Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 */
   6
   7#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
   8#define DEBUG
   9#endif
  10
  11#include <linux/clk.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/io.h>
  15#include <linux/iommu.h>
  16#include <linux/interrupt.h>
  17#include <linux/kmemleak.h>
  18#include <linux/list.h>
  19#include <linux/of.h>
  20#include <linux/of_iommu.h>
  21#include <linux/of_platform.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/slab.h>
  25#include <linux/dma-iommu.h>
  26
  27typedef u32 sysmmu_iova_t;
  28typedef u32 sysmmu_pte_t;
  29
  30/* We do not consider super section mapping (16MB) */
  31#define SECT_ORDER 20
  32#define LPAGE_ORDER 16
  33#define SPAGE_ORDER 12
  34
  35#define SECT_SIZE (1 << SECT_ORDER)
  36#define LPAGE_SIZE (1 << LPAGE_ORDER)
  37#define SPAGE_SIZE (1 << SPAGE_ORDER)
  38
  39#define SECT_MASK (~(SECT_SIZE - 1))
  40#define LPAGE_MASK (~(LPAGE_SIZE - 1))
  41#define SPAGE_MASK (~(SPAGE_SIZE - 1))
  42
  43#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
  44			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
  45#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
  46#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
  47#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
  48			  ((*(sent) & 3) == 1))
  49#define lv1ent_section(sent) ((*(sent) & 3) == 2)
  50
  51#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
  52#define lv2ent_small(pent) ((*(pent) & 2) == 2)
  53#define lv2ent_large(pent) ((*(pent) & 3) == 1)
  54
  55/*
  56 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
  57 * v5.0 introduced support for 36bit physical address space by shifting
  58 * all page entry values by 4 bits.
  59 * All SYSMMU controllers in the system support the address spaces of the same
  60 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
  61 * value (0 or 4).
  62 */
  63static short PG_ENT_SHIFT = -1;
  64#define SYSMMU_PG_ENT_SHIFT 0
  65#define SYSMMU_V5_PG_ENT_SHIFT 4
  66
  67static const sysmmu_pte_t *LV1_PROT;
  68static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
  69	((0 << 15) | (0 << 10)), /* no access */
  70	((1 << 15) | (1 << 10)), /* IOMMU_READ only */
  71	((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
  72	((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
  73};
  74static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
  75	(0 << 4), /* no access */
  76	(1 << 4), /* IOMMU_READ only */
  77	(2 << 4), /* IOMMU_WRITE only */
  78	(3 << 4), /* IOMMU_READ | IOMMU_WRITE */
  79};
  80
  81static const sysmmu_pte_t *LV2_PROT;
  82static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
  83	((0 << 9) | (0 << 4)), /* no access */
  84	((1 << 9) | (1 << 4)), /* IOMMU_READ only */
  85	((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
  86	((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
  87};
  88static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
  89	(0 << 2), /* no access */
  90	(1 << 2), /* IOMMU_READ only */
  91	(2 << 2), /* IOMMU_WRITE only */
  92	(3 << 2), /* IOMMU_READ | IOMMU_WRITE */
  93};
  94
  95#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
  96
  97#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
  98#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
  99#define section_offs(iova) (iova & (SECT_SIZE - 1))
 100#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
 101#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
 102#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
 103#define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
 104
 105#define NUM_LV1ENTRIES 4096
 106#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
 107
 108static u32 lv1ent_offset(sysmmu_iova_t iova)
 109{
 110	return iova >> SECT_ORDER;
 111}
 112
 113static u32 lv2ent_offset(sysmmu_iova_t iova)
 114{
 115	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
 116}
 117
 118#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
 119#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
 120
 121#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
 122#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
 123
 124#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
 125#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
 126#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
 127#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
 128
 129#define CTRL_ENABLE	0x5
 130#define CTRL_BLOCK	0x7
 131#define CTRL_DISABLE	0x0
 132
 133#define CFG_LRU		0x1
 134#define CFG_EAP		(1 << 2)
 135#define CFG_QOS(n)	((n & 0xF) << 7)
 136#define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
 137#define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
 138#define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
 139
 
 
 
 
 
 140/* common registers */
 141#define REG_MMU_CTRL		0x000
 142#define REG_MMU_CFG		0x004
 143#define REG_MMU_STATUS		0x008
 144#define REG_MMU_VERSION		0x034
 145
 146#define MMU_MAJ_VER(val)	((val) >> 7)
 147#define MMU_MIN_VER(val)	((val) & 0x7F)
 148#define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
 149
 150#define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
 151
 152/* v1.x - v3.x registers */
 153#define REG_MMU_FLUSH		0x00C
 154#define REG_MMU_FLUSH_ENTRY	0x010
 155#define REG_PT_BASE_ADDR	0x014
 156#define REG_INT_STATUS		0x018
 157#define REG_INT_CLEAR		0x01C
 158
 159#define REG_PAGE_FAULT_ADDR	0x024
 160#define REG_AW_FAULT_ADDR	0x028
 161#define REG_AR_FAULT_ADDR	0x02C
 162#define REG_DEFAULT_SLAVE_ADDR	0x030
 163
 164/* v5.x registers */
 165#define REG_V5_PT_BASE_PFN	0x00C
 166#define REG_V5_MMU_FLUSH_ALL	0x010
 167#define REG_V5_MMU_FLUSH_ENTRY	0x014
 168#define REG_V5_MMU_FLUSH_RANGE	0x018
 169#define REG_V5_MMU_FLUSH_START	0x020
 170#define REG_V5_MMU_FLUSH_END	0x024
 171#define REG_V5_INT_STATUS	0x060
 172#define REG_V5_INT_CLEAR	0x064
 173#define REG_V5_FAULT_AR_VA	0x070
 174#define REG_V5_FAULT_AW_VA	0x080
 175
 
 
 
 
 
 176#define has_sysmmu(dev)		(dev_iommu_priv_get(dev) != NULL)
 177
 178static struct device *dma_dev;
 179static struct kmem_cache *lv2table_kmem_cache;
 180static sysmmu_pte_t *zero_lv2_table;
 181#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
 182
 183static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
 184{
 185	return pgtable + lv1ent_offset(iova);
 186}
 187
 188static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
 189{
 190	return (sysmmu_pte_t *)phys_to_virt(
 191				lv2table_base(sent)) + lv2ent_offset(iova);
 192}
 193
 194/*
 195 * IOMMU fault information register
 196 */
 197struct sysmmu_fault_info {
 198	unsigned int bit;	/* bit number in STATUS register */
 199	unsigned short addr_reg; /* register to read VA fault address */
 200	const char *name;	/* human readable fault name */
 201	unsigned int type;	/* fault type for report_iommu_fault */
 202};
 203
 204static const struct sysmmu_fault_info sysmmu_faults[] = {
 205	{ 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
 206	{ 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
 207	{ 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
 208	{ 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
 209	{ 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
 210	{ 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
 211	{ 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
 212	{ 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
 213};
 214
 215static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
 216	{ 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
 217	{ 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
 218	{ 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
 219	{ 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
 220	{ 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
 221	{ 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
 222	{ 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
 223	{ 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
 224	{ 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
 225	{ 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
 226};
 227
 228/*
 229 * This structure is attached to dev->iommu->priv of the master device
 230 * on device add, contains a list of SYSMMU controllers defined by device tree,
 231 * which are bound to given master device. It is usually referenced by 'owner'
 232 * pointer.
 233*/
 234struct exynos_iommu_owner {
 235	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
 236	struct iommu_domain *domain;	/* domain this device is attached */
 237	struct mutex rpm_lock;		/* for runtime pm of all sysmmus */
 238};
 239
 240/*
 241 * This structure exynos specific generalization of struct iommu_domain.
 242 * It contains list of SYSMMU controllers from all master devices, which has
 243 * been attached to this domain and page tables of IO address space defined by
 244 * it. It is usually referenced by 'domain' pointer.
 245 */
 246struct exynos_iommu_domain {
 247	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
 248	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
 249	short *lv2entcnt;	/* free lv2 entry counter for each section */
 250	spinlock_t lock;	/* lock for modyfying list of clients */
 251	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
 252	struct iommu_domain domain; /* generic domain data structure */
 253};
 254
 255/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 256 * This structure hold all data of a single SYSMMU controller, this includes
 257 * hw resources like registers and clocks, pointers and list nodes to connect
 258 * it to all other structures, internal state and parameters read from device
 259 * tree. It is usually referenced by 'data' pointer.
 260 */
 261struct sysmmu_drvdata {
 262	struct device *sysmmu;		/* SYSMMU controller device */
 263	struct device *master;		/* master device (owner) */
 264	struct device_link *link;	/* runtime PM link to master */
 265	void __iomem *sfrbase;		/* our registers */
 266	struct clk *clk;		/* SYSMMU's clock */
 267	struct clk *aclk;		/* SYSMMU's aclk clock */
 268	struct clk *pclk;		/* SYSMMU's pclk clock */
 269	struct clk *clk_master;		/* master's device clock */
 270	spinlock_t lock;		/* lock for modyfying state */
 271	bool active;			/* current status */
 272	struct exynos_iommu_domain *domain; /* domain we belong to */
 273	struct list_head domain_node;	/* node for domain clients list */
 274	struct list_head owner_node;	/* node for owner controllers list */
 275	phys_addr_t pgtable;		/* assigned page table structure */
 276	unsigned int version;		/* our version */
 277
 278	struct iommu_device iommu;	/* IOMMU core handle */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279};
 280
 281static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
 282{
 283	return container_of(dom, struct exynos_iommu_domain, domain);
 284}
 285
 286static void sysmmu_unblock(struct sysmmu_drvdata *data)
 287{
 288	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 289}
 290
 291static bool sysmmu_block(struct sysmmu_drvdata *data)
 292{
 293	int i = 120;
 294
 295	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 296	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
 297		--i;
 298
 299	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
 300		sysmmu_unblock(data);
 301		return false;
 302	}
 303
 304	return true;
 305}
 306
 307static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
 308{
 309	if (MMU_MAJ_VER(data->version) < 5)
 310		writel(0x1, data->sfrbase + REG_MMU_FLUSH);
 311	else
 312		writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
 313}
 314
 315static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 316				sysmmu_iova_t iova, unsigned int num_inv)
 317{
 318	unsigned int i;
 319
 320	if (MMU_MAJ_VER(data->version) < 5) {
 321		for (i = 0; i < num_inv; i++) {
 322			writel((iova & SPAGE_MASK) | 1,
 323				     data->sfrbase + REG_MMU_FLUSH_ENTRY);
 324			iova += SPAGE_SIZE;
 325		}
 326	} else {
 327		if (num_inv == 1) {
 328			writel((iova & SPAGE_MASK) | 1,
 329				     data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
 330		} else {
 331			writel((iova & SPAGE_MASK),
 332				     data->sfrbase + REG_V5_MMU_FLUSH_START);
 333			writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
 334				     data->sfrbase + REG_V5_MMU_FLUSH_END);
 335			writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
 336		}
 337	}
 338}
 339
 340static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
 341{
 
 
 342	if (MMU_MAJ_VER(data->version) < 5)
 343		writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
 344	else
 345		writel(pgd >> PAGE_SHIFT,
 346			     data->sfrbase + REG_V5_PT_BASE_PFN);
 347
 
