Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
   4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
   5 */
   6#include <linux/kernel.h>
   7#include <linux/wait.h>
   8#include <linux/blkdev.h>
   9#include <linux/slab.h>
  10#include <linux/raid/md_p.h>
  11#include <linux/crc32c.h>
  12#include <linux/random.h>
  13#include <linux/kthread.h>
  14#include <linux/types.h>
  15#include "md.h"
  16#include "raid5.h"
  17#include "md-bitmap.h"
  18#include "raid5-log.h"
  19
  20/*
  21 * metadata/data stored in disk with 4k size unit (a block) regardless
  22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
  23 */
  24#define BLOCK_SECTORS (8)
  25#define BLOCK_SECTOR_SHIFT (3)
  26
  27/*
  28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
  29 *
  30 * In write through mode, the reclaim runs every log->max_free_space.
  31 * This can prevent the recovery scans for too long
  32 */
  33#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
  34#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
  35
  36/* wake up reclaim thread periodically */
  37#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
  38/* start flush with these full stripes */
  39#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
  40/* reclaim stripes in groups */
  41#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
  42
  43/*
  44 * We only need 2 bios per I/O unit to make progress, but ensure we
  45 * have a few more available to not get too tight.
  46 */
  47#define R5L_POOL_SIZE	4
  48
  49static char *r5c_journal_mode_str[] = {"write-through",
  50				       "write-back"};
  51/*
  52 * raid5 cache state machine
  53 *
  54 * With the RAID cache, each stripe works in two phases:
  55 *	- caching phase
  56 *	- writing-out phase
  57 *
  58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
  59 *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
  60 *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
  61 *
  62 * When there is no journal, or the journal is in write-through mode,
  63 * the stripe is always in writing-out phase.
  64 *
  65 * For write-back journal, the stripe is sent to caching phase on write
  66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
  67 * the write-out phase by clearing STRIPE_R5C_CACHING.
  68 *
  69 * Stripes in caching phase do not write the raid disks. Instead, all
  70 * writes are committed from the log device. Therefore, a stripe in
  71 * caching phase handles writes as:
  72 *	- write to log device
  73 *	- return IO
  74 *
  75 * Stripes in writing-out phase handle writes as:
  76 *	- calculate parity
  77 *	- write pending data and parity to journal
  78 *	- write data and parity to raid disks
  79 *	- return IO for pending writes
  80 */
  81
  82struct r5l_log {
  83	struct md_rdev *rdev;
  84
  85	u32 uuid_checksum;
  86
  87	sector_t device_size;		/* log device size, round to
  88					 * BLOCK_SECTORS */
  89	sector_t max_free_space;	/* reclaim run if free space is at
  90					 * this size */
  91
  92	sector_t last_checkpoint;	/* log tail. where recovery scan
  93					 * starts from */
  94	u64 last_cp_seq;		/* log tail sequence */
  95
  96	sector_t log_start;		/* log head. where new data appends */
  97	u64 seq;			/* log head sequence */
  98
  99	sector_t next_checkpoint;
 100
 101	struct mutex io_mutex;
 102	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
 103
 104	spinlock_t io_list_lock;
 105	struct list_head running_ios;	/* io_units which are still running,
 106					 * and have not yet been completely
 107					 * written to the log */
 108	struct list_head io_end_ios;	/* io_units which have been completely
 109					 * written to the log but not yet written
 110					 * to the RAID */
 111	struct list_head flushing_ios;	/* io_units which are waiting for log
 112					 * cache flush */
 113	struct list_head finished_ios;	/* io_units which settle down in log disk */
 114	struct bio flush_bio;
 115
 116	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
 117
 118	struct kmem_cache *io_kc;
 119	mempool_t io_pool;
 120	struct bio_set bs;
 121	mempool_t meta_pool;
 122
 123	struct md_thread *reclaim_thread;
 124	unsigned long reclaim_target;	/* number of space that need to be
 125					 * reclaimed.  if it's 0, reclaim spaces
 126					 * used by io_units which are in
 127					 * IO_UNIT_STRIPE_END state (eg, reclaim
 128					 * dones't wait for specific io_unit
 129					 * switching to IO_UNIT_STRIPE_END
 130					 * state) */
 131	wait_queue_head_t iounit_wait;
 132
 133	struct list_head no_space_stripes; /* pending stripes, log has no space */
 134	spinlock_t no_space_stripes_lock;
 135
 136	bool need_cache_flush;
 137
 138	/* for r5c_cache */
 139	enum r5c_journal_mode r5c_journal_mode;
 140
 141	/* all stripes in r5cache, in the order of seq at sh->log_start */
 142	struct list_head stripe_in_journal_list;
 143
 144	spinlock_t stripe_in_journal_lock;
 145	atomic_t stripe_in_journal_count;
 146
 147	/* to submit async io_units, to fulfill ordering of flush */
 148	struct work_struct deferred_io_work;
 149	/* to disable write back during in degraded mode */
 150	struct work_struct disable_writeback_work;
 151
 152	/* to for chunk_aligned_read in writeback mode, details below */
 153	spinlock_t tree_lock;
 154	struct radix_tree_root big_stripe_tree;
 155};
 156
 157/*
 158 * Enable chunk_aligned_read() with write back cache.
 159 *
 160 * Each chunk may contain more than one stripe (for example, a 256kB
 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
 163 * For each big_stripe, we count how many stripes of this big_stripe
 164 * are in the write back cache. These data are tracked in a radix tree
 165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
 166 * r5c_tree_index() is used to calculate keys for the radix tree.
 167 *
 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
 169 * big_stripe of each chunk in the tree. If this big_stripe is in the
 170 * tree, chunk_aligned_read() aborts. This look up is protected by
 171 * rcu_read_lock().
 172 *
 173 * It is necessary to remember whether a stripe is counted in
 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
 176 * two flags are set, the stripe is counted in big_stripe_tree. This
 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
 178 * r5c_try_caching_write(); and moving clear_bit of
 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
 180 * r5c_finish_stripe_write_out().
 181 */
 182
 183/*
 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
 185 * So it is necessary to left shift the counter by 2 bits before using it
 186 * as data pointer of the tree.
 187 */
 188#define R5C_RADIX_COUNT_SHIFT 2
 189
 190/*
 191 * calculate key for big_stripe_tree
 192 *
 193 * sect: align_bi->bi_iter.bi_sector or sh->sector
 194 */
 195static inline sector_t r5c_tree_index(struct r5conf *conf,
 196				      sector_t sect)
 197{
 198	sector_div(sect, conf->chunk_sectors);
 199	return sect;
 200}
 201
 202/*
 203 * an IO range starts from a meta data block and end at the next meta data
 204 * block. The io unit's the meta data block tracks data/parity followed it. io
 205 * unit is written to log disk with normal write, as we always flush log disk
 206 * first and then start move data to raid disks, there is no requirement to
 207 * write io unit with FLUSH/FUA
 208 */
 209struct r5l_io_unit {
 210	struct r5l_log *log;
 211
 212	struct page *meta_page;	/* store meta block */
 213	int meta_offset;	/* current offset in meta_page */
 214
 215	struct bio *current_bio;/* current_bio accepting new data */
 216
 217	atomic_t pending_stripe;/* how many stripes not flushed to raid */
 218	u64 seq;		/* seq number of the metablock */
 219	sector_t log_start;	/* where the io_unit starts */
 220	sector_t log_end;	/* where the io_unit ends */
 221	struct list_head log_sibling; /* log->running_ios */
 222	struct list_head stripe_list; /* stripes added to the io_unit */
 223
 224	int state;
 225	bool need_split_bio;
 226	struct bio *split_bio;
 227
 228	unsigned int has_flush:1;		/* include flush request */
 229	unsigned int has_fua:1;			/* include fua request */
 230	unsigned int has_null_flush:1;		/* include null flush request */
 231	unsigned int has_flush_payload:1;	/* include flush payload  */
 232	/*
 233	 * io isn't sent yet, flush/fua request can only be submitted till it's
 234	 * the first IO in running_ios list
 235	 */
 236	unsigned int io_deferred:1;
 237
 238	struct bio_list flush_barriers;   /* size == 0 flush bios */
 239};
 240
 241/* r5l_io_unit state */
 242enum r5l_io_unit_state {
 243	IO_UNIT_RUNNING = 0,	/* accepting new IO */
 244	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
 245				 * don't accepting new bio */
 246	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
 247	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
 248};
 249
 250bool r5c_is_writeback(struct r5l_log *log)
 251{
 252	return (log != NULL &&
 253		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
 254}
 255
 256static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 257{
 258	start += inc;
 259	if (start >= log->device_size)
 260		start = start - log->device_size;
 261	return start;
 262}
 263
 264static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 265				  sector_t end)
 266{
 267	if (end >= start)
 268		return end - start;
 269	else
 270		return end + log->device_size - start;
 271}
 272
 273static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 274{
 275	sector_t used_size;
 276
 277	used_size = r5l_ring_distance(log, log->last_checkpoint,
 278					log->log_start);
 279
 280	return log->device_size > used_size + size;
 281}
 282
 283static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 284				    enum r5l_io_unit_state state)
 285{
 286	if (WARN_ON(io->state >= state))
 287		return;
 288	io->state = state;
 289}
 290
 291static void
 292r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
 293{
 294	struct bio *wbi, *wbi2;
 295
 296	wbi = dev->written;
 297	dev->written = NULL;
 298	while (wbi && wbi->bi_iter.bi_sector <
 299	       dev->sector + RAID5_STRIPE_SECTORS(conf)) {
 300		wbi2 = r5_next_bio(conf, wbi, dev->sector);
 301		md_write_end(conf->mddev);
 302		bio_endio(wbi);
 303		wbi = wbi2;
 304	}
 305}
 306
 307void r5c_handle_cached_data_endio(struct r5conf *conf,
 308				  struct stripe_head *sh, int disks)
 309{
 310	int i;
 311
 312	for (i = sh->disks; i--; ) {
 313		if (sh->dev[i].written) {
 314			set_bit(R5_UPTODATE, &sh->dev[i].flags);
 315			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
 316			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
 317					   RAID5_STRIPE_SECTORS(conf),
 318					   !test_bit(STRIPE_DEGRADED, &sh->state),
 319					   0);
 320		}
 321	}
 322}
 323
 324void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
 325
 326/* Check whether we should flush some stripes to free up stripe cache */
 327void r5c_check_stripe_cache_usage(struct r5conf *conf)
 328{
 329	int total_cached;
 330
 331	if (!r5c_is_writeback(conf->log))
 332		return;
 333
 334	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
 335		atomic_read(&conf->r5c_cached_full_stripes);
 336
 337	/*
 338	 * The following condition is true for either of the following:
 339	 *   - stripe cache pressure high:
 340	 *          total_cached > 3/4 min_nr_stripes ||
 341	 *          empty_inactive_list_nr > 0
 342	 *   - stripe cache pressure moderate:
 343	 *          total_cached > 1/2 min_nr_stripes
 344	 */
 345	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
 346	    atomic_read(&conf->empty_inactive_list_nr) > 0)
 347		r5l_wake_reclaim(conf->log, 0);
 348}
 349
 350/*
 351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
 352 * stripes in the cache
 353 */
 354void r5c_check_cached_full_stripe(struct r5conf *conf)
 355{
 356	if (!r5c_is_writeback(conf->log))
 357		return;
 358
 359	/*
 360	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
 361	 * or a full stripe (chunk size / 4k stripes).
 362	 */
 363	if (atomic_read(&conf->r5c_cached_full_stripes) >=
 364	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
 365		conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
 366		r5l_wake_reclaim(conf->log, 0);
 367}
 368
 369/*
 370 * Total log space (in sectors) needed to flush all data in cache
 371 *
 372 * To avoid deadlock due to log space, it is necessary to reserve log
 373 * space to flush critical stripes (stripes that occupying log space near
 374 * last_checkpoint). This function helps check how much log space is
 375 * required to flush all cached stripes.
 376 *
 377 * To reduce log space requirements, two mechanisms are used to give cache
 378 * flush higher priorities:
 379 *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
 380 *       stripes ALREADY in journal can be flushed w/o pending writes;
 381 *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
 382 *       can be delayed (r5l_add_no_space_stripe).
 383 *
 384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
 385 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
 386 * pages of journal space. For stripes that has not passed 1, flushing it
 387 * requires (conf->raid_disks + 1) pages of journal space. There are at
 388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
 389 * required to flush all cached stripes (in pages) is:
 390 *
 391 *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
 392 *     (group_cnt + 1) * (raid_disks + 1)
 393 * or
 394 *     (stripe_in_journal_count) * (max_degraded + 1) +
 395 *     (group_cnt + 1) * (raid_disks - max_degraded)
 396 */
 397static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
 398{
 399	struct r5l_log *log = conf->log;
 400
 401	if (!r5c_is_writeback(log))
 402		return 0;
 403
 404	return BLOCK_SECTORS *
 405		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
 406		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
 407}
 408
 409/*
 410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
 411 *
 412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
 413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
 414 * device is less than 2x of reclaim_required_space.
 415 */
 416static inline void r5c_update_log_state(struct r5l_log *log)
 417{
 418	struct r5conf *conf = log->rdev->mddev->private;
 419	sector_t free_space;
 420	sector_t reclaim_space;
 421	bool wake_reclaim = false;
 422
 423	if (!r5c_is_writeback(log))
 424		return;
 425
 426	free_space = r5l_ring_distance(log, log->log_start,
 427				       log->last_checkpoint);
 428	reclaim_space = r5c_log_required_to_flush_cache(conf);
 429	if (free_space < 2 * reclaim_space)
 430		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 431	else {
 432		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
 433			wake_reclaim = true;
 434		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 435	}
 436	if (free_space < 3 * reclaim_space)
 437		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
 438	else
 439		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
 440
 441	if (wake_reclaim)
 442		r5l_wake_reclaim(log, 0);
 443}
 444
 445/*
 446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
 447 * This function should only be called in write-back mode.
 448 */
 449void r5c_make_stripe_write_out(struct stripe_head *sh)
 450{
 451	struct r5conf *conf = sh->raid_conf;
 452	struct r5l_log *log = conf->log;
 453
 454	BUG_ON(!r5c_is_writeback(log));
 455
 456	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 457	clear_bit(STRIPE_R5C_CACHING, &sh->state);
 458
 459	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 460		atomic_inc(&conf->preread_active_stripes);
 461}
 462
 463static void r5c_handle_data_cached(struct stripe_head *sh)
 464{
 465	int i;
 466
 467	for (i = sh->disks; i--; )
 468		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 469			set_bit(R5_InJournal, &sh->dev[i].flags);
 470			clear_bit(R5_LOCKED, &sh->dev[i].flags);
 471		}
 472	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 473}
 474
 475/*
 476 * this journal write must contain full parity,
 477 * it may also contain some data pages
 478 */
 479static void r5c_handle_parity_cached(struct stripe_head *sh)
 480{
 481	int i;
 482
 483	for (i = sh->disks; i--; )
 484		if (test_bit(R5_InJournal, &sh->dev[i].flags))
 485			set_bit(R5_Wantwrite, &sh->dev[i].flags);
 486}
 487
 488/*
 489 * Setting proper flags after writing (or flushing) data and/or parity to the
 490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
 491 */
 492static void r5c_finish_cache_stripe(struct stripe_head *sh)
 493{
 494	struct r5l_log *log = sh->raid_conf->log;
 495
 496	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 497		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 498		/*
 499		 * Set R5_InJournal for parity dev[pd_idx]. This means
 500		 * all data AND parity in the journal. For RAID 6, it is
 501		 * NOT necessary to set the flag for dev[qd_idx], as the
 502		 * two parities are written out together.
 503		 */
 504		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 505	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
 506		r5c_handle_data_cached(sh);
 507	} else {
 508		r5c_handle_parity_cached(sh);
 509		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 510	}
 511}
 512
 513static void r5l_io_run_stripes(struct r5l_io_unit *io)
 514{
 515	struct stripe_head *sh, *next;
 516
 517	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 518		list_del_init(&sh->log_list);
 519
 520		r5c_finish_cache_stripe(sh);
 521
 522		set_bit(STRIPE_HANDLE, &sh->state);
 523		raid5_release_stripe(sh);
 524	}
 525}
 526
 527static void r5l_log_run_stripes(struct r5l_log *log)
 528{
 529	struct r5l_io_unit *io, *next;
 530
 531	lockdep_assert_held(&log->io_list_lock);
 532
 533	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 534		/* don't change list order */
 535		if (io->state < IO_UNIT_IO_END)
 536			break;
 537
 538		list_move_tail(&io->log_sibling, &log->finished_ios);
 539		r5l_io_run_stripes(io);
 540	}
 541}
 542
 543static void r5l_move_to_end_ios(struct r5l_log *log)
 544{
 545	struct r5l_io_unit *io, *next;
 546
 547	lockdep_assert_held(&log->io_list_lock);
 548
 549	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 550		/* don't change list order */
 551		if (io->state < IO_UNIT_IO_END)
 552			break;
 553		list_move_tail(&io->log_sibling, &log->io_end_ios);
 554	}
 555}
 556
 557static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
 558static void r5l_log_endio(struct bio *bio)
 559{
 560	struct r5l_io_unit *io = bio->bi_private;
 561	struct r5l_io_unit *io_deferred;
 562	struct r5l_log *log = io->log;
 563	unsigned long flags;
 564	bool has_null_flush;
 565	bool has_flush_payload;
 566
 567	if (bio->bi_status)
 568		md_error(log->rdev->mddev, log->rdev);
 569
 570	bio_put(bio);
 571	mempool_free(io->meta_page, &log->meta_pool);
 572
 573	spin_lock_irqsave(&log->io_list_lock, flags);
 574	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 575
 576	/*
 577	 * if the io doesn't not have null_flush or flush payload,
 578	 * it is not safe to access it after releasing io_list_lock.
 579	 * Therefore, it is necessary to check the condition with
 580	 * the lock held.
 581	 */
 582	has_null_flush = io->has_null_flush;
 583	has_flush_payload = io->has_flush_payload;
 584
 585	if (log->need_cache_flush && !list_empty(&io->stripe_list))
 586		r5l_move_to_end_ios(log);
 587	else
 588		r5l_log_run_stripes(log);
 589	if (!list_empty(&log->running_ios)) {
 590		/*
 591		 * FLUSH/FUA io_unit is deferred because of ordering, now we
 592		 * can dispatch it
 593		 */
 594		io_deferred = list_first_entry(&log->running_ios,
 595					       struct r5l_io_unit, log_sibling);
 596		if (io_deferred->io_deferred)
 597			schedule_work(&log->deferred_io_work);
 598	}
 599
 600	spin_unlock_irqrestore(&log->io_list_lock, flags);
 601
 602	if (log->need_cache_flush)
 603		md_wakeup_thread(log->rdev->mddev->thread);
 604
 605	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
 606	if (has_null_flush) {
 607		struct bio *bi;
 608
 609		WARN_ON(bio_list_empty(&io->flush_barriers));
 610		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
 611			bio_endio(bi);
 612			if (atomic_dec_and_test(&io->pending_stripe)) {
 613				__r5l_stripe_write_finished(io);
 614				return;
 615			}
 616		}
 617	}
 618	/* decrease pending_stripe for flush payload */
 619	if (has_flush_payload)
 620		if (atomic_dec_and_test(&io->pending_stripe))
 621			__r5l_stripe_write_finished(io);
 622}
 623
 624static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
 625{
 626	unsigned long flags;
 627
 628	spin_lock_irqsave(&log->io_list_lock, flags);
 629	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 630	spin_unlock_irqrestore(&log->io_list_lock, flags);
 631
 632	/*
 633	 * In case of journal device failures, submit_bio will get error
 634	 * and calls endio, then active stripes will continue write
 635	 * process. Therefore, it is not necessary to check Faulty bit
 636	 * of journal device here.
 637	 *
 638	 * We can't check split_bio after current_bio is submitted. If
 639	 * io->split_bio is null, after current_bio is submitted, current_bio
 640	 * might already be completed and the io_unit is freed. We submit
 641	 * split_bio first to avoid the issue.
 642	 */
 643	if (io->split_bio) {
 644		if (io->has_flush)
 645			io->split_bio->bi_opf |= REQ_PREFLUSH;
 646		if (io->has_fua)
 647			io->split_bio->bi_opf |= REQ_FUA;
 648		submit_bio(io->split_bio);
 649	}
 650
 651	if (io->has_flush)
 652		io->current_bio->bi_opf |= REQ_PREFLUSH;
 653	if (io->has_fua)
 654		io->current_bio->bi_opf |= REQ_FUA;
 655	submit_bio(io->current_bio);
 656}
 657
 658/* deferred io_unit will be dispatched here */
 659static void r5l_submit_io_async(struct work_struct *work)
 660{
 661	struct r5l_log *log = container_of(work, struct r5l_log,
 662					   deferred_io_work);
 663	struct r5l_io_unit *io = NULL;
 664	unsigned long flags;
 665
 666	spin_lock_irqsave(&log->io_list_lock, flags);
 667	if (!list_empty(&log->running_ios)) {
 668		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
 669				      log_sibling);
 670		if (!io->io_deferred)
 671			io = NULL;
 672		else
 673			io->io_deferred = 0;
 674	}
 675	spin_unlock_irqrestore(&log->io_list_lock, flags);
 676	if (io)
 677		r5l_do_submit_io(log, io);
 678}
 679
 680static void r5c_disable_writeback_async(struct work_struct *work)
 681{
 682	struct r5l_log *log = container_of(work, struct r5l_log,
 683					   disable_writeback_work);
 684	struct mddev *mddev = log->rdev->mddev;
 685	struct r5conf *conf = mddev->private;
 686	int locked = 0;
 687
 688	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 689		return;
 690	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
 691		mdname(mddev));
 692
 693	/* wait superblock change before suspend */
 694	wait_event(mddev->sb_wait,
 695		   conf->log == NULL ||
 696		   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
 697		    (locked = mddev_trylock(mddev))));
 698	if (locked) {
 699		mddev_suspend(mddev);
 700		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
 701		mddev_resume(mddev);
 702		mddev_unlock(mddev);
 703	}
 704}
 705
 706static void r5l_submit_current_io(struct r5l_log *log)
 707{
 708	struct r5l_io_unit *io = log->current_io;
 709	struct r5l_meta_block *block;
 710	unsigned long flags;
 711	u32 crc;
 712	bool do_submit = true;
 713
 714	if (!io)
 715		return;
 716
 717	block = page_address(io->meta_page);
 718	block->meta_size = cpu_to_le32(io->meta_offset);
 719	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 720	block->checksum = cpu_to_le32(crc);
 721
 722	log->current_io = NULL;
 723	spin_lock_irqsave(&log->io_list_lock, flags);
 724	if (io->has_flush || io->has_fua) {
 725		if (io != list_first_entry(&log->running_ios,
 726					   struct r5l_io_unit, log_sibling)) {
 727			io->io_deferred = 1;
 728			do_submit = false;
 729		}
 730	}
 731	spin_unlock_irqrestore(&log->io_list_lock, flags);
 732	if (do_submit)
 733		r5l_do_submit_io(log, io);
 734}
 735
 736static struct bio *r5l_bio_alloc(struct r5l_log *log)
 737{
 738	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs);
 
