNOTSUPP;
1021	}
1022
1023	return -EOPNOTSUPP;
1024}
1025
1026static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1027{
1028	u8 status;
1029	int err;
1030
1031	switch (attr) {
1032	case hwmon_power_input:
1033		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1034
1035	case hwmon_power_lcrit:
1036		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1037		sfp_hwmon_to_rx_power(value);
1038		return 0;
1039
1040	case hwmon_power_min:
1041		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1042		sfp_hwmon_to_rx_power(value);
1043		return 0;
1044
1045	case hwmon_power_max:
1046		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1047		sfp_hwmon_to_rx_power(value);
1048		return 0;
1049
1050	case hwmon_power_crit:
1051		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1052		sfp_hwmon_to_rx_power(value);
1053		return 0;
1054
1055	case hwmon_power_lcrit_alarm:
1056		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1057		if (err < 0)
1058			return err;
1059
1060		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1061		return 0;
1062
1063	case hwmon_power_min_alarm:
1064		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1065		if (err < 0)
1066			return err;
1067
1068		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1069		return 0;
1070
1071	case hwmon_power_max_alarm:
1072		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1073		if (err < 0)
1074			return err;
1075
1076		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1077		return 0;
1078
1079	case hwmon_power_crit_alarm:
1080		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1081		if (err < 0)
1082			return err;
1083
1084		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1085		return 0;
1086	default:
1087		return -EOPNOTSUPP;
1088	}
1089
1090	return -EOPNOTSUPP;
1091}
1092
1093static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1094			  u32 attr, int channel, long *value)
1095{
1096	struct sfp *sfp = dev_get_drvdata(dev);
1097
1098	switch (type) {
1099	case hwmon_temp:
1100		return sfp_hwmon_temp(sfp, attr, value);
1101	case hwmon_in:
1102		return sfp_hwmon_vcc(sfp, attr, value);
1103	case hwmon_curr:
1104		return sfp_hwmon_bias(sfp, attr, value);
1105	case hwmon_power:
1106		switch (channel) {
1107		case 0:
1108			return sfp_hwmon_tx_power(sfp, attr, value);
1109		case 1:
1110			return sfp_hwmon_rx_power(sfp, attr, value);
1111		default:
1112			return -EOPNOTSUPP;
1113		}
1114	default:
1115		return -EOPNOTSUPP;
1116	}
1117}
1118
1119static const char *const sfp_hwmon_power_labels[] = {
1120	"TX_power",
1121	"RX_power",
1122};
1123
1124static int sfp_hwmon_read_string(struct device *dev,
1125				 enum hwmon_sensor_types type,
1126				 u32 attr, int channel, const char **str)
1127{
1128	switch (type) {
1129	case hwmon_curr:
1130		switch (attr) {
1131		case hwmon_curr_label:
1132			*str = "bias";
1133			return 0;
1134		default:
1135			return -EOPNOTSUPP;
1136		}
1137		break;
1138	case hwmon_temp:
1139		switch (attr) {
1140		case hwmon_temp_label:
1141			*str = "temperature";
1142			return 0;
1143		default:
1144			return -EOPNOTSUPP;
1145		}
1146		break;
1147	case hwmon_in:
1148		switch (attr) {
1149		case hwmon_in_label:
1150			*str = "VCC";
1151			return 0;
1152		default:
1153			return -EOPNOTSUPP;
1154		}
1155		break;
1156	case hwmon_power:
1157		switch (attr) {
1158		case hwmon_power_label:
1159			*str = sfp_hwmon_power_labels[channel];
1160			return 0;
1161		default:
1162			return -EOPNOTSUPP;
1163		}
1164		break;
1165	default:
1166		return -EOPNOTSUPP;
1167	}
1168
1169	return -EOPNOTSUPP;
1170}
1171
1172static const struct hwmon_ops sfp_hwmon_ops = {
1173	.is_visible = sfp_hwmon_is_visible,
1174	.read = sfp_hwmon_read,
1175	.read_string = sfp_hwmon_read_string,
1176};
1177
1178static u32 sfp_hwmon_chip_config[] = {
1179	HWMON_C_REGISTER_TZ,
1180	0,
1181};
1182
1183static const struct hwmon_channel_info sfp_hwmon_chip = {
1184	.type = hwmon_chip,
1185	.config = sfp_hwmon_chip_config,
1186};
1187
1188static u32 sfp_hwmon_temp_config[] = {
1189	HWMON_T_INPUT |
1190	HWMON_T_MAX | HWMON_T_MIN |
1191	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1192	HWMON_T_CRIT | HWMON_T_LCRIT |
1193	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1194	HWMON_T_LABEL,
1195	0,
1196};
1197
1198static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1199	.type = hwmon_temp,
1200	.config = sfp_hwmon_temp_config,
1201};
1202
1203static u32 sfp_hwmon_vcc_config[] = {
1204	HWMON_I_INPUT |
1205	HWMON_I_MAX | HWMON_I_MIN |
1206	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1207	HWMON_I_CRIT | HWMON_I_LCRIT |
1208	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1209	HWMON_I_LABEL,
1210	0,
1211};
1212
1213static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1214	.type = hwmon_in,
1215	.config = sfp_hwmon_vcc_config,
1216};
1217
1218static u32 sfp_hwmon_bias_config[] = {
1219	HWMON_C_INPUT |
1220	HWMON_C_MAX | HWMON_C_MIN |
1221	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1222	HWMON_C_CRIT | HWMON_C_LCRIT |
1223	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1224	HWMON_C_LABEL,
1225	0,
1226};
1227
1228static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1229	.type = hwmon_curr,
1230	.config = sfp_hwmon_bias_config,
1231};
1232
1233static u32 sfp_hwmon_power_config[] = {
1234	/* Transmit power */
1235	HWMON_P_INPUT |
1236	HWMON_P_MAX | HWMON_P_MIN |
1237	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1238	HWMON_P_CRIT | HWMON_P_LCRIT |
1239	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1240	HWMON_P_LABEL,
1241	/* Receive power */
1242	HWMON_P_INPUT |
1243	HWMON_P_MAX | HWMON_P_MIN |
1244	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1245	HWMON_P_CRIT | HWMON_P_LCRIT |
1246	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1247	HWMON_P_LABEL,
1248	0,
1249};
1250
1251static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1252	.type = hwmon_power,
1253	.config = sfp_hwmon_power_config,
1254};
1255
1256static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1257	&sfp_hwmon_chip,
1258	&sfp_hwmon_vcc_channel_info,
1259	&sfp_hwmon_temp_channel_info,
1260	&sfp_hwmon_bias_channel_info,
1261	&sfp_hwmon_power_channel_info,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262	NULL,
1263};
1264
1265static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1266	.ops = &sfp_hwmon_ops,
1267	.info = sfp_hwmon_info,
1268};
1269
1270static void sfp_hwmon_probe(struct work_struct *work)
1271{
1272	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1273	int err, i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274
1275	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1276	if (err < 0) {
1277		if (sfp->hwmon_tries--) {
1278			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1279					 T_PROBE_RETRY_SLOW);
1280		} else {
1281			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
 
1282		}
1283		return;
1284	}
1285
1286	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1287	if (!sfp->hwmon_name) {
1288		dev_err(sfp->dev, "out of memory for hwmon name\n");
1289		return;
1290	}
1291
1292	for (i = 0; sfp->hwmon_name[i]; i++)
1293		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1294			sfp->hwmon_name[i] = '_';
1295
1296	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1297							 sfp->hwmon_name, sfp,
1298							 &sfp_hwmon_chip_info,
1299							 NULL);
1300	if (IS_ERR(sfp->hwmon_dev))
1301		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1302			PTR_ERR(sfp->hwmon_dev));
1303}
1304
1305static int sfp_hwmon_insert(struct sfp *sfp)
1306{
1307	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1308		return 0;
1309
1310	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1311		return 0;
1312
1313	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1314		/* This driver in general does not support address
1315		 * change.
1316		 */
1317		return 0;
1318
1319	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1320	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1321
1322	return 0;
1323}
1324
1325static void sfp_hwmon_remove(struct sfp *sfp)
1326{
1327	cancel_delayed_work_sync(&sfp->hwmon_probe);
1328	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1329		hwmon_device_unregister(sfp->hwmon_dev);
1330		sfp->hwmon_dev = NULL;
1331		kfree(sfp->hwmon_name);
1332	}
1333}
1334
1335static int sfp_hwmon_init(struct sfp *sfp)
1336{
1337	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1338
1339	return 0;
1340}
1341
1342static void sfp_hwmon_exit(struct sfp *sfp)
1343{
1344	cancel_delayed_work_sync(&sfp->hwmon_probe);
1345}
1346#else
1347static int sfp_hwmon_insert(struct sfp *sfp)
1348{
1349	return 0;
1350}
1351
1352static void sfp_hwmon_remove(struct sfp *sfp)
1353{
1354}
1355
1356static int sfp_hwmon_init(struct sfp *sfp)
1357{
1358	return 0;
1359}
1360
1361static void sfp_hwmon_exit(struct sfp *sfp)
1362{
1363}
1364#endif
1365
1366/* Helpers */
1367static void sfp_module_tx_disable(struct sfp *sfp)
1368{
1369	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1370		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1371	sfp->state |= SFP_F_TX_DISABLE;
1372	sfp_set_state(sfp, sfp->state);
1373}
1374
1375static void sfp_module_tx_enable(struct sfp *sfp)
1376{
1377	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1378		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1379	sfp->state &= ~SFP_F_TX_DISABLE;
1380	sfp_set_state(sfp, sfp->state);
1381}
1382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383static void sfp_module_tx_fault_reset(struct sfp *sfp)
1384{
1385	unsigned int state = sfp->state;
1386
1387	if (state & SFP_F_TX_DISABLE)
1388		return;
1389
1390	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1391
1392	udelay(T_RESET_US);
1393
1394	sfp_set_state(sfp, state);
1395}
1396
1397/* SFP state machine */
1398static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1399{
1400	if (timeout)
1401		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1402				 timeout);
1403	else
1404		cancel_delayed_work(&sfp->timeout);
1405}
1406
1407static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1408			unsigned int timeout)
1409{
1410	sfp->sm_state = state;
1411	sfp_sm_set_timer(sfp, timeout);
1412}
1413
1414static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1415			    unsigned int timeout)
1416{
1417	sfp->sm_mod_state = state;
1418	sfp_sm_set_timer(sfp, timeout);
1419}
1420
1421static void sfp_sm_phy_detach(struct sfp *sfp)
1422{
1423	sfp_remove_phy(sfp->sfp_bus);
1424	phy_device_remove(sfp->mod_phy);
1425	phy_device_free(sfp->mod_phy);
1426	sfp->mod_phy = NULL;
1427}
1428
1429static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1430{
1431	struct phy_device *phy;
1432	int err;
1433
1434	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1435	if (phy == ERR_PTR(-ENODEV))
1436		return PTR_ERR(phy);
1437	if (IS_ERR(phy)) {
1438		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1439		return PTR_ERR(phy);
1440	}
1441
1442	err = phy_device_register(phy);
1443	if (err) {
1444		phy_device_free(phy);
1445		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
 
1446		return err;
1447	}
1448
1449	err = sfp_add_phy(sfp->sfp_bus, phy);
1450	if (err) {
1451		phy_device_remove(phy);
1452		phy_device_free(phy);
1453		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1454		return err;
1455	}
1456
1457	sfp->mod_phy = phy;
1458
1459	return 0;
1460}
1461
1462static void sfp_sm_link_up(struct sfp *sfp)
1463{
1464	sfp_link_up(sfp->sfp_bus);
1465	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1466}
1467
1468static void sfp_sm_link_down(struct sfp *sfp)
1469{
1470	sfp_link_down(sfp->sfp_bus);
1471}
1472
1473static void sfp_sm_link_check_los(struct sfp *sfp)
1474{
1475	unsigned int los = sfp->state & SFP_F_LOS;
 
 
 
1476
1477	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1478	 * are set, we assume that no LOS signal is available.
 
1479	 */
1480	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1481		los ^= SFP_F_LOS;
1482	else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1483		los = 0;
1484
1485	if (los)
1486		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1487	else
1488		sfp_sm_link_up(sfp);
1489}
1490
1491static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1492{
1493	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1494		event == SFP_E_LOS_LOW) ||
1495	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1496		event == SFP_E_LOS_HIGH);
 
 
1497}
1498
1499static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1500{
1501	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1502		event == SFP_E_LOS_HIGH) ||
1503	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1504		event == SFP_E_LOS_LOW);
 
 
1505}
1506
1507static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1508{
1509	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1510		dev_err(sfp->dev,
1511			"module persistently indicates fault, disabling\n");
1512		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1513	} else {
1514		if (warn)
1515			dev_err(sfp->dev, "module transmit fault indicated\n");
1516
1517		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1518	}
1519}
1520
 
 
 
 
 
 
 
 
1521/* Probe a SFP for a PHY device if the module supports copper - the PHY
1522 * normally sits at I2C bus address 0x56, and may either be a clause 22
1523 * or clause 45 PHY.
1524 *
1525 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1526 * negotiation enabled, but some may be in 1000base-X - which is for the
1527 * PHY driver to determine.
1528 *
1529 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1530 * mode according to the negotiated line speed.
1531 */
1532static int sfp_sm_probe_for_phy(struct sfp *sfp)
1533{
1534	int err = 0;
1535
1536	switch (sfp->id.base.extended_cc) {
1537	case SFF8024_ECC_10GBASE_T_SFI:
1538	case SFF8024_ECC_10GBASE_T_SR:
1539	case SFF8024_ECC_5GBASE_T:
1540	case SFF8024_ECC_2_5GBASE_T:
1541		err = sfp_sm_probe_phy(sfp, true);
1542		break;
1543
1544	default:
1545		if (sfp->id.base.e1000_base_t)
1546			err = sfp_sm_probe_phy(sfp, false);
 
 
 
 
 
 
 
1547		break;
1548	}
 
1549	return err;
1550}
1551
1552static int sfp_module_parse_power(struct sfp *sfp)
1553{
1554	u32 power_mW = 1000;
 
1555
1556	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
 
1557		power_mW = 1500;
1558	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
 
 
1559		power_mW = 2000;
1560
 
 
 
 
 
 
 
 
 
 
1561	if (power_mW > sfp->max_power_mW) {
1562		/* Module power specification exceeds the allowed maximum. */
1563		if (sfp->id.ext.sff8472_compliance ==
1564			SFP_SFF8472_COMPLIANCE_NONE &&
1565		    !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1566			/* The module appears not to implement bus address
1567			 * 0xa2, so assume that the module powers up in the
1568			 * indicated mode.
1569			 */
1570			dev_err(sfp->dev,
1571				"Host does not support %u.%uW modules\n",
1572				power_mW / 1000, (power_mW / 100) % 10);
1573			return -EINVAL;
1574		} else {
1575			dev_warn(sfp->dev,
1576				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1577				 power_mW / 1000, (power_mW / 100) % 10);
1578			return 0;
1579		}
1580	}
1581
 
 
 
 
 
 
 