 348	__sysmmu_tlb_invalidate(data);
 349}
 350
 351static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
 352{
 353	BUG_ON(clk_prepare_enable(data->clk_master));
 354	BUG_ON(clk_prepare_enable(data->clk));
 355	BUG_ON(clk_prepare_enable(data->pclk));
 356	BUG_ON(clk_prepare_enable(data->aclk));
 357}
 358
 359static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
 360{
 361	clk_disable_unprepare(data->aclk);
 362	clk_disable_unprepare(data->pclk);
 363	clk_disable_unprepare(data->clk);
 364	clk_disable_unprepare(data->clk_master);
 365}
 366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367static void __sysmmu_get_version(struct sysmmu_drvdata *data)
 368{
 369	u32 ver;
 370
 371	__sysmmu_enable_clocks(data);
 372
 373	ver = readl(data->sfrbase + REG_MMU_VERSION);
 374
 375	/* controllers on some SoCs don't report proper version */
 376	if (ver == 0x80000001u)
 377		data->version = MAKE_MMU_VER(1, 0);
 378	else
 379		data->version = MMU_RAW_VER(ver);
 380
 381	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
 382		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
 383
 
 
 
 
 
 
 
 
 
 
 
 
 
 384	__sysmmu_disable_clocks(data);
 385}
 386
 387static void show_fault_information(struct sysmmu_drvdata *data,
 388				   const struct sysmmu_fault_info *finfo,
 389				   sysmmu_iova_t fault_addr)
 390{
 391	sysmmu_pte_t *ent;
 392
 393	dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
 394		dev_name(data->master), finfo->name, fault_addr);
 395	dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
 396	ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
 397	dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
 398	if (lv1ent_page(ent)) {
 399		ent = page_entry(ent, fault_addr);
 400		dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
 401	}
 402}
 403
 404static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
 405{
 406	/* SYSMMU is in blocked state when interrupt occurred. */
 407	struct sysmmu_drvdata *data = dev_id;
 408	const struct sysmmu_fault_info *finfo;
 409	unsigned int i, n, itype;
 410	sysmmu_iova_t fault_addr = -1;
 411	unsigned short reg_status, reg_clear;
 412	int ret = -ENOSYS;
 413
 414	WARN_ON(!data->active);
 415
 416	if (MMU_MAJ_VER(data->version) < 5) {
 417		reg_status = REG_INT_STATUS;
 418		reg_clear = REG_INT_CLEAR;
 419		finfo = sysmmu_faults;
 420		n = ARRAY_SIZE(sysmmu_faults);
 421	} else {
 422		reg_status = REG_V5_INT_STATUS;
 423		reg_clear = REG_V5_INT_CLEAR;
 424		finfo = sysmmu_v5_faults;
 425		n = ARRAY_SIZE(sysmmu_v5_faults);
 426	}
 427
 428	spin_lock(&data->lock);
 429
 430	clk_enable(data->clk_master);
 431
 432	itype = __ffs(readl(data->sfrbase + reg_status));
 433	for (i = 0; i < n; i++, finfo++)
 434		if (finfo->bit == itype)
 435			break;
 436	/* unknown/unsupported fault */
 437	BUG_ON(i == n);
 438
 439	/* print debug message */
 440	fault_addr = readl(data->sfrbase + finfo->addr_reg);
 441	show_fault_information(data, finfo, fault_addr);
 442
 443	if (data->domain)
 444		ret = report_iommu_fault(&data->domain->domain,
 445					data->master, fault_addr, finfo->type);
 446	/* fault is not recovered by fault handler */
 447	BUG_ON(ret != 0);
 448
 449	writel(1 << itype, data->sfrbase + reg_clear);
 450
 451	sysmmu_unblock(data);
 452
 453	clk_disable(data->clk_master);
 454
 455	spin_unlock(&data->lock);
 456
 457	return IRQ_HANDLED;
 458}
 459
 460static void __sysmmu_disable(struct sysmmu_drvdata *data)
 461{
 462	unsigned long flags;
 463
 464	clk_enable(data->clk_master);
 465
 466	spin_lock_irqsave(&data->lock, flags);
 467	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
 468	writel(0, data->sfrbase + REG_MMU_CFG);
 469	data->active = false;
 470	spin_unlock_irqrestore(&data->lock, flags);
 471
 472	__sysmmu_disable_clocks(data);
 473}
 474
 475static void __sysmmu_init_config(struct sysmmu_drvdata *data)
 476{
 477	unsigned int cfg;
 478
 479	if (data->version <= MAKE_MMU_VER(3, 1))
 480		cfg = CFG_LRU | CFG_QOS(15);
 481	else if (data->version <= MAKE_MMU_VER(3, 2))
 482		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
 483	else
 484		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
 485
 486	cfg |= CFG_EAP; /* enable access protection bits check */
 487
 488	writel(cfg, data->sfrbase + REG_MMU_CFG);
 489}
 490
 
 
 
 
 
 
 
 
 
 
 
 
 491static void __sysmmu_enable(struct sysmmu_drvdata *data)
 492{
 493	unsigned long flags;
 494
 495	__sysmmu_enable_clocks(data);
 496
 497	spin_lock_irqsave(&data->lock, flags);
 498	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 499	__sysmmu_init_config(data);
 500	__sysmmu_set_ptbase(data, data->pgtable);
 
 501	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 502	data->active = true;
 503	spin_unlock_irqrestore(&data->lock, flags);
 504
 505	/*
 506	 * SYSMMU driver keeps master's clock enabled only for the short
 507	 * time, while accessing the registers. For performing address
 508	 * translation during DMA transaction it relies on the client
 509	 * driver to enable it.
 510	 */
 511	clk_disable(data->clk_master);
 512}
 513
 514static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
 515					    sysmmu_iova_t iova)
 516{
 517	unsigned long flags;
 518
 519	spin_lock_irqsave(&data->lock, flags);
 520	if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
 521		clk_enable(data->clk_master);
 522		if (sysmmu_block(data)) {
 523			if (data->version >= MAKE_MMU_VER(5, 0))
 524				__sysmmu_tlb_invalidate(data);
 525			else
 526				__sysmmu_tlb_invalidate_entry(data, iova, 1);
 527			sysmmu_unblock(data);
 528		}
 529		clk_disable(data->clk_master);
 530	}
 531	spin_unlock_irqrestore(&data->lock, flags);
 532}
 533
 534static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 535					sysmmu_iova_t iova, size_t size)
 536{
 537	unsigned long flags;
 538
 539	spin_lock_irqsave(&data->lock, flags);
 540	if (data->active) {
 541		unsigned int num_inv = 1;
 542
 543		clk_enable(data->clk_master);
 544
 545		/*
 546		 * L2TLB invalidation required
 547		 * 4KB page: 1 invalidation
 548		 * 64KB page: 16 invalidations
 549		 * 1MB page: 64 invalidations
 550		 * because it is set-associative TLB
 551		 * with 8-way and 64 sets.
 552		 * 1MB page can be cached in one of all sets.
 553		 * 64KB page can be one of 16 consecutive sets.
 554		 */
 555		if (MMU_MAJ_VER(data->version) == 2)
 556			num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
 557
 558		if (sysmmu_block(data)) {
 559			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
 560			sysmmu_unblock(data);
 561		}
 562		clk_disable(data->clk_master);
 563	}
 564	spin_unlock_irqrestore(&data->lock, flags);
 565}
 566
 567static const struct iommu_ops exynos_iommu_ops;
 568
 569static int exynos_sysmmu_probe(struct platform_device *pdev)
 570{
 571	int irq, ret;
 572	struct device *dev = &pdev->dev;
 573	struct sysmmu_drvdata *data;
 574	struct resource *res;
 575
 576	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 577	if (!data)
 578		return -ENOMEM;
 579
 580	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 581	data->sfrbase = devm_ioremap_resource(dev, res);
 582	if (IS_ERR(data->sfrbase))
 583		return PTR_ERR(data->sfrbase);
 584
 585	irq = platform_get_irq(pdev, 0);
 586	if (irq <= 0)
 587		return irq;
 588
 589	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
 590				dev_name(dev), data);
 591	if (ret) {
 592		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
 593		return ret;
 594	}
 595
 596	data->clk = devm_clk_get(dev, "sysmmu");
 597	if (PTR_ERR(data->clk) == -ENOENT)
 598		data->clk = NULL;
 599	else if (IS_ERR(data->clk))
 600		return PTR_ERR(data->clk);
 601
 602	data->aclk = devm_clk_get(dev, "aclk");
 603	if (PTR_ERR(data->aclk) == -ENOENT)
 604		data->aclk = NULL;
 605	else if (IS_ERR(data->aclk))
 606		return PTR_ERR(data->aclk);
 607
 608	data->pclk = devm_clk_get(dev, "pclk");
 609	if (PTR_ERR(data->pclk) == -ENOENT)
 610		data->pclk = NULL;
 611	else if (IS_ERR(data->pclk))
 612		return PTR_ERR(data->pclk);
 613
 614	if (!data->clk && (!data->aclk || !data->pclk)) {
 615		dev_err(dev, "Failed to get device clock(s)!\n");
 616		return -ENOSYS;
 617	}
 618
 619	data->clk_master = devm_clk_get(dev, "master");
 620	if (PTR_ERR(data->clk_master) == -ENOENT)
 621		data->clk_master = NULL;
 622	else if (IS_ERR(data->clk_master))
 623		return PTR_ERR(data->clk_master);
 624
 625	data->sysmmu = dev;
 626	spin_lock_init(&data->lock);
 627
 
 
 628	ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
 629				     dev_name(data->sysmmu));
 630	if (ret)
 631		return ret;
 632
 633	iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
 634	iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
 635
 636	ret = iommu_device_register(&data->iommu);
 637	if (ret)
 638		return ret;
 639
 640	platform_set_drvdata(pdev, data);
 641
 642	__sysmmu_get_version(data);
 643	if (PG_ENT_SHIFT < 0) {
 644		if (MMU_MAJ_VER(data->version) < 5) {
 645			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
 646			LV1_PROT = SYSMMU_LV1_PROT;
 647			LV2_PROT = SYSMMU_LV2_PROT;
 648		} else {
 649			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
 650			LV1_PROT = SYSMMU_V5_LV1_PROT;
 651			LV2_PROT = SYSMMU_V5_LV2_PROT;
 652		}
 653	}
 654
 
 
 
 
 
 
 
 
 655	/*
 656	 * use the first registered sysmmu device for performing
 657	 * dma mapping operations on iommu page tables (cpu cache flush)
 658	 */
 659	if (!dma_dev)
 660		dma_dev = &pdev->dev;
 661
 662	pm_runtime_enable(dev);
 663
 
 
 
 
 664	return 0;
 
 
 
 
 665}
 666
 667static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
 668{
 669	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 670	struct device *master = data->master;
 671
 672	if (master) {
 673		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
 674
 675		mutex_lock(&owner->rpm_lock);
 676		if (data->domain) {
 677			dev_dbg(data->sysmmu, "saving state\n");
 678			__sysmmu_disable(data);
 679		}
 680		mutex_unlock(&owner->rpm_lock);
 681	}
 682	return 0;
 683}
 684
 685static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
 686{
 687	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 688	struct device *master = data->master;
 689
 690	if (master) {
 691		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
 692
 693		mutex_lock(&owner->rpm_lock);
 694		if (data->domain) {
 695			dev_dbg(data->sysmmu, "restoring state\n");
 696			__sysmmu_enable(data);
 697		}
 698		mutex_unlock(&owner->rpm_lock);
 699	}
 700	return 0;
 701}
 702
 703static const struct dev_pm_ops sysmmu_pm_ops = {
 704	SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
 705	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 706				pm_runtime_force_resume)
 707};
 708
 709static const struct of_device_id sysmmu_of_match[] = {
 710	{ .compatible	= "samsung,exynos-sysmmu", },
 711	{ },
 712};
 713
 714static struct platform_driver exynos_sysmmu_driver __refdata = {
 715	.probe	= exynos_sysmmu_probe,
 716	.driver	= {
 717		.name		= "exynos-sysmmu",
 718		.of_match_table	= sysmmu_of_match,
 719		.pm		= &sysmmu_pm_ops,
 720		.suppress_bind_attrs = true,
 721	}
 722};
 723
 724static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
 725{
 726	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
 727				DMA_TO_DEVICE);
 728	*ent = cpu_to_le32(val);
 729	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
 730				   DMA_TO_DEVICE);
 731}
 732
 733static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
 734{
 735	struct exynos_iommu_domain *domain;
 736	dma_addr_t handle;
 737	int i;
 738
 739	/* Check if correct PTE offsets are initialized */
 740	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
 741
 