 739
 740	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 741	bio_set_dev(bio, log->rdev->bdev);
 742	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 743
 744	return bio;
 745}
 746
 747static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 748{
 749	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 750
 751	r5c_update_log_state(log);
 752	/*
 753	 * If we filled up the log device start from the beginning again,
 754	 * which will require a new bio.
 755	 *
 756	 * Note: for this to work properly the log size needs to me a multiple
 757	 * of BLOCK_SECTORS.
 758	 */
 759	if (log->log_start == 0)
 760		io->need_split_bio = true;
 761
 762	io->log_end = log->log_start;
 763}
 764
 765static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 766{
 767	struct r5l_io_unit *io;
 768	struct r5l_meta_block *block;
 769
 770	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
 771	if (!io)
 772		return NULL;
 773	memset(io, 0, sizeof(*io));
 774
 775	io->log = log;
 776	INIT_LIST_HEAD(&io->log_sibling);
 777	INIT_LIST_HEAD(&io->stripe_list);
 778	bio_list_init(&io->flush_barriers);
 779	io->state = IO_UNIT_RUNNING;
 780
 781	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
 782	block = page_address(io->meta_page);
 783	clear_page(block);
 784	block->magic = cpu_to_le32(R5LOG_MAGIC);
 785	block->version = R5LOG_VERSION;
 786	block->seq = cpu_to_le64(log->seq);
 787	block->position = cpu_to_le64(log->log_start);
 788
 789	io->log_start = log->log_start;
 790	io->meta_offset = sizeof(struct r5l_meta_block);
 791	io->seq = log->seq++;
 792
 793	io->current_bio = r5l_bio_alloc(log);
 794	io->current_bio->bi_end_io = r5l_log_endio;
 795	io->current_bio->bi_private = io;
 796	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 797
 798	r5_reserve_log_entry(log, io);
 799
 800	spin_lock_irq(&log->io_list_lock);
 801	list_add_tail(&io->log_sibling, &log->running_ios);
 802	spin_unlock_irq(&log->io_list_lock);
 803
 804	return io;
 805}
 806
 807static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 808{
 809	if (log->current_io &&
 810	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
 811		r5l_submit_current_io(log);
 812
 813	if (!log->current_io) {
 814		log->current_io = r5l_new_meta(log);
 815		if (!log->current_io)
 816			return -ENOMEM;
 817	}
 818
 819	return 0;
 820}
 821
 822static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 823				    sector_t location,
 824				    u32 checksum1, u32 checksum2,
 825				    bool checksum2_valid)
 826{
 827	struct r5l_io_unit *io = log->current_io;
 828	struct r5l_payload_data_parity *payload;
 829
 830	payload = page_address(io->meta_page) + io->meta_offset;
 831	payload->header.type = cpu_to_le16(type);
 832	payload->header.flags = cpu_to_le16(0);
 833	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 834				    (PAGE_SHIFT - 9));
 835	payload->location = cpu_to_le64(location);
 836	payload->checksum[0] = cpu_to_le32(checksum1);
 837	if (checksum2_valid)
 838		payload->checksum[1] = cpu_to_le32(checksum2);
 839
 840	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 841		sizeof(__le32) * (1 + !!checksum2_valid);
 842}
 843
 844static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 845{
 846	struct r5l_io_unit *io = log->current_io;
 847
 848	if (io->need_split_bio) {
 849		BUG_ON(io->split_bio);
 850		io->split_bio = io->current_bio;
 851		io->current_bio = r5l_bio_alloc(log);
 852		bio_chain(io->current_bio, io->split_bio);
 853		io->need_split_bio = false;
 854	}
 855
 856	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 857		BUG();
 858
 859	r5_reserve_log_entry(log, io);
 860}
 861
 862static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
 863{
 864	struct mddev *mddev = log->rdev->mddev;
 865	struct r5conf *conf = mddev->private;
 866	struct r5l_io_unit *io;
 867	struct r5l_payload_flush *payload;
 868	int meta_size;
 869
 870	/*
 871	 * payload_flush requires extra writes to the journal.
 872	 * To avoid handling the extra IO in quiesce, just skip
 873	 * flush_payload
 874	 */
 875	if (conf->quiesce)
 876		return;
 877
 878	mutex_lock(&log->io_mutex);
 879	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
 880
 881	if (r5l_get_meta(log, meta_size)) {
 882		mutex_unlock(&log->io_mutex);
 883		return;
 884	}
 885
 886	/* current implementation is one stripe per flush payload */
 887	io = log->current_io;
 888	payload = page_address(io->meta_page) + io->meta_offset;
 889	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
 890	payload->header.flags = cpu_to_le16(0);
 891	payload->size = cpu_to_le32(sizeof(__le64));
 892	payload->flush_stripes[0] = cpu_to_le64(sect);
 893	io->meta_offset += meta_size;
 894	/* multiple flush payloads count as one pending_stripe */
 895	if (!io->has_flush_payload) {
 896		io->has_flush_payload = 1;
 897		atomic_inc(&io->pending_stripe);
 898	}
 899	mutex_unlock(&log->io_mutex);
 900}
 901
 902static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 903			   int data_pages, int parity_pages)
 904{
 905	int i;
 906	int meta_size;
 907	int ret;
 908	struct r5l_io_unit *io;
 909
 910	meta_size =
 911		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 912		 * data_pages) +
 913		sizeof(struct r5l_payload_data_parity) +
 914		sizeof(__le32) * parity_pages;
 915
 916	ret = r5l_get_meta(log, meta_size);
 917	if (ret)
 918		return ret;
 919
 920	io = log->current_io;
 921
 922	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
 923		io->has_flush = 1;
 924
 925	for (i = 0; i < sh->disks; i++) {
 926		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
 927		    test_bit(R5_InJournal, &sh->dev[i].flags))
 928			continue;
 929		if (i == sh->pd_idx || i == sh->qd_idx)
 930			continue;
 931		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
 932		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
 933			io->has_fua = 1;
 934			/*
 935			 * we need to flush journal to make sure recovery can
 936			 * reach the data with fua flag
 937			 */
 938			io->has_flush = 1;
 939		}
 940		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 941					raid5_compute_blocknr(sh, i, 0),
 942					sh->dev[i].log_checksum, 0, false);
 943		r5l_append_payload_page(log, sh->dev[i].page);
 944	}
 945
 946	if (parity_pages == 2) {
 947		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 948					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 949					sh->dev[sh->qd_idx].log_checksum, true);
 950		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 951		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 952	} else if (parity_pages == 1) {
 953		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 954					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 955					0, false);
 956		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 957	} else  /* Just writing data, not parity, in caching phase */
 958		BUG_ON(parity_pages != 0);
 959
 960	list_add_tail(&sh->log_list, &io->stripe_list);
 961	atomic_inc(&io->pending_stripe);
 962	sh->log_io = io;
 963
 964	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 965		return 0;
 966
 967	if (sh->log_start == MaxSector) {
 968		BUG_ON(!list_empty(&sh->r5c));
 969		sh->log_start = io->log_start;
 970		spin_lock_irq(&log->stripe_in_journal_lock);
 971		list_add_tail(&sh->r5c,
 972			      &log->stripe_in_journal_list);
 973		spin_unlock_irq(&log->stripe_in_journal_lock);
 974		atomic_inc(&log->stripe_in_journal_count);
 975	}
 976	return 0;
 977}
 978
 979/* add stripe to no_space_stripes, and then wake up reclaim */
 980static inline void r5l_add_no_space_stripe(struct r5l_log *log,
 981					   struct stripe_head *sh)
 982{
 983	spin_lock(&log->no_space_stripes_lock);
 984	list_add_tail(&sh->log_list, &log->no_space_stripes);
 985	spin_unlock(&log->no_space_stripes_lock);
 986}
 987
 988/*
 989 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 990 * data from log to raid disks), so we shouldn't wait for reclaim here
 991 */
 992int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 993{
 994	struct r5conf *conf = sh->raid_conf;
 995	int write_disks = 0;
 996	int data_pages, parity_pages;
 997	int reserve;
 998	int i;
 999	int ret = 0;
1000	bool wake_reclaim = false;
1001
1002	if (!log)
1003		return -EAGAIN;
1004	/* Don't support stripe batch */
1005	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1006	    test_bit(STRIPE_SYNCING, &sh->state)) {
1007		/* the stripe is written to log, we start writing it to raid */
1008		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1009		return -EAGAIN;
1010	}
1011
1012	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1013
1014	for (i = 0; i < sh->disks; i++) {
1015		void *addr;
1016
1017		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1018		    test_bit(R5_InJournal, &sh->dev[i].flags))
1019			continue;
1020
1021		write_disks++;
1022		/* checksum is already calculated in last run */
1023		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1024			continue;
1025		addr = kmap_atomic(sh->dev[i].page);
1026		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1027						    addr, PAGE_SIZE);
1028		kunmap_atomic(addr);
1029	}
1030	parity_pages = 1 + !!(sh->qd_idx >= 0);
1031	data_pages = write_disks - parity_pages;
1032
1033	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1034	/*
1035	 * The stripe must enter state machine again to finish the write, so
1036	 * don't delay.
1037	 */
1038	clear_bit(STRIPE_DELAYED, &sh->state);
1039	atomic_inc(&sh->count);
1040
1041	mutex_lock(&log->io_mutex);
1042	/* meta + data */
1043	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1044
1045	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1046		if (!r5l_has_free_space(log, reserve)) {
1047			r5l_add_no_space_stripe(log, sh);
1048			wake_reclaim = true;
1049		} else {
1050			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1051			if (ret) {
1052				spin_lock_irq(&log->io_list_lock);
1053				list_add_tail(&sh->log_list,
1054					      &log->no_mem_stripes);
1055				spin_unlock_irq(&log->io_list_lock);
1056			}
1057		}
1058	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1059		/*
1060		 * log space critical, do not process stripes that are
1061		 * not in cache yet (sh->log_start == MaxSector).
1062		 */
1063		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1064		    sh->log_start == MaxSector) {
1065			r5l_add_no_space_stripe(log, sh);
1066			wake_reclaim = true;
1067			reserve = 0;
1068		} else if (!r5l_has_free_space(log, reserve)) {
1069			if (sh->log_start == log->last_checkpoint)
1070				BUG();
1071			else
1072				r5l_add_no_space_stripe(log, sh);
1073		} else {
1074			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1075			if (ret) {
1076				spin_lock_irq(&log->io_list_lock);
1077				list_add_tail(&sh->log_list,
1078					      &log->no_mem_stripes);
1079				spin_unlock_irq(&log->io_list_lock);
1080			}
1081		}
1082	}
1083
1084	mutex_unlock(&log->io_mutex);
1085	if (wake_reclaim)
1086		r5l_wake_reclaim(log, reserve);
1087	return 0;
1088}
1089
1090void r5l_write_stripe_run(struct r5l_log *log)
1091{
1092	if (!log)
1093		return;
1094	mutex_lock(&log->io_mutex);
1095	r5l_submit_current_io(log);
1096	mutex_unlock(&log->io_mutex);
1097}
1098
1099int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1100{
1101	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1102		/*
1103		 * in write through (journal only)
1104		 * we flush log disk cache first, then write stripe data to
1105		 * raid disks. So if bio is finished, the log disk cache is
1106		 * flushed already. The recovery guarantees we can recovery
1107		 * the bio from log disk, so we don't need to flush again
1108		 */
1109		if (bio->bi_iter.bi_size == 0) {
1110			bio_endio(bio);
1111			return 0;
1112		}
1113		bio->bi_opf &= ~REQ_PREFLUSH;
1114	} else {
1115		/* write back (with cache) */
1116		if (bio->bi_iter.bi_size == 0) {
1117			mutex_lock(&log->io_mutex);
1118			r5l_get_meta(log, 0);
1119			bio_list_add(&log->current_io->flush_barriers, bio);
1120			log->current_io->has_flush = 1;
1121			log->current_io->has_null_flush = 1;
1122			atomic_inc(&log->current_io->pending_stripe);
1123			r5l_submit_current_io(log);
1124			mutex_unlock(&log->io_mutex);
1125			return 0;
1126		}
1127	}
1128	return -EAGAIN;
1129}
1130
1131/* This will run after log space is reclaimed */
1132static void r5l_run_no_space_stripes(struct r5l_log *log)
1133{
1134	struct stripe_head *sh;
1135
1136	spin_lock(&log->no_space_stripes_lock);
1137	while (!list_empty(&log->no_space_stripes)) {
1138		sh = list_first_entry(&log->no_space_stripes,
1139				      struct stripe_head, log_list);
1140		list_del_init(&sh->log_list);
1141		set_bit(STRIPE_HANDLE, &sh->state);
1142		raid5_release_stripe(sh);
1143	}
1144	spin_unlock(&log->no_space_stripes_lock);
1145}
1146
1147/*
1148 * calculate new last_checkpoint
1149 * for write through mode, returns log->next_checkpoint
1150 * for write back, returns log_start of first sh in stripe_in_journal_list
1151 */
1152static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1153{
1154	struct stripe_head *sh;
1155	struct r5l_log *log = conf->log;
1156	sector_t new_cp;
1157	unsigned long flags;
1158
1159	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1160		return log->next_checkpoint;
1161
1162	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1163	if (list_empty(&conf->log->stripe_in_journal_list)) {
1164		/* all stripes flushed */
1165		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1166		return log->next_checkpoint;
1167	}
1168	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1169			      struct stripe_head, r5c);
1170	new_cp = sh->log_start;
1171	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1172	return new_cp;
1173}
1174
1175static sector_t r5l_reclaimable_space(struct r5l_log *log)
1176{
1177	struct r5conf *conf = log->rdev->mddev->private;
1178
1179	return r5l_ring_distance(log, log->last_checkpoint,
1180				 r5c_calculate_new_cp(conf));
1181}
1182
1183static void r5l_run_no_mem_stripe(struct r5l_log *log)
1184{
1185	struct stripe_head *sh;
1186
1187	lockdep_assert_held(&log->io_list_lock);
1188
1189	if (!list_empty(&log->no_mem_stripes)) {
1190		sh = list_first_entry(&log->no_mem_stripes,
1191				      struct stripe_head, log_list);
1192		list_del_init(&sh->log_list);
1193		set_bit(STRIPE_HANDLE, &sh->state);
1194		raid5_release_stripe(sh);
1195	}
1196}
1197
1198static bool r5l_complete_finished_ios(struct r5l_log *log)
1199{
1200	struct r5l_io_unit *io, *next;
1201	bool found = false;
1202
1203	lockdep_assert_held(&log->io_list_lock);
1204
1205	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1206		/* don't change list order */
1207		if (io->state < IO_UNIT_STRIPE_END)
1208			break;
1209
1210		log->next_checkpoint = io->log_start;
1211
1212		list_del(&io->log_sibling);
1213		mempool_free(io, &log->io_pool);
1214		r5l_run_no_mem_stripe(log);
1215
1216		found = true;
1217	}
1218
1219	return found;
1220}
1221
1222static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1223{
1224	struct r5l_log *log = io->log;
1225	struct r5conf *conf = log->rdev->mddev->private;
1226	unsigned long flags;
1227
1228	spin_lock_irqsave(&log->io_list_lock, flags);
1229	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1230
1231	if (!r5l_complete_finished_ios(log)) {
1232		spin_unlock_irqrestore(&log->io_list_lock, flags);
1233		return;
1234	}
1235
1236	if (r5l_reclaimable_space(log) > log->max_free_space ||
1237	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1238		r5l_wake_reclaim(log, 0);
1239
1240	spin_unlock_irqrestore(&log->io_list_lock, flags);
1241	wake_up(&log->iounit_wait);
1242}
1243
1244void r5l_stripe_write_finished(struct stripe_head *sh)
1245{
1246	struct r5l_io_unit *io;
1247
1248	io = sh->log_io;
1249	sh->log_io = NULL;
1250
1251	if (io && atomic_dec_and_test(&io->pending_stripe))
1252		__r5l_stripe_write_finished(io);
1253}
1254
1255static void r5l_log_flush_endio(struct bio *bio)
1256{
1257	struct r5l_log *log = container_of(bio, struct r5l_log,
1258		flush_bio);
1259	unsigned long flags;
1260	struct r5l_io_unit *io;
1261
1262	if (bio->bi_status)
1263		md_error(log->rdev->mddev, log->rdev);
1264
1265	spin_lock_irqsave(&log->io_list_lock, flags);
1266	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1267		r5l_io_run_stripes(io);
1268	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1269	spin_unlock_irqrestore(&log->io_list_lock, flags);
 
 
1270}
1271
1272/*
1273 * Starting dispatch IO to raid.
1274 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1275 * broken meta in the middle of a log causes recovery can't find meta at the
1276 * head of log. If operations require meta at the head persistent in log, we
1277 * must make sure meta before it persistent in log too. A case is:
1278 *
1279 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1280 * data/parity must be persistent in log before we do the write to raid disks.
1281 *
1282 * The solution is we restrictly maintain io_unit list order. In this case, we
1283 * only write stripes of an io_unit to raid disks till the io_unit is the first
1284 * one whose data/parity is in log.
1285 */
1286void r5l_flush_stripe_to_raid(struct r5l_log *log)
1287{
1288	bool do_flush;
1289
1290	if (!log || !log->need_cache_flush)
1291		return;
1292
1293	spin_lock_irq(&log->io_list_lock);
1294	/* flush bio is running */
1295	if (!list_empty(&log->flushing_ios)) {
1296		spin_unlock_irq(&log->io_list_lock);
1297		return;
1298	}
1299	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1300	do_flush = !list_empty(&log->flushing_ios);
1301	spin_unlock_irq(&log->io_list_lock);
1302
1303	if (!do_flush)
1304		return;
1305	bio_reset(&log->flush_bio);
1306	bio_set_dev(&log->flush_bio, log->rdev->bdev);
1307	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1308	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1309	submit_bio(&log->flush_bio);
1310}
1311
1312static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314	sector_t end)
1315{
1316	struct block_device *bdev = log->rdev->bdev;
1317	struct mddev *mddev;
1318
1319	r5l_write_super(log, end);
1320
1321	if (!blk_queue_discard(bdev_get_queue(bdev)))
1322		return;
1323
1324	mddev = log->rdev->mddev;
1325	/*
1326	 * Discard could zero data, so before discard we must make sure
1327	 * superblock is updated to new log tail. Updating superblock (either
1328	 * directly call md_update_sb() or depend on md thread) must hold
1329	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1330	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1331	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1332	 * thread is calling this function and waitting for reconfig mutex. So
1333	 * there is a deadlock. We workaround this issue with a trylock.
1334	 * FIXME: we could miss discard if we can't take reconfig mutex
1335	 */
1336	set_mask_bits(&mddev->sb_flags, 0,
1337		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338	if (!mddev_trylock(mddev))
1339		return;
1340	md_update_sb(mddev, 1);
1341	mddev_unlock(mddev);
1342
1343	/* discard IO error really doesn't matter, ignore it */
1344	if (log->last_checkpoint < end) {
1345		blkdev_issue_discard(bdev,
1346				log->last_checkpoint + log->rdev->data_offset,
1347				end - log->last_checkpoint, GFP_NOIO, 0);
1348	} else {
1349		blkdev_issue_discard(bdev,
1350				log->last_checkpoint + log->rdev->data_offset,
1351				log->device_size - log->last_checkpoint,
1352				GFP_NOIO, 0);
1353		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354				GFP_NOIO, 0);
1355	}
1356}
1357
1358/*
1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361 *
1362 * must hold conf->device_lock
1363 */
1364static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365{
1366	BUG_ON(list_empty(&sh->lru));
1367	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369
1370	/*
1371	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372	 * raid5_release_stripe() while holding conf->device_lock
1373	 */
1374	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375	lockdep_assert_held(&conf->device_lock);
1376
1377	list_del_init(&sh->lru);
1378	atomic_inc(&sh->count);
1379
1380	set_bit(STRIPE_HANDLE, &sh->state);
1381	atomic_inc(&conf->active_stripes);
1382	r5c_make_stripe_write_out(sh);
1383
1384	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385		atomic_inc(&conf->r5c_flushing_partial_stripes);
1386	else
1387		atomic_inc(&conf->r5c_flushing_full_stripes);
1388	raid5_release_stripe(sh);
1389}
1390
1391/*
1392 * if num == 0, flush all full stripes
1393 * if num > 0, flush all full stripes. If less than num full stripes are
1394 *             flushed, flush some partial stripes until totally num stripes are
1395 *             flushed or there is no more cached stripes.
1396 */
1397void r5c_flush_cache(struct r5conf *conf, int num)
1398{
1399	int count;
1400	struct stripe_head *sh, *next;
1401
1402	lockdep_assert_held(&conf->device_lock);
1403	if (!conf->log)
1404		return;
1405
1406	count = 0;
1407	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408		r5c_flush_stripe(conf, sh);
1409		count++;
1410	}
1411
1412	if (count >= num)
1413		return;
1414	list_for_each_entry_safe(sh, next,
1415				 &conf->r5c_partial_stripe_list, lru) {
1416		r5c_flush_stripe(conf, sh);
1417		if (++count >= num)
1418			break;
1419	}
1420}
1421
1422static void r5c_do_reclaim(struct r5conf *conf)
1423{
1424	struct r5l_log *log = conf->log;
1425	struct stripe_head *sh;
1426	int count = 0;
1427	unsigned long flags;
1428	int total_cached;
1429	int stripes_to_flush;
1430	int flushing_partial, flushing_full;
1431
1432	if (!r5c_is_writeback(log))
1433		return;
1434
1435	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438		atomic_read(&conf->r5c_cached_full_stripes) -
1439		flushing_full - flushing_partial;
1440
1441	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1443		/*
1444		 * if stripe cache pressure high, flush all full stripes and
1445		 * some partial stripes
1446		 */
1447		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451		/*
1452		 * if stripe cache pressure moderate, or if there is many full
1453		 * stripes,flush all full stripes
1454		 */
1455		stripes_to_flush = 0;
1456	else
1457		/* no need to flush */
1458		stripes_to_flush = -1;
1459
1460	if (stripes_to_flush >= 0) {
1461		spin_lock_irqsave(&conf->device_lock, flags);
1462		r5c_flush_cache(conf, stripes_to_flush);
1463		spin_unlock_irqrestore(&conf->device_lock, flags);
1464	}
1465
1466	/* if log space is tight, flush stripes on stripe_in_journal_list */
1467	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469		spin_lock(&conf->device_lock);
1470		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471			/*
1472			 * stripes on stripe_in_journal_list could be in any
1473			 * state of the stripe_cache state machine. In this
1474			 * case, we only want to flush stripe on
1475			 * r5c_cached_full/partial_stripes. The following
1476			 * condition makes sure the stripe is on one of the
1477			 * two lists.
1478			 */
1479			if (!list_empty(&sh->lru) &&
1480			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1481			    atomic_read(&sh->count) == 0) {
1482				r5c_flush_stripe(conf, sh);
1483				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484					break;
1485			}
1486		}
1487		spin_unlock(&conf->device_lock);
1488		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489	}
1490
1491	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492		r5l_run_no_space_stripes(log);
1493
1494	md_wakeup_thread(conf->mddev->thread);
1495}
1496
1497static void r5l_do_reclaim(struct r5l_log *log)
1498{
1499	struct r5conf *conf = log->rdev->mddev->private;
1500	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501	sector_t reclaimable;
1502	sector_t next_checkpoint;
1503	bool write_super;
1504
1505	spin_lock_irq(&log->io_list_lock);
1506	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508	/*
1509	 * move proper io_unit to reclaim list. We should not change the order.
1510	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511	 * shouldn't reuse space of an unreclaimable io_unit
1512	 */
1513	while (1) {
1514		reclaimable = r5l_reclaimable_space(log);
1515		if (reclaimable >= reclaim_target ||
1516		    (list_empty(&log->running_ios) &&
1517		     list_empty(&log->io_end_ios) &&
1518		     list_empty(&log->flushing_ios) &&
1519		     list_empty(&log->finished_ios)))
1520			break;
1521
1522		md_wakeup_thread(log->rdev->mddev->thread);
1523		wait_event_lock_irq(log->iounit_wait,
1524				    r5l_reclaimable_space(log) > reclaimable,
1525				    log->io_list_lock);
1526	}
1527
1528	next_checkpoint = r5c_calculate_new_cp(conf);
1529	spin_unlock_irq(&log->io_list_lock);
1530
1531	if (reclaimable == 0 || !write_super)
1532		return;
1533
1534	/*
1535	 * write_super will flush cache of each raid disk. We must write super
1536	 * here, because the log area might be reused soon and we don't want to
1537	 * confuse recovery
1538	 */
1539	r5l_write_super_and_discard_space(log, next_checkpoint);
1540
1541	mutex_lock(&log->io_mutex);
1542	log->last_checkpoint = next_checkpoint;
1543	r5c_update_log_state(log);
1544	mutex_unlock(&log->io_mutex);
1545
1546	r5l_run_no_space_stripes(log);
1547}
1548
1549static void r5l_reclaim_thread(struct md_thread *thread)
1550{
1551	struct mddev *mddev = thread->mddev;
1552	struct r5conf *conf = mddev->private;
1553	struct r5l_log *log = conf->log;
1554
1555	if (!log)
1556		return;
1557	r5c_do_reclaim(conf);
1558	r5l_do_reclaim(log);
1559}
1560
1561void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562{
1563	unsigned long target;
1564	unsigned long new = (unsigned long)space; /* overflow in theory */
1565
1566	if (!log)
1567		return;
 
