Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * via686a.c - Part of lm_sensors, Linux kernel modules
4 * for hardware monitoring
5 *
6 * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
7 * Kyösti Mälkki <kmalkki@cc.hut.fi>,
8 * Mark Studebaker <mdsxyz123@yahoo.com>,
9 * and Bob Dougherty <bobd@stanford.edu>
10 *
11 * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
12 * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
13 */
14
15/*
16 * Supports the Via VT82C686A, VT82C686B south bridges.
17 * Reports all as a 686A.
18 * Warning - only supports a single device.
19 */
20
21#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/pci.h>
26#include <linux/jiffies.h>
27#include <linux/platform_device.h>
28#include <linux/hwmon.h>
29#include <linux/hwmon-sysfs.h>
30#include <linux/err.h>
31#include <linux/init.h>
32#include <linux/mutex.h>
33#include <linux/sysfs.h>
34#include <linux/acpi.h>
35#include <linux/io.h>
36
37/*
38 * If force_addr is set to anything different from 0, we forcibly enable
39 * the device at the given address.
40 */
41static unsigned short force_addr;
42module_param(force_addr, ushort, 0);
43MODULE_PARM_DESC(force_addr,
44 "Initialize the base address of the sensors");
45
46static struct platform_device *pdev;
47
48/*
49 * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
50 * This driver is a customized copy of lm78.c
51 */
52
53/* Many VIA686A constants specified below */
54
55/* Length of ISA address segment */
56#define VIA686A_EXTENT 0x80
57#define VIA686A_BASE_REG 0x70
58#define VIA686A_ENABLE_REG 0x74
59
60/* The VIA686A registers */
61/* ins numbered 0-4 */
62#define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
63#define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
64#define VIA686A_REG_IN(nr) (0x22 + (nr))
65
66/* fans numbered 1-2 */
67#define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
68#define VIA686A_REG_FAN(nr) (0x28 + (nr))
69
70/* temps numbered 1-3 */
71static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
72static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
73static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
74/* bits 7-6 */
75#define VIA686A_REG_TEMP_LOW1 0x4b
76/* 2 = bits 5-4, 3 = bits 7-6 */
77#define VIA686A_REG_TEMP_LOW23 0x49
78
79#define VIA686A_REG_ALARM1 0x41
80#define VIA686A_REG_ALARM2 0x42
81#define VIA686A_REG_FANDIV 0x47
82#define VIA686A_REG_CONFIG 0x40
83/*
84 * The following register sets temp interrupt mode (bits 1-0 for temp1,
85 * 3-2 for temp2, 5-4 for temp3). Modes are:
86 * 00 interrupt stays as long as value is out-of-range
87 * 01 interrupt is cleared once register is read (default)
88 * 10 comparator mode- like 00, but ignores hysteresis
89 * 11 same as 00
90 */
91#define VIA686A_REG_TEMP_MODE 0x4b
92/* We'll just assume that you want to set all 3 simultaneously: */
93#define VIA686A_TEMP_MODE_MASK 0x3F
94#define VIA686A_TEMP_MODE_CONTINUOUS 0x00
95
96/*
97 * Conversions. Limit checking is only done on the TO_REG
98 * variants.
99 *
100 ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
101 * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
102 * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
103 * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
104 * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
105 * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
106 * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
107 * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
108 * That is:
109 * volts = (25*regVal+133)*factor
110 * regVal = (volts/factor-133)/25
111 * (These conversions were contributed by Jonathan Teh Soon Yew
112 * <j.teh@iname.com>)
113 */
114static inline u8 IN_TO_REG(long val, int in_num)
115{
116 /*
117 * To avoid floating point, we multiply constants by 10 (100 for +12V).
118 * Rounding is done (120500 is actually 133000 - 12500).
119 * Remember that val is expressed in 0.001V/bit, which is why we divide
120 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
121 * for the constants.
122 */
123 if (in_num <= 1)
124 return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255);
125 else if (in_num == 2)
126 return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255);
127 else if (in_num == 3)
128 return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255);
129 else
130 return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0,
131 255);
132}
133
134static inline long IN_FROM_REG(u8 val, int in_num)
135{
136 /*
137 * To avoid floating point, we multiply constants by 10 (100 for +12V).
138 * We also multiply them by 1000 because we want 0.001V/bit for the
139 * output value. Rounding is done.
140 */
141 if (in_num <= 1)
142 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
143 else if (in_num == 2)
144 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
145 else if (in_num == 3)
146 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
147 else
148 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
149}
150
151/********* FAN RPM CONVERSIONS ********/
152/*
153 * Higher register values = slower fans (the fan's strobe gates a counter).
154 * But this chip saturates back at 0, not at 255 like all the other chips.
155 * So, 0 means 0 RPM
156 */
157static inline u8 FAN_TO_REG(long rpm, int div)
158{
159 if (rpm == 0)
160 return 0;
161 rpm = clamp_val(rpm, 1, 1000000);
162 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
163}
164
165#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
166 ((val) * (div)))
167
168/******** TEMP CONVERSIONS (Bob Dougherty) *********/
169/*
170 * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
171 * if(temp<169)
172 * return double(temp)*0.427-32.08;
173 * else if(temp>=169 && temp<=202)
174 * return double(temp)*0.582-58.16;
175 * else
176 * return double(temp)*0.924-127.33;
177 *
178 * A fifth-order polynomial fits the unofficial data (provided by Alex van
179 * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
180 * numbers on my machine (ie. they agree with what my BIOS tells me).
181 * Here's the fifth-order fit to the 8-bit data:
182 * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
183 * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
184 *
185 * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
186 * finding my typos in this formula!)
187 *
188 * Alas, none of the elegant function-fit solutions will work because we
189 * aren't allowed to use floating point in the kernel and doing it with
190 * integers doesn't provide enough precision. So we'll do boring old
191 * look-up table stuff. The unofficial data (see below) have effectively
192 * 7-bit resolution (they are rounded to the nearest degree). I'm assuming
193 * that the transfer function of the device is monotonic and smooth, so a
194 * smooth function fit to the data will allow us to get better precision.
195 * I used the 5th-order poly fit described above and solved for
196 * VIA register values 0-255. I *10 before rounding, so we get tenth-degree
197 * precision. (I could have done all 1024 values for our 10-bit readings,
198 * but the function is very linear in the useful range (0-80 deg C), so
199 * we'll just use linear interpolation for 10-bit readings.) So, temp_lut
200 * is the temp at via register values 0-255:
201 */
202static const s16 temp_lut[] = {
203 -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
204 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
205 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
206 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
207 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
208 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
209 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
210 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
211 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
212 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
213 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
214 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
215 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
216 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
217 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
218 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
219 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
220 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
221 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
222 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
223 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
224 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
225};
226
227/*
228 * the original LUT values from Alex van Kaam <darkside@chello.nl>
229 * (for via register values 12-240):
230 * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
231 * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
232 * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
233 * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
234 * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
235 * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
236 * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
237 * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
238 * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
239 * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
240 *
241 *
242 * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
243 * an extra term for a good fit to these inverse data!) and then
244 * solving for each temp value from -50 to 110 (the useable range for
245 * this chip). Here's the fit:
246 * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
247 * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
248 * Note that n=161:
249 */
250static const u8 via_lut[] = {
251 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
252 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
253 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
254 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
255 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
256 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
257 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
258 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
259 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
260 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
261 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
262 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
263 239, 240
264};
265
266/*
267 * Converting temps to (8-bit) hyst and over registers
268 * No interpolation here.