 
 
 742	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
 743	if (!domain)
 744		return NULL;
 745
 746	if (type == IOMMU_DOMAIN_DMA) {
 747		if (iommu_get_dma_cookie(&domain->domain) != 0)
 748			goto err_pgtable;
 749	} else if (type != IOMMU_DOMAIN_UNMANAGED) {
 750		goto err_pgtable;
 751	}
 752
 753	domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
 754	if (!domain->pgtable)
 755		goto err_dma_cookie;
 756
 757	domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
 758	if (!domain->lv2entcnt)
 759		goto err_counter;
 760
 761	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
 762	for (i = 0; i < NUM_LV1ENTRIES; i++)
 763		domain->pgtable[i] = ZERO_LV2LINK;
 764
 765	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
 766				DMA_TO_DEVICE);
 767	/* For mapping page table entries we rely on dma == phys */
 768	BUG_ON(handle != virt_to_phys(domain->pgtable));
 769	if (dma_mapping_error(dma_dev, handle))
 770		goto err_lv2ent;
 771
 772	spin_lock_init(&domain->lock);
 773	spin_lock_init(&domain->pgtablelock);
 774	INIT_LIST_HEAD(&domain->clients);
 775
 776	domain->domain.geometry.aperture_start = 0;
 777	domain->domain.geometry.aperture_end   = ~0UL;
 778	domain->domain.geometry.force_aperture = true;
 779
 780	return &domain->domain;
 781
 782err_lv2ent:
 783	free_pages((unsigned long)domain->lv2entcnt, 1);
 784err_counter:
 785	free_pages((unsigned long)domain->pgtable, 2);
 786err_dma_cookie:
 787	if (type == IOMMU_DOMAIN_DMA)
 788		iommu_put_dma_cookie(&domain->domain);
 789err_pgtable:
 790	kfree(domain);
 791	return NULL;
 792}
 793
 794static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
 795{
 796	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 797	struct sysmmu_drvdata *data, *next;
 798	unsigned long flags;
 799	int i;
 800
 801	WARN_ON(!list_empty(&domain->clients));
 802
 803	spin_lock_irqsave(&domain->lock, flags);
 804
 805	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
 806		spin_lock(&data->lock);
 807		__sysmmu_disable(data);
 808		data->pgtable = 0;
 809		data->domain = NULL;
 810		list_del_init(&data->domain_node);
 811		spin_unlock(&data->lock);
 812	}
 813
 814	spin_unlock_irqrestore(&domain->lock, flags);
 815
 816	if (iommu_domain->type == IOMMU_DOMAIN_DMA)
 817		iommu_put_dma_cookie(iommu_domain);
 818
 819	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
 820			 DMA_TO_DEVICE);
 821
 822	for (i = 0; i < NUM_LV1ENTRIES; i++)
 823		if (lv1ent_page(domain->pgtable + i)) {
 824			phys_addr_t base = lv2table_base(domain->pgtable + i);
 825
 826			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
 827					 DMA_TO_DEVICE);
 828			kmem_cache_free(lv2table_kmem_cache,
 829					phys_to_virt(base));
 830		}
 831
 832	free_pages((unsigned long)domain->pgtable, 2);
 833	free_pages((unsigned long)domain->lv2entcnt, 1);
 834	kfree(domain);
 835}
 836
 837static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
 838				    struct device *dev)
 839{
 840	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 841	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
 842	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
 843	struct sysmmu_drvdata *data, *next;
 844	unsigned long flags;
 845
 846	if (!has_sysmmu(dev) || owner->domain != iommu_domain)
 847		return;
 848
 849	mutex_lock(&owner->rpm_lock);
 850
 851	list_for_each_entry(data, &owner->controllers, owner_node) {
 852		pm_runtime_get_noresume(data->sysmmu);
 853		if (pm_runtime_active(data->sysmmu))
 854			__sysmmu_disable(data);
 855		pm_runtime_put(data->sysmmu);
 856	}
 857
 858	spin_lock_irqsave(&domain->lock, flags);
 859	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
 860		spin_lock(&data->lock);
 861		data->pgtable = 0;
 862		data->domain = NULL;
 863		list_del_init(&data->domain_node);
 864		spin_unlock(&data->lock);
 865	}
 866	owner->domain = NULL;
 867	spin_unlock_irqrestore(&domain->lock, flags);
 868
 869	mutex_unlock(&owner->rpm_lock);
 870
 871	dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
 872		&pagetable);
 873}
 874
 875static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
 876				   struct device *dev)
 877{
 878	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 879	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
 880	struct sysmmu_drvdata *data;
 881	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
 882	unsigned long flags;
 883
 884	if (!has_sysmmu(dev))
 885		return -ENODEV;
 886
 887	if (owner->domain)
 888		exynos_iommu_detach_device(owner->domain, dev);
 889
 890	mutex_lock(&owner->rpm_lock);
 891
 892	spin_lock_irqsave(&domain->lock, flags);
 893	list_for_each_entry(data, &owner->controllers, owner_node) {
 894		spin_lock(&data->lock);
 895		data->pgtable = pagetable;
 896		data->domain = domain;
 897		list_add_tail(&data->domain_node, &domain->clients);
 898		spin_unlock(&data->lock);
 899	}
 900	owner->domain = iommu_domain;
 901	spin_unlock_irqrestore(&domain->lock, flags);
 902
 903	list_for_each_entry(data, &owner->controllers, owner_node) {
 904		pm_runtime_get_noresume(data->sysmmu);
 905		if (pm_runtime_active(data->sysmmu))
 906			__sysmmu_enable(data);
 907		pm_runtime_put(data->sysmmu);
 908	}
 909
 910	mutex_unlock(&owner->rpm_lock);
 911
 912	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
 913		&pagetable);
 914
 915	return 0;
 916}
 917
 918static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
 919		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
 920{
 921	if (lv1ent_section(sent)) {
 922		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
 923		return ERR_PTR(-EADDRINUSE);
 924	}
 925
 926	if (lv1ent_fault(sent)) {
 927		dma_addr_t handle;
 928		sysmmu_pte_t *pent;
 929		bool need_flush_flpd_cache = lv1ent_zero(sent);
 930
 931		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
 932		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
 933		if (!pent)
 934			return ERR_PTR(-ENOMEM);
 935
 936		exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
 937		kmemleak_ignore(pent);
 938		*pgcounter = NUM_LV2ENTRIES;
 939		handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
 940					DMA_TO_DEVICE);
 941		if (dma_mapping_error(dma_dev, handle)) {
 942			kmem_cache_free(lv2table_kmem_cache, pent);
 943			return ERR_PTR(-EADDRINUSE);
 944		}
 945
 946		/*
 947		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
 948		 * FLPD cache may cache the address of zero_l2_table. This
 949		 * function replaces the zero_l2_table with new L2 page table
 950		 * to write valid mappings.
 951		 * Accessing the valid area may cause page fault since FLPD
 952		 * cache may still cache zero_l2_table for the valid area
 953		 * instead of new L2 page table that has the mapping
 954		 * information of the valid area.
 955		 * Thus any replacement of zero_l2_table with other valid L2
 956		 * page table must involve FLPD cache invalidation for System
 957		 * MMU v3.3.
 958		 * FLPD cache invalidation is performed with TLB invalidation
 959		 * by VPN without blocking. It is safe to invalidate TLB without
 960		 * blocking because the target address of TLB invalidation is
 961		 * not currently mapped.
 962		 */
 963		if (need_flush_flpd_cache) {
 964			struct sysmmu_drvdata *data;
 965
 966			spin_lock(&domain->lock);
 967			list_for_each_entry(data, &domain->clients, domain_node)
 968				sysmmu_tlb_invalidate_flpdcache(data, iova);
 969			spin_unlock(&domain->lock);
 970		}
 971	}
 972
 973	return page_entry(sent, iova);
 974}
 975
 976static int lv1set_section(struct exynos_iommu_domain *domain,
 977			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
 978			  phys_addr_t paddr, int prot, short *pgcnt)
 979{
 980	if (lv1ent_section(sent)) {
 981		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
 982			iova);
 983		return -EADDRINUSE;
 984	}
 985
 986	if (lv1ent_page(sent)) {
 987		if (*pgcnt != NUM_LV2ENTRIES) {
 988			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
 989				iova);
 990			return -EADDRINUSE;
 991		}
 992
 993		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
 994		*pgcnt = 0;
 995	}
 996
 997	exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
 998
 999	spin_lock(&domain->lock);
1000	if (lv1ent_page_zero(sent)) {
1001		struct sysmmu_drvdata *data;
1002		/*
1003		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1004		 * entry by speculative prefetch of SLPD which has no mapping.
1005		 */
1006		list_for_each_entry(data, &domain->clients, domain_node)
1007			sysmmu_tlb_invalidate_flpdcache(data, iova);
1008	}
1009	spin_unlock(&domain->lock);
1010
1011	return 0;
1012}
1013
1014static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1015		       int prot, short *pgcnt)
1016{
1017	if (size == SPAGE_SIZE) {
1018		if (WARN_ON(!lv2ent_fault(pent)))
1019			return -EADDRINUSE;
1020
1021		exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1022		*pgcnt -= 1;
1023	} else { /* size == LPAGE_SIZE */
1024		int i;
1025		dma_addr_t pent_base = virt_to_phys(pent);
1026
1027		dma_sync_single_for_cpu(dma_dev, pent_base,
1028					sizeof(*pent) * SPAGES_PER_LPAGE,
1029					DMA_TO_DEVICE);
1030		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1031			if (WARN_ON(!lv2ent_fault(pent))) {
1032				if (i > 0)
1033					memset(pent - i, 0, sizeof(*pent) * i);
1034				return -EADDRINUSE;
1035			}
1036
1037			*pent = mk_lv2ent_lpage(paddr, prot);
1038		}
1039		dma_sync_single_for_device(dma_dev, pent_base,
1040					   sizeof(*pent) * SPAGES_PER_LPAGE,
1041					   DMA_TO_DEVICE);
1042		*pgcnt -= SPAGES_PER_LPAGE;
1043	}
1044
1045	return 0;
1046}
1047
1048/*
1049 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1050 *
1051 * System MMU v3.x has advanced logic to improve address translation
1052 * performance with caching more page table entries by a page table walk.
1053 * However, the logic has a bug that while caching faulty page table entries,
1054 * System MMU reports page fault if the cached fault entry is hit even though
1055 * the fault entry is updated to a valid entry after the entry is cached.
1056 * To prevent caching faulty page table entries which may be updated to valid
1057 * entries later, the virtual memory manager should care about the workaround
1058 * for the problem. The following describes the workaround.
1059 *
1060 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1061 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1062 *
1063 * Precisely, any start address of I/O virtual region must be aligned with
1064 * the following sizes for System MMU v3.1 and v3.2.
1065 * System MMU v3.1: 128KiB
1066 * System MMU v3.2: 256KiB
1067 *
1068 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1069 * more workarounds.
1070 * - Any two consecutive I/O virtual regions must have a hole of size larger
1071 *   than or equal to 128KiB.
1072 * - Start address of an I/O virtual region must be aligned by 128KiB.
1073 */
1074static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1075			    unsigned long l_iova, phys_addr_t paddr, size_t size,
1076			    int prot, gfp_t gfp)
1077{
1078	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1079	sysmmu_pte_t *entry;
1080	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1081	unsigned long flags;
1082	int ret = -ENOMEM;
1083
1084	BUG_ON(domain->pgtable == NULL);
1085	prot &= SYSMMU_SUPPORTED_PROT_BITS;
1086
1087	spin_lock_irqsave(&domain->pgtablelock, flags);
1088
1089	entry = section_entry(domain->pgtable, iova);
1090
1091	if (size == SECT_SIZE) {
1092		ret = lv1set_section(domain, entry, iova, paddr, prot,
1093				     &domain->lv2entcnt[lv1ent_offset(iova)]);
1094	} else {
1095		sysmmu_pte_t *pent;
1096
1097		pent = alloc_lv2entry(domain, entry, iova,
1098				      &domain->lv2entcnt[lv1ent_offset(iova)]);
1099
1100		if (IS_ERR(pent))
1101			ret = PTR_ERR(pent);
1102		else
1103			ret = lv2set_page(pent, paddr, size, prot,
1104				       &domain->lv2entcnt[lv1ent_offset(iova)]);
1105	}
1106
1107	if (ret)
1108		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1109			__func__, ret, size, iova);
1110
1111	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1112
1113	return ret;
1114}
1115
1116static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1117					      sysmmu_iova_t iova, size_t size)
1118{
1119	struct sysmmu_drvdata *data;
1120	unsigned long flags;
1121
1122	spin_lock_irqsave(&domain->lock, flags);
1123
1124	list_for_each_entry(data, &domain->clients, domain_node)
1125		sysmmu_tlb_invalidate_entry(data, iova, size);
1126
1127	spin_unlock_irqrestore(&domain->lock, flags);
1128}
1129
1130static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1131				 unsigned long l_iova, size_t size,
1132				 struct iommu_iotlb_gather *gather)
1133{
1134	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1135	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1136	sysmmu_pte_t *ent;
1137	size_t err_pgsize;
1138	unsigned long flags;
1139
1140	BUG_ON(domain->pgtable == NULL);
1141
1142	spin_lock_irqsave(&domain->pgtablelock, flags);
1143
1144	ent = section_entry(domain->pgtable, iova);
1145
1146	if (lv1ent_section(ent)) {
1147		if (WARN_ON(size < SECT_SIZE)) {
1148			err_pgsize = SECT_SIZE;
1149			goto err;
1150		}
1151
1152		/* workaround for h/w bug in System MMU v3.3 */
1153		exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1154		size = SECT_SIZE;
1155		goto done;
1156	}
1157
1158	if (unlikely(lv1ent_fault(ent))) {
1159		if (size > SECT_SIZE)
1160			size = SECT_SIZE;
1161		goto done;
1162	}
1163
1164	/* lv1ent_page(sent) == true here */
1165
1166	ent = page_entry(ent, iova);
1167
1168	if (unlikely(lv2ent_fault(ent))) {
1169		size = SPAGE_SIZE;
1170		goto done;
1171	}
1172
1173	if (lv2ent_small(ent)) {
1174		exynos_iommu_set_pte(ent, 0);
1175		size = SPAGE_SIZE;
1176		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1177		goto done;
1178	}
1179
1180	/* lv1ent_large(ent) == true here */
1181	if (WARN_ON(size < LPAGE_SIZE)) {
1182		err_pgsize = LPAGE_SIZE;
1183		goto err;
1184	}
1185
1186	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1187				sizeof(*ent) * SPAGES_PER_LPAGE,
1188				DMA_TO_DEVICE);
1189	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1190	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1191				   sizeof(*ent) * SPAGES_PER_LPAGE,
1192				   DMA_TO_DEVICE);
1193	size = LPAGE_SIZE;
1194	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1195done:
1196	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1197
1198	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1199
1200	return size;
1201err:
1202	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1203
1204	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1205		__func__, size, iova, err_pgsize);
1206
1207	return 0;
1208}
1209
1210static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1211					  dma_addr_t iova)
1212{
1213	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1214	sysmmu_pte_t *entry;
1215	unsigned long flags;
1216	phys_addr_t phys = 0;
1217
1218	spin_lock_irqsave(&domain->pgtablelock, flags);
1219
1220	entry = section_entry(domain->pgtable, iova);
1221
1222	if (lv1ent_section(entry)) {
1223		phys = section_phys(entry) + section_offs(iova);
1224	} else if (lv1ent_page(entry)) {
1225		entry = page_entry(entry, iova);
1226
1227		if (lv2ent_large(entry))
1228			phys = lpage_phys(entry) + lpage_offs(iova);
1229		else if (lv2ent_small(entry))
1230			phys = spage_phys(entry) + spage_offs(iova);
1231	}
1232
1233	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1234
1235	return phys;
1236}
1237
1238static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1239{
1240	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1241	struct sysmmu_drvdata *data;
1242
1243	if (!has_sysmmu(dev))
1244		return ERR_PTR(-ENODEV);
1245
1246	list_for_each_entry(data, &owner->controllers, owner_node) {
1247		/*
1248		 * SYSMMU will be runtime activated via device link
1249		 * (dependency) to its master device, so there are no
1250		 * direct calls to pm_runtime_get/put in this driver.
1251		 */
1252		data->link = device_link_add(dev, data->sysmmu,
1253					     DL_FLAG_STATELESS |
1254					     DL_FLAG_PM_RUNTIME);
1255	}
1256
1257	/* There is always at least one entry, see exynos_iommu_of_xlate() */
1258	data = list_first_entry(&owner->controllers,
1259				struct sysmmu_drvdata, owner_node);
1260
1261	return &data->iommu;
1262}
1263
1264static void exynos_iommu_release_device(struct device *dev)
1265{
1266	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1267	struct sysmmu_drvdata *data;
1268
1269	if (!has_sysmmu(dev))
1270		return;
1271
1272	if (owner->domain) {
1273		struct iommu_group *group = iommu_group_get(dev);
1274
1275		if (group) {
1276			WARN_ON(owner->domain !=
1277				iommu_group_default_domain(group));
1278			exynos_iommu_detach_device(owner->domain, dev);
1279			iommu_group_put(group);
1280		}
1281	}
1282
1283	list_for_each_entry(data, &owner->controllers, owner_node)
1284		device_link_del(data->link);
1285}
1286
1287static int exynos_iommu_of_xlate(struct device *dev,
1288				 struct of_phandle_args *spec)
1289{
1290	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1291	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1292	struct sysmmu_drvdata *data, *entry;
1293
1294	if (!sysmmu)
1295		return -ENODEV;
1296
1297	data = platform_get_drvdata(sysmmu);
1298	if (!data) {
1299		put_device(&sysmmu->dev);
1300		return -ENODEV;
1301	}
1302
1303	if (!owner) {
1304		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1305		if (!owner) {
1306			put_device(&sysmmu->dev);
1307			return -ENOMEM;
1308		}
1309
1310		INIT_LIST_HEAD(&owner->controllers);
1311		mutex_init(&owner->rpm_lock);
1312		dev_iommu_priv_set(dev, owner);
1313	}
1314
1315	list_for_each_entry(entry, &owner->controllers, owner_node)
1316		if (entry == data)
1317			return 0;
1318
1319	list_add_tail(&data->owner_node, &owner->controllers);
1320	data->master = dev;
1321
1322	return 0;
1323}
1324
1325static const struct iommu_ops exynos_iommu_ops = {
1326	.domain_alloc = exynos_iommu_domain_alloc,
1327	.domain_free = exynos_iommu_domain_free,
1328	.attach_dev = exynos_iommu_attach_device,
1329	.detach_dev = exynos_iommu_detach_device,
1330	.map = exynos_iommu_map,
1331	.unmap = exynos_iommu_unmap,
1332	.iova_to_phys = exynos_iommu_iova_to_phys,
1333	.device_group = generic_device_group,
1334	.probe_device = exynos_iommu_probe_device,
1335	.release_device = exynos_iommu_release_device,
1336	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1337	.of_xlate = exynos_iommu_of_xlate,
 