 
1582	/* If the module requires a higher power mode, but also requires
1583	 * an address change sequence, warn the user that the module may
1584	 * not be functional.
1585	 */
1586	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1587		dev_warn(sfp->dev,
1588			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1589			 power_mW / 1000, (power_mW / 100) % 10);
1590		return 0;
1591	}
1592
1593	sfp->module_power_mW = power_mW;
1594
1595	return 0;
1596}
1597
1598static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1599{
1600	u8 val;
1601	int err;
1602
1603	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1604	if (err != sizeof(val)) {
1605		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1606		return -EAGAIN;
1607	}
1608
1609	/* DM7052 reports as a high power module, responds to reads (with
1610	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1611	 * if the bit is already set, we're already in high power mode.
1612	 */
1613	if (!!(val & BIT(0)) == enable)
1614		return 0;
1615
1616	if (enable)
1617		val |= BIT(0);
1618	else
1619		val &= ~BIT(0);
1620
1621	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1622	if (err != sizeof(val)) {
1623		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1624		return -EAGAIN;
1625	}
1626
1627	if (enable)
1628		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1629			 sfp->module_power_mW / 1000,
1630			 (sfp->module_power_mW / 100) % 10);
1631
1632	return 0;
1633}
1634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1635static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1636{
1637	u8 check;
1638	int err;
1639
1640	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1641	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1642	    id->base.connector != SFF8024_CONNECTOR_LC) {
1643		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1644		id->base.phys_id = SFF8024_ID_SFF_8472;
1645		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1646		id->base.connector = SFF8024_CONNECTOR_LC;
1647		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1648		if (err != 3) {
1649			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
 
 
1650			return err;
1651		}
1652
1653		/* Cotsworks modules have been found to require a delay between write operations. */
1654		mdelay(50);
1655
1656		/* Update base structure checksum */
1657		check = sfp_check(&id->base, sizeof(id->base) - 1);
1658		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1659		if (err != 1) {
1660			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
 
 
1661			return err;
1662		}
1663	}
1664	return 0;
1665}
1666
1667static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1668{
1669	/* SFP module inserted - read I2C data */
1670	struct sfp_eeprom_id id;
1671	bool cotsworks_sfbg;
1672	bool cotsworks;
1673	u8 check;
1674	int ret;
1675
1676	ret = sfp_read(sfp, false, 0, &id, sizeof(id));
 
 
 
 
 
 
1677	if (ret < 0) {
1678		if (report)
1679			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
 
1680		return -EAGAIN;
1681	}
1682
1683	if (ret != sizeof(id)) {
1684		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1685		return -EAGAIN;
1686	}
1687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688	/* Cotsworks do not seem to update the checksums when they
1689	 * do the final programming with the final module part number,
1690	 * serial number and date code.
1691	 */
1692	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1693	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1694
1695	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1696	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1697	 * Cotsworks PN matches and bytes are not correct.
1698	 */
1699	if (cotsworks && cotsworks_sfbg) {
1700		ret = sfp_cotsworks_fixup_check(sfp, &id);
1701		if (ret < 0)
1702			return ret;
1703	}
1704
1705	/* Validate the checksum over the base structure */
1706	check = sfp_check(&id.base, sizeof(id.base) - 1);
1707	if (check != id.base.cc_base) {
1708		if (cotsworks) {
1709			dev_warn(sfp->dev,
1710				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1711				 check, id.base.cc_base);
1712		} else {
1713			dev_err(sfp->dev,
1714				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1715				check, id.base.cc_base);
1716			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1717				       16, 1, &id, sizeof(id), true);
1718			return -EINVAL;
1719		}
1720	}
1721
 
 
 
 
 
 
 
 
 
 
 
 
 
1722	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1723	if (check != id.ext.cc_ext) {
1724		if (cotsworks) {
1725			dev_warn(sfp->dev,
1726				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1727				 check, id.ext.cc_ext);
1728		} else {
1729			dev_err(sfp->dev,
1730				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1731				check, id.ext.cc_ext);
1732			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1733				       16, 1, &id, sizeof(id), true);
1734			memset(&id.ext, 0, sizeof(id.ext));
1735		}
1736	}
1737
1738	sfp->id = id;
1739
1740	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1741		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1742		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1743		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1744		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1745		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1746
1747	/* Check whether we support this module */
1748	if (!sfp->type->module_supported(&id)) {
1749		dev_err(sfp->dev,
1750			"module is not supported - phys id 0x%02x 0x%02x\n",
1751			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1752		return -EINVAL;
1753	}
1754
1755	/* If the module requires address swap mode, warn about it */
1756	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1757		dev_warn(sfp->dev,
1758			 "module address swap to access page 0xA2 is not supported.\n");
1759
1760	/* Parse the module power requirement */
1761	ret = sfp_module_parse_power(sfp);
1762	if (ret < 0)
1763		return ret;
1764
1765	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1766	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1767		sfp->module_t_start_up = T_START_UP_BAD_GPON;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768	else
1769		sfp->module_t_start_up = T_START_UP;
 
 
 
 
1770
1771	return 0;
1772}
1773
1774static void sfp_sm_mod_remove(struct sfp *sfp)
1775{
1776	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1777		sfp_module_remove(sfp->sfp_bus);
1778
1779	sfp_hwmon_remove(sfp);
1780
1781	memset(&sfp->id, 0, sizeof(sfp->id));
1782	sfp->module_power_mW = 0;
1783
1784	dev_info(sfp->dev, "module removed\n");
1785}
1786
1787/* This state machine tracks the upstream's state */
1788static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1789{
1790	switch (sfp->sm_dev_state) {
1791	default:
1792		if (event == SFP_E_DEV_ATTACH)
1793			sfp->sm_dev_state = SFP_DEV_DOWN;
1794		break;
1795
1796	case SFP_DEV_DOWN:
1797		if (event == SFP_E_DEV_DETACH)
1798			sfp->sm_dev_state = SFP_DEV_DETACHED;
1799		else if (event == SFP_E_DEV_UP)
1800			sfp->sm_dev_state = SFP_DEV_UP;
1801		break;
1802
1803	case SFP_DEV_UP:
1804		if (event == SFP_E_DEV_DETACH)
1805			sfp->sm_dev_state = SFP_DEV_DETACHED;
1806		else if (event == SFP_E_DEV_DOWN)
1807			sfp->sm_dev_state = SFP_DEV_DOWN;
1808		break;
1809	}
1810}
1811
1812/* This state machine tracks the insert/remove state of the module, probes
1813 * the on-board EEPROM, and sets up the power level.
1814 */
1815static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1816{
1817	int err;
1818
1819	/* Handle remove event globally, it resets this state machine */
1820	if (event == SFP_E_REMOVE) {
1821		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1822			sfp_sm_mod_remove(sfp);
1823		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1824		return;
1825	}
1826
1827	/* Handle device detach globally */
1828	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1829	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1830		if (sfp->module_power_mW > 1000 &&
1831		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1832			sfp_sm_mod_hpower(sfp, false);
1833		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1834		return;
1835	}
1836
1837	switch (sfp->sm_mod_state) {
1838	default:
1839		if (event == SFP_E_INSERT) {
1840			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1841			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1842			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1843		}
1844		break;
1845
1846	case SFP_MOD_PROBE:
1847		/* Wait for T_PROBE_INIT to time out */
1848		if (event != SFP_E_TIMEOUT)
1849			break;
1850
1851		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1852		if (err == -EAGAIN) {
1853			if (sfp->sm_mod_tries_init &&
1854			   --sfp->sm_mod_tries_init) {
1855				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1856				break;
1857			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1858				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1859					dev_warn(sfp->dev,
1860						 "please wait, module slow to respond\n");
1861				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1862				break;
1863			}
1864		}
1865		if (err < 0) {
1866			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1867			break;
1868		}
1869
1870		err = sfp_hwmon_insert(sfp);
1871		if (err)
1872			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
 
1873
1874		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1875		fallthrough;
1876	case SFP_MOD_WAITDEV:
1877		/* Ensure that the device is attached before proceeding */
1878		if (sfp->sm_dev_state < SFP_DEV_DOWN)
1879			break;
1880
1881		/* Report the module insertion to the upstream device */
1882		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
 
1883		if (err < 0) {
1884			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1885			break;
1886		}
1887
1888		/* If this is a power level 1 module, we are done */
1889		if (sfp->module_power_mW <= 1000)
1890			goto insert;
1891
1892		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
1893		fallthrough;
1894	case SFP_MOD_HPOWER:
1895		/* Enable high power mode */
1896		err = sfp_sm_mod_hpower(sfp, true);
1897		if (err < 0) {
1898			if (err != -EAGAIN) {
1899				sfp_module_remove(sfp->sfp_bus);
1900				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1901			} else {
1902				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1903			}
1904			break;
1905		}
1906
1907		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
1908		break;
1909
1910	case SFP_MOD_WAITPWR:
1911		/* Wait for T_HPOWER_LEVEL to time out */
1912		if (event != SFP_E_TIMEOUT)
1913			break;
1914
1915	insert:
1916		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
1917		break;
1918
1919	case SFP_MOD_PRESENT:
1920	case SFP_MOD_ERROR:
1921		break;
1922	}
1923}
1924
1925static void sfp_sm_main(struct sfp *sfp, unsigned int event)
1926{
1927	unsigned long timeout;
1928	int ret;
1929
1930	/* Some events are global */
1931	if (sfp->sm_state != SFP_S_DOWN &&
1932	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1933	     sfp->sm_dev_state != SFP_DEV_UP)) {
1934		if (sfp->sm_state == SFP_S_LINK_UP &&
1935		    sfp->sm_dev_state == SFP_DEV_UP)
1936			sfp_sm_link_down(sfp);
1937		if (sfp->sm_state > SFP_S_INIT)
1938			sfp_module_stop(sfp->sfp_bus);
1939		if (sfp->mod_phy)
1940			sfp_sm_phy_detach(sfp);
 
 
1941		sfp_module_tx_disable(sfp);
1942		sfp_soft_stop_poll(sfp);
1943		sfp_sm_next(sfp, SFP_S_DOWN, 0);
1944		return;
1945	}
1946
1947	/* The main state machine */
1948	switch (sfp->sm_state) {
1949	case SFP_S_DOWN:
1950		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1951		    sfp->sm_dev_state != SFP_DEV_UP)
1952			break;
1953
1954		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
1955			sfp_soft_start_poll(sfp);
1956
1957		sfp_module_tx_enable(sfp);
1958
1959		/* Initialise the fault clearance retries */
1960		sfp->sm_fault_retries = N_FAULT_INIT;
1961
1962		/* We need to check the TX_FAULT state, which is not defined
1963		 * while TX_DISABLE is asserted. The earliest we want to do
1964		 * anything (such as probe for a PHY) is 50ms.
 
1965		 */
1966		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
1967		break;
1968
1969	case SFP_S_WAIT:
1970		if (event != SFP_E_TIMEOUT)
1971			break;
1972
1973		if (sfp->state & SFP_F_TX_FAULT) {
1974			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
1975			 * from the TX_DISABLE deassertion for the module to
1976			 * initialise, which is indicated by TX_FAULT
1977			 * deasserting.
1978			 */
1979			timeout = sfp->module_t_start_up;
1980			if (timeout > T_WAIT)
1981				timeout -= T_WAIT;
1982			else
1983				timeout = 1;
1984
1985			sfp_sm_next(sfp, SFP_S_INIT, timeout);
1986		} else {
1987			/* TX_FAULT is not asserted, assume the module has
1988			 * finished initialising.
1989			 */
1990			goto init_done;
1991		}
1992		break;
1993
1994	case SFP_S_INIT:
1995		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1996			/* TX_FAULT is still asserted after t_init or
1997			 * or t_start_up, so assume there is a fault.
1998			 */
1999			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2000				     sfp->sm_fault_retries == N_FAULT_INIT);
2001		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2002	init_done:
 
 
 
 
 
 
2003			sfp->sm_phy_retries = R_PHY_RETRY;
2004			goto phy_probe;
2005		}
2006		break;
2007
2008	case SFP_S_INIT_PHY:
2009		if (event != SFP_E_TIMEOUT)
2010			break;
2011	phy_probe:
2012		/* TX_FAULT deasserted or we timed out with TX_FAULT
2013		 * clear.  Probe for the PHY and check the LOS state.
2014		 */
2015		ret = sfp_sm_probe_for_phy(sfp);
2016		if (ret == -ENODEV) {
2017			if (--sfp->sm_phy_retries) {
2018				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2019				break;
2020			} else {
2021				dev_info(sfp->dev, "no PHY detected\n");
2022			}
2023		} else if (ret) {
2024			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2025			break;
2026		}
2027		if (sfp_module_start(sfp->sfp_bus)) {
2028			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2029			break;
2030		}
2031		sfp_sm_link_check_los(sfp);
2032
2033		/* Reset the fault retry count */
2034		sfp->sm_fault_retries = N_FAULT;
2035		break;
2036
2037	case SFP_S_INIT_TX_FAULT:
2038		if (event == SFP_E_TIMEOUT) {
2039			sfp_module_tx_fault_reset(sfp);
2040			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2041		}
2042		break;
2043
2044	case SFP_S_WAIT_LOS:
2045		if (event == SFP_E_TX_FAULT)
2046			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2047		else if (sfp_los_event_inactive(sfp, event))
2048			sfp_sm_link_up(sfp);
2049		break;
2050
2051	case SFP_S_LINK_UP:
2052		if (event == SFP_E_TX_FAULT) {
2053			sfp_sm_link_down(sfp);
2054			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2055		} else if (sfp_los_event_active(sfp, event)) {
2056			sfp_sm_link_down(sfp);
2057			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2058		}
2059		break;
2060
2061	case SFP_S_TX_FAULT:
2062		if (event == SFP_E_TIMEOUT) {
2063			sfp_module_tx_fault_reset(sfp);
2064			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2065		}
2066		break;
2067
2068	case SFP_S_REINIT:
2069		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2070			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2071		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2072			dev_info(sfp->dev, "module transmit fault recovered\n");
2073			sfp_sm_link_check_los(sfp);
2074		}
2075		break;
2076
2077	case SFP_S_TX_DISABLE:
2078		break;
2079	}
2080}
2081
2082static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2083{
2084	mutex_lock(&sfp->sm_mutex);
2085
2086	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2087		mod_state_to_str(sfp->sm_mod_state),
2088		dev_state_to_str(sfp->sm_dev_state),
2089		sm_state_to_str(sfp->sm_state),
2090		event_to_str(event));
2091
2092	sfp_sm_device(sfp, event);
2093	sfp_sm_module(sfp, event);
2094	sfp_sm_main(sfp, event);
2095
2096	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2097		mod_state_to_str(sfp->sm_mod_state),
2098		dev_state_to_str(sfp->sm_dev_state),
2099		sm_state_to_str(sfp->sm_state));
2100
2101	mutex_unlock(&sfp->sm_mutex);
2102}
2103
2104static void sfp_attach(struct sfp *sfp)
2105{
2106	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2107}
2108
2109static void sfp_detach(struct sfp *sfp)
2110{
2111	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2112}
2113
2114static void sfp_start(struct sfp *sfp)
2115{
2116	sfp_sm_event(sfp, SFP_E_DEV_UP);
2117}
2118
2119static void sfp_stop(struct sfp *sfp)
2120{
2121	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2122}
2123
2124static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2125{
2126	/* locking... and check module is present */
2127
2128	if (sfp->id.ext.sff8472_compliance &&
2129	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2130		modinfo->type = ETH_MODULE_SFF_8472;
2131		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2132	} else {
2133		modinfo->type = ETH_MODULE_SFF_8079;
2134		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2135	}
2136	return 0;
2137}
2138
2139static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2140			     u8 *data)
2141{
2142	unsigned int first, last, len;
2143	int ret;
2144
2145	if (ee->len == 0)
2146		return -EINVAL;
2147
2148	first = ee->offset;
2149	last = ee->offset + ee->len;
2150	if (first < ETH_MODULE_SFF_8079_LEN) {
2151		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2152		len -= first;
2153
2154		ret = sfp_read(sfp, false, first, data, len);
2155		if (ret < 0)
2156			return ret;
2157
2158		first += len;
2159		data += len;
2160	}
2161	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2162		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2163		len -= first;
2164		first -= ETH_MODULE_SFF_8079_LEN;
2165
2166		ret = sfp_read(sfp, true, first, data, len);
2167		if (ret < 0)
2168			return ret;
2169	}
2170	return 0;
2171}
2172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173static const struct sfp_socket_ops sfp_module_ops = {
2174	.attach = sfp_attach,
2175	.detach = sfp_detach,
2176	.start = sfp_start,
2177	.stop = sfp_stop,
2178	.module_info = sfp_module_info,
2179	.module_eeprom = sfp_module_eeprom,
 
