Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_sched.h"
6#include "ice_adminq_cmd.h"
7#include "ice_flow.h"
8
9#define ICE_PF_RESET_WAIT_COUNT 300
10
11/**
12 * ice_set_mac_type - Sets MAC type
13 * @hw: pointer to the HW structure
14 *
15 * This function sets the MAC type of the adapter based on the
16 * vendor ID and device ID stored in the HW structure.
17 */
18static enum ice_status ice_set_mac_type(struct ice_hw *hw)
19{
20 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
21 return ICE_ERR_DEVICE_NOT_SUPPORTED;
22
23 switch (hw->device_id) {
24 case ICE_DEV_ID_E810C_BACKPLANE:
25 case ICE_DEV_ID_E810C_QSFP:
26 case ICE_DEV_ID_E810C_SFP:
27 case ICE_DEV_ID_E810_XXV_SFP:
28 hw->mac_type = ICE_MAC_E810;
29 break;
30 case ICE_DEV_ID_E823C_10G_BASE_T:
31 case ICE_DEV_ID_E823C_BACKPLANE:
32 case ICE_DEV_ID_E823C_QSFP:
33 case ICE_DEV_ID_E823C_SFP:
34 case ICE_DEV_ID_E823C_SGMII:
35 case ICE_DEV_ID_E822C_10G_BASE_T:
36 case ICE_DEV_ID_E822C_BACKPLANE:
37 case ICE_DEV_ID_E822C_QSFP:
38 case ICE_DEV_ID_E822C_SFP:
39 case ICE_DEV_ID_E822C_SGMII:
40 case ICE_DEV_ID_E822L_10G_BASE_T:
41 case ICE_DEV_ID_E822L_BACKPLANE:
42 case ICE_DEV_ID_E822L_SFP:
43 case ICE_DEV_ID_E822L_SGMII:
44 case ICE_DEV_ID_E823L_10G_BASE_T:
45 case ICE_DEV_ID_E823L_1GBE:
46 case ICE_DEV_ID_E823L_BACKPLANE:
47 case ICE_DEV_ID_E823L_QSFP:
48 case ICE_DEV_ID_E823L_SFP:
49 hw->mac_type = ICE_MAC_GENERIC;
50 break;
51 default:
52 hw->mac_type = ICE_MAC_UNKNOWN;
53 break;
54 }
55
56 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
57 return 0;
58}
59
60/**
61 * ice_clear_pf_cfg - Clear PF configuration
62 * @hw: pointer to the hardware structure
63 *
64 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
65 * configuration, flow director filters, etc.).
66 */
67enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
68{
69 struct ice_aq_desc desc;
70
71 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
72
73 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
74}
75
76/**
77 * ice_aq_manage_mac_read - manage MAC address read command
78 * @hw: pointer to the HW struct
79 * @buf: a virtual buffer to hold the manage MAC read response
80 * @buf_size: Size of the virtual buffer
81 * @cd: pointer to command details structure or NULL
82 *
83 * This function is used to return per PF station MAC address (0x0107).
84 * NOTE: Upon successful completion of this command, MAC address information
85 * is returned in user specified buffer. Please interpret user specified
86 * buffer as "manage_mac_read" response.
87 * Response such as various MAC addresses are stored in HW struct (port.mac)
88 * ice_discover_dev_caps is expected to be called before this function is
89 * called.
90 */
91static enum ice_status
92ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
93 struct ice_sq_cd *cd)
94{
95 struct ice_aqc_manage_mac_read_resp *resp;
96 struct ice_aqc_manage_mac_read *cmd;
97 struct ice_aq_desc desc;
98 enum ice_status status;
99 u16 flags;
100 u8 i;
101
102 cmd = &desc.params.mac_read;
103
104 if (buf_size < sizeof(*resp))
105 return ICE_ERR_BUF_TOO_SHORT;
106
107 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
108
109 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
110 if (status)
111 return status;
112
113 resp = (struct ice_aqc_manage_mac_read_resp *)buf;
114 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
115
116 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
117 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
118 return ICE_ERR_CFG;
119 }
120
121 /* A single port can report up to two (LAN and WoL) addresses */
122 for (i = 0; i < cmd->num_addr; i++)
123 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
124 ether_addr_copy(hw->port_info->mac.lan_addr,
125 resp[i].mac_addr);
126 ether_addr_copy(hw->port_info->mac.perm_addr,
127 resp[i].mac_addr);
128 break;
129 }
130
131 return 0;
132}
133
134/**
135 * ice_aq_get_phy_caps - returns PHY capabilities
136 * @pi: port information structure
137 * @qual_mods: report qualified modules
138 * @report_mode: report mode capabilities
139 * @pcaps: structure for PHY capabilities to be filled
140 * @cd: pointer to command details structure or NULL
141 *
142 * Returns the various PHY capabilities supported on the Port (0x0600)
143 */
144enum ice_status
145ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
146 struct ice_aqc_get_phy_caps_data *pcaps,
147 struct ice_sq_cd *cd)
148{
149 struct ice_aqc_get_phy_caps *cmd;
150 u16 pcaps_size = sizeof(*pcaps);
151 struct ice_aq_desc desc;
152 enum ice_status status;
153 struct ice_hw *hw;
154
155 cmd = &desc.params.get_phy;
156
157 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
158 return ICE_ERR_PARAM;
159 hw = pi->hw;
160
161 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
162
163 if (qual_mods)
164 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
165
166 cmd->param0 |= cpu_to_le16(report_mode);
167 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
168
169 ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
170 report_mode);
171 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
172 (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
173 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
174 (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
175 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", pcaps->caps);
176 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
177 pcaps->low_power_ctrl_an);
178 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", pcaps->eee_cap);
179 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n",
180 pcaps->eeer_value);
181 ice_debug(hw, ICE_DBG_LINK, " link_fec_options = 0x%x\n",
182 pcaps->link_fec_options);
183 ice_debug(hw, ICE_DBG_LINK, " module_compliance_enforcement = 0x%x\n",
184 pcaps->module_compliance_enforcement);
185 ice_debug(hw, ICE_DBG_LINK, " extended_compliance_code = 0x%x\n",
186 pcaps->extended_compliance_code);
187 ice_debug(hw, ICE_DBG_LINK, " module_type[0] = 0x%x\n",
188 pcaps->module_type[0]);
189 ice_debug(hw, ICE_DBG_LINK, " module_type[1] = 0x%x\n",
190 pcaps->module_type[1]);
191 ice_debug(hw, ICE_DBG_LINK, " module_type[2] = 0x%x\n",
192 pcaps->module_type[2]);
193
194 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
195 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
196 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
197 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
198 sizeof(pi->phy.link_info.module_type));
199 }
200
201 return status;
202}
203
204/**
205 * ice_aq_get_link_topo_handle - get link topology node return status
206 * @pi: port information structure
207 * @node_type: requested node type
208 * @cd: pointer to command details structure or NULL
209 *
210 * Get link topology node return status for specified node type (0x06E0)
211 *
212 * Node type cage can be used to determine if cage is present. If AQC
213 * returns error (ENOENT), then no cage present. If no cage present, then
214 * connection type is backplane or BASE-T.
215 */
216static enum ice_status
217ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
218 struct ice_sq_cd *cd)
219{
220 struct ice_aqc_get_link_topo *cmd;
221 struct ice_aq_desc desc;
222
223 cmd = &desc.params.get_link_topo;
224
225 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
226
227 cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
228 ICE_AQC_LINK_TOPO_NODE_CTX_S);
229
230 /* set node type */
231 cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
232
233 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
234}
235
236/**
237 * ice_is_media_cage_present
238 * @pi: port information structure
239 *
240 * Returns true if media cage is present, else false. If no cage, then
241 * media type is backplane or BASE-T.
242 */
243static bool ice_is_media_cage_present(struct ice_port_info *pi)
244{
245 /* Node type cage can be used to determine if cage is present. If AQC
246 * returns error (ENOENT), then no cage present. If no cage present then
247 * connection type is backplane or BASE-T.
248 */
249 return !ice_aq_get_link_topo_handle(pi,
250 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
251 NULL);
252}
253
254/**
255 * ice_get_media_type - Gets media type
256 * @pi: port information structure
257 */
258static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
259{
260 struct ice_link_status *hw_link_info;
261
262 if (!pi)
263 return ICE_MEDIA_UNKNOWN;
264
265 hw_link_info = &pi->phy.link_info;
266 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
267 /* If more than one media type is selected, report unknown */
268 return ICE_MEDIA_UNKNOWN;
269
270 if (hw_link_info->phy_type_low) {
271 /* 1G SGMII is a special case where some DA cable PHYs
272 * may show this as an option when it really shouldn't
273 * be since SGMII is meant to be between a MAC and a PHY
274 * in a backplane. Try to detect this case and handle it
275 */
276 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
277 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
278 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
279 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
280 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
281 return ICE_MEDIA_DA;
282
283 switch (hw_link_info->phy_type_low) {
284 case ICE_PHY_TYPE_LOW_1000BASE_SX:
285 case ICE_PHY_TYPE_LOW_1000BASE_LX:
286 case ICE_PHY_TYPE_LOW_10GBASE_SR:
287 case ICE_PHY_TYPE_LOW_10GBASE_LR:
288 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
289 case ICE_PHY_TYPE_LOW_25GBASE_SR:
290 case ICE_PHY_TYPE_LOW_25GBASE_LR:
291 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
292 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
293 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
294 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
295 case ICE_PHY_TYPE_LOW_50GBASE_SR:
296 case ICE_PHY_TYPE_LOW_50GBASE_FR:
297 case ICE_PHY_TYPE_LOW_50GBASE_LR:
298 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
299 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
300 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
301 case ICE_PHY_TYPE_LOW_100GBASE_DR:
302 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
303 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
304 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
305 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
306 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
307 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
308 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
309 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
310 return ICE_MEDIA_FIBER;
311 case ICE_PHY_TYPE_LOW_100BASE_TX:
312 case ICE_PHY_TYPE_LOW_1000BASE_T:
313 case ICE_PHY_TYPE_LOW_2500BASE_T:
314 case ICE_PHY_TYPE_LOW_5GBASE_T:
315 case ICE_PHY_TYPE_LOW_10GBASE_T:
316 case ICE_PHY_TYPE_LOW_25GBASE_T:
317 return ICE_MEDIA_BASET;
318 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
319 case ICE_PHY_TYPE_LOW_25GBASE_CR:
320 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
321 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
322 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
323 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
324 case ICE_PHY_TYPE_LOW_50GBASE_CP:
325 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
326 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
327 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
328 return ICE_MEDIA_DA;
329 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
330 case ICE_PHY_TYPE_LOW_40G_XLAUI:
331 case ICE_PHY_TYPE_LOW_50G_LAUI2:
332 case ICE_PHY_TYPE_LOW_50G_AUI2:
333 case ICE_PHY_TYPE_LOW_50G_AUI1:
334 case ICE_PHY_TYPE_LOW_100G_AUI4:
335 case ICE_PHY_TYPE_LOW_100G_CAUI4:
336 if (ice_is_media_cage_present(pi))
337 return ICE_MEDIA_DA;
338 fallthrough;
339 case ICE_PHY_TYPE_LOW_1000BASE_KX:
340 case ICE_PHY_TYPE_LOW_2500BASE_KX:
341 case ICE_PHY_TYPE_LOW_2500BASE_X:
342 case ICE_PHY_TYPE_LOW_5GBASE_KR:
343 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
344 case ICE_PHY_TYPE_LOW_25GBASE_KR:
345 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
346 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
347 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
348 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
349 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
350 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
351 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
352 return ICE_MEDIA_BACKPLANE;
353 }
354 } else {
355 switch (hw_link_info->phy_type_high) {
356 case ICE_PHY_TYPE_HIGH_100G_AUI2:
357 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
358 if (ice_is_media_cage_present(pi))
359 return ICE_MEDIA_DA;
360 fallthrough;
361 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
362 return ICE_MEDIA_BACKPLANE;
363 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
364 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
365 return ICE_MEDIA_FIBER;
366 }
367 }
368 return ICE_MEDIA_UNKNOWN;
369}
370
371/**
372 * ice_aq_get_link_info
373 * @pi: port information structure
374 * @ena_lse: enable/disable LinkStatusEvent reporting
375 * @link: pointer to link status structure - optional
376 * @cd: pointer to command details structure or NULL
377 *
378 * Get Link Status (0x607). Returns the link status of the adapter.
379 */
380enum ice_status
381ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
382 struct ice_link_status *link, struct ice_sq_cd *cd)
383{
384 struct ice_aqc_get_link_status_data link_data = { 0 };
385 struct ice_aqc_get_link_status *resp;
386 struct ice_link_status *li_old, *li;
387 enum ice_media_type *hw_media_type;
388 struct ice_fc_info *hw_fc_info;
389 bool tx_pause, rx_pause;
390 struct ice_aq_desc desc;
391 enum ice_status status;
392 struct ice_hw *hw;
393 u16 cmd_flags;
394
395 if (!pi)
396 return ICE_ERR_PARAM;
397 hw = pi->hw;
398 li_old = &pi->phy.link_info_old;
399 hw_media_type = &pi->phy.media_type;
400 li = &pi->phy.link_info;
401 hw_fc_info = &pi->fc;
402
403 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
404 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
405 resp = &desc.params.get_link_status;
406 resp->cmd_flags = cpu_to_le16(cmd_flags);
407 resp->lport_num = pi->lport;
408
409 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
410
411 if (status)
412 return status;
413
414 /* save off old link status information */
415 *li_old = *li;
416
417 /* update current link status information */
418 li->link_speed = le16_to_cpu(link_data.link_speed);
419 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
420 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
421 *hw_media_type = ice_get_media_type(pi);
422 li->link_info = link_data.link_info;
423 li->an_info = link_data.an_info;
424 li->ext_info = link_data.ext_info;
425 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
426 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
427 li->topo_media_conflict = link_data.topo_media_conflict;
428 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
429 ICE_AQ_CFG_PACING_TYPE_M);
430
431 /* update fc info */
432 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
433 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
434 if (tx_pause && rx_pause)
435 hw_fc_info->current_mode = ICE_FC_FULL;
436 else if (tx_pause)
437 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
438 else if (rx_pause)
439 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
440 else
441 hw_fc_info->current_mode = ICE_FC_NONE;
442
443 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
444
445 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
446 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
447 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
448 (unsigned long long)li->phy_type_low);
449 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
450 (unsigned long long)li->phy_type_high);
451 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
452 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
453 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
454 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
455 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
456 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
457 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
458 li->max_frame_size);
459 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
460
461 /* save link status information */
462 if (link)
463 *link = *li;
464
465 /* flag cleared so calling functions don't call AQ again */
466 pi->phy.get_link_info = false;
467
468 return 0;
469}
470
471/**
472 * ice_fill_tx_timer_and_fc_thresh
473 * @hw: pointer to the HW struct
474 * @cmd: pointer to MAC cfg structure
475 *
476 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
477 * descriptor
478 */
479static void
480ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
481 struct ice_aqc_set_mac_cfg *cmd)
482{
483 u16 fc_thres_val, tx_timer_val;
484 u32 val;
485
486 /* We read back the transmit timer and FC threshold value of
487 * LFC. Thus, we will use index =
488 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
489 *
490 * Also, because we are operating on transmit timer and FC
491 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
492 */
493#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
494
495 /* Retrieve the transmit timer */
496 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
497 tx_timer_val = val &
498 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
499 cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
500
501 /* Retrieve the FC threshold */
502 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
503 fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
504
505 cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
506}
507
508/**
509 * ice_aq_set_mac_cfg
510 * @hw: pointer to the HW struct
511 * @max_frame_size: Maximum Frame Size to be supported
512 * @cd: pointer to command details structure or NULL
513 *
514 * Set MAC configuration (0x0603)
515 */
516enum ice_status
517ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
518{
519 struct ice_aqc_set_mac_cfg *cmd;
520 struct ice_aq_desc desc;
521
522 cmd = &desc.params.set_mac_cfg;
523
524 if (max_frame_size == 0)
525 return ICE_ERR_PARAM;
526
527 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
528
529 cmd->max_frame_size = cpu_to_le16(max_frame_size);
530
531 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
532
533 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
534}
535
536/**
537 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
538 * @hw: pointer to the HW struct
539 */
540static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
541{
542 struct ice_switch_info *sw;
543 enum ice_status status;
544
545 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
546 sizeof(*hw->switch_info), GFP_KERNEL);
547 sw = hw->switch_info;
548
549 if (!sw)
550 return ICE_ERR_NO_MEMORY;
551
552 INIT_LIST_HEAD(&sw->vsi_list_map_head);
553
554 status = ice_init_def_sw_recp(hw);
555 if (status) {
556 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
557 return status;
558 }
559 return 0;
560}
561
562/**
563 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
564 * @hw: pointer to the HW struct
565 */
566static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
567{
568 struct ice_switch_info *sw = hw->switch_info;
569 struct ice_vsi_list_map_info *v_pos_map;
570 struct ice_vsi_list_map_info *v_tmp_map;
571 struct ice_sw_recipe *recps;
572 u8 i;
573
574 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
575 list_entry) {
576 list_del(&v_pos_map->list_entry);
577 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
578 }
579 recps = hw->switch_info->recp_list;
580 for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
581 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
582
583 recps[i].root_rid = i;
584 mutex_destroy(&recps[i].filt_rule_lock);
585 list_for_each_entry_safe(lst_itr, tmp_entry,
586 &recps[i].filt_rules, list_entry) {
587 list_del(&lst_itr->list_entry);
588 devm_kfree(ice_hw_to_dev(hw), lst_itr);
589 }
590 }
591 ice_rm_all_sw_replay_rule_info(hw);
592 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
593 devm_kfree(ice_hw_to_dev(hw), sw);
594}
595
596/**
597 * ice_get_fw_log_cfg - get FW logging configuration
598 * @hw: pointer to the HW struct
599 */
600static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
601{
602 struct ice_aq_desc desc;
603 enum ice_status status;
604 __le16 *config;
605 u16 size;
606
607 size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
608 config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
609 if (!config)
610 return ICE_ERR_NO_MEMORY;
611
612 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
613
614 status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
615 if (!status) {
616 u16 i;
617
618 /* Save FW logging information into the HW structure */
619 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
620 u16 v, m, flgs;
621
622 v = le16_to_cpu(config[i]);
623 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
624 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
625
626 if (m < ICE_AQC_FW_LOG_ID_MAX)
627 hw->fw_log.evnts[m].cur = flgs;
628 }
629 }
630
631 devm_kfree(ice_hw_to_dev(hw), config);
632
633 return status;
634}
635
636/**
637 * ice_cfg_fw_log - configure FW logging
638 * @hw: pointer to the HW struct
639 * @enable: enable certain FW logging events if true, disable all if false
640 *
641 * This function enables/disables the FW logging via Rx CQ events and a UART
642 * port based on predetermined configurations. FW logging via the Rx CQ can be
643 * enabled/disabled for individual PF's. However, FW logging via the UART can
644 * only be enabled/disabled for all PFs on the same device.
645 *
646 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
647 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
648 * before initializing the device.
649 *
650 * When re/configuring FW logging, callers need to update the "cfg" elements of
651 * the hw->fw_log.evnts array with the desired logging event configurations for
652 * modules of interest. When disabling FW logging completely, the callers can
653 * just pass false in the "enable" parameter. On completion, the function will
654 * update the "cur" element of the hw->fw_log.evnts array with the resulting
655 * logging event configurations of the modules that are being re/configured. FW
656 * logging modules that are not part of a reconfiguration operation retain their
657 * previous states.
658 *
659 * Before resetting the device, it is recommended that the driver disables FW
660 * logging before shutting down the control queue. When disabling FW logging
661 * ("enable" = false), the latest configurations of FW logging events stored in
662 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
663 * a device reset.
664 *
665 * When enabling FW logging to emit log messages via the Rx CQ during the
666 * device's initialization phase, a mechanism alternative to interrupt handlers
667 * needs to be used to extract FW log messages from the Rx CQ periodically and
668 * to prevent the Rx CQ from being full and stalling other types of control
669 * messages from FW to SW. Interrupts are typically disabled during the device's
670 * initialization phase.
671 */
672static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
673{
674 struct ice_aqc_fw_logging *cmd;
675 enum ice_status status = 0;
676 u16 i, chgs = 0, len = 0;
677 struct ice_aq_desc desc;
678 __le16 *data = NULL;
679 u8 actv_evnts = 0;
680 void *buf = NULL;
681
682 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
683 return 0;
684
685 /* Disable FW logging only when the control queue is still responsive */
686 if (!enable &&
687 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
688 return 0;
689
690 /* Get current FW log settings */
691 status = ice_get_fw_log_cfg(hw);
692 if (status)
693 return status;
694
695 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
696 cmd = &desc.params.fw_logging;
697
698 /* Indicate which controls are valid */
699 if (hw->fw_log.cq_en)
700 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
701
702 if (hw->fw_log.uart_en)
703 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
704
705 if (enable) {
706 /* Fill in an array of entries with FW logging modules and
707 * logging events being reconfigured.
708 */
709 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
710 u16 val;
711
712 /* Keep track of enabled event types */
713 actv_evnts |= hw->fw_log.evnts[i].cfg;
714
715 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
716 continue;
717
718 if (!data) {
719 data = devm_kcalloc(ice_hw_to_dev(hw),
720 sizeof(*data),
721 ICE_AQC_FW_LOG_ID_MAX,
722 GFP_KERNEL);
723 if (!data)
724 return ICE_ERR_NO_MEMORY;
725 }
726
727 val = i << ICE_AQC_FW_LOG_ID_S;
728 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
729 data[chgs++] = cpu_to_le16(val);
730 }
731
732 /* Only enable FW logging if at least one module is specified.
733 * If FW logging is currently enabled but all modules are not
734 * enabled to emit log messages, disable FW logging altogether.
735 */
736 if (actv_evnts) {
737 /* Leave if there is effectively no change */
738 if (!chgs)
739 goto out;
740
741 if (hw->fw_log.cq_en)
742 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
743
744 if (hw->fw_log.uart_en)
745 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
746
747 buf = data;
748 len = sizeof(*data) * chgs;
749 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
750 }
751 }
752
753 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
754 if (!status) {
755 /* Update the current configuration to reflect events enabled.
756 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
757 * logging mode is enabled for the device. They do not reflect
758 * actual modules being enabled to emit log messages. So, their
759 * values remain unchanged even when all modules are disabled.
760 */
761 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
762
763 hw->fw_log.actv_evnts = actv_evnts;
764 for (i = 0; i < cnt; i++) {
765 u16 v, m;
766
767 if (!enable) {
768 /* When disabling all FW logging events as part
769 * of device's de-initialization, the original
770 * configurations are retained, and can be used
771 * to reconfigure FW logging later if the device
772 * is re-initialized.
773 */
774 hw->fw_log.evnts[i].cur = 0;
775 continue;
776 }
777
778 v = le16_to_cpu(data[i]);
779 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
780 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
781 }
782 }
783
784out:
785 if (data)
786 devm_kfree(ice_hw_to_dev(hw), data);
787
788 return status;
789}
790
791/**
792 * ice_output_fw_log
793 * @hw: pointer to the HW struct
794 * @desc: pointer to the AQ message descriptor
795 * @buf: pointer to the buffer accompanying the AQ message
796 *
797 * Formats a FW Log message and outputs it via the standard driver logs.
798 */
799void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
800{
801 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
802 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
803 le16_to_cpu(desc->datalen));
804 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
805}
806
807/**
808 * ice_get_itr_intrl_gran
809 * @hw: pointer to the HW struct
810 *
811 * Determines the ITR/INTRL granularities based on the maximum aggregate
812 * bandwidth according to the device's configuration during power-on.
813 */
814static void ice_get_itr_intrl_gran(struct ice_hw *hw)
815{
816 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
817 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
818 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
819
820 switch (max_agg_bw) {
821 case ICE_MAX_AGG_BW_200G:
822 case ICE_MAX_AGG_BW_100G:
823 case ICE_MAX_AGG_BW_50G:
824 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
825 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
826 break;
827 case ICE_MAX_AGG_BW_25G:
828 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
829 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
830 break;
831 }
832}
833
834/**
835 * ice_init_hw - main hardware initialization routine
836 * @hw: pointer to the hardware structure
837 */
838enum ice_status ice_init_hw(struct ice_hw *hw)
839{
840 struct ice_aqc_get_phy_caps_data *pcaps;
841 enum ice_status status;
842 u16 mac_buf_len;
843 void *mac_buf;
844
845 /* Set MAC type based on DeviceID */
846 status = ice_set_mac_type(hw);
847 if (status)
848 return status;
849
850 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
851 PF_FUNC_RID_FUNC_NUM_M) >>
852 PF_FUNC_RID_FUNC_NUM_S;
853
854 status = ice_reset(hw, ICE_RESET_PFR);
855 if (status)
856 return status;
857
858 ice_get_itr_intrl_gran(hw);
859
860 status = ice_create_all_ctrlq(hw);
861 if (status)
862 goto err_unroll_cqinit;
863
864 /* Enable FW logging. Not fatal if this fails. */
865 status = ice_cfg_fw_log(hw, true);
866 if (status)
867 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
868
869 status = ice_clear_pf_cfg(hw);
870 if (status)
871 goto err_unroll_cqinit;
872
873 /* Set bit to enable Flow Director filters */
874 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
875 INIT_LIST_HEAD(&hw->fdir_list_head);
876
877 ice_clear_pxe_mode(hw);
878
879 status = ice_init_nvm(hw);
880 if (status)
881 goto err_unroll_cqinit;
882
883 status = ice_get_caps(hw);
884 if (status)
885 goto err_unroll_cqinit;
886
887 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
888 sizeof(*hw->port_info), GFP_KERNEL);
889 if (!hw->port_info) {
890 status = ICE_ERR_NO_MEMORY;
891 goto err_unroll_cqinit;
892 }
893
894 /* set the back pointer to HW */
895 hw->port_info->hw = hw;
896
897 /* Initialize port_info struct with switch configuration data */
898 status = ice_get_initial_sw_cfg(hw);
899 if (status)
900 goto err_unroll_alloc;
901
902 hw->evb_veb = true;
903
904 /* Query the allocated resources for Tx scheduler */
905 status = ice_sched_query_res_alloc(hw);
906 if (status) {
907 ice_debug(hw, ICE_DBG_SCHED,
908 "Failed to get scheduler allocated resources\n");
909 goto err_unroll_alloc;
910 }
911
912 /* Initialize port_info struct with scheduler data */
913 status = ice_sched_init_port(hw->port_info);
914 if (status)
915 goto err_unroll_sched;
916
917 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
918 if (!pcaps) {
919 status = ICE_ERR_NO_MEMORY;
920 goto err_unroll_sched;
921 }
922
923 /* Initialize port_info struct with PHY capabilities */
924 status = ice_aq_get_phy_caps(hw->port_info, false,
925 ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
926 devm_kfree(ice_hw_to_dev(hw), pcaps);
927 if (status)
928 goto err_unroll_sched;
929
930 /* Initialize port_info struct with link information */
931 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
932 if (status)
933 goto err_unroll_sched;
934
935 /* need a valid SW entry point to build a Tx tree */
936 if (!hw->sw_entry_point_layer) {
937 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
938 status = ICE_ERR_CFG;
939 goto err_unroll_sched;
940 }
941 INIT_LIST_HEAD(&hw->agg_list);
942 /* Initialize max burst size */
943 if (!hw->max_burst_size)
944 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
945
946 status = ice_init_fltr_mgmt_struct(hw);
947 if (status)
948 goto err_unroll_sched;
949
950 /* Get MAC information */
951 /* A single port can report up to two (LAN and WoL) addresses */
952 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
953 sizeof(struct ice_aqc_manage_mac_read_resp),
954 GFP_KERNEL);
955 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
956
957 if (!mac_buf) {
958 status = ICE_ERR_NO_MEMORY;
959 goto err_unroll_fltr_mgmt_struct;
960 }
961
962 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
963 devm_kfree(ice_hw_to_dev(hw), mac_buf);
964
965 if (status)
966 goto err_unroll_fltr_mgmt_struct;
967 /* enable jumbo frame support at MAC level */
968 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
969 if (status)
970 goto err_unroll_fltr_mgmt_struct;
971 /* Obtain counter base index which would be used by flow director */
972 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
973 if (status)
974 goto err_unroll_fltr_mgmt_struct;
975 status = ice_init_hw_tbls(hw);
976 if (status)
977 goto err_unroll_fltr_mgmt_struct;
978 mutex_init(&hw->tnl_lock);
979 return 0;
980
981err_unroll_fltr_mgmt_struct:
982 ice_cleanup_fltr_mgmt_struct(hw);
983err_unroll_sched:
984 ice_sched_cleanup_all(hw);
985err_unroll_alloc:
986 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
987err_unroll_cqinit:
988 ice_destroy_all_ctrlq(hw);
989 return status;
990}
991
992/**
993 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
994 * @hw: pointer to the hardware structure
995 *
996 * This should be called only during nominal operation, not as a result of
997 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
998 * applicable initializations if it fails for any reason.
999 */
1000void ice_deinit_hw(struct ice_hw *hw)
1001{
1002 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1003 ice_cleanup_fltr_mgmt_struct(hw);
1004
1005 ice_sched_cleanup_all(hw);
1006 ice_sched_clear_agg(hw);
1007 ice_free_seg(hw);
1008 ice_free_hw_tbls(hw);
1009 mutex_destroy(&hw->tnl_lock);
1010
1011 if (hw->port_info) {
1012 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1013 hw->port_info = NULL;
1014 }
1015
1016 /* Attempt to disable FW logging before shutting down control queues */
1017 ice_cfg_fw_log(hw, false);
1018 ice_destroy_all_ctrlq(hw);
1019
1020 /* Clear VSI contexts if not already cleared */
1021 ice_clear_all_vsi_ctx(hw);
1022}
1023
1024/**
1025 * ice_check_reset - Check to see if a global reset is complete
1026 * @hw: pointer to the hardware structure
1027 */
1028enum ice_status ice_check_reset(struct ice_hw *hw)
1029{
1030 u32 cnt, reg = 0, grst_timeout, uld_mask;
1031
1032 /* Poll for Device Active state in case a recent CORER, GLOBR,
1033 * or EMPR has occurred. The grst delay value is in 100ms units.
1034 * Add 1sec for outstanding AQ commands that can take a long time.
1035 */
1036 grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1037 GLGEN_RSTCTL_GRSTDEL_S) + 10;
1038
1039 for (cnt = 0; cnt < grst_timeout; cnt++) {
1040 mdelay(100);
1041 reg = rd32(hw, GLGEN_RSTAT);
1042 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1043 break;
1044 }
1045
1046 if (cnt == grst_timeout) {
1047 ice_debug(hw, ICE_DBG_INIT,
1048 "Global reset polling failed to complete.\n");
1049 return ICE_ERR_RESET_FAILED;
1050 }
1051
1052#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1053 GLNVM_ULD_PCIER_DONE_1_M |\
1054 GLNVM_ULD_CORER_DONE_M |\
1055 GLNVM_ULD_GLOBR_DONE_M |\
1056 GLNVM_ULD_POR_DONE_M |\
1057 GLNVM_ULD_POR_DONE_1_M |\
1058 GLNVM_ULD_PCIER_DONE_2_M)
1059
1060 uld_mask = ICE_RESET_DONE_MASK;
1061
1062 /* Device is Active; check Global Reset processes are done */
1063 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1064 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1065 if (reg == uld_mask) {
1066 ice_debug(hw, ICE_DBG_INIT,
1067 "Global reset processes done. %d\n", cnt);
1068 break;
1069 }
1070 mdelay(10);
1071 }
1072
1073 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1074 ice_debug(hw, ICE_DBG_INIT,
1075 "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1076 reg);
1077 return ICE_ERR_RESET_FAILED;
1078 }
1079
1080 return 0;
1081}
1082
1083/**
1084 * ice_pf_reset - Reset the PF
1085 * @hw: pointer to the hardware structure
1086 *
1087 * If a global reset has been triggered, this function checks
1088 * for its completion and then issues the PF reset
1089 */
1090static enum ice_status ice_pf_reset(struct ice_hw *hw)
1091{
1092 u32 cnt, reg;
1093
1094 /* If at function entry a global reset was already in progress, i.e.
1095 * state is not 'device active' or any of the reset done bits are not
1096 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1097 * global reset is done.
1098 */
1099 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1100 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1101 /* poll on global reset currently in progress until done */
1102 if (ice_check_reset(hw))
1103 return ICE_ERR_RESET_FAILED;
1104
1105 return 0;
1106 }
1107
1108 /* Reset the PF */
1109 reg = rd32(hw, PFGEN_CTRL);
1110
1111 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1112
1113 /* Wait for the PFR to complete. The wait time is the global config lock
1114 * timeout plus the PFR timeout which will account for a possible reset
1115 * that is occurring during a download package operation.
1116 */
1117 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1118 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1119 reg = rd32(hw, PFGEN_CTRL);
1120 if (!(reg & PFGEN_CTRL_PFSWR_M))
1121 break;
1122
1123 mdelay(1);
1124 }
1125
1126 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1127 ice_debug(hw, ICE_DBG_INIT,
1128 "PF reset polling failed to complete.\n");
1129 return ICE_ERR_RESET_FAILED;
1130 }
1131
1132 return 0;
1133}
1134
1135/**
1136 * ice_reset - Perform different types of reset
1137 * @hw: pointer to the hardware structure
1138 * @req: reset request
1139 *
1140 * This function triggers a reset as specified by the req parameter.
1141 *
1142 * Note:
1143 * If anything other than a PF reset is triggered, PXE mode is restored.
1144 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1145 * interface has been restored in the rebuild flow.