 
 
 
 
 
 
 
1338};
1339
1340static int __init exynos_iommu_init(void)
1341{
1342	struct device_node *np;
1343	int ret;
1344
1345	np = of_find_matching_node(NULL, sysmmu_of_match);
1346	if (!np)
1347		return 0;
1348
1349	of_node_put(np);
1350
1351	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1352				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1353	if (!lv2table_kmem_cache) {
1354		pr_err("%s: Failed to create kmem cache\n", __func__);
1355		return -ENOMEM;
1356	}
1357
1358	ret = platform_driver_register(&exynos_sysmmu_driver);
1359	if (ret) {
1360		pr_err("%s: Failed to register driver\n", __func__);
1361		goto err_reg_driver;
1362	}
1363
1364	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1365	if (zero_lv2_table == NULL) {
1366		pr_err("%s: Failed to allocate zero level2 page table\n",
1367			__func__);
1368		ret = -ENOMEM;
1369		goto err_zero_lv2;
1370	}
1371
1372	ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1373	if (ret) {
1374		pr_err("%s: Failed to register exynos-iommu driver.\n",
1375								__func__);
1376		goto err_set_iommu;
1377	}
1378
1379	return 0;
1380err_set_iommu:
1381	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1382err_zero_lv2:
1383	platform_driver_unregister(&exynos_sysmmu_driver);
1384err_reg_driver:
 
 
1385	kmem_cache_destroy(lv2table_kmem_cache);
1386	return ret;
1387}
1388core_initcall(exynos_iommu_init);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 */
   6
   7#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
   8#define DEBUG
   9#endif
  10
  11#include <linux/clk.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/io.h>
  15#include <linux/iommu.h>
  16#include <linux/interrupt.h>
  17#include <linux/kmemleak.h>
  18#include <linux/list.h>
  19#include <linux/of.h>
 
  20#include <linux/of_platform.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/slab.h>
 
