Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   4 *	    monitoring
   5 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   6 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   7 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   8 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   9 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
  10 *
  11 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/of_device.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/jiffies.h>
  19#include <linux/i2c.h>
  20#include <linux/hwmon.h>
  21#include <linux/hwmon-vid.h>
  22#include <linux/hwmon-sysfs.h>
  23#include <linux/err.h>
  24#include <linux/mutex.h>
  25#include <linux/util_macros.h>
  26
  27/* Addresses to scan */
  28static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  29
  30enum chips {
  31	lm85, lm96000,
  32	adm1027, adt7463, adt7468,
  33	emc6d100, emc6d102, emc6d103, emc6d103s
  34};
  35
  36/* The LM85 registers */
  37
  38#define LM85_REG_IN(nr)			(0x20 + (nr))
  39#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  40#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  41
  42#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  43#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  44#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  45
  46/* Fan speeds are LSB, MSB (2 bytes) */
  47#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  48#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  49
  50#define LM85_REG_PWM(nr)		(0x30 + (nr))
  51
  52#define LM85_REG_COMPANY		0x3e
  53#define LM85_REG_VERSTEP		0x3f
  54
  55#define ADT7468_REG_CFG5		0x7c
  56#define ADT7468_OFF64			(1 << 0)
  57#define ADT7468_HFPWM			(1 << 1)
  58#define IS_ADT7468_OFF64(data)		\
  59	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  60#define IS_ADT7468_HFPWM(data)		\
  61	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  62
  63/* These are the recognized values for the above regs */
  64#define LM85_COMPANY_NATIONAL		0x01
  65#define LM85_COMPANY_ANALOG_DEV		0x41
  66#define LM85_COMPANY_SMSC		0x5c
  67#define LM85_VERSTEP_LM85C		0x60
  68#define LM85_VERSTEP_LM85B		0x62
  69#define LM85_VERSTEP_LM96000_1		0x68
  70#define LM85_VERSTEP_LM96000_2		0x69
  71#define LM85_VERSTEP_ADM1027		0x60
  72#define LM85_VERSTEP_ADT7463		0x62
  73#define LM85_VERSTEP_ADT7463C		0x6A
  74#define LM85_VERSTEP_ADT7468_1		0x71
  75#define LM85_VERSTEP_ADT7468_2		0x72
  76#define LM85_VERSTEP_EMC6D100_A0        0x60
  77#define LM85_VERSTEP_EMC6D100_A1        0x61
  78#define LM85_VERSTEP_EMC6D102		0x65
  79#define LM85_VERSTEP_EMC6D103_A0	0x68
  80#define LM85_VERSTEP_EMC6D103_A1	0x69
  81#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  82
  83#define LM85_REG_CONFIG			0x40
  84
  85#define LM85_REG_ALARM1			0x41
  86#define LM85_REG_ALARM2			0x42
  87
  88#define LM85_REG_VID			0x43
  89
  90/* Automated FAN control */
  91#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
  92#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
  93#define LM85_REG_AFAN_SPIKE1		0x62
  94#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
  95#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
  96#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
  97#define LM85_REG_AFAN_HYST1		0x6d
  98#define LM85_REG_AFAN_HYST2		0x6e
  99
 100#define ADM1027_REG_EXTEND_ADC1		0x76
 101#define ADM1027_REG_EXTEND_ADC2		0x77
 102
 103#define EMC6D100_REG_ALARM3             0x7d
 104/* IN5, IN6 and IN7 */
 105#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 106#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 107#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 108#define EMC6D102_REG_EXTEND_ADC1	0x85
 109#define EMC6D102_REG_EXTEND_ADC2	0x86
 110#define EMC6D102_REG_EXTEND_ADC3	0x87
 111#define EMC6D102_REG_EXTEND_ADC4	0x88
 112
 113/*
 114 * Conversions. Rounding and limit checking is only done on the TO_REG
 115 * variants. Note that you should be a bit careful with which arguments
 116 * these macros are called: arguments may be evaluated more than once.
 117 */
 118
 119/* IN are scaled according to built-in resistors */
 120static const int lm85_scaling[] = {  /* .001 Volts */
 121	2500, 2250, 3300, 5000, 12000,
 122	3300, 1500, 1800 /*EMC6D100*/
 123};
 124#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 125
 126#define INS_TO_REG(n, val)	\
 127		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
 128		      lm85_scaling[n], 192)
 129
 130#define INSEXT_FROM_REG(n, val, ext)	\
 131		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 132
 133#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 134
 135/* FAN speed is measured using 90kHz clock */
 136static inline u16 FAN_TO_REG(unsigned long val)
 137{
 138	if (!val)
 139		return 0xffff;
 140	return clamp_val(5400000 / val, 1, 0xfffe);
 141}
 142#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 143				 5400000 / (val))
 144
 145/* Temperature is reported in .001 degC increments */
 146#define TEMP_TO_REG(val)	\
 147		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 148#define TEMPEXT_FROM_REG(val, ext)	\
 149		SCALE(((val) << 4) + (ext), 16, 1000)
 150#define TEMP_FROM_REG(val)	((val) * 1000)
 151
 152#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 153#define PWM_FROM_REG(val)		(val)
 154
 155/*
 156 * ZONEs have the following parameters:
 157 *    Limit (low) temp,           1. degC
 158 *    Hysteresis (below limit),   1. degC (0-15)
 159 *    Range of speed control,     .1 degC (2-80)
 160 *    Critical (high) temp,       1. degC
 161 *
 162 * FAN PWMs have the following parameters:
 163 *    Reference Zone,                 1, 2, 3, etc.
 164 *    Spinup time,                    .05 sec
 165 *    PWM value at limit/low temp,    1 count
 166 *    PWM Frequency,                  1. Hz
 167 *    PWM is Min or OFF below limit,  flag
 168 *    Invert PWM output,              flag
 169 *
 170 * Some chips filter the temp, others the fan.
 171 *    Filter constant (or disabled)   .1 seconds
 172 */
 173
 174/* These are the zone temperature range encodings in .001 degree C */
 175static const int lm85_range_map[] = {
 176	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 177	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 178};
 179
 180static int RANGE_TO_REG(long range)
 181{
 182	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 183}
 184#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 185
 186/* These are the PWM frequency encodings */
 187static const int lm85_freq_map[] = { /* 1 Hz */
 188	10, 15, 23, 30, 38, 47, 61, 94
 189};
 190
 191static const int lm96000_freq_map[] = { /* 1 Hz */
 192	10, 15, 23, 30, 38, 47, 61, 94,
 193	22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
 194};
 195
 196static const int adm1027_freq_map[] = { /* 1 Hz */
 197	11, 15, 22, 29, 35, 44, 59, 88
 198};
 199
 200static int FREQ_TO_REG(const int *map,
 201		       unsigned int map_size, unsigned long freq)
 202{
 203	return find_closest(freq, map, map_size);
 204}
 205
 206static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
 207{
 208	return map[reg % map_size];
 209}
 210
 211/*
 212 * Since we can't use strings, I'm abusing these numbers
 213 *   to stand in for the following meanings:
 214 *      1 -- PWM responds to Zone 1
 215 *      2 -- PWM responds to Zone 2
 216 *      3 -- PWM responds to Zone 3
 217 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 218 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 219 *      0 -- PWM is always at 0% (ie, off)
 220 *     -1 -- PWM is always at 100%
 221 *     -2 -- PWM responds to manual control
 222 */
 223
 224static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 225#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 226
 227static int ZONE_TO_REG(int zone)
 228{
 229	int i;
 230
 231	for (i = 0; i <= 7; ++i)
 232		if (zone == lm85_zone_map[i])
 233			break;
 234	if (i > 7)   /* Not found. */
 235		i = 3;  /* Always 100% */
 236	return i << 5;
 237}
 238
 239#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 240#define HYST_FROM_REG(val)	((val) * 1000)
 241
 242/*
 243 * Chip sampling rates
 244 *
 245 * Some sensors are not updated more frequently than once per second
 246 *    so it doesn't make sense to read them more often than that.
 247 *    We cache the results and return the saved data if the driver
 248 *    is called again before a second has elapsed.
 249 *
 250 * Also, there is significant configuration data for this chip
 251 *    given the automatic PWM fan control that is possible.  There
 252 *    are about 47 bytes of config data to only 22 bytes of actual
 253 *    readings.  So, we keep the config data up to date in the cache
 254 *    when it is written and only sample it once every 1 *minute*
 255 */
 256#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 257#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 258
 259/*
 260 * LM85 can automatically adjust fan speeds based on temperature
 261 * This structure encapsulates an entire Zone config.  There are
 262 * three zones (one for each temperature input) on the lm85
 263 */
 264struct lm85_zone {
 265	s8 limit;	/* Low temp limit */
 266	u8 hyst;	/* Low limit hysteresis. (0-15) */
 267	u8 range;	/* Temp range, encoded */
 268	s8 critical;	/* "All fans ON" temp limit */
 269	u8 max_desired; /*
 270			 * Actual "max" temperature specified.  Preserved
 271			 * to prevent "drift" as other autofan control
 272			 * values change.
 273			 */
 274};
 275
 276struct lm85_autofan {
 277	u8 config;	/* Register value */
 278	u8 min_pwm;	/* Minimum PWM value, encoded */
 279	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 280};
 281
 282/*
 283 * For each registered chip, we need to keep some data in memory.
 284 * The structure is dynamically allocated.
 285 */
 286struct lm85_data {
 287	struct i2c_client *client;
 288	const struct attribute_group *groups[6];
 289	const int *freq_map;
 290	unsigned int freq_map_size;
 291
 292	enum chips type;
 293
 294	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 295
 296	struct mutex update_lock;
 297	int valid;		/* !=0 if following fields are valid */
 298	unsigned long last_reading;	/* In jiffies */
 299	unsigned long last_config;	/* In jiffies */
 300
 301	u8 in[8];		/* Register value */
 302	u8 in_max[8];		/* Register value */
 303	u8 in_min[8];		/* Register value */
 304	s8 temp[3];		/* Register value */
 305	s8 temp_min[3];		/* Register value */
 306	s8 temp_max[3];		/* Register value */
 307	u16 fan[4];		/* Register value */
 308	u16 fan_min[4];		/* Register value */
 309	u8 pwm[3];		/* Register value */
 310	u8 pwm_freq[3];		/* Register encoding */
 311	u8 temp_ext[3];		/* Decoded values */
 312	u8 in_ext[8];		/* Decoded values */
 313	u8 vid;			/* Register value */
 314	u8 vrm;			/* VRM version */
 315	u32 alarms;		/* Register encoding, combined */
 316	u8 cfg5;		/* Config Register 5 on ADT7468 */
 317	struct lm85_autofan autofan[3];
 318	struct lm85_zone zone[3];
 319};
 320
 321static int lm85_read_value(struct i2c_client *client, u8 reg)
 322{
 323	int res;
 324
 325	/* What size location is it? */
 326	switch (reg) {
 327	case LM85_REG_FAN(0):  /* Read WORD data */
 328	case LM85_REG_FAN(1):
 329	case LM85_REG_FAN(2):
 330	case LM85_REG_FAN(3):
 331	case LM85_REG_FAN_MIN(0):
 332	case LM85_REG_FAN_MIN(1):
 333	case LM85_REG_FAN_MIN(2):
 334	case LM85_REG_FAN_MIN(3):
 335	case LM85_REG_ALARM1:	/* Read both bytes at once */
 336		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 337		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 338		break;
 339	default:	/* Read BYTE data */
 340		res = i2c_smbus_read_byte_data(client, reg);
 341		break;
 342	}
 343
 344	return res;
 345}
 346
 347static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 348{
 349	switch (reg) {
 350	case LM85_REG_FAN(0):  /* Write WORD data */
 351	case LM85_REG_FAN(1):
 352	case LM85_REG_FAN(2):
 353	case LM85_REG_FAN(3):
 354	case LM85_REG_FAN_MIN(0):
 355	case LM85_REG_FAN_MIN(1):
 356	case LM85_REG_FAN_MIN(2):
 357	case LM85_REG_FAN_MIN(3):
 358	/* NOTE: ALARM is read only, so not included here */
 359		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 360		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 361		break;
 362	default:	/* Write BYTE data */
 363		i2c_smbus_write_byte_data(client, reg, value);
 364		break;
 365	}
 366}
 367
 368static struct lm85_data *lm85_update_device(struct device *dev)
 369{
 370	struct lm85_data *data = dev_get_drvdata(dev);
 371	struct i2c_client *client = data->client;
 372	int i;
 373
 374	mutex_lock(&data->update_lock);
 375
 376	if (!data->valid ||
 377	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 378		/* Things that change quickly */
 379		dev_dbg(&client->dev, "Reading sensor values\n");
 380
 381		/*
 382		 * Have to read extended bits first to "freeze" the
 383		 * more significant bits that are read later.
 384		 * There are 2 additional resolution bits per channel and we
 385		 * have room for 4, so we shift them to the left.
