Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
   4 */
   5/*
   6 * This driver supports the sensor part of the first and second revision of
   7 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
   8 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/module.h>
  14#include <linux/sched.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/jiffies.h>
  18#include <linux/mutex.h>
  19#include <linux/err.h>
  20#include <linux/delay.h>
  21#include <linux/platform_device.h>
  22#include <linux/hwmon.h>
  23#include <linux/hwmon-sysfs.h>
  24#include <linux/dmi.h>
  25#include <linux/io.h>
  26
  27/* Banks */
  28#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
  29#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
  30#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
  31#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
  32/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
  33#define ABIT_UGURU_MAX_BANK1_SENSORS		16
  34/*
  35 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
  36 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
  37 */
  38/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
  39#define ABIT_UGURU_MAX_BANK2_SENSORS		6
  40/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
  41#define ABIT_UGURU_MAX_PWMS			5
  42/* uGuru sensor bank 1 flags */			     /* Alarm if: */
  43#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
  44#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
  45#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
  46#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
  47#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
  48#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
  49/* uGuru sensor bank 2 flags */			     /* Alarm if: */
  50#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
  51/* uGuru sensor bank common flags */
  52#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
  53#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
  54/* uGuru fan PWM (speed control) flags */
  55#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
  56/* Values used for conversion */
  57#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
  58/* Bank1 sensor types */
  59#define ABIT_UGURU_IN_SENSOR			0
  60#define ABIT_UGURU_TEMP_SENSOR			1
  61#define ABIT_UGURU_NC				2
  62/*
  63 * In many cases we need to wait for the uGuru to reach a certain status, most
  64 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
  65 * can best busy wait. This define gives the total amount of reads to try.
  66 */
  67#define ABIT_UGURU_WAIT_TIMEOUT			125
  68/*
  69 * However sometimes older versions of the uGuru seem to be distracted and they
  70 * do not respond for a long time. To handle this we sleep before each of the
  71 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
  72 */
  73#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
  74/*
  75 * Normally all expected status in abituguru_ready, are reported after the
  76 * first read, but sometimes not and we need to poll.
  77 */
  78#define ABIT_UGURU_READY_TIMEOUT		5
  79/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
  80#define ABIT_UGURU_MAX_RETRIES			3
  81#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
  82/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
  83#define ABIT_UGURU_MAX_TIMEOUTS			2
  84/* utility macros */
  85#define ABIT_UGURU_NAME				"abituguru"
  86#define ABIT_UGURU_DEBUG(level, format, arg...)		\
  87	do {						\
  88		if (level <= verbose)			\
  89			pr_debug(format , ## arg);	\
  90	} while (0)
  91
  92/* Macros to help calculate the sysfs_names array length */
  93/*
  94 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
  95 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
  96 */
  97#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
  98/*
  99 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 100 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 101 */
 102#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
 103/*
 104 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 105 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 106 */
 107#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
 108/*
 109 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 110 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 111 */
 112#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
 113/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
 114#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
 115	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
 116	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
 117	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
 118
 119/*
 120 * All the macros below are named identical to the oguru and oguru2 programs
 121 * reverse engineered by Olle Sandberg, hence the names might not be 100%
 122 * logical. I could come up with better names, but I prefer keeping the names
 123 * identical so that this driver can be compared with his work more easily.
 124 */
 125/* Two i/o-ports are used by uGuru */
 126#define ABIT_UGURU_BASE				0x00E0
 127/* Used to tell uGuru what to read and to read the actual data */
 128#define ABIT_UGURU_CMD				0x00
 129/* Mostly used to check if uGuru is busy */
 130#define ABIT_UGURU_DATA				0x04
 131#define ABIT_UGURU_REGION_LENGTH		5
 132/* uGuru status' */
 133#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
 134#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
 135#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
 136#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
 137
 138/* Constants */
 139/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
 140static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
 141/*
 142 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 143 * correspond to 300-3000 RPM
 144 */
 145static const u8 abituguru_bank2_min_threshold = 5;
 146static const u8 abituguru_bank2_max_threshold = 50;
 147/*
 148 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 149 * are temperature trip points.
 150 */
 151static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
 152/*
 153 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 154 * special case the minimum allowed pwm% setting for this is 30% (77) on
 155 * some MB's this special case is handled in the code!
 156 */
 157static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
 158static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
 159
 160
 161/* Insmod parameters */
 162static bool force;
 163module_param(force, bool, 0);
 164MODULE_PARM_DESC(force, "Set to one to force detection.");
 165static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
 166	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
 167module_param_array(bank1_types, int, NULL, 0);
 168MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
 169	"   -1 autodetect\n"
 170	"    0 volt sensor\n"
 171	"    1 temp sensor\n"
 172	"    2 not connected");
 173static int fan_sensors;
 174module_param(fan_sensors, int, 0);
 175MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
 176	"(0 = autodetect)");
 177static int pwms;
 178module_param(pwms, int, 0);
 179MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
 180	"(0 = autodetect)");
 181
 182/* Default verbose is 2, since this driver is still in the testing phase */
 183static int verbose = 2;
 184module_param(verbose, int, 0644);
 185MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
 186	"   0 normal output\n"
 187	"   1 + verbose error reporting\n"
 188	"   2 + sensors type probing info\n"
 189	"   3 + retryable error reporting");
 190
 191
 192/*
 193 * For the Abit uGuru, we need to keep some data in memory.
 194 * The structure is dynamically allocated, at the same time when a new
 195 * abituguru device is allocated.
 196 */
 197struct abituguru_data {
 198	struct device *hwmon_dev;	/* hwmon registered device */
 199	struct mutex update_lock;	/* protect access to data and uGuru */
 200	unsigned long last_updated;	/* In jiffies */
 201	unsigned short addr;		/* uguru base address */
 202	char uguru_ready;		/* is the uguru in ready state? */
 203	unsigned char update_timeouts;	/*
 204					 * number of update timeouts since last
 205					 * successful update
 206					 */
 207
 208	/*
 209	 * The sysfs attr and their names are generated automatically, for bank1
 210	 * we cannot use a predefined array because we don't know beforehand
 211	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
 212	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
 213	 * sysfs entries per sensor, for bank2 and pwms 6.
 214	 */
 215	struct sensor_device_attribute_2 sysfs_attr[
 216		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
 217		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
 218	/* Buffer to store the dynamically generated sysfs names */
 219	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
 220
 221	/* Bank 1 data */
 222	/* number of and addresses of [0] in, [1] temp sensors */
 223	u8 bank1_sensors[2];
 224	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
 225	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 226	/*
 227	 * This array holds 3 entries per sensor for the bank 1 sensor settings
 228	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
 229	 */
 230	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
 231	/*
 232	 * Maximum value for each sensor used for scaling in mV/millidegrees
 233	 * Celsius.
 234	 */
 235	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 236
 237	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
 238	u8 bank2_sensors; /* actual number of bank2 sensors found */
 239	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
 240	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
 241
 242	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
 243	u8 alarms[3];
 244
 245	/* Fan PWM (speed control) 5 bytes per PWM */
 246	u8 pwms; /* actual number of pwms found */
 247	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
 248};
 249
 250static const char *never_happen = "This should never happen.";
 251static const char *report_this =
 252	"Please report this to the abituguru maintainer (see MAINTAINERS)";
 253
 254/* wait till the uguru is in the specified state */
 255static int abituguru_wait(struct abituguru_data *data, u8 state)
 256{
 257	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
 258
 259	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
 260		timeout--;
 261		if (timeout == 0)
 262			return -EBUSY;
 263		/*
 264		 * sleep a bit before our last few tries, see the comment on
 265		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
 266		 */
 267		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
 268			msleep(0);
 269	}
 270	return 0;
 271}
 272
 273/* Put the uguru in ready for input state */
 274static int abituguru_ready(struct abituguru_data *data)
 275{
 276	int timeout = ABIT_UGURU_READY_TIMEOUT;
 277
 278	if (data->uguru_ready)
 279		return 0;
 280
 281	/* Reset? / Prepare for next read/write cycle */
 282	outb(0x00, data->addr + ABIT_UGURU_DATA);
 283
 284	/* Wait till the uguru is ready */
 285	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
 286		ABIT_UGURU_DEBUG(1,
 287			"timeout exceeded waiting for ready state\n");
 288		return -EIO;
 289	}
 290
 291	/* Cmd port MUST be read now and should contain 0xAC */
 292	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 293		timeout--;
 294		if (timeout == 0) {
 295			ABIT_UGURU_DEBUG(1,
 296			   "CMD reg does not hold 0xAC after ready command\n");
 297			return -EIO;
 298		}
 299		msleep(0);
 300	}
 301
 302	/*
 303	 * After this the ABIT_UGURU_DATA port should contain
 304	 * ABIT_UGURU_STATUS_INPUT
 305	 */
 306	timeout = ABIT_UGURU_READY_TIMEOUT;
 307	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
 308		timeout--;
 309		if (timeout == 0) {
 310			ABIT_UGURU_DEBUG(1,
 311				"state != more input after ready command\n");
 312			return -EIO;
 313		}
 314		msleep(0);
 315	}
 316
 317	data->uguru_ready = 1;
 318	return 0;
 319}
 320
 321/*
 322 * Send the bank and then sensor address to the uGuru for the next read/write
 323 * cycle. This function gets called as the first part of a read/write by
 324 * abituguru_read and abituguru_write. This function should never be
 325 * called by any other function.
 326 */
 327static int abituguru_send_address(struct abituguru_data *data,
 328	u8 bank_addr, u8 sensor_addr, int retries)
 329{
 330	/*
 331	 * assume the caller does error handling itself if it has not requested
 332	 * any retries, and thus be quiet.
 333	 */
 334	int report_errors = retries;
 335
 336	for (;;) {
 337		/*
 338		 * Make sure the uguru is ready and then send the bank address,
 339		 * after this the uguru is no longer "ready".
 340		 */
 341		if (abituguru_ready(data) != 0)
 342			return -EIO;
 343		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
 344		data->uguru_ready = 0;
 345
 346		/*
 347		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
 348		 * and send the sensor addr
 349		 */
 350		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
 351			if (retries) {
 352				ABIT_UGURU_DEBUG(3, "timeout exceeded "
 353					"waiting for more input state, %d "
 354					"tries remaining\n", retries);
 355				set_current_state(TASK_UNINTERRUPTIBLE);
 356				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
 357				retries--;
 358				continue;
 359			}
 360			if (report_errors)
 361				ABIT_UGURU_DEBUG(1, "timeout exceeded "
 362					"waiting for more input state "
 363					"(bank: %d)\n", (int)bank_addr);
 364			return -EBUSY;
 365		}
 366		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
 367		return 0;
 368	}
 369}
 370
 371/*
 372 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 373 * result in buf, retry the send address part of the read retries times.
 374 */
 375static int abituguru_read(struct abituguru_data *data,
 376	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
 377{
 378	int i;
 379
 380	/* Send the address */
 381	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
 382	if (i)
 383		return i;
 384
 385	/* And read the data */
 386	for (i = 0; i < count; i++) {
 387		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 388			ABIT_UGURU_DEBUG(retries ? 1 : 3,
 389				"timeout exceeded waiting for "
 390				"read state (bank: %d, sensor: %d)\n",
 391				(int)bank_addr, (int)sensor_addr);
 392			break;
 393		}
 394		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
 395	}
 396
 397	/* Last put the chip back in ready state */
 398	abituguru_ready(data);
 399
 400	return i;
 401}
 402
 403/*
 404 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 405 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 406 */
 407static int abituguru_write(struct abituguru_data *data,
 408	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
 409{
 410	/*
 411	 * We use the ready timeout as we have to wait for 0xAC just like the
 412	 * ready function
 413	 */
 414	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
 415
 416	/* Send the address */
 417	i = abituguru_send_address(data, bank_addr, sensor_addr,
 418		ABIT_UGURU_MAX_RETRIES);
 419	if (i)
 420		return i;
 421
 422	/* And write the data */
 423	for (i = 0; i < count; i++) {
 424		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
 425			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
 426				"write state (bank: %d, sensor: %d)\n",
 427				(int)bank_addr, (int)sensor_addr);
 428			break;
 429		}
 430		outb(buf[i], data->addr + ABIT_UGURU_CMD);
 431	}
 432
 433	/*
 434	 * Now we need to wait till the chip is ready to be read again,
 435	 * so that we can read 0xAC as confirmation that our write has
 436	 * succeeded.