1146 */
1147enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1148{
1149 u32 val = 0;
1150
1151 switch (req) {
1152 case ICE_RESET_PFR:
1153 return ice_pf_reset(hw);
1154 case ICE_RESET_CORER:
1155 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1156 val = GLGEN_RTRIG_CORER_M;
1157 break;
1158 case ICE_RESET_GLOBR:
1159 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1160 val = GLGEN_RTRIG_GLOBR_M;
1161 break;
1162 default:
1163 return ICE_ERR_PARAM;
1164 }
1165
1166 val |= rd32(hw, GLGEN_RTRIG);
1167 wr32(hw, GLGEN_RTRIG, val);
1168 ice_flush(hw);
1169
1170 /* wait for the FW to be ready */
1171 return ice_check_reset(hw);
1172}
1173
1174/**
1175 * ice_copy_rxq_ctx_to_hw
1176 * @hw: pointer to the hardware structure
1177 * @ice_rxq_ctx: pointer to the rxq context
1178 * @rxq_index: the index of the Rx queue
1179 *
1180 * Copies rxq context from dense structure to HW register space
1181 */
1182static enum ice_status
1183ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1184{
1185 u8 i;
1186
1187 if (!ice_rxq_ctx)
1188 return ICE_ERR_BAD_PTR;
1189
1190 if (rxq_index > QRX_CTRL_MAX_INDEX)
1191 return ICE_ERR_PARAM;
1192
1193 /* Copy each dword separately to HW */
1194 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1195 wr32(hw, QRX_CONTEXT(i, rxq_index),
1196 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1197
1198 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1199 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1200 }
1201
1202 return 0;
1203}
1204
1205/* LAN Rx Queue Context */
1206static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1207 /* Field Width LSB */
1208 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1209 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1210 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1211 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1212 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1213 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1214 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1215 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1216 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1217 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1218 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1219 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1220 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1221 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1222 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1223 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1224 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1225 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1226 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1227 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1228 { 0 }
1229};
1230
1231/**
1232 * ice_write_rxq_ctx
1233 * @hw: pointer to the hardware structure
1234 * @rlan_ctx: pointer to the rxq context
1235 * @rxq_index: the index of the Rx queue
1236 *
1237 * Converts rxq context from sparse to dense structure and then writes
1238 * it to HW register space and enables the hardware to prefetch descriptors
1239 * instead of only fetching them on demand
1240 */
1241enum ice_status
1242ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1243 u32 rxq_index)
1244{
1245 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1246
1247 if (!rlan_ctx)
1248 return ICE_ERR_BAD_PTR;
1249
1250 rlan_ctx->prefena = 1;
1251
1252 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1253 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1254}
1255
1256/* LAN Tx Queue Context */
1257const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1258 /* Field Width LSB */
1259 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1260 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1261 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1262 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1263 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1264 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1265 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1266 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1267 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1268 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1269 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1270 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1271 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1272 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1273 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1274 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1275 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1276 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1277 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1278 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1279 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1280 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1281 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1282 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1283 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1284 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1285 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1286 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
1287 { 0 }
1288};
1289
1290/* FW Admin Queue command wrappers */
1291
1292/* Software lock/mutex that is meant to be held while the Global Config Lock
1293 * in firmware is acquired by the software to prevent most (but not all) types
1294 * of AQ commands from being sent to FW
1295 */
1296DEFINE_MUTEX(ice_global_cfg_lock_sw);
1297
1298/**
1299 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1300 * @hw: pointer to the HW struct
1301 * @desc: descriptor describing the command
1302 * @buf: buffer to use for indirect commands (NULL for direct commands)
1303 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1304 * @cd: pointer to command details structure
1305 *
1306 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1307 */
1308enum ice_status
1309ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1310 u16 buf_size, struct ice_sq_cd *cd)
1311{
1312 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1313 bool lock_acquired = false;
1314 enum ice_status status;
1315
1316 /* When a package download is in process (i.e. when the firmware's
1317 * Global Configuration Lock resource is held), only the Download
1318 * Package, Get Version, Get Package Info List and Release Resource
1319 * (with resource ID set to Global Config Lock) AdminQ commands are
1320 * allowed; all others must block until the package download completes
1321 * and the Global Config Lock is released. See also
1322 * ice_acquire_global_cfg_lock().
1323 */
1324 switch (le16_to_cpu(desc->opcode)) {
1325 case ice_aqc_opc_download_pkg:
1326 case ice_aqc_opc_get_pkg_info_list:
1327 case ice_aqc_opc_get_ver:
1328 break;
1329 case ice_aqc_opc_release_res:
1330 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1331 break;
1332 fallthrough;
1333 default:
1334 mutex_lock(&ice_global_cfg_lock_sw);
1335 lock_acquired = true;
1336 break;
1337 }
1338
1339 status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1340 if (lock_acquired)
1341 mutex_unlock(&ice_global_cfg_lock_sw);
1342
1343 return status;
1344}
1345
1346/**
1347 * ice_aq_get_fw_ver
1348 * @hw: pointer to the HW struct
1349 * @cd: pointer to command details structure or NULL
1350 *
1351 * Get the firmware version (0x0001) from the admin queue commands
1352 */
1353enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1354{
1355 struct ice_aqc_get_ver *resp;
1356 struct ice_aq_desc desc;
1357 enum ice_status status;
1358
1359 resp = &desc.params.get_ver;
1360
1361 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1362
1363 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1364
1365 if (!status) {
1366 hw->fw_branch = resp->fw_branch;
1367 hw->fw_maj_ver = resp->fw_major;
1368 hw->fw_min_ver = resp->fw_minor;
1369 hw->fw_patch = resp->fw_patch;
1370 hw->fw_build = le32_to_cpu(resp->fw_build);
1371 hw->api_branch = resp->api_branch;
1372 hw->api_maj_ver = resp->api_major;
1373 hw->api_min_ver = resp->api_minor;
1374 hw->api_patch = resp->api_patch;
1375 }
1376
1377 return status;
1378}
1379
1380/**
1381 * ice_aq_send_driver_ver
1382 * @hw: pointer to the HW struct
1383 * @dv: driver's major, minor version
1384 * @cd: pointer to command details structure or NULL
1385 *
1386 * Send the driver version (0x0002) to the firmware
1387 */
1388enum ice_status
1389ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1390 struct ice_sq_cd *cd)
1391{
1392 struct ice_aqc_driver_ver *cmd;
1393 struct ice_aq_desc desc;
1394 u16 len;
1395
1396 cmd = &desc.params.driver_ver;
1397
1398 if (!dv)
1399 return ICE_ERR_PARAM;
1400
1401 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1402
1403 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1404 cmd->major_ver = dv->major_ver;
1405 cmd->minor_ver = dv->minor_ver;
1406 cmd->build_ver = dv->build_ver;
1407 cmd->subbuild_ver = dv->subbuild_ver;
1408
1409 len = 0;
1410 while (len < sizeof(dv->driver_string) &&
1411 isascii(dv->driver_string[len]) && dv->driver_string[len])
1412 len++;
1413
1414 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1415}
1416
1417/**
1418 * ice_aq_q_shutdown
1419 * @hw: pointer to the HW struct
1420 * @unloading: is the driver unloading itself
1421 *
1422 * Tell the Firmware that we're shutting down the AdminQ and whether
1423 * or not the driver is unloading as well (0x0003).
1424 */
1425enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1426{
1427 struct ice_aqc_q_shutdown *cmd;
1428 struct ice_aq_desc desc;
1429
1430 cmd = &desc.params.q_shutdown;
1431
1432 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1433
1434 if (unloading)
1435 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1436
1437 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1438}
1439
1440/**
1441 * ice_aq_req_res
1442 * @hw: pointer to the HW struct
1443 * @res: resource ID
1444 * @access: access type
1445 * @sdp_number: resource number
1446 * @timeout: the maximum time in ms that the driver may hold the resource
1447 * @cd: pointer to command details structure or NULL
1448 *
1449 * Requests common resource using the admin queue commands (0x0008).
1450 * When attempting to acquire the Global Config Lock, the driver can
1451 * learn of three states:
1452 * 1) ICE_SUCCESS - acquired lock, and can perform download package
1453 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
1454 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1455 * successfully downloaded the package; the driver does
1456 * not have to download the package and can continue
1457 * loading
1458 *
1459 * Note that if the caller is in an acquire lock, perform action, release lock
1460 * phase of operation, it is possible that the FW may detect a timeout and issue
1461 * a CORER. In this case, the driver will receive a CORER interrupt and will
1462 * have to determine its cause. The calling thread that is handling this flow
1463 * will likely get an error propagated back to it indicating the Download
1464 * Package, Update Package or the Release Resource AQ commands timed out.
1465 */
1466static enum ice_status
1467ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1468 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1469 struct ice_sq_cd *cd)
1470{
1471 struct ice_aqc_req_res *cmd_resp;
1472 struct ice_aq_desc desc;
1473 enum ice_status status;
1474
1475 cmd_resp = &desc.params.res_owner;
1476
1477 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1478
1479 cmd_resp->res_id = cpu_to_le16(res);
1480 cmd_resp->access_type = cpu_to_le16(access);
1481 cmd_resp->res_number = cpu_to_le32(sdp_number);
1482 cmd_resp->timeout = cpu_to_le32(*timeout);
1483 *timeout = 0;
1484
1485 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1486
1487 /* The completion specifies the maximum time in ms that the driver
1488 * may hold the resource in the Timeout field.
1489 */
1490
1491 /* Global config lock response utilizes an additional status field.
1492 *
1493 * If the Global config lock resource is held by some other driver, the
1494 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1495 * and the timeout field indicates the maximum time the current owner
1496 * of the resource has to free it.
1497 */
1498 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1499 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1500 *timeout = le32_to_cpu(cmd_resp->timeout);
1501 return 0;
1502 } else if (le16_to_cpu(cmd_resp->status) ==
1503 ICE_AQ_RES_GLBL_IN_PROG) {
1504 *timeout = le32_to_cpu(cmd_resp->timeout);
1505 return ICE_ERR_AQ_ERROR;
1506 } else if (le16_to_cpu(cmd_resp->status) ==
1507 ICE_AQ_RES_GLBL_DONE) {
1508 return ICE_ERR_AQ_NO_WORK;
1509 }
1510
1511 /* invalid FW response, force a timeout immediately */
1512 *timeout = 0;
1513 return ICE_ERR_AQ_ERROR;
1514 }
1515
1516 /* If the resource is held by some other driver, the command completes
1517 * with a busy return value and the timeout field indicates the maximum
1518 * time the current owner of the resource has to free it.
1519 */
1520 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1521 *timeout = le32_to_cpu(cmd_resp->timeout);
1522
1523 return status;
1524}
1525
1526/**
1527 * ice_aq_release_res
1528 * @hw: pointer to the HW struct
1529 * @res: resource ID
1530 * @sdp_number: resource number
1531 * @cd: pointer to command details structure or NULL
1532 *
1533 * release common resource using the admin queue commands (0x0009)
1534 */
1535static enum ice_status
1536ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1537 struct ice_sq_cd *cd)
1538{
1539 struct ice_aqc_req_res *cmd;
1540 struct ice_aq_desc desc;
1541
1542 cmd = &desc.params.res_owner;
1543
1544 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1545
1546 cmd->res_id = cpu_to_le16(res);
1547 cmd->res_number = cpu_to_le32(sdp_number);
1548
1549 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1550}
1551
1552/**
1553 * ice_acquire_res
1554 * @hw: pointer to the HW structure
1555 * @res: resource ID
1556 * @access: access type (read or write)
1557 * @timeout: timeout in milliseconds
1558 *
1559 * This function will attempt to acquire the ownership of a resource.
1560 */
1561enum ice_status
1562ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1563 enum ice_aq_res_access_type access, u32 timeout)
1564{
1565#define ICE_RES_POLLING_DELAY_MS 10
1566 u32 delay = ICE_RES_POLLING_DELAY_MS;
1567 u32 time_left = timeout;
1568 enum ice_status status;
1569
1570 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1571
1572 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1573 * previously acquired the resource and performed any necessary updates;
1574 * in this case the caller does not obtain the resource and has no
1575 * further work to do.
1576 */
1577 if (status == ICE_ERR_AQ_NO_WORK)
1578 goto ice_acquire_res_exit;
1579
1580 if (status)
1581 ice_debug(hw, ICE_DBG_RES,
1582 "resource %d acquire type %d failed.\n", res, access);
1583
1584 /* If necessary, poll until the current lock owner timeouts */
1585 timeout = time_left;
1586 while (status && timeout && time_left) {
1587 mdelay(delay);
1588 timeout = (timeout > delay) ? timeout - delay : 0;
1589 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1590
1591 if (status == ICE_ERR_AQ_NO_WORK)
1592 /* lock free, but no work to do */
1593 break;
1594
1595 if (!status)
1596 /* lock acquired */
1597 break;
1598 }
1599 if (status && status != ICE_ERR_AQ_NO_WORK)
1600 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1601
1602ice_acquire_res_exit:
1603 if (status == ICE_ERR_AQ_NO_WORK) {
1604 if (access == ICE_RES_WRITE)
1605 ice_debug(hw, ICE_DBG_RES,
1606 "resource indicates no work to do.\n");
1607 else
1608 ice_debug(hw, ICE_DBG_RES,
1609 "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1610 }
1611 return status;
1612}
1613
1614/**
1615 * ice_release_res
1616 * @hw: pointer to the HW structure
1617 * @res: resource ID
1618 *
1619 * This function will release a resource using the proper Admin Command.
1620 */
1621void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1622{
1623 enum ice_status status;
1624 u32 total_delay = 0;
1625
1626 status = ice_aq_release_res(hw, res, 0, NULL);
1627
1628 /* there are some rare cases when trying to release the resource
1629 * results in an admin queue timeout, so handle them correctly
1630 */
1631 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1632 (total_delay < hw->adminq.sq_cmd_timeout)) {
1633 mdelay(1);
1634 status = ice_aq_release_res(hw, res, 0, NULL);
1635 total_delay++;
1636 }
1637}
1638
1639/**
1640 * ice_aq_alloc_free_res - command to allocate/free resources
1641 * @hw: pointer to the HW struct
1642 * @num_entries: number of resource entries in buffer
1643 * @buf: Indirect buffer to hold data parameters and response
1644 * @buf_size: size of buffer for indirect commands
1645 * @opc: pass in the command opcode
1646 * @cd: pointer to command details structure or NULL
1647 *
1648 * Helper function to allocate/free resources using the admin queue commands
1649 */
1650enum ice_status
1651ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1652 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1653 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1654{
1655 struct ice_aqc_alloc_free_res_cmd *cmd;
1656 struct ice_aq_desc desc;
1657
1658 cmd = &desc.params.sw_res_ctrl;
1659
1660 if (!buf)
1661 return ICE_ERR_PARAM;
1662
1663 if (buf_size < (num_entries * sizeof(buf->elem[0])))
1664 return ICE_ERR_PARAM;
1665
1666 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1667
1668 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1669
1670 cmd->num_entries = cpu_to_le16(num_entries);
1671
1672 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1673}
1674
1675/**
1676 * ice_alloc_hw_res - allocate resource
1677 * @hw: pointer to the HW struct
1678 * @type: type of resource
1679 * @num: number of resources to allocate
1680 * @btm: allocate from bottom
1681 * @res: pointer to array that will receive the resources
1682 */
1683enum ice_status
1684ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1685{
1686 struct ice_aqc_alloc_free_res_elem *buf;
1687 enum ice_status status;
1688 u16 buf_len;
1689
1690 buf_len = struct_size(buf, elem, num);
1691 buf = kzalloc(buf_len, GFP_KERNEL);
1692 if (!buf)
1693 return ICE_ERR_NO_MEMORY;
1694
1695 /* Prepare buffer to allocate resource. */
1696 buf->num_elems = cpu_to_le16(num);
1697 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1698 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1699 if (btm)
1700 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1701
1702 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1703 ice_aqc_opc_alloc_res, NULL);
1704 if (status)
1705 goto ice_alloc_res_exit;
1706
1707 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1708
1709ice_alloc_res_exit:
1710 kfree(buf);
1711 return status;
1712}
1713
1714/**
1715 * ice_free_hw_res - free allocated HW resource
1716 * @hw: pointer to the HW struct
1717 * @type: type of resource to free
1718 * @num: number of resources
1719 * @res: pointer to array that contains the resources to free
1720 */
1721enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1722{
1723 struct ice_aqc_alloc_free_res_elem *buf;
1724 enum ice_status status;
1725 u16 buf_len;
1726
1727 buf_len = struct_size(buf, elem, num);
1728 buf = kzalloc(buf_len, GFP_KERNEL);
1729 if (!buf)
1730 return ICE_ERR_NO_MEMORY;
1731
1732 /* Prepare buffer to free resource. */
1733 buf->num_elems = cpu_to_le16(num);
1734 buf->res_type = cpu_to_le16(type);
1735 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1736
1737 status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1738 ice_aqc_opc_free_res, NULL);
1739 if (status)
1740 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1741
1742 kfree(buf);
1743 return status;
1744}
1745
1746/**
1747 * ice_get_num_per_func - determine number of resources per PF
1748 * @hw: pointer to the HW structure
1749 * @max: value to be evenly split between each PF
1750 *
1751 * Determine the number of valid functions by going through the bitmap returned
1752 * from parsing capabilities and use this to calculate the number of resources
1753 * per PF based on the max value passed in.
1754 */
1755static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1756{
1757 u8 funcs;
1758
1759#define ICE_CAPS_VALID_FUNCS_M 0xFF
1760 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1761 ICE_CAPS_VALID_FUNCS_M);
1762
1763 if (!funcs)
1764 return 0;
1765
1766 return max / funcs;
1767}
1768
1769/**
1770 * ice_parse_common_caps - parse common device/function capabilities
1771 * @hw: pointer to the HW struct
1772 * @caps: pointer to common capabilities structure
1773 * @elem: the capability element to parse
1774 * @prefix: message prefix for tracing capabilities
1775 *
1776 * Given a capability element, extract relevant details into the common
1777 * capability structure.
1778 *
1779 * Returns: true if the capability matches one of the common capability ids,
1780 * false otherwise.
1781 */
1782static bool
1783ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1784 struct ice_aqc_list_caps_elem *elem, const char *prefix)
1785{
1786 u32 logical_id = le32_to_cpu(elem->logical_id);
1787 u32 phys_id = le32_to_cpu(elem->phys_id);
1788 u32 number = le32_to_cpu(elem->number);
1789 u16 cap = le16_to_cpu(elem->cap);
1790 bool found = true;
1791
1792 switch (cap) {
1793 case ICE_AQC_CAPS_VALID_FUNCTIONS:
1794 caps->valid_functions = number;
1795 ice_debug(hw, ICE_DBG_INIT,
1796 "%s: valid_functions (bitmap) = %d\n", prefix,
1797 caps->valid_functions);
1798 break;
1799 case ICE_AQC_CAPS_SRIOV:
1800 caps->sr_iov_1_1 = (number == 1);
1801 ice_debug(hw, ICE_DBG_INIT,
1802 "%s: sr_iov_1_1 = %d\n", prefix,
1803 caps->sr_iov_1_1);
1804 break;
1805 case ICE_AQC_CAPS_DCB:
1806 caps->dcb = (number == 1);
1807 caps->active_tc_bitmap = logical_id;
1808 caps->maxtc = phys_id;
1809 ice_debug(hw, ICE_DBG_INIT,
1810 "%s: dcb = %d\n", prefix, caps->dcb);
1811 ice_debug(hw, ICE_DBG_INIT,
1812 "%s: active_tc_bitmap = %d\n", prefix,
1813 caps->active_tc_bitmap);
1814 ice_debug(hw, ICE_DBG_INIT,
1815 "%s: maxtc = %d\n", prefix, caps->maxtc);
1816 break;
1817 case ICE_AQC_CAPS_RSS:
1818 caps->rss_table_size = number;
1819 caps->rss_table_entry_width = logical_id;
1820 ice_debug(hw, ICE_DBG_INIT,
1821 "%s: rss_table_size = %d\n", prefix,
1822 caps->rss_table_size);
1823 ice_debug(hw, ICE_DBG_INIT,
1824 "%s: rss_table_entry_width = %d\n", prefix,
1825 caps->rss_table_entry_width);
1826 break;
1827 case ICE_AQC_CAPS_RXQS:
1828 caps->num_rxq = number;
1829 caps->rxq_first_id = phys_id;
1830 ice_debug(hw, ICE_DBG_INIT,
1831 "%s: num_rxq = %d\n", prefix,
1832 caps->num_rxq);
1833 ice_debug(hw, ICE_DBG_INIT,
1834 "%s: rxq_first_id = %d\n", prefix,
1835 caps->rxq_first_id);
1836 break;
1837 case ICE_AQC_CAPS_TXQS:
1838 caps->num_txq = number;
1839 caps->txq_first_id = phys_id;
1840 ice_debug(hw, ICE_DBG_INIT,
1841 "%s: num_txq = %d\n", prefix,
1842 caps->num_txq);
1843 ice_debug(hw, ICE_DBG_INIT,
1844 "%s: txq_first_id = %d\n", prefix,
1845 caps->txq_first_id);
1846 break;
1847 case ICE_AQC_CAPS_MSIX:
1848 caps->num_msix_vectors = number;
1849 caps->msix_vector_first_id = phys_id;
1850 ice_debug(hw, ICE_DBG_INIT,
1851 "%s: num_msix_vectors = %d\n", prefix,
1852 caps->num_msix_vectors);
1853 ice_debug(hw, ICE_DBG_INIT,
1854 "%s: msix_vector_first_id = %d\n", prefix,
1855 caps->msix_vector_first_id);
1856 break;
1857 case ICE_AQC_CAPS_PENDING_NVM_VER:
1858 caps->nvm_update_pending_nvm = true;
1859 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
1860 break;
1861 case ICE_AQC_CAPS_PENDING_OROM_VER:
1862 caps->nvm_update_pending_orom = true;
1863 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
1864 break;
1865 case ICE_AQC_CAPS_PENDING_NET_VER:
1866 caps->nvm_update_pending_netlist = true;
1867 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
1868 break;
1869 case ICE_AQC_CAPS_NVM_MGMT:
1870 caps->nvm_unified_update =
1871 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
1872 true : false;
1873 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
1874 caps->nvm_unified_update);
1875 break;
1876 case ICE_AQC_CAPS_MAX_MTU:
1877 caps->max_mtu = number;
1878 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1879 prefix, caps->max_mtu);
1880 break;
1881 default:
1882 /* Not one of the recognized common capabilities */
1883 found = false;
1884 }
1885
1886 return found;
1887}
1888
1889/**
1890 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
1891 * @hw: pointer to the HW structure
1892 * @caps: pointer to capabilities structure to fix
1893 *
1894 * Re-calculate the capabilities that are dependent on the number of physical
1895 * ports; i.e. some features are not supported or function differently on
1896 * devices with more than 4 ports.
1897 */
1898static void
1899ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
1900{
1901 /* This assumes device capabilities are always scanned before function
1902 * capabilities during the initialization flow.
1903 */
1904 if (hw->dev_caps.num_funcs > 4) {
1905 /* Max 4 TCs per port */
1906 caps->maxtc = 4;
1907 ice_debug(hw, ICE_DBG_INIT,
1908 "reducing maxtc to %d (based on #ports)\n",
1909 caps->maxtc);
1910 }
1911}
1912
1913/**
1914 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
1915 * @hw: pointer to the HW struct
1916 * @func_p: pointer to function capabilities structure
1917 * @cap: pointer to the capability element to parse
1918 *
1919 * Extract function capabilities for ICE_AQC_CAPS_VF.
1920 */
1921static void
1922ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1923 struct ice_aqc_list_caps_elem *cap)
1924{
1925 u32 logical_id = le32_to_cpu(cap->logical_id);
1926 u32 number = le32_to_cpu(cap->number);
1927
1928 func_p->num_allocd_vfs = number;
1929 func_p->vf_base_id = logical_id;
1930 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
1931 func_p->num_allocd_vfs);
1932 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
1933 func_p->vf_base_id);
1934}
1935
1936/**
1937 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
1938 * @hw: pointer to the HW struct
1939 * @func_p: pointer to function capabilities structure
1940 * @cap: pointer to the capability element to parse
1941 *
1942 * Extract function capabilities for ICE_AQC_CAPS_VSI.
1943 */
1944static void
1945ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1946 struct ice_aqc_list_caps_elem *cap)
1947{
1948 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
1949 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
1950 le32_to_cpu(cap->number));
1951 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
1952 func_p->guar_num_vsi);
1953}
1954
1955/**
1956 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
1957 * @hw: pointer to the HW struct
1958 * @func_p: pointer to function capabilities structure
1959 *
1960 * Extract function capabilities for ICE_AQC_CAPS_FD.
1961 */
1962static void
1963ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
1964{
1965 u32 reg_val, val;
1966
1967 reg_val = rd32(hw, GLQF_FD_SIZE);
1968 val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
1969 GLQF_FD_SIZE_FD_GSIZE_S;
1970 func_p->fd_fltr_guar =
1971 ice_get_num_per_func(hw, val);
1972 val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
1973 GLQF_FD_SIZE_FD_BSIZE_S;
1974 func_p->fd_fltr_best_effort = val;
1975
1976 ice_debug(hw, ICE_DBG_INIT,
1977 "func caps: fd_fltr_guar = %d\n",
1978 func_p->fd_fltr_guar);
1979 ice_debug(hw, ICE_DBG_INIT,
1980 "func caps: fd_fltr_best_effort = %d\n",
1981 func_p->fd_fltr_best_effort);
1982}
1983
1984/**
1985 * ice_parse_func_caps - Parse function capabilities
1986 * @hw: pointer to the HW struct
1987 * @func_p: pointer to function capabilities structure
1988 * @buf: buffer containing the function capability records
1989 * @cap_count: the number of capabilities
1990 *
1991 * Helper function to parse function (0x000A) capabilities list. For
1992 * capabilities shared between device and function, this relies on
1993 * ice_parse_common_caps.
1994 *
1995 * Loop through the list of provided capabilities and extract the relevant
1996 * data into the function capabilities structured.
1997 */
1998static void
1999ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2000 void *buf, u32 cap_count)
2001{
2002 struct ice_aqc_list_caps_elem *cap_resp;
2003 u32 i;
2004
2005 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2006
2007 memset(func_p, 0, sizeof(*func_p));
2008
2009 for (i = 0; i < cap_count; i++) {
2010 u16 cap = le16_to_cpu(cap_resp[i].cap);
2011 bool found;
2012
2013 found = ice_parse_common_caps(hw, &func_p->common_cap,
2014 &cap_resp[i], "func caps");
2015
2016 switch (cap) {
2017 case ICE_AQC_CAPS_VF:
2018 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2019 break;
2020 case ICE_AQC_CAPS_VSI:
2021 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2022 break;
2023 case ICE_AQC_CAPS_FD:
2024 ice_parse_fdir_func_caps(hw, func_p);
2025 break;
2026 default:
2027 /* Don't list common capabilities as unknown */
2028 if (!found)
2029 ice_debug(hw, ICE_DBG_INIT,
2030 "func caps: unknown capability[%d]: 0x%x\n",
2031 i, cap);
2032 break;
2033 }
2034 }
2035
2036 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2037}
2038
2039/**
2040 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2041 * @hw: pointer to the HW struct
2042 * @dev_p: pointer to device capabilities structure
2043 * @cap: capability element to parse
2044 *
2045 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2046 */
2047static void
2048ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2049 struct ice_aqc_list_caps_elem *cap)
2050{
2051 u32 number = le32_to_cpu(cap->number);
2052
2053 dev_p->num_funcs = hweight32(number);
2054 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2055 dev_p->num_funcs);
2056}
2057
2058/**
2059 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2060 * @hw: pointer to the HW struct
2061 * @dev_p: pointer to device capabilities structure
2062 * @cap: capability element to parse
2063 *
2064 * Parse ICE_AQC_CAPS_VF for device capabilities.
2065 */
2066static void
2067ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2068 struct ice_aqc_list_caps_elem *cap)
2069{
2070 u32 number = le32_to_cpu(cap->number);
2071
2072 dev_p->num_vfs_exposed = number;
2073 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2074 dev_p->num_vfs_exposed);
2075}
2076
2077/**
2078 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2079 * @hw: pointer to the HW struct
2080 * @dev_p: pointer to device capabilities structure
2081 * @cap: capability element to parse
2082 *
2083 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2084 */
2085static void
2086ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2087 struct ice_aqc_list_caps_elem *cap)
2088{
2089 u32 number = le32_to_cpu(cap->number);
2090
2091 dev_p->num_vsi_allocd_to_host = number;
2092 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2093 dev_p->num_vsi_allocd_to_host);
2094}
2095
2096/**
2097 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2098 * @hw: pointer to the HW struct
2099 * @dev_p: pointer to device capabilities structure
2100 * @cap: capability element to parse
2101 *
2102 * Parse ICE_AQC_CAPS_FD for device capabilities.
2103 */
2104static void
2105ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2106 struct ice_aqc_list_caps_elem *cap)
2107{
2108 u32 number = le32_to_cpu(cap->number);
2109
2110 dev_p->num_flow_director_fltr = number;
2111 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2112 dev_p->num_flow_director_fltr);
2113}
2114
2115/**
2116 * ice_parse_dev_caps - Parse device capabilities
2117 * @hw: pointer to the HW struct
2118 * @dev_p: pointer to device capabilities structure
2119 * @buf: buffer containing the device capability records
2120 * @cap_count: the number of capabilities
2121 *
2122 * Helper device to parse device (0x000B) capabilities list. For
2123 * capabilities shared between device and function, this relies on
2124 * ice_parse_common_caps.
2125 *
2126 * Loop through the list of provided capabilities and extract the relevant
2127 * data into the device capabilities structured.
2128 */
2129static void
2130ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2131 void *buf, u32 cap_count)
2132{
2133 struct ice_aqc_list_caps_elem *cap_resp;
2134 u32 i;
2135
2136 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2137
2138 memset(dev_p, 0, sizeof(*dev_p));
2139
2140 for (i = 0; i < cap_count; i++) {
2141 u16 cap = le16_to_cpu(cap_resp[i].cap);
2142 bool found;
2143
2144 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2145 &cap_resp[i], "dev caps");
2146
2147 switch (cap) {
2148 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2149 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2150 break;
2151 case ICE_AQC_CAPS_VF:
2152 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2153 break;
2154 case ICE_AQC_CAPS_VSI:
2155 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2156 break;
2157 case ICE_AQC_CAPS_FD:
2158 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2159 break;
2160 default:
2161 /* Don't list common capabilities as unknown */
2162 if (!found)
2163 ice_debug(hw, ICE_DBG_INIT,
2164 "dev caps: unknown capability[%d]: 0x%x\n",
2165 i, cap);
2166 break;
2167 }
2168 }
2169
2170 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2171}
2172
2173/**
2174 * ice_aq_list_caps - query function/device capabilities
2175 * @hw: pointer to the HW struct
2176 * @buf: a buffer to hold the capabilities
2177 * @buf_size: size of the buffer
2178 * @cap_count: if not NULL, set to the number of capabilities reported
2179 * @opc: capabilities type to discover, device or function
2180 * @cd: pointer to command details structure or NULL
2181 *
2182 * Get the function (0x000A) or device (0x000B) capabilities description from
2183 * firmware and store it in the buffer.
2184 *
2185 * If the cap_count pointer is not NULL, then it is set to the number of
2186 * capabilities firmware will report. Note that if the buffer size is too
2187 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2188 * cap_count will still be updated in this case. It is recommended that the
2189 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2190 * firmware could return) to avoid this.
2191 */
2192enum ice_status
2193ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2194 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2195{
2196 struct ice_aqc_list_caps *cmd;
2197 struct ice_aq_desc desc;
2198 enum ice_status status;
2199
2200 cmd = &desc.params.get_cap;
2201
2202 if (opc != ice_aqc_opc_list_func_caps &&
2203 opc != ice_aqc_opc_list_dev_caps)
2204 return ICE_ERR_PARAM;
2205
2206 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2207 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2208
2209 if (cap_count)
2210 *cap_count = le32_to_cpu(cmd->count);
2211
2212 return status;
2213}
2214
2215/**
2216 * ice_discover_dev_caps - Read and extract device capabilities
2217 * @hw: pointer to the hardware structure
2218 * @dev_caps: pointer to device capabilities structure
2219 *
2220 * Read the device capabilities and extract them into the dev_caps structure
2221 * for later use.
2222 */
2223enum ice_status
2224ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2225{
2226 enum ice_status status;
2227 u32 cap_count = 0;
2228 void *cbuf;
2229
2230 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2231 if (!cbuf)
2232 return ICE_ERR_NO_MEMORY;
2233
2234 /* Although the driver doesn't know the number of capabilities the
2235 * device will return, we can simply send a 4KB buffer, the maximum
2236 * possible size that firmware can return.
2237 */
2238 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2239
2240 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2241 ice_aqc_opc_list_dev_caps, NULL);
2242 if (!status)
2243 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2244 kfree(cbuf);
2245
2246 return status;
2247}
2248
2249/**
2250 * ice_discover_func_caps - Read and extract function capabilities
2251 * @hw: pointer to the hardware structure
2252 * @func_caps: pointer to function capabilities structure
2253 *
2254 * Read the function capabilities and extract them into the func_caps structure
2255 * for later use.
2256 */
2257static enum ice_status
2258ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2259{
2260 enum ice_status status;
2261 u32 cap_count = 0;
2262 void *cbuf;
2263
2264 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2265 if (!cbuf)
2266 return ICE_ERR_NO_MEMORY;
2267
2268 /* Although the driver doesn't know the number of capabilities the
2269 * device will return, we can simply send a 4KB buffer, the maximum
2270 * possible size that firmware can return.
2271 */
2272 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2273
2274 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2275 ice_aqc_opc_list_func_caps, NULL);
2276 if (!status)
2277 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2278 kfree(cbuf);
2279
2280 return status;
2281}
2282
2283/**
2284 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2285 * @hw: pointer to the hardware structure
2286 */
2287void ice_set_safe_mode_caps(struct ice_hw *hw)
2288{
2289 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2290 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2291 struct ice_hw_common_caps cached_caps;
2292 u32 num_funcs;
2293
2294 /* cache some func_caps values that should be restored after memset */
2295 cached_caps = func_caps->common_cap;
2296
2297 /* unset func capabilities */
2298 memset(func_caps, 0, sizeof(*func_caps));
2299
2300#define ICE_RESTORE_FUNC_CAP(name) \
2301 func_caps->common_cap.name = cached_caps.name
2302
2303 /* restore cached values */
2304 ICE_RESTORE_FUNC_CAP(valid_functions);
2305 ICE_RESTORE_FUNC_CAP(txq_first_id);
2306 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2307 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2308 ICE_RESTORE_FUNC_CAP(max_mtu);
2309 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2310 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2311 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2312 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2313
2314 /* one Tx and one Rx queue in safe mode */
2315 func_caps->common_cap.num_rxq = 1;
2316 func_caps->common_cap.num_txq = 1;
2317
2318 /* two MSIX vectors, one for traffic and one for misc causes */
2319 func_caps->common_cap.num_msix_vectors = 2;
2320 func_caps->guar_num_vsi = 1;
2321
2322 /* cache some dev_caps values that should be restored after memset */
2323 cached_caps = dev_caps->common_cap;
2324 num_funcs = dev_caps->num_funcs;
2325
2326 /* unset dev capabilities */
2327 memset(dev_caps, 0, sizeof(*dev_caps));
2328
2329#define ICE_RESTORE_DEV_CAP(name) \
2330 dev_caps->common_cap.name = cached_caps.name
2331
2332 /* restore cached values */
2333 ICE_RESTORE_DEV_CAP(valid_functions);
2334 ICE_RESTORE_DEV_CAP(txq_first_id);
2335 ICE_RESTORE_DEV_CAP(rxq_first_id);
2336 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2337 ICE_RESTORE_DEV_CAP(max_mtu);
2338 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2339 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2340 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2341 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2342 dev_caps->num_funcs = num_funcs;
2343
2344 /* one Tx and one Rx queue per function in safe mode */
2345 dev_caps->common_cap.num_rxq = num_funcs;
2346 dev_caps->common_cap.num_txq = num_funcs;
2347
2348 /* two MSIX vectors per function */
2349 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2350}
2351
2352/**
2353 * ice_get_caps - get info about the HW
2354 * @hw: pointer to the hardware structure
2355 */
2356enum ice_status ice_get_caps(struct ice_hw *hw)
2357{
2358 enum ice_status status;
2359
2360 status = ice_discover_dev_caps(hw, &hw->dev_caps);
2361 if (status)
2362 return status;
2363
2364 return ice_discover_func_caps(hw, &hw->func_caps);
2365}
2366
2367/**
2368 * ice_aq_manage_mac_write - manage MAC address write command
2369 * @hw: pointer to the HW struct
2370 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2371 * @flags: flags to control write behavior
2372 * @cd: pointer to command details structure or NULL
2373 *
2374 * This function is used to write MAC address to the NVM (0x0108).