 386		 */
 387		if (data->type == adm1027 || data->type == adt7463 ||
 388		    data->type == adt7468) {
 389			int ext1 = lm85_read_value(client,
 390						   ADM1027_REG_EXTEND_ADC1);
 391			int ext2 =  lm85_read_value(client,
 392						    ADM1027_REG_EXTEND_ADC2);
 393			int val = (ext1 << 8) + ext2;
 394
 395			for (i = 0; i <= 4; i++)
 396				data->in_ext[i] =
 397					((val >> (i * 2)) & 0x03) << 2;
 398
 399			for (i = 0; i <= 2; i++)
 400				data->temp_ext[i] =
 401					(val >> ((i + 4) * 2)) & 0x0c;
 402		}
 403
 404		data->vid = lm85_read_value(client, LM85_REG_VID);
 405
 406		for (i = 0; i <= 3; ++i) {
 407			data->in[i] =
 408			    lm85_read_value(client, LM85_REG_IN(i));
 409			data->fan[i] =
 410			    lm85_read_value(client, LM85_REG_FAN(i));
 411		}
 412
 413		if (!data->has_vid5)
 414			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 415
 416		if (data->type == adt7468)
 417			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 418
 419		for (i = 0; i <= 2; ++i) {
 420			data->temp[i] =
 421			    lm85_read_value(client, LM85_REG_TEMP(i));
 422			data->pwm[i] =
 423			    lm85_read_value(client, LM85_REG_PWM(i));
 424
 425			if (IS_ADT7468_OFF64(data))
 426				data->temp[i] -= 64;
 427		}
 428
 429		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 430
 431		if (data->type == emc6d100) {
 432			/* Three more voltage sensors */
 433			for (i = 5; i <= 7; ++i) {
 434				data->in[i] = lm85_read_value(client,
 435							EMC6D100_REG_IN(i));
 436			}
 437			/* More alarm bits */
 438			data->alarms |= lm85_read_value(client,
 439						EMC6D100_REG_ALARM3) << 16;
 440		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 441			   data->type == emc6d103s) {
 442			/*
 443			 * Have to read LSB bits after the MSB ones because
 444			 * the reading of the MSB bits has frozen the
 445			 * LSBs (backward from the ADM1027).
 446			 */
 447			int ext1 = lm85_read_value(client,
 448						   EMC6D102_REG_EXTEND_ADC1);
 449			int ext2 = lm85_read_value(client,
 450						   EMC6D102_REG_EXTEND_ADC2);
 451			int ext3 = lm85_read_value(client,
 452						   EMC6D102_REG_EXTEND_ADC3);
 453			int ext4 = lm85_read_value(client,
 454						   EMC6D102_REG_EXTEND_ADC4);
 455			data->in_ext[0] = ext3 & 0x0f;
 456			data->in_ext[1] = ext4 & 0x0f;
 457			data->in_ext[2] = ext4 >> 4;
 458			data->in_ext[3] = ext3 >> 4;
 459			data->in_ext[4] = ext2 >> 4;
 460
 461			data->temp_ext[0] = ext1 & 0x0f;
 462			data->temp_ext[1] = ext2 & 0x0f;
 463			data->temp_ext[2] = ext1 >> 4;
 464		}
 465
 466		data->last_reading = jiffies;
 467	}  /* last_reading */
 468
 469	if (!data->valid ||
 470	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 471		/* Things that don't change often */
 472		dev_dbg(&client->dev, "Reading config values\n");
 473
 474		for (i = 0; i <= 3; ++i) {
 475			data->in_min[i] =
 476			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 477			data->in_max[i] =
 478			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 479			data->fan_min[i] =
 480			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 481		}
 482
 483		if (!data->has_vid5)  {
 484			data->in_min[4] = lm85_read_value(client,
 485					  LM85_REG_IN_MIN(4));
 486			data->in_max[4] = lm85_read_value(client,
 487					  LM85_REG_IN_MAX(4));
 488		}
 489
 490		if (data->type == emc6d100) {
 491			for (i = 5; i <= 7; ++i) {
 492				data->in_min[i] = lm85_read_value(client,
 493						EMC6D100_REG_IN_MIN(i));
 494				data->in_max[i] = lm85_read_value(client,
 495						EMC6D100_REG_IN_MAX(i));
 496			}
 497		}
 498
 499		for (i = 0; i <= 2; ++i) {
 500			int val;
 501
 502			data->temp_min[i] =
 503			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 504			data->temp_max[i] =
 505			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 506
 507			data->autofan[i].config =
 508			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 509			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 510			data->pwm_freq[i] = val % data->freq_map_size;
 511			data->zone[i].range = val >> 4;
 512			data->autofan[i].min_pwm =
 513			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 514			data->zone[i].limit =
 515			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 516			data->zone[i].critical =
 517			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 518
 519			if (IS_ADT7468_OFF64(data)) {
 520				data->temp_min[i] -= 64;
 521				data->temp_max[i] -= 64;
 522				data->zone[i].limit -= 64;
 523				data->zone[i].critical -= 64;
 524			}
 525		}
 526
 527		if (data->type != emc6d103s) {
 528			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 529			data->autofan[0].min_off = (i & 0x20) != 0;
 530			data->autofan[1].min_off = (i & 0x40) != 0;
 531			data->autofan[2].min_off = (i & 0x80) != 0;
 532
 533			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 534			data->zone[0].hyst = i >> 4;
 535			data->zone[1].hyst = i & 0x0f;
 536
 537			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 538			data->zone[2].hyst = i >> 4;
 539		}
 540
 541		data->last_config = jiffies;
 542	}  /* last_config */
 543
 544	data->valid = 1;
 545
 546	mutex_unlock(&data->update_lock);
 547
 548	return data;
 549}
 550
 551/* 4 Fans */
 552static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
 553			char *buf)
 554{
 555	int nr = to_sensor_dev_attr(attr)->index;
 556	struct lm85_data *data = lm85_update_device(dev);
 557	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 558}
 559
 560static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
 561			    char *buf)
 562{
 563	int nr = to_sensor_dev_attr(attr)->index;
 564	struct lm85_data *data = lm85_update_device(dev);
 565	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 566}
 567
 568static ssize_t fan_min_store(struct device *dev,
 569			     struct device_attribute *attr, const char *buf,
 570			     size_t count)
 571{
 572	int nr = to_sensor_dev_attr(attr)->index;
 573	struct lm85_data *data = dev_get_drvdata(dev);
 574	struct i2c_client *client = data->client;
 575	unsigned long val;
 576	int err;
 577
 578	err = kstrtoul(buf, 10, &val);
 579	if (err)
 580		return err;
 581
 582	mutex_lock(&data->update_lock);
 583	data->fan_min[nr] = FAN_TO_REG(val);
 584	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 585	mutex_unlock(&data->update_lock);
 586	return count;
 587}
 588
 589static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
 590static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
 591static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
 592static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
 593static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
 594static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
 595static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
 596static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
 597
 598/* vid, vrm, alarms */
 599
 600static ssize_t cpu0_vid_show(struct device *dev,
 601			     struct device_attribute *attr, char *buf)
 602{
 603	struct lm85_data *data = lm85_update_device(dev);
 604	int vid;
 605
 606	if (data->has_vid5) {
 607		/* 6-pin VID (VRM 10) */
 608		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 609	} else {
 610		/* 5-pin VID (VRM 9) */
 611		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 612	}
 613
 614	return sprintf(buf, "%d\n", vid);
 615}
 616
 617static DEVICE_ATTR_RO(cpu0_vid);
 618
 619static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
 620			char *buf)
 621{
 622	struct lm85_data *data = dev_get_drvdata(dev);
 623	return sprintf(buf, "%ld\n", (long) data->vrm);
 624}
 625
 626static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
 627			 const char *buf, size_t count)
 628{
 629	struct lm85_data *data = dev_get_drvdata(dev);
 630	unsigned long val;
 631	int err;
 632
 633	err = kstrtoul(buf, 10, &val);
 634	if (err)
 635		return err;
 636
 637	if (val > 255)
 638		return -EINVAL;
 639
 640	data->vrm = val;
 641	return count;
 642}
 643
 644static DEVICE_ATTR_RW(vrm);
 645
 646static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 647			   char *buf)
 648{
 649	struct lm85_data *data = lm85_update_device(dev);
 650	return sprintf(buf, "%u\n", data->alarms);
 651}
 652
 653static DEVICE_ATTR_RO(alarms);
 654
 655static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
 656			  char *buf)
 657{
 658	int nr = to_sensor_dev_attr(attr)->index;
 659	struct lm85_data *data = lm85_update_device(dev);
 660	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 661}
 662
 663static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
 664static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
 665static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
 666static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
 667static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
 668static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
 669static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
 670static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
 671static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
 672static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
 673static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
 674static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
 675static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
 676static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
 677static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
 678static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
 679static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
 680
 681/* pwm */
 682
 683static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
 684			char *buf)
 685{
 686	int nr = to_sensor_dev_attr(attr)->index;
 687	struct lm85_data *data = lm85_update_device(dev);
 688	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 689}
 690
 691static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
 692			 const char *buf, size_t count)
 693{
 694	int nr = to_sensor_dev_attr(attr)->index;
 695	struct lm85_data *data = dev_get_drvdata(dev);
 696	struct i2c_client *client = data->client;
 697	unsigned long val;
 698	int err;
 699
 700	err = kstrtoul(buf, 10, &val);
 701	if (err)
 702		return err;
 703
 704	mutex_lock(&data->update_lock);
 705	data->pwm[nr] = PWM_TO_REG(val);
 706	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 707	mutex_unlock(&data->update_lock);
 708	return count;
 709}
 710
 711static ssize_t pwm_enable_show(struct device *dev,
 712			       struct device_attribute *attr, char *buf)
 713{
 714	int nr = to_sensor_dev_attr(attr)->index;
 715	struct lm85_data *data = lm85_update_device(dev);
 716	int pwm_zone, enable;
 717
 718	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 719	switch (pwm_zone) {
 720	case -1:	/* PWM is always at 100% */
 721		enable = 0;
 722		break;
 723	case 0:		/* PWM is always at 0% */
 724	case -2:	/* PWM responds to manual control */
 725		enable = 1;
 726		break;
 727	default:	/* PWM in automatic mode */
 728		enable = 2;
 729	}
 730	return sprintf(buf, "%d\n", enable);
 731}
 732
 733static ssize_t pwm_enable_store(struct device *dev,
 734				struct device_attribute *attr,
 735				const char *buf, size_t count)
 736{
 737	int nr = to_sensor_dev_attr(attr)->index;
 738	struct lm85_data *data = dev_get_drvdata(dev);
 739	struct i2c_client *client = data->client;
 740	u8 config;
 741	unsigned long val;
 742	int err;
 743
 744	err = kstrtoul(buf, 10, &val);
 745	if (err)
 746		return err;
 747
 748	switch (val) {
 749	case 0:
 750		config = 3;
 751		break;
 752	case 1:
 753		config = 7;
 754		break;
 755	case 2:
 756		/*
 757		 * Here we have to choose arbitrarily one of the 5 possible
 758		 * configurations; I go for the safest
 759		 */
 760		config = 6;
 761		break;
 762	default:
 763		return -EINVAL;
 764	}
 765
 766	mutex_lock(&data->update_lock);
 767	data->autofan[nr].config = lm85_read_value(client,
 768		LM85_REG_AFAN_CONFIG(nr));
 769	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 770		| (config << 5);
 771	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 772		data->autofan[nr].config);
 773	mutex_unlock(&data->update_lock);
 774	return count;
 775}
 776
 777static ssize_t pwm_freq_show(struct device *dev,
 778			     struct device_attribute *attr, char *buf)
 779{
 780	int nr = to_sensor_dev_attr(attr)->index;
 781	struct lm85_data *data = lm85_update_device(dev);
 782	int freq;
 783
 784	if (IS_ADT7468_HFPWM(data))
 785		freq = 22500;
 786	else
 787		freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
 788				     data->pwm_freq[nr]);
 789
 790	return sprintf(buf, "%d\n", freq);
 791}
 792
 793static ssize_t pwm_freq_store(struct device *dev,
 794			      struct device_attribute *attr, const char *buf,
 795			      size_t count)
 796{
 797	int nr = to_sensor_dev_attr(attr)->index;
 798	struct lm85_data *data = dev_get_drvdata(dev);
 799	struct i2c_client *client = data->client;
 800	unsigned long val;
 801	int err;
 802
 803	err = kstrtoul(buf, 10, &val);
 804	if (err)
 805		return err;
 806
 807	mutex_lock(&data->update_lock);
 808	/*
 809	 * The ADT7468 has a special high-frequency PWM output mode,
 810	 * where all PWM outputs are driven by a 22.5 kHz clock.
 811	 * This might confuse the user, but there's not much we can do.
