Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 */
6
7#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8#define DEBUG
9#endif
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/err.h>
14#include <linux/io.h>
15#include <linux/iommu.h>
16#include <linux/interrupt.h>
17#include <linux/kmemleak.h>
18#include <linux/list.h>
19#include <linux/of.h>
20#include <linux/of_iommu.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/slab.h>
25#include <linux/dma-iommu.h>
26
27typedef u32 sysmmu_iova_t;
28typedef u32 sysmmu_pte_t;
29
30/* We do not consider super section mapping (16MB) */
31#define SECT_ORDER 20
32#define LPAGE_ORDER 16
33#define SPAGE_ORDER 12
34
35#define SECT_SIZE (1 << SECT_ORDER)
36#define LPAGE_SIZE (1 << LPAGE_ORDER)
37#define SPAGE_SIZE (1 << SPAGE_ORDER)
38
39#define SECT_MASK (~(SECT_SIZE - 1))
40#define LPAGE_MASK (~(LPAGE_SIZE - 1))
41#define SPAGE_MASK (~(SPAGE_SIZE - 1))
42
43#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
44 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
45#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
46#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
47#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
48 ((*(sent) & 3) == 1))
49#define lv1ent_section(sent) ((*(sent) & 3) == 2)
50
51#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
52#define lv2ent_small(pent) ((*(pent) & 2) == 2)
53#define lv2ent_large(pent) ((*(pent) & 3) == 1)
54
55/*
56 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
57 * v5.0 introduced support for 36bit physical address space by shifting
58 * all page entry values by 4 bits.
59 * All SYSMMU controllers in the system support the address spaces of the same
60 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
61 * value (0 or 4).
62 */
63static short PG_ENT_SHIFT = -1;
64#define SYSMMU_PG_ENT_SHIFT 0
65#define SYSMMU_V5_PG_ENT_SHIFT 4
66
67static const sysmmu_pte_t *LV1_PROT;
68static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
69 ((0 << 15) | (0 << 10)), /* no access */
70 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
71 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
72 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
73};
74static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
75 (0 << 4), /* no access */
76 (1 << 4), /* IOMMU_READ only */
77 (2 << 4), /* IOMMU_WRITE only */
78 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
79};
80
81static const sysmmu_pte_t *LV2_PROT;
82static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
83 ((0 << 9) | (0 << 4)), /* no access */
84 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
85 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
86 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
87};
88static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
89 (0 << 2), /* no access */
90 (1 << 2), /* IOMMU_READ only */
91 (2 << 2), /* IOMMU_WRITE only */
92 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
93};
94
95#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
96
97#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
98#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
99#define section_offs(iova) (iova & (SECT_SIZE - 1))
100#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
101#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
102#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
103#define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
104
105#define NUM_LV1ENTRIES 4096
106#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
107
108static u32 lv1ent_offset(sysmmu_iova_t iova)
109{
110 return iova >> SECT_ORDER;
111}
112
113static u32 lv2ent_offset(sysmmu_iova_t iova)
114{
115 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
116}
117
118#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
119#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
120
121#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
122#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
123
124#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
125#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
126#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
127#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
128
129#define CTRL_ENABLE 0x5
130#define CTRL_BLOCK 0x7
131#define CTRL_DISABLE 0x0
132
133#define CFG_LRU 0x1
134#define CFG_EAP (1 << 2)
135#define CFG_QOS(n) ((n & 0xF) << 7)
136#define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
137#define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
138#define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
139
140/* common registers */
141#define REG_MMU_CTRL 0x000
142#define REG_MMU_CFG 0x004
143#define REG_MMU_STATUS 0x008
144#define REG_MMU_VERSION 0x034
145
146#define MMU_MAJ_VER(val) ((val) >> 7)
147#define MMU_MIN_VER(val) ((val) & 0x7F)
148#define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
149
150#define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
151
152/* v1.x - v3.x registers */
153#define REG_MMU_FLUSH 0x00C
154#define REG_MMU_FLUSH_ENTRY 0x010
155#define REG_PT_BASE_ADDR 0x014
156#define REG_INT_STATUS 0x018
157#define REG_INT_CLEAR 0x01C
158
159#define REG_PAGE_FAULT_ADDR 0x024
160#define REG_AW_FAULT_ADDR 0x028
161#define REG_AR_FAULT_ADDR 0x02C
162#define REG_DEFAULT_SLAVE_ADDR 0x030
163
164/* v5.x registers */
165#define REG_V5_PT_BASE_PFN 0x00C
166#define REG_V5_MMU_FLUSH_ALL 0x010
167#define REG_V5_MMU_FLUSH_ENTRY 0x014
168#define REG_V5_MMU_FLUSH_RANGE 0x018
169#define REG_V5_MMU_FLUSH_START 0x020
170#define REG_V5_MMU_FLUSH_END 0x024
171#define REG_V5_INT_STATUS 0x060
172#define REG_V5_INT_CLEAR 0x064
173#define REG_V5_FAULT_AR_VA 0x070
174#define REG_V5_FAULT_AW_VA 0x080
175
176#define has_sysmmu(dev) (dev_iommu_priv_get(dev) != NULL)
177
178static struct device *dma_dev;
179static struct kmem_cache *lv2table_kmem_cache;
180static sysmmu_pte_t *zero_lv2_table;
181#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
182
183static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
184{
185 return pgtable + lv1ent_offset(iova);
186}
187
188static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
189{
190 return (sysmmu_pte_t *)phys_to_virt(
191 lv2table_base(sent)) + lv2ent_offset(iova);
192}
193
194/*
195 * IOMMU fault information register
196 */
197struct sysmmu_fault_info {
198 unsigned int bit; /* bit number in STATUS register */
199 unsigned short addr_reg; /* register to read VA fault address */
200 const char *name; /* human readable fault name */
201 unsigned int type; /* fault type for report_iommu_fault */
202};
203
204static const struct sysmmu_fault_info sysmmu_faults[] = {
205 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
206 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
207 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
208 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
209 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
210 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
211 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
212 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
213};
214
215static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
216 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
217 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
218 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
219 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
220 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
221 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
222 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
223 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
224 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
225 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
226};
227
228/*
229 * This structure is attached to dev->iommu->priv of the master device
230 * on device add, contains a list of SYSMMU controllers defined by device tree,
231 * which are bound to given master device. It is usually referenced by 'owner'
232 * pointer.
233*/
234struct exynos_iommu_owner {
235 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
236 struct iommu_domain *domain; /* domain this device is attached */
237 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
238};
239
240/*
241 * This structure exynos specific generalization of struct iommu_domain.
242 * It contains list of SYSMMU controllers from all master devices, which has
243 * been attached to this domain and page tables of IO address space defined by
244 * it. It is usually referenced by 'domain' pointer.
245 */
246struct exynos_iommu_domain {
247 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
248 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
249 short *lv2entcnt; /* free lv2 entry counter for each section */
250 spinlock_t lock; /* lock for modyfying list of clients */
251 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
252 struct iommu_domain domain; /* generic domain data structure */
253};
254
255/*
256 * This structure hold all data of a single SYSMMU controller, this includes
257 * hw resources like registers and clocks, pointers and list nodes to connect
258 * it to all other structures, internal state and parameters read from device
259 * tree. It is usually referenced by 'data' pointer.
260 */
261struct sysmmu_drvdata {
262 struct device *sysmmu; /* SYSMMU controller device */
263 struct device *master; /* master device (owner) */
264 struct device_link *link; /* runtime PM link to master */
265 void __iomem *sfrbase; /* our registers */
266 struct clk *clk; /* SYSMMU's clock */
267 struct clk *aclk; /* SYSMMU's aclk clock */
268 struct clk *pclk; /* SYSMMU's pclk clock */
269 struct clk *clk_master; /* master's device clock */
270 spinlock_t lock; /* lock for modyfying state */
271 bool active; /* current status */
272 struct exynos_iommu_domain *domain; /* domain we belong to */
273 struct list_head domain_node; /* node for domain clients list */
274 struct list_head owner_node; /* node for owner controllers list */
275 phys_addr_t pgtable; /* assigned page table structure */
276 unsigned int version; /* our version */
277
278 struct iommu_device iommu; /* IOMMU core handle */
279};
280
281static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
282{
283 return container_of(dom, struct exynos_iommu_domain, domain);
284}
285
286static void sysmmu_unblock(struct sysmmu_drvdata *data)
287{
288 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
289}
290
291static bool sysmmu_block(struct sysmmu_drvdata *data)
292{
293 int i = 120;
294
295 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
296 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
297 --i;
298
299 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
300 sysmmu_unblock(data);
301 return false;
302 }
303
304 return true;
305}
306
307static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
308{
309 if (MMU_MAJ_VER(data->version) < 5)
310 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
311 else
312 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
313}
314