  24
  25typedef u32 sysmmu_iova_t;
  26typedef u32 sysmmu_pte_t;
  27
  28/* We do not consider super section mapping (16MB) */
  29#define SECT_ORDER 20
  30#define LPAGE_ORDER 16
  31#define SPAGE_ORDER 12
  32
  33#define SECT_SIZE (1 << SECT_ORDER)
  34#define LPAGE_SIZE (1 << LPAGE_ORDER)
  35#define SPAGE_SIZE (1 << SPAGE_ORDER)
  36
  37#define SECT_MASK (~(SECT_SIZE - 1))
  38#define LPAGE_MASK (~(LPAGE_SIZE - 1))
  39#define SPAGE_MASK (~(SPAGE_SIZE - 1))
  40
  41#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
  42			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
  43#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
  44#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
  45#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
  46			  ((*(sent) & 3) == 1))
  47#define lv1ent_section(sent) ((*(sent) & 3) == 2)
  48
  49#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
  50#define lv2ent_small(pent) ((*(pent) & 2) == 2)
  51#define lv2ent_large(pent) ((*(pent) & 3) == 1)
  52
  53/*
  54 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
  55 * v5.0 introduced support for 36bit physical address space by shifting
  56 * all page entry values by 4 bits.
  57 * All SYSMMU controllers in the system support the address spaces of the same
  58 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
  59 * value (0 or 4).
  60 */
  61static short PG_ENT_SHIFT = -1;
  62#define SYSMMU_PG_ENT_SHIFT 0
  63#define SYSMMU_V5_PG_ENT_SHIFT 4
  64
  65static const sysmmu_pte_t *LV1_PROT;
  66static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
  67	((0 << 15) | (0 << 10)), /* no access */
  68	((1 << 15) | (1 << 10)), /* IOMMU_READ only */
  69	((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
  70	((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
  71};
  72static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
  73	(0 << 4), /* no access */
  74	(1 << 4), /* IOMMU_READ only */
  75	(2 << 4), /* IOMMU_WRITE only */
  76	(3 << 4), /* IOMMU_READ | IOMMU_WRITE */
  77};
  78
  79static const sysmmu_pte_t *LV2_PROT;
  80static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
  81	((0 << 9) | (0 << 4)), /* no access */
  82	((1 << 9) | (1 << 4)), /* IOMMU_READ only */
  83	((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
  84	((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
  85};
  86static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
  87	(0 << 2), /* no access */
  88	(1 << 2), /* IOMMU_READ only */
  89	(2 << 2), /* IOMMU_WRITE only */
  90	(3 << 2), /* IOMMU_READ | IOMMU_WRITE */
  91};
  92
  93#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
  94
  95#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
  96#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
  97#define section_offs(iova) (iova & (SECT_SIZE - 1))
  98#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
  99#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
 100#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
 101#define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
 102
 103#define NUM_LV1ENTRIES 4096
 104#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
 105
 106static u32 lv1ent_offset(sysmmu_iova_t iova)
 107{
 108	return iova >> SECT_ORDER;
 109}
 110
 111static u32 lv2ent_offset(sysmmu_iova_t iova)
 112{
 113	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
 114}
 115
 116#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
 117#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
 118
 119#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
 120#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
 121
 122#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
 123#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
 124#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
 125#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
 126
 127#define CTRL_ENABLE	0x5
 128#define CTRL_BLOCK	0x7
 129#define CTRL_DISABLE	0x0
 130
 131#define CFG_LRU		0x1
 132#define CFG_EAP		(1 << 2)
 133#define CFG_QOS(n)	((n & 0xF) << 7)
 134#define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
 135#define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
 136#define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
 137
 138#define CTRL_VM_ENABLE			BIT(0)
 139#define CTRL_VM_FAULT_MODE_STALL	BIT(3)
 140#define CAPA0_CAPA1_EXIST		BIT(11)
 141#define CAPA1_VCR_ENABLED		BIT(14)
 142
 143/* common registers */
 144#define REG_MMU_CTRL		0x000
 145#define REG_MMU_CFG		0x004
 146#define REG_MMU_STATUS		0x008
 147#define REG_MMU_VERSION		0x034
 148
 149#define MMU_MAJ_VER(val)	((val) >> 7)
 150#define MMU_MIN_VER(val)	((val) & 0x7F)
 151#define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
 152
 153#define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
 154
 155/* v1.x - v3.x registers */
 
 
 
 
 
 
 156#define REG_PAGE_FAULT_ADDR	0x024
 157#define REG_AW_FAULT_ADDR	0x028
 158#define REG_AR_FAULT_ADDR	0x02C
 159#define REG_DEFAULT_SLAVE_ADDR	0x030
 160
 161/* v5.x registers */
 
 
 
 
 
 
 
 
 162#define REG_V5_FAULT_AR_VA	0x070
 163#define REG_V5_FAULT_AW_VA	0x080
 164
 165/* v7.x registers */
 166#define REG_V7_CAPA0		0x870
 167#define REG_V7_CAPA1		0x874
 168#define REG_V7_CTRL_VM		0x8000
 169
 170#define has_sysmmu(dev)		(dev_iommu_priv_get(dev) != NULL)
 171
 172static struct device *dma_dev;
 173static struct kmem_cache *lv2table_kmem_cache;
 174static sysmmu_pte_t *zero_lv2_table;
 175#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
 176
 177static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
 178{
 179	return pgtable + lv1ent_offset(iova);
 180}
 181
 182static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
 183{
 184	return (sysmmu_pte_t *)phys_to_virt(
 185				lv2table_base(sent)) + lv2ent_offset(iova);
 186}
 187
 188/*
 189 * IOMMU fault information register
 190 */
 191struct sysmmu_fault_info {
 192	unsigned int bit;	/* bit number in STATUS register */
 193	unsigned short addr_reg; /* register to read VA fault address */
 194	const char *name;	/* human readable fault name */
 195	unsigned int type;	/* fault type for report_iommu_fault */
 196};
 197
 198static const struct sysmmu_fault_info sysmmu_faults[] = {
 199	{ 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
 200	{ 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
 201	{ 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
 202	{ 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
 203	{ 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
 204	{ 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
 205	{ 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
 206	{ 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
 207};
 208
 209static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
 210	{ 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
 211	{ 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
 212	{ 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
 213	{ 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
 214	{ 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
 215	{ 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
 216	{ 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
 217	{ 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
 218	{ 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
 219	{ 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
 220};
 221
 222/*
 223 * This structure is attached to dev->iommu->priv of the master device
 224 * on device add, contains a list of SYSMMU controllers defined by device tree,
 225 * which are bound to given master device. It is usually referenced by 'owner'
 226 * pointer.
 227*/
 228struct exynos_iommu_owner {
 229	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
 230	struct iommu_domain *domain;	/* domain this device is attached */
 231	struct mutex rpm_lock;		/* for runtime pm of all sysmmus */
 232};
 233
 234/*
 235 * This structure exynos specific generalization of struct iommu_domain.
 236 * It contains list of SYSMMU controllers from all master devices, which has
 237 * been attached to this domain and page tables of IO address space defined by
 238 * it. It is usually referenced by 'domain' pointer.
 239 */
 240struct exynos_iommu_domain {
 241	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
 242	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
 243	short *lv2entcnt;	/* free lv2 entry counter for each section */
 244	spinlock_t lock;	/* lock for modyfying list of clients */
 245	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
 246	struct iommu_domain domain; /* generic domain data structure */
 247};
 248
 249/*
 250 * SysMMU version specific data. Contains offsets for the registers which can
 251 * be found in different SysMMU variants, but have different offset values.
 252 */
 253struct sysmmu_variant {
 254	u32 pt_base;		/* page table base address (physical) */
 255	u32 flush_all;		/* invalidate all TLB entries */
 256	u32 flush_entry;	/* invalidate specific TLB entry */
 257	u32 flush_range;	/* invalidate TLB entries in specified range */
 258	u32 flush_start;	/* start address of range invalidation */
 259	u32 flush_end;		/* end address of range invalidation */
 260	u32 int_status;		/* interrupt status information */
 261	u32 int_clear;		/* clear the interrupt */
 262};
 263
 264/*
 265 * This structure hold all data of a single SYSMMU controller, this includes
 266 * hw resources like registers and clocks, pointers and list nodes to connect
 267 * it to all other structures, internal state and parameters read from device
 268 * tree. It is usually referenced by 'data' pointer.
 269 */
 270struct sysmmu_drvdata {
 271	struct device *sysmmu;		/* SYSMMU controller device */
 272	struct device *master;		/* master device (owner) */
 273	struct device_link *link;	/* runtime PM link to master */
 274	void __iomem *sfrbase;		/* our registers */
 275	struct clk *clk;		/* SYSMMU's clock */
 276	struct clk *aclk;		/* SYSMMU's aclk clock */
 277	struct clk *pclk;		/* SYSMMU's pclk clock */
 278	struct clk *clk_master;		/* master's device clock */
 279	spinlock_t lock;		/* lock for modyfying state */
 280	bool active;			/* current status */
 281	struct exynos_iommu_domain *domain; /* domain we belong to */
 282	struct list_head domain_node;	/* node for domain clients list */
 283	struct list_head owner_node;	/* node for owner controllers list */
 284	phys_addr_t pgtable;		/* assigned page table structure */
 285	unsigned int version;		/* our version */
 286
 287	struct iommu_device iommu;	/* IOMMU core handle */
 288	const struct sysmmu_variant *variant; /* version specific data */
 289
 290	/* v7 fields */
 291	bool has_vcr;			/* virtual machine control register */
 292};
 293
 294#define SYSMMU_REG(data, reg) ((data)->sfrbase + (data)->variant->reg)
 295
 296/* SysMMU v1..v3 */
 297static const struct sysmmu_variant sysmmu_v1_variant = {
 298	.flush_all	= 0x0c,
 299	.flush_entry	= 0x10,
 300	.pt_base	= 0x14,
 301	.int_status	= 0x18,
 302	.int_clear	= 0x1c,
 303};
 304
 305/* SysMMU v5 and v7 (non-VM capable) */
 306static const struct sysmmu_variant sysmmu_v5_variant = {
 307	.pt_base	= 0x0c,
 308	.flush_all	= 0x10,
 309	.flush_entry	= 0x14,
 310	.flush_range	= 0x18,
 311	.flush_start	= 0x20,
 312	.flush_end	= 0x24,
 313	.int_status	= 0x60,
 314	.int_clear	= 0x64,
 315};
 316
 317/* SysMMU v7: VM capable register set */
 318static const struct sysmmu_variant sysmmu_v7_vm_variant = {
 319	.pt_base	= 0x800c,
 320	.flush_all	= 0x8010,
 321	.flush_entry	= 0x8014,
 322	.flush_range	= 0x8018,
 323	.flush_start	= 0x8020,
 324	.flush_end	= 0x8024,
 325	.int_status	= 0x60,
 326	.int_clear	= 0x64,
 327};
 328
 329static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
 330{
 331	return container_of(dom, struct exynos_iommu_domain, domain);
 332}
 333
 334static void sysmmu_unblock(struct sysmmu_drvdata *data)
 335{
 336	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 337}
 338
 339static bool sysmmu_block(struct sysmmu_drvdata *data)
 340{
 341	int i = 120;
 342
 343	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 344	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
 345		--i;
 346
 347	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
 348		sysmmu_unblock(data);
 349		return false;
 350	}
 351
 352	return true;
 353}
 354
 355static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
 356{
 357	writel(0x1, SYSMMU_REG(data, flush_all));
 
 
 
 358}
 359
 360static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 361				sysmmu_iova_t iova, unsigned int num_inv)
 362{
 363	unsigned int i;
 364
 365	if (MMU_MAJ_VER(data->version) < 5 || num_inv == 1) {
 366		for (i = 0; i < num_inv; i++) {
 367			writel((iova & SPAGE_MASK) | 1,
 368			       SYSMMU_REG(data, flush_entry));
 369			iova += SPAGE_SIZE;
 370		}
 371	} else {
 372		writel(iova & SPAGE_MASK, SYSMMU_REG(data, flush_start));
 373		writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
 374		       SYSMMU_REG(data, flush_end));
 375		writel(0x1, SYSMMU_REG(data, flush_range));
 
 
 
 
 
 
 376	}
 377}
 378
 379static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
 380{
 381	u32 pt_base;
 382
 383	if (MMU_MAJ_VER(data->version) < 5)
 384		pt_base = pgd;
 385	else
 386		pt_base = pgd >> SPAGE_ORDER;
 