 812	 */
 813	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 814		data->cfg5 &= ~ADT7468_HFPWM;
 815		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 816	} else {					/* Low freq. mode */
 817		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 818						 data->freq_map_size, val);
 819		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 820				 (data->zone[nr].range << 4)
 821				 | data->pwm_freq[nr]);
 822		if (data->type == adt7468) {
 823			data->cfg5 |= ADT7468_HFPWM;
 824			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 825		}
 826	}
 827	mutex_unlock(&data->update_lock);
 828	return count;
 829}
 830
 831static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
 832static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
 833static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
 834static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
 835static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
 836static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
 837static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
 838static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
 839static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
 840
 841/* Voltages */
 842
 843static ssize_t in_show(struct device *dev, struct device_attribute *attr,
 844		       char *buf)
 845{
 846	int nr = to_sensor_dev_attr(attr)->index;
 847	struct lm85_data *data = lm85_update_device(dev);
 848	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 849						    data->in_ext[nr]));
 850}
 851
 852static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
 853			   char *buf)
 854{
 855	int nr = to_sensor_dev_attr(attr)->index;
 856	struct lm85_data *data = lm85_update_device(dev);
 857	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 858}
 859
 860static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
 861			    const char *buf, size_t count)
 862{
 863	int nr = to_sensor_dev_attr(attr)->index;
 864	struct lm85_data *data = dev_get_drvdata(dev);
 865	struct i2c_client *client = data->client;
 866	long val;
 867	int err;
 868
 869	err = kstrtol(buf, 10, &val);
 870	if (err)
 871		return err;
 872
 873	mutex_lock(&data->update_lock);
 874	data->in_min[nr] = INS_TO_REG(nr, val);
 875	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 876	mutex_unlock(&data->update_lock);
 877	return count;
 878}
 879
 880static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
 881			   char *buf)
 882{
 883	int nr = to_sensor_dev_attr(attr)->index;
 884	struct lm85_data *data = lm85_update_device(dev);
 885	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 886}
 887
 888static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
 889			    const char *buf, size_t count)
 890{
 891	int nr = to_sensor_dev_attr(attr)->index;
 892	struct lm85_data *data = dev_get_drvdata(dev);
 893	struct i2c_client *client = data->client;
 894	long val;
 895	int err;
 896
 897	err = kstrtol(buf, 10, &val);
 898	if (err)
 899		return err;
 900
 901	mutex_lock(&data->update_lock);
 902	data->in_max[nr] = INS_TO_REG(nr, val);
 903	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 904	mutex_unlock(&data->update_lock);
 905	return count;
 906}
 907
 908static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
 909static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
 910static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
 911static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
 912static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
 913static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
 914static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
 915static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
 916static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
 917static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
 918static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
 919static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
 920static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
 921static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
 922static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
 923static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
 924static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
 925static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
 926static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
 927static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
 928static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
 929static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
 930static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
 931static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
 932
 933/* Temps */
 934
 935static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 936			 char *buf)
 937{
 938	int nr = to_sensor_dev_attr(attr)->index;
 939	struct lm85_data *data = lm85_update_device(dev);
 940	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 941						     data->temp_ext[nr]));
 942}
 943
 944static ssize_t temp_min_show(struct device *dev,
 945			     struct device_attribute *attr, char *buf)
 946{
 947	int nr = to_sensor_dev_attr(attr)->index;
 948	struct lm85_data *data = lm85_update_device(dev);
 949	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 950}
 951
 952static ssize_t temp_min_store(struct device *dev,
 953			      struct device_attribute *attr, const char *buf,
 954			      size_t count)
 955{
 956	int nr = to_sensor_dev_attr(attr)->index;
 957	struct lm85_data *data = dev_get_drvdata(dev);
 958	struct i2c_client *client = data->client;
 959	long val;
 960	int err;
 961
 962	err = kstrtol(buf, 10, &val);
 963	if (err)
 964		return err;
 965
 966	if (IS_ADT7468_OFF64(data))
 967		val += 64;
 968
 969	mutex_lock(&data->update_lock);
 970	data->temp_min[nr] = TEMP_TO_REG(val);
 971	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 972	mutex_unlock(&data->update_lock);
 973	return count;
 974}
 975
 976static ssize_t temp_max_show(struct device *dev,
 977			     struct device_attribute *attr, char *buf)
 978{
 979	int nr = to_sensor_dev_attr(attr)->index;
 980	struct lm85_data *data = lm85_update_device(dev);
 981	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 982}
 983
 984static ssize_t temp_max_store(struct device *dev,
 985			      struct device_attribute *attr, const char *buf,
 986			      size_t count)
 987{
 988	int nr = to_sensor_dev_attr(attr)->index;
 989	struct lm85_data *data = dev_get_drvdata(dev);
 990	struct i2c_client *client = data->client;
 991	long val;
 992	int err;
 993
 994	err = kstrtol(buf, 10, &val);
 995	if (err)
 996		return err;
 997
 998	if (IS_ADT7468_OFF64(data))
 999		val += 64;
1000
1001	mutex_lock(&data->update_lock);
1002	data->temp_max[nr] = TEMP_TO_REG(val);
1003	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004	mutex_unlock(&data->update_lock);
1005	return count;
1006}
1007
1008static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
1017
1018/* Automatic PWM control */
1019
1020static ssize_t pwm_auto_channels_show(struct device *dev,
1021				      struct device_attribute *attr,
1022				      char *buf)
1023{
1024	int nr = to_sensor_dev_attr(attr)->index;
1025	struct lm85_data *data = lm85_update_device(dev);
1026	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1027}
1028
1029static ssize_t pwm_auto_channels_store(struct device *dev,
1030				       struct device_attribute *attr,
1031				       const char *buf, size_t count)
1032{
1033	int nr = to_sensor_dev_attr(attr)->index;
1034	struct lm85_data *data = dev_get_drvdata(dev);
1035	struct i2c_client *client = data->client;
1036	long val;
1037	int err;
1038
1039	err = kstrtol(buf, 10, &val);
1040	if (err)
1041		return err;
1042
1043	mutex_lock(&data->update_lock);
1044	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045		| ZONE_TO_REG(val);
1046	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047		data->autofan[nr].config);
1048	mutex_unlock(&data->update_lock);
1049	return count;
1050}
1051
1052static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053				     struct device_attribute *attr, char *buf)
1054{
1055	int nr = to_sensor_dev_attr(attr)->index;
1056	struct lm85_data *data = lm85_update_device(dev);
1057	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058}
1059
1060static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061				      struct device_attribute *attr,
1062				      const char *buf, size_t count)
1063{
1064	int nr = to_sensor_dev_attr(attr)->index;
1065	struct lm85_data *data = dev_get_drvdata(dev);
1066	struct i2c_client *client = data->client;
1067	unsigned long val;
1068	int err;
1069
1070	err = kstrtoul(buf, 10, &val);
1071	if (err)
1072		return err;
1073
1074	mutex_lock(&data->update_lock);
1075	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077		data->autofan[nr].min_pwm);
1078	mutex_unlock(&data->update_lock);
1079	return count;
1080}
1081
1082static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083					struct device_attribute *attr,
1084					char *buf)
1085{
1086	int nr = to_sensor_dev_attr(attr)->index;
1087	struct lm85_data *data = lm85_update_device(dev);
1088	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1089}
1090
1091static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092					 struct device_attribute *attr,
1093					 const char *buf, size_t count)
1094{
1095	int nr = to_sensor_dev_attr(attr)->index;
1096	struct lm85_data *data = dev_get_drvdata(dev);
1097	struct i2c_client *client = data->client;
1098	u8 tmp;
1099	long val;
1100	int err;
1101
1102	err = kstrtol(buf, 10, &val);
1103	if (err)
1104		return err;
1105
1106	mutex_lock(&data->update_lock);
1107	data->autofan[nr].min_off = val;
1108	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109	tmp &= ~(0x20 << nr);
1110	if (data->autofan[nr].min_off)
1111		tmp |= 0x20 << nr;
1112	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113	mutex_unlock(&data->update_lock);
1114	return count;
1115}
1116
1117static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
1126
1127/* Temperature settings for automatic PWM control */
1128
1129static ssize_t temp_auto_temp_off_show(struct device *dev,
1130				       struct device_attribute *attr,
1131				       char *buf)
1132{
1133	int nr = to_sensor_dev_attr(attr)->index;
1134	struct lm85_data *data = lm85_update_device(dev);
1135	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136		HYST_FROM_REG(data->zone[nr].hyst));
1137}
1138
1139static ssize_t temp_auto_temp_off_store(struct device *dev,
1140					struct device_attribute *attr,
1141					const char *buf, size_t count)
1142{
1143	int nr = to_sensor_dev_attr(attr)->index;
1144	struct lm85_data *data = dev_get_drvdata(dev);
1145	struct i2c_client *client = data->client;
1146	int min;
1147	long val;
1148	int err;
1149
1150	err = kstrtol(buf, 10, &val);
1151	if (err)
1152		return err;
1153
1154	mutex_lock(&data->update_lock);
1155	min = TEMP_FROM_REG(data->zone[nr].limit);
1156	data->zone[nr].hyst = HYST_TO_REG(min - val);
1157	if (nr == 0 || nr == 1) {
1158		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159			(data->zone[0].hyst << 4)
1160			| data->zone[1].hyst);
1161	} else {
1162		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163			(data->zone[2].hyst << 4));
1164	}
1165	mutex_unlock(&data->update_lock);
1166	return count;
1167}
1168
1169static ssize_t temp_auto_temp_min_show(struct device *dev,
1170				       struct device_attribute *attr,
1171				       char *buf)
1172{
1173	int nr = to_sensor_dev_attr(attr)->index;
1174	struct lm85_data *data = lm85_update_device(dev);
1175	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1176}
1177
1178static ssize_t temp_auto_temp_min_store(struct device *dev,
1179					struct device_attribute *attr,
1180					const char *buf, size_t count)
1181{
1182	int nr = to_sensor_dev_attr(attr)->index;