 437	 */
 438	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 439		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
 440			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
 441			(int)sensor_addr);
 442		return -EIO;
 443	}
 444
 445	/* Cmd port MUST be read now and should contain 0xAC */
 446	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 447		timeout--;
 448		if (timeout == 0) {
 449			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
 450				"write (bank: %d, sensor: %d)\n",
 451				(int)bank_addr, (int)sensor_addr);
 452			return -EIO;
 453		}
 454		msleep(0);
 455	}
 456
 457	/* Last put the chip back in ready state */
 458	abituguru_ready(data);
 459
 460	return i;
 461}
 462
 463/*
 464 * Detect sensor type. Temp and Volt sensors are enabled with
 465 * different masks and will ignore enable masks not meant for them.
 466 * This enables us to test what kind of sensor we're dealing with.
 467 * By setting the alarm thresholds so that we will always get an
 468 * alarm for sensor type X and then enabling the sensor as sensor type
 469 * X, if we then get an alarm it is a sensor of type X.
 470 */
 471static int
 472abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
 473				   u8 sensor_addr)
 474{
 475	u8 val, test_flag, buf[3];
 476	int i, ret = -ENODEV; /* error is the most common used retval :| */
 477
 478	/* If overriden by the user return the user selected type */
 479	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
 480			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
 481		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
 482			"%d because of \"bank1_types\" module param\n",
 483			bank1_types[sensor_addr], (int)sensor_addr);
 484		return bank1_types[sensor_addr];
 485	}
 486
 487	/* First read the sensor and the current settings */
 488	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
 489			1, ABIT_UGURU_MAX_RETRIES) != 1)
 490		return -ENODEV;
 491
 492	/* Test val is sane / usable for sensor type detection. */
 493	if ((val < 10u) || (val > 250u)) {
 494		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
 495			"unable to determine sensor type, skipping sensor\n",
 496			(int)sensor_addr, (int)val);
 497		/*
 498		 * assume no sensor is there for sensors for which we can't
 499		 * determine the sensor type because their reading is too close
 500		 * to their limits, this usually means no sensor is there.
 501		 */
 502		return ABIT_UGURU_NC;
 503	}
 504
 505	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
 506	/*
 507	 * Volt sensor test, enable volt low alarm, set min value ridiculously
 508	 * high, or vica versa if the reading is very high. If its a volt
 509	 * sensor this should always give us an alarm.
 510	 */
 511	if (val <= 240u) {
 512		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
 513		buf[1] = 245;
 514		buf[2] = 250;
 515		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
 516	} else {
 517		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
 518		buf[1] = 5;
 519		buf[2] = 10;
 520		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
 521	}
 522
 523	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 524			buf, 3) != 3)
 525		goto abituguru_detect_bank1_sensor_type_exit;
 526	/*
 527	 * Now we need 20 ms to give the uguru time to read the sensors
 528	 * and raise a voltage alarm
 529	 */
 530	set_current_state(TASK_UNINTERRUPTIBLE);
 531	schedule_timeout(HZ/50);
 532	/* Check for alarm and check the alarm is a volt low alarm. */
 533	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 534			ABIT_UGURU_MAX_RETRIES) != 3)
 535		goto abituguru_detect_bank1_sensor_type_exit;
 536	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 537		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 538				sensor_addr, buf, 3,
 539				ABIT_UGURU_MAX_RETRIES) != 3)
 540			goto abituguru_detect_bank1_sensor_type_exit;
 541		if (buf[0] & test_flag) {
 542			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
 543			ret = ABIT_UGURU_IN_SENSOR;
 544			goto abituguru_detect_bank1_sensor_type_exit;
 545		} else
 546			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
 547				"sensor test, but volt range flag not set\n");
 548	} else
 549		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
 550			"test\n");
 551
 552	/*
 553	 * Temp sensor test, enable sensor as a temp sensor, set beep value
 554	 * ridiculously low (but not too low, otherwise uguru ignores it).
 555	 * If its a temp sensor this should always give us an alarm.
 556	 */
 557	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
 558	buf[1] = 5;
 559	buf[2] = 10;
 560	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 561			buf, 3) != 3)
 562		goto abituguru_detect_bank1_sensor_type_exit;
 563	/*
 564	 * Now we need 50 ms to give the uguru time to read the sensors
 565	 * and raise a temp alarm
 566	 */
 567	set_current_state(TASK_UNINTERRUPTIBLE);
 568	schedule_timeout(HZ/20);
 569	/* Check for alarm and check the alarm is a temp high alarm. */
 570	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 571			ABIT_UGURU_MAX_RETRIES) != 3)
 572		goto abituguru_detect_bank1_sensor_type_exit;
 573	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 574		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 575				sensor_addr, buf, 3,
 576				ABIT_UGURU_MAX_RETRIES) != 3)
 577			goto abituguru_detect_bank1_sensor_type_exit;
 578		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
 579			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
 580			ret = ABIT_UGURU_TEMP_SENSOR;
 581			goto abituguru_detect_bank1_sensor_type_exit;
 582		} else
 583			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
 584				"sensor test, but temp high flag not set\n");
 585	} else
 586		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
 587			"test\n");
 588
 589	ret = ABIT_UGURU_NC;
 590abituguru_detect_bank1_sensor_type_exit:
 591	/*
 592	 * Restore original settings, failing here is really BAD, it has been
 593	 * reported that some BIOS-es hang when entering the uGuru menu with
 594	 * invalid settings present in the uGuru, so we try this 3 times.
 595	 */
 596	for (i = 0; i < 3; i++)
 597		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 598				sensor_addr, data->bank1_settings[sensor_addr],
 599				3) == 3)
 600			break;
 601	if (i == 3) {
 602		pr_err("Fatal error could not restore original settings. %s %s\n",
 603		       never_happen, report_this);
 604		return -ENODEV;
 605	}
 606	return ret;
 607}
 608
 609/*
 610 * These functions try to find out how many sensors there are in bank2 and how
 611 * many pwms there are. The purpose of this is to make sure that we don't give
 612 * the user the possibility to change settings for non-existent sensors / pwm.
 613 * The uGuru will happily read / write whatever memory happens to be after the
 614 * memory storing the PWM settings when reading/writing to a PWM which is not
 615 * there. Notice even if we detect a PWM which doesn't exist we normally won't
 616 * write to it, unless the user tries to change the settings.
 617 *
 618 * Although the uGuru allows reading (settings) from non existing bank2
 619 * sensors, my version of the uGuru does seem to stop writing to them, the
 620 * write function above aborts in this case with:
 621 * "CMD reg does not hold 0xAC after write"
 622 *
 623 * Notice these 2 tests are non destructive iow read-only tests, otherwise
 624 * they would defeat their purpose. Although for the bank2_sensors detection a
 625 * read/write test would be feasible because of the reaction above, I've
 626 * however opted to stay on the safe side.
 627 */
 628static void
 629abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
 630{
 631	int i;
 632
 633	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
 634		data->bank2_sensors = fan_sensors;
 635		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
 636			"\"fan_sensors\" module param\n",
 637			(int)data->bank2_sensors);
 638		return;
 639	}
 640
 641	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
 642	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 643		/*
 644		 * 0x89 are the known used bits:
 645		 * -0x80 enable shutdown
 646		 * -0x08 enable beep
 647		 * -0x01 enable alarm
 648		 * All other bits should be 0, but on some motherboards
 649		 * 0x40 (bit 6) is also high for some of the fans??
 650		 */
 651		if (data->bank2_settings[i][0] & ~0xC9) {
 652			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 653				"to be a fan sensor: settings[0] = %02X\n",
 654				i, (unsigned int)data->bank2_settings[i][0]);
 655			break;
 656		}
 657
 658		/* check if the threshold is within the allowed range */
 659		if (data->bank2_settings[i][1] <
 660				abituguru_bank2_min_threshold) {
 661			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 662				"to be a fan sensor: the threshold (%d) is "
 663				"below the minimum (%d)\n", i,
 664				(int)data->bank2_settings[i][1],
 665				(int)abituguru_bank2_min_threshold);
 666			break;
 667		}
 668		if (data->bank2_settings[i][1] >
 669				abituguru_bank2_max_threshold) {
 670			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 671				"to be a fan sensor: the threshold (%d) is "
 672				"above the maximum (%d)\n", i,
 673				(int)data->bank2_settings[i][1],
 674				(int)abituguru_bank2_max_threshold);
 675			break;
 676		}
 677	}
 678
 679	data->bank2_sensors = i;
 680	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
 681		(int)data->bank2_sensors);
 682}
 683
 684static void
 685abituguru_detect_no_pwms(struct abituguru_data *data)
 686{
 687	int i, j;
 688
 689	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
 690		data->pwms = pwms;
 691		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
 692			"\"pwms\" module param\n", (int)data->pwms);
 693		return;
 694	}
 695
 696	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
 697	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 698		/*
 699		 * 0x80 is the enable bit and the low
 700		 * nibble is which temp sensor to use,
 701		 * the other bits should be 0
 702		 */
 703		if (data->pwm_settings[i][0] & ~0x8F) {
 704			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 705				"to be a pwm channel: settings[0] = %02X\n",
 706				i, (unsigned int)data->pwm_settings[i][0]);
 707			break;
 708		}
 709
 710		/*
 711		 * the low nibble must correspond to one of the temp sensors
 712		 * we've found
 713		 */
 714		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
 715				j++) {
 716			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
 717					(data->pwm_settings[i][0] & 0x0F))
 718				break;
 719		}
 720		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
 721			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 722				"to be a pwm channel: %d is not a valid temp "
 723				"sensor address\n", i,
 724				data->pwm_settings[i][0] & 0x0F);
 725			break;
 726		}
 727
 728		/* check if all other settings are within the allowed range */
 729		for (j = 1; j < 5; j++) {
 730			u8 min;
 731			/* special case pwm1 min pwm% */
 732			if ((i == 0) && ((j == 1) || (j == 2)))
 733				min = 77;
 734			else
 735				min = abituguru_pwm_min[j];
 736			if (data->pwm_settings[i][j] < min) {
 737				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 738					"not seem to be a pwm channel: "
 739					"setting %d (%d) is below the minimum "
 740					"value (%d)\n", i, j,
 741					(int)data->pwm_settings[i][j],
 742					(int)min);
 743				goto abituguru_detect_no_pwms_exit;
 744			}
 745			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
 746				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 747					"not seem to be a pwm channel: "
 748					"setting %d (%d) is above the maximum "
 749					"value (%d)\n", i, j,
 750					(int)data->pwm_settings[i][j],
 751					(int)abituguru_pwm_max[j]);
 752				goto abituguru_detect_no_pwms_exit;
 753			}
 754		}
 755
 756		/* check that min temp < max temp and min pwm < max pwm */
 757		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
 758			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 759				"to be a pwm channel: min pwm (%d) >= "
 760				"max pwm (%d)\n", i,
 761				(int)data->pwm_settings[i][1],
 762				(int)data->pwm_settings[i][2]);
 763			break;
 764		}
 765		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
 766			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 767				"to be a pwm channel: min temp (%d) >= "
 768				"max temp (%d)\n", i,
 769				(int)data->pwm_settings[i][3],
 770				(int)data->pwm_settings[i][4]);
 771			break;
 772		}
 773	}
 774
 775abituguru_detect_no_pwms_exit:
 776	data->pwms = i;
 777	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
 778}
 779
 780/*
 781 * Following are the sysfs callback functions. These functions expect:
 782 * sensor_device_attribute_2->index:   sensor address/offset in the bank
 783 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 784 */
 785static struct abituguru_data *abituguru_update_device(struct device *dev);
 786
 787static ssize_t show_bank1_value(struct device *dev,
 788	struct device_attribute *devattr, char *buf)
 789{
 790	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 791	struct abituguru_data *data = abituguru_update_device(dev);
 792	if (!data)
 793		return -EIO;
 794	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
 795		data->bank1_max_value[attr->index] + 128) / 255);
 796}
 797
 798static ssize_t show_bank1_setting(struct device *dev,
 799	struct device_attribute *devattr, char *buf)
 800{
 801	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 802	struct abituguru_data *data = dev_get_drvdata(dev);
 803	return sprintf(buf, "%d\n",
 804		(data->bank1_settings[attr->index][attr->nr] *
 805		data->bank1_max_value[attr->index] + 128) / 255);
 806}
 807
 808static ssize_t show_bank2_value(struct device *dev,
 809	struct device_attribute *devattr, char *buf)
 810{
 811	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 812	struct abituguru_data *data = abituguru_update_device(dev);
 813	if (!data)
 814		return -EIO;
 815	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
 816		ABIT_UGURU_FAN_MAX + 128) / 255);
 817}
 818
 819static ssize_t show_bank2_setting(struct device *dev,
 820	struct device_attribute *devattr, char *buf)
 821{
 822	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 823	struct abituguru_data *data = dev_get_drvdata(dev);
 824	return sprintf(buf, "%d\n",
 825		(data->bank2_settings[attr->index][attr->nr] *
 826		ABIT_UGURU_FAN_MAX + 128) / 255);
 827}
 828
 829static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
 830	*devattr, const char *buf, size_t count)
 831{
 832	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 833	struct abituguru_data *data = dev_get_drvdata(dev);
 834	unsigned long val;
 835	ssize_t ret;
 836
 837	ret = kstrtoul(buf, 10, &val);
 838	if (ret)
 839		return ret;
 840
 841	ret = count;
 842	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
 843		data->bank1_max_value[attr->index];
 844	if (val > 255)
 845		return -EINVAL;
 846
 847	mutex_lock(&data->update_lock);
 848	if (data->bank1_settings[attr->index][attr->nr] != val) {
 849		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
 850		data->bank1_settings[attr->index][attr->nr] = val;
 851		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 852				attr->index, data->bank1_settings[attr->index],
 853				3) <= attr->nr) {
 854			data->bank1_settings[attr->index][attr->nr] = orig_val;
 855			ret = -EIO;
 856		}
 857	}
 858	mutex_unlock(&data->update_lock);
 859	return ret;
 860}
 861
 862static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
 863	*devattr, const char *buf, size_t count)
 864{
 865	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 866	struct abituguru_data *data = dev_get_drvdata(dev);
 867	unsigned long val;
 868	ssize_t ret;
 869
 870	ret = kstrtoul(buf, 10, &val);
 871	if (ret)
 872		return ret;
 873
 874	ret = count;
 875	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
 876
 877	/* this check can be done before taking the lock */
 878	if (val < abituguru_bank2_min_threshold ||
 879			val > abituguru_bank2_max_threshold)
 880		return -EINVAL;
 881
 882	mutex_lock(&data->update_lock);
 883	if (data->bank2_settings[attr->index][attr->nr] != val) {
 884		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
 885		data->bank2_settings[attr->index][attr->nr] = val;
 886		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
 887				attr->index, data->bank2_settings[attr->index],
 888				2) <= attr->nr) {
 889			data->bank2_settings[attr->index][attr->nr] = orig_val;
 890			ret = -EIO;
 891		}
 892	}
 893	mutex_unlock(&data->update_lock);
 894	return ret;
 895}
 896
 897static ssize_t show_bank1_alarm(struct device *dev,
 898	struct device_attribute *devattr, char *buf)
 899{
 900	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 901	struct abituguru_data *data = abituguru_update_device(dev);
 902	if (!data)
 903		return -EIO;
 904	/*
 905	 * See if the alarm bit for this sensor is set, and if the
 906	 * alarm matches the type of alarm we're looking for (for volt
 907	 * it can be either low or high). The type is stored in a few
 908	 * readonly bits in the settings part of the relevant sensor.