 387
 388	writel(pt_base, SYSMMU_REG(data, pt_base));
 389	__sysmmu_tlb_invalidate(data);
 390}
 391
 392static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
 393{
 394	BUG_ON(clk_prepare_enable(data->clk_master));
 395	BUG_ON(clk_prepare_enable(data->clk));
 396	BUG_ON(clk_prepare_enable(data->pclk));
 397	BUG_ON(clk_prepare_enable(data->aclk));
 398}
 399
 400static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
 401{
 402	clk_disable_unprepare(data->aclk);
 403	clk_disable_unprepare(data->pclk);
 404	clk_disable_unprepare(data->clk);
 405	clk_disable_unprepare(data->clk_master);
 406}
 407
 408static bool __sysmmu_has_capa1(struct sysmmu_drvdata *data)
 409{
 410	u32 capa0 = readl(data->sfrbase + REG_V7_CAPA0);
 411
 412	return capa0 & CAPA0_CAPA1_EXIST;
 413}
 414
 415static void __sysmmu_get_vcr(struct sysmmu_drvdata *data)
 416{
 417	u32 capa1 = readl(data->sfrbase + REG_V7_CAPA1);
 418
 419	data->has_vcr = capa1 & CAPA1_VCR_ENABLED;
 420}
 421
 422static void __sysmmu_get_version(struct sysmmu_drvdata *data)
 423{
 424	u32 ver;
 425
 426	__sysmmu_enable_clocks(data);
 427
 428	ver = readl(data->sfrbase + REG_MMU_VERSION);
 429
 430	/* controllers on some SoCs don't report proper version */
 431	if (ver == 0x80000001u)
 432		data->version = MAKE_MMU_VER(1, 0);
 433	else
 434		data->version = MMU_RAW_VER(ver);
 435
 436	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
 437		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
 438
 439	if (MMU_MAJ_VER(data->version) < 5) {
 440		data->variant = &sysmmu_v1_variant;
 441	} else if (MMU_MAJ_VER(data->version) < 7) {
 442		data->variant = &sysmmu_v5_variant;
 443	} else {
 444		if (__sysmmu_has_capa1(data))
 445			__sysmmu_get_vcr(data);
 446		if (data->has_vcr)
 447			data->variant = &sysmmu_v7_vm_variant;
 448		else
 449			data->variant = &sysmmu_v5_variant;
 450	}
 451
 452	__sysmmu_disable_clocks(data);
 453}
 454
 455static void show_fault_information(struct sysmmu_drvdata *data,
 456				   const struct sysmmu_fault_info *finfo,
 457				   sysmmu_iova_t fault_addr)
 458{
 459	sysmmu_pte_t *ent;
 460
 461	dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
 462		dev_name(data->master), finfo->name, fault_addr);
 463	dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
 464	ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
 465	dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
 466	if (lv1ent_page(ent)) {
 467		ent = page_entry(ent, fault_addr);
 468		dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
 469	}
 470}
 471
 472static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
 473{
 474	/* SYSMMU is in blocked state when interrupt occurred. */
 475	struct sysmmu_drvdata *data = dev_id;
 476	const struct sysmmu_fault_info *finfo;
 477	unsigned int i, n, itype;
 478	sysmmu_iova_t fault_addr;
 
 479	int ret = -ENOSYS;
 480
 481	WARN_ON(!data->active);
 482
 483	if (MMU_MAJ_VER(data->version) < 5) {
 
 
 484		finfo = sysmmu_faults;
 485		n = ARRAY_SIZE(sysmmu_faults);
 486	} else {
 
 
 487		finfo = sysmmu_v5_faults;
 488		n = ARRAY_SIZE(sysmmu_v5_faults);
 489	}
 490
 491	spin_lock(&data->lock);
 492
 493	clk_enable(data->clk_master);
 494
 495	itype = __ffs(readl(SYSMMU_REG(data, int_status)));
 496	for (i = 0; i < n; i++, finfo++)
 497		if (finfo->bit == itype)
 498			break;
 499	/* unknown/unsupported fault */
 500	BUG_ON(i == n);
 501
 502	/* print debug message */
 503	fault_addr = readl(data->sfrbase + finfo->addr_reg);
 504	show_fault_information(data, finfo, fault_addr);
 505
 506	if (data->domain)
 507		ret = report_iommu_fault(&data->domain->domain,
 508					data->master, fault_addr, finfo->type);
 509	/* fault is not recovered by fault handler */
 510	BUG_ON(ret != 0);
 511
 512	writel(1 << itype, SYSMMU_REG(data, int_clear));
 513
 514	sysmmu_unblock(data);
 515
 516	clk_disable(data->clk_master);
 517
 518	spin_unlock(&data->lock);
 519
 520	return IRQ_HANDLED;
 521}
 522
 523static void __sysmmu_disable(struct sysmmu_drvdata *data)
 524{
 525	unsigned long flags;
 526
 527	clk_enable(data->clk_master);
 528
 529	spin_lock_irqsave(&data->lock, flags);
 530	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
 531	writel(0, data->sfrbase + REG_MMU_CFG);
 532	data->active = false;
 533	spin_unlock_irqrestore(&data->lock, flags);
 534
 535	__sysmmu_disable_clocks(data);
 536}
 537
 538static void __sysmmu_init_config(struct sysmmu_drvdata *data)
 539{
 540	unsigned int cfg;
 541
 542	if (data->version <= MAKE_MMU_VER(3, 1))
 543		cfg = CFG_LRU | CFG_QOS(15);
 544	else if (data->version <= MAKE_MMU_VER(3, 2))
 545		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
 546	else
 547		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
 548
 549	cfg |= CFG_EAP; /* enable access protection bits check */
 550
 551	writel(cfg, data->sfrbase + REG_MMU_CFG);
 552}
 553
 554static void __sysmmu_enable_vid(struct sysmmu_drvdata *data)
 555{
 556	u32 ctrl;
 557
 558	if (MMU_MAJ_VER(data->version) < 7 || !data->has_vcr)
 559		return;
 560
 561	ctrl = readl(data->sfrbase + REG_V7_CTRL_VM);
 562	ctrl |= CTRL_VM_ENABLE | CTRL_VM_FAULT_MODE_STALL;
 563	writel(ctrl, data->sfrbase + REG_V7_CTRL_VM);
 564}
 565
 566static void __sysmmu_enable(struct sysmmu_drvdata *data)
 567{
 568	unsigned long flags;
 569
 570	__sysmmu_enable_clocks(data);
 571
 572	spin_lock_irqsave(&data->lock, flags);
 573	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 574	__sysmmu_init_config(data);
 575	__sysmmu_set_ptbase(data, data->pgtable);
 576	__sysmmu_enable_vid(data);
 577	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 578	data->active = true;
 579	spin_unlock_irqrestore(&data->lock, flags);
 580
 581	/*
 582	 * SYSMMU driver keeps master's clock enabled only for the short
 583	 * time, while accessing the registers. For performing address
 584	 * translation during DMA transaction it relies on the client
 585	 * driver to enable it.
 586	 */
 587	clk_disable(data->clk_master);
 588}
 589
 590static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
 591					    sysmmu_iova_t iova)
 592{
 593	unsigned long flags;
 594
 595	spin_lock_irqsave(&data->lock, flags);
 596	if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
 597		clk_enable(data->clk_master);
 598		if (sysmmu_block(data)) {
 599			if (data->version >= MAKE_MMU_VER(5, 0))
 600				__sysmmu_tlb_invalidate(data);
 601			else
 602				__sysmmu_tlb_invalidate_entry(data, iova, 1);
 603			sysmmu_unblock(data);
 604		}
 605		clk_disable(data->clk_master);
 606	}
 607	spin_unlock_irqrestore(&data->lock, flags);
 608}
 609
 610static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 611					sysmmu_iova_t iova, size_t size)
 612{
 613	unsigned long flags;
 614
 615	spin_lock_irqsave(&data->lock, flags);
 616	if (data->active) {
 617		unsigned int num_inv = 1;
 618
 619		clk_enable(data->clk_master);
 620
 621		/*
 622		 * L2TLB invalidation required
 623		 * 4KB page: 1 invalidation
 624		 * 64KB page: 16 invalidations
 625		 * 1MB page: 64 invalidations
 626		 * because it is set-associative TLB
 627		 * with 8-way and 64 sets.
 628		 * 1MB page can be cached in one of all sets.
 629		 * 64KB page can be one of 16 consecutive sets.
 630		 */
 631		if (MMU_MAJ_VER(data->version) == 2)
 632			num_inv = min_t(unsigned int, size / SPAGE_SIZE, 64);
 633
 634		if (sysmmu_block(data)) {
 635			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
 636			sysmmu_unblock(data);
 637		}
 638		clk_disable(data->clk_master);
 639	}
 640	spin_unlock_irqrestore(&data->lock, flags);
 641}
 642
 643static const struct iommu_ops exynos_iommu_ops;
 644
 645static int exynos_sysmmu_probe(struct platform_device *pdev)
 646{
 647	int irq, ret;
 648	struct device *dev = &pdev->dev;
 649	struct sysmmu_drvdata *data;
 650	struct resource *res;
 651
 652	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 653	if (!data)
 654		return -ENOMEM;
 655
 656	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 657	data->sfrbase = devm_ioremap_resource(dev, res);
 658	if (IS_ERR(data->sfrbase))
 659		return PTR_ERR(data->sfrbase);
 660
 661	irq = platform_get_irq(pdev, 0);
 662	if (irq <= 0)
 663		return irq;
 664
 665	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
 666				dev_name(dev), data);
 667	if (ret) {
 668		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
 669		return ret;
 670	}
 671
 672	data->clk = devm_clk_get(dev, "sysmmu");
 673	if (PTR_ERR(data->clk) == -ENOENT)
 674		data->clk = NULL;
 675	else if (IS_ERR(data->clk))
 676		return PTR_ERR(data->clk);
 677
 678	data->aclk = devm_clk_get(dev, "aclk");
 679	if (PTR_ERR(data->aclk) == -ENOENT)
 680		data->aclk = NULL;
 681	else if (IS_ERR(data->aclk))
 682		return PTR_ERR(data->aclk);
 683
 684	data->pclk = devm_clk_get(dev, "pclk");
 685	if (PTR_ERR(data->pclk) == -ENOENT)
 686		data->pclk = NULL;
 687	else if (IS_ERR(data->pclk))
 688		return PTR_ERR(data->pclk);
 689
 690	if (!data->clk && (!data->aclk || !data->pclk)) {
 691		dev_err(dev, "Failed to get device clock(s)!\n");
 692		return -ENOSYS;
 693	}
 694
 695	data->clk_master = devm_clk_get(dev, "master");
 696	if (PTR_ERR(data->clk_master) == -ENOENT)
 697		data->clk_master = NULL;
 698	else if (IS_ERR(data->clk_master))
 699		return PTR_ERR(data->clk_master);
 700
 701	data->sysmmu = dev;
 702	spin_lock_init(&data->lock);
 703
 704	__sysmmu_get_version(data);
 705
 706	ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
 707				     dev_name(data->sysmmu));
 708	if (ret)
 709		return ret;
 710
 
 
 
 
 
 
 