2180};
2181
2182static void sfp_timeout(struct work_struct *work)
2183{
2184	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2185
2186	rtnl_lock();
2187	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2188	rtnl_unlock();
2189}
2190
2191static void sfp_check_state(struct sfp *sfp)
2192{
2193	unsigned int state, i, changed;
2194
2195	mutex_lock(&sfp->st_mutex);
2196	state = sfp_get_state(sfp);
2197	changed = state ^ sfp->state;
2198	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
 
 
 
2199
2200	for (i = 0; i < GPIO_MAX; i++)
2201		if (changed & BIT(i))
2202			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2203				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2204
2205	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2206	sfp->state = state;
2207
2208	rtnl_lock();
2209	if (changed & SFP_F_PRESENT)
2210		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2211				SFP_E_INSERT : SFP_E_REMOVE);
2212
2213	if (changed & SFP_F_TX_FAULT)
2214		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2215				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2216
2217	if (changed & SFP_F_LOS)
2218		sfp_sm_event(sfp, state & SFP_F_LOS ?
2219				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2220	rtnl_unlock();
2221	mutex_unlock(&sfp->st_mutex);
2222}
2223
2224static irqreturn_t sfp_irq(int irq, void *data)
2225{
2226	struct sfp *sfp = data;
2227
2228	sfp_check_state(sfp);
2229
2230	return IRQ_HANDLED;
2231}
2232
2233static void sfp_poll(struct work_struct *work)
2234{
2235	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2236
2237	sfp_check_state(sfp);
2238
2239	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2240	    sfp->need_poll)
2241		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2242}
2243
2244static struct sfp *sfp_alloc(struct device *dev)
2245{
2246	struct sfp *sfp;
2247
2248	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2249	if (!sfp)
2250		return ERR_PTR(-ENOMEM);
2251
2252	sfp->dev = dev;
2253
2254	mutex_init(&sfp->sm_mutex);
2255	mutex_init(&sfp->st_mutex);
2256	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2257	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2258
2259	sfp_hwmon_init(sfp);
2260
2261	return sfp;
2262}
2263
2264static void sfp_cleanup(void *data)
2265{
2266	struct sfp *sfp = data;
2267
2268	sfp_hwmon_exit(sfp);
2269
2270	cancel_delayed_work_sync(&sfp->poll);
2271	cancel_delayed_work_sync(&sfp->timeout);
2272	if (sfp->i2c_mii) {
2273		mdiobus_unregister(sfp->i2c_mii);
2274		mdiobus_free(sfp->i2c_mii);
2275	}
2276	if (sfp->i2c)
2277		i2c_put_adapter(sfp->i2c);
2278	kfree(sfp);
2279}
2280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2281static int sfp_probe(struct platform_device *pdev)
2282{
2283	const struct sff_data *sff;
2284	struct i2c_adapter *i2c;
2285	char *sfp_irq_name;
2286	struct sfp *sfp;
2287	int err, i;
2288
2289	sfp = sfp_alloc(&pdev->dev);
2290	if (IS_ERR(sfp))
2291		return PTR_ERR(sfp);
2292
2293	platform_set_drvdata(pdev, sfp);
2294
2295	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2296	if (err < 0)
2297		return err;
2298
2299	sff = sfp->type = &sfp_data;
2300
2301	if (pdev->dev.of_node) {
2302		struct device_node *node = pdev->dev.of_node;
2303		const struct of_device_id *id;
2304		struct device_node *np;
2305
2306		id = of_match_node(sfp_of_match, node);
2307		if (WARN_ON(!id))
2308			return -EINVAL;
2309
2310		sff = sfp->type = id->data;
2311
2312		np = of_parse_phandle(node, "i2c-bus", 0);
2313		if (!np) {
2314			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2315			return -ENODEV;
2316		}
2317
2318		i2c = of_find_i2c_adapter_by_node(np);
2319		of_node_put(np);
2320	} else if (has_acpi_companion(&pdev->dev)) {
2321		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2322		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2323		struct fwnode_reference_args args;
2324		struct acpi_handle *acpi_handle;
2325		int ret;
2326
2327		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2328		if (ret || !is_acpi_device_node(args.fwnode)) {
2329			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2330			return -ENODEV;
2331		}
2332
2333		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2334		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2335	} else {
2336		return -EINVAL;
2337	}
2338
2339	if (!i2c)
2340		return -EPROBE_DEFER;
2341
2342	err = sfp_i2c_configure(sfp, i2c);
2343	if (err < 0) {
2344		i2c_put_adapter(i2c);
2345		return err;
2346	}
2347
2348	for (i = 0; i < GPIO_MAX; i++)
2349		if (sff->gpios & BIT(i)) {
2350			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2351					   gpio_of_names[i], gpio_flags[i]);
2352			if (IS_ERR(sfp->gpio[i]))
2353				return PTR_ERR(sfp->gpio[i]);
2354		}
2355
 
 
2356	sfp->get_state = sfp_gpio_get_state;
2357	sfp->set_state = sfp_gpio_set_state;
2358
2359	/* Modules that have no detect signal are always present */
2360	if (!(sfp->gpio[GPIO_MODDEF0]))
2361		sfp->get_state = sff_gpio_get_state;
2362
2363	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2364				 &sfp->max_power_mW);
2365	if (!sfp->max_power_mW)
 
 
 
2366		sfp->max_power_mW = 1000;
 
2367
2368	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2369		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2370
2371	/* Get the initial state, and always signal TX disable,
2372	 * since the network interface will not be up.
2373	 */
2374	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2375
2376	if (sfp->gpio[GPIO_RATE_SELECT] &&
2377	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2378		sfp->state |= SFP_F_RATE_SELECT;
2379	sfp_set_state(sfp, sfp->state);
2380	sfp_module_tx_disable(sfp);
2381	if (sfp->state & SFP_F_PRESENT) {
2382		rtnl_lock();
2383		sfp_sm_event(sfp, SFP_E_INSERT);
2384		rtnl_unlock();
2385	}
2386
2387	for (i = 0; i < GPIO_MAX; i++) {
2388		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2389			continue;
2390
2391		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2392		if (!sfp->gpio_irq[i]) {
 
2393			sfp->need_poll = true;
2394			continue;
2395		}
2396
2397		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2398					      "%s-%s", dev_name(sfp->dev),
2399					      gpio_of_names[i]);
2400
2401		if (!sfp_irq_name)
2402			return -ENOMEM;
2403
2404		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2405						NULL, sfp_irq,
2406						IRQF_ONESHOT |
2407						IRQF_TRIGGER_RISING |
2408						IRQF_TRIGGER_FALLING,
2409						sfp_irq_name, sfp);
2410		if (err) {
2411			sfp->gpio_irq[i] = 0;
2412			sfp->need_poll = true;
2413		}
2414	}
2415
2416	if (sfp->need_poll)
2417		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2418
2419	/* We could have an issue in cases no Tx disable pin is available or
2420	 * wired as modules using a laser as their light source will continue to
2421	 * be active when the fiber is removed. This could be a safety issue and
2422	 * we should at least warn the user about that.
2423	 */
2424	if (!sfp->gpio[GPIO_TX_DISABLE])
2425		dev_warn(sfp->dev,
2426			 "No tx_disable pin: SFP modules will always be emitting.\n");
2427
2428	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2429	if (!sfp->sfp_bus)
2430		return -ENOMEM;
2431
 
 
2432	return 0;
2433}
2434
2435static int sfp_remove(struct platform_device *pdev)
2436{
2437	struct sfp *sfp = platform_get_drvdata(pdev);
2438
 
2439	sfp_unregister_socket(sfp->sfp_bus);
2440
2441	rtnl_lock();
2442	sfp_sm_event(sfp, SFP_E_REMOVE);
2443	rtnl_unlock();
2444
2445	return 0;
2446}
2447
2448static void sfp_shutdown(struct platform_device *pdev)
2449{
2450	struct sfp *sfp = platform_get_drvdata(pdev);
2451	int i;
2452
2453	for (i = 0; i < GPIO_MAX; i++) {
2454		if (!sfp->gpio_irq[i])
2455			continue;
2456
2457		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2458	}
2459
2460	cancel_delayed_work_sync(&sfp->poll);
2461	cancel_delayed_work_sync(&sfp->timeout);
2462}
2463
2464static struct platform_driver sfp_driver = {
2465	.probe = sfp_probe,
2466	.remove = sfp_remove,
2467	.shutdown = sfp_shutdown,
2468	.driver = {
2469		.name = "sfp",
2470		.of_match_table = sfp_of_match,
2471	},
2472};
2473
2474static int sfp_init(void)
2475{
2476	poll_jiffies = msecs_to_jiffies(100);
2477
2478	return platform_driver_register(&sfp_driver);
2479}
2480module_init(sfp_init);
2481
2482static void sfp_exit(void)
2483{
2484	platform_driver_unregister(&sfp_driver);
2485}
2486module_exit(sfp_exit);
2487
2488MODULE_ALIAS("platform:sfp");
2489MODULE_AUTHOR("Russell King");
2490MODULE_LICENSE("GPL v2");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/acpi.h>
   3#include <linux/ctype.h>
   4#include <linux/debugfs.h>
   5#include <linux/delay.h>
   6#include <linux/gpio/consumer.h>
   7#include <linux/hwmon.h>
   8#include <linux/i2c.h>
   9#include <linux/interrupt.h>
  10#include <linux/jiffies.h>
  11#include <linux/mdio/mdio-i2c.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/of.h>
  15#include <linux/phy.h>
  16#include <linux/platform_device.h>
  17#include <linux/rtnetlink.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20
 