269 * The +50 is because the temps start at -50
270 */
271static inline u8 TEMP_TO_REG(long val)
272{
273 return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 :
274 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
275}
276
277/* for 8-bit temperature hyst and over registers */
278#define TEMP_FROM_REG(val) ((long)temp_lut[val] * 100)
279
280/* for 10-bit temperature readings */
281static inline long TEMP_FROM_REG10(u16 val)
282{
283 u16 eight_bits = val >> 2;
284 u16 two_bits = val & 3;
285
286 /* no interpolation for these */
287 if (two_bits == 0 || eight_bits == 255)
288 return TEMP_FROM_REG(eight_bits);
289
290 /* do some linear interpolation */
291 return (temp_lut[eight_bits] * (4 - two_bits) +
292 temp_lut[eight_bits + 1] * two_bits) * 25;
293}
294
295#define DIV_FROM_REG(val) (1 << (val))
296#define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
297
298/*
299 * For each registered chip, we need to keep some data in memory.
300 * The structure is dynamically allocated.
301 */
302struct via686a_data {
303 unsigned short addr;
304 const char *name;
305 struct device *hwmon_dev;
306 struct mutex update_lock;
307 char valid; /* !=0 if following fields are valid */
308 unsigned long last_updated; /* In jiffies */
309
310 u8 in[5]; /* Register value */
311 u8 in_max[5]; /* Register value */
312 u8 in_min[5]; /* Register value */
313 u8 fan[2]; /* Register value */
314 u8 fan_min[2]; /* Register value */
315 u16 temp[3]; /* Register value 10 bit */
316 u8 temp_over[3]; /* Register value */
317 u8 temp_hyst[3]; /* Register value */
318 u8 fan_div[2]; /* Register encoding, shifted right */
319 u16 alarms; /* Register encoding, combined */
320};
321
322static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
323
324static int via686a_probe(struct platform_device *pdev);
325static int via686a_remove(struct platform_device *pdev);
326
327static inline int via686a_read_value(struct via686a_data *data, u8 reg)
328{
329 return inb_p(data->addr + reg);
330}
331
332static inline void via686a_write_value(struct via686a_data *data, u8 reg,
333 u8 value)
334{
335 outb_p(value, data->addr + reg);
336}
337
338static struct via686a_data *via686a_update_device(struct device *dev);
339static void via686a_init_device(struct via686a_data *data);
340
341/* following are the sysfs callback functions */
342
343/* 7 voltage sensors */
344static ssize_t in_show(struct device *dev, struct device_attribute *da,
345 char *buf) {
346 struct via686a_data *data = via686a_update_device(dev);
347 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
348 int nr = attr->index;
349 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
350}
351
352static ssize_t in_min_show(struct device *dev, struct device_attribute *da,
353 char *buf) {
354 struct via686a_data *data = via686a_update_device(dev);
355 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
356 int nr = attr->index;
357 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
358}
359
360static ssize_t in_max_show(struct device *dev, struct device_attribute *da,
361 char *buf) {
362 struct via686a_data *data = via686a_update_device(dev);
363 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
364 int nr = attr->index;
365 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
366}
367
368static ssize_t in_min_store(struct device *dev, struct device_attribute *da,
369 const char *buf, size_t count) {
370 struct via686a_data *data = dev_get_drvdata(dev);
371 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
372 int nr = attr->index;
373 unsigned long val;
374 int err;
375
376 err = kstrtoul(buf, 10, &val);
377 if (err)
378 return err;
379
380 mutex_lock(&data->update_lock);
381 data->in_min[nr] = IN_TO_REG(val, nr);
382 via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
383 data->in_min[nr]);
384 mutex_unlock(&data->update_lock);
385 return count;
386}
387static ssize_t in_max_store(struct device *dev, struct device_attribute *da,
388 const char *buf, size_t count) {
389 struct via686a_data *data = dev_get_drvdata(dev);
390 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
391 int nr = attr->index;
392 unsigned long val;
393 int err;
394
395 err = kstrtoul(buf, 10, &val);
396 if (err)
397 return err;
398
399 mutex_lock(&data->update_lock);
400 data->in_max[nr] = IN_TO_REG(val, nr);
401 via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
402 data->in_max[nr]);
403 mutex_unlock(&data->update_lock);
404 return count;
405}
406
407static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
408static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
409static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
410static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
411static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
412static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
413static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
414static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
415static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
416static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
417static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
418static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
419static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
420static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
421static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
422
423/* 3 temperatures */
424static ssize_t temp_show(struct device *dev, struct device_attribute *da,
425 char *buf) {
426 struct via686a_data *data = via686a_update_device(dev);
427 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
428 int nr = attr->index;
429 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
430}
431static ssize_t temp_over_show(struct device *dev, struct device_attribute *da,
432 char *buf) {
433 struct via686a_data *data = via686a_update_device(dev);
434 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
435 int nr = attr->index;
436 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
437}
438static ssize_t temp_hyst_show(struct device *dev, struct device_attribute *da,
439 char *buf) {
440 struct via686a_data *data = via686a_update_device(dev);
441 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
442 int nr = attr->index;
443 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
444}
445static ssize_t temp_over_store(struct device *dev,
446 struct device_attribute *da, const char *buf,
447 size_t count) {
448 struct via686a_data *data = dev_get_drvdata(dev);
449 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
450 int nr = attr->index;
451 long val;
452 int err;
453
454 err = kstrtol(buf, 10, &val);
455 if (err)
456 return err;
457
458 mutex_lock(&data->update_lock);
459 data->temp_over[nr] = TEMP_TO_REG(val);
460 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
461 data->temp_over[nr]);
462 mutex_unlock(&data->update_lock);
463 return count;
464}
465static ssize_t temp_hyst_store(struct device *dev,
466 struct device_attribute *da, const char *buf,
467 size_t count) {
468 struct via686a_data *data = dev_get_drvdata(dev);
469 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
470 int nr = attr->index;
471 long val;
472 int err;
473
474 err = kstrtol(buf, 10, &val);
475 if (err)
476 return err;
477
478 mutex_lock(&data->update_lock);
479 data->temp_hyst[nr] = TEMP_TO_REG(val);
480 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
481 data->temp_hyst[nr]);
482 mutex_unlock(&data->update_lock);
483 return count;
484}
485
486static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