 711	platform_set_drvdata(pdev, data);
 712
 
 713	if (PG_ENT_SHIFT < 0) {
 714		if (MMU_MAJ_VER(data->version) < 5) {
 715			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
 716			LV1_PROT = SYSMMU_LV1_PROT;
 717			LV2_PROT = SYSMMU_LV2_PROT;
 718		} else {
 719			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
 720			LV1_PROT = SYSMMU_V5_LV1_PROT;
 721			LV2_PROT = SYSMMU_V5_LV2_PROT;
 722		}
 723	}
 724
 725	if (MMU_MAJ_VER(data->version) >= 5) {
 726		ret = dma_set_mask(dev, DMA_BIT_MASK(36));
 727		if (ret) {
 728			dev_err(dev, "Unable to set DMA mask: %d\n", ret);
 729			goto err_dma_set_mask;
 730		}
 731	}
 732
 733	/*
 734	 * use the first registered sysmmu device for performing
 735	 * dma mapping operations on iommu page tables (cpu cache flush)
 736	 */
 737	if (!dma_dev)
 738		dma_dev = &pdev->dev;
 739
 740	pm_runtime_enable(dev);
 741
 742	ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
 743	if (ret)
 744		goto err_dma_set_mask;
 745
 746	return 0;
 747
 748err_dma_set_mask:
 749	iommu_device_sysfs_remove(&data->iommu);
 750	return ret;
 751}
 752
 753static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
 754{
 755	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 756	struct device *master = data->master;
 757
 758	if (master) {
 759		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
 760
 761		mutex_lock(&owner->rpm_lock);
 762		if (data->domain) {
 763			dev_dbg(data->sysmmu, "saving state\n");
 764			__sysmmu_disable(data);
 765		}
 766		mutex_unlock(&owner->rpm_lock);
 767	}
 768	return 0;
 769}
 770
 771static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
 772{
 773	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 774	struct device *master = data->master;
 775
 776	if (master) {
 777		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
 778
 779		mutex_lock(&owner->rpm_lock);
 780		if (data->domain) {
 781			dev_dbg(data->sysmmu, "restoring state\n");
 782			__sysmmu_enable(data);
 783		}
 784		mutex_unlock(&owner->rpm_lock);
 785	}
 786	return 0;
 787}
 788
 789static const struct dev_pm_ops sysmmu_pm_ops = {
 790	SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
 791	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 792				pm_runtime_force_resume)
 793};
 794
 795static const struct of_device_id sysmmu_of_match[] = {
 796	{ .compatible	= "samsung,exynos-sysmmu", },
 797	{ },
 798};
 799
 800static struct platform_driver exynos_sysmmu_driver __refdata = {
 801	.probe	= exynos_sysmmu_probe,
 802	.driver	= {
 803		.name		= "exynos-sysmmu",
 804		.of_match_table	= sysmmu_of_match,
 805		.pm		= &sysmmu_pm_ops,
 806		.suppress_bind_attrs = true,
 807	}
 808};
 809
 810static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
 811{
 812	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
 813				DMA_TO_DEVICE);
 814	*ent = cpu_to_le32(val);
 815	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
 816				   DMA_TO_DEVICE);
 817}
 818
 819static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
 820{
 821	struct exynos_iommu_domain *domain;
 822	dma_addr_t handle;
 823	int i;
 824
 825	/* Check if correct PTE offsets are initialized */
 826	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
 827
 828	if (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_UNMANAGED)
 829		return NULL;
 830
 831	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
 832	if (!domain)
 833		return NULL;
 834
 
 
 
 
 
 
 
 835	domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
 836	if (!domain->pgtable)
 837		goto err_pgtable;
 838
 839	domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
 840	if (!domain->lv2entcnt)
 841		goto err_counter;
 842
 843	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
 844	for (i = 0; i < NUM_LV1ENTRIES; i++)
 845		domain->pgtable[i] = ZERO_LV2LINK;
 846
 847	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
 848				DMA_TO_DEVICE);
 849	/* For mapping page table entries we rely on dma == phys */
 850	BUG_ON(handle != virt_to_phys(domain->pgtable));
 851	if (dma_mapping_error(dma_dev, handle))
 852		goto err_lv2ent;
 853
 854	spin_lock_init(&domain->lock);
 855	spin_lock_init(&domain->pgtablelock);
 856	INIT_LIST_HEAD(&domain->clients);
 857
 858	domain->domain.geometry.aperture_start = 0;
 859	domain->domain.geometry.aperture_end   = ~0UL;
 860	domain->domain.geometry.force_aperture = true;
 861
 862	return &domain->domain;
 863
 864err_lv2ent:
 865	free_pages((unsigned long)domain->lv2entcnt, 1);
 866err_counter:
 867	free_pages((unsigned long)domain->pgtable, 2);
 
 
 
 868err_pgtable:
 869	kfree(domain);
 870	return NULL;
 871}
 872
 873static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
 874{
 875	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 876	struct sysmmu_drvdata *data, *next;
 877	unsigned long flags;
 878	int i;
 879
 880	WARN_ON(!list_empty(&domain->clients));
 881
 882	spin_lock_irqsave(&domain->lock, flags);
 883
 884	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
 885		spin_lock(&data->lock);
 886		__sysmmu_disable(data);
 887		data->pgtable = 0;
 888		data->domain = NULL;
 889		list_del_init(&data->domain_node);
 890		spin_unlock(&data->lock);
 891	}
 892
 893	spin_unlock_irqrestore(&domain->lock, flags);
 894
 
 
 