315static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
316 sysmmu_iova_t iova, unsigned int num_inv)
317{
318 unsigned int i;
319
320 if (MMU_MAJ_VER(data->version) < 5) {
321 for (i = 0; i < num_inv; i++) {
322 writel((iova & SPAGE_MASK) | 1,
323 data->sfrbase + REG_MMU_FLUSH_ENTRY);
324 iova += SPAGE_SIZE;
325 }
326 } else {
327 if (num_inv == 1) {
328 writel((iova & SPAGE_MASK) | 1,
329 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
330 } else {
331 writel((iova & SPAGE_MASK),
332 data->sfrbase + REG_V5_MMU_FLUSH_START);
333 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
334 data->sfrbase + REG_V5_MMU_FLUSH_END);
335 writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
336 }
337 }
338}
339
340static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
341{
342 if (MMU_MAJ_VER(data->version) < 5)
343 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
344 else
345 writel(pgd >> PAGE_SHIFT,
346 data->sfrbase + REG_V5_PT_BASE_PFN);
347
348 __sysmmu_tlb_invalidate(data);
349}
350
351static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
352{
353 BUG_ON(clk_prepare_enable(data->clk_master));
354 BUG_ON(clk_prepare_enable(data->clk));
355 BUG_ON(clk_prepare_enable(data->pclk));
356 BUG_ON(clk_prepare_enable(data->aclk));
357}
358
359static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
360{
361 clk_disable_unprepare(data->aclk);
362 clk_disable_unprepare(data->pclk);
363 clk_disable_unprepare(data->clk);
364 clk_disable_unprepare(data->clk_master);
365}
366
367static void __sysmmu_get_version(struct sysmmu_drvdata *data)
368{
369 u32 ver;
370
371 __sysmmu_enable_clocks(data);
372
373 ver = readl(data->sfrbase + REG_MMU_VERSION);
374
375 /* controllers on some SoCs don't report proper version */
376 if (ver == 0x80000001u)
377 data->version = MAKE_MMU_VER(1, 0);
378 else
379 data->version = MMU_RAW_VER(ver);
380
381 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
382 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
383
384 __sysmmu_disable_clocks(data);
385}
386
387static void show_fault_information(struct sysmmu_drvdata *data,
388 const struct sysmmu_fault_info *finfo,
389 sysmmu_iova_t fault_addr)
390{
391 sysmmu_pte_t *ent;
392
393 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
394 dev_name(data->master), finfo->name, fault_addr);
395 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
396 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
397 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
398 if (lv1ent_page(ent)) {
399 ent = page_entry(ent, fault_addr);
400 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
401 }
402}
403
404static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
405{
406 /* SYSMMU is in blocked state when interrupt occurred. */
407 struct sysmmu_drvdata *data = dev_id;
408 const struct sysmmu_fault_info *finfo;
409 unsigned int i, n, itype;
410 sysmmu_iova_t fault_addr = -1;
411 unsigned short reg_status, reg_clear;
412 int ret = -ENOSYS;
413
414 WARN_ON(!data->active);
415
416 if (MMU_MAJ_VER(data->version) < 5) {
417 reg_status = REG_INT_STATUS;
418 reg_clear = REG_INT_CLEAR;
419 finfo = sysmmu_faults;
420 n = ARRAY_SIZE(sysmmu_faults);
421 } else {
422 reg_status = REG_V5_INT_STATUS;
423 reg_clear = REG_V5_INT_CLEAR;
424 finfo = sysmmu_v5_faults;
425 n = ARRAY_SIZE(sysmmu_v5_faults);
426 }
427
428 spin_lock(&data->lock);
429
430 clk_enable(data->clk_master);
431
432 itype = __ffs(readl(data->sfrbase + reg_status));
433 for (i = 0; i < n; i++, finfo++)
434 if (finfo->bit == itype)
435 break;
436 /* unknown/unsupported fault */
437 BUG_ON(i == n);
438
439 /* print debug message */
440 fault_addr = readl(data->sfrbase + finfo->addr_reg);
441 show_fault_information(data, finfo, fault_addr);
442
443 if (data->domain)
444 ret = report_iommu_fault(&data->domain->domain,
445 data->master, fault_addr, finfo->type);
446 /* fault is not recovered by fault handler */
447 BUG_ON(ret != 0);
448
449 writel(1 << itype, data->sfrbase + reg_clear);
450
451 sysmmu_unblock(data);
452
453 clk_disable(data->clk_master);
454
455 spin_unlock(&data->lock);
456
457 return IRQ_HANDLED;
458}
459
460static void __sysmmu_disable(struct sysmmu_drvdata *data)
461{
462 unsigned long flags;
463
464 clk_enable(data->clk_master);
465
466 spin_lock_irqsave(&data->lock, flags);
467 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
468 writel(0, data->sfrbase + REG_MMU_CFG);
469 data->active = false;
470 spin_unlock_irqrestore(&data->lock, flags);
471
472 __sysmmu_disable_clocks(data);
473}
474
475static void __sysmmu_init_config(struct sysmmu_drvdata *data)
476{
477 unsigned int cfg;
478
479 if (data->version <= MAKE_MMU_VER(3, 1))
480 cfg = CFG_LRU | CFG_QOS(15);
481 else if (data->version <= MAKE_MMU_VER(3, 2))
482 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
483 else
484 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
485
486 cfg |= CFG_EAP; /* enable access protection bits check */
487
488 writel(cfg, data->sfrbase + REG_MMU_CFG);
489}
490
491static void __sysmmu_enable(struct sysmmu_drvdata *data)
492{
493 unsigned long flags;
494
495 __sysmmu_enable_clocks(data);
496
497 spin_lock_irqsave(&data->lock, flags);
498 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
499 __sysmmu_init_config(data);
500 __sysmmu_set_ptbase(data, data->pgtable);
501 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
502 data->active = true;
503 spin_unlock_irqrestore(&data->lock, flags);
504
505 /*
506 * SYSMMU driver keeps master's clock enabled only for the short
507 * time, while accessing the registers. For performing address
508 * translation during DMA transaction it relies on the client
509 * driver to enable it.
510 */
511 clk_disable(data->clk_master);
512}
513
514static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
515 sysmmu_iova_t iova)
516{
517 unsigned long flags;
518
519 spin_lock_irqsave(&data->lock, flags);
520 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
521 clk_enable(data->clk_master);
522 if (sysmmu_block(data)) {
523 if (data->version >= MAKE_MMU_VER(5, 0))
524 __sysmmu_tlb_invalidate(data);
525 else
526 __sysmmu_tlb_invalidate_entry(data, iova, 1);
527 sysmmu_unblock(data);
528 }
529 clk_disable(data->clk_master);
530 }
531 spin_unlock_irqrestore(&data->lock, flags);
532}
533
534static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
535 sysmmu_iova_t iova, size_t size)
536{
537 unsigned long flags;
538
539 spin_lock_irqsave(&data->lock, flags);
540 if (data->active) {
541 unsigned int num_inv = 1;
542
543 clk_enable(data->clk_master);
544
545 /*
546 * L2TLB invalidation required
547 * 4KB page: 1 invalidation
548 * 64KB page: 16 invalidations
549 * 1MB page: 64 invalidations
550 * because it is set-associative TLB
551 * with 8-way and 64 sets.
552 * 1MB page can be cached in one of all sets.
553 * 64KB page can be one of 16 consecutive sets.
554 */
555 if (MMU_MAJ_VER(data->version) == 2)
556 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
557
558 if (sysmmu_block(data)) {
559 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
560 sysmmu_unblock(data);
561 }
562 clk_disable(data->clk_master);
563 }
564 spin_unlock_irqrestore(&data->lock, flags);
565}
566
567static const struct iommu_ops exynos_iommu_ops;
568
569static int exynos_sysmmu_probe(struct platform_device *pdev)
570{
571 int irq, ret;
572 struct device *dev = &pdev->dev;
573 struct sysmmu_drvdata *data;
574 struct resource *res;
575
576 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
577 if (!data)
578 return -ENOMEM;
579
580 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
581 data->sfrbase = devm_ioremap_resource(dev, res);
582 if (IS_ERR(data->sfrbase))
583 return PTR_ERR(data->sfrbase);
584
585 irq = platform_get_irq(pdev, 0);
586 if (irq <= 0)
587 return irq;
588
589 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
590 dev_name(dev), data);
591 if (ret) {
592 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
593 return ret;
594 }
595
596 data->clk = devm_clk_get(dev, "sysmmu");
597 if (PTR_ERR(data->clk) == -ENOENT)
598 data->clk = NULL;
599 else if (IS_ERR(data->clk))
600 return PTR_ERR(data->clk);
601
602 data->aclk = devm_clk_get(dev, "aclk");
603 if (PTR_ERR(data->aclk) == -ENOENT)
604 data->aclk = NULL;
605 else if (IS_ERR(data->aclk))
606 return PTR_ERR(data->aclk);
607
608 data->pclk = devm_clk_get(dev, "pclk");
609 if (PTR_ERR(data->pclk) == -ENOENT)
610 data->pclk = NULL;
611 else if (IS_ERR(data->pclk))
612 return PTR_ERR(data->pclk);
613
614 if (!data->clk && (!data->aclk || !data->pclk)) {
615 dev_err(dev, "Failed to get device clock(s)!\n");
616 return -ENOSYS;
617 }
618
619 data->clk_master = devm_clk_get(dev, "master");
620 if (PTR_ERR(data->clk_master) == -ENOENT)
621 data->clk_master = NULL;
622 else if (IS_ERR(data->clk_master))
623 return PTR_ERR(data->clk_master);
624
625 data->sysmmu = dev;
626 spin_lock_init(&data->lock);
627
628 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
629 dev_name(data->sysmmu));
630 if (ret)
631 return ret;
632
633 iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
634 iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
635
636 ret = iommu_device_register(&data->iommu);
637 if (ret)
638 return ret;
639
640 platform_set_drvdata(pdev, data);
641
642 __sysmmu_get_version(data);
643 if (PG_ENT_SHIFT < 0) {
644 if (MMU_MAJ_VER(data->version) < 5) {
645 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
646 LV1_PROT = SYSMMU_LV1_PROT;
647 LV2_PROT = SYSMMU_LV2_PROT;
648 } else {
649 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
650 LV1_PROT = SYSMMU_V5_LV1_PROT;
651 LV2_PROT = SYSMMU_V5_LV2_PROT;
652 }
653 }
654
655 /*
656 * use the first registered sysmmu device for performing
657 * dma mapping operations on iommu page tables (cpu cache flush)
658 */
659 if (!dma_dev)
660 dma_dev = &pdev->dev;
661
662 pm_runtime_enable(dev);
663
664 return 0;
665}
666
667static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
668{
669 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
670 struct device *master = data->master;
671
672 if (master) {
673 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
674
675 mutex_lock(&owner->rpm_lock);
676 if (data->domain) {
677 dev_dbg(data->sysmmu, "saving state\n");
678 __sysmmu_disable(data);
679 }
680 mutex_unlock(&owner->rpm_lock);
681 }
682 return 0;
683}
684
685static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
686{
687 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
688 struct device *master = data->master;
689
690 if (master) {
691 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
692
693 mutex_lock(&owner->rpm_lock);
694 if (data->domain) {
695 dev_dbg(data->sysmmu, "restoring state\n");
696 __sysmmu_enable(data);
697 }
698 mutex_unlock(&owner->rpm_lock);
699 }
700 return 0;
701}
702
703static const struct dev_pm_ops sysmmu_pm_ops = {
704 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
705 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
706 pm_runtime_force_resume)
707};
708
709static const struct of_device_id sysmmu_of_match[] = {
710 { .compatible = "samsung,exynos-sysmmu", },
711 { },
712};
713