  21#include "sfp.h"
  22#include "swphy.h"
  23
  24enum {
  25	GPIO_MODDEF0,
  26	GPIO_LOS,
  27	GPIO_TX_FAULT,
  28	GPIO_TX_DISABLE,
  29	GPIO_RATE_SELECT,
  30	GPIO_MAX,
  31
  32	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  33	SFP_F_LOS = BIT(GPIO_LOS),
  34	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  35	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  36	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  37
  38	SFP_E_INSERT = 0,
  39	SFP_E_REMOVE,
  40	SFP_E_DEV_ATTACH,
  41	SFP_E_DEV_DETACH,
  42	SFP_E_DEV_DOWN,
  43	SFP_E_DEV_UP,
  44	SFP_E_TX_FAULT,
  45	SFP_E_TX_CLEAR,
  46	SFP_E_LOS_HIGH,
  47	SFP_E_LOS_LOW,
  48	SFP_E_TIMEOUT,
  49
  50	SFP_MOD_EMPTY = 0,
  51	SFP_MOD_ERROR,
  52	SFP_MOD_PROBE,
  53	SFP_MOD_WAITDEV,
  54	SFP_MOD_HPOWER,
  55	SFP_MOD_WAITPWR,
  56	SFP_MOD_PRESENT,
  57
  58	SFP_DEV_DETACHED = 0,
  59	SFP_DEV_DOWN,
  60	SFP_DEV_UP,
  61
  62	SFP_S_DOWN = 0,
  63	SFP_S_FAIL,
  64	SFP_S_WAIT,
  65	SFP_S_INIT,
  66	SFP_S_INIT_PHY,
  67	SFP_S_INIT_TX_FAULT,
  68	SFP_S_WAIT_LOS,
  69	SFP_S_LINK_UP,
  70	SFP_S_TX_FAULT,
  71	SFP_S_REINIT,
  72	SFP_S_TX_DISABLE,
  73};
  74
  75static const char  * const mod_state_strings[] = {
  76	[SFP_MOD_EMPTY] = "empty",
  77	[SFP_MOD_ERROR] = "error",
  78	[SFP_MOD_PROBE] = "probe",
  79	[SFP_MOD_WAITDEV] = "waitdev",
  80	[SFP_MOD_HPOWER] = "hpower",
  81	[SFP_MOD_WAITPWR] = "waitpwr",
  82	[SFP_MOD_PRESENT] = "present",
  83};
  84
  85static const char *mod_state_to_str(unsigned short mod_state)
  86{
  87	if (mod_state >= ARRAY_SIZE(mod_state_strings))
  88		return "Unknown module state";
  89	return mod_state_strings[mod_state];
  90}
  91
  92static const char * const dev_state_strings[] = {
  93	[SFP_DEV_DETACHED] = "detached",
  94	[SFP_DEV_DOWN] = "down",
  95	[SFP_DEV_UP] = "up",
  96};
  97
  98static const char *dev_state_to_str(unsigned short dev_state)
  99{
 100	if (dev_state >= ARRAY_SIZE(dev_state_strings))
 101		return "Unknown device state";
 102	return dev_state_strings[dev_state];
 103}
 104
 105static const char * const event_strings[] = {
 106	[SFP_E_INSERT] = "insert",
 107	[SFP_E_REMOVE] = "remove",
 108	[SFP_E_DEV_ATTACH] = "dev_attach",
 109	[SFP_E_DEV_DETACH] = "dev_detach",
 110	[SFP_E_DEV_DOWN] = "dev_down",
 111	[SFP_E_DEV_UP] = "dev_up",
 112	[SFP_E_TX_FAULT] = "tx_fault",
 113	[SFP_E_TX_CLEAR] = "tx_clear",
 114	[SFP_E_LOS_HIGH] = "los_high",
 115	[SFP_E_LOS_LOW] = "los_low",
 116	[SFP_E_TIMEOUT] = "timeout",
 117};
 118
 119static const char *event_to_str(unsigned short event)
 120{
 121	if (event >= ARRAY_SIZE(event_strings))
 122		return "Unknown event";
 123	return event_strings[event];
 124}
 125
 126static const char * const sm_state_strings[] = {
 127	[SFP_S_DOWN] = "down",
 128	[SFP_S_FAIL] = "fail",
 129	[SFP_S_WAIT] = "wait",
 130	[SFP_S_INIT] = "init",
 131	[SFP_S_INIT_PHY] = "init_phy",
 132	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
 133	[SFP_S_WAIT_LOS] = "wait_los",
 134	[SFP_S_LINK_UP] = "link_up",
 135	[SFP_S_TX_FAULT] = "tx_fault",
 136	[SFP_S_REINIT] = "reinit",
 137	[SFP_S_TX_DISABLE] = "tx_disable",
 138};
 139
 140static const char *sm_state_to_str(unsigned short sm_state)
 141{
 142	if (sm_state >= ARRAY_SIZE(sm_state_strings))
 143		return "Unknown state";
 144	return sm_state_strings[sm_state];
 145}
 146
 147static const char *gpio_of_names[] = {
 148	"mod-def0",
 149	"los",
 150	"tx-fault",
 151	"tx-disable",
 152	"rate-select0",
 153};
 154
 155static const enum gpiod_flags gpio_flags[] = {
 156	GPIOD_IN,
 157	GPIOD_IN,
 158	GPIOD_IN,
 159	GPIOD_ASIS,
 160	GPIOD_ASIS,
 161};
 162
 163/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
 164 * non-cooled module to initialise its laser safety circuitry. We wait
 165 * an initial T_WAIT period before we check the tx fault to give any PHY
 166 * on board (for a copper SFP) time to initialise.
 167 */
 168#define T_WAIT			msecs_to_jiffies(50)
 169#define T_WAIT_ROLLBALL		msecs_to_jiffies(25000)
 170#define T_START_UP		msecs_to_jiffies(300)
 171#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
 172
 173/* t_reset is the time required to assert the TX_DISABLE signal to reset
 174 * an indicated TX_FAULT.
 175 */
 176#define T_RESET_US		10
 177#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
 178
 179/* N_FAULT_INIT is the number of recovery attempts at module initialisation
 180 * time. If the TX_FAULT signal is not deasserted after this number of
 181 * attempts at clearing it, we decide that the module is faulty.
 182 * N_FAULT is the same but after the module has initialised.
 183 */
 184#define N_FAULT_INIT		5
 185#define N_FAULT			5
 186
 187/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
 188 * R_PHY_RETRY is the number of attempts.
 189 */
 190#define T_PHY_RETRY		msecs_to_jiffies(50)
 191#define R_PHY_RETRY		12
 192
 193/* SFP module presence detection is poor: the three MOD DEF signals are
 194 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 195 * connect before the I2C bus on MOD DEF 1/2.
 196 *
 197 * The SFF-8472 specifies t_serial ("Time from power on until module is
 198 * ready for data transmission over the two wire serial bus.") as 300ms.
 199 */
 200#define T_SERIAL		msecs_to_jiffies(300)
 201#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
 202#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
 203#define R_PROBE_RETRY_INIT	10
 204#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
 205#define R_PROBE_RETRY_SLOW	12
 206
 207/* SFP modules appear to always have their PHY configured for bus address
 208 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 209 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
 210 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
 211 */
 212#define SFP_PHY_ADDR		22
 213#define SFP_PHY_ADDR_ROLLBALL	17
 214
 215struct sff_data {
 216	unsigned int gpios;
 217	bool (*module_supported)(const struct sfp_eeprom_id *id);
 218};
 219
 220struct sfp {
 221	struct device *dev;
 222	struct i2c_adapter *i2c;
 223	struct mii_bus *i2c_mii;
 224	struct sfp_bus *sfp_bus;
 225	enum mdio_i2c_proto mdio_protocol;
 226	struct phy_device *mod_phy;
 227	const struct sff_data *type;
 228	size_t i2c_block_size;
 229	u32 max_power_mW;
 230
 231	unsigned int (*get_state)(struct sfp *);
 232	void (*set_state)(struct sfp *, unsigned int);
 233	int (*read)(struct sfp *, bool, u8, void *, size_t);
 234	int (*write)(struct sfp *, bool, u8, void *, size_t);
 235
 236	struct gpio_desc *gpio[GPIO_MAX];
 237	int gpio_irq[GPIO_MAX];
 238
 239	bool need_poll;
 240
 241	struct mutex st_mutex;			/* Protects state */
 242	unsigned int state_hw_mask;
 243	unsigned int state_soft_mask;
 244	unsigned int state;
 245	struct delayed_work poll;
 246	struct delayed_work timeout;
 247	struct mutex sm_mutex;			/* Protects state machine */
 248	unsigned char sm_mod_state;
 249	unsigned char sm_mod_tries_init;
 250	unsigned char sm_mod_tries;
 251	unsigned char sm_dev_state;
 252	unsigned short sm_state;
 253	unsigned char sm_fault_retries;
 254	unsigned char sm_phy_retries;
 255
 256	struct sfp_eeprom_id id;
 257	unsigned int module_power_mW;
 258	unsigned int module_t_start_up;
 259	unsigned int module_t_wait;
 260	bool tx_fault_ignore;
 261
 262	const struct sfp_quirk *quirk;
 263
 264#if IS_ENABLED(CONFIG_HWMON)
 265	struct sfp_diag diag;
 266	struct delayed_work hwmon_probe;
 267	unsigned int hwmon_tries;
 268	struct device *hwmon_dev;
 269	char *hwmon_name;
 270#endif
 271
 272#if IS_ENABLED(CONFIG_DEBUG_FS)
 273	struct dentry *debugfs_dir;
 274#endif
 275};
 276
 277static bool sff_module_supported(const struct sfp_eeprom_id *id)
 278{
 279	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
 280	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 281}
 282
 283static const struct sff_data sff_data = {
 284	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 285	.module_supported = sff_module_supported,
 286};
 287
 288static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 289{
 290	if (id->base.phys_id == SFF8024_ID_SFP &&
 291	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
 292		return true;
 293
 294	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
 295	 * phys id SFF instead of SFP. Therefore mark this module explicitly
 296	 * as supported based on vendor name and pn match.
 297	 */
 298	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
 299	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
 300	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
 301	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
 302		return true;
 303
 304	return false;
 305}
 306
 307static const struct sff_data sfp_data = {
 308	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 309		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
 310	.module_supported = sfp_module_supported,
 311};
 312
 313static const struct of_device_id sfp_of_match[] = {
 314	{ .compatible = "sff,sff", .data = &sff_data, },
 315	{ .compatible = "sff,sfp", .data = &sfp_data, },
 316	{ },
 317};
 318MODULE_DEVICE_TABLE(of, sfp_of_match);
 319
 320static void sfp_fixup_long_startup(struct sfp *sfp)
 321{
 322	sfp->module_t_start_up = T_START_UP_BAD_GPON;
 323}
 324
 325static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
 326{
 327	sfp->tx_fault_ignore = true;
 328}
 329
 330static void sfp_fixup_halny_gsfp(struct sfp *sfp)
 331{
 332	/* Ignore the TX_FAULT and LOS signals on this module.
 333	 * these are possibly used for other purposes on this
 334	 * module, e.g. a serial port.
 335	 */
 336	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
 337}
 338
 339static void sfp_fixup_rollball(struct sfp *sfp)
 340{
 341	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
 342	sfp->module_t_wait = T_WAIT_ROLLBALL;
 343}
 344
 345static void sfp_fixup_rollball_cc(struct sfp *sfp)
 346{
 347	sfp_fixup_rollball(sfp);
 348
 349	/* Some RollBall SFPs may have wrong (zero) extended compliance code
 350	 * burned in EEPROM. For PHY probing we need the correct one.
 351	 */
 352	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
 353}
 354
 355static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
 356				unsigned long *modes,
 357				unsigned long *interfaces)
 358{
 359	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
 360	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
 361}
 362
 363static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
 364				      unsigned long *modes,
 365				      unsigned long *interfaces)
 366{
 367	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
 368	 * types including 10G Ethernet which is not truth. So clear all claimed
 369	 * modes and set only one mode which module supports: 1000baseX_Full.
 370	 */
 371	linkmode_zero(modes);
 372	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
 373}
 374
 375#define SFP_QUIRK(_v, _p, _m, _f) \
 376	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
 377#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
 378#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
 379
 380static const struct sfp_quirk sfp_quirks[] = {
 381	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
 382	// report 2500MBd NRZ in their EEPROM
 383	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
 384
 385	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
 386	// NRZ in their EEPROM
 387	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
 388		  sfp_fixup_long_startup),
 389
 390	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
 391
 392	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
 393	// their EEPROM
 394	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
 395		  sfp_fixup_ignore_tx_fault),
 396
 397	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
 398	// 2500MBd NRZ in their EEPROM
 399	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
 400
 401	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
 402
 403	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
 404	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
 405	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
 406	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
 407	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
 408};
 409
 410static size_t sfp_strlen(const char *str, size_t maxlen)
 411{
 412	size_t size, i;
 413
 414	/* Trailing characters should be filled with space chars, but
 415	 * some manufacturers can't read SFF-8472 and use NUL.
 416	 */
 417	for (i = 0, size = 0; i < maxlen; i++)
 418		if (str[i] != ' ' && str[i] != '\0')
 419			size = i + 1;
 420
 421	return size;
 422}
 423
 424static bool sfp_match(const char *qs, const char *str, size_t len)
 425{
 426	if (!qs)
 427		return true;
 428	if (strlen(qs) != len)
 429		return false;
 430	return !strncmp(qs, str, len);
 431}
 432
 433static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
 434{
 435	const struct sfp_quirk *q;
 436	unsigned int i;
 437	size_t vs, ps;
 438
 439	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
 440	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
 441
 442	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
 443		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
 444		    sfp_match(q->part, id->base.vendor_pn, ps))
 445			return q;
 446
 447	return NULL;
 448}
 449
 450static unsigned long poll_jiffies;
 451
 452static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 453{
 454	unsigned int i, state, v;
 455
 456	for (i = state = 0; i < GPIO_MAX; i++) {
 457		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 458			continue;
 459
 460		v = gpiod_get_value_cansleep(sfp->gpio[i]);
 461		if (v)
 462			state |= BIT(i);
 463	}
 464
 465	return state;
 466}
 467
 468static unsigned int sff_gpio_get_state(struct sfp *sfp)
 469{
 470	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 471}
 472
 473static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 474{
 475	if (state & SFP_F_PRESENT) {
 476		/* If the module is present, drive the signals */
 477		if (sfp->gpio[GPIO_TX_DISABLE])
 478			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 479					       state & SFP_F_TX_DISABLE);
 480		if (state & SFP_F_RATE_SELECT)
 481			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
 482					       state & SFP_F_RATE_SELECT);
 483	} else {
 484		/* Otherwise, let them float to the pull-ups */
 485		if (sfp->gpio[GPIO_TX_DISABLE])
 486			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 487		if (state & SFP_F_RATE_SELECT)
 488			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
 489	}
 490}
 491
 492static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 493			size_t len)
 494{
 495	struct i2c_msg msgs[2];
 496	u8 bus_addr = a2 ? 0x51 : 0x50;
 497	size_t block_size = sfp->i2c_block_size;
 498	size_t this_len;
 499	int ret;
 500
 501	msgs[0].addr = bus_addr;
 502	msgs[0].flags = 0;
 503	msgs[0].len = 1;
 504	msgs[0].buf = &dev_addr;
 505	msgs[1].addr = bus_addr;
 506	msgs[1].flags = I2C_M_RD;
 507	msgs[1].len = len;
 508	msgs[1].buf = buf;
 509
 510	while (len) {
 511		this_len = len;
 512		if (this_len > block_size)
 513			this_len = block_size;
 514
 515		msgs[1].len = this_len;
 516
 517		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 518		if (ret < 0)
 519			return ret;
 520
 521		if (ret != ARRAY_SIZE(msgs))
 522			break;
 523
 524		msgs[1].buf += this_len;
 525		dev_addr += this_len;
 526		len -= this_len;
 527	}
 528
 529	return msgs[1].buf - (u8 *)buf;
 530}
 531
 532static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 533	size_t len)
 534{
 535	struct i2c_msg msgs[1];
 536	u8 bus_addr = a2 ? 0x51 : 0x50;
 537	int ret;
 538
 539	msgs[0].addr = bus_addr;
 540	msgs[0].flags = 0;
 541	msgs[0].len = 1 + len;
 542	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 543	if (!msgs[0].buf)
 544		return -ENOMEM;
 545
 546	msgs[0].buf[0] = dev_addr;
 547	memcpy(&msgs[0].buf[1], buf, len);
 548
 549	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 550
 551	kfree(msgs[0].buf);
 552
 553	if (ret < 0)
 554		return ret;
 555
 556	return ret == ARRAY_SIZE(msgs) ? len : 0;
 557}
 558
 559static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 560{
 
 
 
 561	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 562		return -EINVAL;
 563
 564	sfp->i2c = i2c;
 565	sfp->read = sfp_i2c_read;
 566	sfp->write = sfp_i2c_write;
 567
 568	return 0;
 569}
 570
 571static int sfp_i2c_mdiobus_create(struct sfp *sfp)
 572{
 573	struct mii_bus *i2c_mii;
 574	int ret;
 575
 576	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
 577	if (IS_ERR(i2c_mii))
 578		return PTR_ERR(i2c_mii);
 579
 580	i2c_mii->name = "SFP I2C Bus";
 581	i2c_mii->phy_mask = ~0;
 582
 583	ret = mdiobus_register(i2c_mii);
 584	if (ret < 0) {
 585		mdiobus_free(i2c_mii);
 586		return ret;
 587	}
 588
 589	sfp->i2c_mii = i2c_mii;
 590
 591	return 0;
 592}
 593
 594static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
 595{
 596	mdiobus_unregister(sfp->i2c_mii);
 597	sfp->i2c_mii = NULL;
 598}
 599
 600/* Interface */
 601static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 602{
 603	return sfp->read(sfp, a2, addr, buf, len);
 604}
 605
 606static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 607{
 608	return sfp->write(sfp, a2, addr, buf, len);
 609}
 610
 611static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
 612{
 613	int ret;
 614	u8 old, v;
 615
 616	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
 617	if (ret != sizeof(old))
 618		return ret;
 619
 620	v = (old & ~mask) | (val & mask);
 621	if (v == old)
 622		return sizeof(v);
 623
 624	return sfp_write(sfp, a2, addr, &v, sizeof(v));
 625}
 626
 627static unsigned int sfp_soft_get_state(struct sfp *sfp)
 628{
 629	unsigned int state = 0;
 630	u8 status;
 631	int ret;
 632
 633	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
 634	if (ret == sizeof(status)) {
 635		if (status & SFP_STATUS_RX_LOS)
 636			state |= SFP_F_LOS;
 637		if (status & SFP_STATUS_TX_FAULT)
 638			state |= SFP_F_TX_FAULT;
 639	} else {
 640		dev_err_ratelimited(sfp->dev,
 641				    "failed to read SFP soft status: %pe\n",
 642				    ERR_PTR(ret));
 643		/* Preserve the current state */
 644		state = sfp->state;
 645	}
 646
 647	return state & sfp->state_soft_mask;
 648}
 649
 650static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
 651{
 652	u8 mask = SFP_STATUS_TX_DISABLE_FORCE;
 653	u8 val = 0;
 654
 655	if (state & SFP_F_TX_DISABLE)
 656		val |= SFP_STATUS_TX_DISABLE_FORCE;
 