487static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_over, 0);
488static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp_hyst, 0);
489static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
490static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_over, 1);
491static SENSOR_DEVICE_ATTR_RW(temp2_max_hyst, temp_hyst, 1);
492static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
493static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_over, 2);
494static SENSOR_DEVICE_ATTR_RW(temp3_max_hyst, temp_hyst, 2);
495
496/* 2 Fans */
497static ssize_t fan_show(struct device *dev, struct device_attribute *da,
498 char *buf) {
499 struct via686a_data *data = via686a_update_device(dev);
500 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
501 int nr = attr->index;
502 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
503 DIV_FROM_REG(data->fan_div[nr])));
504}
505static ssize_t fan_min_show(struct device *dev, struct device_attribute *da,
506 char *buf) {
507 struct via686a_data *data = via686a_update_device(dev);
508 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
509 int nr = attr->index;
510 return sprintf(buf, "%d\n",
511 FAN_FROM_REG(data->fan_min[nr],
512 DIV_FROM_REG(data->fan_div[nr])));
513}
514static ssize_t fan_div_show(struct device *dev, struct device_attribute *da,
515 char *buf) {
516 struct via686a_data *data = via686a_update_device(dev);
517 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
518 int nr = attr->index;
519 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
520}
521static ssize_t fan_min_store(struct device *dev, struct device_attribute *da,
522 const char *buf, size_t count) {
523 struct via686a_data *data = dev_get_drvdata(dev);
524 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
525 int nr = attr->index;
526 unsigned long val;
527 int err;
528
529 err = kstrtoul(buf, 10, &val);
530 if (err)
531 return err;
532
533 mutex_lock(&data->update_lock);
534 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
535 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
536 mutex_unlock(&data->update_lock);
537 return count;
538}
539static ssize_t fan_div_store(struct device *dev, struct device_attribute *da,
540 const char *buf, size_t count) {
541 struct via686a_data *data = dev_get_drvdata(dev);
542 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
543 int nr = attr->index;
544 int old;
545 unsigned long val;
546 int err;
547
548 err = kstrtoul(buf, 10, &val);
549 if (err)
550 return err;
551
552 mutex_lock(&data->update_lock);
553 old = via686a_read_value(data, VIA686A_REG_FANDIV);
554 data->fan_div[nr] = DIV_TO_REG(val);
555 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
556 via686a_write_value(data, VIA686A_REG_FANDIV, old);
557 mutex_unlock(&data->update_lock);
558 return count;
559}
560
561static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
562static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
563static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
564static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
565static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
566static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
567
568/* Alarms */
569static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
570 char *buf)
571{
572 struct via686a_data *data = via686a_update_device(dev);
573 return sprintf(buf, "%u\n", data->alarms);
574}
575
576static DEVICE_ATTR_RO(alarms);
577
578static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
579 char *buf)
580{
581 int bitnr = to_sensor_dev_attr(attr)->index;
582 struct via686a_data *data = via686a_update_device(dev);
583 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
584}
585static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
586static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
587static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
588static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
589static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
590static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
591static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 11);
592static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 15);
593static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6);
594static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7);
595
596static ssize_t name_show(struct device *dev, struct device_attribute
597 *devattr, char *buf)
598{
599 struct via686a_data *data = dev_get_drvdata(dev);
600 return sprintf(buf, "%s\n", data->name);
601}
602static DEVICE_ATTR_RO(name);
603
604static struct attribute *via686a_attributes[] = {
605 &sensor_dev_attr_in0_input.dev_attr.attr,
606 &sensor_dev_attr_in1_input.dev_attr.attr,
607 &sensor_dev_attr_in2_input.dev_attr.attr,
608 &sensor_dev_attr_in3_input.dev_attr.attr,
609 &sensor_dev_attr_in4_input.dev_attr.attr,
610 &sensor_dev_attr_in0_min.dev_attr.attr,
611 &sensor_dev_attr_in1_min.dev_attr.attr,
612 &sensor_dev_attr_in2_min.dev_attr.attr,
613 &sensor_dev_attr_in3_min.dev_attr.attr,
614 &sensor_dev_attr_in4_min.dev_attr.attr,
615 &sensor_dev_attr_in0_max.dev_attr.attr,
616 &sensor_dev_attr_in1_max.dev_attr.attr,
617 &sensor_dev_attr_in2_max.dev_attr.attr,
618 &sensor_dev_attr_in3_max.dev_attr.attr,
619 &sensor_dev_attr_in4_max.dev_attr.attr,
620 &sensor_dev_attr_in0_alarm.dev_attr.attr,
621 &sensor_dev_attr_in1_alarm.dev_attr.attr,
622 &sensor_dev_attr_in2_alarm.dev_attr.attr,
623 &sensor_dev_attr_in3_alarm.dev_attr.attr,
624 &sensor_dev_attr_in4_alarm.dev_attr.attr,
625
626 &sensor_dev_attr_temp1_input.dev_attr.attr,
627 &sensor_dev_attr_temp2_input.dev_attr.attr,
628 &sensor_dev_attr_temp3_input.dev_attr.attr,
629 &sensor_dev_attr_temp1_max.dev_attr.attr,
630 &sensor_dev_attr_temp2_max.dev_attr.attr,
631 &sensor_dev_attr_temp3_max.dev_attr.attr,
632 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
633 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
634 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
635 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
636 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
637 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
638
639 &sensor_dev_attr_fan1_input.dev_attr.attr,
640 &sensor_dev_attr_fan2_input.dev_attr.attr,
641 &sensor_dev_attr_fan1_min.dev_attr.attr,
642 &sensor_dev_attr_fan2_min.dev_attr.attr,
643 &sensor_dev_attr_fan1_div.dev_attr.attr,
644 &sensor_dev_attr_fan2_div.dev_attr.attr,
645 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
646 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
647
648 &dev_attr_alarms.attr,
649 &dev_attr_name.attr,
650 NULL
651};
652
653static const struct attribute_group via686a_group = {
654 .attrs = via686a_attributes,
655};
656
657static struct platform_driver via686a_driver = {
658 .driver = {
659 .name = "via686a",
660 },
661 .probe = via686a_probe,
662 .remove = via686a_remove,
663};
664
665/* This is called when the module is loaded */
666static int via686a_probe(struct platform_device *pdev)
667{
668 struct via686a_data *data;
669 struct resource *res;
670 int err;
671
672 /* Reserve the ISA region */
673 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
674 if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT,
675 via686a_driver.driver.name)) {
676 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
677 (unsigned long)res->start, (unsigned long)res->end);
678 return -ENODEV;
679 }
680
681 data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data),
682 GFP_KERNEL);
683 if (!data)
684 return -ENOMEM;
