Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  w83627ehf - Driver for the hardware monitoring functionality of
   4 *		the Winbond W83627EHF Super-I/O chip
   5 *  Copyright (C) 2005-2012  Jean Delvare <jdelvare@suse.de>
   6 *  Copyright (C) 2006  Yuan Mu (Winbond),
   7 *			Rudolf Marek <r.marek@assembler.cz>
   8 *			David Hubbard <david.c.hubbard@gmail.com>
   9 *			Daniel J Blueman <daniel.blueman@gmail.com>
  10 *  Copyright (C) 2010  Sheng-Yuan Huang (Nuvoton) (PS00)
  11 *
  12 *  Shamelessly ripped from the w83627hf driver
  13 *  Copyright (C) 2003  Mark Studebaker
  14 *
  15 *  Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
  16 *  in testing and debugging this driver.
  17 *
  18 *  This driver also supports the W83627EHG, which is the lead-free
  19 *  version of the W83627EHF.
  20 *
  21 *  Supports the following chips:
  22 *
  23 *  Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
  24 *  w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
  25 *					       0x8860 0xa1
  26 *  w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
  27 *  w83627dhg-p  9      5       4       3      0xb070 0xc1    0x5ca3
  28 *  w83627uhg    8      2       2       3      0xa230 0xc1    0x5ca3
  29 *  w83667hg     9      5       3       3      0xa510 0xc1    0x5ca3
  30 *  w83667hg-b   9      5       3       4      0xb350 0xc1    0x5ca3
  31 */
  32
  33#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  34
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/jiffies.h>
  39#include <linux/platform_device.h>
  40#include <linux/hwmon.h>
  41#include <linux/hwmon-sysfs.h>
  42#include <linux/hwmon-vid.h>
  43#include <linux/err.h>
  44#include <linux/mutex.h>
  45#include <linux/acpi.h>
  46#include <linux/io.h>
  47#include "lm75.h"
  48
  49enum kinds {
  50	w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
  51	w83667hg, w83667hg_b,
  52};
  53
  54/* used to set data->name = w83627ehf_device_names[data->sio_kind] */
  55static const char * const w83627ehf_device_names[] = {
  56	"w83627ehf",
  57	"w83627dhg",
  58	"w83627dhg",
  59	"w83627uhg",
  60	"w83667hg",
  61	"w83667hg",
  62};
  63
  64static unsigned short force_id;
  65module_param(force_id, ushort, 0);
  66MODULE_PARM_DESC(force_id, "Override the detected device ID");
  67
  68#define DRVNAME "w83627ehf"
  69
  70/*
  71 * Super-I/O constants and functions
  72 */
  73
  74#define W83627EHF_LD_HWM	0x0b
  75#define W83667HG_LD_VID		0x0d
  76
  77#define SIO_REG_LDSEL		0x07	/* Logical device select */
  78#define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
  79#define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
  80#define SIO_REG_ENABLE		0x30	/* Logical device enable */
  81#define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
  82#define SIO_REG_VID_CTRL	0xF0	/* VID control */
  83#define SIO_REG_VID_DATA	0xF1	/* VID data */
  84
  85#define SIO_W83627EHF_ID	0x8850
  86#define SIO_W83627EHG_ID	0x8860
  87#define SIO_W83627DHG_ID	0xa020
  88#define SIO_W83627DHG_P_ID	0xb070
  89#define SIO_W83627UHG_ID	0xa230
  90#define SIO_W83667HG_ID		0xa510
  91#define SIO_W83667HG_B_ID	0xb350
  92#define SIO_ID_MASK		0xFFF0
  93
  94static inline void
  95superio_outb(int ioreg, int reg, int val)
  96{
  97	outb(reg, ioreg);
  98	outb(val, ioreg + 1);
  99}
 100
 101static inline int
 102superio_inb(int ioreg, int reg)
 103{
 104	outb(reg, ioreg);
 105	return inb(ioreg + 1);
 106}
 107
 108static inline void
 109superio_select(int ioreg, int ld)
 110{
 111	outb(SIO_REG_LDSEL, ioreg);
 112	outb(ld, ioreg + 1);
 113}
 114
 115static inline int
 116superio_enter(int ioreg)
 117{
 118	if (!request_muxed_region(ioreg, 2, DRVNAME))
 119		return -EBUSY;
 120
 121	outb(0x87, ioreg);
 122	outb(0x87, ioreg);
 123
 124	return 0;
 125}
 126
 127static inline void
 128superio_exit(int ioreg)
 129{
 130	outb(0xaa, ioreg);
 131	outb(0x02, ioreg);
 132	outb(0x02, ioreg + 1);
 133	release_region(ioreg, 2);
 134}
 135
 136/*
 137 * ISA constants
 138 */
 139
 140#define IOREGION_ALIGNMENT	(~7)
 141#define IOREGION_OFFSET		5
 142#define IOREGION_LENGTH		2
 143#define ADDR_REG_OFFSET		0
 144#define DATA_REG_OFFSET		1
 145
 146#define W83627EHF_REG_BANK		0x4E
 147#define W83627EHF_REG_CONFIG		0x40
 148
 149/*
 150 * Not currently used:
 151 * REG_MAN_ID has the value 0x5ca3 for all supported chips.
 152 * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
 153 * REG_MAN_ID is at port 0x4f
 154 * REG_CHIP_ID is at port 0x58
 155 */
 156
 157static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
 158static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
 159
 160/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
 161#define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
 162					 (0x554 + (((nr) - 7) * 2)))
 163#define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
 164					 (0x555 + (((nr) - 7) * 2)))
 165#define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
 166					 (0x550 + (nr) - 7))
 167
 168static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
 169static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
 170static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
 171static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
 172
 173/* Fan clock dividers are spread over the following five registers */
 174#define W83627EHF_REG_FANDIV1		0x47
 175#define W83627EHF_REG_FANDIV2		0x4B
 176#define W83627EHF_REG_VBAT		0x5D
 177#define W83627EHF_REG_DIODE		0x59
 178#define W83627EHF_REG_SMI_OVT		0x4C
 179
 180#define W83627EHF_REG_ALARM1		0x459
 181#define W83627EHF_REG_ALARM2		0x45A
 182#define W83627EHF_REG_ALARM3		0x45B
 183
 184#define W83627EHF_REG_CASEOPEN_DET	0x42 /* SMI STATUS #2 */
 185#define W83627EHF_REG_CASEOPEN_CLR	0x46 /* SMI MASK #3 */
 186
 187/* SmartFan registers */
 188#define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
 189#define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
 190
 191/* DC or PWM output fan configuration */
 192static const u8 W83627EHF_REG_PWM_ENABLE[] = {
 193	0x04,			/* SYS FAN0 output mode and PWM mode */
 194	0x04,			/* CPU FAN0 output mode and PWM mode */
 195	0x12,			/* AUX FAN mode */
 196	0x62,			/* CPU FAN1 mode */
 197};
 198
 199static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
 200static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
 201
 202/* FAN Duty Cycle, be used to control */
 203static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
 204static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
 205static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
 206
 207/* Advanced Fan control, some values are common for all fans */
 208static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
 209static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
 210static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
 211
 212static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
 213						= { 0xff, 0x67, 0xff, 0x69 };
 214static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
 215						= { 0xff, 0x68, 0xff, 0x6a };
 216
 217static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
 218static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
 219						= { 0x68, 0x6a, 0x6c };
 220
 221static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
 222
 223static const char *const w83667hg_b_temp_label[] = {
 224	"SYSTIN",
 225	"CPUTIN",
 226	"AUXTIN",
 227	"AMDTSI",
 228	"PECI Agent 1",
 229	"PECI Agent 2",
 230	"PECI Agent 3",
 231	"PECI Agent 4"
 232};
 233
 234#define NUM_REG_TEMP	ARRAY_SIZE(W83627EHF_REG_TEMP)
 235
 236static int is_word_sized(u16 reg)
 237{
 238	return ((((reg & 0xff00) == 0x100
 239	      || (reg & 0xff00) == 0x200)
 240	     && ((reg & 0x00ff) == 0x50
 241	      || (reg & 0x00ff) == 0x53
 242	      || (reg & 0x00ff) == 0x55))
 243	     || (reg & 0xfff0) == 0x630
 244	     || reg == 0x640 || reg == 0x642
 245	     || ((reg & 0xfff0) == 0x650
 246		 && (reg & 0x000f) >= 0x06)
 247	     || reg == 0x73 || reg == 0x75 || reg == 0x77
 248		);
 249}
 250
 251/*
 252 * Conversions
 253 */
 254
 255/* 1 is PWM mode, output in ms */
 256static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
 257{
 258	return mode ? 100 * reg : 400 * reg;
 259}
 260
 261static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
 262{
 263	return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400),
 264			 1, 255);
 265}
 266
 267static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
 268{
 269	if (reg == 0 || reg == 255)
 270		return 0;
 271	return 1350000U / (reg << divreg);
 272}
 273
 274static inline unsigned int
 275div_from_reg(u8 reg)
 276{
 277	return 1 << reg;
 278}
 279
 280/*
 281 * Some of the voltage inputs have internal scaling, the tables below
 282 * contain 8 (the ADC LSB in mV) * scaling factor * 100
 283 */
 284static const u16 scale_in_common[10] = {
 285	800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
 286};
 287static const u16 scale_in_w83627uhg[9] = {
 288	800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
 289};
 290
 291static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
 292{
 293	return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
 294}
 295
 296static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
 297{
 298	return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255);
 299}
 300
 301/*
 302 * Data structures and manipulation thereof
 303 */
 304
 305struct w83627ehf_data {
 306	int addr;	/* IO base of hw monitor block */
 307	const char *name;
 308
 309	struct mutex lock;
 310
 311	u16 reg_temp[NUM_REG_TEMP];
 312	u16 reg_temp_over[NUM_REG_TEMP];
 313	u16 reg_temp_hyst[NUM_REG_TEMP];
 314	u16 reg_temp_config[NUM_REG_TEMP];
 315	u8 temp_src[NUM_REG_TEMP];
 316	const char * const *temp_label;
 317
 318	const u16 *REG_FAN_MAX_OUTPUT;
 319	const u16 *REG_FAN_STEP_OUTPUT;
 320	const u16 *scale_in;
 321
 322	struct mutex update_lock;
 323	char valid;		/* !=0 if following fields are valid */
 324	unsigned long last_updated;	/* In jiffies */
 325
 326	/* Register values */
 327	u8 bank;		/* current register bank */
 328	u8 in_num;		/* number of in inputs we have */
 329	u8 in[10];		/* Register value */
 330	u8 in_max[10];		/* Register value */
 331	u8 in_min[10];		/* Register value */
 332	unsigned int rpm[5];
 333	u16 fan_min[5];
 334	u8 fan_div[5];
 335	u8 has_fan;		/* some fan inputs can be disabled */
 336	u8 has_fan_min;		/* some fans don't have min register */
 337	u8 temp_type[3];
 338	s8 temp_offset[3];
 339	s16 temp[9];
 340	s16 temp_max[9];
 341	s16 temp_max_hyst[9];
 342	u32 alarms;
 343	u8 caseopen;
 344
 345	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
 346	u8 pwm_enable[4]; /* 1->manual
 347			   * 2->thermal cruise mode (also called SmartFan I)
 348			   * 3->fan speed cruise mode
 349			   * 4->variable thermal cruise (also called
 350			   * SmartFan III)
 351			   * 5->enhanced variable thermal cruise (also called
 352			   * SmartFan IV)
 353			   */
 354	u8 pwm_enable_orig[4];	/* original value of pwm_enable */
 355	u8 pwm_num;		/* number of pwm */
 356	u8 pwm[4];
 357	u8 target_temp[4];
 358	u8 tolerance[4];
 359
 360	u8 fan_start_output[4]; /* minimum fan speed when spinning up */
 361	u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
 362	u8 fan_stop_time[4]; /* time at minimum before disabling fan */
 363	u8 fan_max_output[4]; /* maximum fan speed */
 364	u8 fan_step_output[4]; /* rate of change output value */
 365
 366	u8 vid;
 367	u8 vrm;
 368
 369	u16 have_temp;
 370	u16 have_temp_offset;
 371	u8 in6_skip:1;
 372	u8 temp3_val_only:1;
 373	u8 have_vid:1;
 374
 375#ifdef CONFIG_PM
 376	/* Remember extra register values over suspend/resume */
 377	u8 vbat;
 378	u8 fandiv1;
 379	u8 fandiv2;
 380#endif
 381};
 382
 383struct w83627ehf_sio_data {
 384	int sioreg;
 385	enum kinds kind;
 386};
 387
 388/*
 389 * On older chips, only registers 0x50-0x5f are banked.
 390 * On more recent chips, all registers are banked.
 391 * Assume that is the case and set the bank number for each access.
 392 * Cache the bank number so it only needs to be set if it changes.
 393 */
 394static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
 395{
 396	u8 bank = reg >> 8;
 397	if (data->bank != bank) {
 398		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
 399		outb_p(bank, data->addr + DATA_REG_OFFSET);
 400		data->bank = bank;
 401	}
 402}
 403
 404static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
 405{
 406	int res, word_sized = is_word_sized(reg);
 407
 408	mutex_lock(&data->lock);
 409
 410	w83627ehf_set_bank(data, reg);
 411	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
 412	res = inb_p(data->addr + DATA_REG_OFFSET);
 413	if (word_sized) {
 414		outb_p((reg & 0xff) + 1,
 415		       data->addr + ADDR_REG_OFFSET);
 416		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
 417	}
 418
 419	mutex_unlock(&data->lock);
 420	return res;
 421}
 422
 423static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
 424				 u16 value)
 425{
 426	int word_sized = is_word_sized(reg);
 427
 428	mutex_lock(&data->lock);
 429
 430	w83627ehf_set_bank(data, reg);
 431	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
 432	if (word_sized) {
 433		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
 434		outb_p((reg & 0xff) + 1,
 435		       data->addr + ADDR_REG_OFFSET);
 436	}
 437	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
 438
 439	mutex_unlock(&data->lock);
 440	return 0;
 441}
 442
 443/* We left-align 8-bit temperature values to make the code simpler */
 444static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
 445{
 446	u16 res;
 447
 448	res = w83627ehf_read_value(data, reg);
 449	if (!is_word_sized(reg))
 450		res <<= 8;
 451
 452	return res;
 453}
 454
 455static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
 456				       u16 value)
 457{
 458	if (!is_word_sized(reg))
 459		value >>= 8;
 460	return w83627ehf_write_value(data, reg, value);
 461}
 462
 463/* This function assumes that the caller holds data->update_lock */
 464static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
 465{
 466	u8 reg;
 467
 468	switch (nr) {
 469	case 0:
 470		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
 471		    | ((data->fan_div[0] & 0x03) << 4);
 472		/* fan5 input control bit is write only, compute the value */
 473		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
 474		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
 475		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
 476		    | ((data->fan_div[0] & 0x04) << 3);
 477		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
 478		break;
 479	case 1:
 480		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
 481		    | ((data->fan_div[1] & 0x03) << 6);
 482		/* fan5 input control bit is write only, compute the value */
 483		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
 484		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
 485		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
 486		    | ((data->fan_div[1] & 0x04) << 4);
 487		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
 488		break;
 489	case 2:
 490		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
 491		    | ((data->fan_div[2] & 0x03) << 6);
 492		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
 493		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
 494		    | ((data->fan_div[2] & 0x04) << 5);
 495		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
 496		break;
 497	case 3:
 498		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
 499		    | (data->fan_div[3] & 0x03);
 500		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
 501		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
 502		    | ((data->fan_div[3] & 0x04) << 5);
 503		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
 504		break;
 505	case 4:
 506		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
 507		    | ((data->fan_div[4] & 0x03) << 2)
 508		    | ((data->fan_div[4] & 0x04) << 5);
 509		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
 510		break;
 511	}
 512}
 513
 514static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
 515{
 516	int i;
 517
 518	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
 519	data->fan_div[0] = (i >> 4) & 0x03;
 520	data->fan_div[1] = (i >> 6) & 0x03;
 521	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
 522	data->fan_div[2] = (i >> 6) & 0x03;
 523	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
 524	data->fan_div[0] |= (i >> 3) & 0x04;
 525	data->fan_div[1] |= (i >> 4) & 0x04;
 526	data->fan_div[2] |= (i >> 5) & 0x04;
 527	if (data->has_fan & ((1 << 3) | (1 << 4))) {
 528		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
 529		data->fan_div[3] = i & 0x03;
 530		data->fan_div[4] = ((i >> 2) & 0x03)
 531				 | ((i >> 5) & 0x04);
 532	}
 533	if (data->has_fan & (1 << 3)) {
 534		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
 535		data->fan_div[3] |= (i >> 5) & 0x04;
 536	}
 537}
 538
 539static void w83627ehf_update_pwm(struct w83627ehf_data *data)
 540{
 541	int i;
 542	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
 543
 544	for (i = 0; i < data->pwm_num; i++) {
 545		if (!(data->has_fan & (1 << i)))
 546			continue;
 547
 548		/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
 549		if (i != 1) {
 550			pwmcfg = w83627ehf_read_value(data,
 551					W83627EHF_REG_PWM_ENABLE[i]);
 552			tolerance = w83627ehf_read_value(data,
 553					W83627EHF_REG_TOLERANCE[i]);
 554		}
 555		data->pwm_mode[i] =
 556			((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
 557		data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
 558				       & 3) + 1;
 559		data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]);
 560
 561		data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
 562	}
 563}
 564
 565static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
 566{
 567	struct w83627ehf_data *data = dev_get_drvdata(dev);
 568	int i;
 569
 570	mutex_lock(&data->update_lock);
 571
 572	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
 573	 || !data->valid) {
 574		/* Fan clock dividers */
 575		w83627ehf_update_fan_div(data);
 576
 577		/* Measured voltages and limits */
 578		for (i = 0; i < data->in_num; i++) {
 579			if ((i == 6) && data->in6_skip)
 580				continue;
 581
 582			data->in[i] = w83627ehf_read_value(data,
 583				      W83627EHF_REG_IN(i));
 584			data->in_min[i] = w83627ehf_read_value(data,
 585					  W83627EHF_REG_IN_MIN(i));
 586			data->in_max[i] = w83627ehf_read_value(data,
 587					  W83627EHF_REG_IN_MAX(i));
 588		}
 589
 590		/* Measured fan speeds and limits */
 591		for (i = 0; i < 5; i++) {
 592			u16 reg;
 593
 594			if (!(data->has_fan & (1 << i)))
 595				continue;
 596
 597			reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]);
 598			data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]);
 599
 600			if (data->has_fan_min & (1 << i))
 601				data->fan_min[i] = w83627ehf_read_value(data,
 602					   W83627EHF_REG_FAN_MIN[i]);
 603
 604			/*
 605			 * If we failed to measure the fan speed and clock
 606			 * divider can be increased, let's try that for next
 607			 * time
 608			 */
 609			if (reg >= 0xff && data->fan_div[i] < 0x07) {
 610				dev_dbg(dev,
 611					"Increasing fan%d clock divider from %u to %u\n",
 612					i + 1, div_from_reg(data->fan_div[i]),
 613					div_from_reg(data->fan_div[i] + 1));
 614				data->fan_div[i]++;
 615				w83627ehf_write_fan_div(data, i);
 616				/* Preserve min limit if possible */
 617				if ((data->has_fan_min & (1 << i))
 618				 && data->fan_min[i] >= 2
 619				 && data->fan_min[i] != 255)
 620					w83627ehf_write_value(data,
 621						W83627EHF_REG_FAN_MIN[i],
 622						(data->fan_min[i] /= 2));
 623			}
 624		}
 625
 626		w83627ehf_update_pwm(data);
 627
 628		for (i = 0; i < data->pwm_num; i++) {
 629			if (!(data->has_fan & (1 << i)))
 630				continue;
 631
 632			data->fan_start_output[i] =
 633			  w83627ehf_read_value(data,
 634					     W83627EHF_REG_FAN_START_OUTPUT[i]);
 635			data->fan_stop_output[i] =
 636			  w83627ehf_read_value(data,
 637					     W83627EHF_REG_FAN_STOP_OUTPUT[i]);
 638			data->fan_stop_time[i] =
 639			  w83627ehf_read_value(data,
 640					       W83627EHF_REG_FAN_STOP_TIME[i]);
 641
 642			if (data->REG_FAN_MAX_OUTPUT &&
 643			    data->REG_FAN_MAX_OUTPUT[i] != 0xff)
 644				data->fan_max_output[i] =
 645				  w83627ehf_read_value(data,
 646						data->REG_FAN_MAX_OUTPUT[i]);
 647
 648			if (data->REG_FAN_STEP_OUTPUT &&
 649			    data->REG_FAN_STEP_OUTPUT[i] != 0xff)
 650				data->fan_step_output[i] =
 651				  w83627ehf_read_value(data,
 652						data->REG_FAN_STEP_OUTPUT[i]);
 653
 654			data->target_temp[i] =
 655				w83627ehf_read_value(data,
 656					W83627EHF_REG_TARGET[i]) &
 657					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
 658		}
 659
 660		/* Measured temperatures and limits */
 661		for (i = 0; i < NUM_REG_TEMP; i++) {
 662			if (!(data->have_temp & (1 << i)))
 663				continue;
 664			data->temp[i] = w83627ehf_read_temp(data,
 665						data->reg_temp[i]);
 666			if (data->reg_temp_over[i])
 667				data->temp_max[i]
 668				  = w83627ehf_read_temp(data,
 669						data->reg_temp_over[i]);
 670			if (data->reg_temp_hyst[i])
 671				data->temp_max_hyst[i]
 672				  = w83627ehf_read_temp(data,
 673						data->reg_temp_hyst[i]);
 674			if (i > 2)
 675				continue;
 676			if (data->have_temp_offset & (1 << i))
 677				data->temp_offset[i]
 678				  = w83627ehf_read_value(data,
 679						W83627EHF_REG_TEMP_OFFSET[i]);
 680		}
 681
 682		data->alarms = w83627ehf_read_value(data,
 683					W83627EHF_REG_ALARM1) |
 684			       (w83627ehf_read_value(data,
 685					W83627EHF_REG_ALARM2) << 8) |
 686			       (w83627ehf_read_value(data,
 687					W83627EHF_REG_ALARM3) << 16);
 688
 689		data->caseopen = w83627ehf_read_value(data,
 690						W83627EHF_REG_CASEOPEN_DET);
 691
 692		data->last_updated = jiffies;
 693		data->valid = 1;
 694	}
 695
 696	mutex_unlock(&data->update_lock);
 697	return data;
 698}
 699
 700#define store_in_reg(REG, reg) \
 701static int \
 702store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
 703	       long val) \
 704{ \
 705	if (val < 0) \
 706		return -EINVAL; \
 707	mutex_lock(&data->update_lock); \
 708	data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \
 709	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \
 710			      data->in_##reg[channel]); \
 711	mutex_unlock(&data->update_lock); \
 712	return 0; \
 713}
 714
 715store_in_reg(MIN, min)
 716store_in_reg(MAX, max)
 717
 718static int
 719store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel,
 720	      long val)
 721{
 722	unsigned int reg;
 723	u8 new_div;
 724
 725	if (val < 0)
 726		return -EINVAL;
 727
 728	mutex_lock(&data->update_lock);
 729	if (!val) {