714static struct platform_driver exynos_sysmmu_driver __refdata = {
715 .probe = exynos_sysmmu_probe,
716 .driver = {
717 .name = "exynos-sysmmu",
718 .of_match_table = sysmmu_of_match,
719 .pm = &sysmmu_pm_ops,
720 .suppress_bind_attrs = true,
721 }
722};
723
724static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
725{
726 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
727 DMA_TO_DEVICE);
728 *ent = cpu_to_le32(val);
729 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
730 DMA_TO_DEVICE);
731}
732
733static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
734{
735 struct exynos_iommu_domain *domain;
736 dma_addr_t handle;
737 int i;
738
739 /* Check if correct PTE offsets are initialized */
740 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
741
742 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
743 if (!domain)
744 return NULL;
745
746 if (type == IOMMU_DOMAIN_DMA) {
747 if (iommu_get_dma_cookie(&domain->domain) != 0)
748 goto err_pgtable;
749 } else if (type != IOMMU_DOMAIN_UNMANAGED) {
750 goto err_pgtable;
751 }
752
753 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
754 if (!domain->pgtable)
755 goto err_dma_cookie;
756
757 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
758 if (!domain->lv2entcnt)
759 goto err_counter;
760
761 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
762 for (i = 0; i < NUM_LV1ENTRIES; i++)
763 domain->pgtable[i] = ZERO_LV2LINK;
764
765 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
766 DMA_TO_DEVICE);
767 /* For mapping page table entries we rely on dma == phys */
768 BUG_ON(handle != virt_to_phys(domain->pgtable));
769 if (dma_mapping_error(dma_dev, handle))
770 goto err_lv2ent;
771
772 spin_lock_init(&domain->lock);
773 spin_lock_init(&domain->pgtablelock);
774 INIT_LIST_HEAD(&domain->clients);
775
776 domain->domain.geometry.aperture_start = 0;
777 domain->domain.geometry.aperture_end = ~0UL;
778 domain->domain.geometry.force_aperture = true;
779
780 return &domain->domain;
781
782err_lv2ent:
783 free_pages((unsigned long)domain->lv2entcnt, 1);
784err_counter:
785 free_pages((unsigned long)domain->pgtable, 2);
786err_dma_cookie:
787 if (type == IOMMU_DOMAIN_DMA)
788 iommu_put_dma_cookie(&domain->domain);
789err_pgtable:
790 kfree(domain);
791 return NULL;
792}
793
794static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
795{
796 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
797 struct sysmmu_drvdata *data, *next;
798 unsigned long flags;
799 int i;
800
801 WARN_ON(!list_empty(&domain->clients));
802
803 spin_lock_irqsave(&domain->lock, flags);
804
805 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
806 spin_lock(&data->lock);
807 __sysmmu_disable(data);
808 data->pgtable = 0;
809 data->domain = NULL;
810 list_del_init(&data->domain_node);
811 spin_unlock(&data->lock);
812 }
813
814 spin_unlock_irqrestore(&domain->lock, flags);
815
816 if (iommu_domain->type == IOMMU_DOMAIN_DMA)
817 iommu_put_dma_cookie(iommu_domain);
818
819 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
820 DMA_TO_DEVICE);
821
822 for (i = 0; i < NUM_LV1ENTRIES; i++)
823 if (lv1ent_page(domain->pgtable + i)) {
824 phys_addr_t base = lv2table_base(domain->pgtable + i);
825
826 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
827 DMA_TO_DEVICE);
828 kmem_cache_free(lv2table_kmem_cache,
829 phys_to_virt(base));
830 }
831
832 free_pages((unsigned long)domain->pgtable, 2);
833 free_pages((unsigned long)domain->lv2entcnt, 1);
834 kfree(domain);
835}
836
837static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
838 struct device *dev)
839{
840 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
841 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
842 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
843 struct sysmmu_drvdata *data, *next;
844 unsigned long flags;
845
846 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
847 return;
848
849 mutex_lock(&owner->rpm_lock);
850
851 list_for_each_entry(data, &owner->controllers, owner_node) {
852 pm_runtime_get_noresume(data->sysmmu);
853 if (pm_runtime_active(data->sysmmu))
854 __sysmmu_disable(data);
855 pm_runtime_put(data->sysmmu);
856 }
857
858 spin_lock_irqsave(&domain->lock, flags);
859 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
860 spin_lock(&data->lock);
861 data->pgtable = 0;
862 data->domain = NULL;
863 list_del_init(&data->domain_node);
864 spin_unlock(&data->lock);
865 }
866 owner->domain = NULL;
867 spin_unlock_irqrestore(&domain->lock, flags);
868
869 mutex_unlock(&owner->rpm_lock);
870
871 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
872 &pagetable);
873}
874
875static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
876 struct device *dev)
877{
878 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
879 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
880 struct sysmmu_drvdata *data;
881 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
882 unsigned long flags;
883
884 if (!has_sysmmu(dev))
885 return -ENODEV;
886
887 if (owner->domain)
888 exynos_iommu_detach_device(owner->domain, dev);
889
890 mutex_lock(&owner->rpm_lock);
891
892 spin_lock_irqsave(&domain->lock, flags);
893 list_for_each_entry(data, &owner->controllers, owner_node) {
894 spin_lock(&data->lock);
895 data->pgtable = pagetable;
896 data->domain = domain;
897 list_add_tail(&data->domain_node, &domain->clients);
898 spin_unlock(&data->lock);
899 }
900 owner->domain = iommu_domain;
901 spin_unlock_irqrestore(&domain->lock, flags);
902
903 list_for_each_entry(data, &owner->controllers, owner_node) {
904 pm_runtime_get_noresume(data->sysmmu);
905 if (pm_runtime_active(data->sysmmu))
906 __sysmmu_enable(data);
907 pm_runtime_put(data->sysmmu);
908 }
909
910 mutex_unlock(&owner->rpm_lock);
911
912 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
913 &pagetable);
914
915 return 0;
916}
917
918static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
919 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
920{
921 if (lv1ent_section(sent)) {
922 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
923 return ERR_PTR(-EADDRINUSE);
924 }
925
926 if (lv1ent_fault(sent)) {
927 dma_addr_t handle;
928 sysmmu_pte_t *pent;
929 bool need_flush_flpd_cache = lv1ent_zero(sent);
930
931 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
932 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
933 if (!pent)
934 return ERR_PTR(-ENOMEM);
935
936 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
937 kmemleak_ignore(pent);
938 *pgcounter = NUM_LV2ENTRIES;
939 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
940 DMA_TO_DEVICE);
941 if (dma_mapping_error(dma_dev, handle)) {
942 kmem_cache_free(lv2table_kmem_cache, pent);
943 return ERR_PTR(-EADDRINUSE);
944 }
945
946 /*
947 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
948 * FLPD cache may cache the address of zero_l2_table. This
949 * function replaces the zero_l2_table with new L2 page table
950 * to write valid mappings.
951 * Accessing the valid area may cause page fault since FLPD
952 * cache may still cache zero_l2_table for the valid area
953 * instead of new L2 page table that has the mapping
954 * information of the valid area.
955 * Thus any replacement of zero_l2_table with other valid L2
956 * page table must involve FLPD cache invalidation for System
957 * MMU v3.3.
958 * FLPD cache invalidation is performed with TLB invalidation
959 * by VPN without blocking. It is safe to invalidate TLB without
960 * blocking because the target address of TLB invalidation is
961 * not currently mapped.
962 */
963 if (need_flush_flpd_cache) {
964 struct sysmmu_drvdata *data;
965
966 spin_lock(&domain->lock);
967 list_for_each_entry(data, &domain->clients, domain_node)
968 sysmmu_tlb_invalidate_flpdcache(data, iova);
969 spin_unlock(&domain->lock);
970 }
971 }
972
973 return page_entry(sent, iova);
974}
975
976static int lv1set_section(struct exynos_iommu_domain *domain,
977 sysmmu_pte_t *sent, sysmmu_iova_t iova,
978 phys_addr_t paddr, int prot, short *pgcnt)
979{
980 if (lv1ent_section(sent)) {
981 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
982 iova);
983 return -EADDRINUSE;
984 }
985
986 if (lv1ent_page(sent)) {
987 if (*pgcnt != NUM_LV2ENTRIES) {
988 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
989 iova);
990 return -EADDRINUSE;
991 }
992
993 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
994 *pgcnt = 0;
995 }
996
997 exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
998
999 spin_lock(&domain->lock);
1000 if (lv1ent_page_zero(sent)) {
1001 struct sysmmu_drvdata *data;
1002 /*
1003 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1004 * entry by speculative prefetch of SLPD which has no mapping.
1005 */
1006 list_for_each_entry(data, &domain->clients, domain_node)
1007 sysmmu_tlb_invalidate_flpdcache(data, iova);
1008 }
1009 spin_unlock(&domain->lock);
1010
1011 return 0;
1012}
1013
1014static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1015 int prot, short *pgcnt)
1016{
1017 if (size == SPAGE_SIZE) {
1018 if (WARN_ON(!lv2ent_fault(pent)))
1019 return -EADDRINUSE;
1020
1021 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1022 *pgcnt -= 1;
1023 } else { /* size == LPAGE_SIZE */
1024 int i;
1025 dma_addr_t pent_base = virt_to_phys(pent);
1026
1027 dma_sync_single_for_cpu(dma_dev, pent_base,
1028 sizeof(*pent) * SPAGES_PER_LPAGE,
1029 DMA_TO_DEVICE);
1030 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1031 if (WARN_ON(!lv2ent_fault(pent))) {
1032 if (i > 0)
1033 memset(pent - i, 0, sizeof(*pent) * i);
1034 return -EADDRINUSE;
1035 }
1036
1037 *pent = mk_lv2ent_lpage(paddr, prot);
1038 }
1039 dma_sync_single_for_device(dma_dev, pent_base,
1040 sizeof(*pent) * SPAGES_PER_LPAGE,
1041 DMA_TO_DEVICE);
1042 *pgcnt -= SPAGES_PER_LPAGE;
1043 }
1044
1045 return 0;
1046}
1047
1048/*
1049 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1050 *
1051 * System MMU v3.x has advanced logic to improve address translation
1052 * performance with caching more page table entries by a page table walk.
1053 * However, the logic has a bug that while caching faulty page table entries,
1054 * System MMU reports page fault if the cached fault entry is hit even though
1055 * the fault entry is updated to a valid entry after the entry is cached.
1056 * To prevent caching faulty page table entries which may be updated to valid
1057 * entries later, the virtual memory manager should care about the workaround
1058 * for the problem. The following describes the workaround.
1059 *
1060 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1061 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1062 *
1063 * Precisely, any start address of I/O virtual region must be aligned with
1064 * the following sizes for System MMU v3.1 and v3.2.
1065 * System MMU v3.1: 128KiB
1066 * System MMU v3.2: 256KiB
1067 *
1068 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1069 * more workarounds.
1070 * - Any two consecutive I/O virtual regions must have a hole of size larger
1071 * than or equal to 128KiB.
1072 * - Start address of an I/O virtual region must be aligned by 128KiB.