 
1568	do {
1569		target = log->reclaim_target;
1570		if (new < target)
1571			return;
1572	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1573	md_wakeup_thread(log->reclaim_thread);
1574}
1575
1576void r5l_quiesce(struct r5l_log *log, int quiesce)
1577{
1578	struct mddev *mddev;
1579
1580	if (quiesce) {
1581		/* make sure r5l_write_super_and_discard_space exits */
1582		mddev = log->rdev->mddev;
1583		wake_up(&mddev->sb_wait);
1584		kthread_park(log->reclaim_thread->tsk);
1585		r5l_wake_reclaim(log, MaxSector);
1586		r5l_do_reclaim(log);
1587	} else
1588		kthread_unpark(log->reclaim_thread->tsk);
1589}
1590
1591bool r5l_log_disk_error(struct r5conf *conf)
1592{
1593	struct r5l_log *log;
1594	bool ret;
1595	/* don't allow write if journal disk is missing */
1596	rcu_read_lock();
1597	log = rcu_dereference(conf->log);
1598
 
1599	if (!log)
1600		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1601	else
1602		ret = test_bit(Faulty, &log->rdev->flags);
1603	rcu_read_unlock();
1604	return ret;
1605}
1606
1607#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1608
1609struct r5l_recovery_ctx {
1610	struct page *meta_page;		/* current meta */
1611	sector_t meta_total_blocks;	/* total size of current meta and data */
1612	sector_t pos;			/* recovery position */
1613	u64 seq;			/* recovery position seq */
1614	int data_parity_stripes;	/* number of data_parity stripes */
1615	int data_only_stripes;		/* number of data_only stripes */
1616	struct list_head cached_list;
1617
1618	/*
1619	 * read ahead page pool (ra_pool)
1620	 * in recovery, log is read sequentially. It is not efficient to
1621	 * read every page with sync_page_io(). The read ahead page pool
1622	 * reads multiple pages with one IO, so further log read can
1623	 * just copy data from the pool.
1624	 */
1625	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
 
1626	sector_t pool_offset;	/* offset of first page in the pool */
1627	int total_pages;	/* total allocated pages */
1628	int valid_pages;	/* pages with valid data */
1629	struct bio *ra_bio;	/* bio to do the read ahead */
1630};
1631
1632static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1633					    struct r5l_recovery_ctx *ctx)
1634{
1635	struct page *page;
1636
1637	ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs);
1638	if (!ctx->ra_bio)
1639		return -ENOMEM;
1640
1641	ctx->valid_pages = 0;
1642	ctx->total_pages = 0;
1643	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1644		page = alloc_page(GFP_KERNEL);
1645
1646		if (!page)
1647			break;
1648		ctx->ra_pool[ctx->total_pages] = page;
1649		ctx->total_pages += 1;
1650	}
1651
1652	if (ctx->total_pages == 0) {
1653		bio_put(ctx->ra_bio);
1654		return -ENOMEM;
1655	}
1656
1657	ctx->pool_offset = 0;
1658	return 0;
1659}
1660
1661static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1662					struct r5l_recovery_ctx *ctx)
1663{
1664	int i;
1665
1666	for (i = 0; i < ctx->total_pages; ++i)
1667		put_page(ctx->ra_pool[i]);
1668	bio_put(ctx->ra_bio);
1669}
1670
1671/*
1672 * fetch ctx->valid_pages pages from offset
1673 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1674 * However, if the offset is close to the end of the journal device,
1675 * ctx->valid_pages could be smaller than ctx->total_pages
1676 */
1677static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1678				      struct r5l_recovery_ctx *ctx,
1679				      sector_t offset)
1680{
1681	bio_reset(ctx->ra_bio);
1682	bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1683	bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1684	ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
 
 
1685
1686	ctx->valid_pages = 0;
1687	ctx->pool_offset = offset;
1688
1689	while (ctx->valid_pages < ctx->total_pages) {
1690		bio_add_page(ctx->ra_bio,
1691			     ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1692		ctx->valid_pages += 1;
1693
1694		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1695
1696		if (offset == 0)  /* reached end of the device */
1697			break;
1698	}
1699
1700	return submit_bio_wait(ctx->ra_bio);
 
 
1701}
1702
1703/*
1704 * try read a page from the read ahead page pool, if the page is not in the
1705 * pool, call r5l_recovery_fetch_ra_pool
1706 */
1707static int r5l_recovery_read_page(struct r5l_log *log,
1708				  struct r5l_recovery_ctx *ctx,
1709				  struct page *page,
1710				  sector_t offset)
1711{
1712	int ret;
1713
1714	if (offset < ctx->pool_offset ||
1715	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1716		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1717		if (ret)
1718			return ret;
1719	}
1720
1721	BUG_ON(offset < ctx->pool_offset ||
1722	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1723
1724	memcpy(page_address(page),
1725	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1726					 BLOCK_SECTOR_SHIFT]),
1727	       PAGE_SIZE);
1728	return 0;
1729}
1730
1731static int r5l_recovery_read_meta_block(struct r5l_log *log,
1732					struct r5l_recovery_ctx *ctx)
1733{
1734	struct page *page = ctx->meta_page;
1735	struct r5l_meta_block *mb;
1736	u32 crc, stored_crc;
1737	int ret;
1738
1739	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1740	if (ret != 0)
1741		return ret;
1742
1743	mb = page_address(page);
1744	stored_crc = le32_to_cpu(mb->checksum);
1745	mb->checksum = 0;
1746
1747	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1748	    le64_to_cpu(mb->seq) != ctx->seq ||
1749	    mb->version != R5LOG_VERSION ||
1750	    le64_to_cpu(mb->position) != ctx->pos)
1751		return -EINVAL;
1752
1753	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1754	if (stored_crc != crc)
1755		return -EINVAL;
1756
1757	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1758		return -EINVAL;
1759
1760	ctx->meta_total_blocks = BLOCK_SECTORS;
1761
1762	return 0;
1763}
1764
1765static void
1766r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1767				     struct page *page,
1768				     sector_t pos, u64 seq)
1769{
1770	struct r5l_meta_block *mb;
1771
1772	mb = page_address(page);
1773	clear_page(mb);
1774	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1775	mb->version = R5LOG_VERSION;
1776	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1777	mb->seq = cpu_to_le64(seq);
1778	mb->position = cpu_to_le64(pos);
1779}
1780
1781static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1782					  u64 seq)
1783{
1784	struct page *page;
1785	struct r5l_meta_block *mb;
1786
1787	page = alloc_page(GFP_KERNEL);
1788	if (!page)
1789		return -ENOMEM;
1790	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1791	mb = page_address(page);
1792	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1793					     mb, PAGE_SIZE));
1794	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1795			  REQ_SYNC | REQ_FUA, false)) {
1796		__free_page(page);
1797		return -EIO;
1798	}
1799	__free_page(page);
1800	return 0;
1801}
1802
1803/*
1804 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1805 * to mark valid (potentially not flushed) data in the journal.
1806 *
1807 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1808 * so there should not be any mismatch here.
1809 */
1810static void r5l_recovery_load_data(struct r5l_log *log,
1811				   struct stripe_head *sh,
1812				   struct r5l_recovery_ctx *ctx,
1813				   struct r5l_payload_data_parity *payload,
1814				   sector_t log_offset)
1815{
1816	struct mddev *mddev = log->rdev->mddev;
1817	struct r5conf *conf = mddev->private;
1818	int dd_idx;
1819
1820	raid5_compute_sector(conf,
1821			     le64_to_cpu(payload->location), 0,
1822			     &dd_idx, sh);
1823	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1824	sh->dev[dd_idx].log_checksum =
1825		le32_to_cpu(payload->checksum[0]);
1826	ctx->meta_total_blocks += BLOCK_SECTORS;
1827
1828	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1829	set_bit(STRIPE_R5C_CACHING, &sh->state);
1830}
1831
1832static void r5l_recovery_load_parity(struct r5l_log *log,
1833				     struct stripe_head *sh,
1834				     struct r5l_recovery_ctx *ctx,
1835				     struct r5l_payload_data_parity *payload,
1836				     sector_t log_offset)
1837{
1838	struct mddev *mddev = log->rdev->mddev;
1839	struct r5conf *conf = mddev->private;
1840
1841	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1842	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1843	sh->dev[sh->pd_idx].log_checksum =
1844		le32_to_cpu(payload->checksum[0]);
1845	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1846
1847	if (sh->qd_idx >= 0) {
1848		r5l_recovery_read_page(
1849			log, ctx, sh->dev[sh->qd_idx].page,
1850			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1851		sh->dev[sh->qd_idx].log_checksum =
1852			le32_to_cpu(payload->checksum[1]);
1853		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1854	}
1855	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1856}
1857
1858static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1859{
1860	int i;
1861
1862	sh->state = 0;
1863	sh->log_start = MaxSector;
1864	for (i = sh->disks; i--; )
1865		sh->dev[i].flags = 0;
1866}
1867
1868static void
1869r5l_recovery_replay_one_stripe(struct r5conf *conf,
1870			       struct stripe_head *sh,
1871			       struct r5l_recovery_ctx *ctx)
1872{
1873	struct md_rdev *rdev, *rrdev;
1874	int disk_index;
1875	int data_count = 0;
1876
1877	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1878		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1879			continue;
1880		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1881			continue;
1882		data_count++;
1883	}
1884
1885	/*
1886	 * stripes that only have parity must have been flushed
1887	 * before the crash that we are now recovering from, so
1888	 * there is nothing more to recovery.
1889	 */
1890	if (data_count == 0)
1891		goto out;
1892
1893	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1894		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1895			continue;
1896
1897		/* in case device is broken */
1898		rcu_read_lock();
1899		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1900		if (rdev) {
1901			atomic_inc(&rdev->nr_pending);
1902			rcu_read_unlock();
1903			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1904				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1905				     false);
1906			rdev_dec_pending(rdev, rdev->mddev);
1907			rcu_read_lock();
1908		}
1909		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1910		if (rrdev) {
1911			atomic_inc(&rrdev->nr_pending);
1912			rcu_read_unlock();
1913			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1914				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1915				     false);
1916			rdev_dec_pending(rrdev, rrdev->mddev);
1917			rcu_read_lock();
1918		}
1919		rcu_read_unlock();
1920	}
1921	ctx->data_parity_stripes++;
1922out:
1923	r5l_recovery_reset_stripe(sh);
1924}
1925
1926static struct stripe_head *
1927r5c_recovery_alloc_stripe(
1928		struct r5conf *conf,
1929		sector_t stripe_sect,
1930		int noblock)
1931{
1932	struct stripe_head *sh;
1933
1934	sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
 
1935	if (!sh)
1936		return NULL;  /* no more stripe available */
1937
1938	r5l_recovery_reset_stripe(sh);
1939
1940	return sh;
1941}
1942
1943static struct stripe_head *
1944r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1945{
1946	struct stripe_head *sh;
1947
1948	list_for_each_entry(sh, list, lru)
1949		if (sh->sector == sect)
1950			return sh;
1951	return NULL;
1952}
1953
1954static void
1955r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1956			  struct r5l_recovery_ctx *ctx)
1957{
1958	struct stripe_head *sh, *next;
1959
1960	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1961		r5l_recovery_reset_stripe(sh);
1962		list_del_init(&sh->lru);
1963		raid5_release_stripe(sh);
1964	}
1965}
1966
1967static void
1968r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1969			    struct r5l_recovery_ctx *ctx)
1970{
1971	struct stripe_head *sh, *next;
1972
1973	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1974		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1975			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1976			list_del_init(&sh->lru);
1977			raid5_release_stripe(sh);
1978		}
1979}
1980
1981/* if matches return 0; otherwise return -EINVAL */
1982static int
1983r5l_recovery_verify_data_checksum(struct r5l_log *log,
1984				  struct r5l_recovery_ctx *ctx,
1985				  struct page *page,
1986				  sector_t log_offset, __le32 log_checksum)
1987{
1988	void *addr;
1989	u32 checksum;
1990
1991	r5l_recovery_read_page(log, ctx, page, log_offset);
1992	addr = kmap_atomic(page);
1993	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1994	kunmap_atomic(addr);
1995	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1996}
1997
1998/*
1999 * before loading data to stripe cache, we need verify checksum for all data,
2000 * if there is mismatch for any data page, we drop all data in the mata block
2001 */
2002static int
2003r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2004					 struct r5l_recovery_ctx *ctx)
2005{
2006	struct mddev *mddev = log->rdev->mddev;
2007	struct r5conf *conf = mddev->private;
2008	struct r5l_meta_block *mb = page_address(ctx->meta_page);
2009	sector_t mb_offset = sizeof(struct r5l_meta_block);
2010	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2011	struct page *page;
2012	struct r5l_payload_data_parity *payload;
2013	struct r5l_payload_flush *payload_flush;
2014
2015	page = alloc_page(GFP_KERNEL);
2016	if (!page)
2017		return -ENOMEM;
2018
2019	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2020		payload = (void *)mb + mb_offset;
2021		payload_flush = (void *)mb + mb_offset;
2022
2023		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2024			if (r5l_recovery_verify_data_checksum(
2025				    log, ctx, page, log_offset,
2026				    payload->checksum[0]) < 0)
2027				goto mismatch;
2028		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2029			if (r5l_recovery_verify_data_checksum(
2030				    log, ctx, page, log_offset,
2031				    payload->checksum[0]) < 0)
2032				goto mismatch;
2033			if (conf->max_degraded == 2 && /* q for RAID 6 */
2034			    r5l_recovery_verify_data_checksum(
2035				    log, ctx, page,
2036				    r5l_ring_add(log, log_offset,
2037						 BLOCK_SECTORS),
2038				    payload->checksum[1]) < 0)
2039				goto mismatch;
2040		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2041			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2042		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2043			goto mismatch;
2044
2045		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2046			mb_offset += sizeof(struct r5l_payload_flush) +
2047				le32_to_cpu(payload_flush->size);
2048		} else {
2049			/* DATA or PARITY payload */
2050			log_offset = r5l_ring_add(log, log_offset,
2051						  le32_to_cpu(payload->size));
2052			mb_offset += sizeof(struct r5l_payload_data_parity) +
2053				sizeof(__le32) *
2054				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2055		}
2056
2057	}
2058
2059	put_page(page);
2060	return 0;
2061
2062mismatch:
2063	put_page(page);
2064	return -EINVAL;
2065}
2066
2067/*
2068 * Analyze all data/parity pages in one meta block
2069 * Returns:
2070 * 0 for success
2071 * -EINVAL for unknown playload type
2072 * -EAGAIN for checksum mismatch of data page
2073 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2074 */
2075static int
2076r5c_recovery_analyze_meta_block(struct r5l_log *log,
2077				struct r5l_recovery_ctx *ctx,
2078				struct list_head *cached_stripe_list)
2079{
2080	struct mddev *mddev = log->rdev->mddev;
2081	struct r5conf *conf = mddev->private;
2082	struct r5l_meta_block *mb;
2083	struct r5l_payload_data_parity *payload;
2084	struct r5l_payload_flush *payload_flush;
2085	int mb_offset;
2086	sector_t log_offset;
2087	sector_t stripe_sect;
2088	struct stripe_head *sh;
2089	int ret;
2090
2091	/*
2092	 * for mismatch in data blocks, we will drop all data in this mb, but
2093	 * we will still read next mb for other data with FLUSH flag, as
2094	 * io_unit could finish out of order.
2095	 */
2096	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2097	if (ret == -EINVAL)
2098		return -EAGAIN;
2099	else if (ret)
2100		return ret;   /* -ENOMEM duo to alloc_page() failed */
2101
2102	mb = page_address(ctx->meta_page);
2103	mb_offset = sizeof(struct r5l_meta_block);
2104	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2105
2106	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2107		int dd;
2108
2109		payload = (void *)mb + mb_offset;
2110		payload_flush = (void *)mb + mb_offset;
2111
2112		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2113			int i, count;
2114
2115			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2116			for (i = 0; i < count; ++i) {
2117				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2118				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2119								stripe_sect);
2120				if (sh) {
2121					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2122					r5l_recovery_reset_stripe(sh);
2123					list_del_init(&sh->lru);
2124					raid5_release_stripe(sh);
2125				}
2126			}
2127
2128			mb_offset += sizeof(struct r5l_payload_flush) +
2129				le32_to_cpu(payload_flush->size);
2130			continue;
2131		}
2132
2133		/* DATA or PARITY payload */
2134		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2135			raid5_compute_sector(
2136				conf, le64_to_cpu(payload->location), 0, &dd,
2137				NULL)
2138			: le64_to_cpu(payload->location);
2139
2140		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2141						stripe_sect);
2142
2143		if (!sh) {
2144			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2145			/*
2146			 * cannot get stripe from raid5_get_active_stripe
2147			 * try replay some stripes
2148			 */
2149			if (!sh) {
2150				r5c_recovery_replay_stripes(
2151					cached_stripe_list, ctx);
2152				sh = r5c_recovery_alloc_stripe(
2153					conf, stripe_sect, 1);
2154			}
2155			if (!sh) {
2156				int new_size = conf->min_nr_stripes * 2;
2157				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2158					mdname(mddev),
2159					new_size);
2160				ret = raid5_set_cache_size(mddev, new_size);
2161				if (conf->min_nr_stripes <= new_size / 2) {
2162					pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2163						mdname(mddev),
2164						ret,
2165						new_size,
2166						conf->min_nr_stripes,
2167						conf->max_nr_stripes);
2168					return -ENOMEM;
2169				}
2170				sh = r5c_recovery_alloc_stripe(
2171					conf, stripe_sect, 0);
2172			}
2173			if (!sh) {
2174				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2175					mdname(mddev));
2176				return -ENOMEM;
2177			}
2178			list_add_tail(&sh->lru, cached_stripe_list);
2179		}
2180
2181		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2182			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2183			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2184				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2185				list_move_tail(&sh->lru, cached_stripe_list);
2186			}
2187			r5l_recovery_load_data(log, sh, ctx, payload,
2188					       log_offset);
2189		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2190			r5l_recovery_load_parity(log, sh, ctx, payload,
2191						 log_offset);
2192		else
2193			return -EINVAL;
2194
2195		log_offset = r5l_ring_add(log, log_offset,
2196					  le32_to_cpu(payload->size));
2197
2198		mb_offset += sizeof(struct r5l_payload_data_parity) +
2199			sizeof(__le32) *
2200			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2201	}
2202
2203	return 0;
2204}
2205
2206/*
2207 * Load the stripe into cache. The stripe will be written out later by
2208 * the stripe cache state machine.
2209 */
2210static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2211					 struct stripe_head *sh)
2212{
2213	struct r5dev *dev;
2214	int i;
2215
2216	for (i = sh->disks; i--; ) {
2217		dev = sh->dev + i;
2218		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2219			set_bit(R5_InJournal, &dev->flags);
2220			set_bit(R5_UPTODATE, &dev->flags);
2221		}
2222	}
2223}
2224
2225/*
2226 * Scan through the log for all to-be-flushed data
2227 *
2228 * For stripes with data and parity, namely Data-Parity stripe
2229 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2230 *
2231 * For stripes with only data, namely Data-Only stripe
2232 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2233 *
2234 * For a stripe, if we see data after parity, we should discard all previous
2235 * data and parity for this stripe, as these data are already flushed to
2236 * the array.
2237 *
2238 * At the end of the scan, we return the new journal_tail, which points to
2239 * first data-only stripe on the journal device, or next invalid meta block.
2240 */
2241static int r5c_recovery_flush_log(struct r5l_log *log,
2242				  struct r5l_recovery_ctx *ctx)
2243{
2244	struct stripe_head *sh;
2245	int ret = 0;
2246
2247	/* scan through the log */
2248	while (1) {
2249		if (r5l_recovery_read_meta_block(log, ctx))
2250			break;
2251
2252		ret = r5c_recovery_analyze_meta_block(log, ctx,
2253						      &ctx->cached_list);
2254		/*
2255		 * -EAGAIN means mismatch in data block, in this case, we still
2256		 * try scan the next metablock
2257		 */
2258		if (ret && ret != -EAGAIN)
2259			break;   /* ret == -EINVAL or -ENOMEM */
2260		ctx->seq++;
2261		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2262	}
2263
2264	if (ret == -ENOMEM) {
2265		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2266		return ret;
2267	}
2268
2269	/* replay data-parity stripes */
2270	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2271
2272	/* load data-only stripes to stripe cache */
2273	list_for_each_entry(sh, &ctx->cached_list, lru) {
2274		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2275		r5c_recovery_load_one_stripe(log, sh);
2276		ctx->data_only_stripes++;
2277	}
2278
2279	return 0;
2280}
2281
2282/*
2283 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2284 * log will start here. but we can't let superblock point to last valid
2285 * meta block. The log might looks like:
2286 * | meta 1| meta 2| meta 3|
2287 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2288 * superblock points to meta 1, we write a new valid meta 2n.  if crash
2289 * happens again, new recovery will start from meta 1. Since meta 2n is
2290 * valid now, recovery will think meta 3 is valid, which is wrong.
2291 * The solution is we create a new meta in meta2 with its seq == meta
2292 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2293 * will not think meta 3 is a valid meta, because its seq doesn't match
2294 */
2295
2296/*
2297 * Before recovery, the log looks like the following
2298 *
2299 *   ---------------------------------------------
2300 *   |           valid log        | invalid log  |
2301 *   ---------------------------------------------
2302 *   ^
2303 *   |- log->last_checkpoint
2304 *   |- log->last_cp_seq
2305 *
2306 * Now we scan through the log until we see invalid entry
2307 *
2308 *   ---------------------------------------------
2309 *   |           valid log        | invalid log  |
2310 *   ---------------------------------------------
2311 *   ^                            ^
2312 *   |- log->last_checkpoint      |- ctx->pos
2313 *   |- log->last_cp_seq          |- ctx->seq
2314 *
2315 * From this point, we need to increase seq number by 10 to avoid
2316 * confusing next recovery.
2317 *
2318 *   ---------------------------------------------
2319 *   |           valid log        | invalid log  |
2320 *   ---------------------------------------------
2321 *   ^                              ^
2322 *   |- log->last_checkpoint        |- ctx->pos+1
2323 *   |- log->last_cp_seq            |- ctx->seq+10001
2324 *
2325 * However, it is not safe to start the state machine yet, because data only
2326 * parities are not yet secured in RAID. To save these data only parities, we
2327 * rewrite them from seq+11.
2328 *
2329 *   -----------------------------------------------------------------
2330 *   |           valid log        | data only stripes | invalid log  |
2331 *   -----------------------------------------------------------------
2332 *   ^                                                ^
2333 *   |- log->last_checkpoint                          |- ctx->pos+n
2334 *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2335 *
2336 * If failure happens again during this process, the recovery can safe start
2337 * again from log->last_checkpoint.
2338 *
2339 * Once data only stripes are rewritten to journal, we move log_tail
2340 *
2341 *   -----------------------------------------------------------------
2342 *   |     old log        |    data only stripes    | invalid log  |
2343 *   -----------------------------------------------------------------
2344 *                        ^                         ^
2345 *                        |- log->last_checkpoint   |- ctx->pos+n
2346 *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2347 *
2348 * Then we can safely start the state machine. If failure happens from this
2349 * point on, the recovery will start from new log->last_checkpoint.
2350 */
2351static int
2352r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2353				       struct r5l_recovery_ctx *ctx)
2354{
2355	struct stripe_head *sh;
2356	struct mddev *mddev = log->rdev->mddev;
2357	struct page *page;
2358	sector_t next_checkpoint = MaxSector;
2359
2360	page = alloc_page(GFP_KERNEL);
2361	if (!page) {
2362		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2363		       mdname(mddev));
2364		return -ENOMEM;
2365	}
2366
2367	WARN_ON(list_empty(&ctx->cached_list));
2368
2369	list_for_each_entry(sh, &ctx->cached_list, lru) {
2370		struct r5l_meta_block *mb;
2371		int i;
2372		int offset;
2373		sector_t write_pos;
2374
2375		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2376		r5l_recovery_create_empty_meta_block(log, page,
2377						     ctx->pos, ctx->seq);
2378		mb = page_address(page);
2379		offset = le32_to_cpu(mb->meta_size);
2380		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2381
2382		for (i = sh->disks; i--; ) {
2383			struct r5dev *dev = &sh->dev[i];
2384			struct r5l_payload_data_parity *payload;
2385			void *addr;
2386
2387			if (test_bit(R5_InJournal, &dev->flags)) {
2388				payload = (void *)mb + offset;
2389				payload->header.type = cpu_to_le16(
2390					R5LOG_PAYLOAD_DATA);
2391				payload->size = cpu_to_le32(BLOCK_SECTORS);
2392				payload->location = cpu_to_le64(
2393					raid5_compute_blocknr(sh, i, 0));
2394				addr = kmap_atomic(dev->page);
2395				payload->checksum[0] = cpu_to_le32(
2396					crc32c_le(log->uuid_checksum, addr,
2397						  PAGE_SIZE));
2398				kunmap_atomic(addr);
2399				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2400					     dev->page, REQ_OP_WRITE, 0, false);
2401				write_pos = r5l_ring_add(log, write_pos,
2402							 BLOCK_SECTORS);
2403				offset += sizeof(__le32) +
2404					sizeof(struct r5l_payload_data_parity);
2405
2406			}
2407		}
2408		mb->meta_size = cpu_to_le32(offset);
2409		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2410						     mb, PAGE_SIZE));
2411		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2412			     REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2413		sh->log_start = ctx->pos;
2414		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2415		atomic_inc(&log->stripe_in_journal_count);
2416		ctx->pos = write_pos;
2417		ctx->seq += 1;
2418		next_checkpoint = sh->log_start;
2419	}
2420	log->next_checkpoint = next_checkpoint;
2421	__free_page(page);
2422	return 0;
2423}
2424
2425static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2426						 struct r5l_recovery_ctx *ctx)
2427{
2428	struct mddev *mddev = log->rdev->mddev;
2429	struct r5conf *conf = mddev->private;
2430	struct stripe_head *sh, *next;
2431	bool cleared_pending = false;
2432
2433	if (ctx->data_only_stripes == 0)
2434		return;
2435
2436	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2437		cleared_pending = true;
2438		clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2439	}
2440	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2441
2442	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2443		r5c_make_stripe_write_out(sh);
2444		set_bit(STRIPE_HANDLE, &sh->state);
2445		list_del_init(&sh->lru);
2446		raid5_release_stripe(sh);
2447	}
2448
2449	/* reuse conf->wait_for_quiescent in recovery */
2450	wait_event(conf->wait_for_quiescent,
2451		   atomic_read(&conf->active_stripes) == 0);
2452
2453	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2454	if (cleared_pending)
2455		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2456}
2457
2458static int r5l_recovery_log(struct r5l_log *log)
2459{
2460	struct mddev *mddev = log->rdev->mddev;
2461	struct r5l_recovery_ctx *ctx;
2462	int ret;
2463	sector_t pos;
2464
2465	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2466	if (!ctx)
2467		return -ENOMEM;
2468
2469	ctx->pos = log->last_checkpoint;
2470	ctx->seq = log->last_cp_seq;
2471	INIT_LIST_HEAD(&ctx->cached_list);
2472	ctx->meta_page = alloc_page(GFP_KERNEL);
2473
2474	if (!ctx->meta_page) {
2475		ret =  -ENOMEM;
2476		goto meta_page;
2477	}
2478
2479	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2480		ret = -ENOMEM;
2481		goto ra_pool;
2482	}
2483
2484	ret = r5c_recovery_flush_log(log, ctx);
2485
2486	if (ret)
2487		goto error;
2488
2489	pos = ctx->pos;
2490	ctx->seq += 10000;
2491
2492	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2493		pr_info("md/raid:%s: starting from clean shutdown\n",
2494			 mdname(mddev));
2495	else
2496		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2497			 mdname(mddev), ctx->data_only_stripes,
2498			 ctx->data_parity_stripes);
2499
2500	if (ctx->data_only_stripes == 0) {
2501		log->next_checkpoint = ctx->pos;
2502		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2503		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2504	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2505		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2506		       mdname(mddev));
2507		ret =  -EIO;
2508		goto error;
2509	}
2510
2511	log->log_start = ctx->pos;
2512	log->seq = ctx->seq;
2513	log->last_checkpoint = pos;
2514	r5l_write_super(log, pos);
2515
2516	r5c_recovery_flush_data_only_stripes(log, ctx);
2517	ret = 0;
2518error:
2519	r5l_recovery_free_ra_pool(log, ctx);
2520ra_pool:
2521	__free_page(ctx->meta_page);
2522meta_page:
2523	kfree(ctx);
2524	return ret;
2525}
2526
2527static void r5l_write_super(struct r5l_log *log, sector_t cp)
2528{
2529	struct mddev *mddev = log->rdev->mddev;
2530
2531	log->rdev->journal_tail = cp;
2532	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2533}
2534
2535static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2536{
2537	struct r5conf *conf;
2538	int ret;
2539
2540	spin_lock(&mddev->lock);
 