 730		/* No min limit, alarm disabled */
 731		data->fan_min[channel] = 255;
 732		new_div = data->fan_div[channel]; /* No change */
 733		dev_info(dev, "fan%u low limit and alarm disabled\n",
 734			 channel + 1);
 735	} else if ((reg = 1350000U / val) >= 128 * 255) {
 736		/*
 737		 * Speed below this value cannot possibly be represented,
 738		 * even with the highest divider (128)
 739		 */
 740		data->fan_min[channel] = 254;
 741		new_div = 7; /* 128 == (1 << 7) */
 742		dev_warn(dev,
 743			 "fan%u low limit %lu below minimum %u, set to minimum\n",
 744			 channel + 1, val, fan_from_reg8(254, 7));
 745	} else if (!reg) {
 746		/*
 747		 * Speed above this value cannot possibly be represented,
 748		 * even with the lowest divider (1)
 749		 */
 750		data->fan_min[channel] = 1;
 751		new_div = 0; /* 1 == (1 << 0) */
 752		dev_warn(dev,
 753			 "fan%u low limit %lu above maximum %u, set to maximum\n",
 754			 channel + 1, val, fan_from_reg8(1, 0));
 755	} else {
 756		/*
 757		 * Automatically pick the best divider, i.e. the one such
 758		 * that the min limit will correspond to a register value
 759		 * in the 96..192 range
 760		 */
 761		new_div = 0;
 762		while (reg > 192 && new_div < 7) {
 763			reg >>= 1;
 764			new_div++;
 765		}
 766		data->fan_min[channel] = reg;
 767	}
 768
 769	/*
 770	 * Write both the fan clock divider (if it changed) and the new
 771	 * fan min (unconditionally)
 772	 */
 773	if (new_div != data->fan_div[channel]) {
 774		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
 775			channel + 1, div_from_reg(data->fan_div[channel]),
 776			div_from_reg(new_div));
 777		data->fan_div[channel] = new_div;
 778		w83627ehf_write_fan_div(data, channel);
 779		/* Give the chip time to sample a new speed value */
 780		data->last_updated = jiffies;
 781	}
 782
 783	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel],
 784			      data->fan_min[channel]);
 785	mutex_unlock(&data->update_lock);
 786
 787	return 0;
 788}
 789
 790#define store_temp_reg(addr, reg) \
 791static int \
 792store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
 793	    long val) \
 794{ \
 795	mutex_lock(&data->update_lock); \
 796	data->reg[channel] = LM75_TEMP_TO_REG(val); \
 797	w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \
 798	mutex_unlock(&data->update_lock); \
 799	return 0; \
 800}
 801store_temp_reg(reg_temp_over, temp_max);
 802store_temp_reg(reg_temp_hyst, temp_max_hyst);
 803
 804static int
 805store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel,
 806		  long val)
 807{
 808	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
 809
 810	mutex_lock(&data->update_lock);
 811	data->temp_offset[channel] = val;
 812	w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val);
 813	mutex_unlock(&data->update_lock);
 814	return 0;
 815}
 816
 817static int
 818store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel,
 819	       long val)
 820{
 821	u16 reg;
 822
 823	if (val < 0 || val > 1)
 824		return -EINVAL;
 825
 826	mutex_lock(&data->update_lock);
 827	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]);
 828	data->pwm_mode[channel] = val;
 829	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]);
 830	if (!val)
 831		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel];
 832	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg);
 833	mutex_unlock(&data->update_lock);
 834	return 0;
 835}
 836
 837static int
 838store_pwm(struct device *dev, struct w83627ehf_data *data, int channel,
 839	  long val)
 840{
 841	val = clamp_val(val, 0, 255);
 842
 843	mutex_lock(&data->update_lock);
 844	data->pwm[channel] = val;
 845	w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val);
 846	mutex_unlock(&data->update_lock);
 847	return 0;
 848}
 849
 850static int
 851store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel,
 852		 long val)
 853{
 854	u16 reg;
 855
 856	if (!val || val < 0 ||
 857	    (val > 4 && val != data->pwm_enable_orig[channel]))
 858		return -EINVAL;
 859
 860	mutex_lock(&data->update_lock);
 861	data->pwm_enable[channel] = val;
 862	reg = w83627ehf_read_value(data,
 863				   W83627EHF_REG_PWM_ENABLE[channel]);
 864	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]);
 865	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel];
 866	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel],
 867			      reg);
 868	mutex_unlock(&data->update_lock);
 869	return 0;
 870}
 871
 872#define show_tol_temp(reg) \
 873static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
 874				char *buf) \
 875{ \
 876	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
 877	struct sensor_device_attribute *sensor_attr = \
 878		to_sensor_dev_attr(attr); \
 879	int nr = sensor_attr->index; \
 880	return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
 881}
 882
 883show_tol_temp(tolerance)
 884show_tol_temp(target_temp)
 885
 886static ssize_t
 887store_target_temp(struct device *dev, struct device_attribute *attr,
 888			const char *buf, size_t count)
 889{
 890	struct w83627ehf_data *data = dev_get_drvdata(dev);
 891	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
 892	int nr = sensor_attr->index;
 893	long val;
 894	int err;
 895
 896	err = kstrtol(buf, 10, &val);
 897	if (err < 0)
 898		return err;
 899
 900	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
 901
 902	mutex_lock(&data->update_lock);
 903	data->target_temp[nr] = val;
 904	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
 905	mutex_unlock(&data->update_lock);
 906	return count;
 907}
 908
 909static ssize_t
 910store_tolerance(struct device *dev, struct device_attribute *attr,
 911			const char *buf, size_t count)
 912{
 913	struct w83627ehf_data *data = dev_get_drvdata(dev);
 914	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
 915	int nr = sensor_attr->index;
 916	u16 reg;
 917	long val;
 918	int err;
 919
 920	err = kstrtol(buf, 10, &val);
 921	if (err < 0)
 922		return err;
 923
 924	/* Limit the temp to 0C - 15C */
 925	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
 926
 927	mutex_lock(&data->update_lock);
 928	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
 929	if (nr == 1)
 930		reg = (reg & 0x0f) | (val << 4);
 931	else
 932		reg = (reg & 0xf0) | val;
 933	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
 934	data->tolerance[nr] = val;
 935	mutex_unlock(&data->update_lock);
 936	return count;
 937}
 938
 939static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp,
 940	    store_target_temp, 0);
 941static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp,
 942	    store_target_temp, 1);
 943static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp,
 944	    store_target_temp, 2);
 945static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp,
 946	    store_target_temp, 3);
 947
 948static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance,
 949	    store_tolerance, 0);
 950static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance,
 951	    store_tolerance, 1);
 952static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance,
 953	    store_tolerance, 2);
 954static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance,
 955	    store_tolerance, 3);
 956
 957/* Smart Fan registers */
 958
 959#define fan_functions(reg, REG) \
 960static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
 961		       char *buf) \
 962{ \
 963	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
 964	struct sensor_device_attribute *sensor_attr = \
 965		to_sensor_dev_attr(attr); \
 966	int nr = sensor_attr->index; \
 967	return sprintf(buf, "%d\n", data->reg[nr]); \
 968} \
 969static ssize_t \
 970store_##reg(struct device *dev, struct device_attribute *attr, \
 971			    const char *buf, size_t count) \
 972{ \
 973	struct w83627ehf_data *data = dev_get_drvdata(dev); \
 974	struct sensor_device_attribute *sensor_attr = \
 975		to_sensor_dev_attr(attr); \
 976	int nr = sensor_attr->index; \
 977	unsigned long val; \
 978	int err; \
 979	err = kstrtoul(buf, 10, &val); \
 980	if (err < 0) \
 981		return err; \
 982	val = clamp_val(val, 1, 255); \
 983	mutex_lock(&data->update_lock); \
 984	data->reg[nr] = val; \
 985	w83627ehf_write_value(data, REG[nr], val); \
 986	mutex_unlock(&data->update_lock); \
 987	return count; \
 988}
 989
 990fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT)
 991fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT)
 992fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT)
 993fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT)
 994
 995#define fan_time_functions(reg, REG) \
 996static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
 997				char *buf) \
 998{ \
 999	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
1000	struct sensor_device_attribute *sensor_attr = \
1001		to_sensor_dev_attr(attr); \
1002	int nr = sensor_attr->index; \
1003	return sprintf(buf, "%d\n", \
1004			step_time_from_reg(data->reg[nr], \
1005					   data->pwm_mode[nr])); \
1006} \
1007\
1008static ssize_t \
1009store_##reg(struct device *dev, struct device_attribute *attr, \
1010			const char *buf, size_t count) \
1011{ \
1012	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1013	struct sensor_device_attribute *sensor_attr = \
1014		to_sensor_dev_attr(attr); \
1015	int nr = sensor_attr->index; \
1016	unsigned long val; \
1017	int err; \
1018	err = kstrtoul(buf, 10, &val); \
1019	if (err < 0) \
1020		return err; \
1021	val = step_time_to_reg(val, data->pwm_mode[nr]); \
1022	mutex_lock(&data->update_lock); \
1023	data->reg[nr] = val; \
1024	w83627ehf_write_value(data, REG[nr], val); \
1025	mutex_unlock(&data->update_lock); \
1026	return count; \
1027} \
1028
1029fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME)
1030
1031static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time,
1032	    store_fan_stop_time, 3);
1033static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output,
1034	    store_fan_start_output, 3);
1035static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output,
1036	    store_fan_stop_output, 3);
1037static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output,
1038	    store_fan_max_output, 3);
1039static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output,
1040	    store_fan_step_output, 3);
1041
1042static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time,
1043	    store_fan_stop_time, 2);
1044static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output,
1045	    store_fan_start_output, 2);
1046static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output,
1047		    store_fan_stop_output, 2);
1048
1049static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time,
1050	    store_fan_stop_time, 0);
1051static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time,
1052	    store_fan_stop_time, 1);
1053static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output,
1054	    store_fan_start_output, 0);
1055static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output,
1056	    store_fan_start_output, 1);
1057static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output,
1058	    store_fan_stop_output, 0);
1059static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output,
1060	    store_fan_stop_output, 1);
1061
1062
1063/*
1064 * pwm1 and pwm3 don't support max and step settings on all chips.
1065 * Need to check support while generating/removing attribute files.
1066 */
1067static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output,
1068	    store_fan_max_output, 0);
1069static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output,
1070	    store_fan_step_output, 0);
1071static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output,
1072	    store_fan_max_output, 1);
1073static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output,
1074	    store_fan_step_output, 1);
1075static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output,
1076	    store_fan_max_output, 2);
1077static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output,
1078	    store_fan_step_output, 2);
1079
1080static ssize_t
1081cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
1082{
1083	struct w83627ehf_data *data = dev_get_drvdata(dev);
1084	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1085}
1086DEVICE_ATTR_RO(cpu0_vid);
1087
1088
1089/* Case open detection */
1090static int
1091clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel,
1092	       long val)
1093{
1094	const u16 mask = 0x80;
1095	u16 reg;
1096
1097	if (val != 0 || channel != 0)
1098		return -EINVAL;
1099
1100	mutex_lock(&data->update_lock);
1101	reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
1102	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
1103	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
1104	data->valid = 0;	/* Force cache refresh */
1105	mutex_unlock(&data->update_lock);
1106
1107	return 0;
1108}
1109
1110static umode_t w83627ehf_attrs_visible(struct kobject *kobj,
1111				       struct attribute *a, int n)
1112{
1113	struct device *dev = container_of(kobj, struct device, kobj);
1114	struct w83627ehf_data *data = dev_get_drvdata(dev);
1115	struct device_attribute *devattr;
1116	struct sensor_device_attribute *sda;
1117
1118	devattr = container_of(a, struct device_attribute, attr);
1119
1120	/* Not sensor */
1121	if (devattr->show == cpu0_vid_show && data->have_vid)
1122		return a->mode;
1123
1124	sda = (struct sensor_device_attribute *)devattr;
1125
1126	if (sda->index < 2 &&
1127		(devattr->show == show_fan_stop_time ||
1128		 devattr->show == show_fan_start_output ||
1129		 devattr->show == show_fan_stop_output))
1130		return a->mode;
1131
1132	if (sda->index < 3 &&
1133		(devattr->show == show_fan_max_output ||
1134		 devattr->show == show_fan_step_output) &&
1135		data->REG_FAN_STEP_OUTPUT &&
1136		data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff)
1137		return a->mode;
1138
1139	/* if fan3 and fan4 are enabled create the files for them */
1140	if (sda->index == 2 &&
1141		(data->has_fan & (1 << 2)) && data->pwm_num >= 3 &&
1142		(devattr->show == show_fan_stop_time ||
1143		 devattr->show == show_fan_start_output ||
1144		 devattr->show == show_fan_stop_output))
1145		return a->mode;
1146
1147	if (sda->index == 3 &&
1148		(data->has_fan & (1 << 3)) && data->pwm_num >= 4 &&
1149		(devattr->show == show_fan_stop_time ||
1150		 devattr->show == show_fan_start_output ||
1151		 devattr->show == show_fan_stop_output ||
1152		 devattr->show == show_fan_max_output ||
1153		 devattr->show == show_fan_step_output))
1154		return a->mode;
1155
1156	if ((devattr->show == show_target_temp ||
1157	    devattr->show == show_tolerance) &&
1158	    (data->has_fan & (1 << sda->index)) &&
1159	    sda->index < data->pwm_num)
1160		return a->mode;
1161
1162	return 0;
1163}
1164
1165/* These groups handle non-standard attributes used in this device */
1166static struct attribute *w83627ehf_attrs[] = {
1167
1168	&sensor_dev_attr_pwm1_stop_time.dev_attr.attr,
1169	&sensor_dev_attr_pwm1_start_output.dev_attr.attr,
1170	&sensor_dev_attr_pwm1_stop_output.dev_attr.attr,
1171	&sensor_dev_attr_pwm1_max_output.dev_attr.attr,
1172	&sensor_dev_attr_pwm1_step_output.dev_attr.attr,
1173	&sensor_dev_attr_pwm1_target.dev_attr.attr,
1174	&sensor_dev_attr_pwm1_tolerance.dev_attr.attr,
1175
1176	&sensor_dev_attr_pwm2_stop_time.dev_attr.attr,
1177	&sensor_dev_attr_pwm2_start_output.dev_attr.attr,
1178	&sensor_dev_attr_pwm2_stop_output.dev_attr.attr,
1179	&sensor_dev_attr_pwm2_max_output.dev_attr.attr,
1180	&sensor_dev_attr_pwm2_step_output.dev_attr.attr,
1181	&sensor_dev_attr_pwm2_target.dev_attr.attr,
1182	&sensor_dev_attr_pwm2_tolerance.dev_attr.attr,
1183
1184	&sensor_dev_attr_pwm3_stop_time.dev_attr.attr,
1185	&sensor_dev_attr_pwm3_start_output.dev_attr.attr,
1186	&sensor_dev_attr_pwm3_stop_output.dev_attr.attr,
1187	&sensor_dev_attr_pwm3_max_output.dev_attr.attr,
1188	&sensor_dev_attr_pwm3_step_output.dev_attr.attr,
1189	&sensor_dev_attr_pwm3_target.dev_attr.attr,
1190	&sensor_dev_attr_pwm3_tolerance.dev_attr.attr,
1191
1192	&sensor_dev_attr_pwm4_stop_time.dev_attr.attr,
1193	&sensor_dev_attr_pwm4_start_output.dev_attr.attr,
1194	&sensor_dev_attr_pwm4_stop_output.dev_attr.attr,
1195	&sensor_dev_attr_pwm4_max_output.dev_attr.attr,
1196	&sensor_dev_attr_pwm4_step_output.dev_attr.attr,
1197	&sensor_dev_attr_pwm4_target.dev_attr.attr,
1198	&sensor_dev_attr_pwm4_tolerance.dev_attr.attr,
1199
1200	&dev_attr_cpu0_vid.attr,
1201	NULL
1202};
1203
1204static const struct attribute_group w83627ehf_group = {
1205	.attrs = w83627ehf_attrs,
1206	.is_visible = w83627ehf_attrs_visible,
1207};
1208
1209static const struct attribute_group *w83627ehf_groups[] = {
1210	&w83627ehf_group,
1211	NULL
1212};
1213
1214/*
1215 * Driver and device management
1216 */
1217
1218/* Get the monitoring functions started */
1219static inline void w83627ehf_init_device(struct w83627ehf_data *data,
1220						   enum kinds kind)
1221{
1222	int i;
1223	u8 tmp, diode;
1224
1225	/* Start monitoring is needed */
1226	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1227	if (!(tmp & 0x01))
1228		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1229				      tmp | 0x01);
1230
1231	/* Enable temperature sensors if needed */
1232	for (i = 0; i < NUM_REG_TEMP; i++) {
1233		if (!(data->have_temp & (1 << i)))
1234			continue;
1235		if (!data->reg_temp_config[i])
1236			continue;
1237		tmp = w83627ehf_read_value(data,
1238					   data->reg_temp_config[i]);
1239		if (tmp & 0x01)
1240			w83627ehf_write_value(data,
1241					      data->reg_temp_config[i],
1242					      tmp & 0xfe);
1243	}
1244
1245	/* Enable VBAT monitoring if needed */
1246	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1247	if (!(tmp & 0x01))
1248		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1249
1250	/* Get thermal sensor types */
1251	switch (kind) {
1252	case w83627ehf:
1253		diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
1254		break;
1255	case w83627uhg:
1256		diode = 0x00;
1257		break;
1258	default:
1259		diode = 0x70;
1260	}
1261	for (i = 0; i < 3; i++) {
1262		const char *label = NULL;
1263
1264		if (data->temp_label)
1265			label = data->temp_label[data->temp_src[i]];
1266
1267		/* Digital source overrides analog type */
1268		if (label && strncmp(label, "PECI", 4) == 0)
1269			data->temp_type[i] = 6;
1270		else if (label && strncmp(label, "AMD", 3) == 0)
1271			data->temp_type[i] = 5;
1272		else if ((tmp & (0x02 << i)))
1273			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
1274		else
1275			data->temp_type[i] = 4; /* thermistor */
1276	}
1277}
1278
1279static void
1280w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
1281{
1282	int i;
1283
1284	for (i = 0; i < n_temp; i++) {
1285		data->reg_temp[i] = W83627EHF_REG_TEMP[i];
1286		data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
1287		data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
1288		data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
1289	}
1290}
1291
1292static void
1293w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
1294			   struct w83627ehf_data *data)
1295{
1296	int fan3pin, fan4pin, fan5pin, regval;
1297
1298	/* The W83627UHG is simple, only two fan inputs, no config */
1299	if (sio_data->kind == w83627uhg) {
1300		data->has_fan = 0x03; /* fan1 and fan2 */
1301		data->has_fan_min = 0x03;
1302		return;
1303	}
1304
1305	/* fan4 and fan5 share some pins with the GPIO and serial flash */
1306	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1307		fan3pin = 1;
1308		fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
1309		fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
1310	} else {
1311		fan3pin = 1;
1312		fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
1313		fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
1314	}
1315
1316	data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
1317	data->has_fan |= (fan3pin << 2);
1318	data->has_fan_min |= (fan3pin << 2);
1319
1320	/*
1321	 * It looks like fan4 and fan5 pins can be alternatively used
1322	 * as fan on/off switches, but fan5 control is write only :/
1323	 * We assume that if the serial interface is disabled, designers
1324	 * connected fan5 as input unless they are emitting log 1, which
1325	 * is not the default.
1326	 */
1327	regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1328	if ((regval & (1 << 2)) && fan4pin) {
1329		data->has_fan |= (1 << 3);
1330		data->has_fan_min |= (1 << 3);
1331	}
1332	if (!(regval & (1 << 1)) && fan5pin) {
1333		data->has_fan |= (1 << 4);
1334		data->has_fan_min |= (1 << 4);
1335	}
1336}
1337
1338static umode_t
1339w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1340		     u32 attr, int channel)
1341{
1342	const struct w83627ehf_data *data = drvdata;
1343
1344	switch (type) {
1345	case hwmon_temp:
1346		/* channel 0.., name 1.. */
1347		if (!(data->have_temp & (1 << channel)))
1348			return 0;
1349		if (attr == hwmon_temp_input)
1350			return 0444;
1351		if (attr == hwmon_temp_label) {
1352			if (data->temp_label)
1353				return 0444;
1354			return 0;
1355		}
1356		if (channel == 2 && data->temp3_val_only)
1357			return 0;
1358		if (attr == hwmon_temp_max) {
1359			if (data->reg_temp_over[channel])
1360				return 0644;
1361			else
1362				return 0;
1363		}
1364		if (attr == hwmon_temp_max_hyst) {
1365			if (data->reg_temp_hyst[channel])
1366				return 0644;
1367			else
1368				return 0;
1369		}
1370		if (channel > 2)
1371			return 0;
1372		if (attr == hwmon_temp_alarm || attr == hwmon_temp_type)
1373			return 0444;
1374		if (attr == hwmon_temp_offset) {
1375			if (data->have_temp_offset & (1 << channel))
1376				return 0644;
1377			else
1378				return 0;
1379		}
1380		break;
1381
1382	case hwmon_fan:
1383		/* channel 0.., name 1.. */
1384		if (!(data->has_fan & (1 << channel)))
1385			return 0;
1386		if (attr == hwmon_fan_input || attr == hwmon_fan_alarm)
1387			return 0444;
1388		if (attr == hwmon_fan_div) {
1389			return 0444;
1390		}
1391		if (attr == hwmon_fan_min) {
1392			if (data->has_fan_min & (1 << channel))
1393				return 0644;
1394			else
1395				return 0;
1396		}
1397		break;
1398
1399	case hwmon_in:
1400		/* channel 0.., name 0.. */
1401		if (channel >= data->in_num)
1402			return 0;
1403		if (channel == 6 && data->in6_skip)
1404			return 0;
1405		if (attr == hwmon_in_alarm || attr == hwmon_in_input)
1406			return 0444;
1407		if (attr == hwmon_in_min || attr == hwmon_in_max)
1408			return 0644;
1409		break;
1410
1411	case hwmon_pwm:
1412		/* channel 0.., name 1.. */
1413		if (!(data->has_fan & (1 << channel)) ||
1414		    channel >= data->pwm_num)
1415			return 0;
1416		if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable ||
1417		    attr == hwmon_pwm_input)
1418			return 0644;
1419		break;
1420
1421	case hwmon_intrusion:
1422		return 0644;
1423
1424	default: /* Shouldn't happen */
1425		return 0;
1426	}
1427
