Linux Audio

Check our new training course

Loading...
v5.9
 
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/mm_types.h>
  24#include <linux/slab.h>
  25#include <linux/types.h>
  26#include <linux/sched/signal.h>
  27#include <linux/sched/mm.h>
  28#include <linux/uaccess.h>
  29#include <linux/mman.h>
  30#include <linux/memory.h>
  31#include "kfd_priv.h"
  32#include "kfd_events.h"
  33#include "kfd_iommu.h"
  34#include <linux/device.h>
  35
  36/*
  37 * Wrapper around wait_queue_entry_t
  38 */
  39struct kfd_event_waiter {
  40	wait_queue_entry_t wait;
  41	struct kfd_event *event; /* Event to wait for */
  42	bool activated;		 /* Becomes true when event is signaled */
  43};
  44
  45/*
  46 * Each signal event needs a 64-bit signal slot where the signaler will write
  47 * a 1 before sending an interrupt. (This is needed because some interrupts
  48 * do not contain enough spare data bits to identify an event.)
  49 * We get whole pages and map them to the process VA.
  50 * Individual signal events use their event_id as slot index.
  51 */
  52struct kfd_signal_page {
  53	uint64_t *kernel_address;
  54	uint64_t __user *user_address;
  55	bool need_to_free_pages;
  56};
  57
  58
  59static uint64_t *page_slots(struct kfd_signal_page *page)
  60{
  61	return page->kernel_address;
  62}
  63
  64static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
  65{
  66	void *backing_store;
  67	struct kfd_signal_page *page;
  68
  69	page = kzalloc(sizeof(*page), GFP_KERNEL);
  70	if (!page)
  71		return NULL;
  72
  73	backing_store = (void *) __get_free_pages(GFP_KERNEL,
  74					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
  75	if (!backing_store)
  76		goto fail_alloc_signal_store;
  77
  78	/* Initialize all events to unsignaled */
  79	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
  80	       KFD_SIGNAL_EVENT_LIMIT * 8);
  81
  82	page->kernel_address = backing_store;
  83	page->need_to_free_pages = true;
  84	pr_debug("Allocated new event signal page at %p, for process %p\n",
  85			page, p);
  86
  87	return page;
  88
  89fail_alloc_signal_store:
  90	kfree(page);
  91	return NULL;
  92}
  93
  94static int allocate_event_notification_slot(struct kfd_process *p,
  95					    struct kfd_event *ev)
 
  96{
  97	int id;
  98
  99	if (!p->signal_page) {
 100		p->signal_page = allocate_signal_page(p);
 101		if (!p->signal_page)
 102			return -ENOMEM;
 103		/* Oldest user mode expects 256 event slots */
 104		p->signal_mapped_size = 256*8;
 105	}
 106
 107	/*
 108	 * Compatibility with old user mode: Only use signal slots
 109	 * user mode has mapped, may be less than
 110	 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
 111	 * of the event limit without breaking user mode.
 112	 */
 113	id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
 114		       GFP_KERNEL);
 
 
 
 
 
 115	if (id < 0)
 116		return id;
 117
 118	ev->event_id = id;
 119	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
 120
 121	return 0;
 122}
 123
 124/*
 125 * Assumes that p->event_mutex is held and of course that p is not going
 126 * away (current or locked).
 127 */
 128static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
 129{
 130	return idr_find(&p->event_idr, id);
 131}
 132
 133/**
 134 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
 135 * @p:     Pointer to struct kfd_process
 136 * @id:    ID to look up
 137 * @bits:  Number of valid bits in @id
 138 *
 139 * Finds the first signaled event with a matching partial ID. If no
 140 * matching signaled event is found, returns NULL. In that case the
 141 * caller should assume that the partial ID is invalid and do an
 142 * exhaustive search of all siglaned events.
 143 *
 144 * If multiple events with the same partial ID signal at the same
 145 * time, they will be found one interrupt at a time, not necessarily
 146 * in the same order the interrupts occurred. As long as the number of
 147 * interrupts is correct, all signaled events will be seen by the
 148 * driver.
 149 */
 150static struct kfd_event *lookup_signaled_event_by_partial_id(
 151	struct kfd_process *p, uint32_t id, uint32_t bits)
 152{
 153	struct kfd_event *ev;
 154
 155	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
 156		return NULL;
 157
 158	/* Fast path for the common case that @id is not a partial ID
 159	 * and we only need a single lookup.
 160	 */
 161	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
 162		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
 163			return NULL;
 164
 165		return idr_find(&p->event_idr, id);
 166	}
 167
 168	/* General case for partial IDs: Iterate over all matching IDs
 169	 * and find the first one that has signaled.
 170	 */
 171	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
 172		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
 173			continue;
 174
 175		ev = idr_find(&p->event_idr, id);
 176	}
 177
 178	return ev;
 179}
 180
 181static int create_signal_event(struct file *devkfd,
 182				struct kfd_process *p,
 183				struct kfd_event *ev)
 184{
 185	int ret;
 186
 187	if (p->signal_mapped_size &&
 188	    p->signal_event_count == p->signal_mapped_size / 8) {
 189		if (!p->signal_event_limit_reached) {
 190			pr_debug("Signal event wasn't created because limit was reached\n");
 191			p->signal_event_limit_reached = true;
 192		}
 193		return -ENOSPC;
 194	}
 195
 196	ret = allocate_event_notification_slot(p, ev);
 197	if (ret) {
 198		pr_warn("Signal event wasn't created because out of kernel memory\n");
 199		return ret;
 200	}
 201
 202	p->signal_event_count++;
 203
 204	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
 205	pr_debug("Signal event number %zu created with id %d, address %p\n",
 206			p->signal_event_count, ev->event_id,
 207			ev->user_signal_address);
 208
 209	return 0;
 210}
 211
 212static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
 213{
 214	/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
 215	 * intentional integer overflow to -1 without a compiler
 216	 * warning. idr_alloc treats a negative value as "maximum
 217	 * signed integer".
 218	 */
 219	int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
 220			   (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
 221			   GFP_KERNEL);
 