2375 */
2376enum ice_status
2377ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2378 struct ice_sq_cd *cd)
2379{
2380 struct ice_aqc_manage_mac_write *cmd;
2381 struct ice_aq_desc desc;
2382
2383 cmd = &desc.params.mac_write;
2384 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2385
2386 cmd->flags = flags;
2387 ether_addr_copy(cmd->mac_addr, mac_addr);
2388
2389 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2390}
2391
2392/**
2393 * ice_aq_clear_pxe_mode
2394 * @hw: pointer to the HW struct
2395 *
2396 * Tell the firmware that the driver is taking over from PXE (0x0110).
2397 */
2398static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2399{
2400 struct ice_aq_desc desc;
2401
2402 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2403 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2404
2405 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2406}
2407
2408/**
2409 * ice_clear_pxe_mode - clear pxe operations mode
2410 * @hw: pointer to the HW struct
2411 *
2412 * Make sure all PXE mode settings are cleared, including things
2413 * like descriptor fetch/write-back mode.
2414 */
2415void ice_clear_pxe_mode(struct ice_hw *hw)
2416{
2417 if (ice_check_sq_alive(hw, &hw->adminq))
2418 ice_aq_clear_pxe_mode(hw);
2419}
2420
2421/**
2422 * ice_get_link_speed_based_on_phy_type - returns link speed
2423 * @phy_type_low: lower part of phy_type
2424 * @phy_type_high: higher part of phy_type
2425 *
2426 * This helper function will convert an entry in PHY type structure
2427 * [phy_type_low, phy_type_high] to its corresponding link speed.
2428 * Note: In the structure of [phy_type_low, phy_type_high], there should
2429 * be one bit set, as this function will convert one PHY type to its
2430 * speed.
2431 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2432 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2433 */
2434static u16
2435ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2436{
2437 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2438 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2439
2440 switch (phy_type_low) {
2441 case ICE_PHY_TYPE_LOW_100BASE_TX:
2442 case ICE_PHY_TYPE_LOW_100M_SGMII:
2443 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2444 break;
2445 case ICE_PHY_TYPE_LOW_1000BASE_T:
2446 case ICE_PHY_TYPE_LOW_1000BASE_SX:
2447 case ICE_PHY_TYPE_LOW_1000BASE_LX:
2448 case ICE_PHY_TYPE_LOW_1000BASE_KX:
2449 case ICE_PHY_TYPE_LOW_1G_SGMII:
2450 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2451 break;
2452 case ICE_PHY_TYPE_LOW_2500BASE_T:
2453 case ICE_PHY_TYPE_LOW_2500BASE_X:
2454 case ICE_PHY_TYPE_LOW_2500BASE_KX:
2455 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2456 break;
2457 case ICE_PHY_TYPE_LOW_5GBASE_T:
2458 case ICE_PHY_TYPE_LOW_5GBASE_KR:
2459 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2460 break;
2461 case ICE_PHY_TYPE_LOW_10GBASE_T:
2462 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2463 case ICE_PHY_TYPE_LOW_10GBASE_SR:
2464 case ICE_PHY_TYPE_LOW_10GBASE_LR:
2465 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2466 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2467 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2468 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2469 break;
2470 case ICE_PHY_TYPE_LOW_25GBASE_T:
2471 case ICE_PHY_TYPE_LOW_25GBASE_CR:
2472 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2473 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2474 case ICE_PHY_TYPE_LOW_25GBASE_SR:
2475 case ICE_PHY_TYPE_LOW_25GBASE_LR:
2476 case ICE_PHY_TYPE_LOW_25GBASE_KR:
2477 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2478 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2479 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2480 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2481 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2482 break;
2483 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2484 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2485 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2486 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2487 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2488 case ICE_PHY_TYPE_LOW_40G_XLAUI:
2489 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2490 break;
2491 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2492 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2493 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2494 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2495 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2496 case ICE_PHY_TYPE_LOW_50G_LAUI2:
2497 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2498 case ICE_PHY_TYPE_LOW_50G_AUI2:
2499 case ICE_PHY_TYPE_LOW_50GBASE_CP:
2500 case ICE_PHY_TYPE_LOW_50GBASE_SR:
2501 case ICE_PHY_TYPE_LOW_50GBASE_FR:
2502 case ICE_PHY_TYPE_LOW_50GBASE_LR:
2503 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2504 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2505 case ICE_PHY_TYPE_LOW_50G_AUI1:
2506 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2507 break;
2508 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2509 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2510 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2511 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2512 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2513 case ICE_PHY_TYPE_LOW_100G_CAUI4:
2514 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2515 case ICE_PHY_TYPE_LOW_100G_AUI4:
2516 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2517 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2518 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2519 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2520 case ICE_PHY_TYPE_LOW_100GBASE_DR:
2521 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2522 break;
2523 default:
2524 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2525 break;
2526 }
2527
2528 switch (phy_type_high) {
2529 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2530 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2531 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2532 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2533 case ICE_PHY_TYPE_HIGH_100G_AUI2:
2534 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2535 break;
2536 default:
2537 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2538 break;
2539 }
2540
2541 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2542 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2543 return ICE_AQ_LINK_SPEED_UNKNOWN;
2544 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2545 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2546 return ICE_AQ_LINK_SPEED_UNKNOWN;
2547 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2548 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2549 return speed_phy_type_low;
2550 else
2551 return speed_phy_type_high;
2552}
2553
2554/**
2555 * ice_update_phy_type
2556 * @phy_type_low: pointer to the lower part of phy_type
2557 * @phy_type_high: pointer to the higher part of phy_type
2558 * @link_speeds_bitmap: targeted link speeds bitmap
2559 *
2560 * Note: For the link_speeds_bitmap structure, you can check it at
2561 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2562 * link_speeds_bitmap include multiple speeds.
2563 *
2564 * Each entry in this [phy_type_low, phy_type_high] structure will
2565 * present a certain link speed. This helper function will turn on bits
2566 * in [phy_type_low, phy_type_high] structure based on the value of
2567 * link_speeds_bitmap input parameter.
2568 */
2569void
2570ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2571 u16 link_speeds_bitmap)
2572{
2573 u64 pt_high;
2574 u64 pt_low;
2575 int index;
2576 u16 speed;
2577
2578 /* We first check with low part of phy_type */
2579 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2580 pt_low = BIT_ULL(index);
2581 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2582
2583 if (link_speeds_bitmap & speed)
2584 *phy_type_low |= BIT_ULL(index);
2585 }
2586
2587 /* We then check with high part of phy_type */
2588 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2589 pt_high = BIT_ULL(index);
2590 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2591
2592 if (link_speeds_bitmap & speed)
2593 *phy_type_high |= BIT_ULL(index);
2594 }
2595}
2596
2597/**
2598 * ice_aq_set_phy_cfg
2599 * @hw: pointer to the HW struct
2600 * @pi: port info structure of the interested logical port
2601 * @cfg: structure with PHY configuration data to be set
2602 * @cd: pointer to command details structure or NULL
2603 *
2604 * Set the various PHY configuration parameters supported on the Port.
2605 * One or more of the Set PHY config parameters may be ignored in an MFP
2606 * mode as the PF may not have the privilege to set some of the PHY Config
2607 * parameters. This status will be indicated by the command response (0x0601).
2608 */
2609enum ice_status
2610ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2611 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2612{
2613 struct ice_aq_desc desc;
2614 enum ice_status status;
2615
2616 if (!cfg)
2617 return ICE_ERR_PARAM;
2618
2619 /* Ensure that only valid bits of cfg->caps can be turned on. */
2620 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2621 ice_debug(hw, ICE_DBG_PHY,
2622 "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2623 cfg->caps);
2624
2625 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2626 }
2627
2628 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2629 desc.params.set_phy.lport_num = pi->lport;
2630 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2631
2632 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2633 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
2634 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2635 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
2636 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2637 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
2638 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
2639 cfg->low_power_ctrl_an);
2640 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
2641 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
2642 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
2643 cfg->link_fec_opt);
2644
2645 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2646 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2647 status = 0;
2648
2649 if (!status)
2650 pi->phy.curr_user_phy_cfg = *cfg;
2651
2652 return status;
2653}
2654
2655/**
2656 * ice_update_link_info - update status of the HW network link
2657 * @pi: port info structure of the interested logical port
2658 */
2659enum ice_status ice_update_link_info(struct ice_port_info *pi)
2660{
2661 struct ice_link_status *li;
2662 enum ice_status status;
2663
2664 if (!pi)
2665 return ICE_ERR_PARAM;
2666
2667 li = &pi->phy.link_info;
2668
2669 status = ice_aq_get_link_info(pi, true, NULL, NULL);
2670 if (status)
2671 return status;
2672
2673 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2674 struct ice_aqc_get_phy_caps_data *pcaps;
2675 struct ice_hw *hw;
2676
2677 hw = pi->hw;
2678 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2679 GFP_KERNEL);
2680 if (!pcaps)
2681 return ICE_ERR_NO_MEMORY;
2682
2683 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2684 pcaps, NULL);
2685
2686 devm_kfree(ice_hw_to_dev(hw), pcaps);
2687 }
2688
2689 return status;
2690}
2691
2692/**
2693 * ice_cache_phy_user_req
2694 * @pi: port information structure
2695 * @cache_data: PHY logging data
2696 * @cache_mode: PHY logging mode
2697 *
2698 * Log the user request on (FC, FEC, SPEED) for later use.
2699 */
2700static void
2701ice_cache_phy_user_req(struct ice_port_info *pi,
2702 struct ice_phy_cache_mode_data cache_data,
2703 enum ice_phy_cache_mode cache_mode)
2704{
2705 if (!pi)
2706 return;
2707
2708 switch (cache_mode) {
2709 case ICE_FC_MODE:
2710 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2711 break;
2712 case ICE_SPEED_MODE:
2713 pi->phy.curr_user_speed_req =
2714 cache_data.data.curr_user_speed_req;
2715 break;
2716 case ICE_FEC_MODE:
2717 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2718 break;
2719 default:
2720 break;
2721 }
2722}
2723
2724/**
2725 * ice_caps_to_fc_mode
2726 * @caps: PHY capabilities
2727 *
2728 * Convert PHY FC capabilities to ice FC mode
2729 */
2730enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2731{
2732 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2733 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2734 return ICE_FC_FULL;
2735
2736 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2737 return ICE_FC_TX_PAUSE;
2738
2739 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2740 return ICE_FC_RX_PAUSE;
2741
2742 return ICE_FC_NONE;
2743}
2744
2745/**
2746 * ice_caps_to_fec_mode
2747 * @caps: PHY capabilities
2748 * @fec_options: Link FEC options
2749 *
2750 * Convert PHY FEC capabilities to ice FEC mode
2751 */
2752enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2753{
2754 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
2755 return ICE_FEC_AUTO;
2756
2757 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2758 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2759 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
2760 ICE_AQC_PHY_FEC_25G_KR_REQ))
2761 return ICE_FEC_BASER;
2762
2763 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2764 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
2765 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
2766 return ICE_FEC_RS;
2767
2768 return ICE_FEC_NONE;
2769}
2770
2771/**
2772 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
2773 * @pi: port information structure
2774 * @cfg: PHY configuration data to set FC mode
2775 * @req_mode: FC mode to configure
2776 */
2777enum ice_status
2778ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2779 enum ice_fc_mode req_mode)
2780{
2781 struct ice_phy_cache_mode_data cache_data;
2782 u8 pause_mask = 0x0;
2783
2784 if (!pi || !cfg)
2785 return ICE_ERR_BAD_PTR;
2786
2787 switch (req_mode) {
2788 case ICE_FC_FULL:
2789 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2790 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2791 break;
2792 case ICE_FC_RX_PAUSE:
2793 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2794 break;
2795 case ICE_FC_TX_PAUSE:
2796 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2797 break;
2798 default:
2799 break;
2800 }
2801
2802 /* clear the old pause settings */
2803 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2804 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2805
2806 /* set the new capabilities */
2807 cfg->caps |= pause_mask;
2808
2809 /* Cache user FC request */
2810 cache_data.data.curr_user_fc_req = req_mode;
2811 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
2812
2813 return 0;
2814}
2815
2816/**
2817 * ice_set_fc
2818 * @pi: port information structure
2819 * @aq_failures: pointer to status code, specific to ice_set_fc routine
2820 * @ena_auto_link_update: enable automatic link update
2821 *
2822 * Set the requested flow control mode.
2823 */
2824enum ice_status
2825ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2826{
2827 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2828 struct ice_aqc_get_phy_caps_data *pcaps;
2829 enum ice_status status;
2830 struct ice_hw *hw;
2831
2832 if (!pi || !aq_failures)
2833 return ICE_ERR_BAD_PTR;
2834
2835 *aq_failures = 0;
2836 hw = pi->hw;
2837
2838 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2839 if (!pcaps)
2840 return ICE_ERR_NO_MEMORY;
2841
2842 /* Get the current PHY config */
2843 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2844 NULL);
2845 if (status) {
2846 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2847 goto out;
2848 }
2849
2850 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
2851
2852 /* Configure the set PHY data */
2853 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
2854 if (status)
2855 goto out;
2856
2857 /* If the capabilities have changed, then set the new config */
2858 if (cfg.caps != pcaps->caps) {
2859 int retry_count, retry_max = 10;
2860
2861 /* Auto restart link so settings take effect */
2862 if (ena_auto_link_update)
2863 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2864
2865 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
2866 if (status) {
2867 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2868 goto out;
2869 }
2870
2871 /* Update the link info
2872 * It sometimes takes a really long time for link to
2873 * come back from the atomic reset. Thus, we wait a
2874 * little bit.
2875 */
2876 for (retry_count = 0; retry_count < retry_max; retry_count++) {
2877 status = ice_update_link_info(pi);
2878
2879 if (!status)
2880 break;
2881
2882 mdelay(100);
2883 }
2884
2885 if (status)
2886 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2887 }
2888
2889out:
2890 devm_kfree(ice_hw_to_dev(hw), pcaps);
2891 return status;
2892}
2893
2894/**
2895 * ice_phy_caps_equals_cfg
2896 * @phy_caps: PHY capabilities
2897 * @phy_cfg: PHY configuration
2898 *
2899 * Helper function to determine if PHY capabilities matches PHY
2900 * configuration
2901 */
2902bool
2903ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
2904 struct ice_aqc_set_phy_cfg_data *phy_cfg)
2905{
2906 u8 caps_mask, cfg_mask;
2907
2908 if (!phy_caps || !phy_cfg)
2909 return false;
2910
2911 /* These bits are not common between capabilities and configuration.
2912 * Do not use them to determine equality.
2913 */
2914 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
2915 ICE_AQC_GET_PHY_EN_MOD_QUAL);
2916 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2917
2918 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
2919 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
2920 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
2921 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
2922 phy_caps->eee_cap != phy_cfg->eee_cap ||
2923 phy_caps->eeer_value != phy_cfg->eeer_value ||
2924 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
2925 return false;
2926
2927 return true;
2928}
2929
2930/**
2931 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2932 * @pi: port information structure
2933 * @caps: PHY ability structure to copy date from
2934 * @cfg: PHY configuration structure to copy data to
2935 *
2936 * Helper function to copy AQC PHY get ability data to PHY set configuration
2937 * data structure
2938 */
2939void
2940ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
2941 struct ice_aqc_get_phy_caps_data *caps,
2942 struct ice_aqc_set_phy_cfg_data *cfg)
2943{
2944 if (!pi || !caps || !cfg)
2945 return;
2946
2947 memset(cfg, 0, sizeof(*cfg));
2948 cfg->phy_type_low = caps->phy_type_low;
2949 cfg->phy_type_high = caps->phy_type_high;
2950 cfg->caps = caps->caps;
2951 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
2952 cfg->eee_cap = caps->eee_cap;
2953 cfg->eeer_value = caps->eeer_value;
2954 cfg->link_fec_opt = caps->link_fec_options;
2955 cfg->module_compliance_enforcement =
2956 caps->module_compliance_enforcement;
2957
2958 if (ice_fw_supports_link_override(pi->hw)) {
2959 struct ice_link_default_override_tlv tlv;
2960
2961 if (ice_get_link_default_override(&tlv, pi))
2962 return;
2963
2964 if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)
2965 cfg->module_compliance_enforcement |=
2966 ICE_LINK_OVERRIDE_STRICT_MODE;
2967 }
2968}
2969
2970/**
2971 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2972 * @pi: port information structure
2973 * @cfg: PHY configuration data to set FEC mode
2974 * @fec: FEC mode to configure
2975 */
2976enum ice_status
2977ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2978 enum ice_fec_mode fec)
2979{
2980 struct ice_aqc_get_phy_caps_data *pcaps;
2981 enum ice_status status;
2982
2983 if (!pi || !cfg)
2984 return ICE_ERR_BAD_PTR;
2985
2986 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2987 if (!pcaps)
2988 return ICE_ERR_NO_MEMORY;
2989
2990 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
2991 NULL);
2992 if (status)
2993 goto out;
2994
2995 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2996 cfg->link_fec_opt = pcaps->link_fec_options;
2997
2998 switch (fec) {
2999 case ICE_FEC_BASER:
3000 /* Clear RS bits, and AND BASE-R ability
3001 * bits and OR request bits.
3002 */
3003 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3004 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3005 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3006 ICE_AQC_PHY_FEC_25G_KR_REQ;
3007 break;
3008 case ICE_FEC_RS:
3009 /* Clear BASE-R bits, and AND RS ability
3010 * bits and OR request bits.
3011 */
3012 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3013 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3014 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3015 break;
3016 case ICE_FEC_NONE:
3017 /* Clear all FEC option bits. */
3018 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3019 break;
3020 case ICE_FEC_AUTO:
3021 /* AND auto FEC bit, and all caps bits. */
3022 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3023 cfg->link_fec_opt |= pcaps->link_fec_options;
3024 break;
3025 default:
3026 status = ICE_ERR_PARAM;
3027 break;
3028 }
3029
3030 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) {
3031 struct ice_link_default_override_tlv tlv;
3032
3033 if (ice_get_link_default_override(&tlv, pi))
3034 goto out;
3035
3036 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3037 (tlv.options & ICE_LINK_OVERRIDE_EN))
3038 cfg->link_fec_opt = tlv.fec_options;
3039 }
3040
3041out:
3042 kfree(pcaps);
3043
3044 return status;
3045}
3046
3047/**
3048 * ice_get_link_status - get status of the HW network link
3049 * @pi: port information structure
3050 * @link_up: pointer to bool (true/false = linkup/linkdown)
3051 *
3052 * Variable link_up is true if link is up, false if link is down.
3053 * The variable link_up is invalid if status is non zero. As a
3054 * result of this call, link status reporting becomes enabled
3055 */
3056enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3057{
3058 struct ice_phy_info *phy_info;
3059 enum ice_status status = 0;
3060
3061 if (!pi || !link_up)
3062 return ICE_ERR_PARAM;
3063
3064 phy_info = &pi->phy;
3065
3066 if (phy_info->get_link_info) {
3067 status = ice_update_link_info(pi);
3068
3069 if (status)
3070 ice_debug(pi->hw, ICE_DBG_LINK,
3071 "get link status error, status = %d\n",
3072 status);
3073 }
3074
3075 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3076
3077 return status;
3078}
3079
3080/**
3081 * ice_aq_set_link_restart_an
3082 * @pi: pointer to the port information structure
3083 * @ena_link: if true: enable link, if false: disable link
3084 * @cd: pointer to command details structure or NULL
3085 *
3086 * Sets up the link and restarts the Auto-Negotiation over the link.
3087 */
3088enum ice_status
3089ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3090 struct ice_sq_cd *cd)
3091{
3092 struct ice_aqc_restart_an *cmd;
3093 struct ice_aq_desc desc;
3094
3095 cmd = &desc.params.restart_an;
3096
3097 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3098
3099 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3100 cmd->lport_num = pi->lport;
3101 if (ena_link)
3102 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3103 else
3104 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3105
3106 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3107}
3108
3109/**
3110 * ice_aq_set_event_mask
3111 * @hw: pointer to the HW struct
3112 * @port_num: port number of the physical function
3113 * @mask: event mask to be set
3114 * @cd: pointer to command details structure or NULL
3115 *
3116 * Set event mask (0x0613)
3117 */
3118enum ice_status
3119ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3120 struct ice_sq_cd *cd)
3121{
3122 struct ice_aqc_set_event_mask *cmd;
3123 struct ice_aq_desc desc;
3124
3125 cmd = &desc.params.set_event_mask;
3126
3127 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3128
3129 cmd->lport_num = port_num;
3130
3131 cmd->event_mask = cpu_to_le16(mask);
3132 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3133}
3134
3135/**
3136 * ice_aq_set_mac_loopback
3137 * @hw: pointer to the HW struct
3138 * @ena_lpbk: Enable or Disable loopback
3139 * @cd: pointer to command details structure or NULL
3140 *
3141 * Enable/disable loopback on a given port
3142 */
3143enum ice_status
3144ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3145{
3146 struct ice_aqc_set_mac_lb *cmd;
3147 struct ice_aq_desc desc;
3148
3149 cmd = &desc.params.set_mac_lb;
3150
3151 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3152 if (ena_lpbk)
3153 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3154
3155 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3156}
3157
3158/**
3159 * ice_aq_set_port_id_led
3160 * @pi: pointer to the port information
3161 * @is_orig_mode: is this LED set to original mode (by the net-list)
3162 * @cd: pointer to command details structure or NULL
3163 *
3164 * Set LED value for the given port (0x06e9)
3165 */
3166enum ice_status
3167ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3168 struct ice_sq_cd *cd)
3169{
3170 struct ice_aqc_set_port_id_led *cmd;
3171 struct ice_hw *hw = pi->hw;
3172 struct ice_aq_desc desc;
3173
3174 cmd = &desc.params.set_port_id_led;
3175
3176 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3177
3178 if (is_orig_mode)
3179 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3180 else
3181 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3182
3183 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3184}
3185
3186/**
3187 * ice_aq_sff_eeprom
3188 * @hw: pointer to the HW struct
3189 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3190 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3191 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3192 * @page: QSFP page
3193 * @set_page: set or ignore the page
3194 * @data: pointer to data buffer to be read/written to the I2C device.
3195 * @length: 1-16 for read, 1 for write.
3196 * @write: 0 read, 1 for write.
3197 * @cd: pointer to command details structure or NULL
3198 *
3199 * Read/Write SFF EEPROM (0x06EE)
3200 */
3201enum ice_status
3202ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3203 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3204 bool write, struct ice_sq_cd *cd)
3205{
3206 struct ice_aqc_sff_eeprom *cmd;
3207 struct ice_aq_desc desc;
3208 enum ice_status status;
3209
3210 if (!data || (mem_addr & 0xff00))
3211 return ICE_ERR_PARAM;
3212
3213 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3214 cmd = &desc.params.read_write_sff_param;
3215 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
3216 cmd->lport_num = (u8)(lport & 0xff);
3217 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3218 cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3219 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3220 ((set_page <<
3221 ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3222 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3223 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3224 cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3225 if (write)
3226 cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3227
3228 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3229 return status;
3230}
3231
3232/**
3233 * __ice_aq_get_set_rss_lut
3234 * @hw: pointer to the hardware structure
3235 * @vsi_id: VSI FW index
3236 * @lut_type: LUT table type
3237 * @lut: pointer to the LUT buffer provided by the caller
3238 * @lut_size: size of the LUT buffer
3239 * @glob_lut_idx: global LUT index
3240 * @set: set true to set the table, false to get the table
3241 *
3242 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3243 */
3244static enum ice_status
3245__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
3246 u16 lut_size, u8 glob_lut_idx, bool set)
3247{
3248 struct ice_aqc_get_set_rss_lut *cmd_resp;
3249 struct ice_aq_desc desc;
3250 enum ice_status status;
3251 u16 flags = 0;
3252
3253 cmd_resp = &desc.params.get_set_rss_lut;
3254
3255 if (set) {
3256 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3257 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3258 } else {
3259 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3260 }
3261
3262 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3263 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3264 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3265 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3266
3267 switch (lut_type) {
3268 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3269 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3270 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3271 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3272 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3273 break;
3274 default:
3275 status = ICE_ERR_PARAM;
3276 goto ice_aq_get_set_rss_lut_exit;
3277 }
3278
3279 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3280 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3281 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3282
3283 if (!set)
3284 goto ice_aq_get_set_rss_lut_send;
3285 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3286 if (!set)
3287 goto ice_aq_get_set_rss_lut_send;
3288 } else {
3289 goto ice_aq_get_set_rss_lut_send;
3290 }
3291
3292 /* LUT size is only valid for Global and PF table types */
3293 switch (lut_size) {
3294 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3295 break;
3296 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3297 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3298 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3299 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3300 break;
3301 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3302 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3303 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3304 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3305 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3306 break;
3307 }
3308 fallthrough;
3309 default:
3310 status = ICE_ERR_PARAM;
3311 goto ice_aq_get_set_rss_lut_exit;
3312 }
3313
3314ice_aq_get_set_rss_lut_send:
3315 cmd_resp->flags = cpu_to_le16(flags);
3316 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3317
3318ice_aq_get_set_rss_lut_exit:
3319 return status;
3320}
3321
3322/**
3323 * ice_aq_get_rss_lut
3324 * @hw: pointer to the hardware structure
3325 * @vsi_handle: software VSI handle
3326 * @lut_type: LUT table type
3327 * @lut: pointer to the LUT buffer provided by the caller
3328 * @lut_size: size of the LUT buffer
3329 *
3330 * get the RSS lookup table, PF or VSI type
3331 */
3332enum ice_status
3333ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3334 u8 *lut, u16 lut_size)
3335{
3336 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3337 return ICE_ERR_PARAM;
3338
3339 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3340 lut_type, lut, lut_size, 0, false);
3341}
3342
3343/**
3344 * ice_aq_set_rss_lut
3345 * @hw: pointer to the hardware structure
3346 * @vsi_handle: software VSI handle
3347 * @lut_type: LUT table type
3348 * @lut: pointer to the LUT buffer provided by the caller
3349 * @lut_size: size of the LUT buffer
3350 *
3351 * set the RSS lookup table, PF or VSI type
3352 */
3353enum ice_status
3354ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3355 u8 *lut, u16 lut_size)
3356{
3357 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3358 return ICE_ERR_PARAM;
3359
3360 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3361 lut_type, lut, lut_size, 0, true);
3362}
3363
3364/**
3365 * __ice_aq_get_set_rss_key
3366 * @hw: pointer to the HW struct
3367 * @vsi_id: VSI FW index
3368 * @key: pointer to key info struct
3369 * @set: set true to set the key, false to get the key
3370 *
3371 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3372 */
3373static enum
3374ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3375 struct ice_aqc_get_set_rss_keys *key,
3376 bool set)
3377{
3378 struct ice_aqc_get_set_rss_key *cmd_resp;
3379 u16 key_size = sizeof(*key);
3380 struct ice_aq_desc desc;
3381
3382 cmd_resp = &desc.params.get_set_rss_key;
3383
3384 if (set) {
3385 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3386 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3387 } else {
3388 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3389 }
3390
3391 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3392 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3393 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3394 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3395
3396 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3397}
3398
3399/**
3400 * ice_aq_get_rss_key
3401 * @hw: pointer to the HW struct
3402 * @vsi_handle: software VSI handle
3403 * @key: pointer to key info struct
3404 *
3405 * get the RSS key per VSI
3406 */
3407enum ice_status
3408ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3409 struct ice_aqc_get_set_rss_keys *key)
3410{
3411 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3412 return ICE_ERR_PARAM;
3413
3414 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3415 key, false);
3416}
3417
3418/**
3419 * ice_aq_set_rss_key
3420 * @hw: pointer to the HW struct
3421 * @vsi_handle: software VSI handle
3422 * @keys: pointer to key info struct
3423 *
3424 * set the RSS key per VSI
3425 */
3426enum ice_status
3427ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3428 struct ice_aqc_get_set_rss_keys *keys)
3429{
3430 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3431 return ICE_ERR_PARAM;
3432
3433 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3434 keys, true);
3435}
3436
3437/**
3438 * ice_aq_add_lan_txq
3439 * @hw: pointer to the hardware structure
3440 * @num_qgrps: Number of added queue groups
3441 * @qg_list: list of queue groups to be added
3442 * @buf_size: size of buffer for indirect command
3443 * @cd: pointer to command details structure or NULL
3444 *
3445 * Add Tx LAN queue (0x0C30)
3446 *
3447 * NOTE:
3448 * Prior to calling add Tx LAN queue:
3449 * Initialize the following as part of the Tx queue context:
3450 * Completion queue ID if the queue uses Completion queue, Quanta profile,
3451 * Cache profile and Packet shaper profile.
3452 *
3453 * After add Tx LAN queue AQ command is completed:
3454 * Interrupts should be associated with specific queues,
3455 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3456 * flow.
3457 */
3458static enum ice_status
3459ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3460 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3461 struct ice_sq_cd *cd)
3462{
3463 struct ice_aqc_add_tx_qgrp *list;
3464 struct ice_aqc_add_txqs *cmd;
3465 struct ice_aq_desc desc;
3466 u16 i, sum_size = 0;
3467
3468 cmd = &desc.params.add_txqs;
3469
3470 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3471
3472 if (!qg_list)
3473 return ICE_ERR_PARAM;
3474
3475 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3476 return ICE_ERR_PARAM;
3477
3478 for (i = 0, list = qg_list; i < num_qgrps; i++) {
3479 sum_size += struct_size(list, txqs, list->num_txqs);
3480 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3481 list->num_txqs);
3482 }
3483
3484 if (buf_size != sum_size)
3485 return ICE_ERR_PARAM;
3486
3487 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3488
3489 cmd->num_qgrps = num_qgrps;
3490
3491 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3492}
3493
3494/**
3495 * ice_aq_dis_lan_txq
3496 * @hw: pointer to the hardware structure
3497 * @num_qgrps: number of groups in the list
3498 * @qg_list: the list of groups to disable
3499 * @buf_size: the total size of the qg_list buffer in bytes
3500 * @rst_src: if called due to reset, specifies the reset source
3501 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3502 * @cd: pointer to command details structure or NULL
3503 *
3504 * Disable LAN Tx queue (0x0C31)
3505 */
3506static enum ice_status
3507ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3508 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3509 enum ice_disq_rst_src rst_src, u16 vmvf_num,
3510 struct ice_sq_cd *cd)
3511{
3512 struct ice_aqc_dis_txq_item *item;
3513 struct ice_aqc_dis_txqs *cmd;
3514 struct ice_aq_desc desc;
3515 enum ice_status status;
3516 u16 i, sz = 0;
3517
3518 cmd = &desc.params.dis_txqs;
3519 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3520
3521 /* qg_list can be NULL only in VM/VF reset flow */
3522 if (!qg_list && !rst_src)
3523 return ICE_ERR_PARAM;
3524
3525 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3526 return ICE_ERR_PARAM;
3527
3528 cmd->num_entries = num_qgrps;
3529
3530 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3531 ICE_AQC_Q_DIS_TIMEOUT_M);
3532
3533 switch (rst_src) {
3534 case ICE_VM_RESET:
3535 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3536 cmd->vmvf_and_timeout |=
3537 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3538 break;
3539 case ICE_VF_RESET:
3540 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3541 /* In this case, FW expects vmvf_num to be absolute VF ID */
3542 cmd->vmvf_and_timeout |=
3543 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3544 ICE_AQC_Q_DIS_VMVF_NUM_M);
3545 break;
3546 case ICE_NO_RESET:
3547 default:
3548 break;
3549 }
3550
3551 /* flush pipe on time out */
3552 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3553 /* If no queue group info, we are in a reset flow. Issue the AQ */
3554 if (!qg_list)
3555 goto do_aq;
3556
3557 /* set RD bit to indicate that command buffer is provided by the driver
3558 * and it needs to be read by the firmware
3559 */
3560 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3561
3562 for (i = 0, item = qg_list; i < num_qgrps; i++) {
3563 u16 item_size = struct_size(item, q_id, item->num_qs);
3564
3565 /* If the num of queues is even, add 2 bytes of padding */
3566 if ((item->num_qs % 2) == 0)
3567 item_size += 2;
3568
3569 sz += item_size;
3570
3571 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3572 }
3573
3574 if (buf_size != sz)
3575 return ICE_ERR_PARAM;
3576
3577do_aq:
3578 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3579 if (status) {
3580 if (!qg_list)
3581 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3582 vmvf_num, hw->adminq.sq_last_status);
3583 else
3584 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3585 le16_to_cpu(qg_list[0].q_id[0]),
3586 hw->adminq.sq_last_status);
3587 }
3588 return status;
3589}
3590
3591/* End of FW Admin Queue command wrappers */
3592
3593/**
3594 * ice_write_byte - write a byte to a packed context structure
3595 * @src_ctx: the context structure to read from
3596 * @dest_ctx: the context to be written to
3597 * @ce_info: a description of the struct to be filled
3598 */
3599static void
3600ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3601{
3602 u8 src_byte, dest_byte, mask;
3603 u8 *from, *dest;
3604 u16 shift_width;
3605
3606 /* copy from the next struct field */
3607 from = src_ctx + ce_info->offset;
3608
3609 /* prepare the bits and mask */
3610 shift_width = ce_info->lsb % 8;
3611 mask = (u8)(BIT(ce_info->width) - 1);
3612
3613 src_byte = *from;
3614 src_byte &= mask;
3615
3616 /* shift to correct alignment */
3617 mask <<= shift_width;
3618 src_byte <<= shift_width;
3619
3620 /* get the current bits from the target bit string */
3621 dest = dest_ctx + (ce_info->lsb / 8);
3622
3623 memcpy(&dest_byte, dest, sizeof(dest_byte));
3624
3625 dest_byte &= ~mask; /* get the bits not changing */
3626 dest_byte |= src_byte; /* add in the new bits */
3627
3628 /* put it all back */
3629 memcpy(dest, &dest_byte, sizeof(dest_byte));
3630}
3631
3632/**
3633 * ice_write_word - write a word to a packed context structure
3634 * @src_ctx: the context structure to read from
3635 * @dest_ctx: the context to be written to
3636 * @ce_info: a description of the struct to be filled
3637 */
3638static void
3639ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3640{
3641 u16 src_word, mask;
3642 __le16 dest_word;
3643 u8 *from, *dest;
3644 u16 shift_width;
3645
3646 /* copy from the next struct field */
3647 from = src_ctx + ce_info->offset;
3648
3649 /* prepare the bits and mask */
3650 shift_width = ce_info->lsb % 8;
3651 mask = BIT(ce_info->width) - 1;
3652
3653 /* don't swizzle the bits until after the mask because the mask bits
3654 * will be in a different bit position on big endian machines
3655 */
3656 src_word = *(u16 *)from;
3657 src_word &= mask;
3658
3659 /* shift to correct alignment */
3660 mask <<= shift_width;
3661 src_word <<= shift_width;
3662
3663 /* get the current bits from the target bit string */
3664 dest = dest_ctx + (ce_info->lsb / 8);
3665
3666 memcpy(&dest_word, dest, sizeof(dest_word));
3667
3668 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
3669 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
3670
3671 /* put it all back */
3672 memcpy(dest, &dest_word, sizeof(dest_word));
3673}
3674
3675/**
3676 * ice_write_dword - write a dword to a packed context structure
3677 * @src_ctx: the context structure to read from
3678 * @dest_ctx: the context to be written to
3679 * @ce_info: a description of the struct to be filled
3680 */
3681static void
3682ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3683{
3684 u32 src_dword, mask;
3685 __le32 dest_dword;
3686 u8 *from, *dest;
3687 u16 shift_width;
3688
3689 /* copy from the next struct field */
3690 from = src_ctx + ce_info->offset;
3691
3692 /* prepare the bits and mask */
3693 shift_width = ce_info->lsb % 8;
3694
3695 /* if the field width is exactly 32 on an x86 machine, then the shift
3696 * operation will not work because the SHL instructions count is masked
3697 * to 5 bits so the shift will do nothing
3698 */
3699 if (ce_info->width < 32)
3700 mask = BIT(ce_info->width) - 1;
3701 else
3702 mask = (u32)~0;
3703
3704 /* don't swizzle the bits until after the mask because the mask bits
3705 * will be in a different bit position on big endian machines
3706 */
3707 src_dword = *(u32 *)from;
3708 src_dword &= mask;
3709
3710 /* shift to correct alignment */
3711 mask <<= shift_width;
3712 src_dword <<= shift_width;
3713
3714 /* get the current bits from the target bit string */
3715 dest = dest_ctx + (ce_info->lsb / 8);
3716
3717 memcpy(&dest_dword, dest, sizeof(dest_dword));
3718
3719 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
3720 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
3721
3722 /* put it all back */
3723 memcpy(dest, &dest_dword, sizeof(dest_dword));
3724}
3725
3726/**
3727 * ice_write_qword - write a qword to a packed context structure
3728 * @src_ctx: the context structure to read from
3729 * @dest_ctx: the context to be written to
3730 * @ce_info: a description of the struct to be filled
3731 */
3732static void
3733ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3734{
3735 u64 src_qword, mask;
3736 __le64 dest_qword;
3737 u8 *from, *dest;
3738 u16 shift_width;
3739
3740 /* copy from the next struct field */
3741 from = src_ctx + ce_info->offset;
3742
3743 /* prepare the bits and mask */
3744 shift_width = ce_info->lsb % 8;
3745
3746 /* if the field width is exactly 64 on an x86 machine, then the shift
3747 * operation will not work because the SHL instructions count is masked
3748 * to 6 bits so the shift will do nothing
3749 */
3750 if (ce_info->width < 64)
3751 mask = BIT_ULL(ce_info->width) - 1;
3752 else
3753 mask = (u64)~0;
3754
3755 /* don't swizzle the bits until after the mask because the mask bits
3756 * will be in a different bit position on big endian machines
3757 */
3758 src_qword = *(u64 *)from;
3759 src_qword &= mask;
3760
3761 /* shift to correct alignment */
3762 mask <<= shift_width;
3763 src_qword <<= shift_width;
3764
3765 /* get the current bits from the target bit string */
3766 dest = dest_ctx + (ce_info->lsb / 8);
3767
3768 memcpy(&dest_qword, dest, sizeof(dest_qword));
3769
3770 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
3771 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
3772
3773 /* put it all back */
3774 memcpy(dest, &dest_qword, sizeof(dest_qword));
3775}
3776
3777/**
3778 * ice_set_ctx - set context bits in packed structure
3779 * @hw: pointer to the hardware structure
3780 * @src_ctx: pointer to a generic non-packed context structure
3781 * @dest_ctx: pointer to memory for the packed structure
3782 * @ce_info: a description of the structure to be transformed
3783 */
3784enum ice_status
3785ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
3786 const struct ice_ctx_ele *ce_info)
3787{
3788 int f;
3789
3790 for (f = 0; ce_info[f].width; f++) {
3791 /* We have to deal with each element of the FW response
3792 * using the correct size so that we are correct regardless
3793 * of the endianness of the machine.