 909	 * The bitmask of the type is passed to us in attr->nr.
 910	 */
 911	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
 912			(data->bank1_settings[attr->index][0] & attr->nr))
 913		return sprintf(buf, "1\n");
 914	else
 915		return sprintf(buf, "0\n");
 916}
 917
 918static ssize_t show_bank2_alarm(struct device *dev,
 919	struct device_attribute *devattr, char *buf)
 920{
 921	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 922	struct abituguru_data *data = abituguru_update_device(dev);
 923	if (!data)
 924		return -EIO;
 925	if (data->alarms[2] & (0x01 << attr->index))
 926		return sprintf(buf, "1\n");
 927	else
 928		return sprintf(buf, "0\n");
 929}
 930
 931static ssize_t show_bank1_mask(struct device *dev,
 932	struct device_attribute *devattr, char *buf)
 933{
 934	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 935	struct abituguru_data *data = dev_get_drvdata(dev);
 936	if (data->bank1_settings[attr->index][0] & attr->nr)
 937		return sprintf(buf, "1\n");
 938	else
 939		return sprintf(buf, "0\n");
 940}
 941
 942static ssize_t show_bank2_mask(struct device *dev,
 943	struct device_attribute *devattr, char *buf)
 944{
 945	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 946	struct abituguru_data *data = dev_get_drvdata(dev);
 947	if (data->bank2_settings[attr->index][0] & attr->nr)
 948		return sprintf(buf, "1\n");
 949	else
 950		return sprintf(buf, "0\n");
 951}
 952
 953static ssize_t store_bank1_mask(struct device *dev,
 954	struct device_attribute *devattr, const char *buf, size_t count)
 955{
 956	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 957	struct abituguru_data *data = dev_get_drvdata(dev);
 958	ssize_t ret;
 959	u8 orig_val;
 960	unsigned long mask;
 961
 962	ret = kstrtoul(buf, 10, &mask);
 963	if (ret)
 964		return ret;
 965
 966	ret = count;
 967	mutex_lock(&data->update_lock);
 968	orig_val = data->bank1_settings[attr->index][0];
 969
 970	if (mask)
 971		data->bank1_settings[attr->index][0] |= attr->nr;
 972	else
 973		data->bank1_settings[attr->index][0] &= ~attr->nr;
 974
 975	if ((data->bank1_settings[attr->index][0] != orig_val) &&
 976			(abituguru_write(data,
 977			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
 978			data->bank1_settings[attr->index], 3) < 1)) {
 979		data->bank1_settings[attr->index][0] = orig_val;
 980		ret = -EIO;
 981	}
 982	mutex_unlock(&data->update_lock);
 983	return ret;
 984}
 985
 986static ssize_t store_bank2_mask(struct device *dev,
 987	struct device_attribute *devattr, const char *buf, size_t count)
 988{
 989	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 990	struct abituguru_data *data = dev_get_drvdata(dev);
 991	ssize_t ret;
 992	u8 orig_val;
 993	unsigned long mask;
 994
 995	ret = kstrtoul(buf, 10, &mask);
 996	if (ret)
 997		return ret;
 998
 999	ret = count;
1000	mutex_lock(&data->update_lock);
1001	orig_val = data->bank2_settings[attr->index][0];
1002
1003	if (mask)
1004		data->bank2_settings[attr->index][0] |= attr->nr;
1005	else
1006		data->bank2_settings[attr->index][0] &= ~attr->nr;
1007
1008	if ((data->bank2_settings[attr->index][0] != orig_val) &&
1009			(abituguru_write(data,
1010			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1011			data->bank2_settings[attr->index], 2) < 1)) {
1012		data->bank2_settings[attr->index][0] = orig_val;
1013		ret = -EIO;
1014	}
1015	mutex_unlock(&data->update_lock);
1016	return ret;
1017}
1018
1019/* Fan PWM (speed control) */
1020static ssize_t show_pwm_setting(struct device *dev,
1021	struct device_attribute *devattr, char *buf)
1022{
1023	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024	struct abituguru_data *data = dev_get_drvdata(dev);
1025	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1026		abituguru_pwm_settings_multiplier[attr->nr]);
1027}
1028
1029static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1030	*devattr, const char *buf, size_t count)
1031{
1032	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1033	struct abituguru_data *data = dev_get_drvdata(dev);
1034	u8 min;
1035	unsigned long val;
1036	ssize_t ret;
1037
1038	ret = kstrtoul(buf, 10, &val);
1039	if (ret)
1040		return ret;
1041
1042	ret = count;
1043	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1044				abituguru_pwm_settings_multiplier[attr->nr];
1045
1046	/* special case pwm1 min pwm% */
1047	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1048		min = 77;
1049	else
1050		min = abituguru_pwm_min[attr->nr];
1051
1052	/* this check can be done before taking the lock */
1053	if (val < min || val > abituguru_pwm_max[attr->nr])
1054		return -EINVAL;
1055
1056	mutex_lock(&data->update_lock);
1057	/* this check needs to be done after taking the lock */
1058	if ((attr->nr & 1) &&
1059			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
1060		ret = -EINVAL;
1061	else if (!(attr->nr & 1) &&
1062			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
1063		ret = -EINVAL;
1064	else if (data->pwm_settings[attr->index][attr->nr] != val) {
1065		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1066		data->pwm_settings[attr->index][attr->nr] = val;
1067		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1068				attr->index, data->pwm_settings[attr->index],
1069				5) <= attr->nr) {
1070			data->pwm_settings[attr->index][attr->nr] =
1071				orig_val;
1072			ret = -EIO;
1073		}
1074	}
1075	mutex_unlock(&data->update_lock);
1076	return ret;
1077}
1078
1079static ssize_t show_pwm_sensor(struct device *dev,
1080	struct device_attribute *devattr, char *buf)
1081{
1082	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1083	struct abituguru_data *data = dev_get_drvdata(dev);
1084	int i;
1085	/*
1086	 * We need to walk to the temp sensor addresses to find what
1087	 * the userspace id of the configured temp sensor is.
1088	 */
1089	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1090		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1091				(data->pwm_settings[attr->index][0] & 0x0F))
1092			return sprintf(buf, "%d\n", i+1);
1093
1094	return -ENXIO;
1095}
1096
1097static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1098	*devattr, const char *buf, size_t count)
1099{
1100	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1101	struct abituguru_data *data = dev_get_drvdata(dev);
1102	ssize_t ret;
1103	unsigned long val;
1104	u8 orig_val;
1105	u8 address;
1106
1107	ret = kstrtoul(buf, 10, &val);
1108	if (ret)
1109		return ret;
1110
1111	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1112		return -EINVAL;
1113
1114	val -= 1;
1115	ret = count;
1116	mutex_lock(&data->update_lock);
1117	orig_val = data->pwm_settings[attr->index][0];
1118	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1119	data->pwm_settings[attr->index][0] &= 0xF0;
1120	data->pwm_settings[attr->index][0] |= address;
1121	if (data->pwm_settings[attr->index][0] != orig_val) {
1122		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1123				    data->pwm_settings[attr->index], 5) < 1) {
1124			data->pwm_settings[attr->index][0] = orig_val;
1125			ret = -EIO;
1126		}
1127	}
1128	mutex_unlock(&data->update_lock);
1129	return ret;
1130}
1131
1132static ssize_t show_pwm_enable(struct device *dev,
1133	struct device_attribute *devattr, char *buf)
1134{
1135	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1136	struct abituguru_data *data = dev_get_drvdata(dev);
1137	int res = 0;
1138	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1139		res = 2;
1140	return sprintf(buf, "%d\n", res);
1141}
1142
1143static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1144	*devattr, const char *buf, size_t count)
1145{
1146	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1147	struct abituguru_data *data = dev_get_drvdata(dev);
1148	u8 orig_val;
1149	ssize_t ret;
1150	unsigned long user_val;
1151
1152	ret = kstrtoul(buf, 10, &user_val);
1153	if (ret)
1154		return ret;
1155
1156	ret = count;
1157	mutex_lock(&data->update_lock);
1158	orig_val = data->pwm_settings[attr->index][0];
1159	switch (user_val) {
1160	case 0:
1161		data->pwm_settings[attr->index][0] &=
1162			~ABIT_UGURU_FAN_PWM_ENABLE;
1163		break;
1164	case 2:
1165		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1166		break;
1167	default:
1168		ret = -EINVAL;
1169	}
1170	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1171			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1172			attr->index, data->pwm_settings[attr->index],
1173			5) < 1)) {
1174		data->pwm_settings[attr->index][0] = orig_val;
1175		ret = -EIO;
1176	}
1177	mutex_unlock(&data->update_lock);
1178	return ret;
1179}
1180
1181static ssize_t show_name(struct device *dev,
1182	struct device_attribute *devattr, char *buf)
1183{
1184	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1185}
1186
1187/* Sysfs attr templates, the real entries are generated automatically. */
1188static const
1189struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1190	{
1191	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1192	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1193		store_bank1_setting, 1, 0),
1194	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1195		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1196	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1197		store_bank1_setting, 2, 0),
1198	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1199		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1200	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1201		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1202	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1203		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1204	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1205		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1206	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1207		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1208	}, {
1209	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1210	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1211		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1212	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1213		store_bank1_setting, 1, 0),
1214	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1215		store_bank1_setting, 2, 0),
1216	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1217		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1218	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1219		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1220	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1221		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1222	}
1223};
1224
1225static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1226	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1227	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1228	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1229		store_bank2_setting, 1, 0),
1230	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1231		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1232	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1233		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1234	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1235		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1236};
1237
1238static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1239	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1240		store_pwm_enable, 0, 0),
1241	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1242		store_pwm_sensor, 0, 0),
1243	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1244		store_pwm_setting, 1, 0),
1245	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1246		store_pwm_setting, 2, 0),
1247	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1248		store_pwm_setting, 3, 0),
1249	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1250		store_pwm_setting, 4, 0),
1251};
1252
1253static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1254	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1255};
1256
1257static int abituguru_probe(struct platform_device *pdev)
1258{
1259	struct abituguru_data *data;
1260	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1261	char *sysfs_filename;
1262
1263	/*
1264	 * El weirdo probe order, to keep the sysfs order identical to the
1265	 * BIOS and window-appliction listing order.