1428	return 0; /* Shouldn't happen */
1429}
1430
1431static int
1432w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr,
1433		       int channel, long *val)
1434{
1435	switch (attr) {
1436	case hwmon_temp_input:
1437		*val = LM75_TEMP_FROM_REG(data->temp[channel]);
1438		return 0;
1439	case hwmon_temp_max:
1440		*val = LM75_TEMP_FROM_REG(data->temp_max[channel]);
1441		return 0;
1442	case hwmon_temp_max_hyst:
1443		*val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]);
1444		return 0;
1445	case hwmon_temp_offset:
1446		*val = data->temp_offset[channel] * 1000;
1447		return 0;
1448	case hwmon_temp_type:
1449		*val = (int)data->temp_type[channel];
1450		return 0;
1451	case hwmon_temp_alarm:
1452		if (channel < 3) {
1453			int bit[] = { 4, 5, 13 };
1454			*val = (data->alarms >> bit[channel]) & 1;
1455			return 0;
1456		}
1457		break;
1458
1459	default:
1460		break;
1461	}
1462
1463	return -EOPNOTSUPP;
1464}
1465
1466static int
1467w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr,
1468		     int channel, long *val)
1469{
1470	switch (attr) {
1471	case hwmon_in_input:
1472		*val = in_from_reg(data->in[channel], channel, data->scale_in);
1473		return 0;
1474	case hwmon_in_min:
1475		*val = in_from_reg(data->in_min[channel], channel,
1476				   data->scale_in);
1477		return 0;
1478	case hwmon_in_max:
1479		*val = in_from_reg(data->in_max[channel], channel,
1480				   data->scale_in);
1481		return 0;
1482	case hwmon_in_alarm:
1483		if (channel < 10) {
1484			int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 };
1485			*val = (data->alarms >> bit[channel]) & 1;
1486			return 0;
1487		}
1488		break;
1489	default:
1490		break;
1491	}
1492	return -EOPNOTSUPP;
1493}
1494
1495static int
1496w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr,
1497		      int channel, long *val)
1498{
1499	switch (attr) {
1500	case hwmon_fan_input:
1501		*val = data->rpm[channel];
1502		return 0;
1503	case hwmon_fan_min:
1504		*val = fan_from_reg8(data->fan_min[channel],
1505				     data->fan_div[channel]);
1506		return 0;
1507	case hwmon_fan_div:
1508		*val = div_from_reg(data->fan_div[channel]);
1509		return 0;
1510	case hwmon_fan_alarm:
1511		if (channel < 5) {
1512			int bit[] = { 6, 7, 11, 10, 23 };
1513			*val = (data->alarms >> bit[channel]) & 1;
1514			return 0;
1515		}
1516		break;
1517	default:
1518		break;
1519	}
1520	return -EOPNOTSUPP;
1521}
1522
1523static int
1524w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr,
1525		      int channel, long *val)
1526{
1527	switch (attr) {
1528	case hwmon_pwm_input:
1529		*val = data->pwm[channel];
1530		return 0;
1531	case hwmon_pwm_enable:
1532		*val = data->pwm_enable[channel];
1533		return 0;
1534	case hwmon_pwm_mode:
1535		*val = data->pwm_enable[channel];
1536		return 0;
1537	default:
1538		break;
1539	}
1540	return -EOPNOTSUPP;
1541}
1542
1543static int
1544w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr,
1545			    int channel, long *val)
1546{
1547	if (attr != hwmon_intrusion_alarm || channel != 0)
1548		return -EOPNOTSUPP; /* shouldn't happen */
1549
1550	*val = !!(data->caseopen & 0x10);
1551	return 0;
1552}
1553
1554static int
1555w83627ehf_read(struct device *dev, enum hwmon_sensor_types type,
1556			u32 attr, int channel, long *val)
1557{
1558	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent);
1559
1560	switch (type) {
1561	case hwmon_fan:
1562		return w83627ehf_do_read_fan(data, attr, channel, val);
1563
1564	case hwmon_in:
1565		return w83627ehf_do_read_in(data, attr, channel, val);
1566
1567	case hwmon_pwm:
1568		return w83627ehf_do_read_pwm(data, attr, channel, val);
1569
1570	case hwmon_temp:
1571		return w83627ehf_do_read_temp(data, attr, channel, val);
1572
1573	case hwmon_intrusion:
1574		return w83627ehf_do_read_intrusion(data, attr, channel, val);
1575
1576	default:
1577		break;
1578	}
1579
1580	return -EOPNOTSUPP;
1581}
1582
1583static int
1584w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type,
1585		      u32 attr, int channel, const char **str)
1586{
1587	struct w83627ehf_data *data = dev_get_drvdata(dev);
1588
1589	switch (type) {
1590	case hwmon_temp:
1591		if (attr == hwmon_temp_label) {
1592			*str = data->temp_label[data->temp_src[channel]];
1593			return 0;
1594		}
1595		break;
1596
1597	default:
1598		break;
1599	}
1600	/* Nothing else should be read as a string */
1601	return -EOPNOTSUPP;
1602}
1603
1604static int
1605w83627ehf_write(struct device *dev, enum hwmon_sensor_types type,
1606			u32 attr, int channel, long val)
1607{
1608	struct w83627ehf_data *data = dev_get_drvdata(dev);
1609
1610	if (type == hwmon_in && attr == hwmon_in_min)
1611		return store_in_min(dev, data, channel, val);
1612	if (type == hwmon_in && attr == hwmon_in_max)
1613		return store_in_max(dev, data, channel, val);
1614
1615	if (type == hwmon_fan && attr == hwmon_fan_min)
1616		return store_fan_min(dev, data, channel, val);
1617
1618	if (type == hwmon_temp && attr == hwmon_temp_max)
1619		return store_temp_max(dev, data, channel, val);
1620	if (type == hwmon_temp && attr == hwmon_temp_max_hyst)
1621		return store_temp_max_hyst(dev, data, channel, val);
1622	if (type == hwmon_temp && attr == hwmon_temp_offset)
1623		return store_temp_offset(dev, data, channel, val);
1624
1625	if (type == hwmon_pwm && attr == hwmon_pwm_mode)
1626		return store_pwm_mode(dev, data, channel, val);
1627	if (type == hwmon_pwm && attr == hwmon_pwm_enable)
1628		return store_pwm_enable(dev, data, channel, val);
1629	if (type == hwmon_pwm && attr == hwmon_pwm_input)
1630		return store_pwm(dev, data, channel, val);
1631
1632	if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm)
1633		return clear_caseopen(dev, data, channel, val);
1634
1635	return -EOPNOTSUPP;
1636}
1637
1638static const struct hwmon_ops w83627ehf_ops = {
1639	.is_visible = w83627ehf_is_visible,
1640	.read = w83627ehf_read,
1641	.read_string = w83627ehf_read_string,
1642	.write = w83627ehf_write,
1643};
1644
1645static const struct hwmon_channel_info *w83627ehf_info[] = {
1646	HWMON_CHANNEL_INFO(fan,
1647		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1648		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1649		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1650		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1651		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN),
1652	HWMON_CHANNEL_INFO(in,
1653		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1654		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1655		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1656		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1657		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1658		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1659		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1660		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1661		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1662		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN),
1663	HWMON_CHANNEL_INFO(pwm,
1664		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1665		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1666		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1667		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE),
1668	HWMON_CHANNEL_INFO(temp,
1669		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1670			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1671		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1672			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1673		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1674			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1675		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1676			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1677		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1678			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1679		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1680			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1681		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1682			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1683		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1684			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1685		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1686			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE),
1687	HWMON_CHANNEL_INFO(intrusion,
1688		HWMON_INTRUSION_ALARM),
1689	NULL
1690};
1691
1692static const struct hwmon_chip_info w83627ehf_chip_info = {
1693	.ops = &w83627ehf_ops,
1694	.info = w83627ehf_info,
1695};
1696
1697static int w83627ehf_probe(struct platform_device *pdev)
1698{
1699	struct device *dev = &pdev->dev;
1700	struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev);
1701	struct w83627ehf_data *data;
1702	struct resource *res;
1703	u8 en_vrm10;
1704	int i, err = 0;
1705	struct device *hwmon_dev;
1706
1707	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
1708	if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
1709		err = -EBUSY;
1710		dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
1711			(unsigned long)res->start,
1712			(unsigned long)res->start + IOREGION_LENGTH - 1);
1713		goto exit;
1714	}
1715
1716	data = devm_kzalloc(&pdev->dev, sizeof(struct w83627ehf_data),
1717			    GFP_KERNEL);
1718	if (!data) {
1719		err = -ENOMEM;
1720		goto exit_release;
1721	}
1722
1723	data->addr = res->start;
1724	mutex_init(&data->lock);
1725	mutex_init(&data->update_lock);
1726	data->name = w83627ehf_device_names[sio_data->kind];
1727	data->bank = 0xff;		/* Force initial bank selection */
1728	platform_set_drvdata(pdev, data);
1729
1730	/* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
1731	data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
1732	/* 667HG has 3 pwms, and 627UHG has only 2 */
1733	switch (sio_data->kind) {
1734	default:
1735		data->pwm_num = 4;
1736		break;
1737	case w83667hg:
1738	case w83667hg_b:
1739		data->pwm_num = 3;
1740		break;
1741	case w83627uhg:
1742		data->pwm_num = 2;
1743		break;
1744	}
1745
1746	/* Default to 3 temperature inputs, code below will adjust as needed */
1747	data->have_temp = 0x07;
1748
1749	/* Deal with temperature register setup first. */
1750	if (sio_data->kind == w83667hg_b) {
1751		u8 reg;
1752
1753		w83627ehf_set_temp_reg_ehf(data, 4);
1754
1755		/*
1756		 * Temperature sources are selected with bank 0, registers 0x49
1757		 * and 0x4a.
1758		 */
1759		reg = w83627ehf_read_value(data, 0x4a);
1760		data->temp_src[0] = reg >> 5;
1761		reg = w83627ehf_read_value(data, 0x49);
1762		data->temp_src[1] = reg & 0x07;
1763		data->temp_src[2] = (reg >> 4) & 0x07;
1764
1765		/*
1766		 * W83667HG-B has another temperature register at 0x7e.
1767		 * The temperature source is selected with register 0x7d.
1768		 * Support it if the source differs from already reported
1769		 * sources.
1770		 */
1771		reg = w83627ehf_read_value(data, 0x7d);
1772		reg &= 0x07;
1773		if (reg != data->temp_src[0] && reg != data->temp_src[1]
1774		    && reg != data->temp_src[2]) {
1775			data->temp_src[3] = reg;
1776			data->have_temp |= 1 << 3;
1777		}
1778
1779		/*
1780		 * Chip supports either AUXTIN or VIN3. Try to find out which
1781		 * one.
1782		 */
1783		reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
1784		if (data->temp_src[2] == 2 && (reg & 0x01))
1785			data->have_temp &= ~(1 << 2);
1786
1787		if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
1788		    || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
1789			data->in6_skip = 1;
1790
1791		data->temp_label = w83667hg_b_temp_label;
1792		data->have_temp_offset = data->have_temp & 0x07;
1793		for (i = 0; i < 3; i++) {
1794			if (data->temp_src[i] > 2)
1795				data->have_temp_offset &= ~(1 << i);
1796		}
1797	} else if (sio_data->kind == w83627uhg) {
1798		u8 reg;
1799
1800		w83627ehf_set_temp_reg_ehf(data, 3);
1801
1802		/*
1803		 * Temperature sources for temp2 and temp3 are selected with
1804		 * bank 0, registers 0x49 and 0x4a.
1805		 */
1806		data->temp_src[0] = 0;	/* SYSTIN */
1807		reg = w83627ehf_read_value(data, 0x49) & 0x07;
1808		/* Adjust to have the same mapping as other source registers */
1809		if (reg == 0)
1810			data->temp_src[1] = 1;
1811		else if (reg >= 2 && reg <= 5)
1812			data->temp_src[1] = reg + 2;
1813		else	/* should never happen */
1814			data->have_temp &= ~(1 << 1);
1815		reg = w83627ehf_read_value(data, 0x4a);
1816		data->temp_src[2] = reg >> 5;
1817
1818		/*
1819		 * Skip temp3 if source is invalid or the same as temp1
1820		 * or temp2.
1821		 */
1822		if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
1823		    data->temp_src[2] == data->temp_src[0] ||
1824		    ((data->have_temp & (1 << 1)) &&
1825		     data->temp_src[2] == data->temp_src[1]))
1826			data->have_temp &= ~(1 << 2);
1827		else
1828			data->temp3_val_only = 1;	/* No limit regs */
1829
1830		data->in6_skip = 1;			/* No VIN3 */
1831
1832		data->temp_label = w83667hg_b_temp_label;
1833		data->have_temp_offset = data->have_temp & 0x03;
1834		for (i = 0; i < 3; i++) {
1835			if (data->temp_src[i] > 1)
1836				data->have_temp_offset &= ~(1 << i);
1837		}
1838	} else {
1839		w83627ehf_set_temp_reg_ehf(data, 3);
1840
1841		/* Temperature sources are fixed */
1842
1843		if (sio_data->kind == w83667hg) {
1844			u8 reg;
1845
1846			/*
1847			 * Chip supports either AUXTIN or VIN3. Try to find
1848			 * out which one.
1849			 */
1850			reg = w83627ehf_read_value(data,
1851						W83627EHF_REG_TEMP_CONFIG[2]);
1852			if (reg & 0x01)
1853				data->have_temp &= ~(1 << 2);
1854			else
1855				data->in6_skip = 1;
1856		}
1857		data->have_temp_offset = data->have_temp & 0x07;
1858	}
1859
1860	if (sio_data->kind == w83667hg_b) {
1861		data->REG_FAN_MAX_OUTPUT =
1862		  W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
1863		data->REG_FAN_STEP_OUTPUT =
1864		  W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
1865	} else {
1866		data->REG_FAN_MAX_OUTPUT =
1867		  W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
1868		data->REG_FAN_STEP_OUTPUT =
1869		  W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
1870	}
1871
1872	/* Setup input voltage scaling factors */
1873	if (sio_data->kind == w83627uhg)
1874		data->scale_in = scale_in_w83627uhg;
1875	else
1876		data->scale_in = scale_in_common;
1877
1878	/* Initialize the chip */
1879	w83627ehf_init_device(data, sio_data->kind);
1880
1881	data->vrm = vid_which_vrm();
1882
1883	err = superio_enter(sio_data->sioreg);
1884	if (err)
1885		goto exit_release;
1886
1887	/* Read VID value */
1888	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1889		/*
1890		 * W83667HG has different pins for VID input and output, so
1891		 * we can get the VID input values directly at logical device D
1892		 * 0xe3.
1893		 */
1894		superio_select(sio_data->sioreg, W83667HG_LD_VID);
1895		data->vid = superio_inb(sio_data->sioreg, 0xe3);
1896		data->have_vid = true;
1897	} else if (sio_data->kind != w83627uhg) {
1898		superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1899		if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
1900			/*
1901			 * Set VID input sensibility if needed. In theory the
1902			 * BIOS should have set it, but in practice it's not
1903			 * always the case. We only do it for the W83627EHF/EHG
1904			 * because the W83627DHG is more complex in this
1905			 * respect.
1906			 */
1907			if (sio_data->kind == w83627ehf) {
1908				en_vrm10 = superio_inb(sio_data->sioreg,
1909						       SIO_REG_EN_VRM10);
1910				if ((en_vrm10 & 0x08) && data->vrm == 90) {
1911					dev_warn(dev,
1912						 "Setting VID input voltage to TTL\n");
1913					superio_outb(sio_data->sioreg,
1914						     SIO_REG_EN_VRM10,
1915						     en_vrm10 & ~0x08);
1916				} else if (!(en_vrm10 & 0x08)
1917					   && data->vrm == 100) {
1918					dev_warn(dev,
1919						 "Setting VID input voltage to VRM10\n");
1920					superio_outb(sio_data->sioreg,
1921						     SIO_REG_EN_VRM10,
1922						     en_vrm10 | 0x08);
1923				}
1924			}
1925
1926			data->vid = superio_inb(sio_data->sioreg,
1927						SIO_REG_VID_DATA);
1928			if (sio_data->kind == w83627ehf) /* 6 VID pins only */
1929				data->vid &= 0x3f;
1930			data->have_vid = true;
1931		} else {
1932			dev_info(dev,
1933				 "VID pins in output mode, CPU VID not available\n");
1934		}
1935	}
1936
1937	w83627ehf_check_fan_inputs(sio_data, data);
1938
1939	superio_exit(sio_data->sioreg);
1940
1941	/* Read fan clock dividers immediately */
1942	w83627ehf_update_fan_div(data);
1943
1944	/* Read pwm data to save original values */
1945	w83627ehf_update_pwm(data);
1946	for (i = 0; i < data->pwm_num; i++)
1947		data->pwm_enable_orig[i] = data->pwm_enable[i];
1948
1949	hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev,
1950							 data->name,
1951							 data,
1952							 &w83627ehf_chip_info,
1953							 w83627ehf_groups);
1954
1955	return PTR_ERR_OR_ZERO(hwmon_dev);
1956
1957exit_release:
1958	release_region(res->start, IOREGION_LENGTH);
1959exit:
1960	return err;
1961}
1962
1963static int w83627ehf_remove(struct platform_device *pdev)
1964{
1965	struct w83627ehf_data *data = platform_get_drvdata(pdev);
1966
1967	release_region(data->addr, IOREGION_LENGTH);
1968
1969	return 0;
1970}
1971
1972#ifdef CONFIG_PM
1973static int w83627ehf_suspend(struct device *dev)
1974{
1975	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1976
1977	mutex_lock(&data->update_lock);
1978	data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1979	mutex_unlock(&data->update_lock);
1980
1981	return 0;
1982}
1983
1984static int w83627ehf_resume(struct device *dev)
1985{
1986	struct w83627ehf_data *data = dev_get_drvdata(dev);
1987	int i;
1988
1989	mutex_lock(&data->update_lock);
1990	data->bank = 0xff;		/* Force initial bank selection */
1991
1992	/* Restore limits */
1993	for (i = 0; i < data->in_num; i++) {
1994		if ((i == 6) && data->in6_skip)
1995			continue;
1996
1997		w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
1998				      data->in_min[i]);
1999		w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
2000				      data->in_max[i]);
2001	}
2002
2003	for (i = 0; i < 5; i++) {
2004		if (!(data->has_fan_min & (1 << i)))
2005			continue;
2006
2007		w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i],
2008				      data->fan_min[i]);
2009	}
2010
2011	for (i = 0; i < NUM_REG_TEMP; i++) {
2012		if (!(data->have_temp & (1 << i)))
2013			continue;
2014
2015		if (data->reg_temp_over[i])
2016			w83627ehf_write_temp(data, data->reg_temp_over[i],
2017					     data->temp_max[i]);
2018		if (data->reg_temp_hyst[i])
2019			w83627ehf_write_temp(data, data->reg_temp_hyst[i],
2020					     data->temp_max_hyst[i]);
2021		if (i > 2)
2022			continue;
2023		if (data->have_temp_offset & (1 << i))
2024			w83627ehf_write_value(data,
2025					      W83627EHF_REG_TEMP_OFFSET[i],
2026					      data->temp_offset[i]);
2027	}
2028
2029	/* Restore other settings */
2030	w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
2031
2032	/* Force re-reading all values */
2033	data->valid = 0;
2034	mutex_unlock(&data->update_lock);
2035
2036	return 0;
2037}
2038
2039static const struct dev_pm_ops w83627ehf_dev_pm_ops = {
2040	.suspend = w83627ehf_suspend,
2041	.resume = w83627ehf_resume,
2042	.freeze = w83627ehf_suspend,
2043	.restore = w83627ehf_resume,
2044};
2045
2046#define W83627EHF_DEV_PM_OPS	(&w83627ehf_dev_pm_ops)
2047#else
2048#define W83627EHF_DEV_PM_OPS	NULL
2049#endif /* CONFIG_PM */
2050
2051static struct platform_driver w83627ehf_driver = {
2052	.driver = {
2053		.name	= DRVNAME,
2054		.pm	= W83627EHF_DEV_PM_OPS,
2055	},
2056	.probe		= w83627ehf_probe,
2057	.remove		= w83627ehf_remove,
2058};
2059
2060/* w83627ehf_find() looks for a '627 in the Super-I/O config space */
2061static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
2062				 struct w83627ehf_sio_data *sio_data)
2063{
2064	static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
2065	static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
2066	static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
2067	static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
2068	static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
2069	static const char sio_name_W83667HG[] __initconst = "W83667HG";
2070	static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
2071
2072	u16 val;
2073	const char *sio_name;
2074	int err;
2075
2076	err = superio_enter(sioaddr);
2077	if (err)
2078		return err;
2079
2080	if (force_id)
2081		val = force_id;
2082	else
2083		val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
2084		    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
2085	switch (val & SIO_ID_MASK) {
2086	case SIO_W83627EHF_ID:
2087		sio_data->kind = w83627ehf;
2088		sio_name = sio_name_W83627EHF;
2089		break;
2090	case SIO_W83627EHG_ID:
2091		sio_data->kind = w83627ehf;
2092		sio_name = sio_name_W83627EHG;
2093		break;
2094	case SIO_W83627DHG_ID:
2095		sio_data->kind = w83627dhg;
2096		sio_name = sio_name_W83627DHG;
2097		break;
2098	case SIO_W83627DHG_P_ID:
2099		sio_data->kind = w83627dhg_p;
2100		sio_name = sio_name_W83627DHG_P;
2101		break;
2102	case SIO_W83627UHG_ID:
2103		sio_data->kind = w83627uhg;
2104		sio_name = sio_name_W83627UHG;
2105		break;
2106	case SIO_W83667HG_ID:
2107		sio_data->kind = w83667hg;
2108		sio_name = sio_name_W83667HG;
2109		break;
2110	case SIO_W83667HG_B_ID:
2111		sio_data->kind = w83667hg_b;
2112		sio_name = sio_name_W83667HG_B;
2113		break;
2114	default:
2115		if (val != 0xffff)
2116			pr_debug("unsupported chip ID: 0x%04x\n", val);
2117		superio_exit(sioaddr);
2118		return -ENODEV;
2119	}
2120
2121	/* We have a known chip, find the HWM I/O address */
2122	superio_select(sioaddr, W83627EHF_LD_HWM);
2123	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
2124	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
2125	*addr = val & IOREGION_ALIGNMENT;
2126	if (*addr == 0) {
2127		pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
2128		superio_exit(sioaddr);
2129		return -ENODEV;
2130	}
2131
2132	/* Activate logical device if needed */
2133	val = superio_inb(sioaddr, SIO_REG_ENABLE);
2134	if (!(val & 0x01)) {
2135		pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n");
2136		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
2137	}
2138
2139	superio_exit(sioaddr);
2140	pr_info("Found %s chip at %#x\n", sio_name, *addr);
2141	sio_data->sioreg = sioaddr;
2142
2143	return 0;
2144}
2145
2146/*
2147 * when Super-I/O functions move to a separate file, the Super-I/O
2148 * bus will manage the lifetime of the device and this module will only keep
2149 * track of the w83627ehf driver. But since we platform_device_alloc(), we
2150 * must keep track of the device
2151 */
2152static struct platform_device *pdev;
2153
2154static int __init sensors_w83627ehf_init(void)
2155{
2156	int err;
2157	unsigned short address;
2158	struct resource res;
 