3794 */
3795 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
3796 ice_debug(hw, ICE_DBG_QCTX,
3797 "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
3798 f, ce_info[f].width, ce_info[f].size_of);
3799 continue;
3800 }
3801 switch (ce_info[f].size_of) {
3802 case sizeof(u8):
3803 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3804 break;
3805 case sizeof(u16):
3806 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3807 break;
3808 case sizeof(u32):
3809 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3810 break;
3811 case sizeof(u64):
3812 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3813 break;
3814 default:
3815 return ICE_ERR_INVAL_SIZE;
3816 }
3817 }
3818
3819 return 0;
3820}
3821
3822/**
3823 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3824 * @hw: pointer to the HW struct
3825 * @vsi_handle: software VSI handle
3826 * @tc: TC number
3827 * @q_handle: software queue handle
3828 */
3829struct ice_q_ctx *
3830ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3831{
3832 struct ice_vsi_ctx *vsi;
3833 struct ice_q_ctx *q_ctx;
3834
3835 vsi = ice_get_vsi_ctx(hw, vsi_handle);
3836 if (!vsi)
3837 return NULL;
3838 if (q_handle >= vsi->num_lan_q_entries[tc])
3839 return NULL;
3840 if (!vsi->lan_q_ctx[tc])
3841 return NULL;
3842 q_ctx = vsi->lan_q_ctx[tc];
3843 return &q_ctx[q_handle];
3844}
3845
3846/**
3847 * ice_ena_vsi_txq
3848 * @pi: port information structure
3849 * @vsi_handle: software VSI handle
3850 * @tc: TC number
3851 * @q_handle: software queue handle
3852 * @num_qgrps: Number of added queue groups
3853 * @buf: list of queue groups to be added
3854 * @buf_size: size of buffer for indirect command
3855 * @cd: pointer to command details structure or NULL
3856 *
3857 * This function adds one LAN queue
3858 */
3859enum ice_status
3860ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3861 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3862 struct ice_sq_cd *cd)
3863{
3864 struct ice_aqc_txsched_elem_data node = { 0 };
3865 struct ice_sched_node *parent;
3866 struct ice_q_ctx *q_ctx;
3867 enum ice_status status;
3868 struct ice_hw *hw;
3869
3870 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3871 return ICE_ERR_CFG;
3872
3873 if (num_qgrps > 1 || buf->num_txqs > 1)
3874 return ICE_ERR_MAX_LIMIT;
3875
3876 hw = pi->hw;
3877
3878 if (!ice_is_vsi_valid(hw, vsi_handle))
3879 return ICE_ERR_PARAM;
3880
3881 mutex_lock(&pi->sched_lock);
3882
3883 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3884 if (!q_ctx) {
3885 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3886 q_handle);
3887 status = ICE_ERR_PARAM;
3888 goto ena_txq_exit;
3889 }
3890
3891 /* find a parent node */
3892 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3893 ICE_SCHED_NODE_OWNER_LAN);
3894 if (!parent) {
3895 status = ICE_ERR_PARAM;
3896 goto ena_txq_exit;
3897 }
3898
3899 buf->parent_teid = parent->info.node_teid;
3900 node.parent_teid = parent->info.node_teid;
3901 /* Mark that the values in the "generic" section as valid. The default
3902 * value in the "generic" section is zero. This means that :
3903 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3904 * - 0 priority among siblings, indicated by Bit 1-3.
3905 * - WFQ, indicated by Bit 4.
3906 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3907 * Bit 5-6.
3908 * - Bit 7 is reserved.
3909 * Without setting the generic section as valid in valid_sections, the
3910 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3911 */
3912 buf->txqs[0].info.valid_sections =
3913 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
3914 ICE_AQC_ELEM_VALID_EIR;
3915 buf->txqs[0].info.generic = 0;
3916 buf->txqs[0].info.cir_bw.bw_profile_idx =
3917 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3918 buf->txqs[0].info.cir_bw.bw_alloc =
3919 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3920 buf->txqs[0].info.eir_bw.bw_profile_idx =
3921 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3922 buf->txqs[0].info.eir_bw.bw_alloc =
3923 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3924
3925 /* add the LAN queue */
3926 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3927 if (status) {
3928 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3929 le16_to_cpu(buf->txqs[0].txq_id),
3930 hw->adminq.sq_last_status);
3931 goto ena_txq_exit;
3932 }
3933
3934 node.node_teid = buf->txqs[0].q_teid;
3935 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3936 q_ctx->q_handle = q_handle;
3937 q_ctx->q_teid = le32_to_cpu(node.node_teid);
3938
3939 /* add a leaf node into scheduler tree queue layer */
3940 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3941 if (!status)
3942 status = ice_sched_replay_q_bw(pi, q_ctx);
3943
3944ena_txq_exit:
3945 mutex_unlock(&pi->sched_lock);
3946 return status;
3947}
3948
3949/**
3950 * ice_dis_vsi_txq
3951 * @pi: port information structure
3952 * @vsi_handle: software VSI handle
3953 * @tc: TC number
3954 * @num_queues: number of queues
3955 * @q_handles: pointer to software queue handle array
3956 * @q_ids: pointer to the q_id array
3957 * @q_teids: pointer to queue node teids
3958 * @rst_src: if called due to reset, specifies the reset source
3959 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3960 * @cd: pointer to command details structure or NULL
3961 *
3962 * This function removes queues and their corresponding nodes in SW DB
3963 */
3964enum ice_status
3965ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3966 u16 *q_handles, u16 *q_ids, u32 *q_teids,
3967 enum ice_disq_rst_src rst_src, u16 vmvf_num,
3968 struct ice_sq_cd *cd)
3969{
3970 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3971 struct ice_aqc_dis_txq_item *qg_list;
3972 struct ice_q_ctx *q_ctx;
3973 struct ice_hw *hw;
3974 u16 i, buf_size;
3975
3976 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3977 return ICE_ERR_CFG;
3978
3979 hw = pi->hw;
3980
3981 if (!num_queues) {
3982 /* if queue is disabled already yet the disable queue command
3983 * has to be sent to complete the VF reset, then call
3984 * ice_aq_dis_lan_txq without any queue information
3985 */
3986 if (rst_src)
3987 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
3988 vmvf_num, NULL);
3989 return ICE_ERR_CFG;
3990 }
3991
3992 buf_size = struct_size(qg_list, q_id, 1);
3993 qg_list = kzalloc(buf_size, GFP_KERNEL);
3994 if (!qg_list)
3995 return ICE_ERR_NO_MEMORY;
3996
3997 mutex_lock(&pi->sched_lock);
3998
3999 for (i = 0; i < num_queues; i++) {
4000 struct ice_sched_node *node;
4001
4002 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4003 if (!node)
4004 continue;
4005 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4006 if (!q_ctx) {
4007 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4008 q_handles[i]);
4009 continue;
4010 }
4011 if (q_ctx->q_handle != q_handles[i]) {
4012 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4013 q_ctx->q_handle, q_handles[i]);
4014 continue;
4015 }
4016 qg_list->parent_teid = node->info.parent_teid;
4017 qg_list->num_qs = 1;
4018 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4019 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4020 vmvf_num, cd);
4021
4022 if (status)
4023 break;
4024 ice_free_sched_node(pi, node);
4025 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4026 }
4027 mutex_unlock(&pi->sched_lock);
4028 kfree(qg_list);
4029 return status;
4030}
4031
4032/**
4033 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4034 * @pi: port information structure
4035 * @vsi_handle: software VSI handle
4036 * @tc_bitmap: TC bitmap
4037 * @maxqs: max queues array per TC
4038 * @owner: LAN or RDMA
4039 *
4040 * This function adds/updates the VSI queues per TC.
4041 */
4042static enum ice_status
4043ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4044 u16 *maxqs, u8 owner)
4045{
4046 enum ice_status status = 0;
4047 u8 i;
4048
4049 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4050 return ICE_ERR_CFG;
4051
4052 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4053 return ICE_ERR_PARAM;
4054
4055 mutex_lock(&pi->sched_lock);
4056
4057 ice_for_each_traffic_class(i) {
4058 /* configuration is possible only if TC node is present */
4059 if (!ice_sched_get_tc_node(pi, i))
4060 continue;
4061
4062 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4063 ice_is_tc_ena(tc_bitmap, i));
4064 if (status)
4065 break;
4066 }
4067
4068 mutex_unlock(&pi->sched_lock);
4069 return status;
4070}
4071
4072/**
4073 * ice_cfg_vsi_lan - configure VSI LAN queues
4074 * @pi: port information structure
4075 * @vsi_handle: software VSI handle
4076 * @tc_bitmap: TC bitmap
4077 * @max_lanqs: max LAN queues array per TC
4078 *
4079 * This function adds/updates the VSI LAN queues per TC.
4080 */
4081enum ice_status
4082ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4083 u16 *max_lanqs)
4084{
4085 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4086 ICE_SCHED_NODE_OWNER_LAN);
4087}
4088
4089/**
4090 * ice_replay_pre_init - replay pre initialization
4091 * @hw: pointer to the HW struct
4092 *
4093 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4094 */
4095static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4096{
4097 struct ice_switch_info *sw = hw->switch_info;
4098 u8 i;
4099
4100 /* Delete old entries from replay filter list head if there is any */
4101 ice_rm_all_sw_replay_rule_info(hw);
4102 /* In start of replay, move entries into replay_rules list, it
4103 * will allow adding rules entries back to filt_rules list,
4104 * which is operational list.
4105 */
4106 for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4107 list_replace_init(&sw->recp_list[i].filt_rules,
4108 &sw->recp_list[i].filt_replay_rules);
4109
4110 return 0;
4111}
4112
4113/**
4114 * ice_replay_vsi - replay VSI configuration
4115 * @hw: pointer to the HW struct
4116 * @vsi_handle: driver VSI handle
4117 *
4118 * Restore all VSI configuration after reset. It is required to call this
4119 * function with main VSI first.
4120 */
4121enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4122{
4123 enum ice_status status;
4124
4125 if (!ice_is_vsi_valid(hw, vsi_handle))
4126 return ICE_ERR_PARAM;
4127
4128 /* Replay pre-initialization if there is any */
4129 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4130 status = ice_replay_pre_init(hw);
4131 if (status)
4132 return status;
4133 }
4134 /* Replay per VSI all RSS configurations */
4135 status = ice_replay_rss_cfg(hw, vsi_handle);
4136 if (status)
4137 return status;
4138 /* Replay per VSI all filters */
4139 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4140 return status;
4141}
4142
4143/**
4144 * ice_replay_post - post replay configuration cleanup
4145 * @hw: pointer to the HW struct
4146 *
4147 * Post replay cleanup.
4148 */
4149void ice_replay_post(struct ice_hw *hw)
4150{
4151 /* Delete old entries from replay filter list head */
4152 ice_rm_all_sw_replay_rule_info(hw);
4153}
4154
4155/**
4156 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4157 * @hw: ptr to the hardware info
4158 * @reg: offset of 64 bit HW register to read from
4159 * @prev_stat_loaded: bool to specify if previous stats are loaded
4160 * @prev_stat: ptr to previous loaded stat value
4161 * @cur_stat: ptr to current stat value
4162 */
4163void
4164ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4165 u64 *prev_stat, u64 *cur_stat)
4166{
4167 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4168
4169 /* device stats are not reset at PFR, they likely will not be zeroed
4170 * when the driver starts. Thus, save the value from the first read
4171 * without adding to the statistic value so that we report stats which
4172 * count up from zero.
4173 */
4174 if (!prev_stat_loaded) {
4175 *prev_stat = new_data;
4176 return;
4177 }
4178
4179 /* Calculate the difference between the new and old values, and then
4180 * add it to the software stat value.
4181 */
4182 if (new_data >= *prev_stat)
4183 *cur_stat += new_data - *prev_stat;
4184 else
4185 /* to manage the potential roll-over */
4186 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4187
4188 /* Update the previously stored value to prepare for next read */
4189 *prev_stat = new_data;
4190}
4191
4192/**
4193 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4194 * @hw: ptr to the hardware info
4195 * @reg: offset of HW register to read from
4196 * @prev_stat_loaded: bool to specify if previous stats are loaded
4197 * @prev_stat: ptr to previous loaded stat value
4198 * @cur_stat: ptr to current stat value
4199 */
4200void
4201ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4202 u64 *prev_stat, u64 *cur_stat)
4203{
4204 u32 new_data;
4205
4206 new_data = rd32(hw, reg);
4207
4208 /* device stats are not reset at PFR, they likely will not be zeroed
4209 * when the driver starts. Thus, save the value from the first read
4210 * without adding to the statistic value so that we report stats which
4211 * count up from zero.
4212 */
4213 if (!prev_stat_loaded) {
4214 *prev_stat = new_data;
4215 return;
4216 }
4217
4218 /* Calculate the difference between the new and old values, and then
4219 * add it to the software stat value.
4220 */
4221 if (new_data >= *prev_stat)
4222 *cur_stat += new_data - *prev_stat;
4223 else
4224 /* to manage the potential roll-over */
4225 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4226
4227 /* Update the previously stored value to prepare for next read */
4228 *prev_stat = new_data;
4229}
4230
4231/**
4232 * ice_sched_query_elem - query element information from HW
4233 * @hw: pointer to the HW struct
4234 * @node_teid: node TEID to be queried
4235 * @buf: buffer to element information
4236 *
4237 * This function queries HW element information
4238 */
4239enum ice_status
4240ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4241 struct ice_aqc_txsched_elem_data *buf)
4242{
4243 u16 buf_size, num_elem_ret = 0;
4244 enum ice_status status;
4245
4246 buf_size = sizeof(*buf);
4247 memset(buf, 0, buf_size);
4248 buf->node_teid = cpu_to_le32(node_teid);
4249 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4250 NULL);
4251 if (status || num_elem_ret != 1)
4252 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4253 return status;
4254}
4255
4256/**
4257 * ice_fw_supports_link_override
4258 * @hw: pointer to the hardware structure
4259 *
4260 * Checks if the firmware supports link override
4261 */
4262bool ice_fw_supports_link_override(struct ice_hw *hw)
4263{
4264 /* Currently, only supported for E810 devices */
4265 if (hw->mac_type != ICE_MAC_E810)
4266 return false;
4267
4268 if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4269 if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4270 return true;
4271 if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4272 hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4273 return true;
4274 } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4275 return true;
4276 }
4277
4278 return false;
4279}
4280
4281/**
4282 * ice_get_link_default_override
4283 * @ldo: pointer to the link default override struct
4284 * @pi: pointer to the port info struct
4285 *
4286 * Gets the link default override for a port
4287 */
4288enum ice_status
4289ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4290 struct ice_port_info *pi)
4291{
4292 u16 i, tlv, tlv_len, tlv_start, buf, offset;
4293 struct ice_hw *hw = pi->hw;
4294 enum ice_status status;
4295
4296 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4297 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4298 if (status) {
4299 ice_debug(hw, ICE_DBG_INIT,
4300 "Failed to read link override TLV.\n");
4301 return status;
4302 }
4303
4304 /* Each port has its own config; calculate for our port */
4305 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4306 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4307
4308 /* link options first */
4309 status = ice_read_sr_word(hw, tlv_start, &buf);
4310 if (status) {
4311 ice_debug(hw, ICE_DBG_INIT,
4312 "Failed to read override link options.\n");
4313 return status;
4314 }
4315 ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4316 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4317 ICE_LINK_OVERRIDE_PHY_CFG_S;
4318
4319 /* link PHY config */
4320 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4321 status = ice_read_sr_word(hw, offset, &buf);
4322 if (status) {
4323 ice_debug(hw, ICE_DBG_INIT,
4324 "Failed to read override phy config.\n");
4325 return status;
4326 }
4327 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4328
4329 /* PHY types low */
4330 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4331 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4332 status = ice_read_sr_word(hw, (offset + i), &buf);
4333 if (status) {
4334 ice_debug(hw, ICE_DBG_INIT,
4335 "Failed to read override link options.\n");
4336 return status;
4337 }
4338 /* shift 16 bits at a time to fill 64 bits */
4339 ldo->phy_type_low |= ((u64)buf << (i * 16));
4340 }
4341
4342 /* PHY types high */
4343 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4344 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4345 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4346 status = ice_read_sr_word(hw, (offset + i), &buf);
4347 if (status) {
4348 ice_debug(hw, ICE_DBG_INIT,
4349 "Failed to read override link options.\n");
4350 return status;
4351 }
4352 /* shift 16 bits at a time to fill 64 bits */
4353 ldo->phy_type_high |= ((u64)buf << (i * 16));
4354 }
4355
4356 return status;
4357}
4358
4359/**
4360 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4361 * @caps: get PHY capability data
4362 */
4363bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4364{
4365 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4366 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4367 ICE_AQC_PHY_AN_EN_CLAUSE73 |
4368 ICE_AQC_PHY_AN_EN_CLAUSE37))
4369 return true;
4370
4371 return false;
4372}
4373
4374/**
4375 * ice_aq_set_lldp_mib - Set the LLDP MIB
4376 * @hw: pointer to the HW struct
4377 * @mib_type: Local, Remote or both Local and Remote MIBs
4378 * @buf: pointer to the caller-supplied buffer to store the MIB block
4379 * @buf_size: size of the buffer (in bytes)
4380 * @cd: pointer to command details structure or NULL
4381 *
4382 * Set the LLDP MIB. (0x0A08)
4383 */
4384enum ice_status
4385ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4386 struct ice_sq_cd *cd)
4387{
4388 struct ice_aqc_lldp_set_local_mib *cmd;
4389 struct ice_aq_desc desc;
4390
4391 cmd = &desc.params.lldp_set_mib;
4392
4393 if (buf_size == 0 || !buf)
4394 return ICE_ERR_PARAM;
4395
4396 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4397
4398 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
4399 desc.datalen = cpu_to_le16(buf_size);
4400
4401 cmd->type = mib_type;
4402 cmd->length = cpu_to_le16(buf_size);
4403
4404 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4405}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_sched.h"
6#include "ice_adminq_cmd.h"
7#include "ice_flow.h"
8
9#define ICE_PF_RESET_WAIT_COUNT 300
10
11static const char * const ice_link_mode_str_low[] = {
12 [0] = "100BASE_TX",
13 [1] = "100M_SGMII",
14 [2] = "1000BASE_T",
15 [3] = "1000BASE_SX",
16 [4] = "1000BASE_LX",
17 [5] = "1000BASE_KX",
18 [6] = "1G_SGMII",
19 [7] = "2500BASE_T",
20 [8] = "2500BASE_X",
21 [9] = "2500BASE_KX",
22 [10] = "5GBASE_T",
23 [11] = "5GBASE_KR",
24 [12] = "10GBASE_T",
25 [13] = "10G_SFI_DA",
26 [14] = "10GBASE_SR",
27 [15] = "10GBASE_LR",
28 [16] = "10GBASE_KR_CR1",
29 [17] = "10G_SFI_AOC_ACC",
30 [18] = "10G_SFI_C2C",
31 [19] = "25GBASE_T",
32 [20] = "25GBASE_CR",
33 [21] = "25GBASE_CR_S",
34 [22] = "25GBASE_CR1",
35 [23] = "25GBASE_SR",
36 [24] = "25GBASE_LR",
37 [25] = "25GBASE_KR",
38 [26] = "25GBASE_KR_S",
39 [27] = "25GBASE_KR1",
40 [28] = "25G_AUI_AOC_ACC",
41 [29] = "25G_AUI_C2C",
42 [30] = "40GBASE_CR4",
43 [31] = "40GBASE_SR4",
44 [32] = "40GBASE_LR4",
45 [33] = "40GBASE_KR4",
46 [34] = "40G_XLAUI_AOC_ACC",
47 [35] = "40G_XLAUI",
48 [36] = "50GBASE_CR2",
49 [37] = "50GBASE_SR2",
50 [38] = "50GBASE_LR2",
51 [39] = "50GBASE_KR2",
52 [40] = "50G_LAUI2_AOC_ACC",
53 [41] = "50G_LAUI2",
54 [42] = "50G_AUI2_AOC_ACC",
55 [43] = "50G_AUI2",
56 [44] = "50GBASE_CP",
57 [45] = "50GBASE_SR",
58 [46] = "50GBASE_FR",
59 [47] = "50GBASE_LR",
60 [48] = "50GBASE_KR_PAM4",
61 [49] = "50G_AUI1_AOC_ACC",
62 [50] = "50G_AUI1",
63 [51] = "100GBASE_CR4",
64 [52] = "100GBASE_SR4",
65 [53] = "100GBASE_LR4",
66 [54] = "100GBASE_KR4",
67 [55] = "100G_CAUI4_AOC_ACC",
68 [56] = "100G_CAUI4",
69 [57] = "100G_AUI4_AOC_ACC",
70 [58] = "100G_AUI4",
71 [59] = "100GBASE_CR_PAM4",
72 [60] = "100GBASE_KR_PAM4",
73 [61] = "100GBASE_CP2",
74 [62] = "100GBASE_SR2",
75 [63] = "100GBASE_DR",
76};
77
78static const char * const ice_link_mode_str_high[] = {
79 [0] = "100GBASE_KR2_PAM4",
80 [1] = "100G_CAUI2_AOC_ACC",
81 [2] = "100G_CAUI2",
82 [3] = "100G_AUI2_AOC_ACC",
83 [4] = "100G_AUI2",
84};
85
86/**
87 * ice_dump_phy_type - helper function to dump phy_type
88 * @hw: pointer to the HW structure
89 * @low: 64 bit value for phy_type_low
90 * @high: 64 bit value for phy_type_high
91 * @prefix: prefix string to differentiate multiple dumps
92 */
93static void
94ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
95{
96 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
97
98 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
99 if (low & BIT_ULL(i))
100 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
101 prefix, i, ice_link_mode_str_low[i]);
102 }
103
104 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
105
106 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
107 if (high & BIT_ULL(i))
108 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
109 prefix, i, ice_link_mode_str_high[i]);
110 }
111}
112
113/**
114 * ice_set_mac_type - Sets MAC type
115 * @hw: pointer to the HW structure
116 *
117 * This function sets the MAC type of the adapter based on the
118 * vendor ID and device ID stored in the HW structure.
119 */
120static int ice_set_mac_type(struct ice_hw *hw)
121{
122 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
123 return -ENODEV;
124
125 switch (hw->device_id) {
126 case ICE_DEV_ID_E810C_BACKPLANE:
127 case ICE_DEV_ID_E810C_QSFP:
128 case ICE_DEV_ID_E810C_SFP:
129 case ICE_DEV_ID_E810_XXV_BACKPLANE:
130 case ICE_DEV_ID_E810_XXV_QSFP:
131 case ICE_DEV_ID_E810_XXV_SFP:
132 hw->mac_type = ICE_MAC_E810;
133 break;
134 case ICE_DEV_ID_E823C_10G_BASE_T:
135 case ICE_DEV_ID_E823C_BACKPLANE:
136 case ICE_DEV_ID_E823C_QSFP:
137 case ICE_DEV_ID_E823C_SFP:
138 case ICE_DEV_ID_E823C_SGMII:
139 case ICE_DEV_ID_E822C_10G_BASE_T:
140 case ICE_DEV_ID_E822C_BACKPLANE:
141 case ICE_DEV_ID_E822C_QSFP:
142 case ICE_DEV_ID_E822C_SFP:
143 case ICE_DEV_ID_E822C_SGMII:
144 case ICE_DEV_ID_E822L_10G_BASE_T:
145 case ICE_DEV_ID_E822L_BACKPLANE:
146 case ICE_DEV_ID_E822L_SFP:
147 case ICE_DEV_ID_E822L_SGMII:
148 case ICE_DEV_ID_E823L_10G_BASE_T:
149 case ICE_DEV_ID_E823L_1GBE:
150 case ICE_DEV_ID_E823L_BACKPLANE:
151 case ICE_DEV_ID_E823L_QSFP:
152 case ICE_DEV_ID_E823L_SFP:
153 hw->mac_type = ICE_MAC_GENERIC;
154 break;
155 default:
156 hw->mac_type = ICE_MAC_UNKNOWN;
157 break;
158 }
159
160 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
161 return 0;
162}
163
164/**
165 * ice_is_e810
166 * @hw: pointer to the hardware structure
167 *
168 * returns true if the device is E810 based, false if not.
169 */
170bool ice_is_e810(struct ice_hw *hw)
171{
172 return hw->mac_type == ICE_MAC_E810;
173}
174
175/**
176 * ice_is_e810t
177 * @hw: pointer to the hardware structure
178 *
179 * returns true if the device is E810T based, false if not.
180 */
181bool ice_is_e810t(struct ice_hw *hw)
182{
183 switch (hw->device_id) {
184 case ICE_DEV_ID_E810C_SFP:
185 switch (hw->subsystem_device_id) {
186 case ICE_SUBDEV_ID_E810T:
187 case ICE_SUBDEV_ID_E810T2:
188 case ICE_SUBDEV_ID_E810T3:
189 case ICE_SUBDEV_ID_E810T4:
190 case ICE_SUBDEV_ID_E810T6:
191 case ICE_SUBDEV_ID_E810T7:
192 return true;
193 }
194 break;
195 case ICE_DEV_ID_E810C_QSFP:
196 switch (hw->subsystem_device_id) {
197 case ICE_SUBDEV_ID_E810T2:
198 case ICE_SUBDEV_ID_E810T3:
199 case ICE_SUBDEV_ID_E810T5:
200 return true;
201 }
202 break;
203 default:
204 break;
205 }
206
207 return false;
208}
209
210/**
211 * ice_clear_pf_cfg - Clear PF configuration
212 * @hw: pointer to the hardware structure
213 *
214 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
215 * configuration, flow director filters, etc.).
216 */
217int ice_clear_pf_cfg(struct ice_hw *hw)
218{
219 struct ice_aq_desc desc;
220
221 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
222
223 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
224}
225
226/**
227 * ice_aq_manage_mac_read - manage MAC address read command
228 * @hw: pointer to the HW struct
229 * @buf: a virtual buffer to hold the manage MAC read response
230 * @buf_size: Size of the virtual buffer
231 * @cd: pointer to command details structure or NULL
232 *
233 * This function is used to return per PF station MAC address (0x0107).
234 * NOTE: Upon successful completion of this command, MAC address information
235 * is returned in user specified buffer. Please interpret user specified
236 * buffer as "manage_mac_read" response.
237 * Response such as various MAC addresses are stored in HW struct (port.mac)
238 * ice_discover_dev_caps is expected to be called before this function is
239 * called.
240 */
241static int
242ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
243 struct ice_sq_cd *cd)
244{
245 struct ice_aqc_manage_mac_read_resp *resp;
246 struct ice_aqc_manage_mac_read *cmd;
247 struct ice_aq_desc desc;
248 int status;
249 u16 flags;
250 u8 i;
251
252 cmd = &desc.params.mac_read;
253
254 if (buf_size < sizeof(*resp))
255 return -EINVAL;
256
257 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
258
259 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
260 if (status)
261 return status;
262
263 resp = buf;
264 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
265
266 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
267 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
268 return -EIO;
269 }
270
271 /* A single port can report up to two (LAN and WoL) addresses */
272 for (i = 0; i < cmd->num_addr; i++)
273 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
274 ether_addr_copy(hw->port_info->mac.lan_addr,
275 resp[i].mac_addr);
276 ether_addr_copy(hw->port_info->mac.perm_addr,
277 resp[i].mac_addr);
278 break;
279 }
280
281 return 0;
282}
283
284/**
285 * ice_aq_get_phy_caps - returns PHY capabilities
286 * @pi: port information structure
287 * @qual_mods: report qualified modules
288 * @report_mode: report mode capabilities
289 * @pcaps: structure for PHY capabilities to be filled
290 * @cd: pointer to command details structure or NULL
291 *
292 * Returns the various PHY capabilities supported on the Port (0x0600)
293 */
294int
295ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
296 struct ice_aqc_get_phy_caps_data *pcaps,
297 struct ice_sq_cd *cd)
298{
299 struct ice_aqc_get_phy_caps *cmd;
300 u16 pcaps_size = sizeof(*pcaps);
301 struct ice_aq_desc desc;
302 const char *prefix;
303 struct ice_hw *hw;
304 int status;
305
306 cmd = &desc.params.get_phy;
307
308 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
309 return -EINVAL;
310 hw = pi->hw;
311
312 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
313 !ice_fw_supports_report_dflt_cfg(hw))
314 return -EINVAL;
315
316 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
317
318 if (qual_mods)
319 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
320
321 cmd->param0 |= cpu_to_le16(report_mode);
322 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
323
324 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
325
326 switch (report_mode) {
327 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
328 prefix = "phy_caps_media";
329 break;
330 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
331 prefix = "phy_caps_no_media";
332 break;
333 case ICE_AQC_REPORT_ACTIVE_CFG:
334 prefix = "phy_caps_active";
335 break;
336 case ICE_AQC_REPORT_DFLT_CFG:
337 prefix = "phy_caps_default";
338 break;
339 default:
340 prefix = "phy_caps_invalid";
341 }
342
343 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
344 le64_to_cpu(pcaps->phy_type_high), prefix);
345
346 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
347 prefix, report_mode);
348 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
349 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
350 pcaps->low_power_ctrl_an);
351 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
352 pcaps->eee_cap);
353 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
354 pcaps->eeer_value);
355 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
356 pcaps->link_fec_options);
357 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
358 prefix, pcaps->module_compliance_enforcement);
359 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
360 prefix, pcaps->extended_compliance_code);
361 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
362 pcaps->module_type[0]);
363 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
364 pcaps->module_type[1]);
365 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
366 pcaps->module_type[2]);
367
368 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
369 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
370 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
371 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
372 sizeof(pi->phy.link_info.module_type));
373 }
374
375 return status;
376}
377
378/**
379 * ice_aq_get_link_topo_handle - get link topology node return status
380 * @pi: port information structure
381 * @node_type: requested node type
382 * @cd: pointer to command details structure or NULL
383 *
384 * Get link topology node return status for specified node type (0x06E0)
385 *
386 * Node type cage can be used to determine if cage is present. If AQC
387 * returns error (ENOENT), then no cage present. If no cage present, then
388 * connection type is backplane or BASE-T.
389 */
390static int
391ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
392 struct ice_sq_cd *cd)
393{
394 struct ice_aqc_get_link_topo *cmd;
395 struct ice_aq_desc desc;
396
397 cmd = &desc.params.get_link_topo;
398
399 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
400
401 cmd->addr.topo_params.node_type_ctx =
402 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
403 ICE_AQC_LINK_TOPO_NODE_CTX_S);
404
405 /* set node type */
406 cmd->addr.topo_params.node_type_ctx |=
407 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
408
409 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
410}
411
412/**
413 * ice_is_media_cage_present
414 * @pi: port information structure
415 *
416 * Returns true if media cage is present, else false. If no cage, then
417 * media type is backplane or BASE-T.
418 */
419static bool ice_is_media_cage_present(struct ice_port_info *pi)
420{
421 /* Node type cage can be used to determine if cage is present. If AQC
422 * returns error (ENOENT), then no cage present. If no cage present then
423 * connection type is backplane or BASE-T.