1073 */
1074static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1075 unsigned long l_iova, phys_addr_t paddr, size_t size,
1076 int prot, gfp_t gfp)
1077{
1078 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1079 sysmmu_pte_t *entry;
1080 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1081 unsigned long flags;
1082 int ret = -ENOMEM;
1083
1084 BUG_ON(domain->pgtable == NULL);
1085 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1086
1087 spin_lock_irqsave(&domain->pgtablelock, flags);
1088
1089 entry = section_entry(domain->pgtable, iova);
1090
1091 if (size == SECT_SIZE) {
1092 ret = lv1set_section(domain, entry, iova, paddr, prot,
1093 &domain->lv2entcnt[lv1ent_offset(iova)]);
1094 } else {
1095 sysmmu_pte_t *pent;
1096
1097 pent = alloc_lv2entry(domain, entry, iova,
1098 &domain->lv2entcnt[lv1ent_offset(iova)]);
1099
1100 if (IS_ERR(pent))
1101 ret = PTR_ERR(pent);
1102 else
1103 ret = lv2set_page(pent, paddr, size, prot,
1104 &domain->lv2entcnt[lv1ent_offset(iova)]);
1105 }
1106
1107 if (ret)
1108 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1109 __func__, ret, size, iova);
1110
1111 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1112
1113 return ret;
1114}
1115
1116static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1117 sysmmu_iova_t iova, size_t size)
1118{
1119 struct sysmmu_drvdata *data;
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&domain->lock, flags);
1123
1124 list_for_each_entry(data, &domain->clients, domain_node)
1125 sysmmu_tlb_invalidate_entry(data, iova, size);
1126
1127 spin_unlock_irqrestore(&domain->lock, flags);
1128}
1129
1130static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1131 unsigned long l_iova, size_t size,
1132 struct iommu_iotlb_gather *gather)
1133{
1134 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1135 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1136 sysmmu_pte_t *ent;
1137 size_t err_pgsize;
1138 unsigned long flags;
1139
1140 BUG_ON(domain->pgtable == NULL);
1141
1142 spin_lock_irqsave(&domain->pgtablelock, flags);
1143
1144 ent = section_entry(domain->pgtable, iova);
1145
1146 if (lv1ent_section(ent)) {
1147 if (WARN_ON(size < SECT_SIZE)) {
1148 err_pgsize = SECT_SIZE;
1149 goto err;
1150 }
1151
1152 /* workaround for h/w bug in System MMU v3.3 */
1153 exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1154 size = SECT_SIZE;
1155 goto done;
1156 }
1157
1158 if (unlikely(lv1ent_fault(ent))) {
1159 if (size > SECT_SIZE)
1160 size = SECT_SIZE;
1161 goto done;
1162 }
1163
1164 /* lv1ent_page(sent) == true here */
1165
1166 ent = page_entry(ent, iova);
1167
1168 if (unlikely(lv2ent_fault(ent))) {
1169 size = SPAGE_SIZE;
1170 goto done;
1171 }
1172
1173 if (lv2ent_small(ent)) {
1174 exynos_iommu_set_pte(ent, 0);
1175 size = SPAGE_SIZE;
1176 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1177 goto done;
1178 }
1179
1180 /* lv1ent_large(ent) == true here */
1181 if (WARN_ON(size < LPAGE_SIZE)) {
1182 err_pgsize = LPAGE_SIZE;
1183 goto err;
1184 }
1185
1186 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1187 sizeof(*ent) * SPAGES_PER_LPAGE,
1188 DMA_TO_DEVICE);
1189 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1190 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1191 sizeof(*ent) * SPAGES_PER_LPAGE,
1192 DMA_TO_DEVICE);
1193 size = LPAGE_SIZE;
1194 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1195done:
1196 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1197
1198 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1199
1200 return size;
1201err:
1202 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1203
1204 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1205 __func__, size, iova, err_pgsize);
1206
1207 return 0;
1208}
1209
1210static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1211 dma_addr_t iova)
1212{
1213 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1214 sysmmu_pte_t *entry;
1215 unsigned long flags;
1216 phys_addr_t phys = 0;
1217
1218 spin_lock_irqsave(&domain->pgtablelock, flags);
1219
1220 entry = section_entry(domain->pgtable, iova);
1221
1222 if (lv1ent_section(entry)) {
1223 phys = section_phys(entry) + section_offs(iova);
1224 } else if (lv1ent_page(entry)) {
1225 entry = page_entry(entry, iova);
1226
1227 if (lv2ent_large(entry))
1228 phys = lpage_phys(entry) + lpage_offs(iova);
1229 else if (lv2ent_small(entry))
1230 phys = spage_phys(entry) + spage_offs(iova);
1231 }
1232
1233 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1234
1235 return phys;
1236}
1237
1238static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1239{
1240 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1241 struct sysmmu_drvdata *data;
1242
1243 if (!has_sysmmu(dev))
1244 return ERR_PTR(-ENODEV);
1245
1246 list_for_each_entry(data, &owner->controllers, owner_node) {
1247 /*
1248 * SYSMMU will be runtime activated via device link
1249 * (dependency) to its master device, so there are no
1250 * direct calls to pm_runtime_get/put in this driver.
1251 */
1252 data->link = device_link_add(dev, data->sysmmu,
1253 DL_FLAG_STATELESS |
1254 DL_FLAG_PM_RUNTIME);
1255 }
1256
1257 /* There is always at least one entry, see exynos_iommu_of_xlate() */
1258 data = list_first_entry(&owner->controllers,
1259 struct sysmmu_drvdata, owner_node);
1260
1261 return &data->iommu;
1262}
1263
1264static void exynos_iommu_release_device(struct device *dev)
1265{
1266 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1267 struct sysmmu_drvdata *data;
1268
1269 if (!has_sysmmu(dev))
1270 return;
1271
1272 if (owner->domain) {
1273 struct iommu_group *group = iommu_group_get(dev);
1274
1275 if (group) {
1276 WARN_ON(owner->domain !=
1277 iommu_group_default_domain(group));
1278 exynos_iommu_detach_device(owner->domain, dev);
1279 iommu_group_put(group);
1280 }
1281 }
1282
1283 list_for_each_entry(data, &owner->controllers, owner_node)
1284 device_link_del(data->link);
1285}
1286
1287static int exynos_iommu_of_xlate(struct device *dev,
1288 struct of_phandle_args *spec)
1289{
1290 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1291 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1292 struct sysmmu_drvdata *data, *entry;
1293
1294 if (!sysmmu)
1295 return -ENODEV;
1296
1297 data = platform_get_drvdata(sysmmu);
1298 if (!data) {
1299 put_device(&sysmmu->dev);
1300 return -ENODEV;
1301 }
1302
1303 if (!owner) {
1304 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1305 if (!owner) {
1306 put_device(&sysmmu->dev);
1307 return -ENOMEM;
1308 }
1309
1310 INIT_LIST_HEAD(&owner->controllers);
1311 mutex_init(&owner->rpm_lock);
1312 dev_iommu_priv_set(dev, owner);
1313 }
1314
1315 list_for_each_entry(entry, &owner->controllers, owner_node)
1316 if (entry == data)
1317 return 0;
1318
1319 list_add_tail(&data->owner_node, &owner->controllers);
1320 data->master = dev;
1321
1322 return 0;
1323}
1324
1325static const struct iommu_ops exynos_iommu_ops = {
1326 .domain_alloc = exynos_iommu_domain_alloc,
1327 .domain_free = exynos_iommu_domain_free,
1328 .attach_dev = exynos_iommu_attach_device,
1329 .detach_dev = exynos_iommu_detach_device,
1330 .map = exynos_iommu_map,
1331 .unmap = exynos_iommu_unmap,
1332 .iova_to_phys = exynos_iommu_iova_to_phys,
1333 .device_group = generic_device_group,
1334 .probe_device = exynos_iommu_probe_device,
1335 .release_device = exynos_iommu_release_device,
1336 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1337 .of_xlate = exynos_iommu_of_xlate,
1338};
1339
1340static int __init exynos_iommu_init(void)
1341{
1342 struct device_node *np;
1343 int ret;
1344
1345 np = of_find_matching_node(NULL, sysmmu_of_match);
1346 if (!np)
1347 return 0;
1348
1349 of_node_put(np);
1350
1351 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1352 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1353 if (!lv2table_kmem_cache) {
1354 pr_err("%s: Failed to create kmem cache\n", __func__);
1355 return -ENOMEM;
1356 }
1357
1358 ret = platform_driver_register(&exynos_sysmmu_driver);
1359 if (ret) {
1360 pr_err("%s: Failed to register driver\n", __func__);
1361 goto err_reg_driver;
1362 }
1363
1364 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1365 if (zero_lv2_table == NULL) {
1366 pr_err("%s: Failed to allocate zero level2 page table\n",
1367 __func__);
1368 ret = -ENOMEM;
1369 goto err_zero_lv2;
1370 }
1371
1372 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1373 if (ret) {
1374 pr_err("%s: Failed to register exynos-iommu driver.\n",
1375 __func__);
1376 goto err_set_iommu;
1377 }
1378
1379 return 0;
1380err_set_iommu:
1381 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1382err_zero_lv2:
1383 platform_driver_unregister(&exynos_sysmmu_driver);
1384err_reg_driver:
1385 kmem_cache_destroy(lv2table_kmem_cache);
1386 return ret;
1387}
1388core_initcall(exynos_iommu_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 */
6
7#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8#define DEBUG
9#endif
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/err.h>
14#include <linux/io.h>
15#include <linux/iommu.h>
16#include <linux/interrupt.h>
17#include <linux/kmemleak.h>
18#include <linux/list.h>
19#include <linux/of.h>
20#include <linux/of_platform.h>
21#include <linux/platform_device.h>
22#include <linux/pm_runtime.h>
23#include <linux/slab.h>
24
25typedef u32 sysmmu_iova_t;
26typedef u32 sysmmu_pte_t;
27
28/* We do not consider super section mapping (16MB) */
29#define SECT_ORDER 20
30#define LPAGE_ORDER 16
31#define SPAGE_ORDER 12
32
33#define SECT_SIZE (1 << SECT_ORDER)
34#define LPAGE_SIZE (1 << LPAGE_ORDER)
35#define SPAGE_SIZE (1 << SPAGE_ORDER)
36
37#define SECT_MASK (~(SECT_SIZE - 1))
38#define LPAGE_MASK (~(LPAGE_SIZE - 1))
39#define SPAGE_MASK (~(SPAGE_SIZE - 1))
40
41#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
42 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
43#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
44#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
45#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
46 ((*(sent) & 3) == 1))
47#define lv1ent_section(sent) ((*(sent) & 3) == 2)
48
49#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
50#define lv2ent_small(pent) ((*(pent) & 2) == 2)
51#define lv2ent_large(pent) ((*(pent) & 3) == 1)
52
53/*
54 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
55 * v5.0 introduced support for 36bit physical address space by shifting
56 * all page entry values by 4 bits.