 
 
2541	conf = mddev->private;
2542	if (!conf || !conf->log) {
2543		spin_unlock(&mddev->lock);
2544		return 0;
2545	}
2546
2547	switch (conf->log->r5c_journal_mode) {
2548	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2549		ret = snprintf(
2550			page, PAGE_SIZE, "[%s] %s\n",
2551			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2552			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2553		break;
2554	case R5C_JOURNAL_MODE_WRITE_BACK:
2555		ret = snprintf(
2556			page, PAGE_SIZE, "%s [%s]\n",
2557			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2558			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2559		break;
2560	default:
2561		ret = 0;
2562	}
2563	spin_unlock(&mddev->lock);
 
 
2564	return ret;
2565}
2566
2567/*
2568 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2569 *
2570 * @mode as defined in 'enum r5c_journal_mode'.
2571 *
2572 */
2573int r5c_journal_mode_set(struct mddev *mddev, int mode)
2574{
2575	struct r5conf *conf;
2576
2577	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2578	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2579		return -EINVAL;
2580
2581	conf = mddev->private;
2582	if (!conf || !conf->log)
2583		return -ENODEV;
2584
2585	if (raid5_calc_degraded(conf) > 0 &&
2586	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2587		return -EINVAL;
2588
2589	mddev_suspend(mddev);
2590	conf->log->r5c_journal_mode = mode;
2591	mddev_resume(mddev);
2592
2593	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2594		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2595	return 0;
2596}
2597EXPORT_SYMBOL(r5c_journal_mode_set);
2598
2599static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2600				      const char *page, size_t length)
2601{
2602	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2603	size_t len = length;
2604	int ret;
2605
2606	if (len < 2)
2607		return -EINVAL;
2608
2609	if (page[len - 1] == '\n')
2610		len--;
2611
2612	while (mode--)
2613		if (strlen(r5c_journal_mode_str[mode]) == len &&
2614		    !strncmp(page, r5c_journal_mode_str[mode], len))
2615			break;
2616	ret = mddev_lock(mddev);
2617	if (ret)
2618		return ret;
2619	ret = r5c_journal_mode_set(mddev, mode);
2620	mddev_unlock(mddev);
2621	return ret ?: length;
2622}
2623
2624struct md_sysfs_entry
2625r5c_journal_mode = __ATTR(journal_mode, 0644,
2626			  r5c_journal_mode_show, r5c_journal_mode_store);
2627
2628/*
2629 * Try handle write operation in caching phase. This function should only
2630 * be called in write-back mode.
2631 *
2632 * If all outstanding writes can be handled in caching phase, returns 0
2633 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2634 * and returns -EAGAIN
2635 */
2636int r5c_try_caching_write(struct r5conf *conf,
2637			  struct stripe_head *sh,
2638			  struct stripe_head_state *s,
2639			  int disks)
2640{
2641	struct r5l_log *log = conf->log;
2642	int i;
2643	struct r5dev *dev;
2644	int to_cache = 0;
2645	void **pslot;
2646	sector_t tree_index;
2647	int ret;
2648	uintptr_t refcount;
2649
2650	BUG_ON(!r5c_is_writeback(log));
2651
2652	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2653		/*
2654		 * There are two different scenarios here:
2655		 *  1. The stripe has some data cached, and it is sent to
2656		 *     write-out phase for reclaim
2657		 *  2. The stripe is clean, and this is the first write
2658		 *
2659		 * For 1, return -EAGAIN, so we continue with
2660		 * handle_stripe_dirtying().
2661		 *
2662		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2663		 * write.
2664		 */
2665
2666		/* case 1: anything injournal or anything in written */
2667		if (s->injournal > 0 || s->written > 0)
2668			return -EAGAIN;
2669		/* case 2 */
2670		set_bit(STRIPE_R5C_CACHING, &sh->state);
2671	}
2672
2673	/*
2674	 * When run in degraded mode, array is set to write-through mode.
2675	 * This check helps drain pending write safely in the transition to
2676	 * write-through mode.
2677	 *
2678	 * When a stripe is syncing, the write is also handled in write
2679	 * through mode.
2680	 */
2681	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2682		r5c_make_stripe_write_out(sh);
2683		return -EAGAIN;
2684	}
2685
2686	for (i = disks; i--; ) {
2687		dev = &sh->dev[i];
2688		/* if non-overwrite, use writing-out phase */
2689		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2690		    !test_bit(R5_InJournal, &dev->flags)) {
2691			r5c_make_stripe_write_out(sh);
2692			return -EAGAIN;
2693		}
2694	}
2695
2696	/* if the stripe is not counted in big_stripe_tree, add it now */
2697	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2698	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2699		tree_index = r5c_tree_index(conf, sh->sector);
2700		spin_lock(&log->tree_lock);
2701		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2702					       tree_index);
2703		if (pslot) {
2704			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2705				pslot, &log->tree_lock) >>
2706				R5C_RADIX_COUNT_SHIFT;
2707			radix_tree_replace_slot(
2708				&log->big_stripe_tree, pslot,
2709				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2710		} else {
2711			/*
2712			 * this radix_tree_insert can fail safely, so no
2713			 * need to call radix_tree_preload()
2714			 */
2715			ret = radix_tree_insert(
2716				&log->big_stripe_tree, tree_index,
2717				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2718			if (ret) {
2719				spin_unlock(&log->tree_lock);
2720				r5c_make_stripe_write_out(sh);
2721				return -EAGAIN;
2722			}
2723		}
2724		spin_unlock(&log->tree_lock);
2725
2726		/*
2727		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2728		 * counted in the radix tree
2729		 */
2730		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2731		atomic_inc(&conf->r5c_cached_partial_stripes);
2732	}
2733
2734	for (i = disks; i--; ) {
2735		dev = &sh->dev[i];
2736		if (dev->towrite) {
2737			set_bit(R5_Wantwrite, &dev->flags);
2738			set_bit(R5_Wantdrain, &dev->flags);
2739			set_bit(R5_LOCKED, &dev->flags);
2740			to_cache++;
2741		}
2742	}
2743
2744	if (to_cache) {
2745		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2746		/*
2747		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2748		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2749		 * r5c_handle_data_cached()
2750		 */
2751		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2752	}
2753
2754	return 0;
2755}
2756
2757/*
2758 * free extra pages (orig_page) we allocated for prexor
2759 */
2760void r5c_release_extra_page(struct stripe_head *sh)
2761{
2762	struct r5conf *conf = sh->raid_conf;
2763	int i;
2764	bool using_disk_info_extra_page;
2765
2766	using_disk_info_extra_page =
2767		sh->dev[0].orig_page == conf->disks[0].extra_page;
2768
2769	for (i = sh->disks; i--; )
2770		if (sh->dev[i].page != sh->dev[i].orig_page) {
2771			struct page *p = sh->dev[i].orig_page;
2772
2773			sh->dev[i].orig_page = sh->dev[i].page;
2774			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2775
2776			if (!using_disk_info_extra_page)
2777				put_page(p);
2778		}
2779
2780	if (using_disk_info_extra_page) {
2781		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2782		md_wakeup_thread(conf->mddev->thread);
2783	}
2784}
2785
2786void r5c_use_extra_page(struct stripe_head *sh)
2787{
2788	struct r5conf *conf = sh->raid_conf;
2789	int i;
2790	struct r5dev *dev;
2791
2792	for (i = sh->disks; i--; ) {
2793		dev = &sh->dev[i];
2794		if (dev->orig_page != dev->page)
2795			put_page(dev->orig_page);
2796		dev->orig_page = conf->disks[i].extra_page;
2797	}
2798}
2799
2800/*
2801 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2802 * stripe is committed to RAID disks.
2803 */
2804void r5c_finish_stripe_write_out(struct r5conf *conf,
2805				 struct stripe_head *sh,
2806				 struct stripe_head_state *s)
2807{
2808	struct r5l_log *log = conf->log;
2809	int i;
2810	int do_wakeup = 0;
2811	sector_t tree_index;
2812	void **pslot;
2813	uintptr_t refcount;
2814
2815	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2816		return;
2817
2818	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2819	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2820
2821	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2822		return;
2823
2824	for (i = sh->disks; i--; ) {
2825		clear_bit(R5_InJournal, &sh->dev[i].flags);
2826		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2827			do_wakeup = 1;
2828	}
2829
2830	/*
2831	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2832	 * We updated R5_InJournal, so we also update s->injournal.
2833	 */
2834	s->injournal = 0;
2835
2836	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2837		if (atomic_dec_and_test(&conf->pending_full_writes))
2838			md_wakeup_thread(conf->mddev->thread);
2839
2840	if (do_wakeup)
2841		wake_up(&conf->wait_for_overlap);
2842
2843	spin_lock_irq(&log->stripe_in_journal_lock);
2844	list_del_init(&sh->r5c);
2845	spin_unlock_irq(&log->stripe_in_journal_lock);
2846	sh->log_start = MaxSector;
2847
2848	atomic_dec(&log->stripe_in_journal_count);
2849	r5c_update_log_state(log);
2850
2851	/* stop counting this stripe in big_stripe_tree */
2852	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2853	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2854		tree_index = r5c_tree_index(conf, sh->sector);
2855		spin_lock(&log->tree_lock);
2856		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2857					       tree_index);
2858		BUG_ON(pslot == NULL);
2859		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2860			pslot, &log->tree_lock) >>
2861			R5C_RADIX_COUNT_SHIFT;
2862		if (refcount == 1)
2863			radix_tree_delete(&log->big_stripe_tree, tree_index);
2864		else
2865			radix_tree_replace_slot(
2866				&log->big_stripe_tree, pslot,
2867				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2868		spin_unlock(&log->tree_lock);
2869	}
2870
2871	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2872		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2873		atomic_dec(&conf->r5c_flushing_partial_stripes);
2874		atomic_dec(&conf->r5c_cached_partial_stripes);
2875	}
2876
2877	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2878		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2879		atomic_dec(&conf->r5c_flushing_full_stripes);
2880		atomic_dec(&conf->r5c_cached_full_stripes);
2881	}
2882
2883	r5l_append_flush_payload(log, sh->sector);
2884	/* stripe is flused to raid disks, we can do resync now */
2885	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2886		set_bit(STRIPE_HANDLE, &sh->state);
2887}
2888
2889int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2890{
2891	struct r5conf *conf = sh->raid_conf;
2892	int pages = 0;
2893	int reserve;
2894	int i;
2895	int ret = 0;
2896
2897	BUG_ON(!log);
2898
2899	for (i = 0; i < sh->disks; i++) {
2900		void *addr;
2901
2902		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2903			continue;
2904		addr = kmap_atomic(sh->dev[i].page);
2905		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2906						    addr, PAGE_SIZE);
2907		kunmap_atomic(addr);
2908		pages++;
2909	}
2910	WARN_ON(pages == 0);
2911
2912	/*
2913	 * The stripe must enter state machine again to call endio, so
2914	 * don't delay.
2915	 */
2916	clear_bit(STRIPE_DELAYED, &sh->state);
2917	atomic_inc(&sh->count);
2918
2919	mutex_lock(&log->io_mutex);
2920	/* meta + data */
2921	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2922
2923	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2924	    sh->log_start == MaxSector)
2925		r5l_add_no_space_stripe(log, sh);
2926	else if (!r5l_has_free_space(log, reserve)) {
2927		if (sh->log_start == log->last_checkpoint)
2928			BUG();
2929		else
2930			r5l_add_no_space_stripe(log, sh);
2931	} else {
2932		ret = r5l_log_stripe(log, sh, pages, 0);
2933		if (ret) {
2934			spin_lock_irq(&log->io_list_lock);
2935			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2936			spin_unlock_irq(&log->io_list_lock);
2937		}
2938	}
2939
2940	mutex_unlock(&log->io_mutex);
2941	return 0;
2942}
2943
2944/* check whether this big stripe is in write back cache. */
2945bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2946{
2947	struct r5l_log *log = conf->log;
2948	sector_t tree_index;
2949	void *slot;
2950
2951	if (!log)
2952		return false;
2953
2954	WARN_ON_ONCE(!rcu_read_lock_held());
2955	tree_index = r5c_tree_index(conf, sect);
2956	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2957	return slot != NULL;
2958}
2959
2960static int r5l_load_log(struct r5l_log *log)
2961{
2962	struct md_rdev *rdev = log->rdev;
2963	struct page *page;
2964	struct r5l_meta_block *mb;
2965	sector_t cp = log->rdev->journal_tail;
2966	u32 stored_crc, expected_crc;
2967	bool create_super = false;
2968	int ret = 0;
2969
2970	/* Make sure it's valid */
2971	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2972		cp = 0;
2973	page = alloc_page(GFP_KERNEL);
2974	if (!page)
2975		return -ENOMEM;
2976
2977	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2978		ret = -EIO;
2979		goto ioerr;
2980	}
2981	mb = page_address(page);
2982
2983	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2984	    mb->version != R5LOG_VERSION) {
2985		create_super = true;
2986		goto create;
2987	}
2988	stored_crc = le32_to_cpu(mb->checksum);
2989	mb->checksum = 0;
2990	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2991	if (stored_crc != expected_crc) {
2992		create_super = true;
2993		goto create;
2994	}
2995	if (le64_to_cpu(mb->position) != cp) {
2996		create_super = true;
2997		goto create;
2998	}
2999create:
3000	if (create_super) {
3001		log->last_cp_seq = prandom_u32();
3002		cp = 0;
3003		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3004		/*
3005		 * Make sure super points to correct address. Log might have
3006		 * data very soon. If super hasn't correct log tail address,
3007		 * recovery can't find the log
3008		 */
3009		r5l_write_super(log, cp);
3010	} else
3011		log->last_cp_seq = le64_to_cpu(mb->seq);
3012
3013	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3014	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3015	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3016		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3017	log->last_checkpoint = cp;
3018
3019	__free_page(page);
3020
3021	if (create_super) {
3022		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3023		log->seq = log->last_cp_seq + 1;
3024		log->next_checkpoint = cp;
3025	} else
3026		ret = r5l_recovery_log(log);
3027
3028	r5c_update_log_state(log);
3029	return ret;
3030ioerr:
3031	__free_page(page);
3032	return ret;
3033}
3034
3035int r5l_start(struct r5l_log *log)
3036{
3037	int ret;
3038
3039	if (!log)
3040		return 0;
3041
3042	ret = r5l_load_log(log);
3043	if (ret) {
3044		struct mddev *mddev = log->rdev->mddev;
3045		struct r5conf *conf = mddev->private;
3046
3047		r5l_exit_log(conf);
3048	}
3049	return ret;
3050}
3051
3052void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3053{
3054	struct r5conf *conf = mddev->private;
3055	struct r5l_log *log = conf->log;
3056
3057	if (!log)
3058		return;
3059
3060	if ((raid5_calc_degraded(conf) > 0 ||
3061	     test_bit(Journal, &rdev->flags)) &&
3062	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3063		schedule_work(&log->disable_writeback_work);
3064}
3065
3066int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3067{
3068	struct request_queue *q = bdev_get_queue(rdev->bdev);
3069	struct r5l_log *log;
3070	char b[BDEVNAME_SIZE];
3071	int ret;
3072
3073	pr_debug("md/raid:%s: using device %s as journal\n",
3074		 mdname(conf->mddev), bdevname(rdev->bdev, b));
3075
3076	if (PAGE_SIZE != 4096)
3077		return -EINVAL;
3078
3079	/*
3080	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3081	 * raid_disks r5l_payload_data_parity.
3082	 *
3083	 * Write journal and cache does not work for very big array
3084	 * (raid_disks > 203)
3085	 */
3086	if (sizeof(struct r5l_meta_block) +
3087	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3088	     conf->raid_disks) > PAGE_SIZE) {
3089		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3090		       mdname(conf->mddev), conf->raid_disks);
3091		return -EINVAL;
3092	}
3093
3094	log = kzalloc(sizeof(*log), GFP_KERNEL);
3095	if (!log)
3096		return -ENOMEM;
3097	log->rdev = rdev;
3098
3099	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3100
3101	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3102				       sizeof(rdev->mddev->uuid));
3103
3104	mutex_init(&log->io_mutex);
3105
3106	spin_lock_init(&log->io_list_lock);
3107	INIT_LIST_HEAD(&log->running_ios);
3108	INIT_LIST_HEAD(&log->io_end_ios);
3109	INIT_LIST_HEAD(&log->flushing_ios);
3110	INIT_LIST_HEAD(&log->finished_ios);
3111	bio_init(&log->flush_bio, NULL, 0);
3112
3113	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3114	if (!log->io_kc)
3115		goto io_kc;
3116
3117	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3118	if (ret)
3119		goto io_pool;
3120
3121	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3122	if (ret)
3123		goto io_bs;
3124
3125	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3126	if (ret)
3127		goto out_mempool;
3128
3129	spin_lock_init(&log->tree_lock);
3130	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3131
3132	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3133						 log->rdev->mddev, "reclaim");
3134	if (!log->reclaim_thread)
3135		goto reclaim_thread;
3136	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3137
3138	init_waitqueue_head(&log->iounit_wait);
3139
3140	INIT_LIST_HEAD(&log->no_mem_stripes);
3141
3142	INIT_LIST_HEAD(&log->no_space_stripes);
3143	spin_lock_init(&log->no_space_stripes_lock);
3144
3145	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3146	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3147
3148	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3149	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3150	spin_lock_init(&log->stripe_in_journal_lock);
3151	atomic_set(&log->stripe_in_journal_count, 0);
3152
3153	rcu_assign_pointer(conf->log, log);
3154
3155	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3156	return 0;
3157
3158reclaim_thread:
3159	mempool_exit(&log->meta_pool);
3160out_mempool:
3161	bioset_exit(&log->bs);
3162io_bs:
3163	mempool_exit(&log->io_pool);
3164io_pool:
3165	kmem_cache_destroy(log->io_kc);
3166io_kc:
3167	kfree(log);
3168	return -EINVAL;
3169}
3170
3171void r5l_exit_log(struct r5conf *conf)
3172{
3173	struct r5l_log *log = conf->log;
3174
3175	conf->log = NULL;
3176	synchronize_rcu();
3177
3178	/* Ensure disable_writeback_work wakes up and exits */
3179	wake_up(&conf->mddev->sb_wait);
3180	flush_work(&log->disable_writeback_work);
3181	md_unregister_thread(&log->reclaim_thread);
 
 
 