 
 
2159	struct w83627ehf_sio_data sio_data;
2160
2161	/*
2162	 * initialize sio_data->kind and sio_data->sioreg.
2163	 *
2164	 * when Super-I/O functions move to a separate file, the Super-I/O
2165	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
2166	 * w83627ehf hardware monitor, and call probe()
2167	 */
2168	if (w83627ehf_find(0x2e, &address, &sio_data) &&
2169	    w83627ehf_find(0x4e, &address, &sio_data))
2170		return -ENODEV;
2171
2172	err = platform_driver_register(&w83627ehf_driver);
2173	if (err)
2174		goto exit;
2175
2176	pdev = platform_device_alloc(DRVNAME, address);
2177	if (!pdev) {
2178		err = -ENOMEM;
2179		pr_err("Device allocation failed\n");
2180		goto exit_unregister;
2181	}
2182
2183	err = platform_device_add_data(pdev, &sio_data,
2184				       sizeof(struct w83627ehf_sio_data));
2185	if (err) {
2186		pr_err("Platform data allocation failed\n");
2187		goto exit_device_put;
2188	}
2189
2190	memset(&res, 0, sizeof(res));
2191	res.name = DRVNAME;
2192	res.start = address + IOREGION_OFFSET;
2193	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
2194	res.flags = IORESOURCE_IO;
2195
2196	err = acpi_check_resource_conflict(&res);
2197	if (err)
2198		goto exit_device_put;
2199
2200	err = platform_device_add_resources(pdev, &res, 1);
2201	if (err) {
2202		pr_err("Device resource addition failed (%d)\n", err);
2203		goto exit_device_put;
2204	}
2205
2206	/* platform_device_add calls probe() */
2207	err = platform_device_add(pdev);
2208	if (err) {
2209		pr_err("Device addition failed (%d)\n", err);
2210		goto exit_device_put;
2211	}
2212
2213	return 0;
 