57 * All SYSMMU controllers in the system support the address spaces of the same
58 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
59 * value (0 or 4).
60 */
61static short PG_ENT_SHIFT = -1;
62#define SYSMMU_PG_ENT_SHIFT 0
63#define SYSMMU_V5_PG_ENT_SHIFT 4
64
65static const sysmmu_pte_t *LV1_PROT;
66static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
67 ((0 << 15) | (0 << 10)), /* no access */
68 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
69 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
70 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
71};
72static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
73 (0 << 4), /* no access */
74 (1 << 4), /* IOMMU_READ only */
75 (2 << 4), /* IOMMU_WRITE only */
76 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
77};
78
79static const sysmmu_pte_t *LV2_PROT;
80static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
81 ((0 << 9) | (0 << 4)), /* no access */
82 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
83 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
84 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
85};
86static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
87 (0 << 2), /* no access */
88 (1 << 2), /* IOMMU_READ only */
89 (2 << 2), /* IOMMU_WRITE only */
90 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
91};
92
93#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
94
95#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
96#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
97#define section_offs(iova) (iova & (SECT_SIZE - 1))
98#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
99#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
100#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
101#define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
102
103#define NUM_LV1ENTRIES 4096
104#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
105
106static u32 lv1ent_offset(sysmmu_iova_t iova)
107{
108 return iova >> SECT_ORDER;
109}
110
111static u32 lv2ent_offset(sysmmu_iova_t iova)
112{
113 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
114}
115
116#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
117#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
118
119#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
120#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
121
122#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
123#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
124#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
125#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
126
127#define CTRL_ENABLE 0x5
128#define CTRL_BLOCK 0x7
129#define CTRL_DISABLE 0x0
130
131#define CFG_LRU 0x1
132#define CFG_EAP (1 << 2)
133#define CFG_QOS(n) ((n & 0xF) << 7)
134#define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
135#define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
136#define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
137
138#define CTRL_VM_ENABLE BIT(0)
139#define CTRL_VM_FAULT_MODE_STALL BIT(3)
140#define CAPA0_CAPA1_EXIST BIT(11)
141#define CAPA1_VCR_ENABLED BIT(14)
142
143/* common registers */
144#define REG_MMU_CTRL 0x000
145#define REG_MMU_CFG 0x004
146#define REG_MMU_STATUS 0x008
147#define REG_MMU_VERSION 0x034
148
149#define MMU_MAJ_VER(val) ((val) >> 7)
150#define MMU_MIN_VER(val) ((val) & 0x7F)
151#define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
152
153#define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
154
155/* v1.x - v3.x registers */
156#define REG_PAGE_FAULT_ADDR 0x024
157#define REG_AW_FAULT_ADDR 0x028
158#define REG_AR_FAULT_ADDR 0x02C
159#define REG_DEFAULT_SLAVE_ADDR 0x030
160
161/* v5.x registers */
162#define REG_V5_FAULT_AR_VA 0x070
163#define REG_V5_FAULT_AW_VA 0x080
164
165/* v7.x registers */
166#define REG_V7_CAPA0 0x870
167#define REG_V7_CAPA1 0x874
168#define REG_V7_CTRL_VM 0x8000
169
170#define has_sysmmu(dev) (dev_iommu_priv_get(dev) != NULL)
171
172static struct device *dma_dev;
173static struct kmem_cache *lv2table_kmem_cache;
174static sysmmu_pte_t *zero_lv2_table;
175#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
176
177static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
178{
179 return pgtable + lv1ent_offset(iova);
180}
181
182static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
183{
184 return (sysmmu_pte_t *)phys_to_virt(
185 lv2table_base(sent)) + lv2ent_offset(iova);
186}
187
188/*
189 * IOMMU fault information register
190 */
191struct sysmmu_fault_info {
192 unsigned int bit; /* bit number in STATUS register */
193 unsigned short addr_reg; /* register to read VA fault address */
194 const char *name; /* human readable fault name */
195 unsigned int type; /* fault type for report_iommu_fault */
196};
197
198static const struct sysmmu_fault_info sysmmu_faults[] = {
199 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
200 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
201 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
202 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
203 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
204 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
205 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
206 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
207};
208
209static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
210 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
211 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
212 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
213 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
214 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
215 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
216 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
217 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
218 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
219 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
220};
221
222/*
223 * This structure is attached to dev->iommu->priv of the master device
224 * on device add, contains a list of SYSMMU controllers defined by device tree,
225 * which are bound to given master device. It is usually referenced by 'owner'
226 * pointer.
227*/
228struct exynos_iommu_owner {
229 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
230 struct iommu_domain *domain; /* domain this device is attached */
231 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
232};
233
234/*
235 * This structure exynos specific generalization of struct iommu_domain.
236 * It contains list of SYSMMU controllers from all master devices, which has
237 * been attached to this domain and page tables of IO address space defined by
238 * it. It is usually referenced by 'domain' pointer.
239 */
240struct exynos_iommu_domain {
241 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
242 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
243 short *lv2entcnt; /* free lv2 entry counter for each section */
244 spinlock_t lock; /* lock for modyfying list of clients */
245 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
246 struct iommu_domain domain; /* generic domain data structure */
247};
248
249/*
250 * SysMMU version specific data. Contains offsets for the registers which can
251 * be found in different SysMMU variants, but have different offset values.
252 */
253struct sysmmu_variant {
254 u32 pt_base; /* page table base address (physical) */
255 u32 flush_all; /* invalidate all TLB entries */
256 u32 flush_entry; /* invalidate specific TLB entry */
257 u32 flush_range; /* invalidate TLB entries in specified range */
258 u32 flush_start; /* start address of range invalidation */
259 u32 flush_end; /* end address of range invalidation */
260 u32 int_status; /* interrupt status information */
261 u32 int_clear; /* clear the interrupt */
262};
263
264/*
265 * This structure hold all data of a single SYSMMU controller, this includes
266 * hw resources like registers and clocks, pointers and list nodes to connect
267 * it to all other structures, internal state and parameters read from device
268 * tree. It is usually referenced by 'data' pointer.
269 */
270struct sysmmu_drvdata {
271 struct device *sysmmu; /* SYSMMU controller device */
272 struct device *master; /* master device (owner) */
273 struct device_link *link; /* runtime PM link to master */
274 void __iomem *sfrbase; /* our registers */
275 struct clk *clk; /* SYSMMU's clock */
276 struct clk *aclk; /* SYSMMU's aclk clock */
277 struct clk *pclk; /* SYSMMU's pclk clock */
278 struct clk *clk_master; /* master's device clock */
279 spinlock_t lock; /* lock for modyfying state */
280 bool active; /* current status */
281 struct exynos_iommu_domain *domain; /* domain we belong to */
282 struct list_head domain_node; /* node for domain clients list */
283 struct list_head owner_node; /* node for owner controllers list */
284 phys_addr_t pgtable; /* assigned page table structure */
285 unsigned int version; /* our version */
286
287 struct iommu_device iommu; /* IOMMU core handle */
288 const struct sysmmu_variant *variant; /* version specific data */
289
290 /* v7 fields */
291 bool has_vcr; /* virtual machine control register */
292};
293
294#define SYSMMU_REG(data, reg) ((data)->sfrbase + (data)->variant->reg)
295
296/* SysMMU v1..v3 */
297static const struct sysmmu_variant sysmmu_v1_variant = {
298 .flush_all = 0x0c,
299 .flush_entry = 0x10,
300 .pt_base = 0x14,
301 .int_status = 0x18,
302 .int_clear = 0x1c,
303};
304
305/* SysMMU v5 and v7 (non-VM capable) */
306static const struct sysmmu_variant sysmmu_v5_variant = {
307 .pt_base = 0x0c,
308 .flush_all = 0x10,
309 .flush_entry = 0x14,
310 .flush_range = 0x18,
311 .flush_start = 0x20,
312 .flush_end = 0x24,
313 .int_status = 0x60,
314 .int_clear = 0x64,
315};
316
317/* SysMMU v7: VM capable register set */
318static const struct sysmmu_variant sysmmu_v7_vm_variant = {
319 .pt_base = 0x800c,
320 .flush_all = 0x8010,
321 .flush_entry = 0x8014,
322 .flush_range = 0x8018,
323 .flush_start = 0x8020,
324 .flush_end = 0x8024,
325 .int_status = 0x60,
326 .int_clear = 0x64,
327};
328
329static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
330{
331 return container_of(dom, struct exynos_iommu_domain, domain);
332}
333
334static void sysmmu_unblock(struct sysmmu_drvdata *data)
335{
336 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
337}
338
339static bool sysmmu_block(struct sysmmu_drvdata *data)
340{
341 int i = 120;
342
343 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
344 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
345 --i;
346
347 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
348 sysmmu_unblock(data);
349 return false;
350 }
351
352 return true;
353}
354
355static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
356{
357 writel(0x1, SYSMMU_REG(data, flush_all));
358}
359
360static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