3182	mempool_exit(&log->meta_pool);
3183	bioset_exit(&log->bs);
3184	mempool_exit(&log->io_pool);
3185	kmem_cache_destroy(log->io_kc);
3186	kfree(log);
3187}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
   4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
   5 */
   6#include <linux/kernel.h>
   7#include <linux/wait.h>
   8#include <linux/blkdev.h>
   9#include <linux/slab.h>
  10#include <linux/raid/md_p.h>
  11#include <linux/crc32c.h>
  12#include <linux/random.h>
  13#include <linux/kthread.h>
  14#include <linux/types.h>
  15#include "md.h"
  16#include "raid5.h"
  17#include "md-bitmap.h"
  18#include "raid5-log.h"
  19
  20/*
  21 * metadata/data stored in disk with 4k size unit (a block) regardless
  22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
  23 */
  24#define BLOCK_SECTORS (8)
  25#define BLOCK_SECTOR_SHIFT (3)
  26
  27/*
  28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
  29 *
  30 * In write through mode, the reclaim runs every log->max_free_space.
  31 * This can prevent the recovery scans for too long
  32 */
  33#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
  34#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
  35
  36/* wake up reclaim thread periodically */
  37#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
  38/* start flush with these full stripes */
  39#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
  40/* reclaim stripes in groups */
  41#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
  42
  43/*
  44 * We only need 2 bios per I/O unit to make progress, but ensure we
  45 * have a few more available to not get too tight.
  46 */
  47#define R5L_POOL_SIZE	4
  48
  49static char *r5c_journal_mode_str[] = {"write-through",
  50				       "write-back"};
  51/*
  52 * raid5 cache state machine
  53 *
  54 * With the RAID cache, each stripe works in two phases:
  55 *	- caching phase
  56 *	- writing-out phase
  57 *
  58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
  59 *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
  60 *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
  61 *
  62 * When there is no journal, or the journal is in write-through mode,
  63 * the stripe is always in writing-out phase.
  64 *
  65 * For write-back journal, the stripe is sent to caching phase on write
  66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
  67 * the write-out phase by clearing STRIPE_R5C_CACHING.
  68 *
  69 * Stripes in caching phase do not write the raid disks. Instead, all
  70 * writes are committed from the log device. Therefore, a stripe in
  71 * caching phase handles writes as:
  72 *	- write to log device
  73 *	- return IO
  74 *
  75 * Stripes in writing-out phase handle writes as:
  76 *	- calculate parity
  77 *	- write pending data and parity to journal
  78 *	- write data and parity to raid disks
  79 *	- return IO for pending writes
  80 */
  81
  82struct r5l_log {
  83	struct md_rdev *rdev;
  84
  85	u32 uuid_checksum;
  86
  87	sector_t device_size;		/* log device size, round to
  88					 * BLOCK_SECTORS */
  89	sector_t max_free_space;	/* reclaim run if free space is at
  90					 * this size */
  91
  92	sector_t last_checkpoint;	/* log tail. where recovery scan
  93					 * starts from */
  94	u64 last_cp_seq;		/* log tail sequence */
  95
  96	sector_t log_start;		/* log head. where new data appends */
  97	u64 seq;			/* log head sequence */
  98
  99	sector_t next_checkpoint;
 100
 101	struct mutex io_mutex;
 102	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
 103
 104	spinlock_t io_list_lock;
 105	struct list_head running_ios;	/* io_units which are still running,
 106					 * and have not yet been completely
 107					 * written to the log */
 108	struct list_head io_end_ios;	/* io_units which have been completely
 109					 * written to the log but not yet written
 110					 * to the RAID */
 111	struct list_head flushing_ios;	/* io_units which are waiting for log
 112					 * cache flush */
 113	struct list_head finished_ios;	/* io_units which settle down in log disk */
 114	struct bio flush_bio;
 115
 116	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
 117
 118	struct kmem_cache *io_kc;
 119	mempool_t io_pool;
 120	struct bio_set bs;
 121	mempool_t meta_pool;
 122
 123	struct md_thread *reclaim_thread;
 124	unsigned long reclaim_target;	/* number of space that need to be
 125					 * reclaimed.  if it's 0, reclaim spaces
 126					 * used by io_units which are in
 127					 * IO_UNIT_STRIPE_END state (eg, reclaim
 128					 * doesn't wait for specific io_unit
 129					 * switching to IO_UNIT_STRIPE_END
 130					 * state) */
 131	wait_queue_head_t iounit_wait;
 132
 133	struct list_head no_space_stripes; /* pending stripes, log has no space */
 134	spinlock_t no_space_stripes_lock;
 135
 136	bool need_cache_flush;
 137
 138	/* for r5c_cache */
 139	enum r5c_journal_mode r5c_journal_mode;
 140
 141	/* all stripes in r5cache, in the order of seq at sh->log_start */
 142	struct list_head stripe_in_journal_list;
 143
 144	spinlock_t stripe_in_journal_lock;
 145	atomic_t stripe_in_journal_count;
 146
 147	/* to submit async io_units, to fulfill ordering of flush */
 148	struct work_struct deferred_io_work;
 149	/* to disable write back during in degraded mode */
 150	struct work_struct disable_writeback_work;
 151
 152	/* to for chunk_aligned_read in writeback mode, details below */
 153	spinlock_t tree_lock;
 154	struct radix_tree_root big_stripe_tree;
 155};
 156
 157/*
 158 * Enable chunk_aligned_read() with write back cache.
 159 *
 160 * Each chunk may contain more than one stripe (for example, a 256kB
 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
 163 * For each big_stripe, we count how many stripes of this big_stripe
 164 * are in the write back cache. These data are tracked in a radix tree
 165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
 166 * r5c_tree_index() is used to calculate keys for the radix tree.
 167 *
 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
 169 * big_stripe of each chunk in the tree. If this big_stripe is in the
 170 * tree, chunk_aligned_read() aborts. This look up is protected by
 171 * rcu_read_lock().
 172 *
 173 * It is necessary to remember whether a stripe is counted in
 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
 176 * two flags are set, the stripe is counted in big_stripe_tree. This
 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
 178 * r5c_try_caching_write(); and moving clear_bit of
 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
 180 * r5c_finish_stripe_write_out().
 181 */
 182
 183/*
 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
 185 * So it is necessary to left shift the counter by 2 bits before using it
 186 * as data pointer of the tree.
 187 */
 188#define R5C_RADIX_COUNT_SHIFT 2
 189
 190/*
 191 * calculate key for big_stripe_tree
 192 *
 193 * sect: align_bi->bi_iter.bi_sector or sh->sector
 194 */
 195static inline sector_t r5c_tree_index(struct r5conf *conf,
 196				      sector_t sect)
 197{
 198	sector_div(sect, conf->chunk_sectors);
 199	return sect;
 200}
 201
 202/*
 203 * an IO range starts from a meta data block and end at the next meta data
 204 * block. The io unit's the meta data block tracks data/parity followed it. io
 205 * unit is written to log disk with normal write, as we always flush log disk
 206 * first and then start move data to raid disks, there is no requirement to
 207 * write io unit with FLUSH/FUA
 208 */
 209struct r5l_io_unit {
 210	struct r5l_log *log;
 211
 212	struct page *meta_page;	/* store meta block */
 213	int meta_offset;	/* current offset in meta_page */
 214
 215	struct bio *current_bio;/* current_bio accepting new data */
 216
 217	atomic_t pending_stripe;/* how many stripes not flushed to raid */
 218	u64 seq;		/* seq number of the metablock */
 219	sector_t log_start;	/* where the io_unit starts */
 220	sector_t log_end;	/* where the io_unit ends */
 221	struct list_head log_sibling; /* log->running_ios */
 222	struct list_head stripe_list; /* stripes added to the io_unit */
 223
 224	int state;
 225	bool need_split_bio;
 226	struct bio *split_bio;
 227
 228	unsigned int has_flush:1;		/* include flush request */
 229	unsigned int has_fua:1;			/* include fua request */
 230	unsigned int has_null_flush:1;		/* include null flush request */
 231	unsigned int has_flush_payload:1;	/* include flush payload  */
 232	/*
 233	 * io isn't sent yet, flush/fua request can only be submitted till it's
 234	 * the first IO in running_ios list
 235	 */
 236	unsigned int io_deferred:1;
 237
 238	struct bio_list flush_barriers;   /* size == 0 flush bios */
 239};
 240
 241/* r5l_io_unit state */
 242enum r5l_io_unit_state {
 243	IO_UNIT_RUNNING = 0,	/* accepting new IO */
 244	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
 245				 * don't accepting new bio */
 246	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
 247	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
 248};
 249
 250bool r5c_is_writeback(struct r5l_log *log)
 251{
 252	return (log != NULL &&
 253		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
 254}
 255
 256static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 257{
 258	start += inc;
 259	if (start >= log->device_size)
 260		start = start - log->device_size;
 261	return start;
 262}
 263
 264static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 265				  sector_t end)
 266{
 267	if (end >= start)
 268		return end - start;
 269	else
 270		return end + log->device_size - start;
 271}
 272
 273static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 274{
 275	sector_t used_size;
 276
 277	used_size = r5l_ring_distance(log, log->last_checkpoint,
 278					log->log_start);
 279
 280	return log->device_size > used_size + size;
 281}
 282
 283static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 284				    enum r5l_io_unit_state state)
 285{
 286	if (WARN_ON(io->state >= state))
 287		return;
 288	io->state = state;
 289}
 290
 291static void
 292r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
 293{
 294	struct bio *wbi, *wbi2;
 295
 296	wbi = dev->written;
 297	dev->written = NULL;
 298	while (wbi && wbi->bi_iter.bi_sector <
 299	       dev->sector + RAID5_STRIPE_SECTORS(conf)) {
 300		wbi2 = r5_next_bio(conf, wbi, dev->sector);
 301		md_write_end(conf->mddev);
 302		bio_endio(wbi);
 303		wbi = wbi2;
 304	}
 305}
 306
 307void r5c_handle_cached_data_endio(struct r5conf *conf,
 308				  struct stripe_head *sh, int disks)
 309{
 310	int i;
 311
 312	for (i = sh->disks; i--; ) {
 313		if (sh->dev[i].written) {
 314			set_bit(R5_UPTODATE, &sh->dev[i].flags);
 315			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
 316			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
 317					   RAID5_STRIPE_SECTORS(conf),
 318					   !test_bit(STRIPE_DEGRADED, &sh->state),
 319					   0);
 320		}
 321	}
 322}
 323
 324void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
 325
 326/* Check whether we should flush some stripes to free up stripe cache */
 327void r5c_check_stripe_cache_usage(struct r5conf *conf)
 328{
 329	int total_cached;
 330
 331	if (!r5c_is_writeback(conf->log))
 332		return;
 333
 334	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
 335		atomic_read(&conf->r5c_cached_full_stripes);
 336
 337	/*
 338	 * The following condition is true for either of the following:
 339	 *   - stripe cache pressure high:
 340	 *          total_cached > 3/4 min_nr_stripes ||
 341	 *          empty_inactive_list_nr > 0
 342	 *   - stripe cache pressure moderate:
 343	 *          total_cached > 1/2 min_nr_stripes
 344	 */
 345	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
 346	    atomic_read(&conf->empty_inactive_list_nr) > 0)
 347		r5l_wake_reclaim(conf->log, 0);
 348}
 349
 350/*
 351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
 352 * stripes in the cache
 353 */
 354void r5c_check_cached_full_stripe(struct r5conf *conf)
 355{
 356	if (!r5c_is_writeback(conf->log))
 357		return;
 358
 359	/*
 360	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
 361	 * or a full stripe (chunk size / 4k stripes).
 362	 */
 363	if (atomic_read(&conf->r5c_cached_full_stripes) >=
 364	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
 365		conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
 366		r5l_wake_reclaim(conf->log, 0);
 367}
 368
 369/*
 370 * Total log space (in sectors) needed to flush all data in cache
 371 *
 372 * To avoid deadlock due to log space, it is necessary to reserve log
 373 * space to flush critical stripes (stripes that occupying log space near
 374 * last_checkpoint). This function helps check how much log space is
 375 * required to flush all cached stripes.
 376 *
 377 * To reduce log space requirements, two mechanisms are used to give cache
 378 * flush higher priorities:
 379 *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
 380 *       stripes ALREADY in journal can be flushed w/o pending writes;
 381 *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
 382 *       can be delayed (r5l_add_no_space_stripe).
 383 *
 384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
 385 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
 386 * pages of journal space. For stripes that has not passed 1, flushing it
 387 * requires (conf->raid_disks + 1) pages of journal space. There are at
 388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
 389 * required to flush all cached stripes (in pages) is:
 390 *
 391 *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
 392 *     (group_cnt + 1) * (raid_disks + 1)
 393 * or
 394 *     (stripe_in_journal_count) * (max_degraded + 1) +
 395 *     (group_cnt + 1) * (raid_disks - max_degraded)
 396 */
 397static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
 398{
 399	struct r5l_log *log = conf->log;
 400
 401	if (!r5c_is_writeback(log))
 402		return 0;
 403
 404	return BLOCK_SECTORS *
 405		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
 406		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
 407}
 408
 409/*
 410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
 411 *
 412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
 413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
 414 * device is less than 2x of reclaim_required_space.
 415 */
 416static inline void r5c_update_log_state(struct r5l_log *log)
 417{
 418	struct r5conf *conf = log->rdev->mddev->private;
 419	sector_t free_space;
 420	sector_t reclaim_space;
 421	bool wake_reclaim = false;
 422
 423	if (!r5c_is_writeback(log))
 424		return;
 425
 426	free_space = r5l_ring_distance(log, log->log_start,
 427				       log->last_checkpoint);
 428	reclaim_space = r5c_log_required_to_flush_cache(conf);
 429	if (free_space < 2 * reclaim_space)
 430		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 431	else {
 432		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
 433			wake_reclaim = true;
 434		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 435	}
 436	if (free_space < 3 * reclaim_space)
 437		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
 438	else
 439		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
 440
 441	if (wake_reclaim)
 442		r5l_wake_reclaim(log, 0);
 443}
 444
 445/*
 446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
 447 * This function should only be called in write-back mode.
 448 */
 449void r5c_make_stripe_write_out(struct stripe_head *sh)
 450{
 451	struct r5conf *conf = sh->raid_conf;
 452	struct r5l_log *log = conf->log;
 453
 454	BUG_ON(!r5c_is_writeback(log));
 455
 456	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 457	clear_bit(STRIPE_R5C_CACHING, &sh->state);
 458
 459	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 460		atomic_inc(&conf->preread_active_stripes);
 461}
 462
 463static void r5c_handle_data_cached(struct stripe_head *sh)
 464{
 465	int i;
 466
 467	for (i = sh->disks; i--; )
 468		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 469			set_bit(R5_InJournal, &sh->dev[i].flags);
 470			clear_bit(R5_LOCKED, &sh->dev[i].flags);
 471		}
 472	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 473}
 474
 475/*
 476 * this journal write must contain full parity,
 477 * it may also contain some data pages
 478 */
 479static void r5c_handle_parity_cached(struct stripe_head *sh)
 480{
 481	int i;
 482
 483	for (i = sh->disks; i--; )
 484		if (test_bit(R5_InJournal, &sh->dev[i].flags))
 485			set_bit(R5_Wantwrite, &sh->dev[i].flags);
 486}
 487
 488/*
 489 * Setting proper flags after writing (or flushing) data and/or parity to the
 490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
 491 */
 492static void r5c_finish_cache_stripe(struct stripe_head *sh)
 493{
 494	struct r5l_log *log = sh->raid_conf->log;
 495
 496	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 497		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 498		/*
 499		 * Set R5_InJournal for parity dev[pd_idx]. This means
 500		 * all data AND parity in the journal. For RAID 6, it is
 501		 * NOT necessary to set the flag for dev[qd_idx], as the
 502		 * two parities are written out together.
 503		 */
 504		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 505	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
 506		r5c_handle_data_cached(sh);
 507	} else {
 508		r5c_handle_parity_cached(sh);
 509		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 510	}
 511}
 512
 513static void r5l_io_run_stripes(struct r5l_io_unit *io)
 514{
 515	struct stripe_head *sh, *next;
 516
 517	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 518		list_del_init(&sh->log_list);
 519
 520		r5c_finish_cache_stripe(sh);
 521
 522		set_bit(STRIPE_HANDLE, &sh->state);
 523		raid5_release_stripe(sh);
 524	}
 525}
 526
 527static void r5l_log_run_stripes(struct r5l_log *log)
 528{
 529	struct r5l_io_unit *io, *next;
 530
 531	lockdep_assert_held(&log->io_list_lock);
 532
 533	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 534		/* don't change list order */
 535		if (io->state < IO_UNIT_IO_END)
 536			break;
 537
 538		list_move_tail(&io->log_sibling, &log->finished_ios);
 539		r5l_io_run_stripes(io);
 540	}
 541}
 542
 543static void r5l_move_to_end_ios(struct r5l_log *log)
 544{
 545	struct r5l_io_unit *io, *next;
 546
 547	lockdep_assert_held(&log->io_list_lock);
 548
 549	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 550		/* don't change list order */
 551		if (io->state < IO_UNIT_IO_END)
 552			break;
 553		list_move_tail(&io->log_sibling, &log->io_end_ios);
 554	}
 555}
 556
 557static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
 558static void r5l_log_endio(struct bio *bio)
 559{
 560	struct r5l_io_unit *io = bio->bi_private;
 561	struct r5l_io_unit *io_deferred;
 562	struct r5l_log *log = io->log;
 563	unsigned long flags;
 564	bool has_null_flush;
 565	bool has_flush_payload;
 566
 567	if (bio->bi_status)
 568		md_error(log->rdev->mddev, log->rdev);
 569
 570	bio_put(bio);
 571	mempool_free(io->meta_page, &log->meta_pool);
 572
 573	spin_lock_irqsave(&log->io_list_lock, flags);
 574	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 575
 576	/*
 577	 * if the io doesn't not have null_flush or flush payload,
 578	 * it is not safe to access it after releasing io_list_lock.
 579	 * Therefore, it is necessary to check the condition with
 580	 * the lock held.
 581	 */
 582	has_null_flush = io->has_null_flush;
 583	has_flush_payload = io->has_flush_payload;
 584
 585	if (log->need_cache_flush && !list_empty(&io->stripe_list))
 586		r5l_move_to_end_ios(log);
 587	else
 588		r5l_log_run_stripes(log);
 589	if (!list_empty(&log->running_ios)) {
 590		/*
 591		 * FLUSH/FUA io_unit is deferred because of ordering, now we
 592		 * can dispatch it
 593		 */
 594		io_deferred = list_first_entry(&log->running_ios,
 595					       struct r5l_io_unit, log_sibling);
 596		if (io_deferred->io_deferred)
 597			schedule_work(&log->deferred_io_work);
 598	}
 599
 600	spin_unlock_irqrestore(&log->io_list_lock, flags);
 601
 602	if (log->need_cache_flush)
 603		md_wakeup_thread(log->rdev->mddev->thread);
 604
 605	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
 606	if (has_null_flush) {
 607		struct bio *bi;
 608
 609		WARN_ON(bio_list_empty(&io->flush_barriers));
 610		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
 611			bio_endio(bi);
 612			if (atomic_dec_and_test(&io->pending_stripe)) {
 613				__r5l_stripe_write_finished(io);
 614				return;
 615			}
 616		}
 617	}
 618	/* decrease pending_stripe for flush payload */
 619	if (has_flush_payload)
 620		if (atomic_dec_and_test(&io->pending_stripe))
 621			__r5l_stripe_write_finished(io);
 622}
 623
 624static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
 625{
 626	unsigned long flags;
 627
 628	spin_lock_irqsave(&log->io_list_lock, flags);
 629	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 630	spin_unlock_irqrestore(&log->io_list_lock, flags);
 631
 632	/*
 633	 * In case of journal device failures, submit_bio will get error
 634	 * and calls endio, then active stripes will continue write
 635	 * process. Therefore, it is not necessary to check Faulty bit
 636	 * of journal device here.
 637	 *
 638	 * We can't check split_bio after current_bio is submitted. If
 639	 * io->split_bio is null, after current_bio is submitted, current_bio
 640	 * might already be completed and the io_unit is freed. We submit
 641	 * split_bio first to avoid the issue.
 642	 */
 643	if (io->split_bio) {
 644		if (io->has_flush)
 645			io->split_bio->bi_opf |= REQ_PREFLUSH;
 646		if (io->has_fua)
 647			io->split_bio->bi_opf |= REQ_FUA;
 648		submit_bio(io->split_bio);
 649	}
 650
 651	if (io->has_flush)
 652		io->current_bio->bi_opf |= REQ_PREFLUSH;
 653	if (io->has_fua)
 654		io->current_bio->bi_opf |= REQ_FUA;
 655	submit_bio(io->current_bio);
 656}
 657
 658/* deferred io_unit will be dispatched here */
 659static void r5l_submit_io_async(struct work_struct *work)
 660{
 661	struct r5l_log *log = container_of(work, struct r5l_log,
 662					   deferred_io_work);
 663	struct r5l_io_unit *io = NULL;
 664	unsigned long flags;
 665
 666	spin_lock_irqsave(&log->io_list_lock, flags);
 667	if (!list_empty(&log->running_ios)) {
 668		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
 669				      log_sibling);
 670		if (!io->io_deferred)
 671			io = NULL;
 672		else
 673			io->io_deferred = 0;
 674	}
 675	spin_unlock_irqrestore(&log->io_list_lock, flags);
 676	if (io)
 677		r5l_do_submit_io(log, io);
 678}
 679
 680static void r5c_disable_writeback_async(struct work_struct *work)
 681{
 682	struct r5l_log *log = container_of(work, struct r5l_log,
 683					   disable_writeback_work);
 684	struct mddev *mddev = log->rdev->mddev;
 685	struct r5conf *conf = mddev->private;
 686	int locked = 0;
 687
 688	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 689		return;
 690	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
 691		mdname(mddev));
 692
 693	/* wait superblock change before suspend */
 694	wait_event(mddev->sb_wait,
 695		   conf->log == NULL ||
 696		   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
 697		    (locked = mddev_trylock(mddev))));
 698	if (locked) {
 699		mddev_suspend(mddev);
 700		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
 701		mddev_resume(mddev);
 702		mddev_unlock(mddev);
 703	}
 704}
 705
 706static void r5l_submit_current_io(struct r5l_log *log)
 707{
 708	struct r5l_io_unit *io = log->current_io;
 709	struct r5l_meta_block *block;
 710	unsigned long flags;
 711	u32 crc;
 712	bool do_submit = true;
 713
 714	if (!io)
 715		return;
 716
 717	block = page_address(io->meta_page);
 718	block->meta_size = cpu_to_le32(io->meta_offset);
 719	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 720	block->checksum = cpu_to_le32(crc);
 721
 722	log->current_io = NULL;
 723	spin_lock_irqsave(&log->io_list_lock, flags);
 724	if (io->has_flush || io->has_fua) {
 725		if (io != list_first_entry(&log->running_ios,
 726					   struct r5l_io_unit, log_sibling)) {
 727			io->io_deferred = 1;
 728			do_submit = false;
 729		}
 730	}
 731	spin_unlock_irqrestore(&log->io_list_lock, flags);
 732	if (do_submit)
 733		r5l_do_submit_io(log, io);
 734}
 735
 736static struct bio *r5l_bio_alloc(struct r5l_log *log)
 737{
 738	struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
 739					   REQ_OP_WRITE, GFP_NOIO, &log->bs);
 740
 