424 */
425 return !ice_aq_get_link_topo_handle(pi,
426 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
427 NULL);
428}
429
430/**
431 * ice_get_media_type - Gets media type
432 * @pi: port information structure
433 */
434static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
435{
436 struct ice_link_status *hw_link_info;
437
438 if (!pi)
439 return ICE_MEDIA_UNKNOWN;
440
441 hw_link_info = &pi->phy.link_info;
442 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
443 /* If more than one media type is selected, report unknown */
444 return ICE_MEDIA_UNKNOWN;
445
446 if (hw_link_info->phy_type_low) {
447 /* 1G SGMII is a special case where some DA cable PHYs
448 * may show this as an option when it really shouldn't
449 * be since SGMII is meant to be between a MAC and a PHY
450 * in a backplane. Try to detect this case and handle it
451 */
452 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
453 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
454 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
455 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
456 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
457 return ICE_MEDIA_DA;
458
459 switch (hw_link_info->phy_type_low) {
460 case ICE_PHY_TYPE_LOW_1000BASE_SX:
461 case ICE_PHY_TYPE_LOW_1000BASE_LX:
462 case ICE_PHY_TYPE_LOW_10GBASE_SR:
463 case ICE_PHY_TYPE_LOW_10GBASE_LR:
464 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
465 case ICE_PHY_TYPE_LOW_25GBASE_SR:
466 case ICE_PHY_TYPE_LOW_25GBASE_LR:
467 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
468 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
469 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
470 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
471 case ICE_PHY_TYPE_LOW_50GBASE_SR:
472 case ICE_PHY_TYPE_LOW_50GBASE_FR:
473 case ICE_PHY_TYPE_LOW_50GBASE_LR:
474 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
475 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
476 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
477 case ICE_PHY_TYPE_LOW_100GBASE_DR:
478 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
479 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
480 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
481 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
482 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
483 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
484 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
485 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
486 return ICE_MEDIA_FIBER;
487 case ICE_PHY_TYPE_LOW_100BASE_TX:
488 case ICE_PHY_TYPE_LOW_1000BASE_T:
489 case ICE_PHY_TYPE_LOW_2500BASE_T:
490 case ICE_PHY_TYPE_LOW_5GBASE_T:
491 case ICE_PHY_TYPE_LOW_10GBASE_T:
492 case ICE_PHY_TYPE_LOW_25GBASE_T:
493 return ICE_MEDIA_BASET;
494 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
495 case ICE_PHY_TYPE_LOW_25GBASE_CR:
496 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
497 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
498 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
499 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
500 case ICE_PHY_TYPE_LOW_50GBASE_CP:
501 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
502 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
503 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
504 return ICE_MEDIA_DA;
505 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
506 case ICE_PHY_TYPE_LOW_40G_XLAUI:
507 case ICE_PHY_TYPE_LOW_50G_LAUI2:
508 case ICE_PHY_TYPE_LOW_50G_AUI2:
509 case ICE_PHY_TYPE_LOW_50G_AUI1:
510 case ICE_PHY_TYPE_LOW_100G_AUI4:
511 case ICE_PHY_TYPE_LOW_100G_CAUI4:
512 if (ice_is_media_cage_present(pi))
513 return ICE_MEDIA_DA;
514 fallthrough;
515 case ICE_PHY_TYPE_LOW_1000BASE_KX:
516 case ICE_PHY_TYPE_LOW_2500BASE_KX:
517 case ICE_PHY_TYPE_LOW_2500BASE_X:
518 case ICE_PHY_TYPE_LOW_5GBASE_KR:
519 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
520 case ICE_PHY_TYPE_LOW_25GBASE_KR:
521 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
522 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
523 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
524 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
525 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
526 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
527 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
528 return ICE_MEDIA_BACKPLANE;
529 }
530 } else {
531 switch (hw_link_info->phy_type_high) {
532 case ICE_PHY_TYPE_HIGH_100G_AUI2:
533 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
534 if (ice_is_media_cage_present(pi))
535 return ICE_MEDIA_DA;
536 fallthrough;
537 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
538 return ICE_MEDIA_BACKPLANE;
539 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
540 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
541 return ICE_MEDIA_FIBER;
542 }
543 }
544 return ICE_MEDIA_UNKNOWN;
545}
546
547/**
548 * ice_aq_get_link_info
549 * @pi: port information structure
550 * @ena_lse: enable/disable LinkStatusEvent reporting
551 * @link: pointer to link status structure - optional
552 * @cd: pointer to command details structure or NULL
553 *
554 * Get Link Status (0x607). Returns the link status of the adapter.
555 */
556int
557ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
558 struct ice_link_status *link, struct ice_sq_cd *cd)
559{
560 struct ice_aqc_get_link_status_data link_data = { 0 };
561 struct ice_aqc_get_link_status *resp;
562 struct ice_link_status *li_old, *li;
563 enum ice_media_type *hw_media_type;
564 struct ice_fc_info *hw_fc_info;
565 bool tx_pause, rx_pause;
566 struct ice_aq_desc desc;
567 struct ice_hw *hw;
568 u16 cmd_flags;
569 int status;
570
571 if (!pi)
572 return -EINVAL;
573 hw = pi->hw;
574 li_old = &pi->phy.link_info_old;
575 hw_media_type = &pi->phy.media_type;
576 li = &pi->phy.link_info;
577 hw_fc_info = &pi->fc;
578
579 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
580 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
581 resp = &desc.params.get_link_status;
582 resp->cmd_flags = cpu_to_le16(cmd_flags);
583 resp->lport_num = pi->lport;
584
585 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
586
587 if (status)
588 return status;
589
590 /* save off old link status information */
591 *li_old = *li;
592
593 /* update current link status information */
594 li->link_speed = le16_to_cpu(link_data.link_speed);
595 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
596 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
597 *hw_media_type = ice_get_media_type(pi);
598 li->link_info = link_data.link_info;
599 li->link_cfg_err = link_data.link_cfg_err;
600 li->an_info = link_data.an_info;
601 li->ext_info = link_data.ext_info;
602 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
603 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
604 li->topo_media_conflict = link_data.topo_media_conflict;
605 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
606 ICE_AQ_CFG_PACING_TYPE_M);
607
608 /* update fc info */
609 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
610 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
611 if (tx_pause && rx_pause)
612 hw_fc_info->current_mode = ICE_FC_FULL;
613 else if (tx_pause)
614 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
615 else if (rx_pause)
616 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
617 else
618 hw_fc_info->current_mode = ICE_FC_NONE;
619
620 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
621
622 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
623 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
624 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
625 (unsigned long long)li->phy_type_low);
626 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
627 (unsigned long long)li->phy_type_high);
628 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
629 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
630 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
631 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
632 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
633 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
634 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
635 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
636 li->max_frame_size);
637 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
638
639 /* save link status information */
640 if (link)
641 *link = *li;
642
643 /* flag cleared so calling functions don't call AQ again */
644 pi->phy.get_link_info = false;
645
646 return 0;
647}
648
649/**
650 * ice_fill_tx_timer_and_fc_thresh
651 * @hw: pointer to the HW struct
652 * @cmd: pointer to MAC cfg structure
653 *
654 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
655 * descriptor
656 */
657static void
658ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
659 struct ice_aqc_set_mac_cfg *cmd)
660{
661 u16 fc_thres_val, tx_timer_val;
662 u32 val;
663
664 /* We read back the transmit timer and FC threshold value of
665 * LFC. Thus, we will use index =
666 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
667 *
668 * Also, because we are operating on transmit timer and FC
669 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
670 */
671#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
672
673 /* Retrieve the transmit timer */
674 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
675 tx_timer_val = val &
676 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
677 cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
678
679 /* Retrieve the FC threshold */
680 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
681 fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
682
683 cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
684}
685
686/**
687 * ice_aq_set_mac_cfg
688 * @hw: pointer to the HW struct
689 * @max_frame_size: Maximum Frame Size to be supported
690 * @cd: pointer to command details structure or NULL
691 *
692 * Set MAC configuration (0x0603)
693 */
694int
695ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
696{
697 struct ice_aqc_set_mac_cfg *cmd;
698 struct ice_aq_desc desc;
699
700 cmd = &desc.params.set_mac_cfg;
701
702 if (max_frame_size == 0)
703 return -EINVAL;
704
705 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
706
707 cmd->max_frame_size = cpu_to_le16(max_frame_size);
708
709 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
710
711 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
712}
713
714/**
715 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
716 * @hw: pointer to the HW struct
717 */
718static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
719{
720 struct ice_switch_info *sw;
721 int status;
722
723 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
724 sizeof(*hw->switch_info), GFP_KERNEL);
725 sw = hw->switch_info;
726
727 if (!sw)
728 return -ENOMEM;
729
730 INIT_LIST_HEAD(&sw->vsi_list_map_head);
731 sw->prof_res_bm_init = 0;
732
733 status = ice_init_def_sw_recp(hw);
734 if (status) {
735 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
736 return status;
737 }
738 return 0;
739}
740
741/**
742 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
743 * @hw: pointer to the HW struct
744 */
745static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
746{
747 struct ice_switch_info *sw = hw->switch_info;
748 struct ice_vsi_list_map_info *v_pos_map;
749 struct ice_vsi_list_map_info *v_tmp_map;
750 struct ice_sw_recipe *recps;
751 u8 i;
752
753 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
754 list_entry) {
755 list_del(&v_pos_map->list_entry);
756 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
757 }
758 recps = sw->recp_list;
759 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
760 struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
761
762 recps[i].root_rid = i;
763 list_for_each_entry_safe(rg_entry, tmprg_entry,
764 &recps[i].rg_list, l_entry) {
765 list_del(&rg_entry->l_entry);
766 devm_kfree(ice_hw_to_dev(hw), rg_entry);
767 }
768
769 if (recps[i].adv_rule) {
770 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
771 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
772
773 mutex_destroy(&recps[i].filt_rule_lock);
774 list_for_each_entry_safe(lst_itr, tmp_entry,
775 &recps[i].filt_rules,
776 list_entry) {
777 list_del(&lst_itr->list_entry);
778 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
779 devm_kfree(ice_hw_to_dev(hw), lst_itr);
780 }
781 } else {
782 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
783
784 mutex_destroy(&recps[i].filt_rule_lock);
785 list_for_each_entry_safe(lst_itr, tmp_entry,
786 &recps[i].filt_rules,
787 list_entry) {
788 list_del(&lst_itr->list_entry);
789 devm_kfree(ice_hw_to_dev(hw), lst_itr);
790 }
791 }
792 if (recps[i].root_buf)
793 devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
794 }
795 ice_rm_all_sw_replay_rule_info(hw);
796 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
797 devm_kfree(ice_hw_to_dev(hw), sw);
798}
799
800/**
801 * ice_get_fw_log_cfg - get FW logging configuration
802 * @hw: pointer to the HW struct
803 */
804static int ice_get_fw_log_cfg(struct ice_hw *hw)
805{
806 struct ice_aq_desc desc;
807 __le16 *config;
808 int status;
809 u16 size;
810
811 size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
812 config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
813 if (!config)
814 return -ENOMEM;
815
816 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
817
818 status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
819 if (!status) {
820 u16 i;
821
822 /* Save FW logging information into the HW structure */
823 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
824 u16 v, m, flgs;
825
826 v = le16_to_cpu(config[i]);
827 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
828 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
829
830 if (m < ICE_AQC_FW_LOG_ID_MAX)
831 hw->fw_log.evnts[m].cur = flgs;
832 }
833 }
834
835 devm_kfree(ice_hw_to_dev(hw), config);
836
837 return status;
838}
839
840/**
841 * ice_cfg_fw_log - configure FW logging
842 * @hw: pointer to the HW struct
843 * @enable: enable certain FW logging events if true, disable all if false
844 *
845 * This function enables/disables the FW logging via Rx CQ events and a UART
846 * port based on predetermined configurations. FW logging via the Rx CQ can be
847 * enabled/disabled for individual PF's. However, FW logging via the UART can
848 * only be enabled/disabled for all PFs on the same device.
849 *
850 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
851 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
852 * before initializing the device.
853 *
854 * When re/configuring FW logging, callers need to update the "cfg" elements of
855 * the hw->fw_log.evnts array with the desired logging event configurations for
856 * modules of interest. When disabling FW logging completely, the callers can
857 * just pass false in the "enable" parameter. On completion, the function will
858 * update the "cur" element of the hw->fw_log.evnts array with the resulting
859 * logging event configurations of the modules that are being re/configured. FW
860 * logging modules that are not part of a reconfiguration operation retain their
861 * previous states.
862 *
863 * Before resetting the device, it is recommended that the driver disables FW
864 * logging before shutting down the control queue. When disabling FW logging
865 * ("enable" = false), the latest configurations of FW logging events stored in
866 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
867 * a device reset.
868 *
869 * When enabling FW logging to emit log messages via the Rx CQ during the
870 * device's initialization phase, a mechanism alternative to interrupt handlers
871 * needs to be used to extract FW log messages from the Rx CQ periodically and
872 * to prevent the Rx CQ from being full and stalling other types of control
873 * messages from FW to SW. Interrupts are typically disabled during the device's
874 * initialization phase.
875 */
876static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
877{
878 struct ice_aqc_fw_logging *cmd;
879 u16 i, chgs = 0, len = 0;
880 struct ice_aq_desc desc;
881 __le16 *data = NULL;
882 u8 actv_evnts = 0;
883 void *buf = NULL;
884 int status = 0;
885
886 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
887 return 0;
888
889 /* Disable FW logging only when the control queue is still responsive */
890 if (!enable &&
891 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
892 return 0;
893
894 /* Get current FW log settings */
895 status = ice_get_fw_log_cfg(hw);
896 if (status)
897 return status;
898
899 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
900 cmd = &desc.params.fw_logging;
901
902 /* Indicate which controls are valid */
903 if (hw->fw_log.cq_en)
904 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
905
906 if (hw->fw_log.uart_en)
907 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
908
909 if (enable) {
910 /* Fill in an array of entries with FW logging modules and
911 * logging events being reconfigured.
912 */
913 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
914 u16 val;
915
916 /* Keep track of enabled event types */
917 actv_evnts |= hw->fw_log.evnts[i].cfg;
918
919 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
920 continue;
921
922 if (!data) {
923 data = devm_kcalloc(ice_hw_to_dev(hw),
924 ICE_AQC_FW_LOG_ID_MAX,
925 sizeof(*data),
926 GFP_KERNEL);
927 if (!data)
928 return -ENOMEM;
929 }
930
931 val = i << ICE_AQC_FW_LOG_ID_S;
932 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
933 data[chgs++] = cpu_to_le16(val);
934 }
935
936 /* Only enable FW logging if at least one module is specified.
937 * If FW logging is currently enabled but all modules are not
938 * enabled to emit log messages, disable FW logging altogether.
939 */
940 if (actv_evnts) {
941 /* Leave if there is effectively no change */
942 if (!chgs)
943 goto out;
944
945 if (hw->fw_log.cq_en)
946 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
947
948 if (hw->fw_log.uart_en)
949 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
950
951 buf = data;
952 len = sizeof(*data) * chgs;
953 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
954 }
955 }
956
957 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
958 if (!status) {
959 /* Update the current configuration to reflect events enabled.
960 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
961 * logging mode is enabled for the device. They do not reflect
962 * actual modules being enabled to emit log messages. So, their
963 * values remain unchanged even when all modules are disabled.
964 */
965 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
966
967 hw->fw_log.actv_evnts = actv_evnts;
968 for (i = 0; i < cnt; i++) {
969 u16 v, m;
970
971 if (!enable) {
972 /* When disabling all FW logging events as part
973 * of device's de-initialization, the original
974 * configurations are retained, and can be used
975 * to reconfigure FW logging later if the device
976 * is re-initialized.
977 */
978 hw->fw_log.evnts[i].cur = 0;
979 continue;
980 }
981
982 v = le16_to_cpu(data[i]);
983 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
984 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
985 }
986 }
987
988out:
989 if (data)
990 devm_kfree(ice_hw_to_dev(hw), data);
991
992 return status;
993}
994
995/**
996 * ice_output_fw_log
997 * @hw: pointer to the HW struct
998 * @desc: pointer to the AQ message descriptor
999 * @buf: pointer to the buffer accompanying the AQ message
1000 *
1001 * Formats a FW Log message and outputs it via the standard driver logs.
1002 */
1003void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
1004{
1005 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
1006 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
1007 le16_to_cpu(desc->datalen));
1008 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
1009}
1010
1011/**
1012 * ice_get_itr_intrl_gran
1013 * @hw: pointer to the HW struct
1014 *
1015 * Determines the ITR/INTRL granularities based on the maximum aggregate
1016 * bandwidth according to the device's configuration during power-on.
1017 */
1018static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1019{
1020 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
1021 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
1022 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
1023
1024 switch (max_agg_bw) {
1025 case ICE_MAX_AGG_BW_200G:
1026 case ICE_MAX_AGG_BW_100G:
1027 case ICE_MAX_AGG_BW_50G:
1028 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1029 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1030 break;
1031 case ICE_MAX_AGG_BW_25G:
1032 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1033 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1034 break;
1035 }
1036}
1037
1038/**
1039 * ice_init_hw - main hardware initialization routine
1040 * @hw: pointer to the hardware structure
1041 */
1042int ice_init_hw(struct ice_hw *hw)
1043{
1044 struct ice_aqc_get_phy_caps_data *pcaps;
1045 u16 mac_buf_len;
1046 void *mac_buf;
1047 int status;
1048
1049 /* Set MAC type based on DeviceID */
1050 status = ice_set_mac_type(hw);
1051 if (status)
1052 return status;
1053
1054 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1055 PF_FUNC_RID_FUNC_NUM_M) >>
1056 PF_FUNC_RID_FUNC_NUM_S;
1057
1058 status = ice_reset(hw, ICE_RESET_PFR);
1059 if (status)
1060 return status;
1061
1062 ice_get_itr_intrl_gran(hw);
1063
1064 status = ice_create_all_ctrlq(hw);
1065 if (status)
1066 goto err_unroll_cqinit;
1067
1068 /* Enable FW logging. Not fatal if this fails. */
1069 status = ice_cfg_fw_log(hw, true);
1070 if (status)
1071 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
1072
1073 status = ice_clear_pf_cfg(hw);
1074 if (status)
1075 goto err_unroll_cqinit;
1076
1077 /* Set bit to enable Flow Director filters */
1078 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1079 INIT_LIST_HEAD(&hw->fdir_list_head);
1080
1081 ice_clear_pxe_mode(hw);
1082
1083 status = ice_init_nvm(hw);
1084 if (status)
1085 goto err_unroll_cqinit;
1086
1087 status = ice_get_caps(hw);
1088 if (status)
1089 goto err_unroll_cqinit;
1090
1091 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1092 sizeof(*hw->port_info), GFP_KERNEL);
1093 if (!hw->port_info) {
1094 status = -ENOMEM;
1095 goto err_unroll_cqinit;
1096 }
1097
1098 /* set the back pointer to HW */
1099 hw->port_info->hw = hw;
1100
1101 /* Initialize port_info struct with switch configuration data */
1102 status = ice_get_initial_sw_cfg(hw);
1103 if (status)
1104 goto err_unroll_alloc;
1105
1106 hw->evb_veb = true;
1107
1108 /* init xarray for identifying scheduling nodes uniquely */
1109 xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1110
1111 /* Query the allocated resources for Tx scheduler */
1112 status = ice_sched_query_res_alloc(hw);
1113 if (status) {
1114 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1115 goto err_unroll_alloc;
1116 }
1117 ice_sched_get_psm_clk_freq(hw);
1118
1119 /* Initialize port_info struct with scheduler data */
1120 status = ice_sched_init_port(hw->port_info);
1121 if (status)
1122 goto err_unroll_sched;
1123
1124 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1125 if (!pcaps) {
1126 status = -ENOMEM;
1127 goto err_unroll_sched;
1128 }
1129
1130 /* Initialize port_info struct with PHY capabilities */
1131 status = ice_aq_get_phy_caps(hw->port_info, false,
1132 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1133 NULL);
1134 devm_kfree(ice_hw_to_dev(hw), pcaps);
1135 if (status)
1136 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1137 status);
1138
1139 /* Initialize port_info struct with link information */
1140 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1141 if (status)
1142 goto err_unroll_sched;
1143
1144 /* need a valid SW entry point to build a Tx tree */
1145 if (!hw->sw_entry_point_layer) {
1146 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1147 status = -EIO;
1148 goto err_unroll_sched;
1149 }
1150 INIT_LIST_HEAD(&hw->agg_list);
1151 /* Initialize max burst size */
1152 if (!hw->max_burst_size)
1153 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1154
1155 status = ice_init_fltr_mgmt_struct(hw);
1156 if (status)
1157 goto err_unroll_sched;
1158
1159 /* Get MAC information */
1160 /* A single port can report up to two (LAN and WoL) addresses */
1161 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1162 sizeof(struct ice_aqc_manage_mac_read_resp),
1163 GFP_KERNEL);
1164 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1165
1166 if (!mac_buf) {
1167 status = -ENOMEM;
1168 goto err_unroll_fltr_mgmt_struct;
1169 }
1170
1171 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1172 devm_kfree(ice_hw_to_dev(hw), mac_buf);
1173
1174 if (status)
1175 goto err_unroll_fltr_mgmt_struct;
1176 /* enable jumbo frame support at MAC level */
1177 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1178 if (status)
1179 goto err_unroll_fltr_mgmt_struct;
1180 /* Obtain counter base index which would be used by flow director */
1181 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1182 if (status)
1183 goto err_unroll_fltr_mgmt_struct;
1184 status = ice_init_hw_tbls(hw);
1185 if (status)
1186 goto err_unroll_fltr_mgmt_struct;
1187 mutex_init(&hw->tnl_lock);
1188 return 0;
1189
1190err_unroll_fltr_mgmt_struct:
1191 ice_cleanup_fltr_mgmt_struct(hw);
1192err_unroll_sched:
1193 ice_sched_cleanup_all(hw);
1194err_unroll_alloc:
1195 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1196err_unroll_cqinit:
1197 ice_destroy_all_ctrlq(hw);
1198 return status;
1199}
1200
1201/**
1202 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1203 * @hw: pointer to the hardware structure
1204 *
1205 * This should be called only during nominal operation, not as a result of
1206 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1207 * applicable initializations if it fails for any reason.
1208 */
1209void ice_deinit_hw(struct ice_hw *hw)
1210{
1211 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1212 ice_cleanup_fltr_mgmt_struct(hw);
1213
1214 ice_sched_cleanup_all(hw);
1215 ice_sched_clear_agg(hw);
1216 ice_free_seg(hw);
1217 ice_free_hw_tbls(hw);
1218 mutex_destroy(&hw->tnl_lock);
1219
1220 if (hw->port_info) {
1221 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1222 hw->port_info = NULL;
1223 }
1224
1225 /* Attempt to disable FW logging before shutting down control queues */
1226 ice_cfg_fw_log(hw, false);
1227 ice_destroy_all_ctrlq(hw);
1228
1229 /* Clear VSI contexts if not already cleared */
1230 ice_clear_all_vsi_ctx(hw);
1231}
1232
1233/**
1234 * ice_check_reset - Check to see if a global reset is complete
1235 * @hw: pointer to the hardware structure
1236 */
1237int ice_check_reset(struct ice_hw *hw)
1238{
1239 u32 cnt, reg = 0, grst_timeout, uld_mask;
1240
1241 /* Poll for Device Active state in case a recent CORER, GLOBR,
1242 * or EMPR has occurred. The grst delay value is in 100ms units.
1243 * Add 1sec for outstanding AQ commands that can take a long time.
1244 */
1245 grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1246 GLGEN_RSTCTL_GRSTDEL_S) + 10;
1247
1248 for (cnt = 0; cnt < grst_timeout; cnt++) {
1249 mdelay(100);
1250 reg = rd32(hw, GLGEN_RSTAT);
1251 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1252 break;
1253 }
1254
1255 if (cnt == grst_timeout) {
1256 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1257 return -EIO;
1258 }
1259
1260#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1261 GLNVM_ULD_PCIER_DONE_1_M |\
1262 GLNVM_ULD_CORER_DONE_M |\
1263 GLNVM_ULD_GLOBR_DONE_M |\
1264 GLNVM_ULD_POR_DONE_M |\
1265 GLNVM_ULD_POR_DONE_1_M |\
1266 GLNVM_ULD_PCIER_DONE_2_M)
1267
1268 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1269 GLNVM_ULD_PE_DONE_M : 0);
1270
1271 /* Device is Active; check Global Reset processes are done */
1272 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1273 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1274 if (reg == uld_mask) {
1275 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1276 break;
1277 }
1278 mdelay(10);
1279 }
1280
1281 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1282 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1283 reg);
1284 return -EIO;
1285 }
1286
1287 return 0;
1288}
1289
1290/**
1291 * ice_pf_reset - Reset the PF
1292 * @hw: pointer to the hardware structure
1293 *
1294 * If a global reset has been triggered, this function checks
1295 * for its completion and then issues the PF reset
1296 */
1297static int ice_pf_reset(struct ice_hw *hw)
1298{
1299 u32 cnt, reg;
1300
1301 /* If at function entry a global reset was already in progress, i.e.
1302 * state is not 'device active' or any of the reset done bits are not
1303 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1304 * global reset is done.
1305 */
1306 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1307 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1308 /* poll on global reset currently in progress until done */
1309 if (ice_check_reset(hw))
1310 return -EIO;
1311
1312 return 0;
1313 }
1314
1315 /* Reset the PF */
1316 reg = rd32(hw, PFGEN_CTRL);
1317
1318 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1319
1320 /* Wait for the PFR to complete. The wait time is the global config lock
1321 * timeout plus the PFR timeout which will account for a possible reset
1322 * that is occurring during a download package operation.
1323 */
1324 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1325 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1326 reg = rd32(hw, PFGEN_CTRL);
1327 if (!(reg & PFGEN_CTRL_PFSWR_M))
1328 break;
1329
1330 mdelay(1);
1331 }
1332
1333 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1334 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1335 return -EIO;
1336 }
1337
1338 return 0;
1339}
1340
1341/**
1342 * ice_reset - Perform different types of reset
1343 * @hw: pointer to the hardware structure
1344 * @req: reset request
1345 *
1346 * This function triggers a reset as specified by the req parameter.
1347 *
1348 * Note:
1349 * If anything other than a PF reset is triggered, PXE mode is restored.
1350 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1351 * interface has been restored in the rebuild flow.
1352 */
1353int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1354{
1355 u32 val = 0;
1356
1357 switch (req) {
1358 case ICE_RESET_PFR:
1359 return ice_pf_reset(hw);
1360 case ICE_RESET_CORER:
1361 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1362 val = GLGEN_RTRIG_CORER_M;
1363 break;
1364 case ICE_RESET_GLOBR:
1365 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1366 val = GLGEN_RTRIG_GLOBR_M;
1367 break;
1368 default:
1369 return -EINVAL;
1370 }
1371
1372 val |= rd32(hw, GLGEN_RTRIG);
1373 wr32(hw, GLGEN_RTRIG, val);
1374 ice_flush(hw);
1375
1376 /* wait for the FW to be ready */
1377 return ice_check_reset(hw);
1378}
1379
1380/**
1381 * ice_copy_rxq_ctx_to_hw
1382 * @hw: pointer to the hardware structure
1383 * @ice_rxq_ctx: pointer to the rxq context
1384 * @rxq_index: the index of the Rx queue
1385 *
1386 * Copies rxq context from dense structure to HW register space
1387 */
1388static int
1389ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1390{
1391 u8 i;
1392
1393 if (!ice_rxq_ctx)
1394 return -EINVAL;
1395
1396 if (rxq_index > QRX_CTRL_MAX_INDEX)
1397 return -EINVAL;
1398
1399 /* Copy each dword separately to HW */
1400 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1401 wr32(hw, QRX_CONTEXT(i, rxq_index),
1402 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1403
1404 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1405 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1406 }
1407
1408 return 0;
1409}
1410
1411/* LAN Rx Queue Context */
1412static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1413 /* Field Width LSB */
1414 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1415 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1416 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1417 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1418 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1419 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1420 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1421 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1422 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1423 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1424 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1425 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1426 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1427 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1428 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1429 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1430 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1431 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1432 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1433 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1434 { 0 }
1435};
1436
1437/**
1438 * ice_write_rxq_ctx
1439 * @hw: pointer to the hardware structure
1440 * @rlan_ctx: pointer to the rxq context
1441 * @rxq_index: the index of the Rx queue
1442 *
1443 * Converts rxq context from sparse to dense structure and then writes
1444 * it to HW register space and enables the hardware to prefetch descriptors
1445 * instead of only fetching them on demand
1446 */
1447int
1448ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1449 u32 rxq_index)
1450{
1451 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1452
1453 if (!rlan_ctx)
1454 return -EINVAL;
1455
1456 rlan_ctx->prefena = 1;
1457
1458 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1459 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1460}
1461
1462/* LAN Tx Queue Context */
1463const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1464 /* Field Width LSB */
1465 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1466 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1467 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1468 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1469 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1470 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1471 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1472 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1473 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1474 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1475 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1476 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1477 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1478 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1479 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1480 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1481 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1482 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1483 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1484 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1485 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1486 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1487 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1488 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1489 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1490 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1491 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1492 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
1493 { 0 }
1494};
1495
1496/* Sideband Queue command wrappers */
1497
1498/**
1499 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1500 * @hw: pointer to the HW struct
1501 * @desc: descriptor describing the command
1502 * @buf: buffer to use for indirect commands (NULL for direct commands)
1503 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1504 * @cd: pointer to command details structure
1505 */
1506static int
1507ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1508 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1509{
1510 return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1511 (struct ice_aq_desc *)desc, buf, buf_size, cd);
1512}
1513
1514/**
1515 * ice_sbq_rw_reg - Fill Sideband Queue command
1516 * @hw: pointer to the HW struct
1517 * @in: message info to be filled in descriptor
1518 */
1519int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1520{
1521 struct ice_sbq_cmd_desc desc = {0};
1522 struct ice_sbq_msg_req msg = {0};
1523 u16 msg_len;
1524 int status;
1525
1526 msg_len = sizeof(msg);
1527
1528 msg.dest_dev = in->dest_dev;
1529 msg.opcode = in->opcode;
1530 msg.flags = ICE_SBQ_MSG_FLAGS;
1531 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1532 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1533 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1534
1535 if (in->opcode)
1536 msg.data = cpu_to_le32(in->data);
1537 else
1538 /* data read comes back in completion, so shorten the struct by
1539 * sizeof(msg.data)
1540 */
1541 msg_len -= sizeof(msg.data);
1542
1543 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1544 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1545 desc.param0.cmd_len = cpu_to_le16(msg_len);
1546 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1547 if (!status && !in->opcode)
1548 in->data = le32_to_cpu
1549 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1550 return status;
1551}
1552
1553/* FW Admin Queue command wrappers */
1554
1555/* Software lock/mutex that is meant to be held while the Global Config Lock
1556 * in firmware is acquired by the software to prevent most (but not all) types
1557 * of AQ commands from being sent to FW
1558 */
1559DEFINE_MUTEX(ice_global_cfg_lock_sw);
1560
1561/**
1562 * ice_should_retry_sq_send_cmd
1563 * @opcode: AQ opcode
1564 *
1565 * Decide if we should retry the send command routine for the ATQ, depending
1566 * on the opcode.
1567 */
1568static bool ice_should_retry_sq_send_cmd(u16 opcode)
1569{
1570 switch (opcode) {
1571 case ice_aqc_opc_get_link_topo:
1572 case ice_aqc_opc_lldp_stop:
1573 case ice_aqc_opc_lldp_start:
1574 case ice_aqc_opc_lldp_filter_ctrl:
1575 return true;
1576 }
1577
1578 return false;
1579}
1580
1581/**
1582 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1583 * @hw: pointer to the HW struct
1584 * @cq: pointer to the specific Control queue
1585 * @desc: prefilled descriptor describing the command
1586 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1587 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1588 * @cd: pointer to command details structure
1589 *
1590 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1591 * Queue if the EBUSY AQ error is returned.
1592 */
1593static int
1594ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1595 struct ice_aq_desc *desc, void *buf, u16 buf_size,
1596 struct ice_sq_cd *cd)
1597{
1598 struct ice_aq_desc desc_cpy;
1599 bool is_cmd_for_retry;
1600 u8 *buf_cpy = NULL;
1601 u8 idx = 0;
1602 u16 opcode;
1603 int status;
1604
1605 opcode = le16_to_cpu(desc->opcode);
1606 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1607 memset(&desc_cpy, 0, sizeof(desc_cpy));
1608
1609 if (is_cmd_for_retry) {
1610 if (buf) {
1611 buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1612 if (!buf_cpy)
1613 return -ENOMEM;
1614 }
1615
1616 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1617 }
1618
1619 do {
1620 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1621
1622 if (!is_cmd_for_retry || !status ||
1623 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1624 break;
1625
1626 if (buf_cpy)
1627 memcpy(buf, buf_cpy, buf_size);
1628
1629 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1630
1631 mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1632
1633 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1634
1635 kfree(buf_cpy);
1636
1637 return status;
1638}
1639
1640/**
1641 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1642 * @hw: pointer to the HW struct
1643 * @desc: descriptor describing the command
1644 * @buf: buffer to use for indirect commands (NULL for direct commands)
1645 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1646 * @cd: pointer to command details structure
1647 *
1648 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1649 */
1650int
1651ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1652 u16 buf_size, struct ice_sq_cd *cd)
1653{
1654 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1655 bool lock_acquired = false;
1656 int status;
1657
1658 /* When a package download is in process (i.e. when the firmware's
1659 * Global Configuration Lock resource is held), only the Download
1660 * Package, Get Version, Get Package Info List, Upload Section,
1661 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1662 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1663 * Recipes to Profile Association, and Release Resource (with resource
1664 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1665 * must block until the package download completes and the Global Config
1666 * Lock is released. See also ice_acquire_global_cfg_lock().
1667 */
1668 switch (le16_to_cpu(desc->opcode)) {
1669 case ice_aqc_opc_download_pkg:
1670 case ice_aqc_opc_get_pkg_info_list:
1671 case ice_aqc_opc_get_ver:
1672 case ice_aqc_opc_upload_section:
1673 case ice_aqc_opc_update_pkg:
1674 case ice_aqc_opc_set_port_params:
1675 case ice_aqc_opc_get_vlan_mode_parameters:
1676 case ice_aqc_opc_set_vlan_mode_parameters:
1677 case ice_aqc_opc_add_recipe:
1678 case ice_aqc_opc_recipe_to_profile:
1679 case ice_aqc_opc_get_recipe:
1680 case ice_aqc_opc_get_recipe_to_profile:
1681 break;
1682 case ice_aqc_opc_release_res:
1683 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1684 break;
1685 fallthrough;
1686 default:
1687 mutex_lock(&ice_global_cfg_lock_sw);
1688 lock_acquired = true;
1689 break;
1690 }
1691
1692 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1693 if (lock_acquired)
1694 mutex_unlock(&ice_global_cfg_lock_sw);
1695
1696 return status;
1697}
1698
1699/**
1700 * ice_aq_get_fw_ver
1701 * @hw: pointer to the HW struct
1702 * @cd: pointer to command details structure or NULL
1703 *
1704 * Get the firmware version (0x0001) from the admin queue commands
1705 */
1706int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1707{
1708 struct ice_aqc_get_ver *resp;
1709 struct ice_aq_desc desc;
1710 int status;
1711
1712 resp = &desc.params.get_ver;
1713
1714 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1715
1716 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1717
1718 if (!status) {
1719 hw->fw_branch = resp->fw_branch;
1720 hw->fw_maj_ver = resp->fw_major;
1721 hw->fw_min_ver = resp->fw_minor;
1722 hw->fw_patch = resp->fw_patch;
1723 hw->fw_build = le32_to_cpu(resp->fw_build);
1724 hw->api_branch = resp->api_branch;
1725 hw->api_maj_ver = resp->api_major;
1726 hw->api_min_ver = resp->api_minor;
1727 hw->api_patch = resp->api_patch;
1728 }
1729
1730 return status;
1731}
1732
1733/**
1734 * ice_aq_send_driver_ver
1735 * @hw: pointer to the HW struct
1736 * @dv: driver's major, minor version
1737 * @cd: pointer to command details structure or NULL
1738 *
1739 * Send the driver version (0x0002) to the firmware
1740 */
1741int
1742ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1743 struct ice_sq_cd *cd)
1744{
1745 struct ice_aqc_driver_ver *cmd;
1746 struct ice_aq_desc desc;
1747 u16 len;
1748
1749 cmd = &desc.params.driver_ver;
1750
1751 if (!dv)
1752 return -EINVAL;
1753
1754 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1755
1756 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1757 cmd->major_ver = dv->major_ver;
1758 cmd->minor_ver = dv->minor_ver;
1759 cmd->build_ver = dv->build_ver;
1760 cmd->subbuild_ver = dv->subbuild_ver;
1761
1762 len = 0;
1763 while (len < sizeof(dv->driver_string) &&
1764 isascii(dv->driver_string[len]) && dv->driver_string[len])
1765 len++;
1766
1767 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1768}
1769
1770/**
1771 * ice_aq_q_shutdown
1772 * @hw: pointer to the HW struct
1773 * @unloading: is the driver unloading itself
1774 *
1775 * Tell the Firmware that we're shutting down the AdminQ and whether
1776 * or not the driver is unloading as well (0x0003).