2214
2215exit_device_put:
2216	platform_device_put(pdev);
2217exit_unregister:
2218	platform_driver_unregister(&w83627ehf_driver);
2219exit:
2220	return err;
2221}
2222
2223static void __exit sensors_w83627ehf_exit(void)
2224{
2225	platform_device_unregister(pdev);
2226	platform_driver_unregister(&w83627ehf_driver);
2227}
2228
2229MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2230MODULE_DESCRIPTION("W83627EHF driver");
2231MODULE_LICENSE("GPL");
2232
2233module_init(sensors_w83627ehf_init);
2234module_exit(sensors_w83627ehf_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  w83627ehf - Driver for the hardware monitoring functionality of
   4 *		the Winbond W83627EHF Super-I/O chip
   5 *  Copyright (C) 2005-2012  Jean Delvare <jdelvare@suse.de>
   6 *  Copyright (C) 2006  Yuan Mu (Winbond),
   7 *			Rudolf Marek <r.marek@assembler.cz>
   8 *			David Hubbard <david.c.hubbard@gmail.com>
   9 *			Daniel J Blueman <daniel.blueman@gmail.com>
  10 *  Copyright (C) 2010  Sheng-Yuan Huang (Nuvoton) (PS00)
  11 *
  12 *  Shamelessly ripped from the w83627hf driver
  13 *  Copyright (C) 2003  Mark Studebaker
  14 *
  15 *  Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
  16 *  in testing and debugging this driver.
  17 *
  18 *  This driver also supports the W83627EHG, which is the lead-free
  19 *  version of the W83627EHF.
  20 *
  21 *  Supports the following chips:
  22 *
  23 *  Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
  24 *  w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
  25 *					       0x8860 0xa1
  26 *  w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
  27 *  w83627dhg-p  9      5       4       3      0xb070 0xc1    0x5ca3
  28 *  w83627uhg    8      2       2       3      0xa230 0xc1    0x5ca3
  29 *  w83667hg     9      5       3       3      0xa510 0xc1    0x5ca3
  30 *  w83667hg-b   9      5       3       4      0xb350 0xc1    0x5ca3
  31 */
  32
  33#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  34
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/jiffies.h>
  39#include <linux/platform_device.h>
  40#include <linux/hwmon.h>
  41#include <linux/hwmon-sysfs.h>
  42#include <linux/hwmon-vid.h>
  43#include <linux/err.h>
  44#include <linux/mutex.h>
  45#include <linux/acpi.h>
  46#include <linux/io.h>
  47#include "lm75.h"
  48
  49enum kinds {
  50	w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
  51	w83667hg, w83667hg_b,
  52};
  53
  54/* used to set data->name = w83627ehf_device_names[data->sio_kind] */
  55static const char * const w83627ehf_device_names[] = {
  56	"w83627ehf",
  57	"w83627dhg",
  58	"w83627dhg",
  59	"w83627uhg",
  60	"w83667hg",
  61	"w83667hg",
  62};
  63
  64static unsigned short force_id;
  65module_param(force_id, ushort, 0);
  66MODULE_PARM_DESC(force_id, "Override the detected device ID");
  67
  68#define DRVNAME "w83627ehf"
  69
  70/*
  71 * Super-I/O constants and functions
  72 */
  73
  74#define W83627EHF_LD_HWM	0x0b
  75#define W83667HG_LD_VID		0x0d
  76
  77#define SIO_REG_LDSEL		0x07	/* Logical device select */
  78#define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
  79#define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
  80#define SIO_REG_ENABLE		0x30	/* Logical device enable */
  81#define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
  82#define SIO_REG_VID_CTRL	0xF0	/* VID control */
  83#define SIO_REG_VID_DATA	0xF1	/* VID data */
  84
  85#define SIO_W83627EHF_ID	0x8850
  86#define SIO_W83627EHG_ID	0x8860
  87#define SIO_W83627DHG_ID	0xa020
  88#define SIO_W83627DHG_P_ID	0xb070
  89#define SIO_W83627UHG_ID	0xa230
  90#define SIO_W83667HG_ID		0xa510
  91#define SIO_W83667HG_B_ID	0xb350
  92#define SIO_ID_MASK		0xFFF0
  93
  94static inline void
  95superio_outb(int ioreg, int reg, int val)
  96{
  97	outb(reg, ioreg);
  98	outb(val, ioreg + 1);
  99}
 100
 101static inline int
 102superio_inb(int ioreg, int reg)
 103{
 104	outb(reg, ioreg);
 105	return inb(ioreg + 1);
 106}
 107
 108static inline void
 109superio_select(int ioreg, int ld)
 110{
 111	outb(SIO_REG_LDSEL, ioreg);
 112	outb(ld, ioreg + 1);
 113}
 114
 115static inline int
 116superio_enter(int ioreg)
 117{
 118	if (!request_muxed_region(ioreg, 2, DRVNAME))
 119		return -EBUSY;
 120
 121	outb(0x87, ioreg);
 122	outb(0x87, ioreg);
 123
 124	return 0;
 125}
 126
 127static inline void
 128superio_exit(int ioreg)
 129{
 130	outb(0xaa, ioreg);
 131	outb(0x02, ioreg);
 132	outb(0x02, ioreg + 1);
 133	release_region(ioreg, 2);
 134}
 135
 136/*
 137 * ISA constants
 138 */
 139
 140#define IOREGION_ALIGNMENT	(~7)
 141#define IOREGION_OFFSET		5
 142#define IOREGION_LENGTH		2
 143#define ADDR_REG_OFFSET		0
 144#define DATA_REG_OFFSET		1
 145
 146#define W83627EHF_REG_BANK		0x4E
 147#define W83627EHF_REG_CONFIG		0x40
 148
 149/*
 150 * Not currently used:
 151 * REG_MAN_ID has the value 0x5ca3 for all supported chips.
 152 * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
 153 * REG_MAN_ID is at port 0x4f
 154 * REG_CHIP_ID is at port 0x58
 155 */
 156
 157static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
 158static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
 159
 160/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
 161#define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
 162					 (0x554 + (((nr) - 7) * 2)))
 163#define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
 164					 (0x555 + (((nr) - 7) * 2)))
 165#define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
 166					 (0x550 + (nr) - 7))
 167
 168static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
 169static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
 170static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
 171static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
 172
 173/* Fan clock dividers are spread over the following five registers */
 174#define W83627EHF_REG_FANDIV1		0x47
 175#define W83627EHF_REG_FANDIV2		0x4B
 176#define W83627EHF_REG_VBAT		0x5D
 177#define W83627EHF_REG_DIODE		0x59
 178#define W83627EHF_REG_SMI_OVT		0x4C
 179
 180#define W83627EHF_REG_ALARM1		0x459
 181#define W83627EHF_REG_ALARM2		0x45A
 182#define W83627EHF_REG_ALARM3		0x45B
 183
 184#define W83627EHF_REG_CASEOPEN_DET	0x42 /* SMI STATUS #2 */
 185#define W83627EHF_REG_CASEOPEN_CLR	0x46 /* SMI MASK #3 */
 186
 187/* SmartFan registers */
 188#define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
 189#define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
 190
 191/* DC or PWM output fan configuration */
 192static const u8 W83627EHF_REG_PWM_ENABLE[] = {
 193	0x04,			/* SYS FAN0 output mode and PWM mode */
 194	0x04,			/* CPU FAN0 output mode and PWM mode */
 195	0x12,			/* AUX FAN mode */
 196	0x62,			/* CPU FAN1 mode */
 197};
 198
 199static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
 200static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
 201
 202/* FAN Duty Cycle, be used to control */
 203static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
 204static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
 205static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
 206
 207/* Advanced Fan control, some values are common for all fans */
 208static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
 209static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
 210static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
 211
 212static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
 213						= { 0xff, 0x67, 0xff, 0x69 };
 214static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
 215						= { 0xff, 0x68, 0xff, 0x6a };
 216
 217static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
 218static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
 219						= { 0x68, 0x6a, 0x6c };
 220
 221static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
 222
 223static const char *const w83667hg_b_temp_label[] = {
 224	"SYSTIN",
 225	"CPUTIN",
 226	"AUXTIN",
 227	"AMDTSI",
 228	"PECI Agent 1",
 229	"PECI Agent 2",
 230	"PECI Agent 3",
 231	"PECI Agent 4"
 232};
 233
 234#define NUM_REG_TEMP	ARRAY_SIZE(W83627EHF_REG_TEMP)
 235
 236static int is_word_sized(u16 reg)
 237{
 238	return ((((reg & 0xff00) == 0x100
 239	      || (reg & 0xff00) == 0x200)
 240	     && ((reg & 0x00ff) == 0x50
 241	      || (reg & 0x00ff) == 0x53
 242	      || (reg & 0x00ff) == 0x55))
 243	     || (reg & 0xfff0) == 0x630
 244	     || reg == 0x640 || reg == 0x642
 245	     || ((reg & 0xfff0) == 0x650
 246		 && (reg & 0x000f) >= 0x06)
 247	     || reg == 0x73 || reg == 0x75 || reg == 0x77
 248		);
 249}
 250
 251/*
 252 * Conversions
 253 */
 254
 255/* 1 is PWM mode, output in ms */
 256static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
 257{
 258	return mode ? 100 * reg : 400 * reg;
 259}
 260
 261static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
 262{
 263	return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400),
 264			 1, 255);
 265}
 266
 267static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
 268{
 269	if (reg == 0 || reg == 255)
 270		return 0;
 271	return 1350000U / (reg << divreg);
 272}
 273
 274static inline unsigned int
 275div_from_reg(u8 reg)
 276{
 277	return 1 << reg;
 278}
 279
 280/*
 281 * Some of the voltage inputs have internal scaling, the tables below
 282 * contain 8 (the ADC LSB in mV) * scaling factor * 100
 283 */
 284static const u16 scale_in_common[10] = {
 285	800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
 286};
 287static const u16 scale_in_w83627uhg[9] = {
 288	800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
 289};
 290
 291static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
 292{
 293	return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
 294}
 295
 296static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
 297{
 298	return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255);
 299}
 300
 301/*
 302 * Data structures and manipulation thereof
 303 */
 304
 305struct w83627ehf_data {
 306	int addr;	/* IO base of hw monitor block */
 307	const char *name;
 308
 309	struct mutex lock;
 310
 311	u16 reg_temp[NUM_REG_TEMP];
 312	u16 reg_temp_over[NUM_REG_TEMP];
 313	u16 reg_temp_hyst[NUM_REG_TEMP];
 314	u16 reg_temp_config[NUM_REG_TEMP];
 315	u8 temp_src[NUM_REG_TEMP];
 316	const char * const *temp_label;
 317
 318	const u16 *REG_FAN_MAX_OUTPUT;
 319	const u16 *REG_FAN_STEP_OUTPUT;
 320	const u16 *scale_in;
 321
 322	struct mutex update_lock;
 323	bool valid;		/* true if following fields are valid */
 324	unsigned long last_updated;	/* In jiffies */
 325
 326	/* Register values */
 327	u8 bank;		/* current register bank */
 328	u8 in_num;		/* number of in inputs we have */
 329	u8 in[10];		/* Register value */
 330	u8 in_max[10];		/* Register value */
 331	u8 in_min[10];		/* Register value */
 332	unsigned int rpm[5];
 333	u16 fan_min[5];
 334	u8 fan_div[5];
 335	u8 has_fan;		/* some fan inputs can be disabled */
 336	u8 has_fan_min;		/* some fans don't have min register */
 337	u8 temp_type[3];
 338	s8 temp_offset[3];
 339	s16 temp[9];
 340	s16 temp_max[9];
 341	s16 temp_max_hyst[9];
 342	u32 alarms;
 343	u8 caseopen;
 344
 345	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
 346	u8 pwm_enable[4]; /* 1->manual
 347			   * 2->thermal cruise mode (also called SmartFan I)
 348			   * 3->fan speed cruise mode
 349			   * 4->variable thermal cruise (also called
 350			   * SmartFan III)
 351			   * 5->enhanced variable thermal cruise (also called
 352			   * SmartFan IV)
 353			   */
 354	u8 pwm_enable_orig[4];	/* original value of pwm_enable */
 355	u8 pwm_num;		/* number of pwm */
 356	u8 pwm[4];
 357	u8 target_temp[4];
 358	u8 tolerance[4];
 359
 360	u8 fan_start_output[4]; /* minimum fan speed when spinning up */
 361	u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
 362	u8 fan_stop_time[4]; /* time at minimum before disabling fan */
 363	u8 fan_max_output[4]; /* maximum fan speed */
 364	u8 fan_step_output[4]; /* rate of change output value */
 365
 366	u8 vid;
 367	u8 vrm;
 368
 369	u16 have_temp;
 370	u16 have_temp_offset;
 371	u8 in6_skip:1;
 372	u8 temp3_val_only:1;
 373	u8 have_vid:1;
 374
 