1183	struct lm85_data *data = dev_get_drvdata(dev);
1184	struct i2c_client *client = data->client;
1185	long val;
1186	int err;
1187
1188	err = kstrtol(buf, 10, &val);
1189	if (err)
1190		return err;
1191
1192	mutex_lock(&data->update_lock);
1193	data->zone[nr].limit = TEMP_TO_REG(val);
1194	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195		data->zone[nr].limit);
1196
1197/* Update temp_auto_max and temp_auto_range */
1198	data->zone[nr].range = RANGE_TO_REG(
1199		TEMP_FROM_REG(data->zone[nr].max_desired) -
1200		TEMP_FROM_REG(data->zone[nr].limit));
1201	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202		((data->zone[nr].range & 0x0f) << 4)
1203		| data->pwm_freq[nr]);
1204
1205	mutex_unlock(&data->update_lock);
1206	return count;
1207}
1208
1209static ssize_t temp_auto_temp_max_show(struct device *dev,
1210				       struct device_attribute *attr,
1211				       char *buf)
1212{
1213	int nr = to_sensor_dev_attr(attr)->index;
1214	struct lm85_data *data = lm85_update_device(dev);
1215	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216		RANGE_FROM_REG(data->zone[nr].range));
1217}
1218
1219static ssize_t temp_auto_temp_max_store(struct device *dev,
1220					struct device_attribute *attr,
1221					const char *buf, size_t count)
1222{
1223	int nr = to_sensor_dev_attr(attr)->index;
1224	struct lm85_data *data = dev_get_drvdata(dev);
1225	struct i2c_client *client = data->client;
1226	int min;
1227	long val;
1228	int err;
1229
1230	err = kstrtol(buf, 10, &val);
1231	if (err)
1232		return err;
1233
1234	mutex_lock(&data->update_lock);
1235	min = TEMP_FROM_REG(data->zone[nr].limit);
1236	data->zone[nr].max_desired = TEMP_TO_REG(val);
1237	data->zone[nr].range = RANGE_TO_REG(
1238		val - min);
1239	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240		((data->zone[nr].range & 0x0f) << 4)
1241		| data->pwm_freq[nr]);
1242	mutex_unlock(&data->update_lock);
1243	return count;
1244}
1245
1246static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247					struct device_attribute *attr,
1248					char *buf)
1249{
1250	int nr = to_sensor_dev_attr(attr)->index;
1251	struct lm85_data *data = lm85_update_device(dev);
1252	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1253}
1254
1255static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256					 struct device_attribute *attr,
1257					 const char *buf, size_t count)
1258{
1259	int nr = to_sensor_dev_attr(attr)->index;
1260	struct lm85_data *data = dev_get_drvdata(dev);
1261	struct i2c_client *client = data->client;
1262	long val;
1263	int err;
1264
1265	err = kstrtol(buf, 10, &val);
1266	if (err)
1267		return err;
1268
1269	mutex_lock(&data->update_lock);
1270	data->zone[nr].critical = TEMP_TO_REG(val);
1271	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272		data->zone[nr].critical);
1273	mutex_unlock(&data->update_lock);
1274	return count;
1275}
1276
1277static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
1289
1290static struct attribute *lm85_attributes[] = {
1291	&sensor_dev_attr_fan1_input.dev_attr.attr,
1292	&sensor_dev_attr_fan2_input.dev_attr.attr,
1293	&sensor_dev_attr_fan3_input.dev_attr.attr,
1294	&sensor_dev_attr_fan4_input.dev_attr.attr,
1295	&sensor_dev_attr_fan1_min.dev_attr.attr,
1296	&sensor_dev_attr_fan2_min.dev_attr.attr,
1297	&sensor_dev_attr_fan3_min.dev_attr.attr,
1298	&sensor_dev_attr_fan4_min.dev_attr.attr,
1299	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1303
1304	&sensor_dev_attr_pwm1.dev_attr.attr,
1305	&sensor_dev_attr_pwm2.dev_attr.attr,
1306	&sensor_dev_attr_pwm3.dev_attr.attr,
1307	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1313
1314	&sensor_dev_attr_in0_input.dev_attr.attr,
1315	&sensor_dev_attr_in1_input.dev_attr.attr,
1316	&sensor_dev_attr_in2_input.dev_attr.attr,
1317	&sensor_dev_attr_in3_input.dev_attr.attr,
1318	&sensor_dev_attr_in0_min.dev_attr.attr,
1319	&sensor_dev_attr_in1_min.dev_attr.attr,
1320	&sensor_dev_attr_in2_min.dev_attr.attr,
1321	&sensor_dev_attr_in3_min.dev_attr.attr,
1322	&sensor_dev_attr_in0_max.dev_attr.attr,
1323	&sensor_dev_attr_in1_max.dev_attr.attr,
1324	&sensor_dev_attr_in2_max.dev_attr.attr,
1325	&sensor_dev_attr_in3_max.dev_attr.attr,
1326	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1327	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1328	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1329	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1330
1331	&sensor_dev_attr_temp1_input.dev_attr.attr,
1332	&sensor_dev_attr_temp2_input.dev_attr.attr,
1333	&sensor_dev_attr_temp3_input.dev_attr.attr,
1334	&sensor_dev_attr_temp1_min.dev_attr.attr,
1335	&sensor_dev_attr_temp2_min.dev_attr.attr,
1336	&sensor_dev_attr_temp3_min.dev_attr.attr,
1337	&sensor_dev_attr_temp1_max.dev_attr.attr,
1338	&sensor_dev_attr_temp2_max.dev_attr.attr,
1339	&sensor_dev_attr_temp3_max.dev_attr.attr,
1340	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1344	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1345
1346	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1352
1353	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1362
1363	&dev_attr_vrm.attr,
1364	&dev_attr_cpu0_vid.attr,
1365	&dev_attr_alarms.attr,
1366	NULL
1367};
1368
1369static const struct attribute_group lm85_group = {
1370	.attrs = lm85_attributes,
1371};
1372
1373static struct attribute *lm85_attributes_minctl[] = {
1374	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377	NULL
1378};
1379
1380static const struct attribute_group lm85_group_minctl = {
1381	.attrs = lm85_attributes_minctl,
1382};
1383
1384static struct attribute *lm85_attributes_temp_off[] = {
1385	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388	NULL
1389};
1390
1391static const struct attribute_group lm85_group_temp_off = {
1392	.attrs = lm85_attributes_temp_off,
1393};
1394
1395static struct attribute *lm85_attributes_in4[] = {
1396	&sensor_dev_attr_in4_input.dev_attr.attr,
1397	&sensor_dev_attr_in4_min.dev_attr.attr,
1398	&sensor_dev_attr_in4_max.dev_attr.attr,
1399	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1400	NULL
1401};
1402
1403static const struct attribute_group lm85_group_in4 = {
1404	.attrs = lm85_attributes_in4,
1405};
1406
1407static struct attribute *lm85_attributes_in567[] = {
1408	&sensor_dev_attr_in5_input.dev_attr.attr,
1409	&sensor_dev_attr_in6_input.dev_attr.attr,
1410	&sensor_dev_attr_in7_input.dev_attr.attr,
1411	&sensor_dev_attr_in5_min.dev_attr.attr,
1412	&sensor_dev_attr_in6_min.dev_attr.attr,
1413	&sensor_dev_attr_in7_min.dev_attr.attr,
1414	&sensor_dev_attr_in5_max.dev_attr.attr,
1415	&sensor_dev_attr_in6_max.dev_attr.attr,
1416	&sensor_dev_attr_in7_max.dev_attr.attr,
1417	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1418	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1419	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1420	NULL
1421};
1422
1423static const struct attribute_group lm85_group_in567 = {
1424	.attrs = lm85_attributes_in567,
1425};
1426
1427static void lm85_init_client(struct i2c_client *client)
1428{
1429	int value;
1430
1431	/* Start monitoring if needed */
1432	value = lm85_read_value(client, LM85_REG_CONFIG);
1433	if (!(value & 0x01)) {
1434		dev_info(&client->dev, "Starting monitoring\n");
1435		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1436	}
1437
1438	/* Warn about unusual configuration bits */
1439	if (value & 0x02)
1440		dev_warn(&client->dev, "Device configuration is locked\n");
1441	if (!(value & 0x04))
1442		dev_warn(&client->dev, "Device is not ready\n");
1443}
1444
1445static int lm85_is_fake(struct i2c_client *client)
1446{
1447	/*
1448	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449	 * emulate the former except that it has no hardware monitoring function
1450	 * so the readings are always 0.
1451	 */
1452	int i;
1453	u8 in_temp, fan;
1454
1455	for (i = 0; i < 8; i++) {
1456		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458		if (in_temp != 0x00 || fan != 0xff)
1459			return 0;
1460	}
1461
1462	return 1;
1463}
1464
1465/* Return 0 if detection is successful, -ENODEV otherwise */
1466static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1467{
1468	struct i2c_adapter *adapter = client->adapter;
1469	int address = client->addr;
1470	const char *type_name = NULL;
1471	int company, verstep;
1472
1473	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474		/* We need to be able to do byte I/O */
1475		return -ENODEV;
1476	}
1477
1478	/* Determine the chip type */
1479	company = lm85_read_value(client, LM85_REG_COMPANY);
1480	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1481
1482	dev_dbg(&adapter->dev,
1483		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484		address, company, verstep);
1485
1486	if (company == LM85_COMPANY_NATIONAL) {
1487		switch (verstep) {
1488		case LM85_VERSTEP_LM85C:
1489			type_name = "lm85c";
1490			break;
1491		case LM85_VERSTEP_LM85B:
1492			type_name = "lm85b";
1493			break;
1494		case LM85_VERSTEP_LM96000_1:
1495		case LM85_VERSTEP_LM96000_2:
1496			/* Check for Winbond WPCD377I */
1497			if (lm85_is_fake(client)) {
1498				dev_dbg(&adapter->dev,
1499					"Found Winbond WPCD377I, ignoring\n");
1500				return -ENODEV;
1501			}
1502			type_name = "lm96000";
1503			break;
1504		}
1505	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1506		switch (verstep) {
1507		case LM85_VERSTEP_ADM1027:
1508			type_name = "adm1027";
1509			break;
1510		case LM85_VERSTEP_ADT7463:
1511		case LM85_VERSTEP_ADT7463C:
1512			type_name = "adt7463";
1513			break;
1514		case LM85_VERSTEP_ADT7468_1:
1515		case LM85_VERSTEP_ADT7468_2:
1516			type_name = "adt7468";
1517			break;
1518		}
1519	} else if (company == LM85_COMPANY_SMSC) {
1520		switch (verstep) {
1521		case LM85_VERSTEP_EMC6D100_A0:
1522		case LM85_VERSTEP_EMC6D100_A1:
1523			/* Note: we can't tell a '100 from a '101 */
1524			type_name = "emc6d100";
1525			break;
1526		case LM85_VERSTEP_EMC6D102:
1527			type_name = "emc6d102";
1528			break;
1529		case LM85_VERSTEP_EMC6D103_A0:
1530		case LM85_VERSTEP_EMC6D103_A1:
1531			type_name = "emc6d103";
1532			break;
1533		case LM85_VERSTEP_EMC6D103S:
1534			type_name = "emc6d103s";
1535			break;
1536		}
1537	}
1538
1539	if (!type_name)
1540		return -ENODEV;
1541
1542	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1543
1544	return 0;
1545}
1546
1547static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
 
 
1548{
1549	struct device *dev = &client->dev;
1550	struct device *hwmon_dev;
1551	struct lm85_data *data;
1552	int idx = 0;
1553
1554	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1555	if (!data)
1556		return -ENOMEM;
1557
1558	data->client = client;
1559	if (client->dev.of_node)
1560		data->type = (enum chips)of_device_get_match_data(&client->dev);
1561	else
1562		data->type = id->driver_data;
1563	mutex_init(&data->update_lock);
1564
1565	/* Fill in the chip specific driver values */
1566	switch (data->type) {
1567	case adm1027:
1568	case adt7463:
1569	case adt7468:
1570	case emc6d100:
1571	case emc6d102:
1572	case emc6d103:
1573	case emc6d103s:
1574		data->freq_map = adm1027_freq_map;
1575		data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1576		break;
1577	case lm96000:
1578		data->freq_map = lm96000_freq_map;
1579		data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1580		break;
1581	default:
1582		data->freq_map = lm85_freq_map;
1583		data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1584	}
1585
1586	/* Set the VRM version */
1587	data->vrm = vid_which_vrm();
1588
1589	/* Initialize the LM85 chip */
1590	lm85_init_client(client);
1591
1592	/* sysfs hooks */
1593	data->groups[idx++] = &lm85_group;
1594
1595	/* minctl and temp_off exist on all chips except emc6d103s */
1596	if (data->type != emc6d103s) {
1597		data->groups[idx++] = &lm85_group_minctl;
1598		data->groups[idx++] = &lm85_group_temp_off;
1599	}
1600
1601	/*
1602	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1603	 * as a sixth digital VID input rather than an analog input.