 
 
 
 657
 658
 659	sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
 660}
 661
 662static void sfp_soft_start_poll(struct sfp *sfp)
 663{
 664	const struct sfp_eeprom_id *id = &sfp->id;
 665	unsigned int mask = 0;
 666
 667	sfp->state_soft_mask = 0;
 668	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
 669		mask |= SFP_F_TX_DISABLE;
 670	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
 671		mask |= SFP_F_TX_FAULT;
 672	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
 673		mask |= SFP_F_LOS;
 674
 675	// Poll the soft state for hardware pins we want to ignore
 676	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
 677
 678	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
 679	    !sfp->need_poll)
 680		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 681}
 682
 683static void sfp_soft_stop_poll(struct sfp *sfp)
 684{
 685	sfp->state_soft_mask = 0;
 686}
 687
 688static unsigned int sfp_get_state(struct sfp *sfp)
 689{
 690	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
 691	unsigned int state;
 692
 693	state = sfp->get_state(sfp) & sfp->state_hw_mask;
 694	if (state & SFP_F_PRESENT && soft)
 695		state |= sfp_soft_get_state(sfp);
 696
 697	return state;
 698}
 699
 700static void sfp_set_state(struct sfp *sfp, unsigned int state)
 701{
 702	sfp->set_state(sfp, state);
 703
 704	if (state & SFP_F_PRESENT &&
 705	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
 706		sfp_soft_set_state(sfp, state);
 707}
 708
 709static unsigned int sfp_check(void *buf, size_t len)
 710{
 711	u8 *p, check;
 712
 713	for (p = buf, check = 0; len; p++, len--)
 714		check += *p;
 715
 716	return check;
 717}
 718
 719/* hwmon */
 720#if IS_ENABLED(CONFIG_HWMON)
 721static umode_t sfp_hwmon_is_visible(const void *data,
 722				    enum hwmon_sensor_types type,
 723				    u32 attr, int channel)
 724{
 725	const struct sfp *sfp = data;
 726
 727	switch (type) {
 728	case hwmon_temp:
 729		switch (attr) {
 730		case hwmon_temp_min_alarm:
 731		case hwmon_temp_max_alarm:
 732		case hwmon_temp_lcrit_alarm:
 733		case hwmon_temp_crit_alarm:
 734		case hwmon_temp_min:
 735		case hwmon_temp_max:
 736		case hwmon_temp_lcrit:
 737		case hwmon_temp_crit:
 738			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 739				return 0;
 740			fallthrough;
 741		case hwmon_temp_input:
 742		case hwmon_temp_label:
 743			return 0444;
 744		default:
 745			return 0;
 746		}
 747	case hwmon_in:
 748		switch (attr) {
 749		case hwmon_in_min_alarm:
 750		case hwmon_in_max_alarm:
 751		case hwmon_in_lcrit_alarm:
 752		case hwmon_in_crit_alarm:
 753		case hwmon_in_min:
 754		case hwmon_in_max:
 755		case hwmon_in_lcrit:
 756		case hwmon_in_crit:
 757			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 758				return 0;
 759			fallthrough;
 760		case hwmon_in_input:
 761		case hwmon_in_label:
 762			return 0444;
 763		default:
 764			return 0;
 765		}
 766	case hwmon_curr:
 767		switch (attr) {
 768		case hwmon_curr_min_alarm:
 769		case hwmon_curr_max_alarm:
 770		case hwmon_curr_lcrit_alarm:
 771		case hwmon_curr_crit_alarm:
 772		case hwmon_curr_min:
 773		case hwmon_curr_max:
 774		case hwmon_curr_lcrit:
 775		case hwmon_curr_crit:
 776			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 777				return 0;
 778			fallthrough;
 779		case hwmon_curr_input:
 780		case hwmon_curr_label:
 781			return 0444;
 782		default:
 783			return 0;
 784		}
 785	case hwmon_power:
 786		/* External calibration of receive power requires
 787		 * floating point arithmetic. Doing that in the kernel
 788		 * is not easy, so just skip it. If the module does
 789		 * not require external calibration, we can however
 790		 * show receiver power, since FP is then not needed.
 791		 */
 792		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 793		    channel == 1)
 794			return 0;
 795		switch (attr) {
 796		case hwmon_power_min_alarm:
 797		case hwmon_power_max_alarm:
 798		case hwmon_power_lcrit_alarm:
 799		case hwmon_power_crit_alarm:
 800		case hwmon_power_min:
 801		case hwmon_power_max:
 802		case hwmon_power_lcrit:
 803		case hwmon_power_crit:
 804			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 805				return 0;
 806			fallthrough;
 807		case hwmon_power_input:
 808		case hwmon_power_label:
 809			return 0444;
 810		default:
 811			return 0;
 812		}
 813	default:
 814		return 0;
 815	}
 816}
 817
 818static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 819{
 820	__be16 val;
 821	int err;
 822
 823	err = sfp_read(sfp, true, reg, &val, sizeof(val));
 824	if (err < 0)
 825		return err;
 826
 827	*value = be16_to_cpu(val);
 828
 829	return 0;
 830}
 831
 832static void sfp_hwmon_to_rx_power(long *value)
 833{
 834	*value = DIV_ROUND_CLOSEST(*value, 10);
 835}
 836
 837static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 838				long *value)
 839{
 840	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
 841		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
 842}
 843
 844static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
 845{
 846	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
 847			    be16_to_cpu(sfp->diag.cal_t_offset), value);
 848
 849	if (*value >= 0x8000)
 850		*value -= 0x10000;
 851
 852	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
 853}
 854
 855static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
 856{
 857	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
 858			    be16_to_cpu(sfp->diag.cal_v_offset), value);
 859
 860	*value = DIV_ROUND_CLOSEST(*value, 10);
 861}
 862
 863static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
 864{
 865	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
 866			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
 867
 868	*value = DIV_ROUND_CLOSEST(*value, 500);
 869}
 870
 871static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
 872{
 873	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
 874			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
 875
 876	*value = DIV_ROUND_CLOSEST(*value, 10);
 877}
 878
 879static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
 880{
 881	int err;
 882
 883	err = sfp_hwmon_read_sensor(sfp, reg, value);
 884	if (err < 0)
 885		return err;
 886
 887	sfp_hwmon_calibrate_temp(sfp, value);
 888
 889	return 0;
 890}
 891
 892static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
 893{
 894	int err;
 895
 896	err = sfp_hwmon_read_sensor(sfp, reg, value);
 897	if (err < 0)
 898		return err;
 899
 900	sfp_hwmon_calibrate_vcc(sfp, value);
 901
 902	return 0;
 903}
 904
 905static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
 906{
 907	int err;
 908
 909	err = sfp_hwmon_read_sensor(sfp, reg, value);
 910	if (err < 0)
 911		return err;
 912
 913	sfp_hwmon_calibrate_bias(sfp, value);
 914
 915	return 0;
 916}
 917
 918static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
 919{
 920	int err;
 921
 922	err = sfp_hwmon_read_sensor(sfp, reg, value);
 923	if (err < 0)
 924		return err;
 925
 926	sfp_hwmon_calibrate_tx_power(sfp, value);
 927
 928	return 0;
 929}
 930
 931static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
 932{
 933	int err;
 934
 935	err = sfp_hwmon_read_sensor(sfp, reg, value);
 936	if (err < 0)
 937		return err;
 938
 939	sfp_hwmon_to_rx_power(value);
 940
 941	return 0;
 942}
 943
 944static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
 945{
 946	u8 status;
 947	int err;
 948
 949	switch (attr) {
 950	case hwmon_temp_input:
 951		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
 952
 953	case hwmon_temp_lcrit:
 954		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
 955		sfp_hwmon_calibrate_temp(sfp, value);
 956		return 0;
 957
 958	case hwmon_temp_min:
 959		*value = be16_to_cpu(sfp->diag.temp_low_warn);
 960		sfp_hwmon_calibrate_temp(sfp, value);
 961		return 0;
 962	case hwmon_temp_max:
 963		*value = be16_to_cpu(sfp->diag.temp_high_warn);
 964		sfp_hwmon_calibrate_temp(sfp, value);
 965		return 0;
 966
 967	case hwmon_temp_crit:
 968		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
 969		sfp_hwmon_calibrate_temp(sfp, value);
 970		return 0;
 971
 972	case hwmon_temp_lcrit_alarm:
 973		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 974		if (err < 0)
 975			return err;
 976
 977		*value = !!(status & SFP_ALARM0_TEMP_LOW);
 978		return 0;
 979
 980	case hwmon_temp_min_alarm:
 981		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 982		if (err < 0)
 983			return err;
 984
 985		*value = !!(status & SFP_WARN0_TEMP_LOW);
 986		return 0;
 987
 988	case hwmon_temp_max_alarm:
 989		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 990		if (err < 0)
 991			return err;
 992
 993		*value = !!(status & SFP_WARN0_TEMP_HIGH);
 994		return 0;
 995
 996	case hwmon_temp_crit_alarm:
 997		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 998		if (err < 0)
 999			return err;
1000
1001		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1002		return 0;
1003	default:
1004		return -EOPNOTSUPP;
1005	}
1006
1007	return -EOPNOTSUPP;
1008}
1009
1010static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1011{
1012	u8 status;
1013	int err;
1014
1015	switch (attr) {
1016	case hwmon_in_input:
1017		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1018
1019	case hwmon_in_lcrit:
1020		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1021		sfp_hwmon_calibrate_vcc(sfp, value);
1022		return 0;
1023
1024	case hwmon_in_min:
1025		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1026		sfp_hwmon_calibrate_vcc(sfp, value);
1027		return 0;
1028
1029	case hwmon_in_max:
1030		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1031		sfp_hwmon_calibrate_vcc(sfp, value);
1032		return 0;
1033
1034	case hwmon_in_crit:
1035		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1036		sfp_hwmon_calibrate_vcc(sfp, value);
1037		return 0;
1038
1039	case hwmon_in_lcrit_alarm:
1040		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1041		if (err < 0)
1042			return err;
1043
1044		*value = !!(status & SFP_ALARM0_VCC_LOW);
1045		return 0;
1046
1047	case hwmon_in_min_alarm:
1048		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1049		if (err < 0)
1050			return err;
1051
1052		*value = !!(status & SFP_WARN0_VCC_LOW);
1053		return 0;
1054
1055	case hwmon_in_max_alarm:
1056		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1057		if (err < 0)
1058			return err;
1059
1060		*value = !!(status & SFP_WARN0_VCC_HIGH);
1061		return 0;
1062
1063	case hwmon_in_crit_alarm:
1064		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1065		if (err < 0)
1066			return err;
1067
1068		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1069		return 0;
1070	default:
1071		return -EOPNOTSUPP;
1072	}
1073
1074	return -EOPNOTSUPP;
1075}
1076
1077static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1078{
1079	u8 status;
1080	int err;
1081
1082	switch (attr) {
1083	case hwmon_curr_input:
1084		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1085
1086	case hwmon_curr_lcrit:
1087		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1088		sfp_hwmon_calibrate_bias(sfp, value);
1089		return 0;
1090
1091	case hwmon_curr_min:
1092		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1093		sfp_hwmon_calibrate_bias(sfp, value);
1094		return 0;
1095
1096	case hwmon_curr_max:
1097		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1098		sfp_hwmon_calibrate_bias(sfp, value);
1099		return 0;
1100
1101	case hwmon_curr_crit:
1102		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1103		sfp_hwmon_calibrate_bias(sfp, value);
1104		return 0;
1105
1106	case hwmon_curr_lcrit_alarm:
1107		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1108		if (err < 0)
1109			return err;
1110
1111		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1112		return 0;
1113
1114	case hwmon_curr_min_alarm:
1115		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1116		if (err < 0)
1117			return err;
1118
1119		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1120		return 0;
1121
1122	case hwmon_curr_max_alarm:
1123		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1124		if (err < 0)
1125			return err;
1126
1127		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1128		return 0;
1129
1130	case hwmon_curr_crit_alarm:
1131		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1132		if (err < 0)
1133			return err;
1134
1135		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1136		return 0;
1137	default:
1138		return -EOPNOTSUPP;
1139	}
1140
1141	return -EOPNOTSUPP;
1142}
1143
1144static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1145{
1146	u8 status;
1147	int err;
1148
1149	switch (attr) {
1150	case hwmon_power_input:
1151		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1152
1153	case hwmon_power_lcrit:
1154		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1155		sfp_hwmon_calibrate_tx_power(sfp, value);
1156		return 0;
1157
1158	case hwmon_power_min:
1159		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1160		sfp_hwmon_calibrate_tx_power(sfp, value);
1161		return 0;
1162
1163	case hwmon_power_max:
1164		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1165		sfp_hwmon_calibrate_tx_power(sfp, value);
1166		return 0;
1167
1168	case hwmon_power_crit:
1169		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1170		sfp_hwmon_calibrate_tx_power(sfp, value);
1171		return 0;
1172
1173	case hwmon_power_lcrit_alarm:
1174		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1175		if (err < 0)
1176			return err;
1177
1178		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1179		return 0;
1180
1181	case hwmon_power_min_alarm:
1182		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1183		if (err < 0)
1184			return err;
1185
1186		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1187		return 0;
1188
1189	case hwmon_power_max_alarm:
1190		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1191		if (err < 0)
1192			return err;
1193
1194		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1195		return 0;
1196
1197	case hwmon_power_crit_alarm:
1198		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1199		if (err < 0)
1200			return err;
1201
1202		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1203		return 0;
1204	default:
1205		return -EOPNOTSUPP;
1206	}
1207
1208	return -EOPNOTSUPP;
1209}
1210
1211static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1212{
1213	u8 status;
1214	int err;
1215
1216	switch (attr) {
1217	case hwmon_power_input:
1218		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1219
1220	case hwmon_power_lcrit:
1221		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1222		sfp_hwmon_to_rx_power(value);
1223		return 0;
1224
1225	case hwmon_power_min:
1226		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1227		sfp_hwmon_to_rx_power(value);
1228		return 0;
1229
1230	case hwmon_power_max:
1231		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1232		sfp_hwmon_to_rx_power(value);
1233		return 0;
1234
1235	case hwmon_power_crit:
1236		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1237		sfp_hwmon_to_rx_power(value);
1238		return 0;
1239
1240	case hwmon_power_lcrit_alarm:
1241		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1242		if (err < 0)
1243			return err;
1244
1245		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1246		return 0;
1247
1248	case hwmon_power_min_alarm:
1249		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1250		if (err < 0)
1251			return err;
1252
1253		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1254		return 0;
1255
1256	case hwmon_power_max_alarm:
1257		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1258		if (err < 0)
1259			return err;
1260
1261		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1262		return 0;
1263
1264	case hwmon_power_crit_alarm:
1265		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1266		if (err < 0)
1267			return err;
1268
1269		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1270		return 0;
1271	default:
1272		return -EOPNOTSUPP;
1273	}
1274
1275	return -EOPNOTSUPP;
1276}
1277
1278static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1279			  u32 attr, int channel, long *value)
1280{
1281	struct sfp *sfp = dev_get_drvdata(dev);
1282
1283	switch (type) {
1284	case hwmon_temp:
1285		return sfp_hwmon_temp(sfp, attr, value);
1286	case hwmon_in:
1287		return sfp_hwmon_vcc(sfp, attr, value);
1288	case hwmon_curr:
1289		return sfp_hwmon_bias(sfp, attr, value);
1290	case hwmon_power:
1291		switch (channel) {
1292		case 0:
1293			return sfp_hwmon_tx_power(sfp, attr, value);
1294		case 1:
1295			return sfp_hwmon_rx_power(sfp, attr, value);
1296		default:
1297			return -EOPNOTSUPP;
1298		}
1299	default:
1300		return -EOPNOTSUPP;
1301	}
1302}
1303
1304static const char *const sfp_hwmon_power_labels[] = {
1305	"TX_power",
1306	"RX_power",
1307};
1308
1309static int sfp_hwmon_read_string(struct device *dev,
1310				 enum hwmon_sensor_types type,
1311				 u32 attr, int channel, const char **str)
1312{
1313	switch (type) {
1314	case hwmon_curr:
1315		switch (attr) {
1316		case hwmon_curr_label:
1317			*str = "bias";
1318			return 0;
1319		default:
1320			return -EOPNOTSUPP;
1321		}
1322		break;
1323	case hwmon_temp:
1324		switch (attr) {
1325		case hwmon_temp_label:
1326			*str = "temperature";
1327			return 0;
1328		default:
1329			return -EOPNOTSUPP;
1330		}
1331		break;
1332	case hwmon_in:
1333		switch (attr) {
1334		case hwmon_in_label:
1335			*str = "VCC";
1336			return 0;
1337		default:
1338			return -EOPNOTSUPP;
1339		}
1340		break;
1341	case hwmon_power:
1342		switch (attr) {
1343		case hwmon_power_label:
1344			*str = sfp_hwmon_power_labels[channel];
1345			return 0;
1346		default:
1347			return -EOPNOTSUPP;
1348		}
1349		break;
1350	default:
1351		return -EOPNOTSUPP;
1352	}
1353
1354	return -EOPNOTSUPP;
1355}
1356
1357static const struct hwmon_ops sfp_hwmon_ops = {
1358	.is_visible = sfp_hwmon_is_visible,
1359	.read = sfp_hwmon_read,
1360	.read_string = sfp_hwmon_read_string,
1361};
1362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1364	HWMON_CHANNEL_INFO(chip,
1365			   HWMON_C_REGISTER_TZ),
1366	HWMON_CHANNEL_INFO(in,
1367			   HWMON_I_INPUT |
1368			   HWMON_I_MAX | HWMON_I_MIN |
1369			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1370			   HWMON_I_CRIT | HWMON_I_LCRIT |
1371			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1372			   HWMON_I_LABEL),
1373	HWMON_CHANNEL_INFO(temp,
1374			   HWMON_T_INPUT |
1375			   HWMON_T_MAX | HWMON_T_MIN |
1376			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1377			   HWMON_T_CRIT | HWMON_T_LCRIT |
1378			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1379			   HWMON_T_LABEL),
1380	HWMON_CHANNEL_INFO(curr,
1381			   HWMON_C_INPUT |
1382			   HWMON_C_MAX | HWMON_C_MIN |
1383			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1384			   HWMON_C_CRIT | HWMON_C_LCRIT |
1385			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1386			   HWMON_C_LABEL),
1387	HWMON_CHANNEL_INFO(power,
1388			   /* Transmit power */
1389			   HWMON_P_INPUT |
1390			   HWMON_P_MAX | HWMON_P_MIN |
1391			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1392			   HWMON_P_CRIT | HWMON_P_LCRIT |
1393			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1394			   HWMON_P_LABEL,
1395			   /* Receive power */
1396			   HWMON_P_INPUT |
1397			   HWMON_P_MAX | HWMON_P_MIN |
1398			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1399			   HWMON_P_CRIT | HWMON_P_LCRIT |
1400			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1401			   HWMON_P_LABEL),
1402	NULL,
1403};
1404
1405static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1406	.ops = &sfp_hwmon_ops,
1407	.info = sfp_hwmon_info,
1408};
1409
1410static void sfp_hwmon_probe(struct work_struct *work)
1411{
1412	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1413	int err;
1414
1415	/* hwmon interface needs to access 16bit registers in atomic way to
1416	 * guarantee coherency of the diagnostic monitoring data. If it is not
1417	 * possible to guarantee coherency because EEPROM is broken in such way
1418	 * that does not support atomic 16bit read operation then we have to
1419	 * skip registration of hwmon device.
1420	 */
1421	if (sfp->i2c_block_size < 2) {
1422		dev_info(sfp->dev,
1423			 "skipping hwmon device registration due to broken EEPROM\n");
1424		dev_info(sfp->dev,
1425			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1426		return;
1427	}
1428
1429	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1430	if (err < 0) {
1431		if (sfp->hwmon_tries--) {
1432			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1433					 T_PROBE_RETRY_SLOW);
1434		} else {
1435			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1436				 ERR_PTR(err));
1437		}
1438		return;
1439	}
1440
1441	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1442	if (IS_ERR(sfp->hwmon_name)) {
1443		dev_err(sfp->dev, "out of memory for hwmon name\n");
1444		return;
1445	}
1446
 