 375	/* Remember extra register values over suspend/resume */
 376	u8 vbat;
 377	u8 fandiv1;
 378	u8 fandiv2;
 
 379};
 380
 381struct w83627ehf_sio_data {
 382	int sioreg;
 383	enum kinds kind;
 384};
 385
 386/*
 387 * On older chips, only registers 0x50-0x5f are banked.
 388 * On more recent chips, all registers are banked.
 389 * Assume that is the case and set the bank number for each access.
 390 * Cache the bank number so it only needs to be set if it changes.
 391 */
 392static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
 393{
 394	u8 bank = reg >> 8;
 395	if (data->bank != bank) {
 396		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
 397		outb_p(bank, data->addr + DATA_REG_OFFSET);
 398		data->bank = bank;
 399	}
 400}
 401
 402static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
 403{
 404	int res, word_sized = is_word_sized(reg);
 405
 406	mutex_lock(&data->lock);
 407
 408	w83627ehf_set_bank(data, reg);
 409	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
 410	res = inb_p(data->addr + DATA_REG_OFFSET);
 411	if (word_sized) {
 412		outb_p((reg & 0xff) + 1,
 413		       data->addr + ADDR_REG_OFFSET);
 414		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
 415	}
 416
 417	mutex_unlock(&data->lock);
 418	return res;
 419}
 420
 421static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
 422				 u16 value)
 423{
 424	int word_sized = is_word_sized(reg);
 425
 426	mutex_lock(&data->lock);
 427
 428	w83627ehf_set_bank(data, reg);
 429	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
 430	if (word_sized) {
 431		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
 432		outb_p((reg & 0xff) + 1,
 433		       data->addr + ADDR_REG_OFFSET);
 434	}
 435	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
 436
 437	mutex_unlock(&data->lock);
 438	return 0;
 439}
 440
 441/* We left-align 8-bit temperature values to make the code simpler */
 442static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
 443{
 444	u16 res;
 445
 446	res = w83627ehf_read_value(data, reg);
 447	if (!is_word_sized(reg))
 448		res <<= 8;
 449
 450	return res;
 451}
 452
 453static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
 454				       u16 value)
 455{
 456	if (!is_word_sized(reg))
 457		value >>= 8;
 458	return w83627ehf_write_value(data, reg, value);
 459}
 460
 461/* This function assumes that the caller holds data->update_lock */
 462static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
 463{
 464	u8 reg;
 465
 466	switch (nr) {
 467	case 0:
 468		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
 469		    | ((data->fan_div[0] & 0x03) << 4);
 470		/* fan5 input control bit is write only, compute the value */
 471		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
 472		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
 473		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
 474		    | ((data->fan_div[0] & 0x04) << 3);
 475		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
 476		break;
 477	case 1:
 478		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
 479		    | ((data->fan_div[1] & 0x03) << 6);
 480		/* fan5 input control bit is write only, compute the value */
 481		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
 482		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
 483		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
 484		    | ((data->fan_div[1] & 0x04) << 4);
 485		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
 486		break;
 487	case 2:
 488		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
 489		    | ((data->fan_div[2] & 0x03) << 6);
 490		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
 491		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
 492		    | ((data->fan_div[2] & 0x04) << 5);
 493		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
 494		break;
 495	case 3:
 496		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
 497		    | (data->fan_div[3] & 0x03);
 498		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
 499		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
 500		    | ((data->fan_div[3] & 0x04) << 5);
 501		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
 502		break;
 503	case 4:
 504		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
 505		    | ((data->fan_div[4] & 0x03) << 2)
 506		    | ((data->fan_div[4] & 0x04) << 5);
 507		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
 508		break;
 509	}
 510}
 511
 512static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
 513{
 514	int i;
 515
 516	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
 517	data->fan_div[0] = (i >> 4) & 0x03;
 518	data->fan_div[1] = (i >> 6) & 0x03;
 519	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
 520	data->fan_div[2] = (i >> 6) & 0x03;
 521	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
 522	data->fan_div[0] |= (i >> 3) & 0x04;
 523	data->fan_div[1] |= (i >> 4) & 0x04;
 524	data->fan_div[2] |= (i >> 5) & 0x04;
 525	if (data->has_fan & ((1 << 3) | (1 << 4))) {
 526		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
 527		data->fan_div[3] = i & 0x03;
 528		data->fan_div[4] = ((i >> 2) & 0x03)
 529				 | ((i >> 5) & 0x04);
 530	}
 531	if (data->has_fan & (1 << 3)) {
 532		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
 533		data->fan_div[3] |= (i >> 5) & 0x04;
 534	}
 535}
 536
 537static void w83627ehf_update_pwm(struct w83627ehf_data *data)
 538{
 539	int i;
 540	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
 541
 542	for (i = 0; i < data->pwm_num; i++) {
 543		if (!(data->has_fan & (1 << i)))
 544			continue;
 545
 546		/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
 547		if (i != 1) {
 548			pwmcfg = w83627ehf_read_value(data,
 549					W83627EHF_REG_PWM_ENABLE[i]);
 550			tolerance = w83627ehf_read_value(data,
 551					W83627EHF_REG_TOLERANCE[i]);
 552		}
 553		data->pwm_mode[i] =
 554			((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
 555		data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
 556				       & 3) + 1;
 557		data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]);
 558
 559		data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
 560	}
 561}
 562
 563static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
 564{
 565	struct w83627ehf_data *data = dev_get_drvdata(dev);
 566	int i;
 567
 568	mutex_lock(&data->update_lock);
 569
 570	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
 571	 || !data->valid) {
 572		/* Fan clock dividers */
 573		w83627ehf_update_fan_div(data);
 574
 575		/* Measured voltages and limits */
 576		for (i = 0; i < data->in_num; i++) {
 577			if ((i == 6) && data->in6_skip)
 578				continue;
 579
 580			data->in[i] = w83627ehf_read_value(data,
 581				      W83627EHF_REG_IN(i));
 582			data->in_min[i] = w83627ehf_read_value(data,
 583					  W83627EHF_REG_IN_MIN(i));
 584			data->in_max[i] = w83627ehf_read_value(data,
 585					  W83627EHF_REG_IN_MAX(i));
 586		}
 587
 588		/* Measured fan speeds and limits */
 589		for (i = 0; i < 5; i++) {
 590			u16 reg;
 591
 592			if (!(data->has_fan & (1 << i)))
 593				continue;
 594
 595			reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]);
 596			data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]);
 597
 598			if (data->has_fan_min & (1 << i))
 599				data->fan_min[i] = w83627ehf_read_value(data,
 600					   W83627EHF_REG_FAN_MIN[i]);
 601
 602			/*
 603			 * If we failed to measure the fan speed and clock
 604			 * divider can be increased, let's try that for next
 605			 * time
 606			 */
 607			if (reg >= 0xff && data->fan_div[i] < 0x07) {
 608				dev_dbg(dev,
 609					"Increasing fan%d clock divider from %u to %u\n",
 610					i + 1, div_from_reg(data->fan_div[i]),
 611					div_from_reg(data->fan_div[i] + 1));
 612				data->fan_div[i]++;
 613				w83627ehf_write_fan_div(data, i);
 614				/* Preserve min limit if possible */
 615				if ((data->has_fan_min & (1 << i))
 616				 && data->fan_min[i] >= 2
 617				 && data->fan_min[i] != 255)
 618					w83627ehf_write_value(data,
 619						W83627EHF_REG_FAN_MIN[i],
 620						(data->fan_min[i] /= 2));
 621			}
 622		}
 623
 624		w83627ehf_update_pwm(data);
 625
 626		for (i = 0; i < data->pwm_num; i++) {
 627			if (!(data->has_fan & (1 << i)))
 628				continue;
 629
 630			data->fan_start_output[i] =
 631			  w83627ehf_read_value(data,
 632					     W83627EHF_REG_FAN_START_OUTPUT[i]);
 633			data->fan_stop_output[i] =
 634			  w83627ehf_read_value(data,
 635					     W83627EHF_REG_FAN_STOP_OUTPUT[i]);
 636			data->fan_stop_time[i] =
 637			  w83627ehf_read_value(data,
 638					       W83627EHF_REG_FAN_STOP_TIME[i]);
 639
 640			if (data->REG_FAN_MAX_OUTPUT &&
 641			    data->REG_FAN_MAX_OUTPUT[i] != 0xff)
 642				data->fan_max_output[i] =
 643				  w83627ehf_read_value(data,
 644						data->REG_FAN_MAX_OUTPUT[i]);
 645
 646			if (data->REG_FAN_STEP_OUTPUT &&
 647			    data->REG_FAN_STEP_OUTPUT[i] != 0xff)
 648				data->fan_step_output[i] =
 649				  w83627ehf_read_value(data,
 650						data->REG_FAN_STEP_OUTPUT[i]);
 651
 652			data->target_temp[i] =
 653				w83627ehf_read_value(data,
 654					W83627EHF_REG_TARGET[i]) &
 655					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
 656		}
 657
 658		/* Measured temperatures and limits */
 659		for (i = 0; i < NUM_REG_TEMP; i++) {
 660			if (!(data->have_temp & (1 << i)))
 661				continue;
 662			data->temp[i] = w83627ehf_read_temp(data,
 663						data->reg_temp[i]);
 664			if (data->reg_temp_over[i])
 665				data->temp_max[i]
 666				  = w83627ehf_read_temp(data,
 667						data->reg_temp_over[i]);
 668			if (data->reg_temp_hyst[i])
 669				data->temp_max_hyst[i]
 670				  = w83627ehf_read_temp(data,
 671						data->reg_temp_hyst[i]);
 672			if (i > 2)
 673				continue;
 674			if (data->have_temp_offset & (1 << i))
 675				data->temp_offset[i]
 676				  = w83627ehf_read_value(data,
 677						W83627EHF_REG_TEMP_OFFSET[i]);
 678		}
 679
 680		data->alarms = w83627ehf_read_value(data,
 681					W83627EHF_REG_ALARM1) |
 682			       (w83627ehf_read_value(data,
 683					W83627EHF_REG_ALARM2) << 8) |
 684			       (w83627ehf_read_value(data,
 685					W83627EHF_REG_ALARM3) << 16);
 686
 687		data->caseopen = w83627ehf_read_value(data,
 688						W83627EHF_REG_CASEOPEN_DET);
 689
 690		data->last_updated = jiffies;
 691		data->valid = true;
 692	}
 693
 694	mutex_unlock(&data->update_lock);
 695	return data;
 696}
 697
 698#define store_in_reg(REG, reg) \
 699static int \
 700store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
 701	       long val) \
 702{ \
 703	if (val < 0) \
 704		return -EINVAL; \
 705	mutex_lock(&data->update_lock); \
 706	data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \
 707	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \
 708			      data->in_##reg[channel]); \
 709	mutex_unlock(&data->update_lock); \
 710	return 0; \
 711}
 712
 713store_in_reg(MIN, min)
 714store_in_reg(MAX, max)
 715
 716static int
 717store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel,
 718	      long val)
 719{
 720	unsigned int reg;
 721	u8 new_div;
 722
 723	if (val < 0)
 724		return -EINVAL;
 725
 726	mutex_lock(&data->update_lock);
 727	if (!val) {
 728		/* No min limit, alarm disabled */
 729		data->fan_min[channel] = 255;
 730		new_div = data->fan_div[channel]; /* No change */
 731		dev_info(dev, "fan%u low limit and alarm disabled\n",
 732			 channel + 1);
 733	} else if ((reg = 1350000U / val) >= 128 * 255) {
 734		/*
 735		 * Speed below this value cannot possibly be represented,
 736		 * even with the highest divider (128)
 737		 */
 738		data->fan_min[channel] = 254;
 739		new_div = 7; /* 128 == (1 << 7) */
 740		dev_warn(dev,
 741			 "fan%u low limit %lu below minimum %u, set to minimum\n",
 742			 channel + 1, val, fan_from_reg8(254, 7));
 743	} else if (!reg) {
 744		/*
 745		 * Speed above this value cannot possibly be represented,
 746		 * even with the lowest divider (1)
 747		 */
 748		data->fan_min[channel] = 1;
 749		new_div = 0; /* 1 == (1 << 0) */
 750		dev_warn(dev,
 751			 "fan%u low limit %lu above maximum %u, set to maximum\n",
 752			 channel + 1, val, fan_from_reg8(1, 0));
 753	} else {
 754		/*
 755		 * Automatically pick the best divider, i.e. the one such
 756		 * that the min limit will correspond to a register value
 757		 * in the 96..192 range
 758		 */
 759		new_div = 0;
 760		while (reg > 192 && new_div < 7) {
 761			reg >>= 1;
 762			new_div++;
 763		}
 764		data->fan_min[channel] = reg;
 765	}
 766
 767	/*
 768	 * Write both the fan clock divider (if it changed) and the new
 769	 * fan min (unconditionally)
 770	 */
 771	if (new_div != data->fan_div[channel]) {
 772		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
 773			channel + 1, div_from_reg(data->fan_div[channel]),
 774			div_from_reg(new_div));
 775		data->fan_div[channel] = new_div;
 776		w83627ehf_write_fan_div(data, channel);
 777		/* Give the chip time to sample a new speed value */
 778		data->last_updated = jiffies;
 779	}
 780
 781	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel],
 782			      data->fan_min[channel]);
 783	mutex_unlock(&data->update_lock);
 784
 785	return 0;
 786}
 787
 788#define store_temp_reg(addr, reg) \
 789static int \
 790store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
 791	    long val) \
 792{ \
 793	mutex_lock(&data->update_lock); \
 794	data->reg[channel] = LM75_TEMP_TO_REG(val); \
 795	w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \
 796	mutex_unlock(&data->update_lock); \
 797	return 0; \
 798}
 799store_temp_reg(reg_temp_over, temp_max);
 800store_temp_reg(reg_temp_hyst, temp_max_hyst);
 801
 802static int
 803store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel,
 804		  long val)
 805{
 806	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
 807
 808	mutex_lock(&data->update_lock);
 809	data->temp_offset[channel] = val;
 810	w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val);
 811	mutex_unlock(&data->update_lock);
 812	return 0;
 813}
 814
 815static int
 816store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel,
 817	       long val)
 818{
 819	u16 reg;
 820
 821	if (val < 0 || val > 1)
 822		return -EINVAL;
 823
 824	mutex_lock(&data->update_lock);
 825	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]);
 826	data->pwm_mode[channel] = val;
 827	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]);
 828	if (!val)
 829		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel];
 830	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg);
 831	mutex_unlock(&data->update_lock);
 832	return 0;
 833}
 834
 835static int
 836store_pwm(struct device *dev, struct w83627ehf_data *data, int channel,
 837	  long val)
 838{
 839	val = clamp_val(val, 0, 255);
 840
 841	mutex_lock(&data->update_lock);
 842	data->pwm[channel] = val;
 843	w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val);
 844	mutex_unlock(&data->update_lock);
 845	return 0;
 846}
 847
 848static int
 849store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel,
 850		 long val)
 851{
 852	u16 reg;
 853
 854	if (!val || val < 0 ||
 855	    (val > 4 && val != data->pwm_enable_orig[channel]))
 856		return -EINVAL;
 857
 858	mutex_lock(&data->update_lock);
 859	data->pwm_enable[channel] = val;
 860	reg = w83627ehf_read_value(data,
 861				   W83627EHF_REG_PWM_ENABLE[channel]);
 862	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]);
 863	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel];
 864	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel],
 865			      reg);
 866	mutex_unlock(&data->update_lock);
 867	return 0;
 868}
 869
 870#define show_tol_temp(reg) \
 871static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
 872				char *buf) \
 873{ \
 874	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
 875	struct sensor_device_attribute *sensor_attr = \
 876		to_sensor_dev_attr(attr); \
 877	int nr = sensor_attr->index; \
 878	return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
 879}
 880
 881show_tol_temp(tolerance)
 882show_tol_temp(target_temp)
 883
 884static ssize_t
 885store_target_temp(struct device *dev, struct device_attribute *attr,
 886			const char *buf, size_t count)
 887{
 888	struct w83627ehf_data *data = dev_get_drvdata(dev);
 889	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
 890	int nr = sensor_attr->index;
 891	long val;
 892	int err;
 893
 894	err = kstrtol(buf, 10, &val);
 895	if (err < 0)
 896		return err;
 897
 898	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
 899
 900	mutex_lock(&data->update_lock);
 901	data->target_temp[nr] = val;
 902	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
 903	mutex_unlock(&data->update_lock);
 904	return count;
 905}
 906
 907static ssize_t
 908store_tolerance(struct device *dev, struct device_attribute *attr,
 909			const char *buf, size_t count)
 910{
 911	struct w83627ehf_data *data = dev_get_drvdata(dev);
 912	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
 913	int nr = sensor_attr->index;
 914	u16 reg;
 915	long val;
 916	int err;
 917
 918	err = kstrtol(buf, 10, &val);
 919	if (err < 0)
 920		return err;
 921
 922	/* Limit the temp to 0C - 15C */
 923	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
 924
 925	mutex_lock(&data->update_lock);
 926	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
 927	if (nr == 1)
 928		reg = (reg & 0x0f) | (val << 4);
 929	else
 930		reg = (reg & 0xf0) | val;
 931	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
 932	data->tolerance[nr] = val;
 933	mutex_unlock(&data->update_lock);
 934	return count;
 935}
 936
 937static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp,
 938	    store_target_temp, 0);
 939static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp,
 940	    store_target_temp, 1);
 941static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp,
 942	    store_target_temp, 2);
 943static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp,
 944	    store_target_temp, 3);
 945
 946static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance,
 947	    store_tolerance, 0);
 948static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance,
 949	    store_tolerance, 1);
 950static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance,
 951	    store_tolerance, 2);
 952static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance,
 953	    store_tolerance, 3);
 954
 955/* Smart Fan registers */
 956
 957#define fan_functions(reg, REG) \
 958static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
 959		       char *buf) \
 960{ \
 961	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
 962	struct sensor_device_attribute *sensor_attr = \
 963		to_sensor_dev_attr(attr); \
 964	int nr = sensor_attr->index; \
 965	return sprintf(buf, "%d\n", data->reg[nr]); \
 966} \
 967static ssize_t \
 968store_##reg(struct device *dev, struct device_attribute *attr, \
 969			    const char *buf, size_t count) \
 970{ \
 971	struct w83627ehf_data *data = dev_get_drvdata(dev); \
 972	struct sensor_device_attribute *sensor_attr = \
 973		to_sensor_dev_attr(attr); \
 974	int nr = sensor_attr->index; \
 975	unsigned long val; \
 976	int err; \
 977	err = kstrtoul(buf, 10, &val); \
 978	if (err < 0) \
 979		return err; \
 980	val = clamp_val(val, 1, 255); \
 981	mutex_lock(&data->update_lock); \
 982	data->reg[nr] = val; \
 983	w83627ehf_write_value(data, REG[nr], val); \
 984	mutex_unlock(&data->update_lock); \
 985	return count; \
 986}
 987
 988fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT)
 989fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT)
 990fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT)
 991fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT)
 992
 993#define fan_time_functions(reg, REG) \
 994static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
 995				char *buf) \
 996{ \
 997	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
 998	struct sensor_device_attribute *sensor_attr = \
 999		to_sensor_dev_attr(attr); \
1000	int nr = sensor_attr->index; \
1001	return sprintf(buf, "%d\n", \
1002			step_time_from_reg(data->reg[nr], \
1003					   data->pwm_mode[nr])); \
1004} \
1005\
1006static ssize_t \
1007store_##reg(struct device *dev, struct device_attribute *attr, \
1008			const char *buf, size_t count) \
1009{ \
1010	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1011	struct sensor_device_attribute *sensor_attr = \
1012		to_sensor_dev_attr(attr); \
1013	int nr = sensor_attr->index; \
1014	unsigned long val; \
1015	int err; \
1016	err = kstrtoul(buf, 10, &val); \
1017	if (err < 0) \
1018		return err; \
1019	val = step_time_to_reg(val, data->pwm_mode[nr]); \
1020	mutex_lock(&data->update_lock); \
1021	data->reg[nr] = val; \
1022	w83627ehf_write_value(data, REG[nr], val); \
1023	mutex_unlock(&data->update_lock); \
1024	return count; \
1025} \
1026
1027fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME)
1028
1029static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time,
1030	    store_fan_stop_time, 3);
1031static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output,
1032	    store_fan_start_output, 3);
1033static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output,
1034	    store_fan_stop_output, 3);
1035static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output,
1036	    store_fan_max_output, 3);
1037static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output,
1038	    store_fan_step_output, 3);
1039
1040static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time,