361 sysmmu_iova_t iova, unsigned int num_inv)
362{
363 unsigned int i;
364
365 if (MMU_MAJ_VER(data->version) < 5 || num_inv == 1) {
366 for (i = 0; i < num_inv; i++) {
367 writel((iova & SPAGE_MASK) | 1,
368 SYSMMU_REG(data, flush_entry));
369 iova += SPAGE_SIZE;
370 }
371 } else {
372 writel(iova & SPAGE_MASK, SYSMMU_REG(data, flush_start));
373 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
374 SYSMMU_REG(data, flush_end));
375 writel(0x1, SYSMMU_REG(data, flush_range));
376 }
377}
378
379static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
380{
381 u32 pt_base;
382
383 if (MMU_MAJ_VER(data->version) < 5)
384 pt_base = pgd;
385 else
386 pt_base = pgd >> SPAGE_ORDER;
387
388 writel(pt_base, SYSMMU_REG(data, pt_base));
389 __sysmmu_tlb_invalidate(data);
390}
391
392static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
393{
394 BUG_ON(clk_prepare_enable(data->clk_master));
395 BUG_ON(clk_prepare_enable(data->clk));
396 BUG_ON(clk_prepare_enable(data->pclk));
397 BUG_ON(clk_prepare_enable(data->aclk));
398}
399
400static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
401{
402 clk_disable_unprepare(data->aclk);
403 clk_disable_unprepare(data->pclk);
404 clk_disable_unprepare(data->clk);
405 clk_disable_unprepare(data->clk_master);
406}
407
408static bool __sysmmu_has_capa1(struct sysmmu_drvdata *data)
409{
410 u32 capa0 = readl(data->sfrbase + REG_V7_CAPA0);
411
412 return capa0 & CAPA0_CAPA1_EXIST;
413}
414
415static void __sysmmu_get_vcr(struct sysmmu_drvdata *data)
416{
417 u32 capa1 = readl(data->sfrbase + REG_V7_CAPA1);
418
419 data->has_vcr = capa1 & CAPA1_VCR_ENABLED;
420}
421
422static void __sysmmu_get_version(struct sysmmu_drvdata *data)
423{
424 u32 ver;
425
426 __sysmmu_enable_clocks(data);
427
428 ver = readl(data->sfrbase + REG_MMU_VERSION);
429
430 /* controllers on some SoCs don't report proper version */
431 if (ver == 0x80000001u)
432 data->version = MAKE_MMU_VER(1, 0);
433 else
434 data->version = MMU_RAW_VER(ver);
435
436 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
437 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
438
439 if (MMU_MAJ_VER(data->version) < 5) {
440 data->variant = &sysmmu_v1_variant;
441 } else if (MMU_MAJ_VER(data->version) < 7) {
442 data->variant = &sysmmu_v5_variant;
443 } else {
444 if (__sysmmu_has_capa1(data))
445 __sysmmu_get_vcr(data);
446 if (data->has_vcr)
447 data->variant = &sysmmu_v7_vm_variant;
448 else
449 data->variant = &sysmmu_v5_variant;
450 }
451
452 __sysmmu_disable_clocks(data);
453}
454
455static void show_fault_information(struct sysmmu_drvdata *data,
456 const struct sysmmu_fault_info *finfo,
457 sysmmu_iova_t fault_addr)
458{
459 sysmmu_pte_t *ent;
460
461 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
462 dev_name(data->master), finfo->name, fault_addr);
463 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
464 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
465 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
466 if (lv1ent_page(ent)) {
467 ent = page_entry(ent, fault_addr);
468 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
469 }
470}
471
472static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
473{
474 /* SYSMMU is in blocked state when interrupt occurred. */
475 struct sysmmu_drvdata *data = dev_id;
476 const struct sysmmu_fault_info *finfo;
477 unsigned int i, n, itype;
478 sysmmu_iova_t fault_addr;
479 int ret = -ENOSYS;
480
481 WARN_ON(!data->active);
482
483 if (MMU_MAJ_VER(data->version) < 5) {
484 finfo = sysmmu_faults;
485 n = ARRAY_SIZE(sysmmu_faults);
486 } else {
487 finfo = sysmmu_v5_faults;
488 n = ARRAY_SIZE(sysmmu_v5_faults);
489 }
490
491 spin_lock(&data->lock);
492
493 clk_enable(data->clk_master);
494
495 itype = __ffs(readl(SYSMMU_REG(data, int_status)));
496 for (i = 0; i < n; i++, finfo++)
497 if (finfo->bit == itype)
498 break;
499 /* unknown/unsupported fault */
500 BUG_ON(i == n);
501
502 /* print debug message */
503 fault_addr = readl(data->sfrbase + finfo->addr_reg);
504 show_fault_information(data, finfo, fault_addr);
505
506 if (data->domain)
507 ret = report_iommu_fault(&data->domain->domain,
508 data->master, fault_addr, finfo->type);
509 /* fault is not recovered by fault handler */
510 BUG_ON(ret != 0);
511
512 writel(1 << itype, SYSMMU_REG(data, int_clear));
513
514 sysmmu_unblock(data);
515
516 clk_disable(data->clk_master);
517
518 spin_unlock(&data->lock);
519
520 return IRQ_HANDLED;
521}
522
523static void __sysmmu_disable(struct sysmmu_drvdata *data)
524{
525 unsigned long flags;
526
527 clk_enable(data->clk_master);
528
529 spin_lock_irqsave(&data->lock, flags);
530 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
531 writel(0, data->sfrbase + REG_MMU_CFG);
532 data->active = false;
533 spin_unlock_irqrestore(&data->lock, flags);
534
535 __sysmmu_disable_clocks(data);
536}
537
538static void __sysmmu_init_config(struct sysmmu_drvdata *data)
539{
540 unsigned int cfg;
541
542 if (data->version <= MAKE_MMU_VER(3, 1))
543 cfg = CFG_LRU | CFG_QOS(15);
544 else if (data->version <= MAKE_MMU_VER(3, 2))
545 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
546 else
547 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
548
549 cfg |= CFG_EAP; /* enable access protection bits check */
550
551 writel(cfg, data->sfrbase + REG_MMU_CFG);
552}
553
554static void __sysmmu_enable_vid(struct sysmmu_drvdata *data)
555{
556 u32 ctrl;
557
558 if (MMU_MAJ_VER(data->version) < 7 || !data->has_vcr)
559 return;
560
561 ctrl = readl(data->sfrbase + REG_V7_CTRL_VM);
562 ctrl |= CTRL_VM_ENABLE | CTRL_VM_FAULT_MODE_STALL;
563 writel(ctrl, data->sfrbase + REG_V7_CTRL_VM);
564}
565
566static void __sysmmu_enable(struct sysmmu_drvdata *data)
567{
568 unsigned long flags;
569
570 __sysmmu_enable_clocks(data);
571
572 spin_lock_irqsave(&data->lock, flags);
573 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
574 __sysmmu_init_config(data);
575 __sysmmu_set_ptbase(data, data->pgtable);
576 __sysmmu_enable_vid(data);
577 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
578 data->active = true;
579 spin_unlock_irqrestore(&data->lock, flags);
580
581 /*
582 * SYSMMU driver keeps master's clock enabled only for the short
583 * time, while accessing the registers. For performing address
584 * translation during DMA transaction it relies on the client
585 * driver to enable it.
586 */
587 clk_disable(data->clk_master);
588}
589
590static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
591 sysmmu_iova_t iova)
592{
593 unsigned long flags;
594
595 spin_lock_irqsave(&data->lock, flags);
596 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
597 clk_enable(data->clk_master);
598 if (sysmmu_block(data)) {
599 if (data->version >= MAKE_MMU_VER(5, 0))
600 __sysmmu_tlb_invalidate(data);
601 else
602 __sysmmu_tlb_invalidate_entry(data, iova, 1);
603 sysmmu_unblock(data);
604 }
605 clk_disable(data->clk_master);
606 }
607 spin_unlock_irqrestore(&data->lock, flags);
608}
609
610static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
611 sysmmu_iova_t iova, size_t size)
612{
613 unsigned long flags;
614
615 spin_lock_irqsave(&data->lock, flags);
616 if (data->active) {
617 unsigned int num_inv = 1;
618
619 clk_enable(data->clk_master);
620
621 /*
622 * L2TLB invalidation required
623 * 4KB page: 1 invalidation
624 * 64KB page: 16 invalidations
625 * 1MB page: 64 invalidations
626 * because it is set-associative TLB
627 * with 8-way and 64 sets.
628 * 1MB page can be cached in one of all sets.
629 * 64KB page can be one of 16 consecutive sets.
630 */
631 if (MMU_MAJ_VER(data->version) == 2)
632 num_inv = min_t(unsigned int, size / SPAGE_SIZE, 64);
633
634 if (sysmmu_block(data)) {
635 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
636 sysmmu_unblock(data);
637 }
638 clk_disable(data->clk_master);
639 }
640 spin_unlock_irqrestore(&data->lock, flags);
641}
642
643static const struct iommu_ops exynos_iommu_ops;
644
645static int exynos_sysmmu_probe(struct platform_device *pdev)
646{
647 int irq, ret;
648 struct device *dev = &pdev->dev;
649 struct sysmmu_drvdata *data;
650 struct resource *res;
651
652 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
653 if (!data)
654 return -ENOMEM;
655
656 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
657 data->sfrbase = devm_ioremap_resource(dev, res);
658 if (IS_ERR(data->sfrbase))
659 return PTR_ERR(data->sfrbase);
660
661 irq = platform_get_irq(pdev, 0);
662 if (irq <= 0)
663 return irq;
664
665 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
666 dev_name(dev), data);
667 if (ret) {
668 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
669 return ret;
670 }
671
672 data->clk = devm_clk_get(dev, "sysmmu");
673 if (PTR_ERR(data->clk) == -ENOENT)
674 data->clk = NULL;
675 else if (IS_ERR(data->clk))
676 return PTR_ERR(data->clk);
677
678 data->aclk = devm_clk_get(dev, "aclk");
679 if (PTR_ERR(data->aclk) == -ENOENT)
680 data->aclk = NULL;
681 else if (IS_ERR(data->aclk))
682 return PTR_ERR(data->aclk);
683
684 data->pclk = devm_clk_get(dev, "pclk");
685 if (PTR_ERR(data->pclk) == -ENOENT)
686 data->pclk = NULL;
687 else if (IS_ERR(data->pclk))
688 return PTR_ERR(data->pclk);
689
690 if (!data->clk && (!data->aclk || !data->pclk)) {
691 dev_err(dev, "Failed to get device clock(s)!\n");
692 return -ENOSYS;
693 }
694
695 data->clk_master = devm_clk_get(dev, "master");
696 if (PTR_ERR(data->clk_master) == -ENOENT)
697 data->clk_master = NULL;
698 else if (IS_ERR(data->clk_master))
699 return PTR_ERR(data->clk_master);
700
701 data->sysmmu = dev;
702 spin_lock_init(&data->lock);
703
704 __sysmmu_get_version(data);
705
706 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
707 dev_name(data->sysmmu));
708 if (ret)
709 return ret;
710
711 platform_set_drvdata(pdev, data);
712
713 if (PG_ENT_SHIFT < 0) {
714 if (MMU_MAJ_VER(data->version) < 5) {
715 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
716 LV1_PROT = SYSMMU_LV1_PROT;
717 LV2_PROT = SYSMMU_LV2_PROT;
718 } else {
719 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
720 LV1_PROT = SYSMMU_V5_LV1_PROT;
721 LV2_PROT = SYSMMU_V5_LV2_PROT;
722 }
723 }
724
725 if (MMU_MAJ_VER(data->version) >= 5) {
726 ret = dma_set_mask(dev, DMA_BIT_MASK(36));
727 if (ret) {
728 dev_err(dev, "Unable to set DMA mask: %d\n", ret);
729 goto err_dma_set_mask;
730 }
731 }
732
733 /*
734 * use the first registered sysmmu device for performing
735 * dma mapping operations on iommu page tables (cpu cache flush)
736 */
737 if (!dma_dev)
738 dma_dev = &pdev->dev;
739
740 pm_runtime_enable(dev);
741
742 ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
743 if (ret)
744 goto err_dma_set_mask;
745
746 return 0;
747
748err_dma_set_mask:
749 iommu_device_sysfs_remove(&data->iommu);
750 return ret;
751}
752
753static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
754{
755 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