685
686 platform_set_drvdata(pdev, data);
687 data->addr = res->start;
688 data->name = "via686a";
689 mutex_init(&data->update_lock);
690
691 /* Initialize the VIA686A chip */
692 via686a_init_device(data);
693
694 /* Register sysfs hooks */
695 err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
696 if (err)
697 return err;
698
699 data->hwmon_dev = hwmon_device_register(&pdev->dev);
700 if (IS_ERR(data->hwmon_dev)) {
701 err = PTR_ERR(data->hwmon_dev);
702 goto exit_remove_files;
703 }
704
705 return 0;
706
707exit_remove_files:
708 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
709 return err;
710}
711
712static int via686a_remove(struct platform_device *pdev)
713{
714 struct via686a_data *data = platform_get_drvdata(pdev);
715
716 hwmon_device_unregister(data->hwmon_dev);
717 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
718
719 return 0;
720}
721
722static void via686a_update_fan_div(struct via686a_data *data)
723{
724 int reg = via686a_read_value(data, VIA686A_REG_FANDIV);
725 data->fan_div[0] = (reg >> 4) & 0x03;
726 data->fan_div[1] = reg >> 6;
727}
728
729static void via686a_init_device(struct via686a_data *data)
730{
731 u8 reg;
732
733 /* Start monitoring */
734 reg = via686a_read_value(data, VIA686A_REG_CONFIG);
735 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
736
737 /* Configure temp interrupt mode for continuous-interrupt operation */
738 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
739 via686a_write_value(data, VIA686A_REG_TEMP_MODE,
740 (reg & ~VIA686A_TEMP_MODE_MASK)
741 | VIA686A_TEMP_MODE_CONTINUOUS);
742
743 /* Pre-read fan clock divisor values */
744 via686a_update_fan_div(data);
745}
746
747static struct via686a_data *via686a_update_device(struct device *dev)
748{
749 struct via686a_data *data = dev_get_drvdata(dev);
750 int i;
751
752 mutex_lock(&data->update_lock);
753
754 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
755 || !data->valid) {
756 for (i = 0; i <= 4; i++) {
757 data->in[i] =
758 via686a_read_value(data, VIA686A_REG_IN(i));
759 data->in_min[i] = via686a_read_value(data,
760 VIA686A_REG_IN_MIN
761 (i));
762 data->in_max[i] =
763 via686a_read_value(data, VIA686A_REG_IN_MAX(i));
764 }
765 for (i = 1; i <= 2; i++) {
766 data->fan[i - 1] =
767 via686a_read_value(data, VIA686A_REG_FAN(i));
768 data->fan_min[i - 1] = via686a_read_value(data,
769 VIA686A_REG_FAN_MIN(i));
770 }
771 for (i = 0; i <= 2; i++) {
772 data->temp[i] = via686a_read_value(data,
773 VIA686A_REG_TEMP[i]) << 2;
774 data->temp_over[i] =
775 via686a_read_value(data,
776 VIA686A_REG_TEMP_OVER[i]);
777 data->temp_hyst[i] =
778 via686a_read_value(data,
779 VIA686A_REG_TEMP_HYST[i]);
780 }
781 /*
782 * add in lower 2 bits
783 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
784 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
785 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
786 */
787 data->temp[0] |= (via686a_read_value(data,
788 VIA686A_REG_TEMP_LOW1)
789 & 0xc0) >> 6;
790 data->temp[1] |=
791 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
792 0x30) >> 4;
793 data->temp[2] |=
794 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
795 0xc0) >> 6;
796
797 via686a_update_fan_div(data);
798 data->alarms =
799 via686a_read_value(data,
800 VIA686A_REG_ALARM1) |
801 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
802 data->last_updated = jiffies;
803 data->valid = 1;
804 }
805
806 mutex_unlock(&data->update_lock);
807
808 return data;
809}
810
811static const struct pci_device_id via686a_pci_ids[] = {
812 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
813 { }
814};
815MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
816
817static int via686a_device_add(unsigned short address)
818{
819 struct resource res = {
820 .start = address,
821 .end = address + VIA686A_EXTENT - 1,
822 .name = "via686a",
823 .flags = IORESOURCE_IO,
824 };
825 int err;
826
827 err = acpi_check_resource_conflict(&res);
828 if (err)
829 goto exit;
830
831 pdev = platform_device_alloc("via686a", address);
832 if (!pdev) {
833 err = -ENOMEM;
834 pr_err("Device allocation failed\n");
835 goto exit;
836 }
837
838 err = platform_device_add_resources(pdev, &res, 1);
839 if (err) {
840 pr_err("Device resource addition failed (%d)\n", err);
841 goto exit_device_put;
842 }
843
844 err = platform_device_add(pdev);
845 if (err) {
846 pr_err("Device addition failed (%d)\n", err);
847 goto exit_device_put;
848 }
849
850 return 0;
851
852exit_device_put:
853 platform_device_put(pdev);
854exit:
855 return err;
856}
857
858static int via686a_pci_probe(struct pci_dev *dev,
859 const struct pci_device_id *id)
860{
861 u16 address, val;
862
863 if (force_addr) {
864 address = force_addr & ~(VIA686A_EXTENT - 1);
865 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
866 if (PCIBIOS_SUCCESSFUL !=
867 pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
868 return -ENODEV;
869 }
870 if (PCIBIOS_SUCCESSFUL !=
871 pci_read_config_word(dev, VIA686A_BASE_REG, &val))
872 return -ENODEV;
873
874 address = val & ~(VIA686A_EXTENT - 1);
875 if (address == 0) {
876 dev_err(&dev->dev,
877 "base address not set - upgrade BIOS or use force_addr=0xaddr\n");
878 return -ENODEV;
879 }
880
881 if (PCIBIOS_SUCCESSFUL !=
882 pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
883 return -ENODEV;
884 if (!(val & 0x0001)) {
885 if (!force_addr) {
886 dev_warn(&dev->dev,
887 "Sensors disabled, enable with force_addr=0x%x\n",
888 address);
889 return -ENODEV;
890 }
891
892 dev_warn(&dev->dev, "Enabling sensors\n");
893 if (PCIBIOS_SUCCESSFUL !=
894 pci_write_config_word(dev, VIA686A_ENABLE_REG,
895 val | 0x0001))
896 return -ENODEV;
897 }
898
899 if (platform_driver_register(&via686a_driver))
900 goto exit;
901
902 /* Sets global pdev as a side effect */
903 if (via686a_device_add(address))
904 goto exit_unregister;
905
906 /*
907 * Always return failure here. This is to allow other drivers to bind
908 * to this pci device. We don't really want to have control over the
909 * pci device, we only wanted to read as few register values from it.
910 */
911 s_bridge = pci_dev_get(dev);
912 return -ENODEV;
913
914exit_unregister:
915 platform_driver_unregister(&via686a_driver);
916exit:
917 return -ENODEV;
918}
919
920static struct pci_driver via686a_pci_driver = {
921 .name = "via686a",
922 .id_table = via686a_pci_ids,
923 .probe = via686a_pci_probe,
924};
925
926static int __init sm_via686a_init(void)
927{
928 return pci_register_driver(&via686a_pci_driver);
929}
930
931static void __exit sm_via686a_exit(void)
932{
933 pci_unregister_driver(&via686a_pci_driver);
934 if (s_bridge != NULL) {
935 platform_device_unregister(pdev);
936 platform_driver_unregister(&via686a_driver);
937 pci_dev_put(s_bridge);
938 s_bridge = NULL;
939 }
940}
941
942MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
943 "Mark Studebaker <mdsxyz123@yahoo.com> "
944 "and Bob Dougherty <bobd@stanford.edu>");
945MODULE_DESCRIPTION("VIA 686A Sensor device");
946MODULE_LICENSE("GPL");
947
948module_init(sm_via686a_init);
949module_exit(sm_via686a_exit);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * via686a.c - Part of lm_sensors, Linux kernel modules
4 * for hardware monitoring
5 *
6 * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
7 * Kyösti Mälkki <kmalkki@cc.hut.fi>,
8 * Mark Studebaker <mdsxyz123@yahoo.com>,
9 * and Bob Dougherty <bobd@stanford.edu>
10 *
11 * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
12 * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
13 */
14
15/*
16 * Supports the Via VT82C686A, VT82C686B south bridges.