1604	 */
1605	if (data->type == adt7463 || data->type == adt7468) {
1606		u8 vid = lm85_read_value(client, LM85_REG_VID);
1607		if (vid & 0x80)
1608			data->has_vid5 = true;
1609	}
1610
1611	if (!data->has_vid5)
1612		data->groups[idx++] = &lm85_group_in4;
1613
1614	/* The EMC6D100 has 3 additional voltage inputs */
1615	if (data->type == emc6d100)
1616		data->groups[idx++] = &lm85_group_in567;
1617
1618	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1619							   data, data->groups);
1620	return PTR_ERR_OR_ZERO(hwmon_dev);
1621}
1622
1623static const struct i2c_device_id lm85_id[] = {
1624	{ "adm1027", adm1027 },
1625	{ "adt7463", adt7463 },
1626	{ "adt7468", adt7468 },
1627	{ "lm85", lm85 },
1628	{ "lm85b", lm85 },
1629	{ "lm85c", lm85 },
1630	{ "lm96000", lm96000 },
1631	{ "emc6d100", emc6d100 },
1632	{ "emc6d101", emc6d100 },
1633	{ "emc6d102", emc6d102 },
1634	{ "emc6d103", emc6d103 },
1635	{ "emc6d103s", emc6d103s },
1636	{ }
1637};
1638MODULE_DEVICE_TABLE(i2c, lm85_id);
1639
1640static const struct of_device_id __maybe_unused lm85_of_match[] = {
1641	{
1642		.compatible = "adi,adm1027",
1643		.data = (void *)adm1027
1644	},
1645	{
1646		.compatible = "adi,adt7463",
1647		.data = (void *)adt7463
1648	},
1649	{
1650		.compatible = "adi,adt7468",
1651		.data = (void *)adt7468
1652	},
1653	{
1654		.compatible = "national,lm85",
1655		.data = (void *)lm85
1656	},
1657	{
1658		.compatible = "national,lm85b",
1659		.data = (void *)lm85
1660	},
1661	{
1662		.compatible = "national,lm85c",
1663		.data = (void *)lm85
1664	},
1665	{
1666		.compatible = "ti,lm96000",
1667		.data = (void *)lm96000
1668	},
1669	{
1670		.compatible = "smsc,emc6d100",
1671		.data = (void *)emc6d100
1672	},
1673	{
1674		.compatible = "smsc,emc6d101",
1675		.data = (void *)emc6d100
1676	},
1677	{
1678		.compatible = "smsc,emc6d102",
1679		.data = (void *)emc6d102
1680	},
1681	{
1682		.compatible = "smsc,emc6d103",
1683		.data = (void *)emc6d103
1684	},
1685	{
1686		.compatible = "smsc,emc6d103s",
1687		.data = (void *)emc6d103s
1688	},
1689	{ },
1690};
1691MODULE_DEVICE_TABLE(of, lm85_of_match);
1692
1693static struct i2c_driver lm85_driver = {
1694	.class		= I2C_CLASS_HWMON,
1695	.driver = {
1696		.name   = "lm85",
1697		.of_match_table = of_match_ptr(lm85_of_match),
1698	},
1699	.probe		= lm85_probe,
1700	.id_table	= lm85_id,
1701	.detect		= lm85_detect,
1702	.address_list	= normal_i2c,
1703};
1704
1705module_i2c_driver(lm85_driver);
1706
1707MODULE_LICENSE("GPL");
1708MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1709	"Margit Schubert-While <margitsw@t-online.de>, "
1710	"Justin Thiessen <jthiessen@penguincomputing.com>");
1711MODULE_DESCRIPTION("LM85-B, LM85-C driver");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   4 *	    monitoring
   5 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   6 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   7 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   8 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   9 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
  10 *
  11 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/of_device.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/jiffies.h>
  19#include <linux/i2c.h>
  20#include <linux/hwmon.h>
  21#include <linux/hwmon-vid.h>
  22#include <linux/hwmon-sysfs.h>
  23#include <linux/err.h>
  24#include <linux/mutex.h>
  25#include <linux/util_macros.h>
  26
  27/* Addresses to scan */
  28static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  29
  30enum chips {
  31	lm85, lm96000,
  32	adm1027, adt7463, adt7468,
  33	emc6d100, emc6d102, emc6d103, emc6d103s
  34};
  35
  36/* The LM85 registers */
  37
  38#define LM85_REG_IN(nr)			(0x20 + (nr))
  39#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  40#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  41
  42#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  43#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  44#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  45
  46/* Fan speeds are LSB, MSB (2 bytes) */
  47#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  48#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  49
  50#define LM85_REG_PWM(nr)		(0x30 + (nr))
  51
  52#define LM85_REG_COMPANY		0x3e
  53#define LM85_REG_VERSTEP		0x3f
  54
  55#define ADT7468_REG_CFG5		0x7c
  56#define ADT7468_OFF64			(1 << 0)
  57#define ADT7468_HFPWM			(1 << 1)
  58#define IS_ADT7468_OFF64(data)		\
  59	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  60#define IS_ADT7468_HFPWM(data)		\
  61	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  62
  63/* These are the recognized values for the above regs */
  64#define LM85_COMPANY_NATIONAL		0x01
  65#define LM85_COMPANY_ANALOG_DEV		0x41
  66#define LM85_COMPANY_SMSC		0x5c
  67#define LM85_VERSTEP_LM85C		0x60
  68#define LM85_VERSTEP_LM85B		0x62
  69#define LM85_VERSTEP_LM96000_1		0x68
  70#define LM85_VERSTEP_LM96000_2		0x69
  71#define LM85_VERSTEP_ADM1027		0x60
  72#define LM85_VERSTEP_ADT7463		0x62
  73#define LM85_VERSTEP_ADT7463C		0x6A
  74#define LM85_VERSTEP_ADT7468_1		0x71
  75#define LM85_VERSTEP_ADT7468_2		0x72
  76#define LM85_VERSTEP_EMC6D100_A0        0x60
  77#define LM85_VERSTEP_EMC6D100_A1        0x61
  78#define LM85_VERSTEP_EMC6D102		0x65
  79#define LM85_VERSTEP_EMC6D103_A0	0x68
  80#define LM85_VERSTEP_EMC6D103_A1	0x69
  81#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  82
  83#define LM85_REG_CONFIG			0x40
  84
  85#define LM85_REG_ALARM1			0x41
  86#define LM85_REG_ALARM2			0x42
  87
  88#define LM85_REG_VID			0x43
  89
  90/* Automated FAN control */
  91#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
  92#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
  93#define LM85_REG_AFAN_SPIKE1		0x62
  94#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
  95#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
  96#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
  97#define LM85_REG_AFAN_HYST1		0x6d
  98#define LM85_REG_AFAN_HYST2		0x6e
  99
 100#define ADM1027_REG_EXTEND_ADC1		0x76
 101#define ADM1027_REG_EXTEND_ADC2		0x77
 102
 103#define EMC6D100_REG_ALARM3             0x7d
 104/* IN5, IN6 and IN7 */
 105#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 106#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 107#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 108#define EMC6D102_REG_EXTEND_ADC1	0x85
 109#define EMC6D102_REG_EXTEND_ADC2	0x86
 110#define EMC6D102_REG_EXTEND_ADC3	0x87
 111#define EMC6D102_REG_EXTEND_ADC4	0x88
 112
 113/*
 114 * Conversions. Rounding and limit checking is only done on the TO_REG
 115 * variants. Note that you should be a bit careful with which arguments
 116 * these macros are called: arguments may be evaluated more than once.
 117 */
 118
 119/* IN are scaled according to built-in resistors */
 120static const int lm85_scaling[] = {  /* .001 Volts */
 121	2500, 2250, 3300, 5000, 12000,
 122	3300, 1500, 1800 /*EMC6D100*/
 123};
 124#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 125
 126#define INS_TO_REG(n, val)	\
 127		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
 128		      lm85_scaling[n], 192)
 129
 130#define INSEXT_FROM_REG(n, val, ext)	\
 131		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 132
 133#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 134
 135/* FAN speed is measured using 90kHz clock */
 136static inline u16 FAN_TO_REG(unsigned long val)
 137{
 138	if (!val)
 139		return 0xffff;
 140	return clamp_val(5400000 / val, 1, 0xfffe);
 141}
 142#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 143				 5400000 / (val))
 144
 145/* Temperature is reported in .001 degC increments */
 146#define TEMP_TO_REG(val)	\
 147		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 148#define TEMPEXT_FROM_REG(val, ext)	\
 149		SCALE(((val) << 4) + (ext), 16, 1000)
 150#define TEMP_FROM_REG(val)	((val) * 1000)
 151
 152#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 153#define PWM_FROM_REG(val)		(val)
 154
 155/*
 156 * ZONEs have the following parameters:
 157 *    Limit (low) temp,           1. degC
 158 *    Hysteresis (below limit),   1. degC (0-15)
 159 *    Range of speed control,     .1 degC (2-80)
 160 *    Critical (high) temp,       1. degC
 161 *
 162 * FAN PWMs have the following parameters:
 163 *    Reference Zone,                 1, 2, 3, etc.
 164 *    Spinup time,                    .05 sec
 165 *    PWM value at limit/low temp,    1 count
 166 *    PWM Frequency,                  1. Hz
 167 *    PWM is Min or OFF below limit,  flag
 168 *    Invert PWM output,              flag
 169 *
 170 * Some chips filter the temp, others the fan.
 171 *    Filter constant (or disabled)   .1 seconds
 172 */
 173
 174/* These are the zone temperature range encodings in .001 degree C */
 175static const int lm85_range_map[] = {
 176	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 177	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 178};
 179
 180static int RANGE_TO_REG(long range)
 181{
 182	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 183}
 184#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 185
 186/* These are the PWM frequency encodings */
 187static const int lm85_freq_map[] = { /* 1 Hz */
 188	10, 15, 23, 30, 38, 47, 61, 94
 189};
 190
 191static const int lm96000_freq_map[] = { /* 1 Hz */
 192	10, 15, 23, 30, 38, 47, 61, 94,
 193	22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
 194};
 195
 196static const int adm1027_freq_map[] = { /* 1 Hz */
 197	11, 15, 22, 29, 35, 44, 59, 88
 198};
 199
 200static int FREQ_TO_REG(const int *map,
 201		       unsigned int map_size, unsigned long freq)
 202{
 203	return find_closest(freq, map, map_size);
 204}
 205
 206static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
 207{
 208	return map[reg % map_size];
 209}
 210
 211/*
 212 * Since we can't use strings, I'm abusing these numbers
 213 *   to stand in for the following meanings:
 214 *      1 -- PWM responds to Zone 1
 215 *      2 -- PWM responds to Zone 2
 216 *      3 -- PWM responds to Zone 3
 217 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 218 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 219 *      0 -- PWM is always at 0% (ie, off)
 220 *     -1 -- PWM is always at 100%
 221 *     -2 -- PWM responds to manual control
 222 */
 223
 224static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 225#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 226
 227static int ZONE_TO_REG(int zone)
 228{
 229	int i;
 230
 231	for (i = 0; i <= 7; ++i)
 232		if (zone == lm85_zone_map[i])
 233			break;
 234	if (i > 7)   /* Not found. */
 235		i = 3;  /* Always 100% */
 236	return i << 5;
 237}
 238
 239#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 240#define HYST_FROM_REG(val)	((val) * 1000)
 241
 242/*
 243 * Chip sampling rates
 244 *
 245 * Some sensors are not updated more frequently than once per second
 246 *    so it doesn't make sense to read them more often than that.
 247 *    We cache the results and return the saved data if the driver
 248 *    is called again before a second has elapsed.
 249 *
 250 * Also, there is significant configuration data for this chip
 251 *    given the automatic PWM fan control that is possible.  There
 252 *    are about 47 bytes of config data to only 22 bytes of actual
 253 *    readings.  So, we keep the config data up to date in the cache
 254 *    when it is written and only sample it once every 1 *minute*
 255 */
 256#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 257#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 258
 259/*
 260 * LM85 can automatically adjust fan speeds based on temperature
 261 * This structure encapsulates an entire Zone config.  There are
 262 * three zones (one for each temperature input) on the lm85
 263 */
 264struct lm85_zone {
 265	s8 limit;	/* Low temp limit */
 266	u8 hyst;	/* Low limit hysteresis. (0-15) */
 267	u8 range;	/* Temp range, encoded */
 268	s8 critical;	/* "All fans ON" temp limit */
 269	u8 max_desired; /*
 270			 * Actual "max" temperature specified.  Preserved
 271			 * to prevent "drift" as other autofan control
 272			 * values change.
 273			 */
 274};
 275
 276struct lm85_autofan {
 277	u8 config;	/* Register value */
 278	u8 min_pwm;	/* Minimum PWM value, encoded */
 279	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 280};
 281
 282/*
 283 * For each registered chip, we need to keep some data in memory.
 284 * The structure is dynamically allocated.
 285 */
 286struct lm85_data {
 287	struct i2c_client *client;
 288	const struct attribute_group *groups[6];
 289	const int *freq_map;
 290	unsigned int freq_map_size;
 291
 292	enum chips type;
 293
 294	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 295
 296	struct mutex update_lock;
 297	bool valid;		/* true if following fields are valid */
 298	unsigned long last_reading;	/* In jiffies */
 299	unsigned long last_config;	/* In jiffies */
 300
 301	u8 in[8];		/* Register value */
 302	u8 in_max[8];		/* Register value */
 303	u8 in_min[8];		/* Register value */
 304	s8 temp[3];		/* Register value */
 305	s8 temp_min[3];		/* Register value */
 306	s8 temp_max[3];		/* Register value */
 307	u16 fan[4];		/* Register value */
 308	u16 fan_min[4];		/* Register value */
 309	u8 pwm[3];		/* Register value */
 310	u8 pwm_freq[3];		/* Register encoding */
 311	u8 temp_ext[3];		/* Decoded values */
 312	u8 in_ext[8];		/* Decoded values */
 313	u8 vid;			/* Register value */
 314	u8 vrm;			/* VRM version */
 315	u32 alarms;		/* Register encoding, combined */
 316	u8 cfg5;		/* Config Register 5 on ADT7468 */
 317	struct lm85_autofan autofan[3];
 318	struct lm85_zone zone[3];
 319};
 320
 321static int lm85_read_value(struct i2c_client *client, u8 reg)
 322{
 323	int res;
 324
 325	/* What size location is it? */
 326	switch (reg) {
 327	case LM85_REG_FAN(0):  /* Read WORD data */
 328	case LM85_REG_FAN(1):
 329	case LM85_REG_FAN(2):
 330	case LM85_REG_FAN(3):
 331	case LM85_REG_FAN_MIN(0):
 332	case LM85_REG_FAN_MIN(1):
 333	case LM85_REG_FAN_MIN(2):
 334	case LM85_REG_FAN_MIN(3):
 335	case LM85_REG_ALARM1:	/* Read both bytes at once */
 336		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 337		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 338		break;
 339	default:	/* Read BYTE data */
 340		res = i2c_smbus_read_byte_data(client, reg);
 341		break;
 342	}
 343
 344	return res;
 345}
 346
 347static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 348{
 349	switch (reg) {
 350	case LM85_REG_FAN(0):  /* Write WORD data */
 351	case LM85_REG_FAN(1):
 352	case LM85_REG_FAN(2):
 353	case LM85_REG_FAN(3):
 354	case LM85_REG_FAN_MIN(0):
 355	case LM85_REG_FAN_MIN(1):
 356	case LM85_REG_FAN_MIN(2):
 357	case LM85_REG_FAN_MIN(3):
 358	/* NOTE: ALARM is read only, so not included here */
 359		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 360		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 361		break;
 362	default:	/* Write BYTE data */
 363		i2c_smbus_write_byte_data(client, reg, value);
 364		break;
 365	}
 366}
 367
 368static struct lm85_data *lm85_update_device(struct device *dev)
 369{
 370	struct lm85_data *data = dev_get_drvdata(dev);
 371	struct i2c_client *client = data->client;
 372	int i;
 373
 374	mutex_lock(&data->update_lock);
 375
 376	if (!data->valid ||
 377	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 378		/* Things that change quickly */
 379		dev_dbg(&client->dev, "Reading sensor values\n");
 380
 381		/*
 382		 * Have to read extended bits first to "freeze" the
 383		 * more significant bits that are read later.
 384		 * There are 2 additional resolution bits per channel and we
 385		 * have room for 4, so we shift them to the left.