 
 
 
 
 
 222
 223	if (id < 0)
 224		return id;
 225	ev->event_id = id;
 226
 227	return 0;
 228}
 229
 230void kfd_event_init_process(struct kfd_process *p)
 231{
 
 
 232	mutex_init(&p->event_mutex);
 233	idr_init(&p->event_idr);
 234	p->signal_page = NULL;
 235	p->signal_event_count = 0;
 
 
 
 
 
 
 
 
 
 
 236}
 237
 238static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
 239{
 240	struct kfd_event_waiter *waiter;
 241
 242	/* Wake up pending waiters. They will return failure */
 
 243	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
 244		waiter->event = NULL;
 245	wake_up_all(&ev->wq);
 
 246
 247	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
 248	    ev->type == KFD_EVENT_TYPE_DEBUG)
 249		p->signal_event_count--;
 250
 251	idr_remove(&p->event_idr, ev->event_id);
 252	kfree(ev);
 253}
 254
 255static void destroy_events(struct kfd_process *p)
 256{
 257	struct kfd_event *ev;
 258	uint32_t id;
 259
 260	idr_for_each_entry(&p->event_idr, ev, id)
 261		destroy_event(p, ev);
 
 262	idr_destroy(&p->event_idr);
 
 263}
 264
 265/*
 266 * We assume that the process is being destroyed and there is no need to
 267 * unmap the pages or keep bookkeeping data in order.
 268 */
 269static void shutdown_signal_page(struct kfd_process *p)
 270{
 271	struct kfd_signal_page *page = p->signal_page;
 272
 273	if (page) {
 274		if (page->need_to_free_pages)
 275			free_pages((unsigned long)page->kernel_address,
 276				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
 277		kfree(page);
 278	}
 279}
 280
 281void kfd_event_free_process(struct kfd_process *p)
 282{
 283	destroy_events(p);
 284	shutdown_signal_page(p);
 285}
 286
 287static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
 288{
 289	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
 290					ev->type == KFD_EVENT_TYPE_DEBUG;
 291}
 292
 293static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
 294{
 295	return ev->type == KFD_EVENT_TYPE_SIGNAL;
 296}
 297
 298int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
 299		       uint64_t size)
 300{
 301	struct kfd_signal_page *page;
 302
 303	if (p->signal_page)
 304		return -EBUSY;
 305
 306	page = kzalloc(sizeof(*page), GFP_KERNEL);
 307	if (!page)
 308		return -ENOMEM;
 309
 310	/* Initialize all events to unsignaled */
 311	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
 312	       KFD_SIGNAL_EVENT_LIMIT * 8);
 313
 314	page->kernel_address = kernel_address;
 315
 316	p->signal_page = page;
 317	p->signal_mapped_size = size;
 318
 319	return 0;
 320}
 321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322int kfd_event_create(struct file *devkfd, struct kfd_process *p,
 323		     uint32_t event_type, bool auto_reset, uint32_t node_id,
 324		     uint32_t *event_id, uint32_t *event_trigger_data,
 325		     uint64_t *event_page_offset, uint32_t *event_slot_index)
 326{
 327	int ret = 0;
 328	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 329
 330	if (!ev)
 331		return -ENOMEM;
 332
 333	ev->type = event_type;
 334	ev->auto_reset = auto_reset;
 335	ev->signaled = false;
 336
 