17 * Reports all as a 686A.
18 * Warning - only supports a single device.
19 */
20
21#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/pci.h>
26#include <linux/jiffies.h>
27#include <linux/platform_device.h>
28#include <linux/hwmon.h>
29#include <linux/hwmon-sysfs.h>
30#include <linux/err.h>
31#include <linux/init.h>
32#include <linux/mutex.h>
33#include <linux/sysfs.h>
34#include <linux/acpi.h>
35#include <linux/io.h>
36
37#define DRIVER_NAME "via686a"
38
39/*
40 * If force_addr is set to anything different from 0, we forcibly enable
41 * the device at the given address.
42 */
43static unsigned short force_addr;
44module_param(force_addr, ushort, 0);
45MODULE_PARM_DESC(force_addr,
46 "Initialize the base address of the sensors");
47
48static struct platform_device *pdev;
49
50/*
51 * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
52 * This driver is a customized copy of lm78.c
53 */
54
55/* Many VIA686A constants specified below */
56
57/* Length of ISA address segment */
58#define VIA686A_EXTENT 0x80
59#define VIA686A_BASE_REG 0x70
60#define VIA686A_ENABLE_REG 0x74
61
62/* The VIA686A registers */
63/* ins numbered 0-4 */
64#define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
65#define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
66#define VIA686A_REG_IN(nr) (0x22 + (nr))
67
68/* fans numbered 1-2 */
69#define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
70#define VIA686A_REG_FAN(nr) (0x28 + (nr))
71
72/* temps numbered 1-3 */
73static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
74static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
75static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
76/* bits 7-6 */
77#define VIA686A_REG_TEMP_LOW1 0x4b
78/* 2 = bits 5-4, 3 = bits 7-6 */
79#define VIA686A_REG_TEMP_LOW23 0x49
80
81#define VIA686A_REG_ALARM1 0x41
82#define VIA686A_REG_ALARM2 0x42
83#define VIA686A_REG_FANDIV 0x47
84#define VIA686A_REG_CONFIG 0x40
85/*
86 * The following register sets temp interrupt mode (bits 1-0 for temp1,
87 * 3-2 for temp2, 5-4 for temp3). Modes are:
88 * 00 interrupt stays as long as value is out-of-range
89 * 01 interrupt is cleared once register is read (default)
90 * 10 comparator mode- like 00, but ignores hysteresis
91 * 11 same as 00
92 */
93#define VIA686A_REG_TEMP_MODE 0x4b
94/* We'll just assume that you want to set all 3 simultaneously: */
95#define VIA686A_TEMP_MODE_MASK 0x3F
96#define VIA686A_TEMP_MODE_CONTINUOUS 0x00
97
98/*
99 * Conversions. Limit checking is only done on the TO_REG
100 * variants.
101 *
102 ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
103 * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
104 * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
105 * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
106 * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
107 * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
108 * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
109 * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
110 * That is:
111 * volts = (25*regVal+133)*factor
112 * regVal = (volts/factor-133)/25
113 * (These conversions were contributed by Jonathan Teh Soon Yew
114 * <j.teh@iname.com>)
115 */
116static inline u8 IN_TO_REG(long val, int in_num)
117{
118 /*
119 * To avoid floating point, we multiply constants by 10 (100 for +12V).
120 * Rounding is done (120500 is actually 133000 - 12500).
121 * Remember that val is expressed in 0.001V/bit, which is why we divide
122 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
123 * for the constants.
124 */
125 if (in_num <= 1)
126 return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255);
127 else if (in_num == 2)
128 return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255);
129 else if (in_num == 3)
130 return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255);
131 else
132 return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0,
133 255);
134}
135
136static inline long IN_FROM_REG(u8 val, int in_num)
137{
138 /*
139 * To avoid floating point, we multiply constants by 10 (100 for +12V).
140 * We also multiply them by 1000 because we want 0.001V/bit for the
141 * output value. Rounding is done.
142 */
143 if (in_num <= 1)
144 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
145 else if (in_num == 2)
146 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
147 else if (in_num == 3)
148 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
149 else
150 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
151}
152
153/********* FAN RPM CONVERSIONS ********/
154/*
155 * Higher register values = slower fans (the fan's strobe gates a counter).
156 * But this chip saturates back at 0, not at 255 like all the other chips.
157 * So, 0 means 0 RPM
158 */
159static inline u8 FAN_TO_REG(long rpm, int div)
160{
161 if (rpm == 0)
162 return 0;
163 rpm = clamp_val(rpm, 1, 1000000);
164 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
165}
166
167#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
168 ((val) * (div)))
169
170/******** TEMP CONVERSIONS (Bob Dougherty) *********/
171/*
172 * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
173 * if(temp<169)
174 * return double(temp)*0.427-32.08;
175 * else if(temp>=169 && temp<=202)
176 * return double(temp)*0.582-58.16;
177 * else
178 * return double(temp)*0.924-127.33;
179 *
180 * A fifth-order polynomial fits the unofficial data (provided by Alex van
181 * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
182 * numbers on my machine (ie. they agree with what my BIOS tells me).
183 * Here's the fifth-order fit to the 8-bit data:
184 * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
185 * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
186 *
187 * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
188 * finding my typos in this formula!)
189 *
190 * Alas, none of the elegant function-fit solutions will work because we
191 * aren't allowed to use floating point in the kernel and doing it with
192 * integers doesn't provide enough precision. So we'll do boring old
193 * look-up table stuff. The unofficial data (see below) have effectively
194 * 7-bit resolution (they are rounded to the nearest degree). I'm assuming
195 * that the transfer function of the device is monotonic and smooth, so a
196 * smooth function fit to the data will allow us to get better precision.
197 * I used the 5th-order poly fit described above and solved for
198 * VIA register values 0-255. I *10 before rounding, so we get tenth-degree
199 * precision. (I could have done all 1024 values for our 10-bit readings,
200 * but the function is very linear in the useful range (0-80 deg C), so
201 * we'll just use linear interpolation for 10-bit readings.) So, temp_lut
202 * is the temp at via register values 0-255:
203 */
204static const s16 temp_lut[] = {
205 -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
206 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
207 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
208 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
209 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
210 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
211 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
212 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
213 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
214 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
215 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
216 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
217 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
218 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
219 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
220 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
221 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
222 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
223 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
224 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
225 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
226 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
227};
228
229/*
230 * the original LUT values from Alex van Kaam <darkside@chello.nl>
231 * (for via register values 12-240):
232 * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
233 * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
234 * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
235 * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
236 * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
237 * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
238 * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
239 * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
240 * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
241 * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
242 *
243 *
244 * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
245 * an extra term for a good fit to these inverse data!) and then
246 * solving for each temp value from -50 to 110 (the useable range for
247 * this chip). Here's the fit:
248 * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
249 * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
250 * Note that n=161:
251 */
252static const u8 via_lut[] = {
253 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
254 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
255 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
256 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
257 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
258 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
259 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
260 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
261 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
262 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
263 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
264 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
265 239, 240
266};
267
268/*
269 * Converting temps to (8-bit) hyst and over registers
270 * No interpolation here.