 386		 */
 387		if (data->type == adm1027 || data->type == adt7463 ||
 388		    data->type == adt7468) {
 389			int ext1 = lm85_read_value(client,
 390						   ADM1027_REG_EXTEND_ADC1);
 391			int ext2 =  lm85_read_value(client,
 392						    ADM1027_REG_EXTEND_ADC2);
 393			int val = (ext1 << 8) + ext2;
 394
 395			for (i = 0; i <= 4; i++)
 396				data->in_ext[i] =
 397					((val >> (i * 2)) & 0x03) << 2;
 398
 399			for (i = 0; i <= 2; i++)
 400				data->temp_ext[i] =
 401					(val >> ((i + 4) * 2)) & 0x0c;
 402		}
 403
 404		data->vid = lm85_read_value(client, LM85_REG_VID);
 405
 406		for (i = 0; i <= 3; ++i) {
 407			data->in[i] =
 408			    lm85_read_value(client, LM85_REG_IN(i));
 409			data->fan[i] =
 410			    lm85_read_value(client, LM85_REG_FAN(i));
 411		}
 412
 413		if (!data->has_vid5)
 414			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 415
 416		if (data->type == adt7468)
 417			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 418
 419		for (i = 0; i <= 2; ++i) {
 420			data->temp[i] =
 421			    lm85_read_value(client, LM85_REG_TEMP(i));
 422			data->pwm[i] =
 423			    lm85_read_value(client, LM85_REG_PWM(i));
 424
 425			if (IS_ADT7468_OFF64(data))
 426				data->temp[i] -= 64;
 427		}
 428
 429		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 430
 431		if (data->type == emc6d100) {
 432			/* Three more voltage sensors */
 433			for (i = 5; i <= 7; ++i) {
 434				data->in[i] = lm85_read_value(client,
 435							EMC6D100_REG_IN(i));
 436			}
 437			/* More alarm bits */
 438			data->alarms |= lm85_read_value(client,
 439						EMC6D100_REG_ALARM3) << 16;
 440		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 441			   data->type == emc6d103s) {
 442			/*
 443			 * Have to read LSB bits after the MSB ones because
 444			 * the reading of the MSB bits has frozen the
 445			 * LSBs (backward from the ADM1027).
 446			 */
 447			int ext1 = lm85_read_value(client,
 448						   EMC6D102_REG_EXTEND_ADC1);
 449			int ext2 = lm85_read_value(client,
 450						   EMC6D102_REG_EXTEND_ADC2);
 451			int ext3 = lm85_read_value(client,
 452						   EMC6D102_REG_EXTEND_ADC3);
 453			int ext4 = lm85_read_value(client,
 454						   EMC6D102_REG_EXTEND_ADC4);
 455			data->in_ext[0] = ext3 & 0x0f;
 456			data->in_ext[1] = ext4 & 0x0f;
 457			data->in_ext[2] = ext4 >> 4;
 458			data->in_ext[3] = ext3 >> 4;
 459			data->in_ext[4] = ext2 >> 4;
 460
 461			data->temp_ext[0] = ext1 & 0x0f;
 462			data->temp_ext[1] = ext2 & 0x0f;
 463			data->temp_ext[2] = ext1 >> 4;
 464		}
 465
 466		data->last_reading = jiffies;
 467	}  /* last_reading */
 468
 469	if (!data->valid ||
 470	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 471		/* Things that don't change often */
 472		dev_dbg(&client->dev, "Reading config values\n");
 473
 474		for (i = 0; i <= 3; ++i) {
 475			data->in_min[i] =
 476			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 477			data->in_max[i] =
 478			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 479			data->fan_min[i] =
 480			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 481		}
 482
 483		if (!data->has_vid5)  {
 484			data->in_min[4] = lm85_read_value(client,
 485					  LM85_REG_IN_MIN(4));
 486			data->in_max[4] = lm85_read_value(client,
 487					  LM85_REG_IN_MAX(4));
 488		}
 489
 490		if (data->type == emc6d100) {
 491			for (i = 5; i <= 7; ++i) {
 492				data->in_min[i] = lm85_read_value(client,
 493						EMC6D100_REG_IN_MIN(i));
 494				data->in_max[i] = lm85_read_value(client,
 495						EMC6D100_REG_IN_MAX(i));
 496			}
 497		}
 498
 499		for (i = 0; i <= 2; ++i) {
 500			int val;
 501
 502			data->temp_min[i] =
 503			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 504			data->temp_max[i] =
 505			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 506
 507			data->autofan[i].config =
 508			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 509			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 510			data->pwm_freq[i] = val % data->freq_map_size;
 511			data->zone[i].range = val >> 4;
 512			data->autofan[i].min_pwm =
 513			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 514			data->zone[i].limit =
 515			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 516			data->zone[i].critical =
 517			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 518
 519			if (IS_ADT7468_OFF64(data)) {
 520				data->temp_min[i] -= 64;
 521				data->temp_max[i] -= 64;
 522				data->zone[i].limit -= 64;
 523				data->zone[i].critical -= 64;
 524			}
 525		}
 526
 527		if (data->type != emc6d103s) {
 528			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 529			data->autofan[0].min_off = (i & 0x20) != 0;
 530			data->autofan[1].min_off = (i & 0x40) != 0;
 531			data->autofan[2].min_off = (i & 0x80) != 0;
 532
 533			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 534			data->zone[0].hyst = i >> 4;
 535			data->zone[1].hyst = i & 0x0f;
 536
 537			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 538			data->zone[2].hyst = i >> 4;
 539		}
 540
 541		data->last_config = jiffies;
 542	}  /* last_config */
 543
 544	data->valid = true;
 545
 546	mutex_unlock(&data->update_lock);
 547
 548	return data;
 549}
 550
 551/* 4 Fans */
 552static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
 553			char *buf)
 554{
 555	int nr = to_sensor_dev_attr(attr)->index;
 556	struct lm85_data *data = lm85_update_device(dev);
 557	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 558}
 559
 560static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
 561			    char *buf)
 562{
 563	int nr = to_sensor_dev_attr(attr)->index;
 564	struct lm85_data *data = lm85_update_device(dev);
 565	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 566}
 567
 568static ssize_t fan_min_store(struct device *dev,
 569			     struct device_attribute *attr, const char *buf,
 570			     size_t count)
 571{
 572	int nr = to_sensor_dev_attr(attr)->index;
 573	struct lm85_data *data = dev_get_drvdata(dev);
 574	struct i2c_client *client = data->client;
 575	unsigned long val;
 576	int err;
 577
 578	err = kstrtoul(buf, 10, &val);
 579	if (err)
 580		return err;
 581
 582	mutex_lock(&data->update_lock);
 583	data->fan_min[nr] = FAN_TO_REG(val);
 584	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 585	mutex_unlock(&data->update_lock);
 586	return count;
 587}
 588
 589static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
 590static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
 591static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
 592static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
 593static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
 594static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
 595static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
 596static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
 597
 598/* vid, vrm, alarms */
 599
 600static ssize_t cpu0_vid_show(struct device *dev,
 601			     struct device_attribute *attr, char *buf)
 602{
 603	struct lm85_data *data = lm85_update_device(dev);
 604	int vid;
 605
 606	if (data->has_vid5) {
 607		/* 6-pin VID (VRM 10) */
 608		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 609	} else {
 610		/* 5-pin VID (VRM 9) */
 611		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 612	}
 613
 614	return sprintf(buf, "%d\n", vid);
 615}
 616
 617static DEVICE_ATTR_RO(cpu0_vid);
 618
 619static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
 620			char *buf)
 621{
 622	struct lm85_data *data = dev_get_drvdata(dev);
 623	return sprintf(buf, "%ld\n", (long) data->vrm);
 624}
 625
 626static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
 627			 const char *buf, size_t count)
 628{
 629	struct lm85_data *data = dev_get_drvdata(dev);
 630	unsigned long val;
 631	int err;
 632
 633	err = kstrtoul(buf, 10, &val);
 634	if (err)
 635		return err;
 636
 637	if (val > 255)
 638		return -EINVAL;
 639
 640	data->vrm = val;
 641	return count;
 642}
 643
 644static DEVICE_ATTR_RW(vrm);
 645
 646static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 647			   char *buf)
 648{
 649	struct lm85_data *data = lm85_update_device(dev);
 650	return sprintf(buf, "%u\n", data->alarms);
 651}
 652
 653static DEVICE_ATTR_RO(alarms);
 654
 655static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
 656			  char *buf)
 657{
 658	int nr = to_sensor_dev_attr(attr)->index;
 659	struct lm85_data *data = lm85_update_device(dev);
 660	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 661}
 662
 663static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
 664static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
 665static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
 666static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
 667static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
 668static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
 669static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
 670static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
 671static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
 672static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
 673static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
 674static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
 675static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
 676static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
 677static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
 678static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
 679static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
 680
 681/* pwm */
 682
 683static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
 684			char *buf)
 685{
 686	int nr = to_sensor_dev_attr(attr)->index;
 687	struct lm85_data *data = lm85_update_device(dev);
 688	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 689}
 690
 691static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
 692			 const char *buf, size_t count)
 693{
 694	int nr = to_sensor_dev_attr(attr)->index;
 695	struct lm85_data *data = dev_get_drvdata(dev);
 696	struct i2c_client *client = data->client;
 697	unsigned long val;
 698	int err;
 699
 700	err = kstrtoul(buf, 10, &val);
 701	if (err)
 702		return err;
 703
 704	mutex_lock(&data->update_lock);
 705	data->pwm[nr] = PWM_TO_REG(val);
 706	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 707	mutex_unlock(&data->update_lock);
 708	return count;
 709}
 710
 711static ssize_t pwm_enable_show(struct device *dev,
 712			       struct device_attribute *attr, char *buf)
 713{
 714	int nr = to_sensor_dev_attr(attr)->index;
 715	struct lm85_data *data = lm85_update_device(dev);
 716	int pwm_zone, enable;
 717
 718	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 719	switch (pwm_zone) {
 720	case -1:	/* PWM is always at 100% */
 721		enable = 0;
 722		break;
 723	case 0:		/* PWM is always at 0% */
 724	case -2:	/* PWM responds to manual control */
 725		enable = 1;
 726		break;
 727	default:	/* PWM in automatic mode */
 728		enable = 2;
 729	}
 730	return sprintf(buf, "%d\n", enable);
 731}
 732
 733static ssize_t pwm_enable_store(struct device *dev,
 734				struct device_attribute *attr,
 735				const char *buf, size_t count)
 736{
 737	int nr = to_sensor_dev_attr(attr)->index;
 738	struct lm85_data *data = dev_get_drvdata(dev);
 739	struct i2c_client *client = data->client;
 740	u8 config;
 741	unsigned long val;
 742	int err;
 743
 744	err = kstrtoul(buf, 10, &val);
 745	if (err)
 746		return err;
 747
 748	switch (val) {
 749	case 0:
 750		config = 3;
 751		break;
 752	case 1:
 753		config = 7;
 754		break;
 755	case 2:
 756		/*
 757		 * Here we have to choose arbitrarily one of the 5 possible
 758		 * configurations; I go for the safest
 759		 */
 760		config = 6;
 761		break;
 762	default:
 763		return -EINVAL;
 764	}
 765
 766	mutex_lock(&data->update_lock);
 767	data->autofan[nr].config = lm85_read_value(client,
 768		LM85_REG_AFAN_CONFIG(nr));
 769	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 770		| (config << 5);
 771	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 772		data->autofan[nr].config);
 773	mutex_unlock(&data->update_lock);
 774	return count;
 775}
 776
 777static ssize_t pwm_freq_show(struct device *dev,
 778			     struct device_attribute *attr, char *buf)
 779{
 780	int nr = to_sensor_dev_attr(attr)->index;
 781	struct lm85_data *data = lm85_update_device(dev);
 782	int freq;
 783
 784	if (IS_ADT7468_HFPWM(data))
 785		freq = 22500;
 786	else
 787		freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
 788				     data->pwm_freq[nr]);
 789
 790	return sprintf(buf, "%d\n", freq);
 791}
 792
 793static ssize_t pwm_freq_store(struct device *dev,
 794			      struct device_attribute *attr, const char *buf,
 795			      size_t count)
 796{
 797	int nr = to_sensor_dev_attr(attr)->index;
 798	struct lm85_data *data = dev_get_drvdata(dev);
 799	struct i2c_client *client = data->client;
 800	unsigned long val;
 801	int err;
 802
 803	err = kstrtoul(buf, 10, &val);
 804	if (err)
 805		return err;
 806
 807	mutex_lock(&data->update_lock);
 808	/*
 809	 * The ADT7468 has a special high-frequency PWM output mode,
 810	 * where all PWM outputs are driven by a 22.5 kHz clock.
 811	 * This might confuse the user, but there's not much we can do.