1266	 */
1267	static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1268		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1269		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1270
1271	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1272			    GFP_KERNEL);
1273	if (!data)
1274		return -ENOMEM;
1275
1276	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1277	mutex_init(&data->update_lock);
1278	platform_set_drvdata(pdev, data);
1279
1280	/* See if the uGuru is ready */
1281	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1282		data->uguru_ready = 1;
1283
1284	/*
1285	 * Completely read the uGuru this has 2 purposes:
1286	 * - testread / see if one really is there.
1287	 * - make an in memory copy of all the uguru settings for future use.
1288	 */
1289	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1290			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1291		goto abituguru_probe_error;
1292
1293	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1294		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1295				&data->bank1_value[i], 1,
1296				ABIT_UGURU_MAX_RETRIES) != 1)
1297			goto abituguru_probe_error;
1298		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1299				data->bank1_settings[i], 3,
1300				ABIT_UGURU_MAX_RETRIES) != 3)
1301			goto abituguru_probe_error;
1302	}
1303	/*
1304	 * Note: We don't know how many bank2 sensors / pwms there really are,
1305	 * but in order to "detect" this we need to read the maximum amount
1306	 * anyways. If we read sensors/pwms not there we'll just read crap
1307	 * this can't hurt. We need the detection because we don't want
1308	 * unwanted writes, which will hurt!
1309	 */
1310	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1311		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1312				&data->bank2_value[i], 1,
1313				ABIT_UGURU_MAX_RETRIES) != 1)
1314			goto abituguru_probe_error;
1315		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1316				data->bank2_settings[i], 2,
1317				ABIT_UGURU_MAX_RETRIES) != 2)
1318			goto abituguru_probe_error;
1319	}
1320	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1321		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1322				data->pwm_settings[i], 5,
1323				ABIT_UGURU_MAX_RETRIES) != 5)
1324			goto abituguru_probe_error;
1325	}
1326	data->last_updated = jiffies;
1327
1328	/* Detect sensor types and fill the sysfs attr for bank1 */
1329	sysfs_attr_i = 0;
1330	sysfs_filename = data->sysfs_names;
1331	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1332	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1333		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1334		if (res < 0)
1335			goto abituguru_probe_error;
1336		if (res == ABIT_UGURU_NC)
1337			continue;
1338
1339		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1340		for (j = 0; j < (res ? 7 : 9); j++) {
1341			used = snprintf(sysfs_filename, sysfs_names_free,
1342				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1343				attr.name, data->bank1_sensors[res] + res)
1344				+ 1;
1345			data->sysfs_attr[sysfs_attr_i] =
1346				abituguru_sysfs_bank1_templ[res][j];
1347			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1348				sysfs_filename;
1349			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1350			sysfs_filename += used;
1351			sysfs_names_free -= used;
1352			sysfs_attr_i++;
1353		}
1354		data->bank1_max_value[probe_order[i]] =
1355			abituguru_bank1_max_value[res];
1356		data->bank1_address[res][data->bank1_sensors[res]] =
1357			probe_order[i];
1358		data->bank1_sensors[res]++;
1359	}
1360	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1361	abituguru_detect_no_bank2_sensors(data);
1362	for (i = 0; i < data->bank2_sensors; i++) {
1363		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1364			used = snprintf(sysfs_filename, sysfs_names_free,
1365				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1366				i + 1) + 1;
1367			data->sysfs_attr[sysfs_attr_i] =
1368				abituguru_sysfs_fan_templ[j];
1369			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1370				sysfs_filename;
1371			data->sysfs_attr[sysfs_attr_i].index = i;
1372			sysfs_filename += used;
1373			sysfs_names_free -= used;
1374			sysfs_attr_i++;
1375		}
1376	}
1377	/* Detect number of sensors and fill the sysfs attr for pwms */
1378	abituguru_detect_no_pwms(data);
1379	for (i = 0; i < data->pwms; i++) {
1380		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1381			used = snprintf(sysfs_filename, sysfs_names_free,
1382				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1383				i + 1) + 1;
1384			data->sysfs_attr[sysfs_attr_i] =
1385				abituguru_sysfs_pwm_templ[j];
1386			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1387				sysfs_filename;
1388			data->sysfs_attr[sysfs_attr_i].index = i;
1389			sysfs_filename += used;
1390			sysfs_names_free -= used;
1391			sysfs_attr_i++;
1392		}
1393	}
1394	/* Fail safe check, this should never happen! */
1395	if (sysfs_names_free < 0) {
1396		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1397		       never_happen, report_this);
1398		res = -ENAMETOOLONG;
1399		goto abituguru_probe_error;
1400	}
1401	pr_info("found Abit uGuru\n");
1402
1403	/* Register sysfs hooks */
1404	for (i = 0; i < sysfs_attr_i; i++) {
1405		res = device_create_file(&pdev->dev,
1406					 &data->sysfs_attr[i].dev_attr);
1407		if (res)
1408			goto abituguru_probe_error;
1409	}
1410	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1411		res = device_create_file(&pdev->dev,
1412					 &abituguru_sysfs_attr[i].dev_attr);
1413		if (res)
1414			goto abituguru_probe_error;
1415	}
1416
1417	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1418	if (!IS_ERR(data->hwmon_dev))
1419		return 0; /* success */
1420
1421	res = PTR_ERR(data->hwmon_dev);
1422abituguru_probe_error:
1423	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1424		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1425	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1426		device_remove_file(&pdev->dev,
1427			&abituguru_sysfs_attr[i].dev_attr);
1428	return res;
1429}
1430
1431static int abituguru_remove(struct platform_device *pdev)
1432{
1433	int i;
1434	struct abituguru_data *data = platform_get_drvdata(pdev);
1435
1436	hwmon_device_unregister(data->hwmon_dev);
1437	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1438		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1439	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1440		device_remove_file(&pdev->dev,
1441			&abituguru_sysfs_attr[i].dev_attr);
1442
1443	return 0;
1444}
1445
1446static struct abituguru_data *abituguru_update_device(struct device *dev)
1447{
1448	int i, err;
1449	struct abituguru_data *data = dev_get_drvdata(dev);
1450	/* fake a complete successful read if no update necessary. */
1451	char success = 1;
1452
1453	mutex_lock(&data->update_lock);
1454	if (time_after(jiffies, data->last_updated + HZ)) {
1455		success = 0;
1456		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1457				     data->alarms, 3, 0);
1458		if (err != 3)
1459			goto LEAVE_UPDATE;
1460		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1461			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1462					     i, &data->bank1_value[i], 1, 0);
1463			if (err != 1)
1464				goto LEAVE_UPDATE;
1465			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1466					     i, data->bank1_settings[i], 3, 0);
1467			if (err != 3)
1468				goto LEAVE_UPDATE;
1469		}
1470		for (i = 0; i < data->bank2_sensors; i++) {
1471			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1472					     &data->bank2_value[i], 1, 0);
1473			if (err != 1)
1474				goto LEAVE_UPDATE;
1475		}
1476		/* success! */
1477		success = 1;
1478		data->update_timeouts = 0;
1479LEAVE_UPDATE:
1480		/* handle timeout condition */
1481		if (!success && (err == -EBUSY || err >= 0)) {
1482			/* No overflow please */
1483			if (data->update_timeouts < 255u)
1484				data->update_timeouts++;
1485			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1486				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1487					"try again next update\n");
1488				/* Just a timeout, fake a successful read */
1489				success = 1;
1490			} else
1491				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1492					"times waiting for more input state\n",
1493					(int)data->update_timeouts);
1494		}
1495		/* On success set last_updated */
1496		if (success)
1497			data->last_updated = jiffies;
1498	}
1499	mutex_unlock(&data->update_lock);
1500
1501	if (success)
1502		return data;
1503	else
1504		return NULL;
1505}
1506
1507#ifdef CONFIG_PM_SLEEP
1508static int abituguru_suspend(struct device *dev)
1509{
1510	struct abituguru_data *data = dev_get_drvdata(dev);
1511	/*
1512	 * make sure all communications with the uguru are done and no new
1513	 * ones are started
1514	 */
1515	mutex_lock(&data->update_lock);
1516	return 0;
1517}
1518
1519static int abituguru_resume(struct device *dev)
1520{
1521	struct abituguru_data *data = dev_get_drvdata(dev);
1522	/* See if the uGuru is still ready */
1523	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1524		data->uguru_ready = 0;
1525	mutex_unlock(&data->update_lock);
1526	return 0;
1527}
1528
1529static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1530#define ABIT_UGURU_PM	(&abituguru_pm)
1531#else
1532#define ABIT_UGURU_PM	NULL
1533#endif /* CONFIG_PM */
1534
1535static struct platform_driver abituguru_driver = {
1536	.driver = {
1537		.name	= ABIT_UGURU_NAME,
1538		.pm	= ABIT_UGURU_PM,
1539	},
1540	.probe		= abituguru_probe,
1541	.remove		= abituguru_remove,
1542};
1543
1544static int __init abituguru_detect(void)
1545{
1546	/*
1547	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1548	 * at DATA and 0xAC, when this driver has already been loaded once
1549	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1550	 * scenario but some will hold 0x00.
1551	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1552	 * after reading CMD first, so CMD must be read first!
1553	 */
1554	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1555	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1556	if (((data_val == 0x00) || (data_val == 0x08)) &&
1557	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1558		return ABIT_UGURU_BASE;
1559
1560	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1561		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1562
1563	if (force) {
1564		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1565		return ABIT_UGURU_BASE;
1566	}
1567
1568	/* No uGuru found */
1569	return -ENODEV;
1570}
1571
1572static struct platform_device *abituguru_pdev;
1573
1574static int __init abituguru_init(void)
1575{
1576	int address, err;
1577	struct resource res = { .flags = IORESOURCE_IO };
1578	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1579
1580	/* safety check, refuse to load on non Abit motherboards */
1581	if (!force && (!board_vendor ||
1582			strcmp(board_vendor, "http://www.abit.com.tw/")))
1583		return -ENODEV;
1584
1585	address = abituguru_detect();
1586	if (address < 0)
1587		return address;
1588
1589	err = platform_driver_register(&abituguru_driver);
1590	if (err)
1591		goto exit;
1592
1593	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1594	if (!abituguru_pdev) {
1595		pr_err("Device allocation failed\n");
1596		err = -ENOMEM;
1597		goto exit_driver_unregister;
1598	}
1599
1600	res.start = address;
1601	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1602	res.name = ABIT_UGURU_NAME;
1603
1604	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1605	if (err) {
1606		pr_err("Device resource addition failed (%d)\n", err);
1607		goto exit_device_put;
1608	}
1609
1610	err = platform_device_add(abituguru_pdev);
1611	if (err) {
1612		pr_err("Device addition failed (%d)\n", err);
1613		goto exit_device_put;
1614	}
1615
1616	return 0;
1617
1618exit_device_put:
1619	platform_device_put(abituguru_pdev);
1620exit_driver_unregister:
1621	platform_driver_unregister(&abituguru_driver);
1622exit:
1623	return err;
1624}
1625
1626static void __exit abituguru_exit(void)
1627{
1628	platform_device_unregister(abituguru_pdev);
1629	platform_driver_unregister(&abituguru_driver);
1630}
1631
1632MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1633MODULE_DESCRIPTION("Abit uGuru Sensor device");
1634MODULE_LICENSE("GPL");
1635
1636module_init(abituguru_init);
1637module_exit(abituguru_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
   4 */
   5/*
   6 * This driver supports the sensor part of the first and second revision of
   7 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
   8 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/module.h>
  14#include <linux/sched.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/jiffies.h>
  18#include <linux/mutex.h>
  19#include <linux/err.h>
  20#include <linux/delay.h>
  21#include <linux/platform_device.h>
  22#include <linux/hwmon.h>
  23#include <linux/hwmon-sysfs.h>
  24#include <linux/dmi.h>
  25#include <linux/io.h>
  26
  27/* Banks */
  28#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
  29#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
  30#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
  31#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
  32/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
  33#define ABIT_UGURU_MAX_BANK1_SENSORS		16
  34/*
  35 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
  36 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
  37 */
  38/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
  39#define ABIT_UGURU_MAX_BANK2_SENSORS		6
  40/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
  41#define ABIT_UGURU_MAX_PWMS			5
  42/* uGuru sensor bank 1 flags */			     /* Alarm if: */
  43#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
  44#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
  45#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
  46#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
  47#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
  48#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
  49/* uGuru sensor bank 2 flags */			     /* Alarm if: */
  50#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
  51/* uGuru sensor bank common flags */
  52#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
  53#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
  54/* uGuru fan PWM (speed control) flags */
  55#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
  56/* Values used for conversion */
  57#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
  58/* Bank1 sensor types */
  59#define ABIT_UGURU_IN_SENSOR			0
  60#define ABIT_UGURU_TEMP_SENSOR			1
  61#define ABIT_UGURU_NC				2
  62/*
  63 * In many cases we need to wait for the uGuru to reach a certain status, most
  64 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
  65 * can best busy wait. This define gives the total amount of reads to try.