1041	    store_fan_stop_time, 2);
1042static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output,
1043	    store_fan_start_output, 2);
1044static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output,
1045		    store_fan_stop_output, 2);
1046
1047static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time,
1048	    store_fan_stop_time, 0);
1049static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time,
1050	    store_fan_stop_time, 1);
1051static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output,
1052	    store_fan_start_output, 0);
1053static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output,
1054	    store_fan_start_output, 1);
1055static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output,
1056	    store_fan_stop_output, 0);
1057static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output,
1058	    store_fan_stop_output, 1);
1059
1060
1061/*
1062 * pwm1 and pwm3 don't support max and step settings on all chips.
1063 * Need to check support while generating/removing attribute files.
1064 */
1065static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output,
1066	    store_fan_max_output, 0);
1067static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output,
1068	    store_fan_step_output, 0);
1069static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output,
1070	    store_fan_max_output, 1);
1071static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output,
1072	    store_fan_step_output, 1);
1073static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output,
1074	    store_fan_max_output, 2);
1075static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output,
1076	    store_fan_step_output, 2);
1077
1078static ssize_t
1079cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
1080{
1081	struct w83627ehf_data *data = dev_get_drvdata(dev);
1082	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1083}
1084static DEVICE_ATTR_RO(cpu0_vid);
1085
1086
1087/* Case open detection */
1088static int
1089clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel,
1090	       long val)
1091{
1092	const u16 mask = 0x80;
1093	u16 reg;
1094
1095	if (val != 0 || channel != 0)
1096		return -EINVAL;
1097
1098	mutex_lock(&data->update_lock);
1099	reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
1100	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
1101	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
1102	data->valid = false;	/* Force cache refresh */
1103	mutex_unlock(&data->update_lock);
1104
1105	return 0;
1106}
1107
1108static umode_t w83627ehf_attrs_visible(struct kobject *kobj,
1109				       struct attribute *a, int n)
1110{
1111	struct device *dev = kobj_to_dev(kobj);
1112	struct w83627ehf_data *data = dev_get_drvdata(dev);
1113	struct device_attribute *devattr;
1114	struct sensor_device_attribute *sda;
1115
1116	devattr = container_of(a, struct device_attribute, attr);
1117
1118	/* Not sensor */
1119	if (devattr->show == cpu0_vid_show && data->have_vid)
1120		return a->mode;
1121
1122	sda = (struct sensor_device_attribute *)devattr;
1123
1124	if (sda->index < 2 &&
1125		(devattr->show == show_fan_stop_time ||
1126		 devattr->show == show_fan_start_output ||
1127		 devattr->show == show_fan_stop_output))
1128		return a->mode;
1129
1130	if (sda->index < 3 &&
1131		(devattr->show == show_fan_max_output ||
1132		 devattr->show == show_fan_step_output) &&
1133		data->REG_FAN_STEP_OUTPUT &&
1134		data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff)
1135		return a->mode;
1136
1137	/* if fan3 and fan4 are enabled create the files for them */
1138	if (sda->index == 2 &&
1139		(data->has_fan & (1 << 2)) && data->pwm_num >= 3 &&
1140		(devattr->show == show_fan_stop_time ||
1141		 devattr->show == show_fan_start_output ||
1142		 devattr->show == show_fan_stop_output))
1143		return a->mode;
1144
1145	if (sda->index == 3 &&
1146		(data->has_fan & (1 << 3)) && data->pwm_num >= 4 &&
1147		(devattr->show == show_fan_stop_time ||
1148		 devattr->show == show_fan_start_output ||
1149		 devattr->show == show_fan_stop_output ||
1150		 devattr->show == show_fan_max_output ||
1151		 devattr->show == show_fan_step_output))
1152		return a->mode;
1153
1154	if ((devattr->show == show_target_temp ||
1155	    devattr->show == show_tolerance) &&
1156	    (data->has_fan & (1 << sda->index)) &&
1157	    sda->index < data->pwm_num)
1158		return a->mode;
1159
1160	return 0;
1161}
1162
1163/* These groups handle non-standard attributes used in this device */
1164static struct attribute *w83627ehf_attrs[] = {
1165
1166	&sensor_dev_attr_pwm1_stop_time.dev_attr.attr,
1167	&sensor_dev_attr_pwm1_start_output.dev_attr.attr,
1168	&sensor_dev_attr_pwm1_stop_output.dev_attr.attr,
1169	&sensor_dev_attr_pwm1_max_output.dev_attr.attr,
1170	&sensor_dev_attr_pwm1_step_output.dev_attr.attr,
1171	&sensor_dev_attr_pwm1_target.dev_attr.attr,
1172	&sensor_dev_attr_pwm1_tolerance.dev_attr.attr,
1173
1174	&sensor_dev_attr_pwm2_stop_time.dev_attr.attr,
1175	&sensor_dev_attr_pwm2_start_output.dev_attr.attr,
1176	&sensor_dev_attr_pwm2_stop_output.dev_attr.attr,
1177	&sensor_dev_attr_pwm2_max_output.dev_attr.attr,
1178	&sensor_dev_attr_pwm2_step_output.dev_attr.attr,
1179	&sensor_dev_attr_pwm2_target.dev_attr.attr,
1180	&sensor_dev_attr_pwm2_tolerance.dev_attr.attr,
1181
1182	&sensor_dev_attr_pwm3_stop_time.dev_attr.attr,
1183	&sensor_dev_attr_pwm3_start_output.dev_attr.attr,
1184	&sensor_dev_attr_pwm3_stop_output.dev_attr.attr,
1185	&sensor_dev_attr_pwm3_max_output.dev_attr.attr,
1186	&sensor_dev_attr_pwm3_step_output.dev_attr.attr,
1187	&sensor_dev_attr_pwm3_target.dev_attr.attr,
1188	&sensor_dev_attr_pwm3_tolerance.dev_attr.attr,
1189
1190	&sensor_dev_attr_pwm4_stop_time.dev_attr.attr,
1191	&sensor_dev_attr_pwm4_start_output.dev_attr.attr,
1192	&sensor_dev_attr_pwm4_stop_output.dev_attr.attr,
1193	&sensor_dev_attr_pwm4_max_output.dev_attr.attr,
1194	&sensor_dev_attr_pwm4_step_output.dev_attr.attr,
1195	&sensor_dev_attr_pwm4_target.dev_attr.attr,
1196	&sensor_dev_attr_pwm4_tolerance.dev_attr.attr,
1197
1198	&dev_attr_cpu0_vid.attr,
1199	NULL
1200};
1201
1202static const struct attribute_group w83627ehf_group = {
1203	.attrs = w83627ehf_attrs,
1204	.is_visible = w83627ehf_attrs_visible,
1205};
1206
1207static const struct attribute_group *w83627ehf_groups[] = {
1208	&w83627ehf_group,
1209	NULL
1210};
1211
1212/*
1213 * Driver and device management
1214 */
1215
1216/* Get the monitoring functions started */
1217static inline void w83627ehf_init_device(struct w83627ehf_data *data,
1218						   enum kinds kind)
1219{
1220	int i;
1221	u8 tmp, diode;
1222
1223	/* Start monitoring is needed */
1224	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1225	if (!(tmp & 0x01))
1226		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1227				      tmp | 0x01);
1228
1229	/* Enable temperature sensors if needed */
1230	for (i = 0; i < NUM_REG_TEMP; i++) {
1231		if (!(data->have_temp & (1 << i)))
1232			continue;
1233		if (!data->reg_temp_config[i])
1234			continue;
1235		tmp = w83627ehf_read_value(data,
1236					   data->reg_temp_config[i]);
1237		if (tmp & 0x01)
1238			w83627ehf_write_value(data,
1239					      data->reg_temp_config[i],
1240					      tmp & 0xfe);
1241	}
1242
1243	/* Enable VBAT monitoring if needed */
1244	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1245	if (!(tmp & 0x01))
1246		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1247
1248	/* Get thermal sensor types */
1249	switch (kind) {
1250	case w83627ehf:
1251		diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
1252		break;
1253	case w83627uhg:
1254		diode = 0x00;
1255		break;
1256	default:
1257		diode = 0x70;
1258	}
1259	for (i = 0; i < 3; i++) {
1260		const char *label = NULL;
1261
1262		if (data->temp_label)
1263			label = data->temp_label[data->temp_src[i]];
1264
1265		/* Digital source overrides analog type */
1266		if (label && strncmp(label, "PECI", 4) == 0)
1267			data->temp_type[i] = 6;
1268		else if (label && strncmp(label, "AMD", 3) == 0)
1269			data->temp_type[i] = 5;
1270		else if ((tmp & (0x02 << i)))
1271			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
1272		else
1273			data->temp_type[i] = 4; /* thermistor */
1274	}
1275}
1276
1277static void
1278w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
1279{
1280	int i;
1281
1282	for (i = 0; i < n_temp; i++) {
1283		data->reg_temp[i] = W83627EHF_REG_TEMP[i];
1284		data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
1285		data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
1286		data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
1287	}
1288}
1289
1290static void
1291w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
1292			   struct w83627ehf_data *data)
1293{
1294	int fan3pin, fan4pin, fan5pin, regval;
1295
1296	/* The W83627UHG is simple, only two fan inputs, no config */
1297	if (sio_data->kind == w83627uhg) {
1298		data->has_fan = 0x03; /* fan1 and fan2 */
1299		data->has_fan_min = 0x03;
1300		return;
1301	}
1302
1303	/* fan4 and fan5 share some pins with the GPIO and serial flash */
1304	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1305		fan3pin = 1;
1306		fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
1307		fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
1308	} else {
1309		fan3pin = 1;
1310		fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
1311		fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
1312	}
1313
1314	data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
1315	data->has_fan |= (fan3pin << 2);
1316	data->has_fan_min |= (fan3pin << 2);
1317
1318	/*
1319	 * It looks like fan4 and fan5 pins can be alternatively used
1320	 * as fan on/off switches, but fan5 control is write only :/
1321	 * We assume that if the serial interface is disabled, designers
1322	 * connected fan5 as input unless they are emitting log 1, which
1323	 * is not the default.
1324	 */
1325	regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1326	if ((regval & (1 << 2)) && fan4pin) {
1327		data->has_fan |= (1 << 3);
1328		data->has_fan_min |= (1 << 3);
1329	}
1330	if (!(regval & (1 << 1)) && fan5pin) {
1331		data->has_fan |= (1 << 4);
1332		data->has_fan_min |= (1 << 4);
1333	}
1334}
1335
1336static umode_t
1337w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1338		     u32 attr, int channel)
1339{
1340	const struct w83627ehf_data *data = drvdata;
1341
1342	switch (type) {
1343	case hwmon_temp:
1344		/* channel 0.., name 1.. */
1345		if (!(data->have_temp & (1 << channel)))
1346			return 0;
1347		if (attr == hwmon_temp_input)
1348			return 0444;
1349		if (attr == hwmon_temp_label) {
1350			if (data->temp_label)
1351				return 0444;
1352			return 0;
1353		}
1354		if (channel == 2 && data->temp3_val_only)
1355			return 0;
1356		if (attr == hwmon_temp_max) {
1357			if (data->reg_temp_over[channel])
1358				return 0644;
1359			else
1360				return 0;
1361		}
1362		if (attr == hwmon_temp_max_hyst) {
1363			if (data->reg_temp_hyst[channel])
1364				return 0644;
1365			else
1366				return 0;
1367		}
1368		if (channel > 2)
1369			return 0;
1370		if (attr == hwmon_temp_alarm || attr == hwmon_temp_type)
1371			return 0444;
1372		if (attr == hwmon_temp_offset) {
1373			if (data->have_temp_offset & (1 << channel))
1374				return 0644;
1375			else
1376				return 0;
1377		}
1378		break;
1379
1380	case hwmon_fan:
1381		/* channel 0.., name 1.. */
1382		if (!(data->has_fan & (1 << channel)))
1383			return 0;
1384		if (attr == hwmon_fan_input || attr == hwmon_fan_alarm)
1385			return 0444;
1386		if (attr == hwmon_fan_div) {
1387			return 0444;
1388		}
1389		if (attr == hwmon_fan_min) {
1390			if (data->has_fan_min & (1 << channel))
1391				return 0644;
1392			else
1393				return 0;
1394		}
1395		break;
1396
1397	case hwmon_in:
1398		/* channel 0.., name 0.. */
1399		if (channel >= data->in_num)
1400			return 0;
1401		if (channel == 6 && data->in6_skip)
1402			return 0;
1403		if (attr == hwmon_in_alarm || attr == hwmon_in_input)
1404			return 0444;
1405		if (attr == hwmon_in_min || attr == hwmon_in_max)
1406			return 0644;
1407		break;
1408
1409	case hwmon_pwm:
1410		/* channel 0.., name 1.. */
1411		if (!(data->has_fan & (1 << channel)) ||
1412		    channel >= data->pwm_num)
1413			return 0;
1414		if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable ||
1415		    attr == hwmon_pwm_input)
1416			return 0644;
1417		break;
1418
1419	case hwmon_intrusion:
1420		return 0644;
1421
1422	default: /* Shouldn't happen */
1423		return 0;
1424	}
1425
1426	return 0; /* Shouldn't happen */
1427}
1428
1429static int
1430w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr,
1431		       int channel, long *val)
1432{
1433	switch (attr) {
1434	case hwmon_temp_input:
1435		*val = LM75_TEMP_FROM_REG(data->temp[channel]);
1436		return 0;
1437	case hwmon_temp_max:
1438		*val = LM75_TEMP_FROM_REG(data->temp_max[channel]);
1439		return 0;
1440	case hwmon_temp_max_hyst:
1441		*val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]);
1442		return 0;
1443	case hwmon_temp_offset:
1444		*val = data->temp_offset[channel] * 1000;
1445		return 0;
1446	case hwmon_temp_type:
1447		*val = (int)data->temp_type[channel];
1448		return 0;
1449	case hwmon_temp_alarm:
1450		if (channel < 3) {
1451			int bit[] = { 4, 5, 13 };
1452			*val = (data->alarms >> bit[channel]) & 1;
1453			return 0;
1454		}
1455		break;
1456
1457	default:
1458		break;
1459	}
1460
1461	return -EOPNOTSUPP;
1462}
1463
1464static int
1465w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr,
1466		     int channel, long *val)
1467{
1468	switch (attr) {
1469	case hwmon_in_input:
1470		*val = in_from_reg(data->in[channel], channel, data->scale_in);
1471		return 0;
1472	case hwmon_in_min:
1473		*val = in_from_reg(data->in_min[channel], channel,
1474				   data->scale_in);
1475		return 0;
1476	case hwmon_in_max:
1477		*val = in_from_reg(data->in_max[channel], channel,
1478				   data->scale_in);
1479		return 0;
1480	case hwmon_in_alarm:
1481		if (channel < 10) {
1482			int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 };
1483			*val = (data->alarms >> bit[channel]) & 1;
1484			return 0;
1485		}
1486		break;
1487	default:
1488		break;
1489	}
1490	return -EOPNOTSUPP;
1491}
1492
1493static int
1494w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr,
1495		      int channel, long *val)
1496{
1497	switch (attr) {
1498	case hwmon_fan_input:
1499		*val = data->rpm[channel];
1500		return 0;
1501	case hwmon_fan_min:
1502		*val = fan_from_reg8(data->fan_min[channel],
1503				     data->fan_div[channel]);
1504		return 0;
1505	case hwmon_fan_div:
1506		*val = div_from_reg(data->fan_div[channel]);
1507		return 0;
1508	case hwmon_fan_alarm:
1509		if (channel < 5) {
1510			int bit[] = { 6, 7, 11, 10, 23 };
1511			*val = (data->alarms >> bit[channel]) & 1;
1512			return 0;
1513		}
1514		break;
1515	default:
1516		break;
1517	}
1518	return -EOPNOTSUPP;
1519}
1520
1521static int
1522w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr,
1523		      int channel, long *val)
1524{
1525	switch (attr) {
1526	case hwmon_pwm_input:
1527		*val = data->pwm[channel];
1528		return 0;
1529	case hwmon_pwm_enable:
1530		*val = data->pwm_enable[channel];
1531		return 0;
1532	case hwmon_pwm_mode:
1533		*val = data->pwm_enable[channel];
1534		return 0;
1535	default:
1536		break;
1537	}
1538	return -EOPNOTSUPP;
1539}
1540
1541static int
1542w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr,
1543			    int channel, long *val)
1544{
1545	if (attr != hwmon_intrusion_alarm || channel != 0)
1546		return -EOPNOTSUPP; /* shouldn't happen */
1547
1548	*val = !!(data->caseopen & 0x10);
1549	return 0;
1550}
1551
1552static int
1553w83627ehf_read(struct device *dev, enum hwmon_sensor_types type,
1554			u32 attr, int channel, long *val)
1555{
1556	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent);
1557
1558	switch (type) {
1559	case hwmon_fan:
1560		return w83627ehf_do_read_fan(data, attr, channel, val);
1561
1562	case hwmon_in:
1563		return w83627ehf_do_read_in(data, attr, channel, val);
1564
1565	case hwmon_pwm:
1566		return w83627ehf_do_read_pwm(data, attr, channel, val);
1567
1568	case hwmon_temp:
1569		return w83627ehf_do_read_temp(data, attr, channel, val);
1570
1571	case hwmon_intrusion:
1572		return w83627ehf_do_read_intrusion(data, attr, channel, val);
1573
1574	default:
1575		break;
1576	}
1577
1578	return -EOPNOTSUPP;
1579}
1580
1581static int
1582w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type,
1583		      u32 attr, int channel, const char **str)
1584{
1585	struct w83627ehf_data *data = dev_get_drvdata(dev);
1586
1587	switch (type) {
1588	case hwmon_temp:
1589		if (attr == hwmon_temp_label) {
1590			*str = data->temp_label[data->temp_src[channel]];
1591			return 0;
1592		}
1593		break;
1594
1595	default:
1596		break;
1597	}
1598	/* Nothing else should be read as a string */
1599	return -EOPNOTSUPP;
1600}
1601
1602static int
1603w83627ehf_write(struct device *dev, enum hwmon_sensor_types type,
1604			u32 attr, int channel, long val)
1605{
1606	struct w83627ehf_data *data = dev_get_drvdata(dev);
1607
1608	if (type == hwmon_in && attr == hwmon_in_min)
1609		return store_in_min(dev, data, channel, val);
1610	if (type == hwmon_in && attr == hwmon_in_max)
1611		return store_in_max(dev, data, channel, val);
1612
1613	if (type == hwmon_fan && attr == hwmon_fan_min)
1614		return store_fan_min(dev, data, channel, val);
1615
1616	if (type == hwmon_temp && attr == hwmon_temp_max)
1617		return store_temp_max(dev, data, channel, val);
1618	if (type == hwmon_temp && attr == hwmon_temp_max_hyst)
1619		return store_temp_max_hyst(dev, data, channel, val);
1620	if (type == hwmon_temp && attr == hwmon_temp_offset)
1621		return store_temp_offset(dev, data, channel, val);
1622
1623	if (type == hwmon_pwm && attr == hwmon_pwm_mode)
1624		return store_pwm_mode(dev, data, channel, val);
1625	if (type == hwmon_pwm && attr == hwmon_pwm_enable)
1626		return store_pwm_enable(dev, data, channel, val);
1627	if (type == hwmon_pwm && attr == hwmon_pwm_input)
1628		return store_pwm(dev, data, channel, val);
1629
1630	if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm)
1631		return clear_caseopen(dev, data, channel, val);
1632
1633	return -EOPNOTSUPP;
1634}
1635
1636static const struct hwmon_ops w83627ehf_ops = {
1637	.is_visible = w83627ehf_is_visible,
1638	.read = w83627ehf_read,
1639	.read_string = w83627ehf_read_string,
1640	.write = w83627ehf_write,
1641};
1642
1643static const struct hwmon_channel_info *w83627ehf_info[] = {
1644	HWMON_CHANNEL_INFO(fan,
1645		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1646		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1647		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1648		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1649		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN),
1650	HWMON_CHANNEL_INFO(in,
1651		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1652		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1653		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1654		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1655		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1656		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1657		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1658		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1659		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1660		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN),
1661	HWMON_CHANNEL_INFO(pwm,
1662		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1663		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1664		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1665		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE),
1666	HWMON_CHANNEL_INFO(temp,
1667		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1668			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1669		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1670			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1671		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1672			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1673		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1674			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1675		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1676			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1677		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1678			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1679		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1680			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1681		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1682			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1683		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1684			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE),
1685	HWMON_CHANNEL_INFO(intrusion,
1686		HWMON_INTRUSION_ALARM),
1687	NULL
1688};
1689
1690static const struct hwmon_chip_info w83627ehf_chip_info = {
1691	.ops = &w83627ehf_ops,
1692	.info = w83627ehf_info,
1693};
1694
1695static int __init w83627ehf_probe(struct platform_device *pdev)
1696{
1697	struct device *dev = &pdev->dev;
1698	struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev);
1699	struct w83627ehf_data *data;
1700	struct resource *res;
1701	u8 en_vrm10;
1702	int i, err = 0;
1703	struct device *hwmon_dev;
1704
1705	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
1706	if (!devm_request_region(dev, res->start, IOREGION_LENGTH, DRVNAME))
1707		return -EBUSY;
 