 
 741	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 742
 743	return bio;
 744}
 745
 746static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 747{
 748	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 749
 750	r5c_update_log_state(log);
 751	/*
 752	 * If we filled up the log device start from the beginning again,
 753	 * which will require a new bio.
 754	 *
 755	 * Note: for this to work properly the log size needs to me a multiple
 756	 * of BLOCK_SECTORS.
 757	 */
 758	if (log->log_start == 0)
 759		io->need_split_bio = true;
 760
 761	io->log_end = log->log_start;
 762}
 763
 764static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 765{
 766	struct r5l_io_unit *io;
 767	struct r5l_meta_block *block;
 768
 769	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
 770	if (!io)
 771		return NULL;
 772	memset(io, 0, sizeof(*io));
 773
 774	io->log = log;
 775	INIT_LIST_HEAD(&io->log_sibling);
 776	INIT_LIST_HEAD(&io->stripe_list);
 777	bio_list_init(&io->flush_barriers);
 778	io->state = IO_UNIT_RUNNING;
 779
 780	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
 781	block = page_address(io->meta_page);
 782	clear_page(block);
 783	block->magic = cpu_to_le32(R5LOG_MAGIC);
 784	block->version = R5LOG_VERSION;
 785	block->seq = cpu_to_le64(log->seq);
 786	block->position = cpu_to_le64(log->log_start);
 787
 788	io->log_start = log->log_start;
 789	io->meta_offset = sizeof(struct r5l_meta_block);
 790	io->seq = log->seq++;
 791
 792	io->current_bio = r5l_bio_alloc(log);
 793	io->current_bio->bi_end_io = r5l_log_endio;
 794	io->current_bio->bi_private = io;
 795	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 796
 797	r5_reserve_log_entry(log, io);
 798
 799	spin_lock_irq(&log->io_list_lock);
 800	list_add_tail(&io->log_sibling, &log->running_ios);
 801	spin_unlock_irq(&log->io_list_lock);
 802
 803	return io;
 804}
 805
 806static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 807{
 808	if (log->current_io &&
 809	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
 810		r5l_submit_current_io(log);
 811
 812	if (!log->current_io) {
 813		log->current_io = r5l_new_meta(log);
 814		if (!log->current_io)
 815			return -ENOMEM;
 816	}
 817
 818	return 0;
 819}
 820
 821static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 822				    sector_t location,
 823				    u32 checksum1, u32 checksum2,
 824				    bool checksum2_valid)
 825{
 826	struct r5l_io_unit *io = log->current_io;
 827	struct r5l_payload_data_parity *payload;
 828
 829	payload = page_address(io->meta_page) + io->meta_offset;
 830	payload->header.type = cpu_to_le16(type);
 831	payload->header.flags = cpu_to_le16(0);
 832	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 833				    (PAGE_SHIFT - 9));
 834	payload->location = cpu_to_le64(location);
 835	payload->checksum[0] = cpu_to_le32(checksum1);
 836	if (checksum2_valid)
 837		payload->checksum[1] = cpu_to_le32(checksum2);
 838
 839	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 840		sizeof(__le32) * (1 + !!checksum2_valid);
 841}
 842
 843static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 844{
 845	struct r5l_io_unit *io = log->current_io;
 846
 847	if (io->need_split_bio) {
 848		BUG_ON(io->split_bio);
 849		io->split_bio = io->current_bio;
 850		io->current_bio = r5l_bio_alloc(log);
 851		bio_chain(io->current_bio, io->split_bio);
 852		io->need_split_bio = false;
 853	}
 854
 855	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 856		BUG();
 857
 858	r5_reserve_log_entry(log, io);
 859}
 860
 861static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
 862{
 863	struct mddev *mddev = log->rdev->mddev;
 864	struct r5conf *conf = mddev->private;
 865	struct r5l_io_unit *io;
 866	struct r5l_payload_flush *payload;
 867	int meta_size;
 868
 869	/*
 870	 * payload_flush requires extra writes to the journal.
 871	 * To avoid handling the extra IO in quiesce, just skip
 872	 * flush_payload
 873	 */
 874	if (conf->quiesce)
 875		return;
 876
 877	mutex_lock(&log->io_mutex);
 878	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
 879
 880	if (r5l_get_meta(log, meta_size)) {
 881		mutex_unlock(&log->io_mutex);
 882		return;
 883	}
 884
 885	/* current implementation is one stripe per flush payload */
 886	io = log->current_io;
 887	payload = page_address(io->meta_page) + io->meta_offset;
 888	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
 889	payload->header.flags = cpu_to_le16(0);
 890	payload->size = cpu_to_le32(sizeof(__le64));
 891	payload->flush_stripes[0] = cpu_to_le64(sect);
 892	io->meta_offset += meta_size;
 893	/* multiple flush payloads count as one pending_stripe */
 894	if (!io->has_flush_payload) {
 895		io->has_flush_payload = 1;
 896		atomic_inc(&io->pending_stripe);
 897	}
 898	mutex_unlock(&log->io_mutex);
 899}
 900
 901static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 902			   int data_pages, int parity_pages)
 903{
 904	int i;
 905	int meta_size;
 906	int ret;
 907	struct r5l_io_unit *io;
 908
 909	meta_size =
 910		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 911		 * data_pages) +
 912		sizeof(struct r5l_payload_data_parity) +
 913		sizeof(__le32) * parity_pages;
 914
 915	ret = r5l_get_meta(log, meta_size);
 916	if (ret)
 917		return ret;
 918
 919	io = log->current_io;
 920
 921	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
 922		io->has_flush = 1;
 923
 924	for (i = 0; i < sh->disks; i++) {
 925		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
 926		    test_bit(R5_InJournal, &sh->dev[i].flags))
 927			continue;
 928		if (i == sh->pd_idx || i == sh->qd_idx)
 929			continue;
 930		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
 931		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
 932			io->has_fua = 1;
 933			/*
 934			 * we need to flush journal to make sure recovery can
 935			 * reach the data with fua flag
 936			 */
 937			io->has_flush = 1;
 938		}
 939		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 940					raid5_compute_blocknr(sh, i, 0),
 941					sh->dev[i].log_checksum, 0, false);
 942		r5l_append_payload_page(log, sh->dev[i].page);
 943	}
 944
 945	if (parity_pages == 2) {
 946		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 947					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 948					sh->dev[sh->qd_idx].log_checksum, true);
 949		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 950		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 951	} else if (parity_pages == 1) {
 952		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 953					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 954					0, false);
 955		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 956	} else  /* Just writing data, not parity, in caching phase */
 957		BUG_ON(parity_pages != 0);
 958
 959	list_add_tail(&sh->log_list, &io->stripe_list);
 960	atomic_inc(&io->pending_stripe);
 961	sh->log_io = io;
 962
 963	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 964		return 0;
 965
 966	if (sh->log_start == MaxSector) {
 967		BUG_ON(!list_empty(&sh->r5c));
 968		sh->log_start = io->log_start;
 969		spin_lock_irq(&log->stripe_in_journal_lock);
 970		list_add_tail(&sh->r5c,
 971			      &log->stripe_in_journal_list);
 972		spin_unlock_irq(&log->stripe_in_journal_lock);
 973		atomic_inc(&log->stripe_in_journal_count);
 974	}
 975	return 0;
 976}
 977
 978/* add stripe to no_space_stripes, and then wake up reclaim */
 979static inline void r5l_add_no_space_stripe(struct r5l_log *log,
 980					   struct stripe_head *sh)
 981{
 982	spin_lock(&log->no_space_stripes_lock);
 983	list_add_tail(&sh->log_list, &log->no_space_stripes);
 984	spin_unlock(&log->no_space_stripes_lock);
 985}
 986
 987/*
 988 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 989 * data from log to raid disks), so we shouldn't wait for reclaim here
 990 */
 991int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 992{
 993	struct r5conf *conf = sh->raid_conf;
 994	int write_disks = 0;
 995	int data_pages, parity_pages;
 996	int reserve;
 997	int i;
 998	int ret = 0;
 999	bool wake_reclaim = false;
1000
1001	if (!log)
1002		return -EAGAIN;
1003	/* Don't support stripe batch */
1004	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1005	    test_bit(STRIPE_SYNCING, &sh->state)) {
1006		/* the stripe is written to log, we start writing it to raid */
1007		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1008		return -EAGAIN;
1009	}
1010
1011	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1012
1013	for (i = 0; i < sh->disks; i++) {
1014		void *addr;
1015
1016		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1017		    test_bit(R5_InJournal, &sh->dev[i].flags))
1018			continue;
1019
1020		write_disks++;
1021		/* checksum is already calculated in last run */
1022		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1023			continue;
1024		addr = kmap_atomic(sh->dev[i].page);
1025		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1026						    addr, PAGE_SIZE);
1027		kunmap_atomic(addr);
1028	}
1029	parity_pages = 1 + !!(sh->qd_idx >= 0);
1030	data_pages = write_disks - parity_pages;
1031
1032	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1033	/*
1034	 * The stripe must enter state machine again to finish the write, so
1035	 * don't delay.
1036	 */
1037	clear_bit(STRIPE_DELAYED, &sh->state);
1038	atomic_inc(&sh->count);
1039
1040	mutex_lock(&log->io_mutex);
1041	/* meta + data */
1042	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1043
1044	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1045		if (!r5l_has_free_space(log, reserve)) {
1046			r5l_add_no_space_stripe(log, sh);
1047			wake_reclaim = true;
1048		} else {
1049			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1050			if (ret) {
1051				spin_lock_irq(&log->io_list_lock);
1052				list_add_tail(&sh->log_list,
1053					      &log->no_mem_stripes);
1054				spin_unlock_irq(&log->io_list_lock);
1055			}
1056		}
1057	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1058		/*
1059		 * log space critical, do not process stripes that are
1060		 * not in cache yet (sh->log_start == MaxSector).
1061		 */
1062		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1063		    sh->log_start == MaxSector) {
1064			r5l_add_no_space_stripe(log, sh);
1065			wake_reclaim = true;
1066			reserve = 0;
1067		} else if (!r5l_has_free_space(log, reserve)) {
1068			if (sh->log_start == log->last_checkpoint)
1069				BUG();
1070			else
1071				r5l_add_no_space_stripe(log, sh);
1072		} else {
1073			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1074			if (ret) {
1075				spin_lock_irq(&log->io_list_lock);
1076				list_add_tail(&sh->log_list,
1077					      &log->no_mem_stripes);
1078				spin_unlock_irq(&log->io_list_lock);
1079			}
1080		}
1081	}
1082
1083	mutex_unlock(&log->io_mutex);
1084	if (wake_reclaim)
1085		r5l_wake_reclaim(log, reserve);
1086	return 0;
1087}
1088
1089void r5l_write_stripe_run(struct r5l_log *log)
1090{
1091	if (!log)
1092		return;
1093	mutex_lock(&log->io_mutex);
1094	r5l_submit_current_io(log);
1095	mutex_unlock(&log->io_mutex);
1096}
1097
1098int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1099{
1100	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1101		/*
1102		 * in write through (journal only)
1103		 * we flush log disk cache first, then write stripe data to
1104		 * raid disks. So if bio is finished, the log disk cache is
1105		 * flushed already. The recovery guarantees we can recovery
1106		 * the bio from log disk, so we don't need to flush again
1107		 */
1108		if (bio->bi_iter.bi_size == 0) {
1109			bio_endio(bio);
1110			return 0;
1111		}
1112		bio->bi_opf &= ~REQ_PREFLUSH;
1113	} else {
1114		/* write back (with cache) */
1115		if (bio->bi_iter.bi_size == 0) {
1116			mutex_lock(&log->io_mutex);
1117			r5l_get_meta(log, 0);
1118			bio_list_add(&log->current_io->flush_barriers, bio);
1119			log->current_io->has_flush = 1;
1120			log->current_io->has_null_flush = 1;
1121			atomic_inc(&log->current_io->pending_stripe);
1122			r5l_submit_current_io(log);
1123			mutex_unlock(&log->io_mutex);
1124			return 0;
1125		}
1126	}
1127	return -EAGAIN;
1128}
1129
1130/* This will run after log space is reclaimed */
1131static void r5l_run_no_space_stripes(struct r5l_log *log)
1132{
1133	struct stripe_head *sh;
1134
1135	spin_lock(&log->no_space_stripes_lock);
1136	while (!list_empty(&log->no_space_stripes)) {
1137		sh = list_first_entry(&log->no_space_stripes,
1138				      struct stripe_head, log_list);
1139		list_del_init(&sh->log_list);
1140		set_bit(STRIPE_HANDLE, &sh->state);
1141		raid5_release_stripe(sh);
1142	}
1143	spin_unlock(&log->no_space_stripes_lock);
1144}
1145
1146/*
1147 * calculate new last_checkpoint
1148 * for write through mode, returns log->next_checkpoint
1149 * for write back, returns log_start of first sh in stripe_in_journal_list
1150 */
1151static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1152{
1153	struct stripe_head *sh;
1154	struct r5l_log *log = conf->log;
1155	sector_t new_cp;
1156	unsigned long flags;
1157
1158	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1159		return log->next_checkpoint;
1160
1161	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1162	if (list_empty(&conf->log->stripe_in_journal_list)) {
1163		/* all stripes flushed */
1164		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1165		return log->next_checkpoint;
1166	}
1167	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1168			      struct stripe_head, r5c);
1169	new_cp = sh->log_start;
1170	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1171	return new_cp;
1172}
1173
1174static sector_t r5l_reclaimable_space(struct r5l_log *log)
1175{
1176	struct r5conf *conf = log->rdev->mddev->private;
1177
1178	return r5l_ring_distance(log, log->last_checkpoint,
1179				 r5c_calculate_new_cp(conf));
1180}
1181
1182static void r5l_run_no_mem_stripe(struct r5l_log *log)
1183{
1184	struct stripe_head *sh;
1185
1186	lockdep_assert_held(&log->io_list_lock);
1187
1188	if (!list_empty(&log->no_mem_stripes)) {
1189		sh = list_first_entry(&log->no_mem_stripes,
1190				      struct stripe_head, log_list);
1191		list_del_init(&sh->log_list);
1192		set_bit(STRIPE_HANDLE, &sh->state);
1193		raid5_release_stripe(sh);
1194	}
1195}
1196
1197static bool r5l_complete_finished_ios(struct r5l_log *log)
1198{
1199	struct r5l_io_unit *io, *next;
1200	bool found = false;
1201
1202	lockdep_assert_held(&log->io_list_lock);
1203
1204	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1205		/* don't change list order */
1206		if (io->state < IO_UNIT_STRIPE_END)
1207			break;
1208
1209		log->next_checkpoint = io->log_start;
1210
1211		list_del(&io->log_sibling);
1212		mempool_free(io, &log->io_pool);
1213		r5l_run_no_mem_stripe(log);
1214
1215		found = true;
1216	}
1217
1218	return found;
1219}
1220
1221static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1222{
1223	struct r5l_log *log = io->log;
1224	struct r5conf *conf = log->rdev->mddev->private;
1225	unsigned long flags;
1226
1227	spin_lock_irqsave(&log->io_list_lock, flags);
1228	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1229
1230	if (!r5l_complete_finished_ios(log)) {
1231		spin_unlock_irqrestore(&log->io_list_lock, flags);
1232		return;
1233	}
1234
1235	if (r5l_reclaimable_space(log) > log->max_free_space ||
1236	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1237		r5l_wake_reclaim(log, 0);
1238
1239	spin_unlock_irqrestore(&log->io_list_lock, flags);
1240	wake_up(&log->iounit_wait);
1241}
1242
1243void r5l_stripe_write_finished(struct stripe_head *sh)
1244{
1245	struct r5l_io_unit *io;
1246
1247	io = sh->log_io;
1248	sh->log_io = NULL;
1249
1250	if (io && atomic_dec_and_test(&io->pending_stripe))
1251		__r5l_stripe_write_finished(io);
1252}
1253
1254static void r5l_log_flush_endio(struct bio *bio)
1255{
1256	struct r5l_log *log = container_of(bio, struct r5l_log,
1257		flush_bio);
1258	unsigned long flags;
1259	struct r5l_io_unit *io;
1260
1261	if (bio->bi_status)
1262		md_error(log->rdev->mddev, log->rdev);
1263
1264	spin_lock_irqsave(&log->io_list_lock, flags);
1265	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1266		r5l_io_run_stripes(io);
1267	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1268	spin_unlock_irqrestore(&log->io_list_lock, flags);
1269
1270	bio_uninit(bio);
1271}
1272
1273/*
1274 * Starting dispatch IO to raid.
1275 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1276 * broken meta in the middle of a log causes recovery can't find meta at the
1277 * head of log. If operations require meta at the head persistent in log, we
1278 * must make sure meta before it persistent in log too. A case is:
1279 *
1280 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1281 * data/parity must be persistent in log before we do the write to raid disks.
1282 *
1283 * The solution is we restrictly maintain io_unit list order. In this case, we
1284 * only write stripes of an io_unit to raid disks till the io_unit is the first
1285 * one whose data/parity is in log.
1286 */
1287void r5l_flush_stripe_to_raid(struct r5l_log *log)
1288{
1289	bool do_flush;
1290
1291	if (!log || !log->need_cache_flush)
1292		return;
1293
1294	spin_lock_irq(&log->io_list_lock);
1295	/* flush bio is running */
1296	if (!list_empty(&log->flushing_ios)) {
1297		spin_unlock_irq(&log->io_list_lock);
1298		return;
1299	}
1300	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1301	do_flush = !list_empty(&log->flushing_ios);
1302	spin_unlock_irq(&log->io_list_lock);
1303
1304	if (!do_flush)
1305		return;
1306	bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1307		  REQ_OP_WRITE | REQ_PREFLUSH);
1308	log->flush_bio.bi_end_io = r5l_log_flush_endio;
 
1309	submit_bio(&log->flush_bio);
1310}
1311
1312static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314	sector_t end)
1315{
1316	struct block_device *bdev = log->rdev->bdev;
1317	struct mddev *mddev;
1318
1319	r5l_write_super(log, end);
1320
1321	if (!bdev_max_discard_sectors(bdev))
1322		return;
1323
1324	mddev = log->rdev->mddev;
1325	/*
1326	 * Discard could zero data, so before discard we must make sure
1327	 * superblock is updated to new log tail. Updating superblock (either
1328	 * directly call md_update_sb() or depend on md thread) must hold
1329	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1330	 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1331	 * for all IO finish, hence waiting for reclaim thread, while reclaim
1332	 * thread is calling this function and waiting for reconfig mutex. So
1333	 * there is a deadlock. We workaround this issue with a trylock.
1334	 * FIXME: we could miss discard if we can't take reconfig mutex
1335	 */
1336	set_mask_bits(&mddev->sb_flags, 0,
1337		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338	if (!mddev_trylock(mddev))
1339		return;
1340	md_update_sb(mddev, 1);
1341	mddev_unlock(mddev);
1342
1343	/* discard IO error really doesn't matter, ignore it */
1344	if (log->last_checkpoint < end) {
1345		blkdev_issue_discard(bdev,
1346				log->last_checkpoint + log->rdev->data_offset,
1347				end - log->last_checkpoint, GFP_NOIO);
1348	} else {
1349		blkdev_issue_discard(bdev,
1350				log->last_checkpoint + log->rdev->data_offset,
1351				log->device_size - log->last_checkpoint,
1352				GFP_NOIO);
1353		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354				GFP_NOIO);
1355	}
1356}
1357
1358/*
1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361 *
1362 * must hold conf->device_lock
1363 */
1364static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365{
1366	BUG_ON(list_empty(&sh->lru));
1367	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369
1370	/*
1371	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372	 * raid5_release_stripe() while holding conf->device_lock
1373	 */
1374	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375	lockdep_assert_held(&conf->device_lock);
1376
1377	list_del_init(&sh->lru);
1378	atomic_inc(&sh->count);
1379
1380	set_bit(STRIPE_HANDLE, &sh->state);
1381	atomic_inc(&conf->active_stripes);
1382	r5c_make_stripe_write_out(sh);
1383
1384	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385		atomic_inc(&conf->r5c_flushing_partial_stripes);
1386	else
1387		atomic_inc(&conf->r5c_flushing_full_stripes);
1388	raid5_release_stripe(sh);
1389}
1390
1391/*
1392 * if num == 0, flush all full stripes
1393 * if num > 0, flush all full stripes. If less than num full stripes are
1394 *             flushed, flush some partial stripes until totally num stripes are
1395 *             flushed or there is no more cached stripes.
1396 */
1397void r5c_flush_cache(struct r5conf *conf, int num)
1398{
1399	int count;
1400	struct stripe_head *sh, *next;
1401
1402	lockdep_assert_held(&conf->device_lock);
1403	if (!conf->log)
1404		return;
1405
1406	count = 0;
1407	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408		r5c_flush_stripe(conf, sh);
1409		count++;
1410	}
1411
1412	if (count >= num)
1413		return;
1414	list_for_each_entry_safe(sh, next,
1415				 &conf->r5c_partial_stripe_list, lru) {
1416		r5c_flush_stripe(conf, sh);
1417		if (++count >= num)
1418			break;
1419	}
1420}
1421
1422static void r5c_do_reclaim(struct r5conf *conf)
1423{
1424	struct r5l_log *log = conf->log;
1425	struct stripe_head *sh;
1426	int count = 0;
1427	unsigned long flags;
1428	int total_cached;
1429	int stripes_to_flush;
1430	int flushing_partial, flushing_full;
1431
1432	if (!r5c_is_writeback(log))
1433		return;
1434
1435	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438		atomic_read(&conf->r5c_cached_full_stripes) -
1439		flushing_full - flushing_partial;
1440
1441	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1443		/*
1444		 * if stripe cache pressure high, flush all full stripes and
1445		 * some partial stripes
1446		 */
1447		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451		/*
1452		 * if stripe cache pressure moderate, or if there is many full
1453		 * stripes,flush all full stripes
1454		 */
1455		stripes_to_flush = 0;
1456	else
1457		/* no need to flush */
1458		stripes_to_flush = -1;
1459
1460	if (stripes_to_flush >= 0) {
1461		spin_lock_irqsave(&conf->device_lock, flags);
1462		r5c_flush_cache(conf, stripes_to_flush);
1463		spin_unlock_irqrestore(&conf->device_lock, flags);
1464	}
1465
1466	/* if log space is tight, flush stripes on stripe_in_journal_list */
1467	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469		spin_lock(&conf->device_lock);
1470		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471			/*
1472			 * stripes on stripe_in_journal_list could be in any
1473			 * state of the stripe_cache state machine. In this
1474			 * case, we only want to flush stripe on
1475			 * r5c_cached_full/partial_stripes. The following
1476			 * condition makes sure the stripe is on one of the
1477			 * two lists.
1478			 */
1479			if (!list_empty(&sh->lru) &&
1480			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1481			    atomic_read(&sh->count) == 0) {
1482				r5c_flush_stripe(conf, sh);
1483				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484					break;
1485			}
1486		}
1487		spin_unlock(&conf->device_lock);
1488		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489	}
1490
1491	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492		r5l_run_no_space_stripes(log);
1493
1494	md_wakeup_thread(conf->mddev->thread);
1495}
1496
1497static void r5l_do_reclaim(struct r5l_log *log)
1498{
1499	struct r5conf *conf = log->rdev->mddev->private;
1500	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501	sector_t reclaimable;
1502	sector_t next_checkpoint;
1503	bool write_super;
1504
1505	spin_lock_irq(&log->io_list_lock);
1506	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508	/*
1509	 * move proper io_unit to reclaim list. We should not change the order.
1510	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511	 * shouldn't reuse space of an unreclaimable io_unit
1512	 */
1513	while (1) {
1514		reclaimable = r5l_reclaimable_space(log);
1515		if (reclaimable >= reclaim_target ||
1516		    (list_empty(&log->running_ios) &&
1517		     list_empty(&log->io_end_ios) &&
1518		     list_empty(&log->flushing_ios) &&
1519		     list_empty(&log->finished_ios)))
1520			break;
1521
1522		md_wakeup_thread(log->rdev->mddev->thread);
1523		wait_event_lock_irq(log->iounit_wait,
1524				    r5l_reclaimable_space(log) > reclaimable,
1525				    log->io_list_lock);
1526	}
1527
1528	next_checkpoint = r5c_calculate_new_cp(conf);
1529	spin_unlock_irq(&log->io_list_lock);
1530
1531	if (reclaimable == 0 || !write_super)
1532		return;
1533
1534	/*
1535	 * write_super will flush cache of each raid disk. We must write super
1536	 * here, because the log area might be reused soon and we don't want to
1537	 * confuse recovery
1538	 */
1539	r5l_write_super_and_discard_space(log, next_checkpoint);
1540
1541	mutex_lock(&log->io_mutex);
1542	log->last_checkpoint = next_checkpoint;
1543	r5c_update_log_state(log);
1544	mutex_unlock(&log->io_mutex);
1545
1546	r5l_run_no_space_stripes(log);
1547}
1548
1549static void r5l_reclaim_thread(struct md_thread *thread)
1550{
1551	struct mddev *mddev = thread->mddev;
1552	struct r5conf *conf = mddev->private;
1553	struct r5l_log *log = conf->log;
1554
1555	if (!log)
1556		return;
1557	r5c_do_reclaim(conf);
1558	r5l_do_reclaim(log);
1559}
1560
1561void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562{
1563	unsigned long target;
1564	unsigned long new = (unsigned long)space; /* overflow in theory */
1565
1566	if (!log)
1567		return;
1568
1569	target = READ_ONCE(log->reclaim_target);
1570	do {
 