  66 */
  67#define ABIT_UGURU_WAIT_TIMEOUT			125
  68/*
  69 * However sometimes older versions of the uGuru seem to be distracted and they
  70 * do not respond for a long time. To handle this we sleep before each of the
  71 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
  72 */
  73#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
  74/*
  75 * Normally all expected status in abituguru_ready, are reported after the
  76 * first read, but sometimes not and we need to poll.
  77 */
  78#define ABIT_UGURU_READY_TIMEOUT		5
  79/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
  80#define ABIT_UGURU_MAX_RETRIES			3
  81#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
  82/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
  83#define ABIT_UGURU_MAX_TIMEOUTS			2
  84/* utility macros */
  85#define ABIT_UGURU_NAME				"abituguru"
  86#define ABIT_UGURU_DEBUG(level, format, arg...)		\
  87	do {						\
  88		if (level <= verbose)			\
  89			pr_debug(format , ## arg);	\
  90	} while (0)
  91
  92/* Macros to help calculate the sysfs_names array length */
  93/*
  94 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
  95 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
  96 */
  97#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
  98/*
  99 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 100 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 101 */
 102#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
 103/*
 104 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 105 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 106 */
 107#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
 108/*
 109 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 110 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 111 */
 112#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
 113/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
 114#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
 115	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
 116	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
 117	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
 118
 119/*
 120 * All the macros below are named identical to the oguru and oguru2 programs
 121 * reverse engineered by Olle Sandberg, hence the names might not be 100%
 122 * logical. I could come up with better names, but I prefer keeping the names
 123 * identical so that this driver can be compared with his work more easily.
 124 */
 125/* Two i/o-ports are used by uGuru */
 126#define ABIT_UGURU_BASE				0x00E0
 127/* Used to tell uGuru what to read and to read the actual data */
 128#define ABIT_UGURU_CMD				0x00
 129/* Mostly used to check if uGuru is busy */
 130#define ABIT_UGURU_DATA				0x04
 131#define ABIT_UGURU_REGION_LENGTH		5
 132/* uGuru status' */
 133#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
 134#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
 135#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
 136#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
 137
 138/* Constants */
 139/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
 140static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
 141/*
 142 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 143 * correspond to 300-3000 RPM
 144 */
 145static const u8 abituguru_bank2_min_threshold = 5;
 146static const u8 abituguru_bank2_max_threshold = 50;
 147/*
 148 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 149 * are temperature trip points.
 150 */
 151static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
 152/*
 153 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 154 * special case the minimum allowed pwm% setting for this is 30% (77) on
 155 * some MB's this special case is handled in the code!
 156 */
 157static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
 158static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
 159
 160
 161/* Insmod parameters */
 162static bool force;
 163module_param(force, bool, 0);
 164MODULE_PARM_DESC(force, "Set to one to force detection.");
 165static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
 166	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
 167module_param_array(bank1_types, int, NULL, 0);
 168MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
 169	"   -1 autodetect\n"
 170	"    0 volt sensor\n"
 171	"    1 temp sensor\n"
 172	"    2 not connected");
 173static int fan_sensors;
 174module_param(fan_sensors, int, 0);
 175MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
 176	"(0 = autodetect)");
 177static int pwms;
 178module_param(pwms, int, 0);
 179MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
 180	"(0 = autodetect)");
 181
 182/* Default verbose is 2, since this driver is still in the testing phase */
 183static int verbose = 2;
 184module_param(verbose, int, 0644);
 185MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
 186	"   0 normal output\n"
 187	"   1 + verbose error reporting\n"
 188	"   2 + sensors type probing info\n"
 189	"   3 + retryable error reporting");
 190
 191
 192/*
 193 * For the Abit uGuru, we need to keep some data in memory.
 194 * The structure is dynamically allocated, at the same time when a new
 195 * abituguru device is allocated.
 196 */
 197struct abituguru_data {
 198	struct device *hwmon_dev;	/* hwmon registered device */
 199	struct mutex update_lock;	/* protect access to data and uGuru */
 200	unsigned long last_updated;	/* In jiffies */
 201	unsigned short addr;		/* uguru base address */
 202	char uguru_ready;		/* is the uguru in ready state? */
 203	unsigned char update_timeouts;	/*
 204					 * number of update timeouts since last
 205					 * successful update
 206					 */
 207
 208	/*
 209	 * The sysfs attr and their names are generated automatically, for bank1
 210	 * we cannot use a predefined array because we don't know beforehand
 211	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
 212	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
 213	 * sysfs entries per sensor, for bank2 and pwms 6.
 214	 */
 215	struct sensor_device_attribute_2 sysfs_attr[
 216		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
 217		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
 218	/* Buffer to store the dynamically generated sysfs names */
 219	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
 220
 221	/* Bank 1 data */
 222	/* number of and addresses of [0] in, [1] temp sensors */
 223	u8 bank1_sensors[2];
 224	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
 225	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 226	/*
 227	 * This array holds 3 entries per sensor for the bank 1 sensor settings
 228	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
 229	 */
 230	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
 231	/*
 232	 * Maximum value for each sensor used for scaling in mV/millidegrees
 233	 * Celsius.
 234	 */
 235	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 236
 237	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
 238	u8 bank2_sensors; /* actual number of bank2 sensors found */
 239	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
 240	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
 241
 242	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
 243	u8 alarms[3];
 244
 245	/* Fan PWM (speed control) 5 bytes per PWM */
 246	u8 pwms; /* actual number of pwms found */
 247	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
 248};
 249
 250static const char *never_happen = "This should never happen.";
 251static const char *report_this =
 252	"Please report this to the abituguru maintainer (see MAINTAINERS)";
 253
 254/* wait till the uguru is in the specified state */
 255static int abituguru_wait(struct abituguru_data *data, u8 state)
 256{
 257	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
 258
 259	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
 260		timeout--;
 261		if (timeout == 0)
 262			return -EBUSY;
 263		/*
 264		 * sleep a bit before our last few tries, see the comment on
 265		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
 266		 */
 267		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
 268			msleep(0);
 269	}
 270	return 0;
 271}
 272
 273/* Put the uguru in ready for input state */
 274static int abituguru_ready(struct abituguru_data *data)
 275{
 276	int timeout = ABIT_UGURU_READY_TIMEOUT;
 277
 278	if (data->uguru_ready)
 279		return 0;
 280
 281	/* Reset? / Prepare for next read/write cycle */
 282	outb(0x00, data->addr + ABIT_UGURU_DATA);
 283
 284	/* Wait till the uguru is ready */
 285	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
 286		ABIT_UGURU_DEBUG(1,
 287			"timeout exceeded waiting for ready state\n");
 288		return -EIO;
 289	}
 290
 291	/* Cmd port MUST be read now and should contain 0xAC */
 292	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 293		timeout--;
 294		if (timeout == 0) {
 295			ABIT_UGURU_DEBUG(1,
 296			   "CMD reg does not hold 0xAC after ready command\n");
 297			return -EIO;
 298		}
 299		msleep(0);
 300	}
 301
 302	/*
 303	 * After this the ABIT_UGURU_DATA port should contain
 304	 * ABIT_UGURU_STATUS_INPUT
 305	 */
 306	timeout = ABIT_UGURU_READY_TIMEOUT;
 307	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
 308		timeout--;
 309		if (timeout == 0) {
 310			ABIT_UGURU_DEBUG(1,
 311				"state != more input after ready command\n");
 312			return -EIO;
 313		}
 314		msleep(0);
 315	}
 316
 317	data->uguru_ready = 1;
 318	return 0;
 319}
 320
 321/*
 322 * Send the bank and then sensor address to the uGuru for the next read/write
 323 * cycle. This function gets called as the first part of a read/write by
 324 * abituguru_read and abituguru_write. This function should never be
 325 * called by any other function.
 326 */
 327static int abituguru_send_address(struct abituguru_data *data,
 328	u8 bank_addr, u8 sensor_addr, int retries)
 329{
 330	/*
 331	 * assume the caller does error handling itself if it has not requested
 332	 * any retries, and thus be quiet.
 333	 */
 334	int report_errors = retries;
 335
 336	for (;;) {
 337		/*
 338		 * Make sure the uguru is ready and then send the bank address,
 339		 * after this the uguru is no longer "ready".
 340		 */
 341		if (abituguru_ready(data) != 0)
 342			return -EIO;
 343		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
 344		data->uguru_ready = 0;
 345
 346		/*
 347		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
 348		 * and send the sensor addr
 349		 */
 350		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
 351			if (retries) {
 352				ABIT_UGURU_DEBUG(3, "timeout exceeded "
 353					"waiting for more input state, %d "
 354					"tries remaining\n", retries);
 355				set_current_state(TASK_UNINTERRUPTIBLE);
 356				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
 357				retries--;
 358				continue;
 359			}
 360			if (report_errors)
 361				ABIT_UGURU_DEBUG(1, "timeout exceeded "
 362					"waiting for more input state "
 363					"(bank: %d)\n", (int)bank_addr);
 364			return -EBUSY;
 365		}
 366		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
 367		return 0;
 368	}
 369}
 370
 371/*
 372 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 373 * result in buf, retry the send address part of the read retries times.
 374 */
 375static int abituguru_read(struct abituguru_data *data,
 376	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
 377{
 378	int i;
 379
 380	/* Send the address */
 381	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
 382	if (i)
 383		return i;
 384
 385	/* And read the data */
 386	for (i = 0; i < count; i++) {
 387		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 388			ABIT_UGURU_DEBUG(retries ? 1 : 3,
 389				"timeout exceeded waiting for "
 390				"read state (bank: %d, sensor: %d)\n",
 391				(int)bank_addr, (int)sensor_addr);
 392			break;
 393		}
 394		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
 395	}
 396
 397	/* Last put the chip back in ready state */
 398	abituguru_ready(data);
 399
 400	return i;
 401}
 402
 403/*
 404 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 405 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 406 */
 407static int abituguru_write(struct abituguru_data *data,
 408	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
 409{
 410	/*
 411	 * We use the ready timeout as we have to wait for 0xAC just like the
 412	 * ready function
 413	 */
 414	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
 415
 416	/* Send the address */
 417	i = abituguru_send_address(data, bank_addr, sensor_addr,
 418		ABIT_UGURU_MAX_RETRIES);
 419	if (i)
 420		return i;
 421
 422	/* And write the data */
 423	for (i = 0; i < count; i++) {
 424		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
 425			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
 426				"write state (bank: %d, sensor: %d)\n",
 427				(int)bank_addr, (int)sensor_addr);
 428			break;
 429		}
 430		outb(buf[i], data->addr + ABIT_UGURU_CMD);
 431	}
 432
 433	/*
 434	 * Now we need to wait till the chip is ready to be read again,
 435	 * so that we can read 0xAC as confirmation that our write has
 436	 * succeeded.