 
 
 
 
1708
1709	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1710	if (!data)
1711		return -ENOMEM;
 
 
 
1712
1713	data->addr = res->start;
1714	mutex_init(&data->lock);
1715	mutex_init(&data->update_lock);
1716	data->name = w83627ehf_device_names[sio_data->kind];
1717	data->bank = 0xff;		/* Force initial bank selection */
1718	platform_set_drvdata(pdev, data);
1719
1720	/* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
1721	data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
1722	/* 667HG has 3 pwms, and 627UHG has only 2 */
1723	switch (sio_data->kind) {
1724	default:
1725		data->pwm_num = 4;
1726		break;
1727	case w83667hg:
1728	case w83667hg_b:
1729		data->pwm_num = 3;
1730		break;
1731	case w83627uhg:
1732		data->pwm_num = 2;
1733		break;
1734	}
1735
1736	/* Default to 3 temperature inputs, code below will adjust as needed */
1737	data->have_temp = 0x07;
1738
1739	/* Deal with temperature register setup first. */
1740	if (sio_data->kind == w83667hg_b) {
1741		u8 reg;
1742
1743		w83627ehf_set_temp_reg_ehf(data, 4);
1744
1745		/*
1746		 * Temperature sources are selected with bank 0, registers 0x49
1747		 * and 0x4a.
1748		 */
1749		reg = w83627ehf_read_value(data, 0x4a);
1750		data->temp_src[0] = reg >> 5;
1751		reg = w83627ehf_read_value(data, 0x49);
1752		data->temp_src[1] = reg & 0x07;
1753		data->temp_src[2] = (reg >> 4) & 0x07;
1754
1755		/*
1756		 * W83667HG-B has another temperature register at 0x7e.
1757		 * The temperature source is selected with register 0x7d.
1758		 * Support it if the source differs from already reported
1759		 * sources.
1760		 */
1761		reg = w83627ehf_read_value(data, 0x7d);
1762		reg &= 0x07;
1763		if (reg != data->temp_src[0] && reg != data->temp_src[1]
1764		    && reg != data->temp_src[2]) {
1765			data->temp_src[3] = reg;
1766			data->have_temp |= 1 << 3;
1767		}
1768
1769		/*
1770		 * Chip supports either AUXTIN or VIN3. Try to find out which
1771		 * one.
1772		 */
1773		reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
1774		if (data->temp_src[2] == 2 && (reg & 0x01))
1775			data->have_temp &= ~(1 << 2);
1776
1777		if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
1778		    || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
1779			data->in6_skip = 1;
1780
1781		data->temp_label = w83667hg_b_temp_label;
1782		data->have_temp_offset = data->have_temp & 0x07;
1783		for (i = 0; i < 3; i++) {
1784			if (data->temp_src[i] > 2)
1785				data->have_temp_offset &= ~(1 << i);
1786		}
1787	} else if (sio_data->kind == w83627uhg) {
1788		u8 reg;
1789
1790		w83627ehf_set_temp_reg_ehf(data, 3);
1791
1792		/*
1793		 * Temperature sources for temp2 and temp3 are selected with
1794		 * bank 0, registers 0x49 and 0x4a.
1795		 */
1796		data->temp_src[0] = 0;	/* SYSTIN */
1797		reg = w83627ehf_read_value(data, 0x49) & 0x07;
1798		/* Adjust to have the same mapping as other source registers */
1799		if (reg == 0)
1800			data->temp_src[1] = 1;
1801		else if (reg >= 2 && reg <= 5)
1802			data->temp_src[1] = reg + 2;
1803		else	/* should never happen */
1804			data->have_temp &= ~(1 << 1);
1805		reg = w83627ehf_read_value(data, 0x4a);
1806		data->temp_src[2] = reg >> 5;
1807
1808		/*
1809		 * Skip temp3 if source is invalid or the same as temp1
1810		 * or temp2.
1811		 */
1812		if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
1813		    data->temp_src[2] == data->temp_src[0] ||
1814		    ((data->have_temp & (1 << 1)) &&
1815		     data->temp_src[2] == data->temp_src[1]))
1816			data->have_temp &= ~(1 << 2);
1817		else
1818			data->temp3_val_only = 1;	/* No limit regs */
1819
1820		data->in6_skip = 1;			/* No VIN3 */
1821
1822		data->temp_label = w83667hg_b_temp_label;
1823		data->have_temp_offset = data->have_temp & 0x03;
1824		for (i = 0; i < 3; i++) {
1825			if (data->temp_src[i] > 1)
1826				data->have_temp_offset &= ~(1 << i);
1827		}
1828	} else {
1829		w83627ehf_set_temp_reg_ehf(data, 3);
1830
1831		/* Temperature sources are fixed */
1832
1833		if (sio_data->kind == w83667hg) {
1834			u8 reg;
1835
1836			/*
1837			 * Chip supports either AUXTIN or VIN3. Try to find
1838			 * out which one.
1839			 */
1840			reg = w83627ehf_read_value(data,
1841						W83627EHF_REG_TEMP_CONFIG[2]);
1842			if (reg & 0x01)
1843				data->have_temp &= ~(1 << 2);
1844			else
1845				data->in6_skip = 1;
1846		}
1847		data->have_temp_offset = data->have_temp & 0x07;
1848	}
1849
1850	if (sio_data->kind == w83667hg_b) {
1851		data->REG_FAN_MAX_OUTPUT =
1852		  W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
1853		data->REG_FAN_STEP_OUTPUT =
1854		  W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
1855	} else {
1856		data->REG_FAN_MAX_OUTPUT =
1857		  W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
1858		data->REG_FAN_STEP_OUTPUT =
1859		  W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
1860	}
1861
1862	/* Setup input voltage scaling factors */
1863	if (sio_data->kind == w83627uhg)
1864		data->scale_in = scale_in_w83627uhg;
1865	else
1866		data->scale_in = scale_in_common;
1867
1868	/* Initialize the chip */
1869	w83627ehf_init_device(data, sio_data->kind);
1870
1871	data->vrm = vid_which_vrm();
1872
1873	err = superio_enter(sio_data->sioreg);
1874	if (err)
1875		return err;
1876
1877	/* Read VID value */
1878	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1879		/*
1880		 * W83667HG has different pins for VID input and output, so
1881		 * we can get the VID input values directly at logical device D
1882		 * 0xe3.
1883		 */
1884		superio_select(sio_data->sioreg, W83667HG_LD_VID);
1885		data->vid = superio_inb(sio_data->sioreg, 0xe3);
1886		data->have_vid = true;
1887	} else if (sio_data->kind != w83627uhg) {
1888		superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1889		if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
1890			/*
1891			 * Set VID input sensibility if needed. In theory the
1892			 * BIOS should have set it, but in practice it's not
1893			 * always the case. We only do it for the W83627EHF/EHG
1894			 * because the W83627DHG is more complex in this
1895			 * respect.
1896			 */
1897			if (sio_data->kind == w83627ehf) {
1898				en_vrm10 = superio_inb(sio_data->sioreg,
1899						       SIO_REG_EN_VRM10);
1900				if ((en_vrm10 & 0x08) && data->vrm == 90) {
1901					dev_warn(dev,
1902						 "Setting VID input voltage to TTL\n");
1903					superio_outb(sio_data->sioreg,
1904						     SIO_REG_EN_VRM10,
1905						     en_vrm10 & ~0x08);
1906				} else if (!(en_vrm10 & 0x08)
1907					   && data->vrm == 100) {
1908					dev_warn(dev,
1909						 "Setting VID input voltage to VRM10\n");
1910					superio_outb(sio_data->sioreg,
1911						     SIO_REG_EN_VRM10,
1912						     en_vrm10 | 0x08);
1913				}
1914			}
1915
1916			data->vid = superio_inb(sio_data->sioreg,
1917						SIO_REG_VID_DATA);
1918			if (sio_data->kind == w83627ehf) /* 6 VID pins only */
1919				data->vid &= 0x3f;
1920			data->have_vid = true;
1921		} else {
1922			dev_info(dev,
1923				 "VID pins in output mode, CPU VID not available\n");
1924		}
1925	}
1926
1927	w83627ehf_check_fan_inputs(sio_data, data);
1928
1929	superio_exit(sio_data->sioreg);
1930
1931	/* Read fan clock dividers immediately */
1932	w83627ehf_update_fan_div(data);
1933
1934	/* Read pwm data to save original values */
1935	w83627ehf_update_pwm(data);
1936	for (i = 0; i < data->pwm_num; i++)
1937		data->pwm_enable_orig[i] = data->pwm_enable[i];
1938
1939	hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev,
1940							 data->name,
1941							 data,
1942							 &w83627ehf_chip_info,
1943							 w83627ehf_groups);
 
1944	return PTR_ERR_OR_ZERO(hwmon_dev);
 
 
 
 
 
1945}
1946
 
 
 
 
 
 
 
 
 
 
1947static int w83627ehf_suspend(struct device *dev)
1948{
1949	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1950
1951	mutex_lock(&data->update_lock);
1952	data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1953	mutex_unlock(&data->update_lock);
1954
1955	return 0;
1956}
1957
1958static int w83627ehf_resume(struct device *dev)
1959{
1960	struct w83627ehf_data *data = dev_get_drvdata(dev);
1961	int i;
1962
1963	mutex_lock(&data->update_lock);
1964	data->bank = 0xff;		/* Force initial bank selection */
1965
1966	/* Restore limits */
1967	for (i = 0; i < data->in_num; i++) {
1968		if ((i == 6) && data->in6_skip)
1969			continue;
1970
1971		w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
1972				      data->in_min[i]);
1973		w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
1974				      data->in_max[i]);
1975	}
1976
1977	for (i = 0; i < 5; i++) {
1978		if (!(data->has_fan_min & (1 << i)))
1979			continue;
1980
1981		w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i],
1982				      data->fan_min[i]);
1983	}
1984
1985	for (i = 0; i < NUM_REG_TEMP; i++) {
1986		if (!(data->have_temp & (1 << i)))
1987			continue;
1988
1989		if (data->reg_temp_over[i])
1990			w83627ehf_write_temp(data, data->reg_temp_over[i],
1991					     data->temp_max[i]);
1992		if (data->reg_temp_hyst[i])
1993			w83627ehf_write_temp(data, data->reg_temp_hyst[i],
1994					     data->temp_max_hyst[i]);
1995		if (i > 2)
1996			continue;
1997		if (data->have_temp_offset & (1 << i))
1998			w83627ehf_write_value(data,
1999					      W83627EHF_REG_TEMP_OFFSET[i],
2000					      data->temp_offset[i]);
2001	}
2002
2003	/* Restore other settings */
2004	w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
2005
2006	/* Force re-reading all values */
2007	data->valid = false;
2008	mutex_unlock(&data->update_lock);
2009
2010	return 0;
2011}
2012
2013static DEFINE_SIMPLE_DEV_PM_OPS(w83627ehf_dev_pm_ops, w83627ehf_suspend, w83627ehf_resume);
 
 
 
 
 
 
 
 
 
 
2014
2015static struct platform_driver w83627ehf_driver = {
2016	.driver = {
2017		.name	= DRVNAME,
2018		.pm	= pm_sleep_ptr(&w83627ehf_dev_pm_ops),
2019	},
 
 
2020};
2021
2022/* w83627ehf_find() looks for a '627 in the Super-I/O config space */
2023static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
2024				 struct w83627ehf_sio_data *sio_data)
2025{
2026	static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
2027	static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
2028	static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
2029	static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
2030	static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
2031	static const char sio_name_W83667HG[] __initconst = "W83667HG";
2032	static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
2033
2034	u16 val;
2035	const char *sio_name;
2036	int err;
2037
2038	err = superio_enter(sioaddr);
2039	if (err)
2040		return err;
2041
2042	if (force_id)
2043		val = force_id;
2044	else
2045		val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
2046		    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
2047	switch (val & SIO_ID_MASK) {
2048	case SIO_W83627EHF_ID:
2049		sio_data->kind = w83627ehf;
2050		sio_name = sio_name_W83627EHF;
2051		break;
2052	case SIO_W83627EHG_ID:
2053		sio_data->kind = w83627ehf;
2054		sio_name = sio_name_W83627EHG;
2055		break;
2056	case SIO_W83627DHG_ID:
2057		sio_data->kind = w83627dhg;
2058		sio_name = sio_name_W83627DHG;
2059		break;
2060	case SIO_W83627DHG_P_ID:
2061		sio_data->kind = w83627dhg_p;
2062		sio_name = sio_name_W83627DHG_P;
2063		break;
2064	case SIO_W83627UHG_ID:
2065		sio_data->kind = w83627uhg;
2066		sio_name = sio_name_W83627UHG;
2067		break;
2068	case SIO_W83667HG_ID:
2069		sio_data->kind = w83667hg;
2070		sio_name = sio_name_W83667HG;
2071		break;
2072	case SIO_W83667HG_B_ID:
2073		sio_data->kind = w83667hg_b;
2074		sio_name = sio_name_W83667HG_B;
2075		break;
2076	default:
2077		if (val != 0xffff)
2078			pr_debug("unsupported chip ID: 0x%04x\n", val);
2079		superio_exit(sioaddr);
2080		return -ENODEV;
2081	}
2082
2083	/* We have a known chip, find the HWM I/O address */
2084	superio_select(sioaddr, W83627EHF_LD_HWM);
2085	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
2086	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
2087	*addr = val & IOREGION_ALIGNMENT;
2088	if (*addr == 0) {
2089		pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
2090		superio_exit(sioaddr);
2091		return -ENODEV;
2092	}
2093
2094	/* Activate logical device if needed */
2095	val = superio_inb(sioaddr, SIO_REG_ENABLE);
2096	if (!(val & 0x01)) {
2097		pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n");
2098		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
2099	}
2100
2101	superio_exit(sioaddr);
2102	pr_info("Found %s chip at %#x\n", sio_name, *addr);
2103	sio_data->sioreg = sioaddr;
2104
2105	return 0;
2106}
2107
2108/*
2109 * when Super-I/O functions move to a separate file, the Super-I/O
2110 * bus will manage the lifetime of the device and this module will only keep
2111 * track of the w83627ehf driver.
 
2112 */
2113static struct platform_device *pdev;
2114
2115static int __init sensors_w83627ehf_init(void)
2116{
2117	int err;
2118	unsigned short address;
2119	struct resource res = {
2120		.name	= DRVNAME,
2121		.flags	= IORESOURCE_IO,
2122	};
2123	struct w83627ehf_sio_data sio_data;
2124
2125	/*
2126	 * initialize sio_data->kind and sio_data->sioreg.
2127	 *
2128	 * when Super-I/O functions move to a separate file, the Super-I/O
2129	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
2130	 * w83627ehf hardware monitor, and call probe()
2131	 */
2132	if (w83627ehf_find(0x2e, &address, &sio_data) &&
2133	    w83627ehf_find(0x4e, &address, &sio_data))
2134		return -ENODEV;
2135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136	res.start = address + IOREGION_OFFSET;
2137	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
 
2138
2139	err = acpi_check_resource_conflict(&res);
2140	if (err)
2141		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
2142
2143	pdev = platform_create_bundle(&w83627ehf_driver, w83627ehf_probe, &res, 1, &sio_data,
2144				      sizeof(struct w83627ehf_sio_data));
2145
2146	return PTR_ERR_OR_ZERO(pdev);
 
 
 
 
 
2147}
2148
2149static void __exit sensors_w83627ehf_exit(void)
2150{
2151	platform_device_unregister(pdev);
2152	platform_driver_unregister(&w83627ehf_driver);
2153}
2154
2155MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2156MODULE_DESCRIPTION("W83627EHF driver");
2157MODULE_LICENSE("GPL");
2158
2159module_init(sensors_w83627ehf_init);
2160module_exit(sensors_w83627ehf_exit);