271 * The +50 is because the temps start at -50
272 */
273static inline u8 TEMP_TO_REG(long val)
274{
275 return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 :
276 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
277}
278
279/* for 8-bit temperature hyst and over registers */
280#define TEMP_FROM_REG(val) ((long)temp_lut[val] * 100)
281
282/* for 10-bit temperature readings */
283static inline long TEMP_FROM_REG10(u16 val)
284{
285 u16 eight_bits = val >> 2;
286 u16 two_bits = val & 3;
287
288 /* no interpolation for these */
289 if (two_bits == 0 || eight_bits == 255)
290 return TEMP_FROM_REG(eight_bits);
291
292 /* do some linear interpolation */
293 return (temp_lut[eight_bits] * (4 - two_bits) +
294 temp_lut[eight_bits + 1] * two_bits) * 25;
295}
296
297#define DIV_FROM_REG(val) (1 << (val))
298#define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
299
300/*
301 * For each registered chip, we need to keep some data in memory.
302 * The structure is dynamically allocated.
303 */
304struct via686a_data {
305 unsigned short addr;
306 const char *name;
307 struct device *hwmon_dev;
308 struct mutex update_lock;
309 bool valid; /* true if following fields are valid */
310 unsigned long last_updated; /* In jiffies */
311
312 u8 in[5]; /* Register value */
313 u8 in_max[5]; /* Register value */
314 u8 in_min[5]; /* Register value */
315 u8 fan[2]; /* Register value */
316 u8 fan_min[2]; /* Register value */
317 u16 temp[3]; /* Register value 10 bit */
318 u8 temp_over[3]; /* Register value */
319 u8 temp_hyst[3]; /* Register value */
320 u8 fan_div[2]; /* Register encoding, shifted right */
321 u16 alarms; /* Register encoding, combined */
322};
323
324static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
325
326static inline int via686a_read_value(struct via686a_data *data, u8 reg)
327{
328 return inb_p(data->addr + reg);
329}
330
331static inline void via686a_write_value(struct via686a_data *data, u8 reg,
332 u8 value)
333{
334 outb_p(value, data->addr + reg);
335}
336
337static void via686a_update_fan_div(struct via686a_data *data)
338{
339 int reg = via686a_read_value(data, VIA686A_REG_FANDIV);
340 data->fan_div[0] = (reg >> 4) & 0x03;
341 data->fan_div[1] = reg >> 6;
342}
343
344static struct via686a_data *via686a_update_device(struct device *dev)
345{
346 struct via686a_data *data = dev_get_drvdata(dev);
347 int i;
348
349 mutex_lock(&data->update_lock);
350
351 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
352 || !data->valid) {
353 for (i = 0; i <= 4; i++) {
354 data->in[i] =
355 via686a_read_value(data, VIA686A_REG_IN(i));
356 data->in_min[i] = via686a_read_value(data,
357 VIA686A_REG_IN_MIN
358 (i));
359 data->in_max[i] =
360 via686a_read_value(data, VIA686A_REG_IN_MAX(i));
361 }
362 for (i = 1; i <= 2; i++) {
363 data->fan[i - 1] =
364 via686a_read_value(data, VIA686A_REG_FAN(i));
365 data->fan_min[i - 1] = via686a_read_value(data,
366 VIA686A_REG_FAN_MIN(i));
367 }
368 for (i = 0; i <= 2; i++) {
369 data->temp[i] = via686a_read_value(data,
370 VIA686A_REG_TEMP[i]) << 2;
371 data->temp_over[i] =
372 via686a_read_value(data,
373 VIA686A_REG_TEMP_OVER[i]);
374 data->temp_hyst[i] =
375 via686a_read_value(data,
376 VIA686A_REG_TEMP_HYST[i]);
377 }
378 /*
379 * add in lower 2 bits
380 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
381 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
382 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
383 */
384 data->temp[0] |= (via686a_read_value(data,
385 VIA686A_REG_TEMP_LOW1)
386 & 0xc0) >> 6;
387 data->temp[1] |=
388 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
389 0x30) >> 4;
390 data->temp[2] |=
391 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
392 0xc0) >> 6;
393
394 via686a_update_fan_div(data);
395 data->alarms =
396 via686a_read_value(data,
397 VIA686A_REG_ALARM1) |
398 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
399 data->last_updated = jiffies;
400 data->valid = true;
401 }
402
403 mutex_unlock(&data->update_lock);
404
405 return data;
406}
407
408/* following are the sysfs callback functions */
409
410/* 7 voltage sensors */
411static ssize_t in_show(struct device *dev, struct device_attribute *da,
412 char *buf) {
413 struct via686a_data *data = via686a_update_device(dev);
414 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
415 int nr = attr->index;
416 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
417}
418
419static ssize_t in_min_show(struct device *dev, struct device_attribute *da,
420 char *buf) {
421 struct via686a_data *data = via686a_update_device(dev);
422 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
423 int nr = attr->index;
424 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
425}
426
427static ssize_t in_max_show(struct device *dev, struct device_attribute *da,
428 char *buf) {
429 struct via686a_data *data = via686a_update_device(dev);
430 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
431 int nr = attr->index;
432 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
433}
434
435static ssize_t in_min_store(struct device *dev, struct device_attribute *da,
436 const char *buf, size_t count) {
437 struct via686a_data *data = dev_get_drvdata(dev);
438 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
439 int nr = attr->index;
440 unsigned long val;
441 int err;
442
443 err = kstrtoul(buf, 10, &val);
444 if (err)
445 return err;
446
447 mutex_lock(&data->update_lock);
448 data->in_min[nr] = IN_TO_REG(val, nr);
449 via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
450 data->in_min[nr]);
451 mutex_unlock(&data->update_lock);
452 return count;
453}
454static ssize_t in_max_store(struct device *dev, struct device_attribute *da,
455 const char *buf, size_t count) {
456 struct via686a_data *data = dev_get_drvdata(dev);
457 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
458 int nr = attr->index;
459 unsigned long val;
460 int err;
461
462 err = kstrtoul(buf, 10, &val);
463 if (err)
464 return err;
465
466 mutex_lock(&data->update_lock);
467 data->in_max[nr] = IN_TO_REG(val, nr);
468 via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
469 data->in_max[nr]);
470 mutex_unlock(&data->update_lock);
471 return count;
472}
473
474static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
475static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
476static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
477static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
478static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
479static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
480static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
481static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
482static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
483static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
484static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
485static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
486static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
487static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
488static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
489
490/* 3 temperatures */
491static ssize_t temp_show(struct device *dev, struct device_attribute *da,
492 char *buf) {
493 struct via686a_data *data = via686a_update_device(dev);