1777 */
1778int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1779{
1780 struct ice_aqc_q_shutdown *cmd;
1781 struct ice_aq_desc desc;
1782
1783 cmd = &desc.params.q_shutdown;
1784
1785 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1786
1787 if (unloading)
1788 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1789
1790 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1791}
1792
1793/**
1794 * ice_aq_req_res
1795 * @hw: pointer to the HW struct
1796 * @res: resource ID
1797 * @access: access type
1798 * @sdp_number: resource number
1799 * @timeout: the maximum time in ms that the driver may hold the resource
1800 * @cd: pointer to command details structure or NULL
1801 *
1802 * Requests common resource using the admin queue commands (0x0008).
1803 * When attempting to acquire the Global Config Lock, the driver can
1804 * learn of three states:
1805 * 1) 0 - acquired lock, and can perform download package
1806 * 2) -EIO - did not get lock, driver should fail to load
1807 * 3) -EALREADY - did not get lock, but another driver has
1808 * successfully downloaded the package; the driver does
1809 * not have to download the package and can continue
1810 * loading
1811 *
1812 * Note that if the caller is in an acquire lock, perform action, release lock
1813 * phase of operation, it is possible that the FW may detect a timeout and issue
1814 * a CORER. In this case, the driver will receive a CORER interrupt and will
1815 * have to determine its cause. The calling thread that is handling this flow
1816 * will likely get an error propagated back to it indicating the Download
1817 * Package, Update Package or the Release Resource AQ commands timed out.
1818 */
1819static int
1820ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1821 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1822 struct ice_sq_cd *cd)
1823{
1824 struct ice_aqc_req_res *cmd_resp;
1825 struct ice_aq_desc desc;
1826 int status;
1827
1828 cmd_resp = &desc.params.res_owner;
1829
1830 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1831
1832 cmd_resp->res_id = cpu_to_le16(res);
1833 cmd_resp->access_type = cpu_to_le16(access);
1834 cmd_resp->res_number = cpu_to_le32(sdp_number);
1835 cmd_resp->timeout = cpu_to_le32(*timeout);
1836 *timeout = 0;
1837
1838 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1839
1840 /* The completion specifies the maximum time in ms that the driver
1841 * may hold the resource in the Timeout field.
1842 */
1843
1844 /* Global config lock response utilizes an additional status field.
1845 *
1846 * If the Global config lock resource is held by some other driver, the
1847 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1848 * and the timeout field indicates the maximum time the current owner
1849 * of the resource has to free it.
1850 */
1851 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1852 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1853 *timeout = le32_to_cpu(cmd_resp->timeout);
1854 return 0;
1855 } else if (le16_to_cpu(cmd_resp->status) ==
1856 ICE_AQ_RES_GLBL_IN_PROG) {
1857 *timeout = le32_to_cpu(cmd_resp->timeout);
1858 return -EIO;
1859 } else if (le16_to_cpu(cmd_resp->status) ==
1860 ICE_AQ_RES_GLBL_DONE) {
1861 return -EALREADY;
1862 }
1863
1864 /* invalid FW response, force a timeout immediately */
1865 *timeout = 0;
1866 return -EIO;
1867 }
1868
1869 /* If the resource is held by some other driver, the command completes
1870 * with a busy return value and the timeout field indicates the maximum
1871 * time the current owner of the resource has to free it.
1872 */
1873 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1874 *timeout = le32_to_cpu(cmd_resp->timeout);
1875
1876 return status;
1877}
1878
1879/**
1880 * ice_aq_release_res
1881 * @hw: pointer to the HW struct
1882 * @res: resource ID
1883 * @sdp_number: resource number
1884 * @cd: pointer to command details structure or NULL
1885 *
1886 * release common resource using the admin queue commands (0x0009)
1887 */
1888static int
1889ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1890 struct ice_sq_cd *cd)
1891{
1892 struct ice_aqc_req_res *cmd;
1893 struct ice_aq_desc desc;
1894
1895 cmd = &desc.params.res_owner;
1896
1897 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1898
1899 cmd->res_id = cpu_to_le16(res);
1900 cmd->res_number = cpu_to_le32(sdp_number);
1901
1902 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1903}
1904
1905/**
1906 * ice_acquire_res
1907 * @hw: pointer to the HW structure
1908 * @res: resource ID
1909 * @access: access type (read or write)
1910 * @timeout: timeout in milliseconds
1911 *
1912 * This function will attempt to acquire the ownership of a resource.
1913 */
1914int
1915ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1916 enum ice_aq_res_access_type access, u32 timeout)
1917{
1918#define ICE_RES_POLLING_DELAY_MS 10
1919 u32 delay = ICE_RES_POLLING_DELAY_MS;
1920 u32 time_left = timeout;
1921 int status;
1922
1923 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1924
1925 /* A return code of -EALREADY means that another driver has
1926 * previously acquired the resource and performed any necessary updates;
1927 * in this case the caller does not obtain the resource and has no
1928 * further work to do.
1929 */
1930 if (status == -EALREADY)
1931 goto ice_acquire_res_exit;
1932
1933 if (status)
1934 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1935
1936 /* If necessary, poll until the current lock owner timeouts */
1937 timeout = time_left;
1938 while (status && timeout && time_left) {
1939 mdelay(delay);
1940 timeout = (timeout > delay) ? timeout - delay : 0;
1941 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1942
1943 if (status == -EALREADY)
1944 /* lock free, but no work to do */
1945 break;
1946
1947 if (!status)
1948 /* lock acquired */
1949 break;
1950 }
1951 if (status && status != -EALREADY)
1952 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1953
1954ice_acquire_res_exit:
1955 if (status == -EALREADY) {
1956 if (access == ICE_RES_WRITE)
1957 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1958 else
1959 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1960 }
1961 return status;
1962}
1963
1964/**
1965 * ice_release_res
1966 * @hw: pointer to the HW structure
1967 * @res: resource ID
1968 *
1969 * This function will release a resource using the proper Admin Command.
1970 */
1971void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1972{
1973 u32 total_delay = 0;
1974 int status;
1975
1976 status = ice_aq_release_res(hw, res, 0, NULL);
1977
1978 /* there are some rare cases when trying to release the resource
1979 * results in an admin queue timeout, so handle them correctly
1980 */
1981 while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) {
1982 mdelay(1);
1983 status = ice_aq_release_res(hw, res, 0, NULL);
1984 total_delay++;
1985 }
1986}
1987
1988/**
1989 * ice_aq_alloc_free_res - command to allocate/free resources
1990 * @hw: pointer to the HW struct
1991 * @num_entries: number of resource entries in buffer
1992 * @buf: Indirect buffer to hold data parameters and response
1993 * @buf_size: size of buffer for indirect commands
1994 * @opc: pass in the command opcode
1995 * @cd: pointer to command details structure or NULL
1996 *
1997 * Helper function to allocate/free resources using the admin queue commands
1998 */
1999int
2000ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2001 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2002 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2003{
2004 struct ice_aqc_alloc_free_res_cmd *cmd;
2005 struct ice_aq_desc desc;
2006
2007 cmd = &desc.params.sw_res_ctrl;
2008
2009 if (!buf)
2010 return -EINVAL;
2011
2012 if (buf_size < flex_array_size(buf, elem, num_entries))
2013 return -EINVAL;
2014
2015 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2016
2017 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2018
2019 cmd->num_entries = cpu_to_le16(num_entries);
2020
2021 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2022}
2023
2024/**
2025 * ice_alloc_hw_res - allocate resource
2026 * @hw: pointer to the HW struct
2027 * @type: type of resource
2028 * @num: number of resources to allocate
2029 * @btm: allocate from bottom
2030 * @res: pointer to array that will receive the resources
2031 */
2032int
2033ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2034{
2035 struct ice_aqc_alloc_free_res_elem *buf;
2036 u16 buf_len;
2037 int status;
2038
2039 buf_len = struct_size(buf, elem, num);
2040 buf = kzalloc(buf_len, GFP_KERNEL);
2041 if (!buf)
2042 return -ENOMEM;
2043
2044 /* Prepare buffer to allocate resource. */
2045 buf->num_elems = cpu_to_le16(num);
2046 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2047 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2048 if (btm)
2049 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2050
2051 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2052 ice_aqc_opc_alloc_res, NULL);
2053 if (status)
2054 goto ice_alloc_res_exit;
2055
2056 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2057
2058ice_alloc_res_exit:
2059 kfree(buf);
2060 return status;
2061}
2062
2063/**
2064 * ice_free_hw_res - free allocated HW resource
2065 * @hw: pointer to the HW struct
2066 * @type: type of resource to free
2067 * @num: number of resources
2068 * @res: pointer to array that contains the resources to free
2069 */
2070int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2071{
2072 struct ice_aqc_alloc_free_res_elem *buf;
2073 u16 buf_len;
2074 int status;
2075
2076 buf_len = struct_size(buf, elem, num);
2077 buf = kzalloc(buf_len, GFP_KERNEL);
2078 if (!buf)
2079 return -ENOMEM;
2080
2081 /* Prepare buffer to free resource. */
2082 buf->num_elems = cpu_to_le16(num);
2083 buf->res_type = cpu_to_le16(type);
2084 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2085
2086 status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2087 ice_aqc_opc_free_res, NULL);
2088 if (status)
2089 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2090
2091 kfree(buf);
2092 return status;
2093}
2094
2095/**
2096 * ice_get_num_per_func - determine number of resources per PF
2097 * @hw: pointer to the HW structure
2098 * @max: value to be evenly split between each PF
2099 *
2100 * Determine the number of valid functions by going through the bitmap returned
2101 * from parsing capabilities and use this to calculate the number of resources
2102 * per PF based on the max value passed in.
2103 */
2104static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2105{
2106 u8 funcs;
2107
2108#define ICE_CAPS_VALID_FUNCS_M 0xFF
2109 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2110 ICE_CAPS_VALID_FUNCS_M);
2111
2112 if (!funcs)
2113 return 0;
2114
2115 return max / funcs;
2116}
2117
2118/**
2119 * ice_parse_common_caps - parse common device/function capabilities
2120 * @hw: pointer to the HW struct
2121 * @caps: pointer to common capabilities structure
2122 * @elem: the capability element to parse
2123 * @prefix: message prefix for tracing capabilities
2124 *
2125 * Given a capability element, extract relevant details into the common
2126 * capability structure.
2127 *
2128 * Returns: true if the capability matches one of the common capability ids,
2129 * false otherwise.
2130 */
2131static bool
2132ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2133 struct ice_aqc_list_caps_elem *elem, const char *prefix)
2134{
2135 u32 logical_id = le32_to_cpu(elem->logical_id);
2136 u32 phys_id = le32_to_cpu(elem->phys_id);
2137 u32 number = le32_to_cpu(elem->number);
2138 u16 cap = le16_to_cpu(elem->cap);
2139 bool found = true;
2140
2141 switch (cap) {
2142 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2143 caps->valid_functions = number;
2144 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2145 caps->valid_functions);
2146 break;
2147 case ICE_AQC_CAPS_SRIOV:
2148 caps->sr_iov_1_1 = (number == 1);
2149 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2150 caps->sr_iov_1_1);
2151 break;
2152 case ICE_AQC_CAPS_DCB:
2153 caps->dcb = (number == 1);
2154 caps->active_tc_bitmap = logical_id;
2155 caps->maxtc = phys_id;
2156 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2157 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2158 caps->active_tc_bitmap);
2159 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2160 break;
2161 case ICE_AQC_CAPS_RSS:
2162 caps->rss_table_size = number;
2163 caps->rss_table_entry_width = logical_id;
2164 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2165 caps->rss_table_size);
2166 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2167 caps->rss_table_entry_width);
2168 break;
2169 case ICE_AQC_CAPS_RXQS:
2170 caps->num_rxq = number;
2171 caps->rxq_first_id = phys_id;
2172 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2173 caps->num_rxq);
2174 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2175 caps->rxq_first_id);
2176 break;
2177 case ICE_AQC_CAPS_TXQS:
2178 caps->num_txq = number;
2179 caps->txq_first_id = phys_id;
2180 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2181 caps->num_txq);
2182 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2183 caps->txq_first_id);
2184 break;
2185 case ICE_AQC_CAPS_MSIX:
2186 caps->num_msix_vectors = number;
2187 caps->msix_vector_first_id = phys_id;
2188 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2189 caps->num_msix_vectors);
2190 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2191 caps->msix_vector_first_id);
2192 break;
2193 case ICE_AQC_CAPS_PENDING_NVM_VER:
2194 caps->nvm_update_pending_nvm = true;
2195 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2196 break;
2197 case ICE_AQC_CAPS_PENDING_OROM_VER:
2198 caps->nvm_update_pending_orom = true;
2199 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2200 break;
2201 case ICE_AQC_CAPS_PENDING_NET_VER:
2202 caps->nvm_update_pending_netlist = true;
2203 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2204 break;
2205 case ICE_AQC_CAPS_NVM_MGMT:
2206 caps->nvm_unified_update =
2207 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2208 true : false;
2209 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2210 caps->nvm_unified_update);
2211 break;
2212 case ICE_AQC_CAPS_RDMA:
2213 caps->rdma = (number == 1);
2214 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2215 break;
2216 case ICE_AQC_CAPS_MAX_MTU:
2217 caps->max_mtu = number;
2218 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2219 prefix, caps->max_mtu);
2220 break;
2221 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2222 caps->pcie_reset_avoidance = (number > 0);
2223 ice_debug(hw, ICE_DBG_INIT,
2224 "%s: pcie_reset_avoidance = %d\n", prefix,
2225 caps->pcie_reset_avoidance);
2226 break;
2227 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2228 caps->reset_restrict_support = (number == 1);
2229 ice_debug(hw, ICE_DBG_INIT,
2230 "%s: reset_restrict_support = %d\n", prefix,
2231 caps->reset_restrict_support);
2232 break;
2233 default:
2234 /* Not one of the recognized common capabilities */
2235 found = false;
2236 }
2237
2238 return found;
2239}
2240
2241/**
2242 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2243 * @hw: pointer to the HW structure
2244 * @caps: pointer to capabilities structure to fix
2245 *
2246 * Re-calculate the capabilities that are dependent on the number of physical
2247 * ports; i.e. some features are not supported or function differently on
2248 * devices with more than 4 ports.
2249 */
2250static void
2251ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2252{
2253 /* This assumes device capabilities are always scanned before function
2254 * capabilities during the initialization flow.
2255 */
2256 if (hw->dev_caps.num_funcs > 4) {
2257 /* Max 4 TCs per port */
2258 caps->maxtc = 4;
2259 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2260 caps->maxtc);
2261 if (caps->rdma) {
2262 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2263 caps->rdma = 0;
2264 }
2265
2266 /* print message only when processing device capabilities
2267 * during initialization.
2268 */
2269 if (caps == &hw->dev_caps.common_cap)
2270 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2271 }
2272}
2273
2274/**
2275 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2276 * @hw: pointer to the HW struct
2277 * @func_p: pointer to function capabilities structure
2278 * @cap: pointer to the capability element to parse
2279 *
2280 * Extract function capabilities for ICE_AQC_CAPS_VF.
2281 */
2282static void
2283ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2284 struct ice_aqc_list_caps_elem *cap)
2285{
2286 u32 logical_id = le32_to_cpu(cap->logical_id);
2287 u32 number = le32_to_cpu(cap->number);
2288
2289 func_p->num_allocd_vfs = number;
2290 func_p->vf_base_id = logical_id;
2291 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2292 func_p->num_allocd_vfs);
2293 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2294 func_p->vf_base_id);
2295}
2296
2297/**
2298 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2299 * @hw: pointer to the HW struct
2300 * @func_p: pointer to function capabilities structure
2301 * @cap: pointer to the capability element to parse
2302 *
2303 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2304 */
2305static void
2306ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2307 struct ice_aqc_list_caps_elem *cap)
2308{
2309 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2310 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2311 le32_to_cpu(cap->number));
2312 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2313 func_p->guar_num_vsi);
2314}
2315
2316/**
2317 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2318 * @hw: pointer to the HW struct
2319 * @func_p: pointer to function capabilities structure
2320 * @cap: pointer to the capability element to parse
2321 *
2322 * Extract function capabilities for ICE_AQC_CAPS_1588.
2323 */
2324static void
2325ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2326 struct ice_aqc_list_caps_elem *cap)
2327{
2328 struct ice_ts_func_info *info = &func_p->ts_func_info;
2329 u32 number = le32_to_cpu(cap->number);
2330
2331 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2332 func_p->common_cap.ieee_1588 = info->ena;
2333
2334 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2335 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2336 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2337 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2338
2339 info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2340 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2341
2342 if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2343 info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2344 } else {
2345 /* Unknown clock frequency, so assume a (probably incorrect)
2346 * default to avoid out-of-bounds look ups of frequency
2347 * related information.
2348 */
2349 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2350 info->clk_freq);
2351 info->time_ref = ICE_TIME_REF_FREQ_25_000;
2352 }
2353
2354 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2355 func_p->common_cap.ieee_1588);
2356 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2357 info->src_tmr_owned);
2358 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2359 info->tmr_ena);
2360 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2361 info->tmr_index_owned);
2362 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2363 info->tmr_index_assoc);
2364 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2365 info->clk_freq);
2366 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2367 info->clk_src);
2368}
2369
2370/**
2371 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2372 * @hw: pointer to the HW struct
2373 * @func_p: pointer to function capabilities structure
2374 *
2375 * Extract function capabilities for ICE_AQC_CAPS_FD.
2376 */
2377static void
2378ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2379{
2380 u32 reg_val, val;
2381
2382 reg_val = rd32(hw, GLQF_FD_SIZE);
2383 val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2384 GLQF_FD_SIZE_FD_GSIZE_S;
2385 func_p->fd_fltr_guar =
2386 ice_get_num_per_func(hw, val);
2387 val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2388 GLQF_FD_SIZE_FD_BSIZE_S;
2389 func_p->fd_fltr_best_effort = val;
2390
2391 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2392 func_p->fd_fltr_guar);
2393 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2394 func_p->fd_fltr_best_effort);
2395}
2396
2397/**
2398 * ice_parse_func_caps - Parse function capabilities
2399 * @hw: pointer to the HW struct
2400 * @func_p: pointer to function capabilities structure
2401 * @buf: buffer containing the function capability records
2402 * @cap_count: the number of capabilities
2403 *
2404 * Helper function to parse function (0x000A) capabilities list. For
2405 * capabilities shared between device and function, this relies on
2406 * ice_parse_common_caps.
2407 *
2408 * Loop through the list of provided capabilities and extract the relevant
2409 * data into the function capabilities structured.
2410 */
2411static void
2412ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2413 void *buf, u32 cap_count)
2414{
2415 struct ice_aqc_list_caps_elem *cap_resp;
2416 u32 i;
2417
2418 cap_resp = buf;
2419
2420 memset(func_p, 0, sizeof(*func_p));
2421
2422 for (i = 0; i < cap_count; i++) {
2423 u16 cap = le16_to_cpu(cap_resp[i].cap);
2424 bool found;
2425
2426 found = ice_parse_common_caps(hw, &func_p->common_cap,
2427 &cap_resp[i], "func caps");
2428
2429 switch (cap) {
2430 case ICE_AQC_CAPS_VF:
2431 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2432 break;
2433 case ICE_AQC_CAPS_VSI:
2434 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2435 break;
2436 case ICE_AQC_CAPS_1588:
2437 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2438 break;
2439 case ICE_AQC_CAPS_FD:
2440 ice_parse_fdir_func_caps(hw, func_p);
2441 break;
2442 default:
2443 /* Don't list common capabilities as unknown */
2444 if (!found)
2445 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2446 i, cap);
2447 break;
2448 }
2449 }
2450
2451 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2452}
2453
2454/**
2455 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2456 * @hw: pointer to the HW struct
2457 * @dev_p: pointer to device capabilities structure
2458 * @cap: capability element to parse
2459 *
2460 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2461 */
2462static void
2463ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2464 struct ice_aqc_list_caps_elem *cap)
2465{
2466 u32 number = le32_to_cpu(cap->number);
2467
2468 dev_p->num_funcs = hweight32(number);
2469 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2470 dev_p->num_funcs);
2471}
2472
2473/**
2474 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2475 * @hw: pointer to the HW struct
2476 * @dev_p: pointer to device capabilities structure
2477 * @cap: capability element to parse
2478 *
2479 * Parse ICE_AQC_CAPS_VF for device capabilities.
2480 */
2481static void
2482ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2483 struct ice_aqc_list_caps_elem *cap)
2484{
2485 u32 number = le32_to_cpu(cap->number);
2486
2487 dev_p->num_vfs_exposed = number;
2488 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2489 dev_p->num_vfs_exposed);
2490}
2491
2492/**
2493 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2494 * @hw: pointer to the HW struct
2495 * @dev_p: pointer to device capabilities structure
2496 * @cap: capability element to parse
2497 *
2498 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2499 */
2500static void
2501ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2502 struct ice_aqc_list_caps_elem *cap)
2503{
2504 u32 number = le32_to_cpu(cap->number);
2505
2506 dev_p->num_vsi_allocd_to_host = number;
2507 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2508 dev_p->num_vsi_allocd_to_host);
2509}
2510
2511/**
2512 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2513 * @hw: pointer to the HW struct
2514 * @dev_p: pointer to device capabilities structure
2515 * @cap: capability element to parse
2516 *
2517 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2518 */
2519static void
2520ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2521 struct ice_aqc_list_caps_elem *cap)
2522{
2523 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2524 u32 logical_id = le32_to_cpu(cap->logical_id);
2525 u32 phys_id = le32_to_cpu(cap->phys_id);
2526 u32 number = le32_to_cpu(cap->number);
2527
2528 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2529 dev_p->common_cap.ieee_1588 = info->ena;
2530
2531 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2532 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2533 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2534
2535 info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2536 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2537 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2538
2539 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2540
2541 info->ena_ports = logical_id;
2542 info->tmr_own_map = phys_id;
2543
2544 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2545 dev_p->common_cap.ieee_1588);
2546 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2547 info->tmr0_owner);
2548 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2549 info->tmr0_owned);
2550 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2551 info->tmr0_ena);
2552 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2553 info->tmr1_owner);
2554 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2555 info->tmr1_owned);
2556 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2557 info->tmr1_ena);
2558 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2559 info->ts_ll_read);
2560 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2561 info->ena_ports);
2562 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2563 info->tmr_own_map);
2564}
2565
2566/**
2567 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2568 * @hw: pointer to the HW struct
2569 * @dev_p: pointer to device capabilities structure
2570 * @cap: capability element to parse
2571 *
2572 * Parse ICE_AQC_CAPS_FD for device capabilities.
2573 */
2574static void
2575ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2576 struct ice_aqc_list_caps_elem *cap)
2577{
2578 u32 number = le32_to_cpu(cap->number);
2579
2580 dev_p->num_flow_director_fltr = number;
2581 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2582 dev_p->num_flow_director_fltr);
2583}
2584
2585/**
2586 * ice_parse_dev_caps - Parse device capabilities
2587 * @hw: pointer to the HW struct
2588 * @dev_p: pointer to device capabilities structure
2589 * @buf: buffer containing the device capability records
2590 * @cap_count: the number of capabilities
2591 *
2592 * Helper device to parse device (0x000B) capabilities list. For
2593 * capabilities shared between device and function, this relies on
2594 * ice_parse_common_caps.
2595 *
2596 * Loop through the list of provided capabilities and extract the relevant
2597 * data into the device capabilities structured.
2598 */
2599static void
2600ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2601 void *buf, u32 cap_count)
2602{
2603 struct ice_aqc_list_caps_elem *cap_resp;
2604 u32 i;
2605
2606 cap_resp = buf;
2607
2608 memset(dev_p, 0, sizeof(*dev_p));
2609
2610 for (i = 0; i < cap_count; i++) {
2611 u16 cap = le16_to_cpu(cap_resp[i].cap);
2612 bool found;
2613
2614 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2615 &cap_resp[i], "dev caps");
2616
2617 switch (cap) {
2618 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2619 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2620 break;
2621 case ICE_AQC_CAPS_VF:
2622 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2623 break;
2624 case ICE_AQC_CAPS_VSI:
2625 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2626 break;
2627 case ICE_AQC_CAPS_1588:
2628 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2629 break;
2630 case ICE_AQC_CAPS_FD:
2631 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2632 break;
2633 default:
2634 /* Don't list common capabilities as unknown */
2635 if (!found)
2636 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2637 i, cap);
2638 break;
2639 }
2640 }
2641
2642 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2643}
2644
2645/**
2646 * ice_aq_list_caps - query function/device capabilities
2647 * @hw: pointer to the HW struct
2648 * @buf: a buffer to hold the capabilities
2649 * @buf_size: size of the buffer
2650 * @cap_count: if not NULL, set to the number of capabilities reported
2651 * @opc: capabilities type to discover, device or function
2652 * @cd: pointer to command details structure or NULL
2653 *
2654 * Get the function (0x000A) or device (0x000B) capabilities description from
2655 * firmware and store it in the buffer.
2656 *
2657 * If the cap_count pointer is not NULL, then it is set to the number of
2658 * capabilities firmware will report. Note that if the buffer size is too
2659 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2660 * cap_count will still be updated in this case. It is recommended that the
2661 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2662 * firmware could return) to avoid this.
2663 */
2664int
2665ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2666 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2667{
2668 struct ice_aqc_list_caps *cmd;
2669 struct ice_aq_desc desc;
2670 int status;
2671
2672 cmd = &desc.params.get_cap;
2673
2674 if (opc != ice_aqc_opc_list_func_caps &&
2675 opc != ice_aqc_opc_list_dev_caps)
2676 return -EINVAL;
2677
2678 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2679 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2680
2681 if (cap_count)
2682 *cap_count = le32_to_cpu(cmd->count);
2683
2684 return status;
2685}
2686
2687/**
2688 * ice_discover_dev_caps - Read and extract device capabilities
2689 * @hw: pointer to the hardware structure
2690 * @dev_caps: pointer to device capabilities structure
2691 *
2692 * Read the device capabilities and extract them into the dev_caps structure
2693 * for later use.
2694 */
2695int
2696ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2697{
2698 u32 cap_count = 0;
2699 void *cbuf;
2700 int status;
2701
2702 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2703 if (!cbuf)
2704 return -ENOMEM;
2705
2706 /* Although the driver doesn't know the number of capabilities the
2707 * device will return, we can simply send a 4KB buffer, the maximum
2708 * possible size that firmware can return.
2709 */
2710 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2711
2712 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2713 ice_aqc_opc_list_dev_caps, NULL);
2714 if (!status)
2715 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2716 kfree(cbuf);
2717
2718 return status;
2719}
2720
2721/**
2722 * ice_discover_func_caps - Read and extract function capabilities
2723 * @hw: pointer to the hardware structure
2724 * @func_caps: pointer to function capabilities structure
2725 *
2726 * Read the function capabilities and extract them into the func_caps structure
2727 * for later use.
2728 */
2729static int
2730ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2731{
2732 u32 cap_count = 0;
2733 void *cbuf;
2734 int status;
2735
2736 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2737 if (!cbuf)
2738 return -ENOMEM;
2739
2740 /* Although the driver doesn't know the number of capabilities the
2741 * device will return, we can simply send a 4KB buffer, the maximum
2742 * possible size that firmware can return.
2743 */
2744 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2745
2746 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2747 ice_aqc_opc_list_func_caps, NULL);
2748 if (!status)
2749 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2750 kfree(cbuf);
2751
2752 return status;
2753}
2754
2755/**
2756 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2757 * @hw: pointer to the hardware structure
2758 */
2759void ice_set_safe_mode_caps(struct ice_hw *hw)
2760{
2761 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2762 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2763 struct ice_hw_common_caps cached_caps;
2764 u32 num_funcs;
2765
2766 /* cache some func_caps values that should be restored after memset */
2767 cached_caps = func_caps->common_cap;
2768
2769 /* unset func capabilities */
2770 memset(func_caps, 0, sizeof(*func_caps));
2771
2772#define ICE_RESTORE_FUNC_CAP(name) \
2773 func_caps->common_cap.name = cached_caps.name
2774
2775 /* restore cached values */
2776 ICE_RESTORE_FUNC_CAP(valid_functions);
2777 ICE_RESTORE_FUNC_CAP(txq_first_id);
2778 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2779 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2780 ICE_RESTORE_FUNC_CAP(max_mtu);
2781 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2782 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2783 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2784 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2785
2786 /* one Tx and one Rx queue in safe mode */
2787 func_caps->common_cap.num_rxq = 1;
2788 func_caps->common_cap.num_txq = 1;
2789
2790 /* two MSIX vectors, one for traffic and one for misc causes */
2791 func_caps->common_cap.num_msix_vectors = 2;
2792 func_caps->guar_num_vsi = 1;
2793
2794 /* cache some dev_caps values that should be restored after memset */
2795 cached_caps = dev_caps->common_cap;
2796 num_funcs = dev_caps->num_funcs;
2797
2798 /* unset dev capabilities */
2799 memset(dev_caps, 0, sizeof(*dev_caps));
2800
2801#define ICE_RESTORE_DEV_CAP(name) \
2802 dev_caps->common_cap.name = cached_caps.name
2803
2804 /* restore cached values */
2805 ICE_RESTORE_DEV_CAP(valid_functions);
2806 ICE_RESTORE_DEV_CAP(txq_first_id);
2807 ICE_RESTORE_DEV_CAP(rxq_first_id);
2808 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2809 ICE_RESTORE_DEV_CAP(max_mtu);
2810 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2811 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2812 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2813 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2814 dev_caps->num_funcs = num_funcs;
2815
2816 /* one Tx and one Rx queue per function in safe mode */
2817 dev_caps->common_cap.num_rxq = num_funcs;
2818 dev_caps->common_cap.num_txq = num_funcs;
2819
2820 /* two MSIX vectors per function */
2821 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2822}
2823
2824/**
2825 * ice_get_caps - get info about the HW
2826 * @hw: pointer to the hardware structure
2827 */
2828int ice_get_caps(struct ice_hw *hw)
2829{
2830 int status;
2831
2832 status = ice_discover_dev_caps(hw, &hw->dev_caps);
2833 if (status)
2834 return status;
2835
2836 return ice_discover_func_caps(hw, &hw->func_caps);
2837}
2838
2839/**
2840 * ice_aq_manage_mac_write - manage MAC address write command
2841 * @hw: pointer to the HW struct
2842 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2843 * @flags: flags to control write behavior
2844 * @cd: pointer to command details structure or NULL
2845 *
2846 * This function is used to write MAC address to the NVM (0x0108).
2847 */
2848int
2849ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2850 struct ice_sq_cd *cd)
2851{
2852 struct ice_aqc_manage_mac_write *cmd;
2853 struct ice_aq_desc desc;
2854
2855 cmd = &desc.params.mac_write;
2856 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2857
2858 cmd->flags = flags;
2859 ether_addr_copy(cmd->mac_addr, mac_addr);
2860
2861 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2862}
2863
2864/**
2865 * ice_aq_clear_pxe_mode
2866 * @hw: pointer to the HW struct
2867 *
2868 * Tell the firmware that the driver is taking over from PXE (0x0110).
2869 */
2870static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2871{
2872 struct ice_aq_desc desc;
2873
2874 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2875 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2876
2877 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2878}
2879
2880/**
2881 * ice_clear_pxe_mode - clear pxe operations mode
2882 * @hw: pointer to the HW struct
2883 *
2884 * Make sure all PXE mode settings are cleared, including things
2885 * like descriptor fetch/write-back mode.
2886 */
2887void ice_clear_pxe_mode(struct ice_hw *hw)
2888{
2889 if (ice_check_sq_alive(hw, &hw->adminq))
2890 ice_aq_clear_pxe_mode(hw);
2891}
2892
2893/**
2894 * ice_aq_set_port_params - set physical port parameters.
2895 * @pi: pointer to the port info struct
2896 * @double_vlan: if set double VLAN is enabled
2897 * @cd: pointer to command details structure or NULL
2898 *
2899 * Set Physical port parameters (0x0203)
2900 */
2901int
2902ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2903 struct ice_sq_cd *cd)
2904
2905{
2906 struct ice_aqc_set_port_params *cmd;
2907 struct ice_hw *hw = pi->hw;
2908 struct ice_aq_desc desc;
2909 u16 cmd_flags = 0;
2910
2911 cmd = &desc.params.set_port_params;
2912
2913 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2914 if (double_vlan)
2915 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2916 cmd->cmd_flags = cpu_to_le16(cmd_flags);
2917
2918 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2919}
2920
2921/**
2922 * ice_is_100m_speed_supported
2923 * @hw: pointer to the HW struct
2924 *
2925 * returns true if 100M speeds are supported by the device,
2926 * false otherwise.
2927 */
2928bool ice_is_100m_speed_supported(struct ice_hw *hw)
2929{
2930 switch (hw->device_id) {
2931 case ICE_DEV_ID_E822C_SGMII:
2932 case ICE_DEV_ID_E822L_SGMII:
2933 case ICE_DEV_ID_E823L_1GBE:
2934 case ICE_DEV_ID_E823C_SGMII:
2935 return true;
2936 default:
2937 return false;
2938 }
2939}
2940
2941/**
2942 * ice_get_link_speed_based_on_phy_type - returns link speed
2943 * @phy_type_low: lower part of phy_type
2944 * @phy_type_high: higher part of phy_type
2945 *
2946 * This helper function will convert an entry in PHY type structure
2947 * [phy_type_low, phy_type_high] to its corresponding link speed.
2948 * Note: In the structure of [phy_type_low, phy_type_high], there should
2949 * be one bit set, as this function will convert one PHY type to its
2950 * speed.