 812	 */
 813	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 814		data->cfg5 &= ~ADT7468_HFPWM;
 815		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 816	} else {					/* Low freq. mode */
 817		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 818						 data->freq_map_size, val);
 819		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 820				 (data->zone[nr].range << 4)
 821				 | data->pwm_freq[nr]);
 822		if (data->type == adt7468) {
 823			data->cfg5 |= ADT7468_HFPWM;
 824			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 825		}
 826	}
 827	mutex_unlock(&data->update_lock);
 828	return count;
 829}
 830
 831static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
 832static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
 833static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
 834static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
 835static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
 836static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
 837static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
 838static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
 839static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
 840
 841/* Voltages */
 842
 843static ssize_t in_show(struct device *dev, struct device_attribute *attr,
 844		       char *buf)
 845{
 846	int nr = to_sensor_dev_attr(attr)->index;
 847	struct lm85_data *data = lm85_update_device(dev);
 848	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 849						    data->in_ext[nr]));
 850}
 851
 852static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
 853			   char *buf)
 854{
 855	int nr = to_sensor_dev_attr(attr)->index;
 856	struct lm85_data *data = lm85_update_device(dev);
 857	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 858}
 859
 860static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
 861			    const char *buf, size_t count)
 862{
 863	int nr = to_sensor_dev_attr(attr)->index;
 864	struct lm85_data *data = dev_get_drvdata(dev);
 865	struct i2c_client *client = data->client;
 866	long val;
 867	int err;
 868
 869	err = kstrtol(buf, 10, &val);
 870	if (err)
 871		return err;
 872
 873	mutex_lock(&data->update_lock);
 874	data->in_min[nr] = INS_TO_REG(nr, val);
 875	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 876	mutex_unlock(&data->update_lock);
 877	return count;
 878}
 879
 880static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
 881			   char *buf)
 882{
 883	int nr = to_sensor_dev_attr(attr)->index;
 884	struct lm85_data *data = lm85_update_device(dev);
 885	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 886}
 887
 888static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
 889			    const char *buf, size_t count)
 890{
 891	int nr = to_sensor_dev_attr(attr)->index;
 892	struct lm85_data *data = dev_get_drvdata(dev);
 893	struct i2c_client *client = data->client;
 894	long val;
 895	int err;
 896
 897	err = kstrtol(buf, 10, &val);
 898	if (err)
 899		return err;
 900
 901	mutex_lock(&data->update_lock);
 902	data->in_max[nr] = INS_TO_REG(nr, val);
 903	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 904	mutex_unlock(&data->update_lock);
 905	return count;
 906}
 907
 908static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
 909static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
 910static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
 911static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
 912static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
 913static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
 914static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
 915static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
 916static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
 917static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
 918static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
 919static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
 920static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
 921static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
 922static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
 923static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
 924static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
 925static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
 926static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
 927static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
 928static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
 929static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
 930static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
 931static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
 932
 933/* Temps */
 934
 935static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 936			 char *buf)
 937{
 938	int nr = to_sensor_dev_attr(attr)->index;
 939	struct lm85_data *data = lm85_update_device(dev);
 940	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 941						     data->temp_ext[nr]));
 942}
 943
 944static ssize_t temp_min_show(struct device *dev,
 945			     struct device_attribute *attr, char *buf)
 946{
 947	int nr = to_sensor_dev_attr(attr)->index;
 948	struct lm85_data *data = lm85_update_device(dev);
 949	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 950}
 951
 952static ssize_t temp_min_store(struct device *dev,
 953			      struct device_attribute *attr, const char *buf,
 954			      size_t count)
 955{
 956	int nr = to_sensor_dev_attr(attr)->index;
 957	struct lm85_data *data = dev_get_drvdata(dev);
 958	struct i2c_client *client = data->client;
 959	long val;
 960	int err;
 961
 962	err = kstrtol(buf, 10, &val);
 963	if (err)
 964		return err;
 965
 966	if (IS_ADT7468_OFF64(data))
 967		val += 64;
 968
 969	mutex_lock(&data->update_lock);
 970	data->temp_min[nr] = TEMP_TO_REG(val);
 971	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 972	mutex_unlock(&data->update_lock);
 973	return count;
 974}
 975
 976static ssize_t temp_max_show(struct device *dev,
 977			     struct device_attribute *attr, char *buf)
 978{
 979	int nr = to_sensor_dev_attr(attr)->index;
 980	struct lm85_data *data = lm85_update_device(dev);
 981	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 982}
 983
 984static ssize_t temp_max_store(struct device *dev,
 985			      struct device_attribute *attr, const char *buf,
 986			      size_t count)
 987{
 988	int nr = to_sensor_dev_attr(attr)->index;
 989	struct lm85_data *data = dev_get_drvdata(dev);
 990	struct i2c_client *client = data->client;
 991	long val;
 992	int err;
 993
 994	err = kstrtol(buf, 10, &val);
 995	if (err)
 996		return err;
 997
 998	if (IS_ADT7468_OFF64(data))
 999		val += 64;
1000
1001	mutex_lock(&data->update_lock);
1002	data->temp_max[nr] = TEMP_TO_REG(val);
1003	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004	mutex_unlock(&data->update_lock);
1005	return count;
1006}
1007
1008static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
1017
1018/* Automatic PWM control */
1019
1020static ssize_t pwm_auto_channels_show(struct device *dev,
1021				      struct device_attribute *attr,
1022				      char *buf)
1023{
1024	int nr = to_sensor_dev_attr(attr)->index;
1025	struct lm85_data *data = lm85_update_device(dev);
1026	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1027}
1028
1029static ssize_t pwm_auto_channels_store(struct device *dev,
1030				       struct device_attribute *attr,
1031				       const char *buf, size_t count)
1032{
1033	int nr = to_sensor_dev_attr(attr)->index;
1034	struct lm85_data *data = dev_get_drvdata(dev);
1035	struct i2c_client *client = data->client;
1036	long val;
1037	int err;
1038
1039	err = kstrtol(buf, 10, &val);
1040	if (err)
1041		return err;
1042
1043	mutex_lock(&data->update_lock);
1044	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045		| ZONE_TO_REG(val);
1046	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047		data->autofan[nr].config);
1048	mutex_unlock(&data->update_lock);
1049	return count;
1050}
1051
1052static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053				     struct device_attribute *attr, char *buf)
1054{
1055	int nr = to_sensor_dev_attr(attr)->index;
1056	struct lm85_data *data = lm85_update_device(dev);
1057	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058}
1059
1060static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061				      struct device_attribute *attr,
1062				      const char *buf, size_t count)
1063{
1064	int nr = to_sensor_dev_attr(attr)->index;
1065	struct lm85_data *data = dev_get_drvdata(dev);
1066	struct i2c_client *client = data->client;
1067	unsigned long val;
1068	int err;
1069
1070	err = kstrtoul(buf, 10, &val);
1071	if (err)
1072		return err;
1073
1074	mutex_lock(&data->update_lock);
1075	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077		data->autofan[nr].min_pwm);
1078	mutex_unlock(&data->update_lock);
1079	return count;
1080}
1081
1082static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083					struct device_attribute *attr,
1084					char *buf)
1085{
1086	int nr = to_sensor_dev_attr(attr)->index;
1087	struct lm85_data *data = lm85_update_device(dev);
1088	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1089}
1090
1091static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092					 struct device_attribute *attr,
1093					 const char *buf, size_t count)
1094{
1095	int nr = to_sensor_dev_attr(attr)->index;
1096	struct lm85_data *data = dev_get_drvdata(dev);
1097	struct i2c_client *client = data->client;
1098	u8 tmp;
1099	long val;
1100	int err;
1101
1102	err = kstrtol(buf, 10, &val);
1103	if (err)
1104		return err;
1105
1106	mutex_lock(&data->update_lock);
1107	data->autofan[nr].min_off = val;
1108	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109	tmp &= ~(0x20 << nr);
1110	if (data->autofan[nr].min_off)
1111		tmp |= 0x20 << nr;
1112	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113	mutex_unlock(&data->update_lock);
1114	return count;
1115}
1116
1117static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
1126
1127/* Temperature settings for automatic PWM control */
1128
1129static ssize_t temp_auto_temp_off_show(struct device *dev,
1130				       struct device_attribute *attr,
1131				       char *buf)
1132{
1133	int nr = to_sensor_dev_attr(attr)->index;
1134	struct lm85_data *data = lm85_update_device(dev);
1135	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136		HYST_FROM_REG(data->zone[nr].hyst));
1137}
1138
1139static ssize_t temp_auto_temp_off_store(struct device *dev,
1140					struct device_attribute *attr,
1141					const char *buf, size_t count)
1142{
1143	int nr = to_sensor_dev_attr(attr)->index;
1144	struct lm85_data *data = dev_get_drvdata(dev);
1145	struct i2c_client *client = data->client;
1146	int min;
1147	long val;
1148	int err;
1149
1150	err = kstrtol(buf, 10, &val);
1151	if (err)
1152		return err;
1153
1154	mutex_lock(&data->update_lock);
1155	min = TEMP_FROM_REG(data->zone[nr].limit);
1156	data->zone[nr].hyst = HYST_TO_REG(min - val);
1157	if (nr == 0 || nr == 1) {
1158		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159			(data->zone[0].hyst << 4)
1160			| data->zone[1].hyst);
1161	} else {
1162		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163			(data->zone[2].hyst << 4));
1164	}
1165	mutex_unlock(&data->update_lock);
1166	return count;
1167}
1168
1169static ssize_t temp_auto_temp_min_show(struct device *dev,
1170				       struct device_attribute *attr,
1171				       char *buf)
1172{
1173	int nr = to_sensor_dev_attr(attr)->index;
1174	struct lm85_data *data = lm85_update_device(dev);
1175	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1176}
1177
1178static ssize_t temp_auto_temp_min_store(struct device *dev,
1179					struct device_attribute *attr,
1180					const char *buf, size_t count)
1181{
1182	int nr = to_sensor_dev_attr(attr)->index;
1183	struct lm85_data *data = dev_get_drvdata(dev);
1184	struct i2c_client *client = data->client;
1185	long val;
1186	int err;
1187
1188	err = kstrtol(buf, 10, &val);
1189	if (err)
1190		return err;
1191
1192	mutex_lock(&data->update_lock);
1193	data->zone[nr].limit = TEMP_TO_REG(val);
1194	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195		data->zone[nr].limit);
1196
1197/* Update temp_auto_max and temp_auto_range */
1198	data->zone[nr].range = RANGE_TO_REG(
1199		TEMP_FROM_REG(data->zone[nr].max_desired) -
1200		TEMP_FROM_REG(data->zone[nr].limit));
1201	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202		((data->zone[nr].range & 0x0f) << 4)
1203		| data->pwm_freq[nr]);
1204
1205	mutex_unlock(&data->update_lock);
1206	return count;
1207}
1208
1209static ssize_t temp_auto_temp_max_show(struct device *dev,
1210				       struct device_attribute *attr,
1211				       char *buf)
1212{
1213	int nr = to_sensor_dev_attr(attr)->index;
1214	struct lm85_data *data = lm85_update_device(dev);
1215	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216		RANGE_FROM_REG(data->zone[nr].range));
1217}
1218
1219static ssize_t temp_auto_temp_max_store(struct device *dev,
1220					struct device_attribute *attr,
1221					const char *buf, size_t count)
1222{
1223	int nr = to_sensor_dev_attr(attr)->index;
1224	struct lm85_data *data = dev_get_drvdata(dev);