 437	 */
 438	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 439		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
 440			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
 441			(int)sensor_addr);
 442		return -EIO;
 443	}
 444
 445	/* Cmd port MUST be read now and should contain 0xAC */
 446	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 447		timeout--;
 448		if (timeout == 0) {
 449			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
 450				"write (bank: %d, sensor: %d)\n",
 451				(int)bank_addr, (int)sensor_addr);
 452			return -EIO;
 453		}
 454		msleep(0);
 455	}
 456
 457	/* Last put the chip back in ready state */
 458	abituguru_ready(data);
 459
 460	return i;
 461}
 462
 463/*
 464 * Detect sensor type. Temp and Volt sensors are enabled with
 465 * different masks and will ignore enable masks not meant for them.
 466 * This enables us to test what kind of sensor we're dealing with.
 467 * By setting the alarm thresholds so that we will always get an
 468 * alarm for sensor type X and then enabling the sensor as sensor type
 469 * X, if we then get an alarm it is a sensor of type X.
 470 */
 471static int
 472abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
 473				   u8 sensor_addr)
 474{
 475	u8 val, test_flag, buf[3];
 476	int i, ret = -ENODEV; /* error is the most common used retval :| */
 477
 478	/* If overriden by the user return the user selected type */
 479	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
 480			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
 481		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
 482			"%d because of \"bank1_types\" module param\n",
 483			bank1_types[sensor_addr], (int)sensor_addr);
 484		return bank1_types[sensor_addr];
 485	}
 486
 487	/* First read the sensor and the current settings */
 488	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
 489			1, ABIT_UGURU_MAX_RETRIES) != 1)
 490		return -ENODEV;
 491
 492	/* Test val is sane / usable for sensor type detection. */
 493	if ((val < 10u) || (val > 250u)) {
 494		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
 495			"unable to determine sensor type, skipping sensor\n",
 496			(int)sensor_addr, (int)val);
 497		/*
 498		 * assume no sensor is there for sensors for which we can't
 499		 * determine the sensor type because their reading is too close
 500		 * to their limits, this usually means no sensor is there.
 501		 */
 502		return ABIT_UGURU_NC;
 503	}
 504
 505	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
 506	/*
 507	 * Volt sensor test, enable volt low alarm, set min value ridiculously
 508	 * high, or vica versa if the reading is very high. If its a volt
 509	 * sensor this should always give us an alarm.
 510	 */
 511	if (val <= 240u) {
 512		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
 513		buf[1] = 245;
 514		buf[2] = 250;
 515		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
 516	} else {
 517		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
 518		buf[1] = 5;
 519		buf[2] = 10;
 520		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
 521	}
 522
 523	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 524			buf, 3) != 3)
 525		goto abituguru_detect_bank1_sensor_type_exit;
 526	/*
 527	 * Now we need 20 ms to give the uguru time to read the sensors
 528	 * and raise a voltage alarm
 529	 */
 530	set_current_state(TASK_UNINTERRUPTIBLE);
 531	schedule_timeout(HZ/50);
 532	/* Check for alarm and check the alarm is a volt low alarm. */
 533	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 534			ABIT_UGURU_MAX_RETRIES) != 3)
 535		goto abituguru_detect_bank1_sensor_type_exit;
 536	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 537		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 538				sensor_addr, buf, 3,
 539				ABIT_UGURU_MAX_RETRIES) != 3)
 540			goto abituguru_detect_bank1_sensor_type_exit;
 541		if (buf[0] & test_flag) {
 542			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
 543			ret = ABIT_UGURU_IN_SENSOR;
 544			goto abituguru_detect_bank1_sensor_type_exit;
 545		} else
 546			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
 547				"sensor test, but volt range flag not set\n");
 548	} else
 549		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
 550			"test\n");
 551
 552	/*
 553	 * Temp sensor test, enable sensor as a temp sensor, set beep value
 554	 * ridiculously low (but not too low, otherwise uguru ignores it).
 555	 * If its a temp sensor this should always give us an alarm.
 556	 */
 557	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
 558	buf[1] = 5;
 559	buf[2] = 10;
 560	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 561			buf, 3) != 3)
 562		goto abituguru_detect_bank1_sensor_type_exit;
 563	/*
 564	 * Now we need 50 ms to give the uguru time to read the sensors
 565	 * and raise a temp alarm
 566	 */
 567	set_current_state(TASK_UNINTERRUPTIBLE);
 568	schedule_timeout(HZ/20);
 569	/* Check for alarm and check the alarm is a temp high alarm. */
 570	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 571			ABIT_UGURU_MAX_RETRIES) != 3)
 572		goto abituguru_detect_bank1_sensor_type_exit;
 573	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 574		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 575				sensor_addr, buf, 3,
 576				ABIT_UGURU_MAX_RETRIES) != 3)
 577			goto abituguru_detect_bank1_sensor_type_exit;
 578		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
 579			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
 580			ret = ABIT_UGURU_TEMP_SENSOR;
 581			goto abituguru_detect_bank1_sensor_type_exit;
 582		} else
 583			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
 584				"sensor test, but temp high flag not set\n");
 585	} else
 586		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
 587			"test\n");
 588
 589	ret = ABIT_UGURU_NC;
 590abituguru_detect_bank1_sensor_type_exit:
 591	/*
 592	 * Restore original settings, failing here is really BAD, it has been
 593	 * reported that some BIOS-es hang when entering the uGuru menu with
 594	 * invalid settings present in the uGuru, so we try this 3 times.
 595	 */
 596	for (i = 0; i < 3; i++)
 597		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 598				sensor_addr, data->bank1_settings[sensor_addr],
 599				3) == 3)
 600			break;
 601	if (i == 3) {
 602		pr_err("Fatal error could not restore original settings. %s %s\n",
 603		       never_happen, report_this);
 604		return -ENODEV;
 605	}
 606	return ret;
 607}
 608
 609/*
 610 * These functions try to find out how many sensors there are in bank2 and how
 611 * many pwms there are. The purpose of this is to make sure that we don't give
 612 * the user the possibility to change settings for non-existent sensors / pwm.
 613 * The uGuru will happily read / write whatever memory happens to be after the
 614 * memory storing the PWM settings when reading/writing to a PWM which is not
 615 * there. Notice even if we detect a PWM which doesn't exist we normally won't
 616 * write to it, unless the user tries to change the settings.
 617 *
 618 * Although the uGuru allows reading (settings) from non existing bank2
 619 * sensors, my version of the uGuru does seem to stop writing to them, the
 620 * write function above aborts in this case with:
 621 * "CMD reg does not hold 0xAC after write"
 622 *
 623 * Notice these 2 tests are non destructive iow read-only tests, otherwise
 624 * they would defeat their purpose. Although for the bank2_sensors detection a
 625 * read/write test would be feasible because of the reaction above, I've
 626 * however opted to stay on the safe side.
 627 */
 628static void
 629abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
 630{
 631	int i;
 632
 633	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
 634		data->bank2_sensors = fan_sensors;
 635		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
 636			"\"fan_sensors\" module param\n",
 637			(int)data->bank2_sensors);
 638		return;
 639	}
 640
 641	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
 642	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 643		/*
 644		 * 0x89 are the known used bits:
 645		 * -0x80 enable shutdown
 646		 * -0x08 enable beep
 647		 * -0x01 enable alarm
 648		 * All other bits should be 0, but on some motherboards
 649		 * 0x40 (bit 6) is also high for some of the fans??
 650		 */
 651		if (data->bank2_settings[i][0] & ~0xC9) {
 652			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 653				"to be a fan sensor: settings[0] = %02X\n",
 654				i, (unsigned int)data->bank2_settings[i][0]);
 655			break;
 656		}
 657
 658		/* check if the threshold is within the allowed range */
 659		if (data->bank2_settings[i][1] <
 660				abituguru_bank2_min_threshold) {
 661			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 662				"to be a fan sensor: the threshold (%d) is "
 663				"below the minimum (%d)\n", i,
 664				(int)data->bank2_settings[i][1],
 665				(int)abituguru_bank2_min_threshold);
 666			break;
 667		}
 668		if (data->bank2_settings[i][1] >
 669				abituguru_bank2_max_threshold) {
 670			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 671				"to be a fan sensor: the threshold (%d) is "
 672				"above the maximum (%d)\n", i,
 673				(int)data->bank2_settings[i][1],
 674				(int)abituguru_bank2_max_threshold);
 675			break;
 676		}
 677	}
 678
 679	data->bank2_sensors = i;
 680	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
 681		(int)data->bank2_sensors);
 682}
 683
 684static void
 685abituguru_detect_no_pwms(struct abituguru_data *data)
 686{
 687	int i, j;
 688
 689	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
 690		data->pwms = pwms;
 691		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
 692			"\"pwms\" module param\n", (int)data->pwms);
 693		return;
 694	}
 695
 696	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
 697	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 698		/*
 699		 * 0x80 is the enable bit and the low
 700		 * nibble is which temp sensor to use,
 701		 * the other bits should be 0
 702		 */
 703		if (data->pwm_settings[i][0] & ~0x8F) {
 704			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 705				"to be a pwm channel: settings[0] = %02X\n",
 706				i, (unsigned int)data->pwm_settings[i][0]);
 707			break;
 708		}
 709
 710		/*
 711		 * the low nibble must correspond to one of the temp sensors
 712		 * we've found
 713		 */
 714		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
 715				j++) {
 716			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
 717					(data->pwm_settings[i][0] & 0x0F))
 718				break;
 719		}
 720		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
 721			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 722				"to be a pwm channel: %d is not a valid temp "
 723				"sensor address\n", i,
 724				data->pwm_settings[i][0] & 0x0F);
 725			break;
 726		}
 727
 728		/* check if all other settings are within the allowed range */
 729		for (j = 1; j < 5; j++) {
 730			u8 min;
 731			/* special case pwm1 min pwm% */
 732			if ((i == 0) && ((j == 1) || (j == 2)))
 733				min = 77;
 734			else
 735				min = abituguru_pwm_min[j];
 736			if (data->pwm_settings[i][j] < min) {
 737				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 738					"not seem to be a pwm channel: "
 739					"setting %d (%d) is below the minimum "
 740					"value (%d)\n", i, j,
 741					(int)data->pwm_settings[i][j],
 742					(int)min);
 743				goto abituguru_detect_no_pwms_exit;
 744			}
 745			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
 746				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 747					"not seem to be a pwm channel: "
 748					"setting %d (%d) is above the maximum "
 749					"value (%d)\n", i, j,
 750					(int)data->pwm_settings[i][j],
 751					(int)abituguru_pwm_max[j]);
 752				goto abituguru_detect_no_pwms_exit;
 753			}
 754		}
 755
 756		/* check that min temp < max temp and min pwm < max pwm */
 757		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
 758			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 759				"to be a pwm channel: min pwm (%d) >= "
 760				"max pwm (%d)\n", i,
 761				(int)data->pwm_settings[i][1],
 762				(int)data->pwm_settings[i][2]);
 763			break;
 764		}
 765		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
 766			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 767				"to be a pwm channel: min temp (%d) >= "
 768				"max temp (%d)\n", i,
 769				(int)data->pwm_settings[i][3],
 770				(int)data->pwm_settings[i][4]);
 771			break;
 772		}
 773	}
 774
 775abituguru_detect_no_pwms_exit:
 776	data->pwms = i;
 777	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
 778}
 779
 780/*
 781 * Following are the sysfs callback functions. These functions expect:
 782 * sensor_device_attribute_2->index:   sensor address/offset in the bank
 783 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 784 */
 785static struct abituguru_data *abituguru_update_device(struct device *dev);
 786
 787static ssize_t show_bank1_value(struct device *dev,
 788	struct device_attribute *devattr, char *buf)
 789{
 790	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 791	struct abituguru_data *data = abituguru_update_device(dev);
 792	if (!data)
 793		return -EIO;
 794	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
 795		data->bank1_max_value[attr->index] + 128) / 255);
 796}
 797
 798static ssize_t show_bank1_setting(struct device *dev,
 799	struct device_attribute *devattr, char *buf)
 800{
 801	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 802	struct abituguru_data *data = dev_get_drvdata(dev);
 803	return sprintf(buf, "%d\n",
 804		(data->bank1_settings[attr->index][attr->nr] *
 805		data->bank1_max_value[attr->index] + 128) / 255);
 806}
 807
 808static ssize_t show_bank2_value(struct device *dev,
 809	struct device_attribute *devattr, char *buf)
 810{
 811	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 812	struct abituguru_data *data = abituguru_update_device(dev);
 813	if (!data)
 814		return -EIO;
 815	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
 816		ABIT_UGURU_FAN_MAX + 128) / 255);
 817}
 818
 819static ssize_t show_bank2_setting(struct device *dev,
 820	struct device_attribute *devattr, char *buf)
 821{
 822	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 823	struct abituguru_data *data = dev_get_drvdata(dev);
 824	return sprintf(buf, "%d\n",
 825		(data->bank2_settings[attr->index][attr->nr] *
 826		ABIT_UGURU_FAN_MAX + 128) / 255);
 827}
 828
 829static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
 830	*devattr, const char *buf, size_t count)
 831{
 832	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 833	struct abituguru_data *data = dev_get_drvdata(dev);
 834	unsigned long val;
 835	ssize_t ret;
 836
 837	ret = kstrtoul(buf, 10, &val);
 838	if (ret)
 839		return ret;
 840
 841	ret = count;
 842	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
 843		data->bank1_max_value[attr->index];
 844	if (val > 255)
 845		return -EINVAL;
 846
 847	mutex_lock(&data->update_lock);
 848	if (data->bank1_settings[attr->index][attr->nr] != val) {
 849		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
 850		data->bank1_settings[attr->index][attr->nr] = val;
 851		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 852				attr->index, data->bank1_settings[attr->index],
 853				3) <= attr->nr) {
 854			data->bank1_settings[attr->index][attr->nr] = orig_val;
 855			ret = -EIO;
 856		}
 857	}
 858	mutex_unlock(&data->update_lock);
 859	return ret;
 860}
 861
 862static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
 863	*devattr, const char *buf, size_t count)
 864{
 865	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 866	struct abituguru_data *data = dev_get_drvdata(dev);
 867	unsigned long val;
 868	ssize_t ret;
 869
 870	ret = kstrtoul(buf, 10, &val);
 871	if (ret)
 872		return ret;
 873
 874	ret = count;
 875	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
 876
 877	/* this check can be done before taking the lock */
 878	if (val < abituguru_bank2_min_threshold ||
 879			val > abituguru_bank2_max_threshold)
 880		return -EINVAL;
 881
 882	mutex_lock(&data->update_lock);
 883	if (data->bank2_settings[attr->index][attr->nr] != val) {
 884		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
 885		data->bank2_settings[attr->index][attr->nr] = val;
 886		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
 887				attr->index, data->bank2_settings[attr->index],
 888				2) <= attr->nr) {
 889			data->bank2_settings[attr->index][attr->nr] = orig_val;
 890			ret = -EIO;
 891		}
 892	}
 893	mutex_unlock(&data->update_lock);
 894	return ret;
 895}
 896
 897static ssize_t show_bank1_alarm(struct device *dev,
 898	struct device_attribute *devattr, char *buf)
 899{
 900	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 901	struct abituguru_data *data = abituguru_update_device(dev);
 902	if (!data)
 903		return -EIO;
 904	/*
 905	 * See if the alarm bit for this sensor is set, and if the
 906	 * alarm matches the type of alarm we're looking for (for volt
 907	 * it can be either low or high). The type is stored in a few
 908	 * readonly bits in the settings part of the relevant sensor.