 
 
 
1447	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1448							 sfp->hwmon_name, sfp,
1449							 &sfp_hwmon_chip_info,
1450							 NULL);
1451	if (IS_ERR(sfp->hwmon_dev))
1452		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1453			PTR_ERR(sfp->hwmon_dev));
1454}
1455
1456static int sfp_hwmon_insert(struct sfp *sfp)
1457{
1458	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1459		return 0;
1460
1461	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1462		return 0;
1463
1464	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1465		/* This driver in general does not support address
1466		 * change.
1467		 */
1468		return 0;
1469
1470	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1471	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1472
1473	return 0;
1474}
1475
1476static void sfp_hwmon_remove(struct sfp *sfp)
1477{
1478	cancel_delayed_work_sync(&sfp->hwmon_probe);
1479	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1480		hwmon_device_unregister(sfp->hwmon_dev);
1481		sfp->hwmon_dev = NULL;
1482		kfree(sfp->hwmon_name);
1483	}
1484}
1485
1486static int sfp_hwmon_init(struct sfp *sfp)
1487{
1488	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1489
1490	return 0;
1491}
1492
1493static void sfp_hwmon_exit(struct sfp *sfp)
1494{
1495	cancel_delayed_work_sync(&sfp->hwmon_probe);
1496}
1497#else
1498static int sfp_hwmon_insert(struct sfp *sfp)
1499{
1500	return 0;
1501}
1502
1503static void sfp_hwmon_remove(struct sfp *sfp)
1504{
1505}
1506
1507static int sfp_hwmon_init(struct sfp *sfp)
1508{
1509	return 0;
1510}
1511
1512static void sfp_hwmon_exit(struct sfp *sfp)
1513{
1514}
1515#endif
1516
1517/* Helpers */
1518static void sfp_module_tx_disable(struct sfp *sfp)
1519{
1520	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1521		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1522	sfp->state |= SFP_F_TX_DISABLE;
1523	sfp_set_state(sfp, sfp->state);
1524}
1525
1526static void sfp_module_tx_enable(struct sfp *sfp)
1527{
1528	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1529		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1530	sfp->state &= ~SFP_F_TX_DISABLE;
1531	sfp_set_state(sfp, sfp->state);
1532}
1533
1534#if IS_ENABLED(CONFIG_DEBUG_FS)
1535static int sfp_debug_state_show(struct seq_file *s, void *data)
1536{
1537	struct sfp *sfp = s->private;
1538
1539	seq_printf(s, "Module state: %s\n",
1540		   mod_state_to_str(sfp->sm_mod_state));
1541	seq_printf(s, "Module probe attempts: %d %d\n",
1542		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1543		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1544	seq_printf(s, "Device state: %s\n",
1545		   dev_state_to_str(sfp->sm_dev_state));
1546	seq_printf(s, "Main state: %s\n",
1547		   sm_state_to_str(sfp->sm_state));
1548	seq_printf(s, "Fault recovery remaining retries: %d\n",
1549		   sfp->sm_fault_retries);
1550	seq_printf(s, "PHY probe remaining retries: %d\n",
1551		   sfp->sm_phy_retries);
1552	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1553	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1554	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1555	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1556	return 0;
1557}
1558DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1559
1560static void sfp_debugfs_init(struct sfp *sfp)
1561{
1562	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1563
1564	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1565			    &sfp_debug_state_fops);
1566}
1567
1568static void sfp_debugfs_exit(struct sfp *sfp)
1569{
1570	debugfs_remove_recursive(sfp->debugfs_dir);
1571}
1572#else
1573static void sfp_debugfs_init(struct sfp *sfp)
1574{
1575}
1576
1577static void sfp_debugfs_exit(struct sfp *sfp)
1578{
1579}
1580#endif
1581
1582static void sfp_module_tx_fault_reset(struct sfp *sfp)
1583{
1584	unsigned int state = sfp->state;
1585
1586	if (state & SFP_F_TX_DISABLE)
1587		return;
1588
1589	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1590
1591	udelay(T_RESET_US);
1592
1593	sfp_set_state(sfp, state);
1594}
1595
1596/* SFP state machine */
1597static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1598{
1599	if (timeout)
1600		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1601				 timeout);
1602	else
1603		cancel_delayed_work(&sfp->timeout);
1604}
1605
1606static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1607			unsigned int timeout)
1608{
1609	sfp->sm_state = state;
1610	sfp_sm_set_timer(sfp, timeout);
1611}
1612
1613static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1614			    unsigned int timeout)
1615{
1616	sfp->sm_mod_state = state;
1617	sfp_sm_set_timer(sfp, timeout);
1618}
1619
1620static void sfp_sm_phy_detach(struct sfp *sfp)
1621{
1622	sfp_remove_phy(sfp->sfp_bus);
1623	phy_device_remove(sfp->mod_phy);
1624	phy_device_free(sfp->mod_phy);
1625	sfp->mod_phy = NULL;
1626}
1627
1628static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1629{
1630	struct phy_device *phy;
1631	int err;
1632
1633	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1634	if (phy == ERR_PTR(-ENODEV))
1635		return PTR_ERR(phy);
1636	if (IS_ERR(phy)) {
1637		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1638		return PTR_ERR(phy);
1639	}
1640
1641	err = phy_device_register(phy);
1642	if (err) {
1643		phy_device_free(phy);
1644		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1645			ERR_PTR(err));
1646		return err;
1647	}
1648
1649	err = sfp_add_phy(sfp->sfp_bus, phy);
1650	if (err) {
1651		phy_device_remove(phy);
1652		phy_device_free(phy);
1653		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1654		return err;
1655	}
1656
1657	sfp->mod_phy = phy;
1658
1659	return 0;
1660}
1661
1662static void sfp_sm_link_up(struct sfp *sfp)
1663{
1664	sfp_link_up(sfp->sfp_bus);
1665	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1666}
1667
1668static void sfp_sm_link_down(struct sfp *sfp)
1669{
1670	sfp_link_down(sfp->sfp_bus);
1671}
1672
1673static void sfp_sm_link_check_los(struct sfp *sfp)
1674{
1675	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1676	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1677	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1678	bool los = false;
1679
1680	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1681	 * are set, we assume that no LOS signal is available. If both are
1682	 * set, we assume LOS is not implemented (and is meaningless.)
1683	 */
1684	if (los_options == los_inverted)
1685		los = !(sfp->state & SFP_F_LOS);
1686	else if (los_options == los_normal)
1687		los = !!(sfp->state & SFP_F_LOS);
1688
1689	if (los)
1690		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1691	else
1692		sfp_sm_link_up(sfp);
1693}
1694
1695static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1696{
1697	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1698	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1699	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1700
1701	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1702	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1703}
1704
1705static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1706{
1707	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1708	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1709	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1710
1711	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1712	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1713}
1714
1715static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1716{
1717	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1718		dev_err(sfp->dev,
1719			"module persistently indicates fault, disabling\n");
1720		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1721	} else {
1722		if (warn)
1723			dev_err(sfp->dev, "module transmit fault indicated\n");
1724
1725		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1726	}
1727}
1728
1729static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1730{
1731	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1732		return sfp_i2c_mdiobus_create(sfp);
1733
1734	return 0;
1735}
1736
1737/* Probe a SFP for a PHY device if the module supports copper - the PHY
1738 * normally sits at I2C bus address 0x56, and may either be a clause 22
1739 * or clause 45 PHY.
1740 *
1741 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1742 * negotiation enabled, but some may be in 1000base-X - which is for the
1743 * PHY driver to determine.
1744 *
1745 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1746 * mode according to the negotiated line speed.
1747 */
1748static int sfp_sm_probe_for_phy(struct sfp *sfp)
1749{
1750	int err = 0;
1751
1752	switch (sfp->mdio_protocol) {
1753	case MDIO_I2C_NONE:
 
 
 
 
1754		break;
1755
1756	case MDIO_I2C_MARVELL_C22:
1757		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1758		break;
1759
1760	case MDIO_I2C_C45:
1761		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1762		break;
1763
1764	case MDIO_I2C_ROLLBALL:
1765		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1766		break;
1767	}
1768
1769	return err;
1770}
1771
1772static int sfp_module_parse_power(struct sfp *sfp)
1773{
1774	u32 power_mW = 1000;
1775	bool supports_a2;
1776
1777	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1778	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1779		power_mW = 1500;
1780	/* Added in Rev 11.9, but there is no compliance code for this */
1781	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1782	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1783		power_mW = 2000;
1784
1785	/* Power level 1 modules (max. 1W) are always supported. */
1786	if (power_mW <= 1000) {
1787		sfp->module_power_mW = power_mW;
1788		return 0;
1789	}
1790
1791	supports_a2 = sfp->id.ext.sff8472_compliance !=
1792				SFP_SFF8472_COMPLIANCE_NONE ||
1793		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1794
1795	if (power_mW > sfp->max_power_mW) {
1796		/* Module power specification exceeds the allowed maximum. */
1797		if (!supports_a2) {
 