494 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
495 int nr = attr->index;
496 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
497}
498static ssize_t temp_over_show(struct device *dev, struct device_attribute *da,
499 char *buf) {
500 struct via686a_data *data = via686a_update_device(dev);
501 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
502 int nr = attr->index;
503 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
504}
505static ssize_t temp_hyst_show(struct device *dev, struct device_attribute *da,
506 char *buf) {
507 struct via686a_data *data = via686a_update_device(dev);
508 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
509 int nr = attr->index;
510 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
511}
512static ssize_t temp_over_store(struct device *dev,
513 struct device_attribute *da, const char *buf,
514 size_t count) {
515 struct via686a_data *data = dev_get_drvdata(dev);
516 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
517 int nr = attr->index;
518 long val;
519 int err;
520
521 err = kstrtol(buf, 10, &val);
522 if (err)
523 return err;
524
525 mutex_lock(&data->update_lock);
526 data->temp_over[nr] = TEMP_TO_REG(val);
527 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
528 data->temp_over[nr]);
529 mutex_unlock(&data->update_lock);
530 return count;
531}
532static ssize_t temp_hyst_store(struct device *dev,
533 struct device_attribute *da, const char *buf,
534 size_t count) {
535 struct via686a_data *data = dev_get_drvdata(dev);
536 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
537 int nr = attr->index;
538 long val;
539 int err;
540
541 err = kstrtol(buf, 10, &val);
542 if (err)
543 return err;
544
545 mutex_lock(&data->update_lock);
546 data->temp_hyst[nr] = TEMP_TO_REG(val);
547 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
548 data->temp_hyst[nr]);
549 mutex_unlock(&data->update_lock);
550 return count;
551}
552
553static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
554static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_over, 0);
555static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp_hyst, 0);
556static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
557static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_over, 1);
558static SENSOR_DEVICE_ATTR_RW(temp2_max_hyst, temp_hyst, 1);
559static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
560static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_over, 2);
561static SENSOR_DEVICE_ATTR_RW(temp3_max_hyst, temp_hyst, 2);
562
563/* 2 Fans */
564static ssize_t fan_show(struct device *dev, struct device_attribute *da,
565 char *buf) {
566 struct via686a_data *data = via686a_update_device(dev);
567 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
568 int nr = attr->index;
569 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
570 DIV_FROM_REG(data->fan_div[nr])));
571}
572static ssize_t fan_min_show(struct device *dev, struct device_attribute *da,
573 char *buf) {
574 struct via686a_data *data = via686a_update_device(dev);
575 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
576 int nr = attr->index;
577 return sprintf(buf, "%d\n",
578 FAN_FROM_REG(data->fan_min[nr],
579 DIV_FROM_REG(data->fan_div[nr])));
580}
581static ssize_t fan_div_show(struct device *dev, struct device_attribute *da,
582 char *buf) {
583 struct via686a_data *data = via686a_update_device(dev);
584 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
585 int nr = attr->index;
586 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
587}
588static ssize_t fan_min_store(struct device *dev, struct device_attribute *da,
589 const char *buf, size_t count) {
590 struct via686a_data *data = dev_get_drvdata(dev);
591 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
592 int nr = attr->index;
593 unsigned long val;
594 int err;
595
596 err = kstrtoul(buf, 10, &val);
597 if (err)
598 return err;
599
600 mutex_lock(&data->update_lock);
601 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
602 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
603 mutex_unlock(&data->update_lock);
604 return count;
605}
606static ssize_t fan_div_store(struct device *dev, struct device_attribute *da,
607 const char *buf, size_t count) {
608 struct via686a_data *data = dev_get_drvdata(dev);
609 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
610 int nr = attr->index;
611 int old;
612 unsigned long val;
613 int err;
614
615 err = kstrtoul(buf, 10, &val);
616 if (err)
617 return err;
618
619 mutex_lock(&data->update_lock);
620 old = via686a_read_value(data, VIA686A_REG_FANDIV);
621 data->fan_div[nr] = DIV_TO_REG(val);
622 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
623 via686a_write_value(data, VIA686A_REG_FANDIV, old);
624 mutex_unlock(&data->update_lock);
625 return count;
626}
627
628static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
629static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
630static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
631static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
632static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
633static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
634
635/* Alarms */
636static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
637 char *buf)
638{
639 struct via686a_data *data = via686a_update_device(dev);
640 return sprintf(buf, "%u\n", data->alarms);
641}
642
643static DEVICE_ATTR_RO(alarms);
644
645static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
646 char *buf)
647{
648 int bitnr = to_sensor_dev_attr(attr)->index;
649 struct via686a_data *data = via686a_update_device(dev);
650 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
651}
652static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
653static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
654static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
655static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
656static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
657static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
658static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 11);
659static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 15);
660static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6);
661static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7);
662
663static ssize_t name_show(struct device *dev, struct device_attribute
664 *devattr, char *buf)
665{
666 struct via686a_data *data = dev_get_drvdata(dev);
667 return sprintf(buf, "%s\n", data->name);
668}
669static DEVICE_ATTR_RO(name);
670
671static struct attribute *via686a_attributes[] = {
672 &sensor_dev_attr_in0_input.dev_attr.attr,
673 &sensor_dev_attr_in1_input.dev_attr.attr,
674 &sensor_dev_attr_in2_input.dev_attr.attr,
675 &sensor_dev_attr_in3_input.dev_attr.attr,
676 &sensor_dev_attr_in4_input.dev_attr.attr,
677 &sensor_dev_attr_in0_min.dev_attr.attr,
678 &sensor_dev_attr_in1_min.dev_attr.attr,
679 &sensor_dev_attr_in2_min.dev_attr.attr,
680 &sensor_dev_attr_in3_min.dev_attr.attr,
681 &sensor_dev_attr_in4_min.dev_attr.attr,
682 &sensor_dev_attr_in0_max.dev_attr.attr,
683 &sensor_dev_attr_in1_max.dev_attr.attr,
684 &sensor_dev_attr_in2_max.dev_attr.attr,
685 &sensor_dev_attr_in3_max.dev_attr.attr,