 895	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
 896			 DMA_TO_DEVICE);
 897
 898	for (i = 0; i < NUM_LV1ENTRIES; i++)
 899		if (lv1ent_page(domain->pgtable + i)) {
 900			phys_addr_t base = lv2table_base(domain->pgtable + i);
 901
 902			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
 903					 DMA_TO_DEVICE);
 904			kmem_cache_free(lv2table_kmem_cache,
 905					phys_to_virt(base));
 906		}
 907
 908	free_pages((unsigned long)domain->pgtable, 2);
 909	free_pages((unsigned long)domain->lv2entcnt, 1);
 910	kfree(domain);
 911}
 912
 913static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
 914				    struct device *dev)
 915{
 916	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 917	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
 918	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
 919	struct sysmmu_drvdata *data, *next;
 920	unsigned long flags;
 921
 922	if (!has_sysmmu(dev) || owner->domain != iommu_domain)
 923		return;
 924
 925	mutex_lock(&owner->rpm_lock);
 926
 927	list_for_each_entry(data, &owner->controllers, owner_node) {
 928		pm_runtime_get_noresume(data->sysmmu);
 929		if (pm_runtime_active(data->sysmmu))
 930			__sysmmu_disable(data);
 931		pm_runtime_put(data->sysmmu);
 932	}
 933
 934	spin_lock_irqsave(&domain->lock, flags);
 935	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
 936		spin_lock(&data->lock);
 937		data->pgtable = 0;
 938		data->domain = NULL;
 939		list_del_init(&data->domain_node);
 940		spin_unlock(&data->lock);
 941	}
 942	owner->domain = NULL;
 943	spin_unlock_irqrestore(&domain->lock, flags);
 944
 945	mutex_unlock(&owner->rpm_lock);
 946
 947	dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
 948		&pagetable);
 949}
 950
 951static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
 952				   struct device *dev)
 953{
 954	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 955	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
 956	struct sysmmu_drvdata *data;
 957	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
 958	unsigned long flags;
 959
 960	if (!has_sysmmu(dev))
 961		return -ENODEV;
 962
 963	if (owner->domain)
 964		exynos_iommu_detach_device(owner->domain, dev);
 965
 966	mutex_lock(&owner->rpm_lock);
 967
 968	spin_lock_irqsave(&domain->lock, flags);
 969	list_for_each_entry(data, &owner->controllers, owner_node) {
 970		spin_lock(&data->lock);
 971		data->pgtable = pagetable;
 972		data->domain = domain;
 973		list_add_tail(&data->domain_node, &domain->clients);
 974		spin_unlock(&data->lock);
 975	}
 976	owner->domain = iommu_domain;
 977	spin_unlock_irqrestore(&domain->lock, flags);
 978
 979	list_for_each_entry(data, &owner->controllers, owner_node) {
 980		pm_runtime_get_noresume(data->sysmmu);
 981		if (pm_runtime_active(data->sysmmu))
 982			__sysmmu_enable(data);
 983		pm_runtime_put(data->sysmmu);
 984	}
 985
 986	mutex_unlock(&owner->rpm_lock);
 987
 988	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
 989		&pagetable);
 990
 991	return 0;
 992}
 993
 994static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
 995		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
 996{
 997	if (lv1ent_section(sent)) {
 998		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
 999		return ERR_PTR(-EADDRINUSE);
1000	}
1001
1002	if (lv1ent_fault(sent)) {
1003		dma_addr_t handle;
1004		sysmmu_pte_t *pent;
1005		bool need_flush_flpd_cache = lv1ent_zero(sent);
1006
1007		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
1008		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
1009		if (!pent)
1010			return ERR_PTR(-ENOMEM);
1011
1012		exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
1013		kmemleak_ignore(pent);
1014		*pgcounter = NUM_LV2ENTRIES;
1015		handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
1016					DMA_TO_DEVICE);
1017		if (dma_mapping_error(dma_dev, handle)) {
1018			kmem_cache_free(lv2table_kmem_cache, pent);
1019			return ERR_PTR(-EADDRINUSE);
1020		}
1021
1022		/*
1023		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
1024		 * FLPD cache may cache the address of zero_l2_table. This
1025		 * function replaces the zero_l2_table with new L2 page table
1026		 * to write valid mappings.
1027		 * Accessing the valid area may cause page fault since FLPD
1028		 * cache may still cache zero_l2_table for the valid area
1029		 * instead of new L2 page table that has the mapping
1030		 * information of the valid area.
1031		 * Thus any replacement of zero_l2_table with other valid L2
1032		 * page table must involve FLPD cache invalidation for System
1033		 * MMU v3.3.
1034		 * FLPD cache invalidation is performed with TLB invalidation
1035		 * by VPN without blocking. It is safe to invalidate TLB without
1036		 * blocking because the target address of TLB invalidation is
1037		 * not currently mapped.
1038		 */
1039		if (need_flush_flpd_cache) {
1040			struct sysmmu_drvdata *data;
1041
1042			spin_lock(&domain->lock);
1043			list_for_each_entry(data, &domain->clients, domain_node)
1044				sysmmu_tlb_invalidate_flpdcache(data, iova);
1045			spin_unlock(&domain->lock);
1046		}
1047	}
1048
1049	return page_entry(sent, iova);
1050}
1051
1052static int lv1set_section(struct exynos_iommu_domain *domain,
1053			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
1054			  phys_addr_t paddr, int prot, short *pgcnt)
1055{
1056	if (lv1ent_section(sent)) {
1057		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1058			iova);
1059		return -EADDRINUSE;
1060	}
1061
1062	if (lv1ent_page(sent)) {
1063		if (*pgcnt != NUM_LV2ENTRIES) {
1064			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1065				iova);
1066			return -EADDRINUSE;
1067		}
1068
1069		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
1070		*pgcnt = 0;
1071	}
1072
1073	exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
1074
1075	spin_lock(&domain->lock);
1076	if (lv1ent_page_zero(sent)) {
1077		struct sysmmu_drvdata *data;
1078		/*
1079		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1080		 * entry by speculative prefetch of SLPD which has no mapping.
1081		 */
1082		list_for_each_entry(data, &domain->clients, domain_node)
1083			sysmmu_tlb_invalidate_flpdcache(data, iova);
1084	}
1085	spin_unlock(&domain->lock);
1086
1087	return 0;
1088}
1089
1090static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1091		       int prot, short *pgcnt)
1092{
1093	if (size == SPAGE_SIZE) {
1094		if (WARN_ON(!lv2ent_fault(pent)))
1095			return -EADDRINUSE;
1096
1097		exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1098		*pgcnt -= 1;
1099	} else { /* size == LPAGE_SIZE */
1100		int i;
1101		dma_addr_t pent_base = virt_to_phys(pent);
1102
1103		dma_sync_single_for_cpu(dma_dev, pent_base,
1104					sizeof(*pent) * SPAGES_PER_LPAGE,
1105					DMA_TO_DEVICE);
1106		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1107			if (WARN_ON(!lv2ent_fault(pent))) {
1108				if (i > 0)
1109					memset(pent - i, 0, sizeof(*pent) * i);
1110				return -EADDRINUSE;
1111			}
1112
1113			*pent = mk_lv2ent_lpage(paddr, prot);
1114		}
1115		dma_sync_single_for_device(dma_dev, pent_base,
1116					   sizeof(*pent) * SPAGES_PER_LPAGE,
1117					   DMA_TO_DEVICE);
1118		*pgcnt -= SPAGES_PER_LPAGE;
1119	}
1120
1121	return 0;
1122}
1123
1124/*
1125 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1126 *
1127 * System MMU v3.x has advanced logic to improve address translation
1128 * performance with caching more page table entries by a page table walk.
1129 * However, the logic has a bug that while caching faulty page table entries,
1130 * System MMU reports page fault if the cached fault entry is hit even though
1131 * the fault entry is updated to a valid entry after the entry is cached.
1132 * To prevent caching faulty page table entries which may be updated to valid
1133 * entries later, the virtual memory manager should care about the workaround
1134 * for the problem. The following describes the workaround.
1135 *
1136 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1137 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1138 *
1139 * Precisely, any start address of I/O virtual region must be aligned with
1140 * the following sizes for System MMU v3.1 and v3.2.
1141 * System MMU v3.1: 128KiB
1142 * System MMU v3.2: 256KiB
1143 *
1144 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1145 * more workarounds.
1146 * - Any two consecutive I/O virtual regions must have a hole of size larger
1147 *   than or equal to 128KiB.
1148 * - Start address of an I/O virtual region must be aligned by 128KiB.
1149 */
1150static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1151			    unsigned long l_iova, phys_addr_t paddr, size_t size,
1152			    int prot, gfp_t gfp)
1153{
1154	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1155	sysmmu_pte_t *entry;
1156	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1157	unsigned long flags;
1158	int ret = -ENOMEM;
1159
1160	BUG_ON(domain->pgtable == NULL);
1161	prot &= SYSMMU_SUPPORTED_PROT_BITS;
1162
1163	spin_lock_irqsave(&domain->pgtablelock, flags);
1164
1165	entry = section_entry(domain->pgtable, iova);
1166
1167	if (size == SECT_SIZE) {
1168		ret = lv1set_section(domain, entry, iova, paddr, prot,
1169				     &domain->lv2entcnt[lv1ent_offset(iova)]);
1170	} else {
1171		sysmmu_pte_t *pent;
1172
1173		pent = alloc_lv2entry(domain, entry, iova,
1174				      &domain->lv2entcnt[lv1ent_offset(iova)]);
1175
1176		if (IS_ERR(pent))
1177			ret = PTR_ERR(pent);
1178		else
1179			ret = lv2set_page(pent, paddr, size, prot,
1180				       &domain->lv2entcnt[lv1ent_offset(iova)]);
1181	}
1182
1183	if (ret)
1184		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1185			__func__, ret, size, iova);
1186
1187	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1188
1189	return ret;
1190}
1191
1192static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1193					      sysmmu_iova_t iova, size_t size)
1194{
1195	struct sysmmu_drvdata *data;
1196	unsigned long flags;
1197
1198	spin_lock_irqsave(&domain->lock, flags);
1199
1200	list_for_each_entry(data, &domain->clients, domain_node)
1201		sysmmu_tlb_invalidate_entry(data, iova, size);
1202
1203	spin_unlock_irqrestore(&domain->lock, flags);
1204}
1205
1206static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1207				 unsigned long l_iova, size_t size,
1208				 struct iommu_iotlb_gather *gather)
1209{
1210	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1211	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1212	sysmmu_pte_t *ent;
1213	size_t err_pgsize;
1214	unsigned long flags;
1215
1216	BUG_ON(domain->pgtable == NULL);
1217
1218	spin_lock_irqsave(&domain->pgtablelock, flags);
1219
1220	ent = section_entry(domain->pgtable, iova);
1221
1222	if (lv1ent_section(ent)) {
1223		if (WARN_ON(size < SECT_SIZE)) {
1224			err_pgsize = SECT_SIZE;
1225			goto err;
1226		}
1227
1228		/* workaround for h/w bug in System MMU v3.3 */
1229		exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1230		size = SECT_SIZE;
1231		goto done;
1232	}
1233
1234	if (unlikely(lv1ent_fault(ent))) {
1235		if (size > SECT_SIZE)
1236			size = SECT_SIZE;
1237		goto done;
1238	}
1239
1240	/* lv1ent_page(sent) == true here */
1241
1242	ent = page_entry(ent, iova);
1243
1244	if (unlikely(lv2ent_fault(ent))) {
1245		size = SPAGE_SIZE;
1246		goto done;
1247	}
1248
1249	if (lv2ent_small(ent)) {
1250		exynos_iommu_set_pte(ent, 0);
1251		size = SPAGE_SIZE;
1252		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1253		goto done;
1254	}
1255
1256	/* lv1ent_large(ent) == true here */
1257	if (WARN_ON(size < LPAGE_SIZE)) {
1258		err_pgsize = LPAGE_SIZE;
1259		goto err;
1260	}
1261
1262	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1263				sizeof(*ent) * SPAGES_PER_LPAGE,
1264				DMA_TO_DEVICE);
1265	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1266	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1267				   sizeof(*ent) * SPAGES_PER_LPAGE,
1268				   DMA_TO_DEVICE);
1269	size = LPAGE_SIZE;
1270	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1271done:
1272	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1273
1274	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1275
1276	return size;
1277err:
1278	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1279
1280	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1281		__func__, size, iova, err_pgsize);
1282
1283	return 0;
1284}
1285
1286static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1287					  dma_addr_t iova)
1288{
1289	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1290	sysmmu_pte_t *entry;
1291	unsigned long flags;
1292	phys_addr_t phys = 0;
1293
1294	spin_lock_irqsave(&domain->pgtablelock, flags);
1295
1296	entry = section_entry(domain->pgtable, iova);
1297
1298	if (lv1ent_section(entry)) {
1299		phys = section_phys(entry) + section_offs(iova);
1300	} else if (lv1ent_page(entry)) {
1301		entry = page_entry(entry, iova);
1302
1303		if (lv2ent_large(entry))
1304			phys = lpage_phys(entry) + lpage_offs(iova);
1305		else if (lv2ent_small(entry))
1306			phys = spage_phys(entry) + spage_offs(iova);
1307	}
1308
1309	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1310
1311	return phys;
1312}
1313
1314static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1315{
1316	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1317	struct sysmmu_drvdata *data;
1318
1319	if (!has_sysmmu(dev))
1320		return ERR_PTR(-ENODEV);
1321
1322	list_for_each_entry(data, &owner->controllers, owner_node) {
1323		/*
1324		 * SYSMMU will be runtime activated via device link
1325		 * (dependency) to its master device, so there are no
1326		 * direct calls to pm_runtime_get/put in this driver.
1327		 */
1328		data->link = device_link_add(dev, data->sysmmu,
1329					     DL_FLAG_STATELESS |
1330					     DL_FLAG_PM_RUNTIME);
1331	}
1332
1333	/* There is always at least one entry, see exynos_iommu_of_xlate() */
1334	data = list_first_entry(&owner->controllers,
1335				struct sysmmu_drvdata, owner_node);
1336
1337	return &data->iommu;
1338}
1339
1340static void exynos_iommu_release_device(struct device *dev)
1341{
1342	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1343	struct sysmmu_drvdata *data;
1344
 
 
 
1345	if (owner->domain) {
1346		struct iommu_group *group = iommu_group_get(dev);
1347
1348		if (group) {
1349			WARN_ON(owner->domain !=
1350				iommu_group_default_domain(group));
1351			exynos_iommu_detach_device(owner->domain, dev);
1352			iommu_group_put(group);
1353		}
1354	}
1355
1356	list_for_each_entry(data, &owner->controllers, owner_node)
1357		device_link_del(data->link);
1358}
1359
1360static int exynos_iommu_of_xlate(struct device *dev,
1361				 struct of_phandle_args *spec)
1362{
1363	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1364	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1365	struct sysmmu_drvdata *data, *entry;
1366
1367	if (!sysmmu)
1368		return -ENODEV;
1369
1370	data = platform_get_drvdata(sysmmu);
1371	if (!data) {
1372		put_device(&sysmmu->dev);
1373		return -ENODEV;
1374	}
1375
1376	if (!owner) {
1377		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1378		if (!owner) {
1379			put_device(&sysmmu->dev);
1380			return -ENOMEM;
1381		}
1382
1383		INIT_LIST_HEAD(&owner->controllers);
1384		mutex_init(&owner->rpm_lock);
1385		dev_iommu_priv_set(dev, owner);
1386	}
1387
1388	list_for_each_entry(entry, &owner->controllers, owner_node)
1389		if (entry == data)
1390			return 0;
1391
1392	list_add_tail(&data->owner_node, &owner->controllers);
1393	data->master = dev;
1394
1395	return 0;
1396}
1397
1398static const struct iommu_ops exynos_iommu_ops = {
1399	.domain_alloc = exynos_iommu_domain_alloc,
 
 
 
 
 
 
1400	.device_group = generic_device_group,
1401	.probe_device = exynos_iommu_probe_device,
1402	.release_device = exynos_iommu_release_device,
1403	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1404	.of_xlate = exynos_iommu_of_xlate,
1405	.default_domain_ops = &(const struct iommu_domain_ops) {
1406		.attach_dev	= exynos_iommu_attach_device,
1407		.detach_dev	= exynos_iommu_detach_device,
1408		.map		= exynos_iommu_map,
1409		.unmap		= exynos_iommu_unmap,
1410		.iova_to_phys	= exynos_iommu_iova_to_phys,
1411		.free		= exynos_iommu_domain_free,
1412	}
1413};
1414
1415static int __init exynos_iommu_init(void)
1416{
1417	struct device_node *np;
1418	int ret;
1419
1420	np = of_find_matching_node(NULL, sysmmu_of_match);
1421	if (!np)
1422		return 0;
1423
1424	of_node_put(np);
1425
1426	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1427				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1428	if (!lv2table_kmem_cache) {
1429		pr_err("%s: Failed to create kmem cache\n", __func__);
1430		return -ENOMEM;
1431	}
1432
 
 
 
 
 
 
1433	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1434	if (zero_lv2_table == NULL) {
1435		pr_err("%s: Failed to allocate zero level2 page table\n",
1436			__func__);
1437		ret = -ENOMEM;
1438		goto err_zero_lv2;
1439	}
1440
1441	ret = platform_driver_register(&exynos_sysmmu_driver);
1442	if (ret) {
1443		pr_err("%s: Failed to register driver\n", __func__);
1444		goto err_reg_driver;
 
1445	}
1446
1447	return 0;
 
 
 
 
1448err_reg_driver:
1449	platform_driver_unregister(&exynos_sysmmu_driver);
1450err_zero_lv2:
1451	kmem_cache_destroy(lv2table_kmem_cache);
1452	return ret;
1453}
1454core_initcall(exynos_iommu_init);