 
1798			/* The module appears not to implement bus address
1799			 * 0xa2, so assume that the module powers up in the
1800			 * indicated mode.
1801			 */
1802			dev_err(sfp->dev,
1803				"Host does not support %u.%uW modules\n",
1804				power_mW / 1000, (power_mW / 100) % 10);
1805			return -EINVAL;
1806		} else {
1807			dev_warn(sfp->dev,
1808				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1809				 power_mW / 1000, (power_mW / 100) % 10);
1810			return 0;
1811		}
1812	}
1813
1814	if (!supports_a2) {
1815		/* The module power level is below the host maximum and the
1816		 * module appears not to implement bus address 0xa2, so assume
1817		 * that the module powers up in the indicated mode.
1818		 */
1819		return 0;
1820	}
1821
1822	/* If the module requires a higher power mode, but also requires
1823	 * an address change sequence, warn the user that the module may
1824	 * not be functional.
1825	 */
1826	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1827		dev_warn(sfp->dev,
1828			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1829			 power_mW / 1000, (power_mW / 100) % 10);
1830		return 0;
1831	}
1832
1833	sfp->module_power_mW = power_mW;
1834
1835	return 0;
1836}
1837
1838static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1839{
 
1840	int err;
1841
1842	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1843			    SFP_EXT_STATUS_PWRLVL_SELECT,
1844			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1845	if (err != sizeof(u8)) {
1846		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1847			enable ? "en" : "dis", ERR_PTR(err));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848		return -EAGAIN;
1849	}
1850
1851	if (enable)
1852		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1853			 sfp->module_power_mW / 1000,
1854			 (sfp->module_power_mW / 100) % 10);
1855
1856	return 0;
1857}
1858
1859/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1860 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1861 * not support multibyte reads from the EEPROM. Each multi-byte read
1862 * operation returns just one byte of EEPROM followed by zeros. There is
1863 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1864 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1865 * name and vendor id into EEPROM, so there is even no way to detect if
1866 * module is V-SOL V2801F. Therefore check for those zeros in the read
1867 * data and then based on check switch to reading EEPROM to one byte
1868 * at a time.
1869 */
1870static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1871{
1872	size_t i, block_size = sfp->i2c_block_size;
1873
1874	/* Already using byte IO */
1875	if (block_size == 1)
1876		return false;
1877
1878	for (i = 1; i < len; i += block_size) {
1879		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1880			return false;
1881	}
1882	return true;
1883}
1884
1885static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1886{
1887	u8 check;
1888	int err;
1889
1890	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1891	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1892	    id->base.connector != SFF8024_CONNECTOR_LC) {
1893		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1894		id->base.phys_id = SFF8024_ID_SFF_8472;
1895		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1896		id->base.connector = SFF8024_CONNECTOR_LC;
1897		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1898		if (err != 3) {
1899			dev_err(sfp->dev,
1900				"Failed to rewrite module EEPROM: %pe\n",
1901				ERR_PTR(err));
1902			return err;
1903		}
1904
1905		/* Cotsworks modules have been found to require a delay between write operations. */
1906		mdelay(50);
1907
1908		/* Update base structure checksum */
1909		check = sfp_check(&id->base, sizeof(id->base) - 1);
1910		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1911		if (err != 1) {
1912			dev_err(sfp->dev,
1913				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1914				ERR_PTR(err));
1915			return err;
1916		}
1917	}
1918	return 0;
1919}
1920
1921static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1922{
1923	/* SFP module inserted - read I2C data */
1924	struct sfp_eeprom_id id;
1925	bool cotsworks_sfbg;
1926	bool cotsworks;
1927	u8 check;
1928	int ret;
1929
1930	/* Some SFP modules and also some Linux I2C drivers do not like reads
1931	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1932	 * a time.
1933	 */
1934	sfp->i2c_block_size = 16;
1935
1936	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1937	if (ret < 0) {
1938		if (report)
1939			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1940				ERR_PTR(ret));
1941		return -EAGAIN;
1942	}
1943
1944	if (ret != sizeof(id.base)) {
1945		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1946		return -EAGAIN;
1947	}
1948
1949	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1950	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1951	 * that EEPROM supports atomic 16bit read operation for diagnostic
1952	 * fields, so do not switch to one byte reading at a time unless it
1953	 * is really required and we have no other option.
1954	 */
1955	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1956		dev_info(sfp->dev,
1957			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1958		dev_info(sfp->dev,
1959			 "Switching to reading EEPROM to one byte at a time\n");
1960		sfp->i2c_block_size = 1;
1961
1962		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1963		if (ret < 0) {
1964			if (report)
1965				dev_err(sfp->dev,
1966					"failed to read EEPROM: %pe\n",
1967					ERR_PTR(ret));
1968			return -EAGAIN;
1969		}
1970
1971		if (ret != sizeof(id.base)) {
1972			dev_err(sfp->dev, "EEPROM short read: %pe\n",
1973				ERR_PTR(ret));
1974			return -EAGAIN;
1975		}
1976	}
1977
1978	/* Cotsworks do not seem to update the checksums when they
1979	 * do the final programming with the final module part number,
1980	 * serial number and date code.
1981	 */
1982	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1983	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1984
1985	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1986	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1987	 * Cotsworks PN matches and bytes are not correct.
1988	 */
1989	if (cotsworks && cotsworks_sfbg) {
1990		ret = sfp_cotsworks_fixup_check(sfp, &id);
1991		if (ret < 0)
1992			return ret;
1993	}
1994
1995	/* Validate the checksum over the base structure */
1996	check = sfp_check(&id.base, sizeof(id.base) - 1);
1997	if (check != id.base.cc_base) {
1998		if (cotsworks) {
1999			dev_warn(sfp->dev,
2000				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2001				 check, id.base.cc_base);
2002		} else {
2003			dev_err(sfp->dev,
2004				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2005				check, id.base.cc_base);
2006			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2007				       16, 1, &id, sizeof(id), true);
2008			return -EINVAL;
2009		}
2010	}
2011
2012	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2013	if (ret < 0) {
2014		if (report)
2015			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2016				ERR_PTR(ret));
2017		return -EAGAIN;
2018	}
2019
2020	if (ret != sizeof(id.ext)) {
2021		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2022		return -EAGAIN;
2023	}
2024
2025	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2026	if (check != id.ext.cc_ext) {
2027		if (cotsworks) {
2028			dev_warn(sfp->dev,
2029				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2030				 check, id.ext.cc_ext);
2031		} else {
2032			dev_err(sfp->dev,
2033				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2034				check, id.ext.cc_ext);
2035			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2036				       16, 1, &id, sizeof(id), true);
2037			memset(&id.ext, 0, sizeof(id.ext));
2038		}
2039	}
2040
2041	sfp->id = id;
2042
2043	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2044		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2045		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2046		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2047		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2048		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2049
2050	/* Check whether we support this module */
2051	if (!sfp->type->module_supported(&id)) {
2052		dev_err(sfp->dev,
2053			"module is not supported - phys id 0x%02x 0x%02x\n",
2054			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2055		return -EINVAL;
2056	}
2057
2058	/* If the module requires address swap mode, warn about it */
2059	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2060		dev_warn(sfp->dev,
2061			 "module address swap to access page 0xA2 is not supported.\n");
2062
2063	/* Parse the module power requirement */
2064	ret = sfp_module_parse_power(sfp);
2065	if (ret < 0)
2066		return ret;
2067
2068	/* Initialise state bits to use from hardware */
2069	sfp->state_hw_mask = SFP_F_PRESENT;
2070	if (sfp->gpio[GPIO_TX_DISABLE])
2071		sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2072	if (sfp->gpio[GPIO_TX_FAULT])
2073		sfp->state_hw_mask |= SFP_F_TX_FAULT;
2074	if (sfp->gpio[GPIO_LOS])
2075		sfp->state_hw_mask |= SFP_F_LOS;
2076
2077	sfp->module_t_start_up = T_START_UP;
2078	sfp->module_t_wait = T_WAIT;
2079
2080	sfp->tx_fault_ignore = false;
2081
2082	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2083	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2084	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2085	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2086		sfp->mdio_protocol = MDIO_I2C_C45;
2087	else if (sfp->id.base.e1000_base_t)
2088		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2089	else
2090		sfp->mdio_protocol = MDIO_I2C_NONE;
2091
2092	sfp->quirk = sfp_lookup_quirk(&id);
2093	if (sfp->quirk && sfp->quirk->fixup)
2094		sfp->quirk->fixup(sfp);
2095
2096	return 0;
2097}
2098
2099static void sfp_sm_mod_remove(struct sfp *sfp)
2100{
2101	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2102		sfp_module_remove(sfp->sfp_bus);
2103
2104	sfp_hwmon_remove(sfp);
2105
2106	memset(&sfp->id, 0, sizeof(sfp->id));
2107	sfp->module_power_mW = 0;
2108
2109	dev_info(sfp->dev, "module removed\n");
2110}
2111
2112/* This state machine tracks the upstream's state */
2113static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2114{
2115	switch (sfp->sm_dev_state) {
2116	default:
2117		if (event == SFP_E_DEV_ATTACH)
2118			sfp->sm_dev_state = SFP_DEV_DOWN;
2119		break;
2120
2121	case SFP_DEV_DOWN:
2122		if (event == SFP_E_DEV_DETACH)
2123			sfp->sm_dev_state = SFP_DEV_DETACHED;
2124		else if (event == SFP_E_DEV_UP)
2125			sfp->sm_dev_state = SFP_DEV_UP;
2126		break;
2127
2128	case SFP_DEV_UP:
2129		if (event == SFP_E_DEV_DETACH)
2130			sfp->sm_dev_state = SFP_DEV_DETACHED;
2131		else if (event == SFP_E_DEV_DOWN)
2132			sfp->sm_dev_state = SFP_DEV_DOWN;
2133		break;
2134	}
2135}
2136
2137/* This state machine tracks the insert/remove state of the module, probes
2138 * the on-board EEPROM, and sets up the power level.
2139 */
2140static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2141{
2142	int err;
2143
2144	/* Handle remove event globally, it resets this state machine */
2145	if (event == SFP_E_REMOVE) {
2146		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2147			sfp_sm_mod_remove(sfp);
2148		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2149		return;
2150	}
2151
2152	/* Handle device detach globally */
2153	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2154	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2155		if (sfp->module_power_mW > 1000 &&
2156		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2157			sfp_sm_mod_hpower(sfp, false);
2158		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2159		return;
2160	}
2161
2162	switch (sfp->sm_mod_state) {
2163	default:
2164		if (event == SFP_E_INSERT) {
2165			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2166			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2167			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2168		}
2169		break;
2170
2171	case SFP_MOD_PROBE:
2172		/* Wait for T_PROBE_INIT to time out */
2173		if (event != SFP_E_TIMEOUT)
2174			break;
2175
2176		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2177		if (err == -EAGAIN) {
2178			if (sfp->sm_mod_tries_init &&
2179			   --sfp->sm_mod_tries_init) {
2180				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2181				break;
2182			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2183				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2184					dev_warn(sfp->dev,
2185						 "please wait, module slow to respond\n");
2186				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2187				break;
2188			}
2189		}
2190		if (err < 0) {
2191			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2192			break;
2193		}
2194
2195		err = sfp_hwmon_insert(sfp);
2196		if (err)
2197			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2198				 ERR_PTR(err));
2199
2200		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2201		fallthrough;
2202	case SFP_MOD_WAITDEV:
2203		/* Ensure that the device is attached before proceeding */
2204		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2205			break;
2206
2207		/* Report the module insertion to the upstream device */
2208		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2209					sfp->quirk);
2210		if (err < 0) {
2211			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2212			break;
2213		}
2214
2215		/* If this is a power level 1 module, we are done */
2216		if (sfp->module_power_mW <= 1000)
2217			goto insert;
2218
2219		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2220		fallthrough;
2221	case SFP_MOD_HPOWER:
2222		/* Enable high power mode */
2223		err = sfp_sm_mod_hpower(sfp, true);
2224		if (err < 0) {
2225			if (err != -EAGAIN) {
2226				sfp_module_remove(sfp->sfp_bus);
2227				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2228			} else {
2229				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2230			}
2231			break;
2232		}
2233
2234		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2235		break;
2236
2237	case SFP_MOD_WAITPWR:
2238		/* Wait for T_HPOWER_LEVEL to time out */
2239		if (event != SFP_E_TIMEOUT)
2240			break;
2241
2242	insert:
2243		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2244		break;
2245
2246	case SFP_MOD_PRESENT:
2247	case SFP_MOD_ERROR:
2248		break;
2249	}
2250}
2251
2252static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2253{
2254	unsigned long timeout;
2255	int ret;
2256
2257	/* Some events are global */
2258	if (sfp->sm_state != SFP_S_DOWN &&
2259	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2260	     sfp->sm_dev_state != SFP_DEV_UP)) {
2261		if (sfp->sm_state == SFP_S_LINK_UP &&
2262		    sfp->sm_dev_state == SFP_DEV_UP)
2263			sfp_sm_link_down(sfp);
2264		if (sfp->sm_state > SFP_S_INIT)
2265			sfp_module_stop(sfp->sfp_bus);
2266		if (sfp->mod_phy)
2267			sfp_sm_phy_detach(sfp);
2268		if (sfp->i2c_mii)
2269			sfp_i2c_mdiobus_destroy(sfp);
2270		sfp_module_tx_disable(sfp);
2271		sfp_soft_stop_poll(sfp);
2272		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2273		return;
2274	}
2275
2276	/* The main state machine */
2277	switch (sfp->sm_state) {
2278	case SFP_S_DOWN:
2279		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2280		    sfp->sm_dev_state != SFP_DEV_UP)
2281			break;
2282
2283		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2284			sfp_soft_start_poll(sfp);
2285
2286		sfp_module_tx_enable(sfp);
2287
2288		/* Initialise the fault clearance retries */
2289		sfp->sm_fault_retries = N_FAULT_INIT;
2290
2291		/* We need to check the TX_FAULT state, which is not defined
2292		 * while TX_DISABLE is asserted. The earliest we want to do
2293		 * anything (such as probe for a PHY) is 50ms (or more on
2294		 * specific modules).
2295		 */
2296		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2297		break;
2298
2299	case SFP_S_WAIT:
2300		if (event != SFP_E_TIMEOUT)
2301			break;
2302
2303		if (sfp->state & SFP_F_TX_FAULT) {
2304			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2305			 * from the TX_DISABLE deassertion for the module to
2306			 * initialise, which is indicated by TX_FAULT
2307			 * deasserting.
2308			 */
2309			timeout = sfp->module_t_start_up;
2310			if (timeout > sfp->module_t_wait)
2311				timeout -= sfp->module_t_wait;
2312			else
2313				timeout = 1;
2314
2315			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2316		} else {
2317			/* TX_FAULT is not asserted, assume the module has
2318			 * finished initialising.
2319			 */
2320			goto init_done;
2321		}
2322		break;
2323
2324	case SFP_S_INIT:
2325		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2326			/* TX_FAULT is still asserted after t_init
2327			 * or t_start_up, so assume there is a fault.
2328			 */
2329			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2330				     sfp->sm_fault_retries == N_FAULT_INIT);
2331		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2332	init_done:
2333			/* Create mdiobus and start trying for PHY */
2334			ret = sfp_sm_add_mdio_bus(sfp);
2335			if (ret < 0) {
2336				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2337				break;
2338			}
2339			sfp->sm_phy_retries = R_PHY_RETRY;
2340			goto phy_probe;
2341		}
2342		break;
2343
2344	case SFP_S_INIT_PHY:
2345		if (event != SFP_E_TIMEOUT)
2346			break;
2347	phy_probe:
2348		/* TX_FAULT deasserted or we timed out with TX_FAULT
2349		 * clear.  Probe for the PHY and check the LOS state.
2350		 */
2351		ret = sfp_sm_probe_for_phy(sfp);
2352		if (ret == -ENODEV) {
2353			if (--sfp->sm_phy_retries) {
2354				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2355				break;
2356			} else {
2357				dev_info(sfp->dev, "no PHY detected\n");
2358			}
2359		} else if (ret) {
2360			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2361			break;
2362		}
2363		if (sfp_module_start(sfp->sfp_bus)) {
2364			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2365			break;
2366		}
2367		sfp_sm_link_check_los(sfp);
2368
2369		/* Reset the fault retry count */
2370		sfp->sm_fault_retries = N_FAULT;
2371		break;
2372
2373	case SFP_S_INIT_TX_FAULT:
2374		if (event == SFP_E_TIMEOUT) {
2375			sfp_module_tx_fault_reset(sfp);
2376			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2377		}
2378		break;
2379
2380	case SFP_S_WAIT_LOS:
2381		if (event == SFP_E_TX_FAULT)
2382			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2383		else if (sfp_los_event_inactive(sfp, event))
2384			sfp_sm_link_up(sfp);
2385		break;
2386
2387	case SFP_S_LINK_UP:
2388		if (event == SFP_E_TX_FAULT) {
2389			sfp_sm_link_down(sfp);
2390			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2391		} else if (sfp_los_event_active(sfp, event)) {
2392			sfp_sm_link_down(sfp);
2393			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2394		}
2395		break;
2396
2397	case SFP_S_TX_FAULT:
2398		if (event == SFP_E_TIMEOUT) {
2399			sfp_module_tx_fault_reset(sfp);
2400			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2401		}
2402		break;
2403
2404	case SFP_S_REINIT:
2405		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2406			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2407		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2408			dev_info(sfp->dev, "module transmit fault recovered\n");
2409			sfp_sm_link_check_los(sfp);
2410		}
2411		break;
2412
2413	case SFP_S_TX_DISABLE:
2414		break;
2415	}
2416}
2417
2418static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2419{
2420	mutex_lock(&sfp->sm_mutex);
2421
2422	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2423		mod_state_to_str(sfp->sm_mod_state),
2424		dev_state_to_str(sfp->sm_dev_state),
2425		sm_state_to_str(sfp->sm_state),
2426		event_to_str(event));
2427
2428	sfp_sm_device(sfp, event);
2429	sfp_sm_module(sfp, event);
2430	sfp_sm_main(sfp, event);
2431
2432	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2433		mod_state_to_str(sfp->sm_mod_state),
2434		dev_state_to_str(sfp->sm_dev_state),
2435		sm_state_to_str(sfp->sm_state));
2436
2437	mutex_unlock(&sfp->sm_mutex);
2438}
2439
2440static void sfp_attach(struct sfp *sfp)
2441{
2442	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2443}
2444
2445static void sfp_detach(struct sfp *sfp)
2446{
2447	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2448}
2449
2450static void sfp_start(struct sfp *sfp)
2451{
2452	sfp_sm_event(sfp, SFP_E_DEV_UP);
2453}
2454
2455static void sfp_stop(struct sfp *sfp)
2456{
2457	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2458}
2459
2460static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2461{
2462	/* locking... and check module is present */
2463
2464	if (sfp->id.ext.sff8472_compliance &&
2465	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2466		modinfo->type = ETH_MODULE_SFF_8472;
2467		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2468	} else {
2469		modinfo->type = ETH_MODULE_SFF_8079;
2470		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2471	}
2472	return 0;
2473}
2474
2475static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2476			     u8 *data)
2477{
2478	unsigned int first, last, len;
2479	int ret;
2480
2481	if (ee->len == 0)
2482		return -EINVAL;
2483
2484	first = ee->offset;
2485	last = ee->offset + ee->len;
2486	if (first < ETH_MODULE_SFF_8079_LEN) {
2487		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2488		len -= first;
2489
2490		ret = sfp_read(sfp, false, first, data, len);
2491		if (ret < 0)
2492			return ret;
2493
2494		first += len;
2495		data += len;
2496	}
2497	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2498		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2499		len -= first;
2500		first -= ETH_MODULE_SFF_8079_LEN;
2501
2502		ret = sfp_read(sfp, true, first, data, len);
2503		if (ret < 0)
2504			return ret;
2505	}
2506	return 0;
2507}
2508
2509static int sfp_module_eeprom_by_page(struct sfp *sfp,
2510				     const struct ethtool_module_eeprom *page,
2511				     struct netlink_ext_ack *extack)
2512{
2513	if (page->bank) {
2514		NL_SET_ERR_MSG(extack, "Banks not supported");
2515		return -EOPNOTSUPP;
2516	}
2517
2518	if (page->page) {
2519		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2520		return -EOPNOTSUPP;
2521	}
2522
2523	if (page->i2c_address != 0x50 &&
2524	    page->i2c_address != 0x51) {
2525		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2526		return -EOPNOTSUPP;
2527	}
2528
2529	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2530			page->data, page->length);
2531};
2532
2533static const struct sfp_socket_ops sfp_module_ops = {
2534	.attach = sfp_attach,
2535	.detach = sfp_detach,
2536	.start = sfp_start,
2537	.stop = sfp_stop,
2538	.module_info = sfp_module_info,
2539	.module_eeprom = sfp_module_eeprom,
2540	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2541};
2542
2543static void sfp_timeout(struct work_struct *work)
2544{
2545	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2546
2547	rtnl_lock();
2548	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2549	rtnl_unlock();
2550}
2551
2552static void sfp_check_state(struct sfp *sfp)
2553{
2554	unsigned int state, i, changed;
2555
2556	mutex_lock(&sfp->st_mutex);
2557	state = sfp_get_state(sfp);
2558	changed = state ^ sfp->state;
2559	if (sfp->tx_fault_ignore)
2560		changed &= SFP_F_PRESENT | SFP_F_LOS;
2561	else
2562		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2563
2564	for (i = 0; i < GPIO_MAX; i++)
2565		if (changed & BIT(i))
2566			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2567				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2568
2569	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2570	sfp->state = state;
2571
2572	rtnl_lock();
2573	if (changed & SFP_F_PRESENT)
2574		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2575				SFP_E_INSERT : SFP_E_REMOVE);
2576
2577	if (changed & SFP_F_TX_FAULT)
2578		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2579				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2580
2581	if (changed & SFP_F_LOS)
2582		sfp_sm_event(sfp, state & SFP_F_LOS ?
2583				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2584	rtnl_unlock();
2585	mutex_unlock(&sfp->st_mutex);
2586}
2587
2588static irqreturn_t sfp_irq(int irq, void *data)
2589{
2590	struct sfp *sfp = data;
2591
2592	sfp_check_state(sfp);
2593
2594	return IRQ_HANDLED;
2595}
2596
2597static void sfp_poll(struct work_struct *work)
2598{
2599	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2600
2601	sfp_check_state(sfp);
2602
2603	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2604	    sfp->need_poll)
2605		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2606}
2607
2608static struct sfp *sfp_alloc(struct device *dev)
2609{
2610	struct sfp *sfp;
2611
2612	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2613	if (!sfp)
2614		return ERR_PTR(-ENOMEM);
2615
2616	sfp->dev = dev;
2617
2618	mutex_init(&sfp->sm_mutex);
2619	mutex_init(&sfp->st_mutex);
2620	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2621	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2622
2623	sfp_hwmon_init(sfp);
2624
2625	return sfp;
2626}
2627
2628static void sfp_cleanup(void *data)
2629{
2630	struct sfp *sfp = data;
2631
2632	sfp_hwmon_exit(sfp);
2633
2634	cancel_delayed_work_sync(&sfp->poll);
2635	cancel_delayed_work_sync(&sfp->timeout);
2636	if (sfp->i2c_mii) {
2637		mdiobus_unregister(sfp->i2c_mii);
2638		mdiobus_free(sfp->i2c_mii);
2639	}
2640	if (sfp->i2c)
2641		i2c_put_adapter(sfp->i2c);
2642	kfree(sfp);
2643}
2644
2645static int sfp_i2c_get(struct sfp *sfp)
2646{
2647	struct acpi_handle *acpi_handle;
2648	struct fwnode_handle *h;
2649	struct i2c_adapter *i2c;
2650	struct device_node *np;
2651	int err;
2652
2653	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2654	if (IS_ERR(h)) {
2655		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2656		return -ENODEV;
2657	}
2658
2659	if (is_acpi_device_node(h)) {
2660		acpi_handle = ACPI_HANDLE_FWNODE(h);
2661		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2662	} else if ((np = to_of_node(h)) != NULL) {
2663		i2c = of_find_i2c_adapter_by_node(np);
2664	} else {
2665		err = -EINVAL;
2666		goto put;
2667	}
2668
2669	if (!i2c) {
2670		err = -EPROBE_DEFER;
2671		goto put;
2672	}
2673
2674	err = sfp_i2c_configure(sfp, i2c);
2675	if (err)
2676		i2c_put_adapter(i2c);
2677put:
2678	fwnode_handle_put(h);
2679	return err;
2680}
2681
2682static int sfp_probe(struct platform_device *pdev)
2683{
2684	const struct sff_data *sff;
 