686 &sensor_dev_attr_in4_max.dev_attr.attr,
687 &sensor_dev_attr_in0_alarm.dev_attr.attr,
688 &sensor_dev_attr_in1_alarm.dev_attr.attr,
689 &sensor_dev_attr_in2_alarm.dev_attr.attr,
690 &sensor_dev_attr_in3_alarm.dev_attr.attr,
691 &sensor_dev_attr_in4_alarm.dev_attr.attr,
692
693 &sensor_dev_attr_temp1_input.dev_attr.attr,
694 &sensor_dev_attr_temp2_input.dev_attr.attr,
695 &sensor_dev_attr_temp3_input.dev_attr.attr,
696 &sensor_dev_attr_temp1_max.dev_attr.attr,
697 &sensor_dev_attr_temp2_max.dev_attr.attr,
698 &sensor_dev_attr_temp3_max.dev_attr.attr,
699 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
700 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
701 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
702 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
703 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
704 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
705
706 &sensor_dev_attr_fan1_input.dev_attr.attr,
707 &sensor_dev_attr_fan2_input.dev_attr.attr,
708 &sensor_dev_attr_fan1_min.dev_attr.attr,
709 &sensor_dev_attr_fan2_min.dev_attr.attr,
710 &sensor_dev_attr_fan1_div.dev_attr.attr,
711 &sensor_dev_attr_fan2_div.dev_attr.attr,
712 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
713 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
714
715 &dev_attr_alarms.attr,
716 &dev_attr_name.attr,
717 NULL
718};
719
720static const struct attribute_group via686a_group = {
721 .attrs = via686a_attributes,
722};
723
724static void via686a_init_device(struct via686a_data *data)
725{
726 u8 reg;
727
728 /* Start monitoring */
729 reg = via686a_read_value(data, VIA686A_REG_CONFIG);
730 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
731
732 /* Configure temp interrupt mode for continuous-interrupt operation */
733 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
734 via686a_write_value(data, VIA686A_REG_TEMP_MODE,
735 (reg & ~VIA686A_TEMP_MODE_MASK)
736 | VIA686A_TEMP_MODE_CONTINUOUS);
737
738 /* Pre-read fan clock divisor values */
739 via686a_update_fan_div(data);
740}
741
742/* This is called when the module is loaded */
743static int via686a_probe(struct platform_device *pdev)
744{
745 struct via686a_data *data;
746 struct resource *res;
747 int err;
748
749 /* Reserve the ISA region */
750 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
751 if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT,
752 DRIVER_NAME)) {
753 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
754 (unsigned long)res->start, (unsigned long)res->end);
755 return -ENODEV;
756 }
757
758 data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data),
759 GFP_KERNEL);
760 if (!data)
761 return -ENOMEM;
762
763 platform_set_drvdata(pdev, data);
764 data->addr = res->start;
765 data->name = DRIVER_NAME;
766 mutex_init(&data->update_lock);
767
768 /* Initialize the VIA686A chip */
769 via686a_init_device(data);
770
771 /* Register sysfs hooks */
772 err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
773 if (err)
774 return err;
775
776 data->hwmon_dev = hwmon_device_register(&pdev->dev);
777 if (IS_ERR(data->hwmon_dev)) {
778 err = PTR_ERR(data->hwmon_dev);
779 goto exit_remove_files;
780 }
781
782 return 0;
783
784exit_remove_files:
785 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
786 return err;
787}
788
789static int via686a_remove(struct platform_device *pdev)
790{
791 struct via686a_data *data = platform_get_drvdata(pdev);
792
793 hwmon_device_unregister(data->hwmon_dev);
794 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
795
796 return 0;
797}
798
799static struct platform_driver via686a_driver = {
800 .driver = {
801 .name = DRIVER_NAME,
802 },
803 .probe = via686a_probe,
804 .remove = via686a_remove,
805};
806
807static const struct pci_device_id via686a_pci_ids[] = {
808 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
809 { }
810};
811MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
812
813static int via686a_device_add(unsigned short address)
814{
815 struct resource res = {
816 .start = address,
817 .end = address + VIA686A_EXTENT - 1,
818 .name = DRIVER_NAME,
819 .flags = IORESOURCE_IO,
820 };
821 int err;
822
823 err = acpi_check_resource_conflict(&res);
824 if (err)
825 goto exit;
826
827 pdev = platform_device_alloc(DRIVER_NAME, address);
828 if (!pdev) {
829 err = -ENOMEM;
830 pr_err("Device allocation failed\n");
831 goto exit;
832 }
833
834 err = platform_device_add_resources(pdev, &res, 1);
835 if (err) {
836 pr_err("Device resource addition failed (%d)\n", err);
837 goto exit_device_put;
838 }
839
840 err = platform_device_add(pdev);
841 if (err) {
842 pr_err("Device addition failed (%d)\n", err);
843 goto exit_device_put;
844 }
845
846 return 0;
847
848exit_device_put:
849 platform_device_put(pdev);
850exit:
851 return err;
852}
853
854static int via686a_pci_probe(struct pci_dev *dev,
855 const struct pci_device_id *id)
856{
857 u16 address, val;
858
859 if (force_addr) {
860 address = force_addr & ~(VIA686A_EXTENT - 1);
861 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
862 if (PCIBIOS_SUCCESSFUL !=
863 pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
864 return -ENODEV;
865 }
866 if (PCIBIOS_SUCCESSFUL !=
867 pci_read_config_word(dev, VIA686A_BASE_REG, &val))
868 return -ENODEV;
869
870 address = val & ~(VIA686A_EXTENT - 1);
871 if (address == 0) {
872 dev_err(&dev->dev,
873 "base address not set - upgrade BIOS or use force_addr=0xaddr\n");
874 return -ENODEV;
875 }
876
877 if (PCIBIOS_SUCCESSFUL !=
878 pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
879 return -ENODEV;
880 if (!(val & 0x0001)) {
881 if (!force_addr) {
882 dev_warn(&dev->dev,
883 "Sensors disabled, enable with force_addr=0x%x\n",
884 address);
885 return -ENODEV;
886 }
887
888 dev_warn(&dev->dev, "Enabling sensors\n");
889 if (PCIBIOS_SUCCESSFUL !=
890 pci_write_config_word(dev, VIA686A_ENABLE_REG,
891 val | 0x0001))
892 return -ENODEV;
893 }
894
895 if (platform_driver_register(&via686a_driver))
896 goto exit;
897
898 /* Sets global pdev as a side effect */
899 if (via686a_device_add(address))
900 goto exit_unregister;
901
902 /*
903 * Always return failure here. This is to allow other drivers to bind
904 * to this pci device. We don't really want to have control over the
905 * pci device, we only wanted to read as few register values from it.
906 */
907 s_bridge = pci_dev_get(dev);
908 return -ENODEV;
909
910exit_unregister:
911 platform_driver_unregister(&via686a_driver);
912exit:
913 return -ENODEV;
914}
915
916static struct pci_driver via686a_pci_driver = {
917 .name = DRIVER_NAME,
918 .id_table = via686a_pci_ids,
919 .probe = via686a_pci_probe,
920};
921
922static int __init sm_via686a_init(void)
923{
924 return pci_register_driver(&via686a_pci_driver);
925}
926
927static void __exit sm_via686a_exit(void)
928{
929 pci_unregister_driver(&via686a_pci_driver);
930 if (s_bridge != NULL) {
931 platform_device_unregister(pdev);
932 platform_driver_unregister(&via686a_driver);
933 pci_dev_put(s_bridge);
934 s_bridge = NULL;
935 }
936}
937
938MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
939 "Mark Studebaker <mdsxyz123@yahoo.com> "
940 "and Bob Dougherty <bobd@stanford.edu>");
941MODULE_DESCRIPTION("VIA 686A Sensor device");
942MODULE_LICENSE("GPL");
943
944module_init(sm_via686a_init);
945module_exit(sm_via686a_exit);