2951 * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2952 * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2953 */
2954static u16
2955ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2956{
2957 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2958 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2959
2960 switch (phy_type_low) {
2961 case ICE_PHY_TYPE_LOW_100BASE_TX:
2962 case ICE_PHY_TYPE_LOW_100M_SGMII:
2963 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2964 break;
2965 case ICE_PHY_TYPE_LOW_1000BASE_T:
2966 case ICE_PHY_TYPE_LOW_1000BASE_SX:
2967 case ICE_PHY_TYPE_LOW_1000BASE_LX:
2968 case ICE_PHY_TYPE_LOW_1000BASE_KX:
2969 case ICE_PHY_TYPE_LOW_1G_SGMII:
2970 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2971 break;
2972 case ICE_PHY_TYPE_LOW_2500BASE_T:
2973 case ICE_PHY_TYPE_LOW_2500BASE_X:
2974 case ICE_PHY_TYPE_LOW_2500BASE_KX:
2975 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2976 break;
2977 case ICE_PHY_TYPE_LOW_5GBASE_T:
2978 case ICE_PHY_TYPE_LOW_5GBASE_KR:
2979 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2980 break;
2981 case ICE_PHY_TYPE_LOW_10GBASE_T:
2982 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2983 case ICE_PHY_TYPE_LOW_10GBASE_SR:
2984 case ICE_PHY_TYPE_LOW_10GBASE_LR:
2985 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2986 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2987 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2988 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2989 break;
2990 case ICE_PHY_TYPE_LOW_25GBASE_T:
2991 case ICE_PHY_TYPE_LOW_25GBASE_CR:
2992 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2993 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2994 case ICE_PHY_TYPE_LOW_25GBASE_SR:
2995 case ICE_PHY_TYPE_LOW_25GBASE_LR:
2996 case ICE_PHY_TYPE_LOW_25GBASE_KR:
2997 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2998 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2999 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3000 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3001 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3002 break;
3003 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3004 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3005 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3006 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3007 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3008 case ICE_PHY_TYPE_LOW_40G_XLAUI:
3009 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3010 break;
3011 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3012 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3013 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3014 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3015 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3016 case ICE_PHY_TYPE_LOW_50G_LAUI2:
3017 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3018 case ICE_PHY_TYPE_LOW_50G_AUI2:
3019 case ICE_PHY_TYPE_LOW_50GBASE_CP:
3020 case ICE_PHY_TYPE_LOW_50GBASE_SR:
3021 case ICE_PHY_TYPE_LOW_50GBASE_FR:
3022 case ICE_PHY_TYPE_LOW_50GBASE_LR:
3023 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3024 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3025 case ICE_PHY_TYPE_LOW_50G_AUI1:
3026 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3027 break;
3028 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3029 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3030 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3031 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3032 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3033 case ICE_PHY_TYPE_LOW_100G_CAUI4:
3034 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3035 case ICE_PHY_TYPE_LOW_100G_AUI4:
3036 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3037 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3038 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3039 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3040 case ICE_PHY_TYPE_LOW_100GBASE_DR:
3041 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3042 break;
3043 default:
3044 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3045 break;
3046 }
3047
3048 switch (phy_type_high) {
3049 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3050 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3051 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3052 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3053 case ICE_PHY_TYPE_HIGH_100G_AUI2:
3054 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3055 break;
3056 default:
3057 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3058 break;
3059 }
3060
3061 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3062 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3063 return ICE_AQ_LINK_SPEED_UNKNOWN;
3064 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3065 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3066 return ICE_AQ_LINK_SPEED_UNKNOWN;
3067 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3068 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3069 return speed_phy_type_low;
3070 else
3071 return speed_phy_type_high;
3072}
3073
3074/**
3075 * ice_update_phy_type
3076 * @phy_type_low: pointer to the lower part of phy_type
3077 * @phy_type_high: pointer to the higher part of phy_type
3078 * @link_speeds_bitmap: targeted link speeds bitmap
3079 *
3080 * Note: For the link_speeds_bitmap structure, you can check it at
3081 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3082 * link_speeds_bitmap include multiple speeds.
3083 *
3084 * Each entry in this [phy_type_low, phy_type_high] structure will
3085 * present a certain link speed. This helper function will turn on bits
3086 * in [phy_type_low, phy_type_high] structure based on the value of
3087 * link_speeds_bitmap input parameter.
3088 */
3089void
3090ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3091 u16 link_speeds_bitmap)
3092{
3093 u64 pt_high;
3094 u64 pt_low;
3095 int index;
3096 u16 speed;
3097
3098 /* We first check with low part of phy_type */
3099 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3100 pt_low = BIT_ULL(index);
3101 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3102
3103 if (link_speeds_bitmap & speed)
3104 *phy_type_low |= BIT_ULL(index);
3105 }
3106
3107 /* We then check with high part of phy_type */
3108 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3109 pt_high = BIT_ULL(index);
3110 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3111
3112 if (link_speeds_bitmap & speed)
3113 *phy_type_high |= BIT_ULL(index);
3114 }
3115}
3116
3117/**
3118 * ice_aq_set_phy_cfg
3119 * @hw: pointer to the HW struct
3120 * @pi: port info structure of the interested logical port
3121 * @cfg: structure with PHY configuration data to be set
3122 * @cd: pointer to command details structure or NULL
3123 *
3124 * Set the various PHY configuration parameters supported on the Port.
3125 * One or more of the Set PHY config parameters may be ignored in an MFP
3126 * mode as the PF may not have the privilege to set some of the PHY Config
3127 * parameters. This status will be indicated by the command response (0x0601).
3128 */
3129int
3130ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3131 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3132{
3133 struct ice_aq_desc desc;
3134 int status;
3135
3136 if (!cfg)
3137 return -EINVAL;
3138
3139 /* Ensure that only valid bits of cfg->caps can be turned on. */
3140 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3141 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3142 cfg->caps);
3143
3144 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3145 }
3146
3147 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3148 desc.params.set_phy.lport_num = pi->lport;
3149 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3150
3151 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3152 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
3153 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3154 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
3155 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3156 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
3157 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
3158 cfg->low_power_ctrl_an);
3159 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
3160 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
3161 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
3162 cfg->link_fec_opt);
3163
3164 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3165 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3166 status = 0;
3167
3168 if (!status)
3169 pi->phy.curr_user_phy_cfg = *cfg;
3170
3171 return status;
3172}
3173
3174/**
3175 * ice_update_link_info - update status of the HW network link
3176 * @pi: port info structure of the interested logical port
3177 */
3178int ice_update_link_info(struct ice_port_info *pi)
3179{
3180 struct ice_link_status *li;
3181 int status;
3182
3183 if (!pi)
3184 return -EINVAL;
3185
3186 li = &pi->phy.link_info;
3187
3188 status = ice_aq_get_link_info(pi, true, NULL, NULL);
3189 if (status)
3190 return status;
3191
3192 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3193 struct ice_aqc_get_phy_caps_data *pcaps;
3194 struct ice_hw *hw;
3195
3196 hw = pi->hw;
3197 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3198 GFP_KERNEL);
3199 if (!pcaps)
3200 return -ENOMEM;
3201
3202 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3203 pcaps, NULL);
3204
3205 devm_kfree(ice_hw_to_dev(hw), pcaps);
3206 }
3207
3208 return status;
3209}
3210
3211/**
3212 * ice_cache_phy_user_req
3213 * @pi: port information structure
3214 * @cache_data: PHY logging data
3215 * @cache_mode: PHY logging mode
3216 *
3217 * Log the user request on (FC, FEC, SPEED) for later use.
3218 */
3219static void
3220ice_cache_phy_user_req(struct ice_port_info *pi,
3221 struct ice_phy_cache_mode_data cache_data,
3222 enum ice_phy_cache_mode cache_mode)
3223{
3224 if (!pi)
3225 return;
3226
3227 switch (cache_mode) {
3228 case ICE_FC_MODE:
3229 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3230 break;
3231 case ICE_SPEED_MODE:
3232 pi->phy.curr_user_speed_req =
3233 cache_data.data.curr_user_speed_req;
3234 break;
3235 case ICE_FEC_MODE:
3236 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3237 break;
3238 default:
3239 break;
3240 }
3241}
3242
3243/**
3244 * ice_caps_to_fc_mode
3245 * @caps: PHY capabilities
3246 *
3247 * Convert PHY FC capabilities to ice FC mode
3248 */
3249enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3250{
3251 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3252 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3253 return ICE_FC_FULL;
3254
3255 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3256 return ICE_FC_TX_PAUSE;
3257
3258 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3259 return ICE_FC_RX_PAUSE;
3260
3261 return ICE_FC_NONE;
3262}
3263
3264/**
3265 * ice_caps_to_fec_mode
3266 * @caps: PHY capabilities
3267 * @fec_options: Link FEC options
3268 *
3269 * Convert PHY FEC capabilities to ice FEC mode
3270 */
3271enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3272{
3273 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3274 return ICE_FEC_AUTO;
3275
3276 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3277 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3278 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3279 ICE_AQC_PHY_FEC_25G_KR_REQ))
3280 return ICE_FEC_BASER;
3281
3282 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3283 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3284 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3285 return ICE_FEC_RS;
3286
3287 return ICE_FEC_NONE;
3288}
3289
3290/**
3291 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3292 * @pi: port information structure
3293 * @cfg: PHY configuration data to set FC mode
3294 * @req_mode: FC mode to configure
3295 */
3296int
3297ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3298 enum ice_fc_mode req_mode)
3299{
3300 struct ice_phy_cache_mode_data cache_data;
3301 u8 pause_mask = 0x0;
3302
3303 if (!pi || !cfg)
3304 return -EINVAL;
3305
3306 switch (req_mode) {
3307 case ICE_FC_FULL:
3308 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3309 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3310 break;
3311 case ICE_FC_RX_PAUSE:
3312 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3313 break;
3314 case ICE_FC_TX_PAUSE:
3315 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3316 break;
3317 default:
3318 break;
3319 }
3320
3321 /* clear the old pause settings */
3322 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3323 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3324
3325 /* set the new capabilities */
3326 cfg->caps |= pause_mask;
3327
3328 /* Cache user FC request */
3329 cache_data.data.curr_user_fc_req = req_mode;
3330 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3331
3332 return 0;
3333}
3334
3335/**
3336 * ice_set_fc
3337 * @pi: port information structure
3338 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3339 * @ena_auto_link_update: enable automatic link update
3340 *
3341 * Set the requested flow control mode.
3342 */
3343int
3344ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3345{
3346 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3347 struct ice_aqc_get_phy_caps_data *pcaps;
3348 struct ice_hw *hw;
3349 int status;
3350
3351 if (!pi || !aq_failures)
3352 return -EINVAL;
3353
3354 *aq_failures = 0;
3355 hw = pi->hw;
3356
3357 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3358 if (!pcaps)
3359 return -ENOMEM;
3360
3361 /* Get the current PHY config */
3362 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3363 pcaps, NULL);
3364 if (status) {
3365 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3366 goto out;
3367 }
3368
3369 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3370
3371 /* Configure the set PHY data */
3372 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3373 if (status)
3374 goto out;
3375
3376 /* If the capabilities have changed, then set the new config */
3377 if (cfg.caps != pcaps->caps) {
3378 int retry_count, retry_max = 10;
3379
3380 /* Auto restart link so settings take effect */
3381 if (ena_auto_link_update)
3382 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3383
3384 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3385 if (status) {
3386 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3387 goto out;
3388 }
3389
3390 /* Update the link info
3391 * It sometimes takes a really long time for link to
3392 * come back from the atomic reset. Thus, we wait a
3393 * little bit.
3394 */
3395 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3396 status = ice_update_link_info(pi);
3397
3398 if (!status)
3399 break;
3400
3401 mdelay(100);
3402 }
3403
3404 if (status)
3405 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3406 }
3407
3408out:
3409 devm_kfree(ice_hw_to_dev(hw), pcaps);
3410 return status;
3411}
3412
3413/**
3414 * ice_phy_caps_equals_cfg
3415 * @phy_caps: PHY capabilities
3416 * @phy_cfg: PHY configuration
3417 *
3418 * Helper function to determine if PHY capabilities matches PHY
3419 * configuration
3420 */
3421bool
3422ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3423 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3424{
3425 u8 caps_mask, cfg_mask;
3426
3427 if (!phy_caps || !phy_cfg)
3428 return false;
3429
3430 /* These bits are not common between capabilities and configuration.
3431 * Do not use them to determine equality.
3432 */
3433 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3434 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3435 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3436
3437 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3438 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3439 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3440 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3441 phy_caps->eee_cap != phy_cfg->eee_cap ||
3442 phy_caps->eeer_value != phy_cfg->eeer_value ||
3443 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3444 return false;
3445
3446 return true;
3447}
3448
3449/**
3450 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3451 * @pi: port information structure
3452 * @caps: PHY ability structure to copy date from
3453 * @cfg: PHY configuration structure to copy data to
3454 *
3455 * Helper function to copy AQC PHY get ability data to PHY set configuration
3456 * data structure
3457 */
3458void
3459ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3460 struct ice_aqc_get_phy_caps_data *caps,
3461 struct ice_aqc_set_phy_cfg_data *cfg)
3462{
3463 if (!pi || !caps || !cfg)
3464 return;
3465
3466 memset(cfg, 0, sizeof(*cfg));
3467 cfg->phy_type_low = caps->phy_type_low;
3468 cfg->phy_type_high = caps->phy_type_high;
3469 cfg->caps = caps->caps;
3470 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3471 cfg->eee_cap = caps->eee_cap;
3472 cfg->eeer_value = caps->eeer_value;
3473 cfg->link_fec_opt = caps->link_fec_options;
3474 cfg->module_compliance_enforcement =
3475 caps->module_compliance_enforcement;
3476}
3477
3478/**
3479 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3480 * @pi: port information structure
3481 * @cfg: PHY configuration data to set FEC mode
3482 * @fec: FEC mode to configure
3483 */
3484int
3485ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3486 enum ice_fec_mode fec)
3487{
3488 struct ice_aqc_get_phy_caps_data *pcaps;
3489 struct ice_hw *hw;
3490 int status;
3491
3492 if (!pi || !cfg)
3493 return -EINVAL;
3494
3495 hw = pi->hw;
3496
3497 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3498 if (!pcaps)
3499 return -ENOMEM;
3500
3501 status = ice_aq_get_phy_caps(pi, false,
3502 (ice_fw_supports_report_dflt_cfg(hw) ?
3503 ICE_AQC_REPORT_DFLT_CFG :
3504 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3505 if (status)
3506 goto out;
3507
3508 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3509 cfg->link_fec_opt = pcaps->link_fec_options;
3510
3511 switch (fec) {
3512 case ICE_FEC_BASER:
3513 /* Clear RS bits, and AND BASE-R ability
3514 * bits and OR request bits.
3515 */
3516 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3517 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3518 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3519 ICE_AQC_PHY_FEC_25G_KR_REQ;
3520 break;
3521 case ICE_FEC_RS:
3522 /* Clear BASE-R bits, and AND RS ability
3523 * bits and OR request bits.
3524 */
3525 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3526 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3527 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3528 break;
3529 case ICE_FEC_NONE:
3530 /* Clear all FEC option bits. */
3531 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3532 break;
3533 case ICE_FEC_AUTO:
3534 /* AND auto FEC bit, and all caps bits. */
3535 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3536 cfg->link_fec_opt |= pcaps->link_fec_options;
3537 break;
3538 default:
3539 status = -EINVAL;
3540 break;
3541 }
3542
3543 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3544 !ice_fw_supports_report_dflt_cfg(hw)) {
3545 struct ice_link_default_override_tlv tlv = { 0 };
3546
3547 status = ice_get_link_default_override(&tlv, pi);
3548 if (status)
3549 goto out;
3550
3551 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3552 (tlv.options & ICE_LINK_OVERRIDE_EN))
3553 cfg->link_fec_opt = tlv.fec_options;
3554 }
3555
3556out:
3557 kfree(pcaps);
3558
3559 return status;
3560}
3561
3562/**
3563 * ice_get_link_status - get status of the HW network link
3564 * @pi: port information structure
3565 * @link_up: pointer to bool (true/false = linkup/linkdown)
3566 *
3567 * Variable link_up is true if link is up, false if link is down.
3568 * The variable link_up is invalid if status is non zero. As a
3569 * result of this call, link status reporting becomes enabled
3570 */
3571int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3572{
3573 struct ice_phy_info *phy_info;
3574 int status = 0;
3575
3576 if (!pi || !link_up)
3577 return -EINVAL;
3578
3579 phy_info = &pi->phy;
3580
3581 if (phy_info->get_link_info) {
3582 status = ice_update_link_info(pi);
3583
3584 if (status)
3585 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3586 status);
3587 }
3588
3589 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3590
3591 return status;
3592}
3593
3594/**
3595 * ice_aq_set_link_restart_an
3596 * @pi: pointer to the port information structure
3597 * @ena_link: if true: enable link, if false: disable link
3598 * @cd: pointer to command details structure or NULL
3599 *
3600 * Sets up the link and restarts the Auto-Negotiation over the link.
3601 */
3602int
3603ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3604 struct ice_sq_cd *cd)
3605{
3606 struct ice_aqc_restart_an *cmd;
3607 struct ice_aq_desc desc;
3608
3609 cmd = &desc.params.restart_an;
3610
3611 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3612
3613 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3614 cmd->lport_num = pi->lport;
3615 if (ena_link)
3616 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3617 else
3618 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3619
3620 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3621}
3622
3623/**
3624 * ice_aq_set_event_mask
3625 * @hw: pointer to the HW struct
3626 * @port_num: port number of the physical function
3627 * @mask: event mask to be set
3628 * @cd: pointer to command details structure or NULL
3629 *
3630 * Set event mask (0x0613)
3631 */
3632int
3633ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3634 struct ice_sq_cd *cd)
3635{
3636 struct ice_aqc_set_event_mask *cmd;
3637 struct ice_aq_desc desc;
3638
3639 cmd = &desc.params.set_event_mask;
3640
3641 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3642
3643 cmd->lport_num = port_num;
3644
3645 cmd->event_mask = cpu_to_le16(mask);
3646 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3647}
3648
3649/**
3650 * ice_aq_set_mac_loopback
3651 * @hw: pointer to the HW struct
3652 * @ena_lpbk: Enable or Disable loopback
3653 * @cd: pointer to command details structure or NULL
3654 *
3655 * Enable/disable loopback on a given port
3656 */
3657int
3658ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3659{
3660 struct ice_aqc_set_mac_lb *cmd;
3661 struct ice_aq_desc desc;
3662
3663 cmd = &desc.params.set_mac_lb;
3664
3665 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3666 if (ena_lpbk)
3667 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3668
3669 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3670}
3671
3672/**
3673 * ice_aq_set_port_id_led
3674 * @pi: pointer to the port information
3675 * @is_orig_mode: is this LED set to original mode (by the net-list)
3676 * @cd: pointer to command details structure or NULL
3677 *
3678 * Set LED value for the given port (0x06e9)
3679 */
3680int
3681ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3682 struct ice_sq_cd *cd)
3683{
3684 struct ice_aqc_set_port_id_led *cmd;
3685 struct ice_hw *hw = pi->hw;
3686 struct ice_aq_desc desc;
3687
3688 cmd = &desc.params.set_port_id_led;
3689
3690 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3691
3692 if (is_orig_mode)
3693 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3694 else
3695 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3696
3697 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3698}
3699
3700/**
3701 * ice_aq_get_port_options
3702 * @hw: pointer to the HW struct
3703 * @options: buffer for the resultant port options
3704 * @option_count: input - size of the buffer in port options structures,
3705 * output - number of returned port options
3706 * @lport: logical port to call the command with (optional)
3707 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3708 * when PF owns more than 1 port it must be true
3709 * @active_option_idx: index of active port option in returned buffer
3710 * @active_option_valid: active option in returned buffer is valid
3711 * @pending_option_idx: index of pending port option in returned buffer
3712 * @pending_option_valid: pending option in returned buffer is valid
3713 *
3714 * Calls Get Port Options AQC (0x06ea) and verifies result.
3715 */
3716int
3717ice_aq_get_port_options(struct ice_hw *hw,
3718 struct ice_aqc_get_port_options_elem *options,
3719 u8 *option_count, u8 lport, bool lport_valid,
3720 u8 *active_option_idx, bool *active_option_valid,
3721 u8 *pending_option_idx, bool *pending_option_valid)
3722{
3723 struct ice_aqc_get_port_options *cmd;
3724 struct ice_aq_desc desc;
3725 int status;
3726 u8 i;
3727
3728 /* options buffer shall be able to hold max returned options */
3729 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3730 return -EINVAL;
3731
3732 cmd = &desc.params.get_port_options;
3733 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3734
3735 if (lport_valid)
3736 cmd->lport_num = lport;
3737 cmd->lport_num_valid = lport_valid;
3738
3739 status = ice_aq_send_cmd(hw, &desc, options,
3740 *option_count * sizeof(*options), NULL);
3741 if (status)
3742 return status;
3743
3744 /* verify direct FW response & set output parameters */
3745 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3746 cmd->port_options_count);
3747 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3748 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3749 cmd->port_options);
3750 if (*active_option_valid) {
3751 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3752 cmd->port_options);
3753 if (*active_option_idx > (*option_count - 1))
3754 return -EIO;
3755 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3756 *active_option_idx);
3757 }
3758
3759 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3760 cmd->pending_port_option_status);
3761 if (*pending_option_valid) {
3762 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3763 cmd->pending_port_option_status);
3764 if (*pending_option_idx > (*option_count - 1))
3765 return -EIO;
3766 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3767 *pending_option_idx);
3768 }
3769
3770 /* mask output options fields */
3771 for (i = 0; i < *option_count; i++) {
3772 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3773 options[i].pmd);
3774 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3775 options[i].max_lane_speed);
3776 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3777 options[i].pmd, options[i].max_lane_speed);
3778 }
3779
3780 return 0;
3781}
3782
3783/**
3784 * ice_aq_set_port_option
3785 * @hw: pointer to the HW struct
3786 * @lport: logical port to call the command with
3787 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3788 * when PF owns more than 1 port it must be true
3789 * @new_option: new port option to be written
3790 *
3791 * Calls Set Port Options AQC (0x06eb).
3792 */
3793int
3794ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3795 u8 new_option)
3796{
3797 struct ice_aqc_set_port_option *cmd;
3798 struct ice_aq_desc desc;
3799
3800 if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3801 return -EINVAL;
3802
3803 cmd = &desc.params.set_port_option;
3804 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3805
3806 if (lport_valid)
3807 cmd->lport_num = lport;
3808
3809 cmd->lport_num_valid = lport_valid;
3810 cmd->selected_port_option = new_option;
3811
3812 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3813}
3814
3815/**
3816 * ice_aq_sff_eeprom
3817 * @hw: pointer to the HW struct
3818 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3819 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3820 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3821 * @page: QSFP page
3822 * @set_page: set or ignore the page
3823 * @data: pointer to data buffer to be read/written to the I2C device.
3824 * @length: 1-16 for read, 1 for write.
3825 * @write: 0 read, 1 for write.
3826 * @cd: pointer to command details structure or NULL
3827 *
3828 * Read/Write SFF EEPROM (0x06EE)
3829 */
3830int
3831ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3832 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3833 bool write, struct ice_sq_cd *cd)
3834{
3835 struct ice_aqc_sff_eeprom *cmd;
3836 struct ice_aq_desc desc;
3837 int status;
3838
3839 if (!data || (mem_addr & 0xff00))
3840 return -EINVAL;
3841
3842 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3843 cmd = &desc.params.read_write_sff_param;
3844 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3845 cmd->lport_num = (u8)(lport & 0xff);
3846 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3847 cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3848 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3849 ((set_page <<
3850 ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3851 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3852 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3853 cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3854 if (write)
3855 cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3856
3857 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3858 return status;
3859}
3860
3861/**
3862 * __ice_aq_get_set_rss_lut
3863 * @hw: pointer to the hardware structure
3864 * @params: RSS LUT parameters
3865 * @set: set true to set the table, false to get the table
3866 *
3867 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3868 */
3869static int
3870__ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3871{
3872 u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3873 struct ice_aqc_get_set_rss_lut *cmd_resp;
3874 struct ice_aq_desc desc;
3875 int status;
3876 u8 *lut;
3877
3878 if (!params)
3879 return -EINVAL;
3880
3881 vsi_handle = params->vsi_handle;
3882 lut = params->lut;
3883
3884 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3885 return -EINVAL;
3886
3887 lut_size = params->lut_size;
3888 lut_type = params->lut_type;
3889 glob_lut_idx = params->global_lut_id;
3890 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3891
3892 cmd_resp = &desc.params.get_set_rss_lut;
3893
3894 if (set) {
3895 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3896 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3897 } else {
3898 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3899 }
3900
3901 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3902 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3903 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3904 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3905
3906 switch (lut_type) {
3907 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3908 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3909 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3910 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3911 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3912 break;
3913 default:
3914 status = -EINVAL;
3915 goto ice_aq_get_set_rss_lut_exit;
3916 }
3917
3918 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3919 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3920 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3921
3922 if (!set)
3923 goto ice_aq_get_set_rss_lut_send;
3924 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3925 if (!set)
3926 goto ice_aq_get_set_rss_lut_send;
3927 } else {
3928 goto ice_aq_get_set_rss_lut_send;
3929 }
3930
3931 /* LUT size is only valid for Global and PF table types */
3932 switch (lut_size) {
3933 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3934 break;
3935 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3936 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3937 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3938 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3939 break;
3940 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3941 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3942 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3943 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3944 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3945 break;
3946 }
3947 fallthrough;
3948 default:
3949 status = -EINVAL;
3950 goto ice_aq_get_set_rss_lut_exit;
3951 }
3952
3953ice_aq_get_set_rss_lut_send:
3954 cmd_resp->flags = cpu_to_le16(flags);
3955 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3956
3957ice_aq_get_set_rss_lut_exit:
3958 return status;
3959}
3960
3961/**
3962 * ice_aq_get_rss_lut
3963 * @hw: pointer to the hardware structure
3964 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3965 *
3966 * get the RSS lookup table, PF or VSI type
3967 */
3968int
3969ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3970{
3971 return __ice_aq_get_set_rss_lut(hw, get_params, false);
3972}
3973
3974/**
3975 * ice_aq_set_rss_lut
3976 * @hw: pointer to the hardware structure
3977 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3978 *
3979 * set the RSS lookup table, PF or VSI type
3980 */
3981int
3982ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3983{
3984 return __ice_aq_get_set_rss_lut(hw, set_params, true);
3985}
3986
3987/**
3988 * __ice_aq_get_set_rss_key
3989 * @hw: pointer to the HW struct
3990 * @vsi_id: VSI FW index
3991 * @key: pointer to key info struct
3992 * @set: set true to set the key, false to get the key
3993 *
3994 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3995 */
3996static int
3997__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3998 struct ice_aqc_get_set_rss_keys *key, bool set)
3999{
4000 struct ice_aqc_get_set_rss_key *cmd_resp;
4001 u16 key_size = sizeof(*key);
4002 struct ice_aq_desc desc;
4003
4004 cmd_resp = &desc.params.get_set_rss_key;
4005
4006 if (set) {
4007 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4008 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4009 } else {
4010 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4011 }
4012
4013 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
4014 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4015 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4016 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4017
4018 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4019}
4020
4021/**
4022 * ice_aq_get_rss_key
4023 * @hw: pointer to the HW struct
4024 * @vsi_handle: software VSI handle
4025 * @key: pointer to key info struct
4026 *
4027 * get the RSS key per VSI
4028 */
4029int
4030ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4031 struct ice_aqc_get_set_rss_keys *key)
4032{
4033 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4034 return -EINVAL;
4035
4036 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4037 key, false);
4038}
4039
4040/**
4041 * ice_aq_set_rss_key
4042 * @hw: pointer to the HW struct
4043 * @vsi_handle: software VSI handle
4044 * @keys: pointer to key info struct
4045 *
4046 * set the RSS key per VSI
4047 */
4048int
4049ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4050 struct ice_aqc_get_set_rss_keys *keys)
4051{
4052 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4053 return -EINVAL;
4054
4055 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4056 keys, true);
4057}
4058
4059/**
4060 * ice_aq_add_lan_txq
4061 * @hw: pointer to the hardware structure
4062 * @num_qgrps: Number of added queue groups
4063 * @qg_list: list of queue groups to be added
4064 * @buf_size: size of buffer for indirect command
4065 * @cd: pointer to command details structure or NULL
4066 *
4067 * Add Tx LAN queue (0x0C30)
4068 *
4069 * NOTE:
4070 * Prior to calling add Tx LAN queue:
4071 * Initialize the following as part of the Tx queue context:
4072 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4073 * Cache profile and Packet shaper profile.
4074 *
4075 * After add Tx LAN queue AQ command is completed:
4076 * Interrupts should be associated with specific queues,
4077 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4078 * flow.
4079 */
4080static int
4081ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4082 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4083 struct ice_sq_cd *cd)
4084{
4085 struct ice_aqc_add_tx_qgrp *list;
4086 struct ice_aqc_add_txqs *cmd;
4087 struct ice_aq_desc desc;
4088 u16 i, sum_size = 0;
4089
4090 cmd = &desc.params.add_txqs;
4091
4092 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4093
4094 if (!qg_list)
4095 return -EINVAL;
4096
4097 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4098 return -EINVAL;
4099
4100 for (i = 0, list = qg_list; i < num_qgrps; i++) {
4101 sum_size += struct_size(list, txqs, list->num_txqs);
4102 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4103 list->num_txqs);
4104 }
4105
4106 if (buf_size != sum_size)
4107 return -EINVAL;
4108
4109 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4110
4111 cmd->num_qgrps = num_qgrps;
4112
4113 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4114}
4115
4116/**
4117 * ice_aq_dis_lan_txq
4118 * @hw: pointer to the hardware structure
4119 * @num_qgrps: number of groups in the list
4120 * @qg_list: the list of groups to disable
4121 * @buf_size: the total size of the qg_list buffer in bytes
4122 * @rst_src: if called due to reset, specifies the reset source
4123 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4124 * @cd: pointer to command details structure or NULL
4125 *
4126 * Disable LAN Tx queue (0x0C31)
4127 */
4128static int
4129ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4130 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4131 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4132 struct ice_sq_cd *cd)
4133{
4134 struct ice_aqc_dis_txq_item *item;
4135 struct ice_aqc_dis_txqs *cmd;
4136 struct ice_aq_desc desc;
4137 u16 i, sz = 0;
4138 int status;
4139
4140 cmd = &desc.params.dis_txqs;
4141 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4142
4143 /* qg_list can be NULL only in VM/VF reset flow */
4144 if (!qg_list && !rst_src)
4145 return -EINVAL;
4146
4147 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4148 return -EINVAL;
4149
4150 cmd->num_entries = num_qgrps;
4151
4152 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4153 ICE_AQC_Q_DIS_TIMEOUT_M);
4154
4155 switch (rst_src) {
4156 case ICE_VM_RESET:
4157 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4158 cmd->vmvf_and_timeout |=
4159 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4160 break;
4161 case ICE_VF_RESET:
4162 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4163 /* In this case, FW expects vmvf_num to be absolute VF ID */
4164 cmd->vmvf_and_timeout |=
4165 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
4166 ICE_AQC_Q_DIS_VMVF_NUM_M);
4167 break;
4168 case ICE_NO_RESET:
4169 default:
4170 break;
4171 }
4172
4173 /* flush pipe on time out */
4174 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4175 /* If no queue group info, we are in a reset flow. Issue the AQ */
4176 if (!qg_list)
4177 goto do_aq;
4178
4179 /* set RD bit to indicate that command buffer is provided by the driver
4180 * and it needs to be read by the firmware
4181 */
4182 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4183
4184 for (i = 0, item = qg_list; i < num_qgrps; i++) {
4185 u16 item_size = struct_size(item, q_id, item->num_qs);
4186
4187 /* If the num of queues is even, add 2 bytes of padding */
4188 if ((item->num_qs % 2) == 0)
4189 item_size += 2;
4190
4191 sz += item_size;
4192
4193 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4194 }
4195
4196 if (buf_size != sz)
4197 return -EINVAL;
4198
4199do_aq:
4200 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4201 if (status) {
4202 if (!qg_list)
4203 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4204 vmvf_num, hw->adminq.sq_last_status);
4205 else
4206 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4207 le16_to_cpu(qg_list[0].q_id[0]),
4208 hw->adminq.sq_last_status);
4209 }
4210 return status;
4211}
4212
4213/**
4214 * ice_aq_add_rdma_qsets
4215 * @hw: pointer to the hardware structure
4216 * @num_qset_grps: Number of RDMA Qset groups
4217 * @qset_list: list of Qset groups to be added
4218 * @buf_size: size of buffer for indirect command
4219 * @cd: pointer to command details structure or NULL
4220 *
4221 * Add Tx RDMA Qsets (0x0C33)
4222 */
4223static int
4224ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4225 struct ice_aqc_add_rdma_qset_data *qset_list,
4226 u16 buf_size, struct ice_sq_cd *cd)
4227{
4228 struct ice_aqc_add_rdma_qset_data *list;
4229 struct ice_aqc_add_rdma_qset *cmd;
4230 struct ice_aq_desc desc;
4231 u16 i, sum_size = 0;
4232
4233 cmd = &desc.params.add_rdma_qset;
4234
4235 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4236
4237 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4238 return -EINVAL;
4239
4240 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4241 u16 num_qsets = le16_to_cpu(list->num_qsets);
4242
4243 sum_size += struct_size(list, rdma_qsets, num_qsets);
4244 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4245 num_qsets);
4246 }
4247
4248 if (buf_size != sum_size)
4249 return -EINVAL;
4250
4251 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4252
4253 cmd->num_qset_grps = num_qset_grps;
4254
4255 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4256}
4257
4258/* End of FW Admin Queue command wrappers */
4259
4260/**
4261 * ice_write_byte - write a byte to a packed context structure
4262 * @src_ctx: the context structure to read from
4263 * @dest_ctx: the context to be written to
4264 * @ce_info: a description of the struct to be filled
4265 */
4266static void
4267ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4268{
4269 u8 src_byte, dest_byte, mask;
4270 u8 *from, *dest;
4271 u16 shift_width;
4272
4273 /* copy from the next struct field */
4274 from = src_ctx + ce_info->offset;
4275
4276 /* prepare the bits and mask */
4277 shift_width = ce_info->lsb % 8;
4278 mask = (u8)(BIT(ce_info->width) - 1);
4279
4280 src_byte = *from;
4281 src_byte &= mask;
4282
4283 /* shift to correct alignment */
4284 mask <<= shift_width;
4285 src_byte <<= shift_width;
4286
4287 /* get the current bits from the target bit string */
4288 dest = dest_ctx + (ce_info->lsb / 8);
4289
4290 memcpy(&dest_byte, dest, sizeof(dest_byte));
4291
4292 dest_byte &= ~mask; /* get the bits not changing */
4293 dest_byte |= src_byte; /* add in the new bits */
4294
4295 /* put it all back */
4296 memcpy(dest, &dest_byte, sizeof(dest_byte));
4297}
4298
4299/**
4300 * ice_write_word - write a word to a packed context structure
4301 * @src_ctx: the context structure to read from
4302 * @dest_ctx: the context to be written to
4303 * @ce_info: a description of the struct to be filled
4304 */
4305static void
4306ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4307{
4308 u16 src_word, mask;
4309 __le16 dest_word;
4310 u8 *from, *dest;
4311 u16 shift_width;
4312
4313 /* copy from the next struct field */
4314 from = src_ctx + ce_info->offset;
4315
4316 /* prepare the bits and mask */
4317 shift_width = ce_info->lsb % 8;
4318 mask = BIT(ce_info->width) - 1;
4319
4320 /* don't swizzle the bits until after the mask because the mask bits
4321 * will be in a different bit position on big endian machines
4322 */
4323 src_word = *(u16 *)from;
4324 src_word &= mask;
4325
4326 /* shift to correct alignment */
4327 mask <<= shift_width;
4328 src_word <<= shift_width;
4329
4330 /* get the current bits from the target bit string */
4331 dest = dest_ctx + (ce_info->lsb / 8);
4332
4333 memcpy(&dest_word, dest, sizeof(dest_word));
4334
4335 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
4336 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
4337
4338 /* put it all back */
4339 memcpy(dest, &dest_word, sizeof(dest_word));
4340}
4341
4342/**
4343 * ice_write_dword - write a dword to a packed context structure
4344 * @src_ctx: the context structure to read from
4345 * @dest_ctx: the context to be written to
4346 * @ce_info: a description of the struct to be filled
4347 */
4348static void
4349ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4350{
4351 u32 src_dword, mask;
4352 __le32 dest_dword;
4353 u8 *from, *dest;
4354 u16 shift_width;
4355
4356 /* copy from the next struct field */
4357 from = src_ctx + ce_info->offset;
4358
4359 /* prepare the bits and mask */
4360 shift_width = ce_info->lsb % 8;
4361
4362 /* if the field width is exactly 32 on an x86 machine, then the shift
4363 * operation will not work because the SHL instructions count is masked
4364 * to 5 bits so the shift will do nothing
4365 */
4366 if (ce_info->width < 32)
4367 mask = BIT(ce_info->width) - 1;
4368 else
4369 mask = (u32)~0;
4370
4371 /* don't swizzle the bits until after the mask because the mask bits
4372 * will be in a different bit position on big endian machines
4373 */
4374 src_dword = *(u32 *)from;
4375 src_dword &= mask;
4376
4377 /* shift to correct alignment */
4378 mask <<= shift_width;
4379 src_dword <<= shift_width;
4380
4381 /* get the current bits from the target bit string */
4382 dest = dest_ctx + (ce_info->lsb / 8);
4383
4384 memcpy(&dest_dword, dest, sizeof(dest_dword));
4385
4386 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
4387 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
4388
4389 /* put it all back */
4390 memcpy(dest, &dest_dword, sizeof(dest_dword));
4391}
4392
4393/**
4394 * ice_write_qword - write a qword to a packed context structure
4395 * @src_ctx: the context structure to read from
4396 * @dest_ctx: the context to be written to
4397 * @ce_info: a description of the struct to be filled
4398 */
4399static void
4400ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4401{
4402 u64 src_qword, mask;
4403 __le64 dest_qword;
4404 u8 *from, *dest;
4405 u16 shift_width;
4406
4407 /* copy from the next struct field */
4408 from = src_ctx + ce_info->offset;
4409
4410 /* prepare the bits and mask */
4411 shift_width = ce_info->lsb % 8;
4412
4413 /* if the field width is exactly 64 on an x86 machine, then the shift
4414 * operation will not work because the SHL instructions count is masked
4415 * to 6 bits so the shift will do nothing
4416 */
4417 if (ce_info->width < 64)
4418 mask = BIT_ULL(ce_info->width) - 1;
4419 else
4420 mask = (u64)~0;
4421
4422 /* don't swizzle the bits until after the mask because the mask bits
4423 * will be in a different bit position on big endian machines
4424 */
4425 src_qword = *(u64 *)from;
4426 src_qword &= mask;
4427
4428 /* shift to correct alignment */
4429 mask <<= shift_width;
4430 src_qword <<= shift_width;
4431
4432 /* get the current bits from the target bit string */
4433 dest = dest_ctx + (ce_info->lsb / 8);
4434
4435 memcpy(&dest_qword, dest, sizeof(dest_qword));
4436
4437 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
4438 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
4439
4440 /* put it all back */
4441 memcpy(dest, &dest_qword, sizeof(dest_qword));
4442}
4443
4444/**
4445 * ice_set_ctx - set context bits in packed structure
4446 * @hw: pointer to the hardware structure
4447 * @src_ctx: pointer to a generic non-packed context structure
4448 * @dest_ctx: pointer to memory for the packed structure
4449 * @ce_info: a description of the structure to be transformed
4450 */
4451int
4452ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4453 const struct ice_ctx_ele *ce_info)
4454{
4455 int f;
4456
4457 for (f = 0; ce_info[f].width; f++) {
4458 /* We have to deal with each element of the FW response
4459 * using the correct size so that we are correct regardless
4460 * of the endianness of the machine.