2685	char *sfp_irq_name;
2686	struct sfp *sfp;
2687	int err, i;
2688
2689	sfp = sfp_alloc(&pdev->dev);
2690	if (IS_ERR(sfp))
2691		return PTR_ERR(sfp);
2692
2693	platform_set_drvdata(pdev, sfp);
2694
2695	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2696	if (err < 0)
2697		return err;
2698
2699	sff = sfp->type = &sfp_data;
2700
2701	if (pdev->dev.of_node) {
 
2702		const struct of_device_id *id;
 
2703
2704		id = of_match_node(sfp_of_match, pdev->dev.of_node);
2705		if (WARN_ON(!id))
2706			return -EINVAL;
2707
2708		sff = sfp->type = id->data;
2709	} else if (!has_acpi_companion(&pdev->dev)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710		return -EINVAL;
2711	}
2712
2713	err = sfp_i2c_get(sfp);
2714	if (err)
 
 
 
 
2715		return err;
 
2716
2717	for (i = 0; i < GPIO_MAX; i++)
2718		if (sff->gpios & BIT(i)) {
2719			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2720					   gpio_of_names[i], gpio_flags[i]);
2721			if (IS_ERR(sfp->gpio[i]))
2722				return PTR_ERR(sfp->gpio[i]);
2723		}
2724
2725	sfp->state_hw_mask = SFP_F_PRESENT;
2726
2727	sfp->get_state = sfp_gpio_get_state;
2728	sfp->set_state = sfp_gpio_set_state;
2729
2730	/* Modules that have no detect signal are always present */
2731	if (!(sfp->gpio[GPIO_MODDEF0]))
2732		sfp->get_state = sff_gpio_get_state;
2733
2734	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2735				 &sfp->max_power_mW);
2736	if (sfp->max_power_mW < 1000) {
2737		if (sfp->max_power_mW)
2738			dev_warn(sfp->dev,
2739				 "Firmware bug: host maximum power should be at least 1W\n");
2740		sfp->max_power_mW = 1000;
2741	}
2742
2743	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2744		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2745
2746	/* Get the initial state, and always signal TX disable,
2747	 * since the network interface will not be up.
2748	 */
2749	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2750
2751	if (sfp->gpio[GPIO_RATE_SELECT] &&
2752	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2753		sfp->state |= SFP_F_RATE_SELECT;
2754	sfp_set_state(sfp, sfp->state);
2755	sfp_module_tx_disable(sfp);
2756	if (sfp->state & SFP_F_PRESENT) {
2757		rtnl_lock();
2758		sfp_sm_event(sfp, SFP_E_INSERT);
2759		rtnl_unlock();
2760	}
2761
2762	for (i = 0; i < GPIO_MAX; i++) {
2763		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2764			continue;
2765
2766		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2767		if (sfp->gpio_irq[i] < 0) {
2768			sfp->gpio_irq[i] = 0;
2769			sfp->need_poll = true;
2770			continue;
2771		}
2772
2773		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2774					      "%s-%s", dev_name(sfp->dev),
2775					      gpio_of_names[i]);
2776
2777		if (!sfp_irq_name)
2778			return -ENOMEM;
2779
2780		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2781						NULL, sfp_irq,
2782						IRQF_ONESHOT |
2783						IRQF_TRIGGER_RISING |
2784						IRQF_TRIGGER_FALLING,
2785						sfp_irq_name, sfp);
2786		if (err) {
2787			sfp->gpio_irq[i] = 0;
2788			sfp->need_poll = true;
2789		}
2790	}
2791
2792	if (sfp->need_poll)
2793		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2794
2795	/* We could have an issue in cases no Tx disable pin is available or
2796	 * wired as modules using a laser as their light source will continue to
2797	 * be active when the fiber is removed. This could be a safety issue and
2798	 * we should at least warn the user about that.
2799	 */
2800	if (!sfp->gpio[GPIO_TX_DISABLE])
2801		dev_warn(sfp->dev,
2802			 "No tx_disable pin: SFP modules will always be emitting.\n");
2803
2804	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2805	if (!sfp->sfp_bus)
2806		return -ENOMEM;
2807
2808	sfp_debugfs_init(sfp);
2809
2810	return 0;
2811}
2812
2813static int sfp_remove(struct platform_device *pdev)
2814{
2815	struct sfp *sfp = platform_get_drvdata(pdev);
2816
2817	sfp_debugfs_exit(sfp);
2818	sfp_unregister_socket(sfp->sfp_bus);
2819
2820	rtnl_lock();
2821	sfp_sm_event(sfp, SFP_E_REMOVE);
2822	rtnl_unlock();
2823
2824	return 0;
2825}
2826
2827static void sfp_shutdown(struct platform_device *pdev)
2828{
2829	struct sfp *sfp = platform_get_drvdata(pdev);
2830	int i;
2831
2832	for (i = 0; i < GPIO_MAX; i++) {
2833		if (!sfp->gpio_irq[i])
2834			continue;
2835
2836		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2837	}
2838
2839	cancel_delayed_work_sync(&sfp->poll);
2840	cancel_delayed_work_sync(&sfp->timeout);
2841}
2842
2843static struct platform_driver sfp_driver = {
2844	.probe = sfp_probe,
2845	.remove = sfp_remove,
2846	.shutdown = sfp_shutdown,
2847	.driver = {
2848		.name = "sfp",
2849		.of_match_table = sfp_of_match,
2850	},
2851};
2852
2853static int sfp_init(void)
2854{
2855	poll_jiffies = msecs_to_jiffies(100);
2856
2857	return platform_driver_register(&sfp_driver);
2858}
2859module_init(sfp_init);
2860
2861static void sfp_exit(void)
2862{
2863	platform_driver_unregister(&sfp_driver);
2864}
2865module_exit(sfp_exit);
2866
2867MODULE_ALIAS("platform:sfp");
2868MODULE_AUTHOR("Russell King");
2869MODULE_LICENSE("GPL v2");