756 struct device *master = data->master;
757
758 if (master) {
759 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
760
761 mutex_lock(&owner->rpm_lock);
762 if (data->domain) {
763 dev_dbg(data->sysmmu, "saving state\n");
764 __sysmmu_disable(data);
765 }
766 mutex_unlock(&owner->rpm_lock);
767 }
768 return 0;
769}
770
771static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
772{
773 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
774 struct device *master = data->master;
775
776 if (master) {
777 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
778
779 mutex_lock(&owner->rpm_lock);
780 if (data->domain) {
781 dev_dbg(data->sysmmu, "restoring state\n");
782 __sysmmu_enable(data);
783 }
784 mutex_unlock(&owner->rpm_lock);
785 }
786 return 0;
787}
788
789static const struct dev_pm_ops sysmmu_pm_ops = {
790 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
791 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
792 pm_runtime_force_resume)
793};
794
795static const struct of_device_id sysmmu_of_match[] = {
796 { .compatible = "samsung,exynos-sysmmu", },
797 { },
798};
799
800static struct platform_driver exynos_sysmmu_driver __refdata = {
801 .probe = exynos_sysmmu_probe,
802 .driver = {
803 .name = "exynos-sysmmu",
804 .of_match_table = sysmmu_of_match,
805 .pm = &sysmmu_pm_ops,
806 .suppress_bind_attrs = true,
807 }
808};
809
810static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
811{
812 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
813 DMA_TO_DEVICE);
814 *ent = cpu_to_le32(val);
815 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
816 DMA_TO_DEVICE);
817}
818
819static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
820{
821 struct exynos_iommu_domain *domain;
822 dma_addr_t handle;
823 int i;
824
825 /* Check if correct PTE offsets are initialized */
826 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
827
828 if (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_UNMANAGED)
829 return NULL;
830
831 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
832 if (!domain)
833 return NULL;
834
835 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
836 if (!domain->pgtable)
837 goto err_pgtable;
838
839 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
840 if (!domain->lv2entcnt)
841 goto err_counter;
842
843 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
844 for (i = 0; i < NUM_LV1ENTRIES; i++)
845 domain->pgtable[i] = ZERO_LV2LINK;
846
847 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
848 DMA_TO_DEVICE);
849 /* For mapping page table entries we rely on dma == phys */
850 BUG_ON(handle != virt_to_phys(domain->pgtable));
851 if (dma_mapping_error(dma_dev, handle))
852 goto err_lv2ent;
853
854 spin_lock_init(&domain->lock);
855 spin_lock_init(&domain->pgtablelock);
856 INIT_LIST_HEAD(&domain->clients);
857
858 domain->domain.geometry.aperture_start = 0;
859 domain->domain.geometry.aperture_end = ~0UL;
860 domain->domain.geometry.force_aperture = true;
861
862 return &domain->domain;
863
864err_lv2ent:
865 free_pages((unsigned long)domain->lv2entcnt, 1);
866err_counter:
867 free_pages((unsigned long)domain->pgtable, 2);
868err_pgtable:
869 kfree(domain);
870 return NULL;
871}
872
873static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
874{
875 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
876 struct sysmmu_drvdata *data, *next;
877 unsigned long flags;
878 int i;
879
880 WARN_ON(!list_empty(&domain->clients));
881
882 spin_lock_irqsave(&domain->lock, flags);
883
884 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
885 spin_lock(&data->lock);
886 __sysmmu_disable(data);
887 data->pgtable = 0;
888 data->domain = NULL;
889 list_del_init(&data->domain_node);
890 spin_unlock(&data->lock);
891 }
892
893 spin_unlock_irqrestore(&domain->lock, flags);
894
895 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
896 DMA_TO_DEVICE);
897
898 for (i = 0; i < NUM_LV1ENTRIES; i++)
899 if (lv1ent_page(domain->pgtable + i)) {
900 phys_addr_t base = lv2table_base(domain->pgtable + i);
901
902 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
903 DMA_TO_DEVICE);
904 kmem_cache_free(lv2table_kmem_cache,
905 phys_to_virt(base));
906 }
907
908 free_pages((unsigned long)domain->pgtable, 2);
909 free_pages((unsigned long)domain->lv2entcnt, 1);
910 kfree(domain);
911}
912
913static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
914 struct device *dev)
915{
916 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
917 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
918 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
919 struct sysmmu_drvdata *data, *next;
920 unsigned long flags;
921
922 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
923 return;
924
925 mutex_lock(&owner->rpm_lock);
926
927 list_for_each_entry(data, &owner->controllers, owner_node) {
928 pm_runtime_get_noresume(data->sysmmu);
929 if (pm_runtime_active(data->sysmmu))
930 __sysmmu_disable(data);
931 pm_runtime_put(data->sysmmu);
932 }
933
934 spin_lock_irqsave(&domain->lock, flags);
935 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
936 spin_lock(&data->lock);
937 data->pgtable = 0;
938 data->domain = NULL;
939 list_del_init(&data->domain_node);
940 spin_unlock(&data->lock);
941 }
942 owner->domain = NULL;
943 spin_unlock_irqrestore(&domain->lock, flags);
944
945 mutex_unlock(&owner->rpm_lock);
946
947 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
948 &pagetable);
949}
950
951static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
952 struct device *dev)
953{
954 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
955 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
956 struct sysmmu_drvdata *data;
957 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
958 unsigned long flags;
959
960 if (!has_sysmmu(dev))
961 return -ENODEV;
962
963 if (owner->domain)
964 exynos_iommu_detach_device(owner->domain, dev);
965
966 mutex_lock(&owner->rpm_lock);
967
968 spin_lock_irqsave(&domain->lock, flags);
969 list_for_each_entry(data, &owner->controllers, owner_node) {
970 spin_lock(&data->lock);
971 data->pgtable = pagetable;
972 data->domain = domain;
973 list_add_tail(&data->domain_node, &domain->clients);
974 spin_unlock(&data->lock);
975 }
976 owner->domain = iommu_domain;
977 spin_unlock_irqrestore(&domain->lock, flags);
978
979 list_for_each_entry(data, &owner->controllers, owner_node) {
980 pm_runtime_get_noresume(data->sysmmu);
981 if (pm_runtime_active(data->sysmmu))
982 __sysmmu_enable(data);
983 pm_runtime_put(data->sysmmu);
984 }
985
986 mutex_unlock(&owner->rpm_lock);
987
988 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
989 &pagetable);
990
991 return 0;
992}
993
994static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
995 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
996{
997 if (lv1ent_section(sent)) {
998 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
999 return ERR_PTR(-EADDRINUSE);
1000 }
1001
1002 if (lv1ent_fault(sent)) {
1003 dma_addr_t handle;
1004 sysmmu_pte_t *pent;
1005 bool need_flush_flpd_cache = lv1ent_zero(sent);
1006
1007 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
1008 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
1009 if (!pent)
1010 return ERR_PTR(-ENOMEM);
1011
1012 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
1013 kmemleak_ignore(pent);
1014 *pgcounter = NUM_LV2ENTRIES;
1015 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
1016 DMA_TO_DEVICE);
1017 if (dma_mapping_error(dma_dev, handle)) {
1018 kmem_cache_free(lv2table_kmem_cache, pent);
1019 return ERR_PTR(-EADDRINUSE);
1020 }
1021
1022 /*
1023 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
1024 * FLPD cache may cache the address of zero_l2_table. This
1025 * function replaces the zero_l2_table with new L2 page table
1026 * to write valid mappings.
1027 * Accessing the valid area may cause page fault since FLPD
1028 * cache may still cache zero_l2_table for the valid area
1029 * instead of new L2 page table that has the mapping
1030 * information of the valid area.
1031 * Thus any replacement of zero_l2_table with other valid L2
1032 * page table must involve FLPD cache invalidation for System
1033 * MMU v3.3.
1034 * FLPD cache invalidation is performed with TLB invalidation
1035 * by VPN without blocking. It is safe to invalidate TLB without
1036 * blocking because the target address of TLB invalidation is
1037 * not currently mapped.
1038 */
1039 if (need_flush_flpd_cache) {
1040 struct sysmmu_drvdata *data;
1041
1042 spin_lock(&domain->lock);
1043 list_for_each_entry(data, &domain->clients, domain_node)
1044 sysmmu_tlb_invalidate_flpdcache(data, iova);
1045 spin_unlock(&domain->lock);
1046 }
1047 }
1048
1049 return page_entry(sent, iova);
1050}
1051
1052static int lv1set_section(struct exynos_iommu_domain *domain,
1053 sysmmu_pte_t *sent, sysmmu_iova_t iova,
1054 phys_addr_t paddr, int prot, short *pgcnt)
1055{
1056 if (lv1ent_section(sent)) {
1057 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1058 iova);
1059 return -EADDRINUSE;
1060 }
1061
1062 if (lv1ent_page(sent)) {
1063 if (*pgcnt != NUM_LV2ENTRIES) {
1064 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1065 iova);
1066 return -EADDRINUSE;
1067 }
1068
1069 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
1070 *pgcnt = 0;
1071 }
1072
1073 exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
1074
1075 spin_lock(&domain->lock);
1076 if (lv1ent_page_zero(sent)) {
1077 struct sysmmu_drvdata *data;
1078 /*
1079 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1080 * entry by speculative prefetch of SLPD which has no mapping.
1081 */
1082 list_for_each_entry(data, &domain->clients, domain_node)
1083 sysmmu_tlb_invalidate_flpdcache(data, iova);
1084 }
1085 spin_unlock(&domain->lock);
1086
1087 return 0;
1088}
1089
1090static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1091 int prot, short *pgcnt)
1092{
1093 if (size == SPAGE_SIZE) {
1094 if (WARN_ON(!lv2ent_fault(pent)))
1095 return -EADDRINUSE;
1096
1097 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1098 *pgcnt -= 1;
1099 } else { /* size == LPAGE_SIZE */
1100 int i;
1101 dma_addr_t pent_base = virt_to_phys(pent);
1102
1103 dma_sync_single_for_cpu(dma_dev, pent_base,
1104 sizeof(*pent) * SPAGES_PER_LPAGE,
1105 DMA_TO_DEVICE);
1106 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1107 if (WARN_ON(!lv2ent_fault(pent))) {
1108 if (i > 0)
1109 memset(pent - i, 0, sizeof(*pent) * i);
1110 return -EADDRINUSE;
1111 }
1112
1113 *pent = mk_lv2ent_lpage(paddr, prot);
1114 }
1115 dma_sync_single_for_device(dma_dev, pent_base,
1116 sizeof(*pent) * SPAGES_PER_LPAGE,
1117 DMA_TO_DEVICE);
1118 *pgcnt -= SPAGES_PER_LPAGE;
1119 }
1120
1121 return 0;
1122}
1123
1124/*
1125 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1126 *
1127 * System MMU v3.x has advanced logic to improve address translation
1128 * performance with caching more page table entries by a page table walk.