 909	 * The bitmask of the type is passed to us in attr->nr.
 910	 */
 911	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
 912			(data->bank1_settings[attr->index][0] & attr->nr))
 913		return sprintf(buf, "1\n");
 914	else
 915		return sprintf(buf, "0\n");
 916}
 917
 918static ssize_t show_bank2_alarm(struct device *dev,
 919	struct device_attribute *devattr, char *buf)
 920{
 921	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 922	struct abituguru_data *data = abituguru_update_device(dev);
 923	if (!data)
 924		return -EIO;
 925	if (data->alarms[2] & (0x01 << attr->index))
 926		return sprintf(buf, "1\n");
 927	else
 928		return sprintf(buf, "0\n");
 929}
 930
 931static ssize_t show_bank1_mask(struct device *dev,
 932	struct device_attribute *devattr, char *buf)
 933{
 934	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 935	struct abituguru_data *data = dev_get_drvdata(dev);
 936	if (data->bank1_settings[attr->index][0] & attr->nr)
 937		return sprintf(buf, "1\n");
 938	else
 939		return sprintf(buf, "0\n");
 940}
 941
 942static ssize_t show_bank2_mask(struct device *dev,
 943	struct device_attribute *devattr, char *buf)
 944{
 945	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 946	struct abituguru_data *data = dev_get_drvdata(dev);
 947	if (data->bank2_settings[attr->index][0] & attr->nr)
 948		return sprintf(buf, "1\n");
 949	else
 950		return sprintf(buf, "0\n");
 951}
 952
 953static ssize_t store_bank1_mask(struct device *dev,
 954	struct device_attribute *devattr, const char *buf, size_t count)
 955{
 956	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 957	struct abituguru_data *data = dev_get_drvdata(dev);
 958	ssize_t ret;
 959	u8 orig_val;
 960	unsigned long mask;
 961
 962	ret = kstrtoul(buf, 10, &mask);
 963	if (ret)
 964		return ret;
 965
 966	ret = count;
 967	mutex_lock(&data->update_lock);
 968	orig_val = data->bank1_settings[attr->index][0];
 969
 970	if (mask)
 971		data->bank1_settings[attr->index][0] |= attr->nr;
 972	else
 973		data->bank1_settings[attr->index][0] &= ~attr->nr;
 974
 975	if ((data->bank1_settings[attr->index][0] != orig_val) &&
 976			(abituguru_write(data,
 977			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
 978			data->bank1_settings[attr->index], 3) < 1)) {
 979		data->bank1_settings[attr->index][0] = orig_val;
 980		ret = -EIO;
 981	}
 982	mutex_unlock(&data->update_lock);
 983	return ret;
 984}
 985
 986static ssize_t store_bank2_mask(struct device *dev,
 987	struct device_attribute *devattr, const char *buf, size_t count)
 988{
 989	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 990	struct abituguru_data *data = dev_get_drvdata(dev);
 991	ssize_t ret;
 992	u8 orig_val;
 993	unsigned long mask;
 994
 995	ret = kstrtoul(buf, 10, &mask);
 996	if (ret)
 997		return ret;
 998
 999	ret = count;
1000	mutex_lock(&data->update_lock);
1001	orig_val = data->bank2_settings[attr->index][0];
1002
1003	if (mask)
1004		data->bank2_settings[attr->index][0] |= attr->nr;
1005	else
1006		data->bank2_settings[attr->index][0] &= ~attr->nr;
1007
1008	if ((data->bank2_settings[attr->index][0] != orig_val) &&
1009			(abituguru_write(data,
1010			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1011			data->bank2_settings[attr->index], 2) < 1)) {
1012		data->bank2_settings[attr->index][0] = orig_val;
1013		ret = -EIO;
1014	}
1015	mutex_unlock(&data->update_lock);
1016	return ret;
1017}
1018
1019/* Fan PWM (speed control) */
1020static ssize_t show_pwm_setting(struct device *dev,
1021	struct device_attribute *devattr, char *buf)
1022{
1023	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024	struct abituguru_data *data = dev_get_drvdata(dev);
1025	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1026		abituguru_pwm_settings_multiplier[attr->nr]);
1027}
1028
1029static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1030	*devattr, const char *buf, size_t count)
1031{
1032	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1033	struct abituguru_data *data = dev_get_drvdata(dev);
1034	u8 min;
1035	unsigned long val;
1036	ssize_t ret;
1037
1038	ret = kstrtoul(buf, 10, &val);
1039	if (ret)
1040		return ret;
1041
1042	ret = count;
1043	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1044				abituguru_pwm_settings_multiplier[attr->nr];
1045
1046	/* special case pwm1 min pwm% */
1047	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1048		min = 77;
1049	else
1050		min = abituguru_pwm_min[attr->nr];
1051
1052	/* this check can be done before taking the lock */
1053	if (val < min || val > abituguru_pwm_max[attr->nr])
1054		return -EINVAL;
1055
1056	mutex_lock(&data->update_lock);
1057	/* this check needs to be done after taking the lock */
1058	if ((attr->nr & 1) &&
1059			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
1060		ret = -EINVAL;
1061	else if (!(attr->nr & 1) &&
1062			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
1063		ret = -EINVAL;
1064	else if (data->pwm_settings[attr->index][attr->nr] != val) {
1065		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1066		data->pwm_settings[attr->index][attr->nr] = val;
1067		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1068				attr->index, data->pwm_settings[attr->index],
1069				5) <= attr->nr) {
1070			data->pwm_settings[attr->index][attr->nr] =
1071				orig_val;
1072			ret = -EIO;
1073		}
1074	}
1075	mutex_unlock(&data->update_lock);
1076	return ret;
1077}
1078
1079static ssize_t show_pwm_sensor(struct device *dev,
1080	struct device_attribute *devattr, char *buf)
1081{
1082	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1083	struct abituguru_data *data = dev_get_drvdata(dev);
1084	int i;
1085	/*
1086	 * We need to walk to the temp sensor addresses to find what
1087	 * the userspace id of the configured temp sensor is.
1088	 */
1089	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1090		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1091				(data->pwm_settings[attr->index][0] & 0x0F))
1092			return sprintf(buf, "%d\n", i+1);
1093
1094	return -ENXIO;
1095}
1096
1097static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1098	*devattr, const char *buf, size_t count)
1099{
1100	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1101	struct abituguru_data *data = dev_get_drvdata(dev);
1102	ssize_t ret;
1103	unsigned long val;
1104	u8 orig_val;
1105	u8 address;
1106
1107	ret = kstrtoul(buf, 10, &val);
1108	if (ret)
1109		return ret;
1110
1111	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1112		return -EINVAL;
1113
1114	val -= 1;
1115	ret = count;
1116	mutex_lock(&data->update_lock);
1117	orig_val = data->pwm_settings[attr->index][0];
1118	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1119	data->pwm_settings[attr->index][0] &= 0xF0;
1120	data->pwm_settings[attr->index][0] |= address;
1121	if (data->pwm_settings[attr->index][0] != orig_val) {
1122		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1123				    data->pwm_settings[attr->index], 5) < 1) {
1124			data->pwm_settings[attr->index][0] = orig_val;
1125			ret = -EIO;
1126		}
1127	}
1128	mutex_unlock(&data->update_lock);
1129	return ret;
1130}
1131
1132static ssize_t show_pwm_enable(struct device *dev,
1133	struct device_attribute *devattr, char *buf)
1134{
1135	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1136	struct abituguru_data *data = dev_get_drvdata(dev);
1137	int res = 0;
1138	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1139		res = 2;
1140	return sprintf(buf, "%d\n", res);
1141}
1142
1143static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1144	*devattr, const char *buf, size_t count)
1145{
1146	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1147	struct abituguru_data *data = dev_get_drvdata(dev);
1148	u8 orig_val;
1149	ssize_t ret;
1150	unsigned long user_val;
1151
1152	ret = kstrtoul(buf, 10, &user_val);
1153	if (ret)
1154		return ret;
1155
1156	ret = count;
1157	mutex_lock(&data->update_lock);
1158	orig_val = data->pwm_settings[attr->index][0];
1159	switch (user_val) {
1160	case 0:
1161		data->pwm_settings[attr->index][0] &=
1162			~ABIT_UGURU_FAN_PWM_ENABLE;
1163		break;
1164	case 2:
1165		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1166		break;
1167	default:
1168		ret = -EINVAL;
1169	}
1170	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1171			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1172			attr->index, data->pwm_settings[attr->index],
1173			5) < 1)) {
1174		data->pwm_settings[attr->index][0] = orig_val;
1175		ret = -EIO;
1176	}
1177	mutex_unlock(&data->update_lock);
1178	return ret;
1179}
1180
1181static ssize_t show_name(struct device *dev,
1182	struct device_attribute *devattr, char *buf)
1183{
1184	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1185}
1186
1187/* Sysfs attr templates, the real entries are generated automatically. */
1188static const
1189struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1190	{
1191	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1192	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1193		store_bank1_setting, 1, 0),
1194	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1195		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1196	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1197		store_bank1_setting, 2, 0),
1198	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1199		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1200	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1201		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1202	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1203		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1204	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1205		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1206	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1207		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1208	}, {
1209	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1210	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1211		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1212	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1213		store_bank1_setting, 1, 0),
1214	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1215		store_bank1_setting, 2, 0),
1216	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1217		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1218	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1219		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1220	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1221		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1222	}
1223};
1224
1225static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1226	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1227	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1228	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1229		store_bank2_setting, 1, 0),
1230	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1231		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1232	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1233		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1234	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1235		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1236};
1237
1238static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1239	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1240		store_pwm_enable, 0, 0),
1241	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1242		store_pwm_sensor, 0, 0),
1243	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1244		store_pwm_setting, 1, 0),
1245	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1246		store_pwm_setting, 2, 0),
1247	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1248		store_pwm_setting, 3, 0),
1249	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1250		store_pwm_setting, 4, 0),
1251};
1252
1253static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1254	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1255};
1256
1257static int abituguru_probe(struct platform_device *pdev)
1258{
1259	struct abituguru_data *data;
1260	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1261	char *sysfs_filename;
1262
1263	/*
1264	 * El weirdo probe order, to keep the sysfs order identical to the
1265	 * BIOS and window-appliction listing order.