1225	struct i2c_client *client = data->client;
1226	int min;
1227	long val;
1228	int err;
1229
1230	err = kstrtol(buf, 10, &val);
1231	if (err)
1232		return err;
1233
1234	mutex_lock(&data->update_lock);
1235	min = TEMP_FROM_REG(data->zone[nr].limit);
1236	data->zone[nr].max_desired = TEMP_TO_REG(val);
1237	data->zone[nr].range = RANGE_TO_REG(
1238		val - min);
1239	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240		((data->zone[nr].range & 0x0f) << 4)
1241		| data->pwm_freq[nr]);
1242	mutex_unlock(&data->update_lock);
1243	return count;
1244}
1245
1246static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247					struct device_attribute *attr,
1248					char *buf)
1249{
1250	int nr = to_sensor_dev_attr(attr)->index;
1251	struct lm85_data *data = lm85_update_device(dev);
1252	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1253}
1254
1255static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256					 struct device_attribute *attr,
1257					 const char *buf, size_t count)
1258{
1259	int nr = to_sensor_dev_attr(attr)->index;
1260	struct lm85_data *data = dev_get_drvdata(dev);
1261	struct i2c_client *client = data->client;
1262	long val;
1263	int err;
1264
1265	err = kstrtol(buf, 10, &val);
1266	if (err)
1267		return err;
1268
1269	mutex_lock(&data->update_lock);
1270	data->zone[nr].critical = TEMP_TO_REG(val);
1271	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272		data->zone[nr].critical);
1273	mutex_unlock(&data->update_lock);
1274	return count;
1275}
1276
1277static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
1289
1290static struct attribute *lm85_attributes[] = {
1291	&sensor_dev_attr_fan1_input.dev_attr.attr,
1292	&sensor_dev_attr_fan2_input.dev_attr.attr,
1293	&sensor_dev_attr_fan3_input.dev_attr.attr,
1294	&sensor_dev_attr_fan4_input.dev_attr.attr,
1295	&sensor_dev_attr_fan1_min.dev_attr.attr,
1296	&sensor_dev_attr_fan2_min.dev_attr.attr,
1297	&sensor_dev_attr_fan3_min.dev_attr.attr,
1298	&sensor_dev_attr_fan4_min.dev_attr.attr,
1299	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1303
1304	&sensor_dev_attr_pwm1.dev_attr.attr,
1305	&sensor_dev_attr_pwm2.dev_attr.attr,
1306	&sensor_dev_attr_pwm3.dev_attr.attr,
1307	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1313
1314	&sensor_dev_attr_in0_input.dev_attr.attr,
1315	&sensor_dev_attr_in1_input.dev_attr.attr,
1316	&sensor_dev_attr_in2_input.dev_attr.attr,
1317	&sensor_dev_attr_in3_input.dev_attr.attr,
1318	&sensor_dev_attr_in0_min.dev_attr.attr,
1319	&sensor_dev_attr_in1_min.dev_attr.attr,
1320	&sensor_dev_attr_in2_min.dev_attr.attr,
1321	&sensor_dev_attr_in3_min.dev_attr.attr,
1322	&sensor_dev_attr_in0_max.dev_attr.attr,
1323	&sensor_dev_attr_in1_max.dev_attr.attr,
1324	&sensor_dev_attr_in2_max.dev_attr.attr,
1325	&sensor_dev_attr_in3_max.dev_attr.attr,
1326	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1327	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1328	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1329	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1330
1331	&sensor_dev_attr_temp1_input.dev_attr.attr,
1332	&sensor_dev_attr_temp2_input.dev_attr.attr,
1333	&sensor_dev_attr_temp3_input.dev_attr.attr,
1334	&sensor_dev_attr_temp1_min.dev_attr.attr,
1335	&sensor_dev_attr_temp2_min.dev_attr.attr,
1336	&sensor_dev_attr_temp3_min.dev_attr.attr,
1337	&sensor_dev_attr_temp1_max.dev_attr.attr,
1338	&sensor_dev_attr_temp2_max.dev_attr.attr,
1339	&sensor_dev_attr_temp3_max.dev_attr.attr,
1340	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1344	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1345
1346	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1352
1353	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1362
1363	&dev_attr_vrm.attr,
1364	&dev_attr_cpu0_vid.attr,
1365	&dev_attr_alarms.attr,
1366	NULL
1367};
1368
1369static const struct attribute_group lm85_group = {
1370	.attrs = lm85_attributes,
1371};
1372
1373static struct attribute *lm85_attributes_minctl[] = {
1374	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377	NULL
1378};
1379
1380static const struct attribute_group lm85_group_minctl = {
1381	.attrs = lm85_attributes_minctl,
1382};
1383
1384static struct attribute *lm85_attributes_temp_off[] = {
1385	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388	NULL
1389};
1390
1391static const struct attribute_group lm85_group_temp_off = {
1392	.attrs = lm85_attributes_temp_off,
1393};
1394
1395static struct attribute *lm85_attributes_in4[] = {
1396	&sensor_dev_attr_in4_input.dev_attr.attr,
1397	&sensor_dev_attr_in4_min.dev_attr.attr,
1398	&sensor_dev_attr_in4_max.dev_attr.attr,
1399	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1400	NULL
1401};
1402
1403static const struct attribute_group lm85_group_in4 = {
1404	.attrs = lm85_attributes_in4,
1405};
1406
1407static struct attribute *lm85_attributes_in567[] = {
1408	&sensor_dev_attr_in5_input.dev_attr.attr,
1409	&sensor_dev_attr_in6_input.dev_attr.attr,
1410	&sensor_dev_attr_in7_input.dev_attr.attr,
1411	&sensor_dev_attr_in5_min.dev_attr.attr,
1412	&sensor_dev_attr_in6_min.dev_attr.attr,
1413	&sensor_dev_attr_in7_min.dev_attr.attr,
1414	&sensor_dev_attr_in5_max.dev_attr.attr,
1415	&sensor_dev_attr_in6_max.dev_attr.attr,
1416	&sensor_dev_attr_in7_max.dev_attr.attr,
1417	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1418	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1419	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1420	NULL
1421};
1422
1423static const struct attribute_group lm85_group_in567 = {
1424	.attrs = lm85_attributes_in567,
1425};
1426
1427static void lm85_init_client(struct i2c_client *client)
1428{
1429	int value;
1430
1431	/* Start monitoring if needed */
1432	value = lm85_read_value(client, LM85_REG_CONFIG);
1433	if (!(value & 0x01)) {
1434		dev_info(&client->dev, "Starting monitoring\n");
1435		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1436	}
1437
1438	/* Warn about unusual configuration bits */
1439	if (value & 0x02)
1440		dev_warn(&client->dev, "Device configuration is locked\n");
1441	if (!(value & 0x04))
1442		dev_warn(&client->dev, "Device is not ready\n");
1443}
1444
1445static int lm85_is_fake(struct i2c_client *client)
1446{
1447	/*
1448	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449	 * emulate the former except that it has no hardware monitoring function
1450	 * so the readings are always 0.
1451	 */
1452	int i;
1453	u8 in_temp, fan;
1454
1455	for (i = 0; i < 8; i++) {
1456		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458		if (in_temp != 0x00 || fan != 0xff)
1459			return 0;
1460	}
1461
1462	return 1;
1463}
1464
1465/* Return 0 if detection is successful, -ENODEV otherwise */
1466static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1467{
1468	struct i2c_adapter *adapter = client->adapter;
1469	int address = client->addr;
1470	const char *type_name = NULL;
1471	int company, verstep;
1472
1473	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474		/* We need to be able to do byte I/O */
1475		return -ENODEV;
1476	}
1477
1478	/* Determine the chip type */
1479	company = lm85_read_value(client, LM85_REG_COMPANY);
1480	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1481
1482	dev_dbg(&adapter->dev,
1483		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484		address, company, verstep);
1485
1486	if (company == LM85_COMPANY_NATIONAL) {
1487		switch (verstep) {
1488		case LM85_VERSTEP_LM85C:
1489			type_name = "lm85c";
1490			break;
1491		case LM85_VERSTEP_LM85B:
1492			type_name = "lm85b";
1493			break;
1494		case LM85_VERSTEP_LM96000_1:
1495		case LM85_VERSTEP_LM96000_2:
1496			/* Check for Winbond WPCD377I */
1497			if (lm85_is_fake(client)) {
1498				dev_dbg(&adapter->dev,
1499					"Found Winbond WPCD377I, ignoring\n");
1500				return -ENODEV;
1501			}
1502			type_name = "lm96000";
1503			break;
1504		}
1505	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1506		switch (verstep) {
1507		case LM85_VERSTEP_ADM1027:
1508			type_name = "adm1027";
1509			break;
1510		case LM85_VERSTEP_ADT7463:
1511		case LM85_VERSTEP_ADT7463C:
1512			type_name = "adt7463";
1513			break;
1514		case LM85_VERSTEP_ADT7468_1:
1515		case LM85_VERSTEP_ADT7468_2:
1516			type_name = "adt7468";
1517			break;
1518		}
1519	} else if (company == LM85_COMPANY_SMSC) {
1520		switch (verstep) {
1521		case LM85_VERSTEP_EMC6D100_A0:
1522		case LM85_VERSTEP_EMC6D100_A1:
1523			/* Note: we can't tell a '100 from a '101 */
1524			type_name = "emc6d100";
1525			break;
1526		case LM85_VERSTEP_EMC6D102:
1527			type_name = "emc6d102";
1528			break;
1529		case LM85_VERSTEP_EMC6D103_A0:
1530		case LM85_VERSTEP_EMC6D103_A1:
1531			type_name = "emc6d103";
1532			break;
1533		case LM85_VERSTEP_EMC6D103S:
1534			type_name = "emc6d103s";
1535			break;
1536		}
1537	}
1538
1539	if (!type_name)
1540		return -ENODEV;
1541
1542	strscpy(info->type, type_name, I2C_NAME_SIZE);
1543
1544	return 0;
1545}
1546
1547static const struct i2c_device_id lm85_id[];
1548
1549static int lm85_probe(struct i2c_client *client)
1550{
1551	struct device *dev = &client->dev;
1552	struct device *hwmon_dev;
1553	struct lm85_data *data;
1554	int idx = 0;
1555
1556	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1557	if (!data)
1558		return -ENOMEM;
1559
1560	data->client = client;
1561	if (client->dev.of_node)
1562		data->type = (enum chips)of_device_get_match_data(&client->dev);
1563	else
1564		data->type = i2c_match_id(lm85_id, client)->driver_data;
1565	mutex_init(&data->update_lock);
1566
1567	/* Fill in the chip specific driver values */
1568	switch (data->type) {
1569	case adm1027:
1570	case adt7463:
1571	case adt7468:
1572	case emc6d100:
1573	case emc6d102:
1574	case emc6d103:
1575	case emc6d103s:
1576		data->freq_map = adm1027_freq_map;
1577		data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1578		break;
1579	case lm96000:
1580		data->freq_map = lm96000_freq_map;
1581		data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1582		break;
1583	default:
1584		data->freq_map = lm85_freq_map;
1585		data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1586	}
1587
1588	/* Set the VRM version */
1589	data->vrm = vid_which_vrm();
1590
1591	/* Initialize the LM85 chip */
1592	lm85_init_client(client);
1593
1594	/* sysfs hooks */
1595	data->groups[idx++] = &lm85_group;
1596
1597	/* minctl and temp_off exist on all chips except emc6d103s */
1598	if (data->type != emc6d103s) {
1599		data->groups[idx++] = &lm85_group_minctl;
1600		data->groups[idx++] = &lm85_group_temp_off;
1601	}
1602
1603	/*
1604	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1605	 * as a sixth digital VID input rather than an analog input.
1606	 */
1607	if (data->type == adt7463 || data->type == adt7468) {
1608		u8 vid = lm85_read_value(client, LM85_REG_VID);
1609		if (vid & 0x80)
1610			data->has_vid5 = true;
1611	}
1612
1613	if (!data->has_vid5)
1614		data->groups[idx++] = &lm85_group_in4;
1615
1616	/* The EMC6D100 has 3 additional voltage inputs */
1617	if (data->type == emc6d100)
1618		data->groups[idx++] = &lm85_group_in567;
1619
1620	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1621							   data, data->groups);
1622	return PTR_ERR_OR_ZERO(hwmon_dev);
1623}
1624
1625static const struct i2c_device_id lm85_id[] = {
1626	{ "adm1027", adm1027 },
1627	{ "adt7463", adt7463 },
1628	{ "adt7468", adt7468 },
1629	{ "lm85", lm85 },
1630	{ "lm85b", lm85 },
1631	{ "lm85c", lm85 },
1632	{ "lm96000", lm96000 },
1633	{ "emc6d100", emc6d100 },
1634	{ "emc6d101", emc6d100 },
1635	{ "emc6d102", emc6d102 },
1636	{ "emc6d103", emc6d103 },
1637	{ "emc6d103s", emc6d103s },
1638	{ }
1639};
1640MODULE_DEVICE_TABLE(i2c, lm85_id);
1641
1642static const struct of_device_id __maybe_unused lm85_of_match[] = {
1643	{
1644		.compatible = "adi,adm1027",
1645		.data = (void *)adm1027
1646	},
1647	{
1648		.compatible = "adi,adt7463",
1649		.data = (void *)adt7463
1650	},
1651	{
1652		.compatible = "adi,adt7468",
1653		.data = (void *)adt7468
1654	},
1655	{
1656		.compatible = "national,lm85",
1657		.data = (void *)lm85
1658	},
1659	{
1660		.compatible = "national,lm85b",
1661		.data = (void *)lm85
1662	},
1663	{
1664		.compatible = "national,lm85c",
1665		.data = (void *)lm85
1666	},
1667	{
1668		.compatible = "ti,lm96000",
1669		.data = (void *)lm96000
1670	},
1671	{
1672		.compatible = "smsc,emc6d100",
1673		.data = (void *)emc6d100
1674	},
1675	{
1676		.compatible = "smsc,emc6d101",
1677		.data = (void *)emc6d100
1678	},
1679	{
1680		.compatible = "smsc,emc6d102",
1681		.data = (void *)emc6d102
1682	},
1683	{
1684		.compatible = "smsc,emc6d103",
1685		.data = (void *)emc6d103
1686	},
1687	{
1688		.compatible = "smsc,emc6d103s",
1689		.data = (void *)emc6d103s
1690	},
1691	{ },
1692};
1693MODULE_DEVICE_TABLE(of, lm85_of_match);
1694
1695static struct i2c_driver lm85_driver = {
1696	.class		= I2C_CLASS_HWMON,
1697	.driver = {
1698		.name   = "lm85",
1699		.of_match_table = of_match_ptr(lm85_of_match),
1700	},
1701	.probe_new	= lm85_probe,
1702	.id_table	= lm85_id,
1703	.detect		= lm85_detect,
1704	.address_list	= normal_i2c,
1705};
1706
1707module_i2c_driver(lm85_driver);
1708
1709MODULE_LICENSE("GPL");
1710MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1711	"Margit Schubert-While <margitsw@t-online.de>, "
1712	"Justin Thiessen <jthiessen@penguincomputing.com>");
1713MODULE_DESCRIPTION("LM85-B, LM85-C driver");