1571		if (new < target)
1572			return;
1573	} while (!try_cmpxchg(&log->reclaim_target, &target, new));
1574	md_wakeup_thread(log->reclaim_thread);
1575}
1576
1577void r5l_quiesce(struct r5l_log *log, int quiesce)
1578{
1579	struct mddev *mddev;
1580
1581	if (quiesce) {
1582		/* make sure r5l_write_super_and_discard_space exits */
1583		mddev = log->rdev->mddev;
1584		wake_up(&mddev->sb_wait);
1585		kthread_park(log->reclaim_thread->tsk);
1586		r5l_wake_reclaim(log, MaxSector);
1587		r5l_do_reclaim(log);
1588	} else
1589		kthread_unpark(log->reclaim_thread->tsk);
1590}
1591
1592bool r5l_log_disk_error(struct r5conf *conf)
1593{
1594	struct r5l_log *log = conf->log;
 
 
 
 
1595
1596	/* don't allow write if journal disk is missing */
1597	if (!log)
1598		return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1599	else
1600		return test_bit(Faulty, &log->rdev->flags);
 
 
1601}
1602
1603#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1604
1605struct r5l_recovery_ctx {
1606	struct page *meta_page;		/* current meta */
1607	sector_t meta_total_blocks;	/* total size of current meta and data */
1608	sector_t pos;			/* recovery position */
1609	u64 seq;			/* recovery position seq */
1610	int data_parity_stripes;	/* number of data_parity stripes */
1611	int data_only_stripes;		/* number of data_only stripes */
1612	struct list_head cached_list;
1613
1614	/*
1615	 * read ahead page pool (ra_pool)
1616	 * in recovery, log is read sequentially. It is not efficient to
1617	 * read every page with sync_page_io(). The read ahead page pool
1618	 * reads multiple pages with one IO, so further log read can
1619	 * just copy data from the pool.
1620	 */
1621	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1622	struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1623	sector_t pool_offset;	/* offset of first page in the pool */
1624	int total_pages;	/* total allocated pages */
1625	int valid_pages;	/* pages with valid data */
 
1626};
1627
1628static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1629					    struct r5l_recovery_ctx *ctx)
1630{
1631	struct page *page;
1632
 
 
 
 
1633	ctx->valid_pages = 0;
1634	ctx->total_pages = 0;
1635	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1636		page = alloc_page(GFP_KERNEL);
1637
1638		if (!page)
1639			break;
1640		ctx->ra_pool[ctx->total_pages] = page;
1641		ctx->total_pages += 1;
1642	}
1643
1644	if (ctx->total_pages == 0)
 
1645		return -ENOMEM;
 
1646
1647	ctx->pool_offset = 0;
1648	return 0;
1649}
1650
1651static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1652					struct r5l_recovery_ctx *ctx)
1653{
1654	int i;
1655
1656	for (i = 0; i < ctx->total_pages; ++i)
1657		put_page(ctx->ra_pool[i]);
 
1658}
1659
1660/*
1661 * fetch ctx->valid_pages pages from offset
1662 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1663 * However, if the offset is close to the end of the journal device,
1664 * ctx->valid_pages could be smaller than ctx->total_pages
1665 */
1666static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1667				      struct r5l_recovery_ctx *ctx,
1668				      sector_t offset)
1669{
1670	struct bio bio;
1671	int ret;
1672
1673	bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1674		 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1675	bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1676
1677	ctx->valid_pages = 0;
1678	ctx->pool_offset = offset;
1679
1680	while (ctx->valid_pages < ctx->total_pages) {
1681		__bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1682			       0);
1683		ctx->valid_pages += 1;
1684
1685		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1686
1687		if (offset == 0)  /* reached end of the device */
1688			break;
1689	}
1690
1691	ret = submit_bio_wait(&bio);
1692	bio_uninit(&bio);
1693	return ret;
1694}
1695
1696/*
1697 * try read a page from the read ahead page pool, if the page is not in the
1698 * pool, call r5l_recovery_fetch_ra_pool
1699 */
1700static int r5l_recovery_read_page(struct r5l_log *log,
1701				  struct r5l_recovery_ctx *ctx,
1702				  struct page *page,
1703				  sector_t offset)
1704{
1705	int ret;
1706
1707	if (offset < ctx->pool_offset ||
1708	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1709		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1710		if (ret)
1711			return ret;
1712	}
1713
1714	BUG_ON(offset < ctx->pool_offset ||
1715	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1716
1717	memcpy(page_address(page),
1718	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1719					 BLOCK_SECTOR_SHIFT]),
1720	       PAGE_SIZE);
1721	return 0;
1722}
1723
1724static int r5l_recovery_read_meta_block(struct r5l_log *log,
1725					struct r5l_recovery_ctx *ctx)
1726{
1727	struct page *page = ctx->meta_page;
1728	struct r5l_meta_block *mb;
1729	u32 crc, stored_crc;
1730	int ret;
1731
1732	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1733	if (ret != 0)
1734		return ret;
1735
1736	mb = page_address(page);
1737	stored_crc = le32_to_cpu(mb->checksum);
1738	mb->checksum = 0;
1739
1740	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1741	    le64_to_cpu(mb->seq) != ctx->seq ||
1742	    mb->version != R5LOG_VERSION ||
1743	    le64_to_cpu(mb->position) != ctx->pos)
1744		return -EINVAL;
1745
1746	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1747	if (stored_crc != crc)
1748		return -EINVAL;
1749
1750	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1751		return -EINVAL;
1752
1753	ctx->meta_total_blocks = BLOCK_SECTORS;
1754
1755	return 0;
1756}
1757
1758static void
1759r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1760				     struct page *page,
1761				     sector_t pos, u64 seq)
1762{
1763	struct r5l_meta_block *mb;
1764
1765	mb = page_address(page);
1766	clear_page(mb);
1767	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1768	mb->version = R5LOG_VERSION;
1769	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1770	mb->seq = cpu_to_le64(seq);
1771	mb->position = cpu_to_le64(pos);
1772}
1773
1774static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1775					  u64 seq)
1776{
1777	struct page *page;
1778	struct r5l_meta_block *mb;
1779
1780	page = alloc_page(GFP_KERNEL);
1781	if (!page)
1782		return -ENOMEM;
1783	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1784	mb = page_address(page);
1785	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1786					     mb, PAGE_SIZE));
1787	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1788			  REQ_SYNC | REQ_FUA, false)) {
1789		__free_page(page);
1790		return -EIO;
1791	}
1792	__free_page(page);
1793	return 0;
1794}
1795
1796/*
1797 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1798 * to mark valid (potentially not flushed) data in the journal.
1799 *
1800 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1801 * so there should not be any mismatch here.
1802 */
1803static void r5l_recovery_load_data(struct r5l_log *log,
1804				   struct stripe_head *sh,
1805				   struct r5l_recovery_ctx *ctx,
1806				   struct r5l_payload_data_parity *payload,
1807				   sector_t log_offset)
1808{
1809	struct mddev *mddev = log->rdev->mddev;
1810	struct r5conf *conf = mddev->private;
1811	int dd_idx;
1812
1813	raid5_compute_sector(conf,
1814			     le64_to_cpu(payload->location), 0,
1815			     &dd_idx, sh);
1816	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1817	sh->dev[dd_idx].log_checksum =
1818		le32_to_cpu(payload->checksum[0]);
1819	ctx->meta_total_blocks += BLOCK_SECTORS;
1820
1821	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1822	set_bit(STRIPE_R5C_CACHING, &sh->state);
1823}
1824
1825static void r5l_recovery_load_parity(struct r5l_log *log,
1826				     struct stripe_head *sh,
1827				     struct r5l_recovery_ctx *ctx,
1828				     struct r5l_payload_data_parity *payload,
1829				     sector_t log_offset)
1830{
1831	struct mddev *mddev = log->rdev->mddev;
1832	struct r5conf *conf = mddev->private;
1833
1834	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1835	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1836	sh->dev[sh->pd_idx].log_checksum =
1837		le32_to_cpu(payload->checksum[0]);
1838	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1839
1840	if (sh->qd_idx >= 0) {
1841		r5l_recovery_read_page(
1842			log, ctx, sh->dev[sh->qd_idx].page,
1843			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1844		sh->dev[sh->qd_idx].log_checksum =
1845			le32_to_cpu(payload->checksum[1]);
1846		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1847	}
1848	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1849}
1850
1851static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1852{
1853	int i;
1854
1855	sh->state = 0;
1856	sh->log_start = MaxSector;
1857	for (i = sh->disks; i--; )
1858		sh->dev[i].flags = 0;
1859}
1860
1861static void
1862r5l_recovery_replay_one_stripe(struct r5conf *conf,
1863			       struct stripe_head *sh,
1864			       struct r5l_recovery_ctx *ctx)
1865{
1866	struct md_rdev *rdev, *rrdev;
1867	int disk_index;
1868	int data_count = 0;
1869
1870	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1871		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1872			continue;
1873		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1874			continue;
1875		data_count++;
1876	}
1877
1878	/*
1879	 * stripes that only have parity must have been flushed
1880	 * before the crash that we are now recovering from, so
1881	 * there is nothing more to recovery.
1882	 */
1883	if (data_count == 0)
1884		goto out;
1885
1886	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1887		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1888			continue;
1889
1890		/* in case device is broken */
1891		rcu_read_lock();
1892		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1893		if (rdev) {
1894			atomic_inc(&rdev->nr_pending);
1895			rcu_read_unlock();
1896			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1897				     sh->dev[disk_index].page, REQ_OP_WRITE,
1898				     false);
1899			rdev_dec_pending(rdev, rdev->mddev);
1900			rcu_read_lock();
1901		}
1902		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1903		if (rrdev) {
1904			atomic_inc(&rrdev->nr_pending);
1905			rcu_read_unlock();
1906			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1907				     sh->dev[disk_index].page, REQ_OP_WRITE,
1908				     false);
1909			rdev_dec_pending(rrdev, rrdev->mddev);
1910			rcu_read_lock();
1911		}
1912		rcu_read_unlock();
1913	}
1914	ctx->data_parity_stripes++;
1915out:
1916	r5l_recovery_reset_stripe(sh);
1917}
1918
1919static struct stripe_head *
1920r5c_recovery_alloc_stripe(
1921		struct r5conf *conf,
1922		sector_t stripe_sect,
1923		int noblock)
1924{
1925	struct stripe_head *sh;
1926
1927	sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1928				     noblock ? R5_GAS_NOBLOCK : 0);
1929	if (!sh)
1930		return NULL;  /* no more stripe available */
1931
1932	r5l_recovery_reset_stripe(sh);
1933
1934	return sh;
1935}
1936
1937static struct stripe_head *
1938r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1939{
1940	struct stripe_head *sh;
1941
1942	list_for_each_entry(sh, list, lru)
1943		if (sh->sector == sect)
1944			return sh;
1945	return NULL;
1946}
1947
1948static void
1949r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1950			  struct r5l_recovery_ctx *ctx)
1951{
1952	struct stripe_head *sh, *next;
1953
1954	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1955		r5l_recovery_reset_stripe(sh);
1956		list_del_init(&sh->lru);
1957		raid5_release_stripe(sh);
1958	}
1959}
1960
1961static void
1962r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1963			    struct r5l_recovery_ctx *ctx)
1964{
1965	struct stripe_head *sh, *next;
1966
1967	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1968		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1969			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1970			list_del_init(&sh->lru);
1971			raid5_release_stripe(sh);
1972		}
1973}
1974
1975/* if matches return 0; otherwise return -EINVAL */
1976static int
1977r5l_recovery_verify_data_checksum(struct r5l_log *log,
1978				  struct r5l_recovery_ctx *ctx,
1979				  struct page *page,
1980				  sector_t log_offset, __le32 log_checksum)
1981{
1982	void *addr;
1983	u32 checksum;
1984
1985	r5l_recovery_read_page(log, ctx, page, log_offset);
1986	addr = kmap_atomic(page);
1987	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1988	kunmap_atomic(addr);
1989	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1990}
1991
1992/*
1993 * before loading data to stripe cache, we need verify checksum for all data,
1994 * if there is mismatch for any data page, we drop all data in the mata block
1995 */
1996static int
1997r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1998					 struct r5l_recovery_ctx *ctx)
1999{
2000	struct mddev *mddev = log->rdev->mddev;
2001	struct r5conf *conf = mddev->private;
2002	struct r5l_meta_block *mb = page_address(ctx->meta_page);
2003	sector_t mb_offset = sizeof(struct r5l_meta_block);
2004	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2005	struct page *page;
2006	struct r5l_payload_data_parity *payload;
2007	struct r5l_payload_flush *payload_flush;
2008
2009	page = alloc_page(GFP_KERNEL);
2010	if (!page)
2011		return -ENOMEM;
2012
2013	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2014		payload = (void *)mb + mb_offset;
2015		payload_flush = (void *)mb + mb_offset;
2016
2017		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2018			if (r5l_recovery_verify_data_checksum(
2019				    log, ctx, page, log_offset,
2020				    payload->checksum[0]) < 0)
2021				goto mismatch;
2022		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2023			if (r5l_recovery_verify_data_checksum(
2024				    log, ctx, page, log_offset,
2025				    payload->checksum[0]) < 0)
2026				goto mismatch;
2027			if (conf->max_degraded == 2 && /* q for RAID 6 */
2028			    r5l_recovery_verify_data_checksum(
2029				    log, ctx, page,
2030				    r5l_ring_add(log, log_offset,
2031						 BLOCK_SECTORS),
2032				    payload->checksum[1]) < 0)
2033				goto mismatch;
2034		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2035			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2036		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2037			goto mismatch;
2038
2039		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2040			mb_offset += sizeof(struct r5l_payload_flush) +
2041				le32_to_cpu(payload_flush->size);
2042		} else {
2043			/* DATA or PARITY payload */
2044			log_offset = r5l_ring_add(log, log_offset,
2045						  le32_to_cpu(payload->size));
2046			mb_offset += sizeof(struct r5l_payload_data_parity) +
2047				sizeof(__le32) *
2048				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2049		}
2050
2051	}
2052
2053	put_page(page);
2054	return 0;
2055
2056mismatch:
2057	put_page(page);
2058	return -EINVAL;
2059}
2060
2061/*
2062 * Analyze all data/parity pages in one meta block
2063 * Returns:
2064 * 0 for success
2065 * -EINVAL for unknown playload type
2066 * -EAGAIN for checksum mismatch of data page
2067 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2068 */
2069static int
2070r5c_recovery_analyze_meta_block(struct r5l_log *log,
2071				struct r5l_recovery_ctx *ctx,
2072				struct list_head *cached_stripe_list)
2073{
2074	struct mddev *mddev = log->rdev->mddev;
2075	struct r5conf *conf = mddev->private;
2076	struct r5l_meta_block *mb;
2077	struct r5l_payload_data_parity *payload;
2078	struct r5l_payload_flush *payload_flush;
2079	int mb_offset;
2080	sector_t log_offset;
2081	sector_t stripe_sect;
2082	struct stripe_head *sh;
2083	int ret;
2084
2085	/*
2086	 * for mismatch in data blocks, we will drop all data in this mb, but
2087	 * we will still read next mb for other data with FLUSH flag, as
2088	 * io_unit could finish out of order.
2089	 */
2090	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2091	if (ret == -EINVAL)
2092		return -EAGAIN;
2093	else if (ret)
2094		return ret;   /* -ENOMEM duo to alloc_page() failed */
2095
2096	mb = page_address(ctx->meta_page);
2097	mb_offset = sizeof(struct r5l_meta_block);
2098	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2099
2100	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2101		int dd;
2102
2103		payload = (void *)mb + mb_offset;
2104		payload_flush = (void *)mb + mb_offset;
2105
2106		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2107			int i, count;
2108
2109			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2110			for (i = 0; i < count; ++i) {
2111				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2112				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2113								stripe_sect);
2114				if (sh) {
2115					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2116					r5l_recovery_reset_stripe(sh);
2117					list_del_init(&sh->lru);
2118					raid5_release_stripe(sh);
2119				}
2120			}
2121
2122			mb_offset += sizeof(struct r5l_payload_flush) +
2123				le32_to_cpu(payload_flush->size);
2124			continue;
2125		}
2126
2127		/* DATA or PARITY payload */
2128		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2129			raid5_compute_sector(
2130				conf, le64_to_cpu(payload->location), 0, &dd,
2131				NULL)
2132			: le64_to_cpu(payload->location);
2133
2134		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2135						stripe_sect);
2136
2137		if (!sh) {
2138			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2139			/*
2140			 * cannot get stripe from raid5_get_active_stripe
2141			 * try replay some stripes
2142			 */
2143			if (!sh) {
2144				r5c_recovery_replay_stripes(
2145					cached_stripe_list, ctx);
2146				sh = r5c_recovery_alloc_stripe(
2147					conf, stripe_sect, 1);
2148			}
2149			if (!sh) {
2150				int new_size = conf->min_nr_stripes * 2;
2151				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2152					mdname(mddev),
2153					new_size);
2154				ret = raid5_set_cache_size(mddev, new_size);
2155				if (conf->min_nr_stripes <= new_size / 2) {
2156					pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2157						mdname(mddev),
2158						ret,
2159						new_size,
2160						conf->min_nr_stripes,
2161						conf->max_nr_stripes);
2162					return -ENOMEM;
2163				}
2164				sh = r5c_recovery_alloc_stripe(
2165					conf, stripe_sect, 0);
2166			}
2167			if (!sh) {
2168				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2169					mdname(mddev));
2170				return -ENOMEM;
2171			}
2172			list_add_tail(&sh->lru, cached_stripe_list);
2173		}
2174
2175		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2176			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2177			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2178				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2179				list_move_tail(&sh->lru, cached_stripe_list);
2180			}
2181			r5l_recovery_load_data(log, sh, ctx, payload,
2182					       log_offset);
2183		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2184			r5l_recovery_load_parity(log, sh, ctx, payload,
2185						 log_offset);
2186		else
2187			return -EINVAL;
2188
2189		log_offset = r5l_ring_add(log, log_offset,
2190					  le32_to_cpu(payload->size));
2191
2192		mb_offset += sizeof(struct r5l_payload_data_parity) +
2193			sizeof(__le32) *
2194			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2195	}
2196
2197	return 0;
2198}
2199
2200/*
2201 * Load the stripe into cache. The stripe will be written out later by
2202 * the stripe cache state machine.
2203 */
2204static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2205					 struct stripe_head *sh)
2206{
2207	struct r5dev *dev;
2208	int i;
2209
2210	for (i = sh->disks; i--; ) {
2211		dev = sh->dev + i;
2212		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2213			set_bit(R5_InJournal, &dev->flags);
2214			set_bit(R5_UPTODATE, &dev->flags);
2215		}
2216	}
2217}
2218
2219/*
2220 * Scan through the log for all to-be-flushed data
2221 *
2222 * For stripes with data and parity, namely Data-Parity stripe
2223 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2224 *
2225 * For stripes with only data, namely Data-Only stripe
2226 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2227 *
2228 * For a stripe, if we see data after parity, we should discard all previous
2229 * data and parity for this stripe, as these data are already flushed to
2230 * the array.
2231 *
2232 * At the end of the scan, we return the new journal_tail, which points to
2233 * first data-only stripe on the journal device, or next invalid meta block.
2234 */
2235static int r5c_recovery_flush_log(struct r5l_log *log,
2236				  struct r5l_recovery_ctx *ctx)
2237{
2238	struct stripe_head *sh;
2239	int ret = 0;
2240
2241	/* scan through the log */
2242	while (1) {
2243		if (r5l_recovery_read_meta_block(log, ctx))
2244			break;
2245
2246		ret = r5c_recovery_analyze_meta_block(log, ctx,
2247						      &ctx->cached_list);
2248		/*
2249		 * -EAGAIN means mismatch in data block, in this case, we still
2250		 * try scan the next metablock
2251		 */
2252		if (ret && ret != -EAGAIN)
2253			break;   /* ret == -EINVAL or -ENOMEM */
2254		ctx->seq++;
2255		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2256	}
2257
2258	if (ret == -ENOMEM) {
2259		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2260		return ret;
2261	}
2262
2263	/* replay data-parity stripes */
2264	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2265
2266	/* load data-only stripes to stripe cache */
2267	list_for_each_entry(sh, &ctx->cached_list, lru) {
2268		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2269		r5c_recovery_load_one_stripe(log, sh);
2270		ctx->data_only_stripes++;
2271	}
2272
2273	return 0;
2274}
2275
2276/*
2277 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2278 * log will start here. but we can't let superblock point to last valid
2279 * meta block. The log might looks like:
2280 * | meta 1| meta 2| meta 3|
2281 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2282 * superblock points to meta 1, we write a new valid meta 2n.  if crash
2283 * happens again, new recovery will start from meta 1. Since meta 2n is
2284 * valid now, recovery will think meta 3 is valid, which is wrong.
2285 * The solution is we create a new meta in meta2 with its seq == meta
2286 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2287 * will not think meta 3 is a valid meta, because its seq doesn't match
2288 */
2289
2290/*
2291 * Before recovery, the log looks like the following
2292 *
2293 *   ---------------------------------------------
2294 *   |           valid log        | invalid log  |
2295 *   ---------------------------------------------
2296 *   ^
2297 *   |- log->last_checkpoint
2298 *   |- log->last_cp_seq
2299 *
2300 * Now we scan through the log until we see invalid entry
2301 *
2302 *   ---------------------------------------------
2303 *   |           valid log        | invalid log  |
2304 *   ---------------------------------------------
2305 *   ^                            ^
2306 *   |- log->last_checkpoint      |- ctx->pos
2307 *   |- log->last_cp_seq          |- ctx->seq
2308 *
2309 * From this point, we need to increase seq number by 10 to avoid
2310 * confusing next recovery.
2311 *
2312 *   ---------------------------------------------
2313 *   |           valid log        | invalid log  |
2314 *   ---------------------------------------------
2315 *   ^                              ^
2316 *   |- log->last_checkpoint        |- ctx->pos+1
2317 *   |- log->last_cp_seq            |- ctx->seq+10001
2318 *
2319 * However, it is not safe to start the state machine yet, because data only
2320 * parities are not yet secured in RAID. To save these data only parities, we
2321 * rewrite them from seq+11.
2322 *
2323 *   -----------------------------------------------------------------
2324 *   |           valid log        | data only stripes | invalid log  |
2325 *   -----------------------------------------------------------------
2326 *   ^                                                ^
2327 *   |- log->last_checkpoint                          |- ctx->pos+n
2328 *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2329 *
2330 * If failure happens again during this process, the recovery can safe start
2331 * again from log->last_checkpoint.
2332 *
2333 * Once data only stripes are rewritten to journal, we move log_tail
2334 *
2335 *   -----------------------------------------------------------------
2336 *   |     old log        |    data only stripes    | invalid log  |
2337 *   -----------------------------------------------------------------
2338 *                        ^                         ^
2339 *                        |- log->last_checkpoint   |- ctx->pos+n
2340 *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2341 *
2342 * Then we can safely start the state machine. If failure happens from this
2343 * point on, the recovery will start from new log->last_checkpoint.
2344 */
2345static int
2346r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2347				       struct r5l_recovery_ctx *ctx)
2348{
2349	struct stripe_head *sh;
2350	struct mddev *mddev = log->rdev->mddev;
2351	struct page *page;
2352	sector_t next_checkpoint = MaxSector;
2353
2354	page = alloc_page(GFP_KERNEL);
2355	if (!page) {
2356		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2357		       mdname(mddev));
2358		return -ENOMEM;
2359	}
2360
2361	WARN_ON(list_empty(&ctx->cached_list));
2362
2363	list_for_each_entry(sh, &ctx->cached_list, lru) {
2364		struct r5l_meta_block *mb;
2365		int i;
2366		int offset;
2367		sector_t write_pos;
2368
2369		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2370		r5l_recovery_create_empty_meta_block(log, page,
2371						     ctx->pos, ctx->seq);
2372		mb = page_address(page);
2373		offset = le32_to_cpu(mb->meta_size);
2374		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2375
2376		for (i = sh->disks; i--; ) {
2377			struct r5dev *dev = &sh->dev[i];
2378			struct r5l_payload_data_parity *payload;
2379			void *addr;
2380
2381			if (test_bit(R5_InJournal, &dev->flags)) {
2382				payload = (void *)mb + offset;
2383				payload->header.type = cpu_to_le16(
2384					R5LOG_PAYLOAD_DATA);
2385				payload->size = cpu_to_le32(BLOCK_SECTORS);
2386				payload->location = cpu_to_le64(
2387					raid5_compute_blocknr(sh, i, 0));
2388				addr = kmap_atomic(dev->page);
2389				payload->checksum[0] = cpu_to_le32(
2390					crc32c_le(log->uuid_checksum, addr,
2391						  PAGE_SIZE));
2392				kunmap_atomic(addr);
2393				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2394					     dev->page, REQ_OP_WRITE, false);
2395				write_pos = r5l_ring_add(log, write_pos,
2396							 BLOCK_SECTORS);
2397				offset += sizeof(__le32) +
2398					sizeof(struct r5l_payload_data_parity);
2399
2400			}
2401		}
2402		mb->meta_size = cpu_to_le32(offset);
2403		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2404						     mb, PAGE_SIZE));
2405		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2406			     REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2407		sh->log_start = ctx->pos;
2408		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2409		atomic_inc(&log->stripe_in_journal_count);
2410		ctx->pos = write_pos;
2411		ctx->seq += 1;
2412		next_checkpoint = sh->log_start;
2413	}
2414	log->next_checkpoint = next_checkpoint;
2415	__free_page(page);
2416	return 0;
2417}
2418
2419static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2420						 struct r5l_recovery_ctx *ctx)
2421{
2422	struct mddev *mddev = log->rdev->mddev;
2423	struct r5conf *conf = mddev->private;
2424	struct stripe_head *sh, *next;
2425	bool cleared_pending = false;
2426
2427	if (ctx->data_only_stripes == 0)
2428		return;
2429
2430	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2431		cleared_pending = true;
2432		clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2433	}
2434	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2435
2436	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2437		r5c_make_stripe_write_out(sh);
2438		set_bit(STRIPE_HANDLE, &sh->state);
2439		list_del_init(&sh->lru);
2440		raid5_release_stripe(sh);
2441	}
2442
2443	/* reuse conf->wait_for_quiescent in recovery */
2444	wait_event(conf->wait_for_quiescent,
2445		   atomic_read(&conf->active_stripes) == 0);
2446
2447	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2448	if (cleared_pending)
2449		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2450}
2451
2452static int r5l_recovery_log(struct r5l_log *log)
2453{
2454	struct mddev *mddev = log->rdev->mddev;
2455	struct r5l_recovery_ctx *ctx;
2456	int ret;
2457	sector_t pos;
2458
2459	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2460	if (!ctx)
2461		return -ENOMEM;
2462
2463	ctx->pos = log->last_checkpoint;
2464	ctx->seq = log->last_cp_seq;
2465	INIT_LIST_HEAD(&ctx->cached_list);
2466	ctx->meta_page = alloc_page(GFP_KERNEL);
2467
2468	if (!ctx->meta_page) {
2469		ret =  -ENOMEM;
2470		goto meta_page;
2471	}
2472
2473	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2474		ret = -ENOMEM;
2475		goto ra_pool;
2476	}
2477
2478	ret = r5c_recovery_flush_log(log, ctx);
2479
2480	if (ret)
2481		goto error;
2482
2483	pos = ctx->pos;
2484	ctx->seq += 10000;
2485
2486	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2487		pr_info("md/raid:%s: starting from clean shutdown\n",
2488			 mdname(mddev));
2489	else
2490		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2491			 mdname(mddev), ctx->data_only_stripes,
2492			 ctx->data_parity_stripes);
2493
2494	if (ctx->data_only_stripes == 0) {
2495		log->next_checkpoint = ctx->pos;
2496		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2497		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2498	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2499		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2500		       mdname(mddev));
2501		ret =  -EIO;
2502		goto error;
2503	}
2504
2505	log->log_start = ctx->pos;
2506	log->seq = ctx->seq;
2507	log->last_checkpoint = pos;
2508	r5l_write_super(log, pos);
2509
2510	r5c_recovery_flush_data_only_stripes(log, ctx);
2511	ret = 0;
2512error:
2513	r5l_recovery_free_ra_pool(log, ctx);
2514ra_pool:
2515	__free_page(ctx->meta_page);
2516meta_page:
2517	kfree(ctx);
2518	return ret;
2519}
2520
2521static void r5l_write_super(struct r5l_log *log, sector_t cp)
2522{
2523	struct mddev *mddev = log->rdev->mddev;
2524
2525	log->rdev->journal_tail = cp;
2526	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2527}
2528
2529static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2530{
2531	struct r5conf *conf;
2532	int ret;
2533
2534	ret = mddev_lock(mddev);
2535	if (ret)
2536		return ret;
2537
2538	conf = mddev->private;
2539	if (!conf || !conf->log)
2540		goto out_unlock;
 