1266	 */
1267	static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1268		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1269		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1270
1271	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1272			    GFP_KERNEL);
1273	if (!data)
1274		return -ENOMEM;
1275
1276	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1277	mutex_init(&data->update_lock);
1278	platform_set_drvdata(pdev, data);
1279
1280	/* See if the uGuru is ready */
1281	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1282		data->uguru_ready = 1;
1283
1284	/*
1285	 * Completely read the uGuru this has 2 purposes:
1286	 * - testread / see if one really is there.
1287	 * - make an in memory copy of all the uguru settings for future use.
1288	 */
1289	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1290			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1291		goto abituguru_probe_error;
1292
1293	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1294		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1295				&data->bank1_value[i], 1,
1296				ABIT_UGURU_MAX_RETRIES) != 1)
1297			goto abituguru_probe_error;
1298		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1299				data->bank1_settings[i], 3,
1300				ABIT_UGURU_MAX_RETRIES) != 3)
1301			goto abituguru_probe_error;
1302	}
1303	/*
1304	 * Note: We don't know how many bank2 sensors / pwms there really are,
1305	 * but in order to "detect" this we need to read the maximum amount
1306	 * anyways. If we read sensors/pwms not there we'll just read crap
1307	 * this can't hurt. We need the detection because we don't want
1308	 * unwanted writes, which will hurt!
1309	 */
1310	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1311		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1312				&data->bank2_value[i], 1,
1313				ABIT_UGURU_MAX_RETRIES) != 1)
1314			goto abituguru_probe_error;
1315		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1316				data->bank2_settings[i], 2,
1317				ABIT_UGURU_MAX_RETRIES) != 2)
1318			goto abituguru_probe_error;
1319	}
1320	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1321		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1322				data->pwm_settings[i], 5,
1323				ABIT_UGURU_MAX_RETRIES) != 5)
1324			goto abituguru_probe_error;
1325	}
1326	data->last_updated = jiffies;
1327
1328	/* Detect sensor types and fill the sysfs attr for bank1 */
1329	sysfs_attr_i = 0;
1330	sysfs_filename = data->sysfs_names;
1331	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1332	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1333		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1334		if (res < 0)
1335			goto abituguru_probe_error;
1336		if (res == ABIT_UGURU_NC)
1337			continue;
1338
1339		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1340		for (j = 0; j < (res ? 7 : 9); j++) {
1341			used = snprintf(sysfs_filename, sysfs_names_free,
1342				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1343				attr.name, data->bank1_sensors[res] + res)
1344				+ 1;
1345			data->sysfs_attr[sysfs_attr_i] =
1346				abituguru_sysfs_bank1_templ[res][j];
1347			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1348				sysfs_filename;
1349			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1350			sysfs_filename += used;
1351			sysfs_names_free -= used;
1352			sysfs_attr_i++;
1353		}
1354		data->bank1_max_value[probe_order[i]] =
1355			abituguru_bank1_max_value[res];
1356		data->bank1_address[res][data->bank1_sensors[res]] =
1357			probe_order[i];
1358		data->bank1_sensors[res]++;
1359	}
1360	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1361	abituguru_detect_no_bank2_sensors(data);
1362	for (i = 0; i < data->bank2_sensors; i++) {
1363		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1364			used = snprintf(sysfs_filename, sysfs_names_free,
1365				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1366				i + 1) + 1;
1367			data->sysfs_attr[sysfs_attr_i] =
1368				abituguru_sysfs_fan_templ[j];
1369			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1370				sysfs_filename;
1371			data->sysfs_attr[sysfs_attr_i].index = i;
1372			sysfs_filename += used;
1373			sysfs_names_free -= used;
1374			sysfs_attr_i++;
1375		}
1376	}
1377	/* Detect number of sensors and fill the sysfs attr for pwms */
1378	abituguru_detect_no_pwms(data);
1379	for (i = 0; i < data->pwms; i++) {
1380		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1381			used = snprintf(sysfs_filename, sysfs_names_free,
1382				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1383				i + 1) + 1;
1384			data->sysfs_attr[sysfs_attr_i] =
1385				abituguru_sysfs_pwm_templ[j];
1386			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1387				sysfs_filename;
1388			data->sysfs_attr[sysfs_attr_i].index = i;
1389			sysfs_filename += used;
1390			sysfs_names_free -= used;
1391			sysfs_attr_i++;
1392		}
1393	}
1394	/* Fail safe check, this should never happen! */
1395	if (sysfs_names_free < 0) {
1396		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1397		       never_happen, report_this);
1398		res = -ENAMETOOLONG;
1399		goto abituguru_probe_error;
1400	}
1401	pr_info("found Abit uGuru\n");
1402
1403	/* Register sysfs hooks */
1404	for (i = 0; i < sysfs_attr_i; i++) {
1405		res = device_create_file(&pdev->dev,
1406					 &data->sysfs_attr[i].dev_attr);
1407		if (res)
1408			goto abituguru_probe_error;
1409	}
1410	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1411		res = device_create_file(&pdev->dev,
1412					 &abituguru_sysfs_attr[i].dev_attr);
1413		if (res)
1414			goto abituguru_probe_error;
1415	}
1416
1417	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1418	if (!IS_ERR(data->hwmon_dev))
1419		return 0; /* success */
1420
1421	res = PTR_ERR(data->hwmon_dev);
1422abituguru_probe_error:
1423	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1424		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1425	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1426		device_remove_file(&pdev->dev,
1427			&abituguru_sysfs_attr[i].dev_attr);
1428	return res;
1429}
1430
1431static int abituguru_remove(struct platform_device *pdev)
1432{
1433	int i;
1434	struct abituguru_data *data = platform_get_drvdata(pdev);
1435
1436	hwmon_device_unregister(data->hwmon_dev);
1437	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1438		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1439	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1440		device_remove_file(&pdev->dev,
1441			&abituguru_sysfs_attr[i].dev_attr);
1442
1443	return 0;
1444}
1445
1446static struct abituguru_data *abituguru_update_device(struct device *dev)
1447{
1448	int i, err;
1449	struct abituguru_data *data = dev_get_drvdata(dev);
1450	/* fake a complete successful read if no update necessary. */
1451	char success = 1;
1452
1453	mutex_lock(&data->update_lock);
1454	if (time_after(jiffies, data->last_updated + HZ)) {
1455		success = 0;
1456		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1457				     data->alarms, 3, 0);
1458		if (err != 3)
1459			goto LEAVE_UPDATE;
1460		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1461			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1462					     i, &data->bank1_value[i], 1, 0);
1463			if (err != 1)
1464				goto LEAVE_UPDATE;
1465			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1466					     i, data->bank1_settings[i], 3, 0);
1467			if (err != 3)
1468				goto LEAVE_UPDATE;
1469		}
1470		for (i = 0; i < data->bank2_sensors; i++) {
1471			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1472					     &data->bank2_value[i], 1, 0);
1473			if (err != 1)
1474				goto LEAVE_UPDATE;
1475		}
1476		/* success! */
1477		success = 1;
1478		data->update_timeouts = 0;
1479LEAVE_UPDATE:
1480		/* handle timeout condition */
1481		if (!success && (err == -EBUSY || err >= 0)) {
1482			/* No overflow please */
1483			if (data->update_timeouts < 255u)
1484				data->update_timeouts++;
1485			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1486				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1487					"try again next update\n");
1488				/* Just a timeout, fake a successful read */
1489				success = 1;
1490			} else
1491				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1492					"times waiting for more input state\n",
1493					(int)data->update_timeouts);
1494		}
1495		/* On success set last_updated */
1496		if (success)
1497			data->last_updated = jiffies;
1498	}
1499	mutex_unlock(&data->update_lock);
1500
1501	if (success)
1502		return data;
1503	else
1504		return NULL;
1505}
1506
 
1507static int abituguru_suspend(struct device *dev)
1508{
1509	struct abituguru_data *data = dev_get_drvdata(dev);
1510	/*
1511	 * make sure all communications with the uguru are done and no new
1512	 * ones are started
1513	 */
1514	mutex_lock(&data->update_lock);
1515	return 0;
1516}
1517
1518static int abituguru_resume(struct device *dev)
1519{
1520	struct abituguru_data *data = dev_get_drvdata(dev);
1521	/* See if the uGuru is still ready */
1522	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1523		data->uguru_ready = 0;
1524	mutex_unlock(&data->update_lock);
1525	return 0;
1526}
1527
1528static DEFINE_SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
 
 
 
 
1529
1530static struct platform_driver abituguru_driver = {
1531	.driver = {
1532		.name	= ABIT_UGURU_NAME,
1533		.pm	= pm_sleep_ptr(&abituguru_pm),
1534	},
1535	.probe		= abituguru_probe,
1536	.remove		= abituguru_remove,
1537};
1538
1539static int __init abituguru_detect(void)
1540{
1541	/*
1542	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1543	 * at DATA and 0xAC, when this driver has already been loaded once
1544	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1545	 * scenario but some will hold 0x00.
1546	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1547	 * after reading CMD first, so CMD must be read first!
1548	 */
1549	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1550	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1551	if (((data_val == 0x00) || (data_val == 0x08)) &&
1552	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1553		return ABIT_UGURU_BASE;
1554
1555	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1556		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1557
1558	if (force) {
1559		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1560		return ABIT_UGURU_BASE;
1561	}
1562
1563	/* No uGuru found */
1564	return -ENODEV;
1565}
1566
1567static struct platform_device *abituguru_pdev;
1568
1569static int __init abituguru_init(void)
1570{
1571	int address, err;
1572	struct resource res = { .flags = IORESOURCE_IO };
1573	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1574
1575	/* safety check, refuse to load on non Abit motherboards */
1576	if (!force && (!board_vendor ||
1577			strcmp(board_vendor, "http://www.abit.com.tw/")))
1578		return -ENODEV;
1579
1580	address = abituguru_detect();
1581	if (address < 0)
1582		return address;
1583
1584	err = platform_driver_register(&abituguru_driver);
1585	if (err)
1586		goto exit;
1587
1588	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1589	if (!abituguru_pdev) {
1590		pr_err("Device allocation failed\n");
1591		err = -ENOMEM;
1592		goto exit_driver_unregister;
1593	}
1594
1595	res.start = address;
1596	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1597	res.name = ABIT_UGURU_NAME;
1598
1599	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1600	if (err) {
1601		pr_err("Device resource addition failed (%d)\n", err);
1602		goto exit_device_put;
1603	}
1604
1605	err = platform_device_add(abituguru_pdev);
1606	if (err) {
1607		pr_err("Device addition failed (%d)\n", err);
1608		goto exit_device_put;
1609	}
1610
1611	return 0;
1612
1613exit_device_put:
1614	platform_device_put(abituguru_pdev);
1615exit_driver_unregister:
1616	platform_driver_unregister(&abituguru_driver);
1617exit:
1618	return err;
1619}
1620
1621static void __exit abituguru_exit(void)
1622{
1623	platform_device_unregister(abituguru_pdev);
1624	platform_driver_unregister(&abituguru_driver);
1625}
1626
1627MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1628MODULE_DESCRIPTION("Abit uGuru Sensor device");
1629MODULE_LICENSE("GPL");
1630
1631module_init(abituguru_init);
1632module_exit(abituguru_exit);