1129 * However, the logic has a bug that while caching faulty page table entries,
1130 * System MMU reports page fault if the cached fault entry is hit even though
1131 * the fault entry is updated to a valid entry after the entry is cached.
1132 * To prevent caching faulty page table entries which may be updated to valid
1133 * entries later, the virtual memory manager should care about the workaround
1134 * for the problem. The following describes the workaround.
1135 *
1136 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1137 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1138 *
1139 * Precisely, any start address of I/O virtual region must be aligned with
1140 * the following sizes for System MMU v3.1 and v3.2.
1141 * System MMU v3.1: 128KiB
1142 * System MMU v3.2: 256KiB
1143 *
1144 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1145 * more workarounds.
1146 * - Any two consecutive I/O virtual regions must have a hole of size larger
1147 * than or equal to 128KiB.
1148 * - Start address of an I/O virtual region must be aligned by 128KiB.
1149 */
1150static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1151 unsigned long l_iova, phys_addr_t paddr, size_t size,
1152 int prot, gfp_t gfp)
1153{
1154 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1155 sysmmu_pte_t *entry;
1156 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1157 unsigned long flags;
1158 int ret = -ENOMEM;
1159
1160 BUG_ON(domain->pgtable == NULL);
1161 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1162
1163 spin_lock_irqsave(&domain->pgtablelock, flags);
1164
1165 entry = section_entry(domain->pgtable, iova);
1166
1167 if (size == SECT_SIZE) {
1168 ret = lv1set_section(domain, entry, iova, paddr, prot,
1169 &domain->lv2entcnt[lv1ent_offset(iova)]);
1170 } else {
1171 sysmmu_pte_t *pent;
1172
1173 pent = alloc_lv2entry(domain, entry, iova,
1174 &domain->lv2entcnt[lv1ent_offset(iova)]);
1175
1176 if (IS_ERR(pent))
1177 ret = PTR_ERR(pent);
1178 else
1179 ret = lv2set_page(pent, paddr, size, prot,
1180 &domain->lv2entcnt[lv1ent_offset(iova)]);
1181 }
1182
1183 if (ret)
1184 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1185 __func__, ret, size, iova);
1186
1187 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1188
1189 return ret;
1190}
1191
1192static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1193 sysmmu_iova_t iova, size_t size)
1194{
1195 struct sysmmu_drvdata *data;
1196 unsigned long flags;
1197
1198 spin_lock_irqsave(&domain->lock, flags);
1199
1200 list_for_each_entry(data, &domain->clients, domain_node)
1201 sysmmu_tlb_invalidate_entry(data, iova, size);
1202
1203 spin_unlock_irqrestore(&domain->lock, flags);
1204}
1205
1206static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1207 unsigned long l_iova, size_t size,
1208 struct iommu_iotlb_gather *gather)
1209{
1210 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1211 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1212 sysmmu_pte_t *ent;
1213 size_t err_pgsize;
1214 unsigned long flags;
1215
1216 BUG_ON(domain->pgtable == NULL);
1217
1218 spin_lock_irqsave(&domain->pgtablelock, flags);
1219
1220 ent = section_entry(domain->pgtable, iova);
1221
1222 if (lv1ent_section(ent)) {
1223 if (WARN_ON(size < SECT_SIZE)) {
1224 err_pgsize = SECT_SIZE;
1225 goto err;
1226 }
1227
1228 /* workaround for h/w bug in System MMU v3.3 */
1229 exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1230 size = SECT_SIZE;
1231 goto done;
1232 }
1233
1234 if (unlikely(lv1ent_fault(ent))) {
1235 if (size > SECT_SIZE)
1236 size = SECT_SIZE;
1237 goto done;
1238 }
1239
1240 /* lv1ent_page(sent) == true here */
1241
1242 ent = page_entry(ent, iova);
1243
1244 if (unlikely(lv2ent_fault(ent))) {
1245 size = SPAGE_SIZE;
1246 goto done;
1247 }
1248
1249 if (lv2ent_small(ent)) {
1250 exynos_iommu_set_pte(ent, 0);
1251 size = SPAGE_SIZE;
1252 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1253 goto done;
1254 }
1255
1256 /* lv1ent_large(ent) == true here */
1257 if (WARN_ON(size < LPAGE_SIZE)) {
1258 err_pgsize = LPAGE_SIZE;
1259 goto err;
1260 }
1261
1262 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1263 sizeof(*ent) * SPAGES_PER_LPAGE,
1264 DMA_TO_DEVICE);
1265 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1266 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1267 sizeof(*ent) * SPAGES_PER_LPAGE,
1268 DMA_TO_DEVICE);
1269 size = LPAGE_SIZE;
1270 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1271done:
1272 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1273
1274 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1275
1276 return size;
1277err:
1278 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1279
1280 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1281 __func__, size, iova, err_pgsize);
1282
1283 return 0;
1284}
1285
1286static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1287 dma_addr_t iova)
1288{
1289 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1290 sysmmu_pte_t *entry;
1291 unsigned long flags;
1292 phys_addr_t phys = 0;
1293
1294 spin_lock_irqsave(&domain->pgtablelock, flags);
1295
1296 entry = section_entry(domain->pgtable, iova);
1297
1298 if (lv1ent_section(entry)) {
1299 phys = section_phys(entry) + section_offs(iova);
1300 } else if (lv1ent_page(entry)) {
1301 entry = page_entry(entry, iova);
1302
1303 if (lv2ent_large(entry))
1304 phys = lpage_phys(entry) + lpage_offs(iova);
1305 else if (lv2ent_small(entry))
1306 phys = spage_phys(entry) + spage_offs(iova);
1307 }
1308
1309 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1310
1311 return phys;
1312}
1313
1314static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1315{
1316 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1317 struct sysmmu_drvdata *data;
1318
1319 if (!has_sysmmu(dev))
1320 return ERR_PTR(-ENODEV);
1321
1322 list_for_each_entry(data, &owner->controllers, owner_node) {
1323 /*
1324 * SYSMMU will be runtime activated via device link
1325 * (dependency) to its master device, so there are no
1326 * direct calls to pm_runtime_get/put in this driver.
1327 */
1328 data->link = device_link_add(dev, data->sysmmu,
1329 DL_FLAG_STATELESS |
1330 DL_FLAG_PM_RUNTIME);
1331 }
1332
1333 /* There is always at least one entry, see exynos_iommu_of_xlate() */
1334 data = list_first_entry(&owner->controllers,
1335 struct sysmmu_drvdata, owner_node);
1336
1337 return &data->iommu;
1338}
1339
1340static void exynos_iommu_release_device(struct device *dev)
1341{
1342 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1343 struct sysmmu_drvdata *data;
1344
1345 if (owner->domain) {
1346 struct iommu_group *group = iommu_group_get(dev);
1347
1348 if (group) {
1349 WARN_ON(owner->domain !=
1350 iommu_group_default_domain(group));
1351 exynos_iommu_detach_device(owner->domain, dev);
1352 iommu_group_put(group);
1353 }
1354 }
1355
1356 list_for_each_entry(data, &owner->controllers, owner_node)
1357 device_link_del(data->link);
1358}
1359
1360static int exynos_iommu_of_xlate(struct device *dev,
1361 struct of_phandle_args *spec)
1362{
1363 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1364 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1365 struct sysmmu_drvdata *data, *entry;
1366
1367 if (!sysmmu)
1368 return -ENODEV;
1369
1370 data = platform_get_drvdata(sysmmu);
1371 if (!data) {
1372 put_device(&sysmmu->dev);
1373 return -ENODEV;
1374 }
1375
1376 if (!owner) {
1377 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1378 if (!owner) {
1379 put_device(&sysmmu->dev);
1380 return -ENOMEM;
1381 }
1382
1383 INIT_LIST_HEAD(&owner->controllers);
1384 mutex_init(&owner->rpm_lock);
1385 dev_iommu_priv_set(dev, owner);
1386 }
1387
1388 list_for_each_entry(entry, &owner->controllers, owner_node)
1389 if (entry == data)
1390 return 0;
1391
1392 list_add_tail(&data->owner_node, &owner->controllers);
1393 data->master = dev;
1394
1395 return 0;
1396}
1397
1398static const struct iommu_ops exynos_iommu_ops = {
1399 .domain_alloc = exynos_iommu_domain_alloc,
1400 .device_group = generic_device_group,
1401 .probe_device = exynos_iommu_probe_device,
1402 .release_device = exynos_iommu_release_device,
1403 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1404 .of_xlate = exynos_iommu_of_xlate,
1405 .default_domain_ops = &(const struct iommu_domain_ops) {
1406 .attach_dev = exynos_iommu_attach_device,
1407 .detach_dev = exynos_iommu_detach_device,
1408 .map = exynos_iommu_map,
1409 .unmap = exynos_iommu_unmap,
1410 .iova_to_phys = exynos_iommu_iova_to_phys,
1411 .free = exynos_iommu_domain_free,
1412 }
1413};
1414
1415static int __init exynos_iommu_init(void)
1416{
1417 struct device_node *np;
1418 int ret;
1419
1420 np = of_find_matching_node(NULL, sysmmu_of_match);
1421 if (!np)
1422 return 0;
1423
1424 of_node_put(np);
1425
1426 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1427 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1428 if (!lv2table_kmem_cache) {
1429 pr_err("%s: Failed to create kmem cache\n", __func__);
1430 return -ENOMEM;
1431 }
1432
1433 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1434 if (zero_lv2_table == NULL) {
1435 pr_err("%s: Failed to allocate zero level2 page table\n",
1436 __func__);
1437 ret = -ENOMEM;
1438 goto err_zero_lv2;
1439 }
1440
1441 ret = platform_driver_register(&exynos_sysmmu_driver);
1442 if (ret) {
1443 pr_err("%s: Failed to register driver\n", __func__);
1444 goto err_reg_driver;
1445 }
1446
1447 return 0;
1448err_reg_driver:
1449 platform_driver_unregister(&exynos_sysmmu_driver);
1450err_zero_lv2:
1451 kmem_cache_destroy(lv2table_kmem_cache);
1452 return ret;
1453}
1454core_initcall(exynos_iommu_init);