 
2541
2542	switch (conf->log->r5c_journal_mode) {
2543	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2544		ret = snprintf(
2545			page, PAGE_SIZE, "[%s] %s\n",
2546			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2547			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2548		break;
2549	case R5C_JOURNAL_MODE_WRITE_BACK:
2550		ret = snprintf(
2551			page, PAGE_SIZE, "%s [%s]\n",
2552			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2553			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2554		break;
2555	default:
2556		ret = 0;
2557	}
2558
2559out_unlock:
2560	mddev_unlock(mddev);
2561	return ret;
2562}
2563
2564/*
2565 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2566 *
2567 * @mode as defined in 'enum r5c_journal_mode'.
2568 *
2569 */
2570int r5c_journal_mode_set(struct mddev *mddev, int mode)
2571{
2572	struct r5conf *conf;
2573
2574	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2575	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2576		return -EINVAL;
2577
2578	conf = mddev->private;
2579	if (!conf || !conf->log)
2580		return -ENODEV;
2581
2582	if (raid5_calc_degraded(conf) > 0 &&
2583	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2584		return -EINVAL;
2585
2586	mddev_suspend(mddev);
2587	conf->log->r5c_journal_mode = mode;
2588	mddev_resume(mddev);
2589
2590	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2591		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2592	return 0;
2593}
2594EXPORT_SYMBOL(r5c_journal_mode_set);
2595
2596static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2597				      const char *page, size_t length)
2598{
2599	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2600	size_t len = length;
2601	int ret;
2602
2603	if (len < 2)
2604		return -EINVAL;
2605
2606	if (page[len - 1] == '\n')
2607		len--;
2608
2609	while (mode--)
2610		if (strlen(r5c_journal_mode_str[mode]) == len &&
2611		    !strncmp(page, r5c_journal_mode_str[mode], len))
2612			break;
2613	ret = mddev_lock(mddev);
2614	if (ret)
2615		return ret;
2616	ret = r5c_journal_mode_set(mddev, mode);
2617	mddev_unlock(mddev);
2618	return ret ?: length;
2619}
2620
2621struct md_sysfs_entry
2622r5c_journal_mode = __ATTR(journal_mode, 0644,
2623			  r5c_journal_mode_show, r5c_journal_mode_store);
2624
2625/*
2626 * Try handle write operation in caching phase. This function should only
2627 * be called in write-back mode.
2628 *
2629 * If all outstanding writes can be handled in caching phase, returns 0
2630 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2631 * and returns -EAGAIN
2632 */
2633int r5c_try_caching_write(struct r5conf *conf,
2634			  struct stripe_head *sh,
2635			  struct stripe_head_state *s,
2636			  int disks)
2637{
2638	struct r5l_log *log = conf->log;
2639	int i;
2640	struct r5dev *dev;
2641	int to_cache = 0;
2642	void __rcu **pslot;
2643	sector_t tree_index;
2644	int ret;
2645	uintptr_t refcount;
2646
2647	BUG_ON(!r5c_is_writeback(log));
2648
2649	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2650		/*
2651		 * There are two different scenarios here:
2652		 *  1. The stripe has some data cached, and it is sent to
2653		 *     write-out phase for reclaim
2654		 *  2. The stripe is clean, and this is the first write
2655		 *
2656		 * For 1, return -EAGAIN, so we continue with
2657		 * handle_stripe_dirtying().
2658		 *
2659		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2660		 * write.
2661		 */
2662
2663		/* case 1: anything injournal or anything in written */
2664		if (s->injournal > 0 || s->written > 0)
2665			return -EAGAIN;
2666		/* case 2 */
2667		set_bit(STRIPE_R5C_CACHING, &sh->state);
2668	}
2669
2670	/*
2671	 * When run in degraded mode, array is set to write-through mode.
2672	 * This check helps drain pending write safely in the transition to
2673	 * write-through mode.
2674	 *
2675	 * When a stripe is syncing, the write is also handled in write
2676	 * through mode.
2677	 */
2678	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2679		r5c_make_stripe_write_out(sh);
2680		return -EAGAIN;
2681	}
2682
2683	for (i = disks; i--; ) {
2684		dev = &sh->dev[i];
2685		/* if non-overwrite, use writing-out phase */
2686		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2687		    !test_bit(R5_InJournal, &dev->flags)) {
2688			r5c_make_stripe_write_out(sh);
2689			return -EAGAIN;
2690		}
2691	}
2692
2693	/* if the stripe is not counted in big_stripe_tree, add it now */
2694	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2695	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2696		tree_index = r5c_tree_index(conf, sh->sector);
2697		spin_lock(&log->tree_lock);
2698		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2699					       tree_index);
2700		if (pslot) {
2701			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2702				pslot, &log->tree_lock) >>
2703				R5C_RADIX_COUNT_SHIFT;
2704			radix_tree_replace_slot(
2705				&log->big_stripe_tree, pslot,
2706				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2707		} else {
2708			/*
2709			 * this radix_tree_insert can fail safely, so no
2710			 * need to call radix_tree_preload()
2711			 */
2712			ret = radix_tree_insert(
2713				&log->big_stripe_tree, tree_index,
2714				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2715			if (ret) {
2716				spin_unlock(&log->tree_lock);
2717				r5c_make_stripe_write_out(sh);
2718				return -EAGAIN;
2719			}
2720		}
2721		spin_unlock(&log->tree_lock);
2722
2723		/*
2724		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2725		 * counted in the radix tree
2726		 */
2727		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2728		atomic_inc(&conf->r5c_cached_partial_stripes);
2729	}
2730
2731	for (i = disks; i--; ) {
2732		dev = &sh->dev[i];
2733		if (dev->towrite) {
2734			set_bit(R5_Wantwrite, &dev->flags);
2735			set_bit(R5_Wantdrain, &dev->flags);
2736			set_bit(R5_LOCKED, &dev->flags);
2737			to_cache++;
2738		}
2739	}
2740
2741	if (to_cache) {
2742		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2743		/*
2744		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2745		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2746		 * r5c_handle_data_cached()
2747		 */
2748		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2749	}
2750
2751	return 0;
2752}
2753
2754/*
2755 * free extra pages (orig_page) we allocated for prexor
2756 */
2757void r5c_release_extra_page(struct stripe_head *sh)
2758{
2759	struct r5conf *conf = sh->raid_conf;
2760	int i;
2761	bool using_disk_info_extra_page;
2762
2763	using_disk_info_extra_page =
2764		sh->dev[0].orig_page == conf->disks[0].extra_page;
2765
2766	for (i = sh->disks; i--; )
2767		if (sh->dev[i].page != sh->dev[i].orig_page) {
2768			struct page *p = sh->dev[i].orig_page;
2769
2770			sh->dev[i].orig_page = sh->dev[i].page;
2771			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2772
2773			if (!using_disk_info_extra_page)
2774				put_page(p);
2775		}
2776
2777	if (using_disk_info_extra_page) {
2778		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2779		md_wakeup_thread(conf->mddev->thread);
2780	}
2781}
2782
2783void r5c_use_extra_page(struct stripe_head *sh)
2784{
2785	struct r5conf *conf = sh->raid_conf;
2786	int i;
2787	struct r5dev *dev;
2788
2789	for (i = sh->disks; i--; ) {
2790		dev = &sh->dev[i];
2791		if (dev->orig_page != dev->page)
2792			put_page(dev->orig_page);
2793		dev->orig_page = conf->disks[i].extra_page;
2794	}
2795}
2796
2797/*
2798 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2799 * stripe is committed to RAID disks.
2800 */
2801void r5c_finish_stripe_write_out(struct r5conf *conf,
2802				 struct stripe_head *sh,
2803				 struct stripe_head_state *s)
2804{
2805	struct r5l_log *log = conf->log;
2806	int i;
2807	int do_wakeup = 0;
2808	sector_t tree_index;
2809	void __rcu **pslot;
2810	uintptr_t refcount;
2811
2812	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2813		return;
2814
2815	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2816	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2817
2818	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2819		return;
2820
2821	for (i = sh->disks; i--; ) {
2822		clear_bit(R5_InJournal, &sh->dev[i].flags);
2823		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2824			do_wakeup = 1;
2825	}
2826
2827	/*
2828	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2829	 * We updated R5_InJournal, so we also update s->injournal.
2830	 */
2831	s->injournal = 0;
2832
2833	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2834		if (atomic_dec_and_test(&conf->pending_full_writes))
2835			md_wakeup_thread(conf->mddev->thread);
2836
2837	if (do_wakeup)
2838		wake_up(&conf->wait_for_overlap);
2839
2840	spin_lock_irq(&log->stripe_in_journal_lock);
2841	list_del_init(&sh->r5c);
2842	spin_unlock_irq(&log->stripe_in_journal_lock);
2843	sh->log_start = MaxSector;
2844
2845	atomic_dec(&log->stripe_in_journal_count);
2846	r5c_update_log_state(log);
2847
2848	/* stop counting this stripe in big_stripe_tree */
2849	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2850	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2851		tree_index = r5c_tree_index(conf, sh->sector);
2852		spin_lock(&log->tree_lock);
2853		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2854					       tree_index);
2855		BUG_ON(pslot == NULL);
2856		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2857			pslot, &log->tree_lock) >>
2858			R5C_RADIX_COUNT_SHIFT;
2859		if (refcount == 1)
2860			radix_tree_delete(&log->big_stripe_tree, tree_index);
2861		else
2862			radix_tree_replace_slot(
2863				&log->big_stripe_tree, pslot,
2864				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2865		spin_unlock(&log->tree_lock);
2866	}
2867
2868	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2869		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2870		atomic_dec(&conf->r5c_flushing_partial_stripes);
2871		atomic_dec(&conf->r5c_cached_partial_stripes);
2872	}
2873
2874	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2875		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2876		atomic_dec(&conf->r5c_flushing_full_stripes);
2877		atomic_dec(&conf->r5c_cached_full_stripes);
2878	}
2879
2880	r5l_append_flush_payload(log, sh->sector);
2881	/* stripe is flused to raid disks, we can do resync now */
2882	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2883		set_bit(STRIPE_HANDLE, &sh->state);
2884}
2885
2886int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2887{
2888	struct r5conf *conf = sh->raid_conf;
2889	int pages = 0;
2890	int reserve;
2891	int i;
2892	int ret = 0;
2893
2894	BUG_ON(!log);
2895
2896	for (i = 0; i < sh->disks; i++) {
2897		void *addr;
2898
2899		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2900			continue;
2901		addr = kmap_atomic(sh->dev[i].page);
2902		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2903						    addr, PAGE_SIZE);
2904		kunmap_atomic(addr);
2905		pages++;
2906	}
2907	WARN_ON(pages == 0);
2908
2909	/*
2910	 * The stripe must enter state machine again to call endio, so
2911	 * don't delay.
2912	 */
2913	clear_bit(STRIPE_DELAYED, &sh->state);
2914	atomic_inc(&sh->count);
2915
2916	mutex_lock(&log->io_mutex);
2917	/* meta + data */
2918	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2919
2920	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2921	    sh->log_start == MaxSector)
2922		r5l_add_no_space_stripe(log, sh);
2923	else if (!r5l_has_free_space(log, reserve)) {
2924		if (sh->log_start == log->last_checkpoint)
2925			BUG();
2926		else
2927			r5l_add_no_space_stripe(log, sh);
2928	} else {
2929		ret = r5l_log_stripe(log, sh, pages, 0);
2930		if (ret) {
2931			spin_lock_irq(&log->io_list_lock);
2932			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2933			spin_unlock_irq(&log->io_list_lock);
2934		}
2935	}
2936
2937	mutex_unlock(&log->io_mutex);
2938	return 0;
2939}
2940
2941/* check whether this big stripe is in write back cache. */
2942bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2943{
2944	struct r5l_log *log = conf->log;
2945	sector_t tree_index;
2946	void *slot;
2947
2948	if (!log)
2949		return false;
2950
2951	WARN_ON_ONCE(!rcu_read_lock_held());
2952	tree_index = r5c_tree_index(conf, sect);
2953	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2954	return slot != NULL;
2955}
2956
2957static int r5l_load_log(struct r5l_log *log)
2958{
2959	struct md_rdev *rdev = log->rdev;
2960	struct page *page;
2961	struct r5l_meta_block *mb;
2962	sector_t cp = log->rdev->journal_tail;
2963	u32 stored_crc, expected_crc;
2964	bool create_super = false;
2965	int ret = 0;
2966
2967	/* Make sure it's valid */
2968	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2969		cp = 0;
2970	page = alloc_page(GFP_KERNEL);
2971	if (!page)
2972		return -ENOMEM;
2973
2974	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2975		ret = -EIO;
2976		goto ioerr;
2977	}
2978	mb = page_address(page);
2979
2980	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2981	    mb->version != R5LOG_VERSION) {
2982		create_super = true;
2983		goto create;
2984	}
2985	stored_crc = le32_to_cpu(mb->checksum);
2986	mb->checksum = 0;
2987	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2988	if (stored_crc != expected_crc) {
2989		create_super = true;
2990		goto create;
2991	}
2992	if (le64_to_cpu(mb->position) != cp) {
2993		create_super = true;
2994		goto create;
2995	}
2996create:
2997	if (create_super) {
2998		log->last_cp_seq = get_random_u32();
2999		cp = 0;
3000		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3001		/*
3002		 * Make sure super points to correct address. Log might have
3003		 * data very soon. If super hasn't correct log tail address,
3004		 * recovery can't find the log
3005		 */
3006		r5l_write_super(log, cp);
3007	} else
3008		log->last_cp_seq = le64_to_cpu(mb->seq);
3009
3010	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3011	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3012	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3013		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3014	log->last_checkpoint = cp;
3015
3016	__free_page(page);
3017
3018	if (create_super) {
3019		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3020		log->seq = log->last_cp_seq + 1;
3021		log->next_checkpoint = cp;
3022	} else
3023		ret = r5l_recovery_log(log);
3024
3025	r5c_update_log_state(log);
3026	return ret;
3027ioerr:
3028	__free_page(page);
3029	return ret;
3030}
3031
3032int r5l_start(struct r5l_log *log)
3033{
3034	int ret;
3035
3036	if (!log)
3037		return 0;
3038
3039	ret = r5l_load_log(log);
3040	if (ret) {
3041		struct mddev *mddev = log->rdev->mddev;
3042		struct r5conf *conf = mddev->private;
3043
3044		r5l_exit_log(conf);
3045	}
3046	return ret;
3047}
3048
3049void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3050{
3051	struct r5conf *conf = mddev->private;
3052	struct r5l_log *log = conf->log;
3053
3054	if (!log)
3055		return;
3056
3057	if ((raid5_calc_degraded(conf) > 0 ||
3058	     test_bit(Journal, &rdev->flags)) &&
3059	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3060		schedule_work(&log->disable_writeback_work);
3061}
3062
3063int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3064{
 
3065	struct r5l_log *log;
 
3066	int ret;
3067
3068	pr_debug("md/raid:%s: using device %pg as journal\n",
3069		 mdname(conf->mddev), rdev->bdev);
3070
3071	if (PAGE_SIZE != 4096)
3072		return -EINVAL;
3073
3074	/*
3075	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3076	 * raid_disks r5l_payload_data_parity.
3077	 *
3078	 * Write journal and cache does not work for very big array
3079	 * (raid_disks > 203)
3080	 */
3081	if (sizeof(struct r5l_meta_block) +
3082	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3083	     conf->raid_disks) > PAGE_SIZE) {
3084		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3085		       mdname(conf->mddev), conf->raid_disks);
3086		return -EINVAL;
3087	}
3088
3089	log = kzalloc(sizeof(*log), GFP_KERNEL);
3090	if (!log)
3091		return -ENOMEM;
3092	log->rdev = rdev;
3093	log->need_cache_flush = bdev_write_cache(rdev->bdev);
 
 
3094	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3095				       sizeof(rdev->mddev->uuid));
3096
3097	mutex_init(&log->io_mutex);
3098
3099	spin_lock_init(&log->io_list_lock);
3100	INIT_LIST_HEAD(&log->running_ios);
3101	INIT_LIST_HEAD(&log->io_end_ios);
3102	INIT_LIST_HEAD(&log->flushing_ios);
3103	INIT_LIST_HEAD(&log->finished_ios);
 
3104
3105	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3106	if (!log->io_kc)
3107		goto io_kc;
3108
3109	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3110	if (ret)
3111		goto io_pool;
3112
3113	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3114	if (ret)
3115		goto io_bs;
3116
3117	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3118	if (ret)
3119		goto out_mempool;
3120
3121	spin_lock_init(&log->tree_lock);
3122	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3123
3124	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3125						 log->rdev->mddev, "reclaim");
3126	if (!log->reclaim_thread)
3127		goto reclaim_thread;
3128	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3129
3130	init_waitqueue_head(&log->iounit_wait);
3131
3132	INIT_LIST_HEAD(&log->no_mem_stripes);
3133
3134	INIT_LIST_HEAD(&log->no_space_stripes);
3135	spin_lock_init(&log->no_space_stripes_lock);
3136
3137	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3138	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3139
3140	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3141	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3142	spin_lock_init(&log->stripe_in_journal_lock);
3143	atomic_set(&log->stripe_in_journal_count, 0);
3144
3145	conf->log = log;
3146
3147	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3148	return 0;
3149
3150reclaim_thread:
3151	mempool_exit(&log->meta_pool);
3152out_mempool:
3153	bioset_exit(&log->bs);
3154io_bs:
3155	mempool_exit(&log->io_pool);
3156io_pool:
3157	kmem_cache_destroy(log->io_kc);
3158io_kc:
3159	kfree(log);
3160	return -EINVAL;
3161}
3162
3163void r5l_exit_log(struct r5conf *conf)
3164{
3165	struct r5l_log *log = conf->log;
3166
 
 
 
3167	/* Ensure disable_writeback_work wakes up and exits */
3168	wake_up(&conf->mddev->sb_wait);
3169	flush_work(&log->disable_writeback_work);
3170	md_unregister_thread(&log->reclaim_thread);
3171
3172	conf->log = NULL;
3173
3174	mempool_exit(&log->meta_pool);
3175	bioset_exit(&log->bs);
3176	mempool_exit(&log->io_pool);
3177	kmem_cache_destroy(log->io_kc);
3178	kfree(log);
3179}