4461 */
4462 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4463 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4464 f, ce_info[f].width, ce_info[f].size_of);
4465 continue;
4466 }
4467 switch (ce_info[f].size_of) {
4468 case sizeof(u8):
4469 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4470 break;
4471 case sizeof(u16):
4472 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4473 break;
4474 case sizeof(u32):
4475 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4476 break;
4477 case sizeof(u64):
4478 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4479 break;
4480 default:
4481 return -EINVAL;
4482 }
4483 }
4484
4485 return 0;
4486}
4487
4488/**
4489 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4490 * @hw: pointer to the HW struct
4491 * @vsi_handle: software VSI handle
4492 * @tc: TC number
4493 * @q_handle: software queue handle
4494 */
4495struct ice_q_ctx *
4496ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4497{
4498 struct ice_vsi_ctx *vsi;
4499 struct ice_q_ctx *q_ctx;
4500
4501 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4502 if (!vsi)
4503 return NULL;
4504 if (q_handle >= vsi->num_lan_q_entries[tc])
4505 return NULL;
4506 if (!vsi->lan_q_ctx[tc])
4507 return NULL;
4508 q_ctx = vsi->lan_q_ctx[tc];
4509 return &q_ctx[q_handle];
4510}
4511
4512/**
4513 * ice_ena_vsi_txq
4514 * @pi: port information structure
4515 * @vsi_handle: software VSI handle
4516 * @tc: TC number
4517 * @q_handle: software queue handle
4518 * @num_qgrps: Number of added queue groups
4519 * @buf: list of queue groups to be added
4520 * @buf_size: size of buffer for indirect command
4521 * @cd: pointer to command details structure or NULL
4522 *
4523 * This function adds one LAN queue
4524 */
4525int
4526ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4527 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4528 struct ice_sq_cd *cd)
4529{
4530 struct ice_aqc_txsched_elem_data node = { 0 };
4531 struct ice_sched_node *parent;
4532 struct ice_q_ctx *q_ctx;
4533 struct ice_hw *hw;
4534 int status;
4535
4536 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4537 return -EIO;
4538
4539 if (num_qgrps > 1 || buf->num_txqs > 1)
4540 return -ENOSPC;
4541
4542 hw = pi->hw;
4543
4544 if (!ice_is_vsi_valid(hw, vsi_handle))
4545 return -EINVAL;
4546
4547 mutex_lock(&pi->sched_lock);
4548
4549 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4550 if (!q_ctx) {
4551 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4552 q_handle);
4553 status = -EINVAL;
4554 goto ena_txq_exit;
4555 }
4556
4557 /* find a parent node */
4558 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4559 ICE_SCHED_NODE_OWNER_LAN);
4560 if (!parent) {
4561 status = -EINVAL;
4562 goto ena_txq_exit;
4563 }
4564
4565 buf->parent_teid = parent->info.node_teid;
4566 node.parent_teid = parent->info.node_teid;
4567 /* Mark that the values in the "generic" section as valid. The default
4568 * value in the "generic" section is zero. This means that :
4569 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4570 * - 0 priority among siblings, indicated by Bit 1-3.
4571 * - WFQ, indicated by Bit 4.
4572 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4573 * Bit 5-6.
4574 * - Bit 7 is reserved.
4575 * Without setting the generic section as valid in valid_sections, the
4576 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4577 */
4578 buf->txqs[0].info.valid_sections =
4579 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4580 ICE_AQC_ELEM_VALID_EIR;
4581 buf->txqs[0].info.generic = 0;
4582 buf->txqs[0].info.cir_bw.bw_profile_idx =
4583 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4584 buf->txqs[0].info.cir_bw.bw_alloc =
4585 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4586 buf->txqs[0].info.eir_bw.bw_profile_idx =
4587 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4588 buf->txqs[0].info.eir_bw.bw_alloc =
4589 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4590
4591 /* add the LAN queue */
4592 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4593 if (status) {
4594 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4595 le16_to_cpu(buf->txqs[0].txq_id),
4596 hw->adminq.sq_last_status);
4597 goto ena_txq_exit;
4598 }
4599
4600 node.node_teid = buf->txqs[0].q_teid;
4601 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4602 q_ctx->q_handle = q_handle;
4603 q_ctx->q_teid = le32_to_cpu(node.node_teid);
4604
4605 /* add a leaf node into scheduler tree queue layer */
4606 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4607 if (!status)
4608 status = ice_sched_replay_q_bw(pi, q_ctx);
4609
4610ena_txq_exit:
4611 mutex_unlock(&pi->sched_lock);
4612 return status;
4613}
4614
4615/**
4616 * ice_dis_vsi_txq
4617 * @pi: port information structure
4618 * @vsi_handle: software VSI handle
4619 * @tc: TC number
4620 * @num_queues: number of queues
4621 * @q_handles: pointer to software queue handle array
4622 * @q_ids: pointer to the q_id array
4623 * @q_teids: pointer to queue node teids
4624 * @rst_src: if called due to reset, specifies the reset source
4625 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4626 * @cd: pointer to command details structure or NULL
4627 *
4628 * This function removes queues and their corresponding nodes in SW DB
4629 */
4630int
4631ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4632 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4633 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4634 struct ice_sq_cd *cd)
4635{
4636 struct ice_aqc_dis_txq_item *qg_list;
4637 struct ice_q_ctx *q_ctx;
4638 int status = -ENOENT;
4639 struct ice_hw *hw;
4640 u16 i, buf_size;
4641
4642 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4643 return -EIO;
4644
4645 hw = pi->hw;
4646
4647 if (!num_queues) {
4648 /* if queue is disabled already yet the disable queue command
4649 * has to be sent to complete the VF reset, then call
4650 * ice_aq_dis_lan_txq without any queue information
4651 */
4652 if (rst_src)
4653 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4654 vmvf_num, NULL);
4655 return -EIO;
4656 }
4657
4658 buf_size = struct_size(qg_list, q_id, 1);
4659 qg_list = kzalloc(buf_size, GFP_KERNEL);
4660 if (!qg_list)
4661 return -ENOMEM;
4662
4663 mutex_lock(&pi->sched_lock);
4664
4665 for (i = 0; i < num_queues; i++) {
4666 struct ice_sched_node *node;
4667
4668 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4669 if (!node)
4670 continue;
4671 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4672 if (!q_ctx) {
4673 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4674 q_handles[i]);
4675 continue;
4676 }
4677 if (q_ctx->q_handle != q_handles[i]) {
4678 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4679 q_ctx->q_handle, q_handles[i]);
4680 continue;
4681 }
4682 qg_list->parent_teid = node->info.parent_teid;
4683 qg_list->num_qs = 1;
4684 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4685 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4686 vmvf_num, cd);
4687
4688 if (status)
4689 break;
4690 ice_free_sched_node(pi, node);
4691 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4692 }
4693 mutex_unlock(&pi->sched_lock);
4694 kfree(qg_list);
4695 return status;
4696}
4697
4698/**
4699 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4700 * @pi: port information structure
4701 * @vsi_handle: software VSI handle
4702 * @tc_bitmap: TC bitmap
4703 * @maxqs: max queues array per TC
4704 * @owner: LAN or RDMA
4705 *
4706 * This function adds/updates the VSI queues per TC.
4707 */
4708static int
4709ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4710 u16 *maxqs, u8 owner)
4711{
4712 int status = 0;
4713 u8 i;
4714
4715 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4716 return -EIO;
4717
4718 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4719 return -EINVAL;
4720
4721 mutex_lock(&pi->sched_lock);
4722
4723 ice_for_each_traffic_class(i) {
4724 /* configuration is possible only if TC node is present */
4725 if (!ice_sched_get_tc_node(pi, i))
4726 continue;
4727
4728 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4729 ice_is_tc_ena(tc_bitmap, i));
4730 if (status)
4731 break;
4732 }
4733
4734 mutex_unlock(&pi->sched_lock);
4735 return status;
4736}
4737
4738/**
4739 * ice_cfg_vsi_lan - configure VSI LAN queues
4740 * @pi: port information structure
4741 * @vsi_handle: software VSI handle
4742 * @tc_bitmap: TC bitmap
4743 * @max_lanqs: max LAN queues array per TC
4744 *
4745 * This function adds/updates the VSI LAN queues per TC.
4746 */
4747int
4748ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4749 u16 *max_lanqs)
4750{
4751 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4752 ICE_SCHED_NODE_OWNER_LAN);
4753}
4754
4755/**
4756 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4757 * @pi: port information structure
4758 * @vsi_handle: software VSI handle
4759 * @tc_bitmap: TC bitmap
4760 * @max_rdmaqs: max RDMA queues array per TC
4761 *
4762 * This function adds/updates the VSI RDMA queues per TC.
4763 */
4764int
4765ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4766 u16 *max_rdmaqs)
4767{
4768 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4769 ICE_SCHED_NODE_OWNER_RDMA);
4770}
4771
4772/**
4773 * ice_ena_vsi_rdma_qset
4774 * @pi: port information structure
4775 * @vsi_handle: software VSI handle
4776 * @tc: TC number
4777 * @rdma_qset: pointer to RDMA Qset
4778 * @num_qsets: number of RDMA Qsets
4779 * @qset_teid: pointer to Qset node TEIDs
4780 *
4781 * This function adds RDMA Qset
4782 */
4783int
4784ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4785 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4786{
4787 struct ice_aqc_txsched_elem_data node = { 0 };
4788 struct ice_aqc_add_rdma_qset_data *buf;
4789 struct ice_sched_node *parent;
4790 struct ice_hw *hw;
4791 u16 i, buf_size;
4792 int ret;
4793
4794 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4795 return -EIO;
4796 hw = pi->hw;
4797
4798 if (!ice_is_vsi_valid(hw, vsi_handle))
4799 return -EINVAL;
4800
4801 buf_size = struct_size(buf, rdma_qsets, num_qsets);
4802 buf = kzalloc(buf_size, GFP_KERNEL);
4803 if (!buf)
4804 return -ENOMEM;
4805 mutex_lock(&pi->sched_lock);
4806
4807 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4808 ICE_SCHED_NODE_OWNER_RDMA);
4809 if (!parent) {
4810 ret = -EINVAL;
4811 goto rdma_error_exit;
4812 }
4813 buf->parent_teid = parent->info.node_teid;
4814 node.parent_teid = parent->info.node_teid;
4815
4816 buf->num_qsets = cpu_to_le16(num_qsets);
4817 for (i = 0; i < num_qsets; i++) {
4818 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4819 buf->rdma_qsets[i].info.valid_sections =
4820 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4821 ICE_AQC_ELEM_VALID_EIR;
4822 buf->rdma_qsets[i].info.generic = 0;
4823 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4824 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4825 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4826 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4827 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4828 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4829 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4830 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4831 }
4832 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4833 if (ret) {
4834 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4835 goto rdma_error_exit;
4836 }
4837 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4838 for (i = 0; i < num_qsets; i++) {
4839 node.node_teid = buf->rdma_qsets[i].qset_teid;
4840 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4841 &node, NULL);
4842 if (ret)
4843 break;
4844 qset_teid[i] = le32_to_cpu(node.node_teid);
4845 }
4846rdma_error_exit:
4847 mutex_unlock(&pi->sched_lock);
4848 kfree(buf);
4849 return ret;
4850}
4851
4852/**
4853 * ice_dis_vsi_rdma_qset - free RDMA resources
4854 * @pi: port_info struct
4855 * @count: number of RDMA Qsets to free
4856 * @qset_teid: TEID of Qset node
4857 * @q_id: list of queue IDs being disabled
4858 */
4859int
4860ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4861 u16 *q_id)
4862{
4863 struct ice_aqc_dis_txq_item *qg_list;
4864 struct ice_hw *hw;
4865 int status = 0;
4866 u16 qg_size;
4867 int i;
4868
4869 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4870 return -EIO;
4871
4872 hw = pi->hw;
4873
4874 qg_size = struct_size(qg_list, q_id, 1);
4875 qg_list = kzalloc(qg_size, GFP_KERNEL);
4876 if (!qg_list)
4877 return -ENOMEM;
4878
4879 mutex_lock(&pi->sched_lock);
4880
4881 for (i = 0; i < count; i++) {
4882 struct ice_sched_node *node;
4883
4884 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4885 if (!node)
4886 continue;
4887
4888 qg_list->parent_teid = node->info.parent_teid;
4889 qg_list->num_qs = 1;
4890 qg_list->q_id[0] =
4891 cpu_to_le16(q_id[i] |
4892 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4893
4894 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4895 ICE_NO_RESET, 0, NULL);
4896 if (status)
4897 break;
4898
4899 ice_free_sched_node(pi, node);
4900 }
4901
4902 mutex_unlock(&pi->sched_lock);
4903 kfree(qg_list);
4904 return status;
4905}
4906
4907/**
4908 * ice_replay_pre_init - replay pre initialization
4909 * @hw: pointer to the HW struct
4910 *
4911 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4912 */
4913static int ice_replay_pre_init(struct ice_hw *hw)
4914{
4915 struct ice_switch_info *sw = hw->switch_info;
4916 u8 i;
4917
4918 /* Delete old entries from replay filter list head if there is any */
4919 ice_rm_all_sw_replay_rule_info(hw);
4920 /* In start of replay, move entries into replay_rules list, it
4921 * will allow adding rules entries back to filt_rules list,
4922 * which is operational list.
4923 */
4924 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4925 list_replace_init(&sw->recp_list[i].filt_rules,
4926 &sw->recp_list[i].filt_replay_rules);
4927 ice_sched_replay_agg_vsi_preinit(hw);
4928
4929 return 0;
4930}
4931
4932/**
4933 * ice_replay_vsi - replay VSI configuration
4934 * @hw: pointer to the HW struct
4935 * @vsi_handle: driver VSI handle
4936 *
4937 * Restore all VSI configuration after reset. It is required to call this
4938 * function with main VSI first.
4939 */
4940int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4941{
4942 int status;
4943
4944 if (!ice_is_vsi_valid(hw, vsi_handle))
4945 return -EINVAL;
4946
4947 /* Replay pre-initialization if there is any */
4948 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4949 status = ice_replay_pre_init(hw);
4950 if (status)
4951 return status;
4952 }
4953 /* Replay per VSI all RSS configurations */
4954 status = ice_replay_rss_cfg(hw, vsi_handle);
4955 if (status)
4956 return status;
4957 /* Replay per VSI all filters */
4958 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4959 if (!status)
4960 status = ice_replay_vsi_agg(hw, vsi_handle);
4961 return status;
4962}
4963
4964/**
4965 * ice_replay_post - post replay configuration cleanup
4966 * @hw: pointer to the HW struct
4967 *
4968 * Post replay cleanup.
4969 */
4970void ice_replay_post(struct ice_hw *hw)
4971{
4972 /* Delete old entries from replay filter list head */
4973 ice_rm_all_sw_replay_rule_info(hw);
4974 ice_sched_replay_agg(hw);
4975}
4976
4977/**
4978 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4979 * @hw: ptr to the hardware info
4980 * @reg: offset of 64 bit HW register to read from
4981 * @prev_stat_loaded: bool to specify if previous stats are loaded
4982 * @prev_stat: ptr to previous loaded stat value
4983 * @cur_stat: ptr to current stat value
4984 */
4985void
4986ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4987 u64 *prev_stat, u64 *cur_stat)
4988{
4989 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4990
4991 /* device stats are not reset at PFR, they likely will not be zeroed
4992 * when the driver starts. Thus, save the value from the first read
4993 * without adding to the statistic value so that we report stats which
4994 * count up from zero.
4995 */
4996 if (!prev_stat_loaded) {
4997 *prev_stat = new_data;
4998 return;
4999 }
5000
5001 /* Calculate the difference between the new and old values, and then
5002 * add it to the software stat value.
5003 */
5004 if (new_data >= *prev_stat)
5005 *cur_stat += new_data - *prev_stat;
5006 else
5007 /* to manage the potential roll-over */
5008 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5009
5010 /* Update the previously stored value to prepare for next read */
5011 *prev_stat = new_data;
5012}
5013
5014/**
5015 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5016 * @hw: ptr to the hardware info
5017 * @reg: offset of HW register to read from
5018 * @prev_stat_loaded: bool to specify if previous stats are loaded
5019 * @prev_stat: ptr to previous loaded stat value
5020 * @cur_stat: ptr to current stat value
5021 */
5022void
5023ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5024 u64 *prev_stat, u64 *cur_stat)
5025{
5026 u32 new_data;
5027
5028 new_data = rd32(hw, reg);
5029
5030 /* device stats are not reset at PFR, they likely will not be zeroed
5031 * when the driver starts. Thus, save the value from the first read
5032 * without adding to the statistic value so that we report stats which
5033 * count up from zero.
5034 */
5035 if (!prev_stat_loaded) {
5036 *prev_stat = new_data;
5037 return;
5038 }
5039
5040 /* Calculate the difference between the new and old values, and then
5041 * add it to the software stat value.
5042 */
5043 if (new_data >= *prev_stat)
5044 *cur_stat += new_data - *prev_stat;
5045 else
5046 /* to manage the potential roll-over */
5047 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5048
5049 /* Update the previously stored value to prepare for next read */
5050 *prev_stat = new_data;
5051}
5052
5053/**
5054 * ice_sched_query_elem - query element information from HW
5055 * @hw: pointer to the HW struct
5056 * @node_teid: node TEID to be queried
5057 * @buf: buffer to element information
5058 *
5059 * This function queries HW element information
5060 */
5061int
5062ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5063 struct ice_aqc_txsched_elem_data *buf)
5064{
5065 u16 buf_size, num_elem_ret = 0;
5066 int status;
5067
5068 buf_size = sizeof(*buf);
5069 memset(buf, 0, buf_size);
5070 buf->node_teid = cpu_to_le32(node_teid);
5071 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5072 NULL);
5073 if (status || num_elem_ret != 1)
5074 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5075 return status;
5076}
5077
5078/**
5079 * ice_aq_read_i2c
5080 * @hw: pointer to the hw struct
5081 * @topo_addr: topology address for a device to communicate with
5082 * @bus_addr: 7-bit I2C bus address
5083 * @addr: I2C memory address (I2C offset) with up to 16 bits
5084 * @params: I2C parameters: bit [7] - Repeated start,
5085 * bits [6:5] data offset size,
5086 * bit [4] - I2C address type,
5087 * bits [3:0] - data size to read (0-16 bytes)
5088 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5089 * @cd: pointer to command details structure or NULL
5090 *
5091 * Read I2C (0x06E2)
5092 */
5093int
5094ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5095 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5096 struct ice_sq_cd *cd)
5097{
5098 struct ice_aq_desc desc = { 0 };
5099 struct ice_aqc_i2c *cmd;
5100 u8 data_size;
5101 int status;
5102
5103 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5104 cmd = &desc.params.read_write_i2c;
5105
5106 if (!data)
5107 return -EINVAL;
5108
5109 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5110
5111 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5112 cmd->topo_addr = topo_addr;
5113 cmd->i2c_params = params;
5114 cmd->i2c_addr = addr;
5115
5116 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5117 if (!status) {
5118 struct ice_aqc_read_i2c_resp *resp;
5119 u8 i;
5120
5121 resp = &desc.params.read_i2c_resp;
5122 for (i = 0; i < data_size; i++) {
5123 *data = resp->i2c_data[i];
5124 data++;
5125 }
5126 }
5127
5128 return status;
5129}
5130
5131/**
5132 * ice_aq_write_i2c
5133 * @hw: pointer to the hw struct
5134 * @topo_addr: topology address for a device to communicate with
5135 * @bus_addr: 7-bit I2C bus address
5136 * @addr: I2C memory address (I2C offset) with up to 16 bits
5137 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5138 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5139 * @cd: pointer to command details structure or NULL
5140 *
5141 * Write I2C (0x06E3)
5142 *
5143 * * Return:
5144 * * 0 - Successful write to the i2c device
5145 * * -EINVAL - Data size greater than 4 bytes
5146 * * -EIO - FW error
5147 */
5148int
5149ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5150 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5151 struct ice_sq_cd *cd)
5152{
5153 struct ice_aq_desc desc = { 0 };
5154 struct ice_aqc_i2c *cmd;
5155 u8 data_size;
5156
5157 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5158 cmd = &desc.params.read_write_i2c;
5159
5160 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5161
5162 /* data_size limited to 4 */
5163 if (data_size > 4)
5164 return -EINVAL;
5165
5166 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5167 cmd->topo_addr = topo_addr;
5168 cmd->i2c_params = params;
5169 cmd->i2c_addr = addr;
5170
5171 memcpy(cmd->i2c_data, data, data_size);
5172
5173 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5174}
5175
5176/**
5177 * ice_aq_set_driver_param - Set driver parameter to share via firmware
5178 * @hw: pointer to the HW struct
5179 * @idx: parameter index to set
5180 * @value: the value to set the parameter to
5181 * @cd: pointer to command details structure or NULL
5182 *
5183 * Set the value of one of the software defined parameters. All PFs connected
5184 * to this device can read the value using ice_aq_get_driver_param.
5185 *
5186 * Note that firmware provides no synchronization or locking, and will not
5187 * save the parameter value during a device reset. It is expected that
5188 * a single PF will write the parameter value, while all other PFs will only
5189 * read it.
5190 */
5191int
5192ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5193 u32 value, struct ice_sq_cd *cd)
5194{
5195 struct ice_aqc_driver_shared_params *cmd;
5196 struct ice_aq_desc desc;
5197
5198 if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5199 return -EIO;
5200
5201 cmd = &desc.params.drv_shared_params;
5202
5203 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5204
5205 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
5206 cmd->param_indx = idx;
5207 cmd->param_val = cpu_to_le32(value);
5208
5209 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5210}
5211
5212/**
5213 * ice_aq_get_driver_param - Get driver parameter shared via firmware
5214 * @hw: pointer to the HW struct
5215 * @idx: parameter index to set
5216 * @value: storage to return the shared parameter
5217 * @cd: pointer to command details structure or NULL
5218 *
5219 * Get the value of one of the software defined parameters.
5220 *
5221 * Note that firmware provides no synchronization or locking. It is expected
5222 * that only a single PF will write a given parameter.
5223 */
5224int
5225ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5226 u32 *value, struct ice_sq_cd *cd)
5227{
5228 struct ice_aqc_driver_shared_params *cmd;
5229 struct ice_aq_desc desc;
5230 int status;
5231
5232 if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5233 return -EIO;
5234
5235 cmd = &desc.params.drv_shared_params;
5236
5237 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5238
5239 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
5240 cmd->param_indx = idx;
5241
5242 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5243 if (status)
5244 return status;
5245
5246 *value = le32_to_cpu(cmd->param_val);
5247
5248 return 0;
5249}
5250
5251/**
5252 * ice_aq_set_gpio
5253 * @hw: pointer to the hw struct
5254 * @gpio_ctrl_handle: GPIO controller node handle
5255 * @pin_idx: IO Number of the GPIO that needs to be set
5256 * @value: SW provide IO value to set in the LSB
5257 * @cd: pointer to command details structure or NULL
5258 *
5259 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5260 */
5261int
5262ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5263 struct ice_sq_cd *cd)
5264{
5265 struct ice_aqc_gpio *cmd;
5266 struct ice_aq_desc desc;
5267
5268 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5269 cmd = &desc.params.read_write_gpio;
5270 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5271 cmd->gpio_num = pin_idx;
5272 cmd->gpio_val = value ? 1 : 0;
5273
5274 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5275}
5276
5277/**
5278 * ice_aq_get_gpio
5279 * @hw: pointer to the hw struct
5280 * @gpio_ctrl_handle: GPIO controller node handle
5281 * @pin_idx: IO Number of the GPIO that needs to be set
5282 * @value: IO value read
5283 * @cd: pointer to command details structure or NULL
5284 *
5285 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5286 * the topology
5287 */
5288int
5289ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5290 bool *value, struct ice_sq_cd *cd)
5291{
5292 struct ice_aqc_gpio *cmd;
5293 struct ice_aq_desc desc;
5294 int status;
5295
5296 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5297 cmd = &desc.params.read_write_gpio;
5298 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5299 cmd->gpio_num = pin_idx;
5300
5301 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5302 if (status)
5303 return status;
5304
5305 *value = !!cmd->gpio_val;
5306 return 0;
5307}
5308
5309/**
5310 * ice_is_fw_api_min_ver
5311 * @hw: pointer to the hardware structure
5312 * @maj: major version
5313 * @min: minor version
5314 * @patch: patch version
5315 *
5316 * Checks if the firmware API is minimum version
5317 */
5318static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5319{
5320 if (hw->api_maj_ver == maj) {
5321 if (hw->api_min_ver > min)
5322 return true;
5323 if (hw->api_min_ver == min && hw->api_patch >= patch)
5324 return true;
5325 } else if (hw->api_maj_ver > maj) {
5326 return true;
5327 }
5328
5329 return false;
5330}
5331
5332/**
5333 * ice_fw_supports_link_override
5334 * @hw: pointer to the hardware structure
5335 *
5336 * Checks if the firmware supports link override
5337 */
5338bool ice_fw_supports_link_override(struct ice_hw *hw)
5339{
5340 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5341 ICE_FW_API_LINK_OVERRIDE_MIN,
5342 ICE_FW_API_LINK_OVERRIDE_PATCH);
5343}
5344
5345/**
5346 * ice_get_link_default_override
5347 * @ldo: pointer to the link default override struct
5348 * @pi: pointer to the port info struct
5349 *
5350 * Gets the link default override for a port
5351 */
5352int
5353ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5354 struct ice_port_info *pi)
5355{
5356 u16 i, tlv, tlv_len, tlv_start, buf, offset;
5357 struct ice_hw *hw = pi->hw;
5358 int status;
5359
5360 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5361 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5362 if (status) {
5363 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5364 return status;
5365 }
5366
5367 /* Each port has its own config; calculate for our port */
5368 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5369 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5370
5371 /* link options first */
5372 status = ice_read_sr_word(hw, tlv_start, &buf);
5373 if (status) {
5374 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5375 return status;
5376 }
5377 ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5378 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5379 ICE_LINK_OVERRIDE_PHY_CFG_S;
5380
5381 /* link PHY config */
5382 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5383 status = ice_read_sr_word(hw, offset, &buf);
5384 if (status) {
5385 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5386 return status;
5387 }
5388 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5389
5390 /* PHY types low */
5391 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5392 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5393 status = ice_read_sr_word(hw, (offset + i), &buf);
5394 if (status) {
5395 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5396 return status;
5397 }
5398 /* shift 16 bits at a time to fill 64 bits */
5399 ldo->phy_type_low |= ((u64)buf << (i * 16));
5400 }
5401
5402 /* PHY types high */
5403 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5404 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5405 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5406 status = ice_read_sr_word(hw, (offset + i), &buf);
5407 if (status) {
5408 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5409 return status;
5410 }
5411 /* shift 16 bits at a time to fill 64 bits */
5412 ldo->phy_type_high |= ((u64)buf << (i * 16));
5413 }
5414
5415 return status;
5416}
5417
5418/**
5419 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5420 * @caps: get PHY capability data
5421 */
5422bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5423{
5424 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5425 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5426 ICE_AQC_PHY_AN_EN_CLAUSE73 |
5427 ICE_AQC_PHY_AN_EN_CLAUSE37))
5428 return true;
5429
5430 return false;
5431}
5432
5433/**
5434 * ice_aq_set_lldp_mib - Set the LLDP MIB
5435 * @hw: pointer to the HW struct
5436 * @mib_type: Local, Remote or both Local and Remote MIBs
5437 * @buf: pointer to the caller-supplied buffer to store the MIB block
5438 * @buf_size: size of the buffer (in bytes)
5439 * @cd: pointer to command details structure or NULL
5440 *
5441 * Set the LLDP MIB. (0x0A08)
5442 */
5443int
5444ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5445 struct ice_sq_cd *cd)
5446{
5447 struct ice_aqc_lldp_set_local_mib *cmd;
5448 struct ice_aq_desc desc;
5449
5450 cmd = &desc.params.lldp_set_mib;
5451
5452 if (buf_size == 0 || !buf)
5453 return -EINVAL;
5454
5455 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5456
5457 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5458 desc.datalen = cpu_to_le16(buf_size);
5459
5460 cmd->type = mib_type;
5461 cmd->length = cpu_to_le16(buf_size);
5462
5463 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5464}
5465
5466/**
5467 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5468 * @hw: pointer to HW struct
5469 */
5470bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5471{
5472 if (hw->mac_type != ICE_MAC_E810)
5473 return false;
5474
5475 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5476 ICE_FW_API_LLDP_FLTR_MIN,
5477 ICE_FW_API_LLDP_FLTR_PATCH);
5478}
5479
5480/**
5481 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5482 * @hw: pointer to HW struct
5483 * @vsi_num: absolute HW index for VSI
5484 * @add: boolean for if adding or removing a filter
5485 */
5486int
5487ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5488{
5489 struct ice_aqc_lldp_filter_ctrl *cmd;
5490 struct ice_aq_desc desc;
5491
5492 cmd = &desc.params.lldp_filter_ctrl;
5493
5494 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5495
5496 if (add)
5497 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5498 else
5499 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5500
5501 cmd->vsi_num = cpu_to_le16(vsi_num);
5502
5503 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5504}
5505
5506/**
5507 * ice_fw_supports_report_dflt_cfg
5508 * @hw: pointer to the hardware structure
5509 *
5510 * Checks if the firmware supports report default configuration
5511 */
5512bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5513{
5514 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5515 ICE_FW_API_REPORT_DFLT_CFG_MIN,
5516 ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5517}
5518
5519/* each of the indexes into the following array match the speed of a return
5520 * value from the list of AQ returned speeds like the range:
5521 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5522 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5523 * array. The array is defined as 15 elements long because the link_speed
5524 * returned by the firmware is a 16 bit * value, but is indexed
5525 * by [fls(speed) - 1]
5526 */
5527static const u32 ice_aq_to_link_speed[] = {
5528 SPEED_10, /* BIT(0) */
5529 SPEED_100,
5530 SPEED_1000,
5531 SPEED_2500,
5532 SPEED_5000,
5533 SPEED_10000,
5534 SPEED_20000,
5535 SPEED_25000,
5536 SPEED_40000,
5537 SPEED_50000,
5538 SPEED_100000, /* BIT(10) */
5539};
5540
5541/**
5542 * ice_get_link_speed - get integer speed from table
5543 * @index: array index from fls(aq speed) - 1
5544 *
5545 * Returns: u32 value containing integer speed
5546 */
5547u32 ice_get_link_speed(u16 index)
5548{
5549 if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5550 return 0;
5551
5552 return ice_aq_to_link_speed[index];
5553}