 337	init_waitqueue_head(&ev->wq);
 338
 339	*event_page_offset = 0;
 340
 341	mutex_lock(&p->event_mutex);
 342
 343	switch (event_type) {
 344	case KFD_EVENT_TYPE_SIGNAL:
 345	case KFD_EVENT_TYPE_DEBUG:
 346		ret = create_signal_event(devkfd, p, ev);
 347		if (!ret) {
 348			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
 349			*event_slot_index = ev->event_id;
 350		}
 351		break;
 352	default:
 353		ret = create_other_event(p, ev);
 354		break;
 355	}
 356
 357	if (!ret) {
 358		*event_id = ev->event_id;
 359		*event_trigger_data = ev->event_id;
 360	} else {
 361		kfree(ev);
 362	}
 363
 364	mutex_unlock(&p->event_mutex);
 365
 366	return ret;
 367}
 368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369/* Assumes that p is current. */
 370int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
 371{
 372	struct kfd_event *ev;
 373	int ret = 0;
 374
 375	mutex_lock(&p->event_mutex);
 376
 377	ev = lookup_event_by_id(p, event_id);
 378
 379	if (ev)
 380		destroy_event(p, ev);
 381	else
 382		ret = -EINVAL;
 383
 384	mutex_unlock(&p->event_mutex);
 385	return ret;
 386}
 387
 388static void set_event(struct kfd_event *ev)
 389{
 390	struct kfd_event_waiter *waiter;
 391
 392	/* Auto reset if the list is non-empty and we're waking
 393	 * someone. waitqueue_active is safe here because we're
 394	 * protected by the p->event_mutex, which is also held when
 395	 * updating the wait queues in kfd_wait_on_events.
 396	 */
 397	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
 398
 399	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
 400		waiter->activated = true;
 401
 402	wake_up_all(&ev->wq);
 403}
 404
 405/* Assumes that p is current. */
 406int kfd_set_event(struct kfd_process *p, uint32_t event_id)
 407{
 408	int ret = 0;
 409	struct kfd_event *ev;
 410
 411	mutex_lock(&p->event_mutex);
 412
 413	ev = lookup_event_by_id(p, event_id);
 
 
 
 
 
 414
 415	if (ev && event_can_be_cpu_signaled(ev))
 416		set_event(ev);
 417	else
 418		ret = -EINVAL;
 419
 420	mutex_unlock(&p->event_mutex);
 
 
 421	return ret;
 422}
 423
 424static void reset_event(struct kfd_event *ev)
 425{
 426	ev->signaled = false;
 427}
 428
 429/* Assumes that p is current. */
 430int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
 431{
 432	int ret = 0;
 433	struct kfd_event *ev;
 434
 435	mutex_lock(&p->event_mutex);
 436
 437	ev = lookup_event_by_id(p, event_id);
 
 
 
 
 
 438
 439	if (ev && event_can_be_cpu_signaled(ev))
 440		reset_event(ev);
 441	else
 442		ret = -EINVAL;
 443
 444	mutex_unlock(&p->event_mutex);
 
 
 445	return ret;
 446
 447}
 448
 449static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
 450{
 451	page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
 452}
 453
 454static void set_event_from_interrupt(struct kfd_process *p,
 455					struct kfd_event *ev)
 456{
 457	if (ev && event_can_be_gpu_signaled(ev)) {
 458		acknowledge_signal(p, ev);
 
 459		set_event(ev);
 
 460	}
 461}
 462
 463void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
 464				uint32_t valid_id_bits)
 465{
 466	struct kfd_event *ev = NULL;
 467
 468	/*
 469	 * Because we are called from arbitrary context (workqueue) as opposed
 470	 * to process context, kfd_process could attempt to exit while we are
 471	 * running so the lookup function increments the process ref count.
 472	 */
 473	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 474
 475	if (!p)
 476		return; /* Presumably process exited. */
 477
 478	mutex_lock(&p->event_mutex);
 479
 480	if (valid_id_bits)
 481		ev = lookup_signaled_event_by_partial_id(p, partial_id,
 482							 valid_id_bits);
 483	if (ev) {
 484		set_event_from_interrupt(p, ev);
 485	} else if (p->signal_page) {
 486		/*
 487		 * Partial ID lookup failed. Assume that the event ID
 488		 * in the interrupt payload was invalid and do an
 489		 * exhaustive search of signaled events.
 490		 */
 491		uint64_t *slots = page_slots(p->signal_page);
 492		uint32_t id;
 493
 494		if (valid_id_bits)
 495			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
 496					     partial_id, valid_id_bits);
 497
 498		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
 499			/* With relatively few events, it's faster to
 500			 * iterate over the event IDR
 501			 */
 502			idr_for_each_entry(&p->event_idr, ev, id) {
 503				if (id >= KFD_SIGNAL_EVENT_LIMIT)
 504					break;
 505
 506				if (slots[id] != UNSIGNALED_EVENT_SLOT)
 507					set_event_from_interrupt(p, ev);
 508			}
 509		} else {
 510			/* With relatively many events, it's faster to
 511			 * iterate over the signal slots and lookup
 512			 * only signaled events from the IDR.
 513			 */
 514			for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
 515				if (slots[id] != UNSIGNALED_EVENT_SLOT) {
 516					ev = lookup_event_by_id(p, id);
 517					set_event_from_interrupt(p, ev);
 518				}
 519		}
 520	}
 521
 522	mutex_unlock(&p->event_mutex);
 523	kfd_unref_process(p);
 524}
 525
 526static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
 527{
 528	struct kfd_event_waiter *event_waiters;
 529	uint32_t i;
 530
 531	event_waiters = kmalloc_array(num_events,
 532					sizeof(struct kfd_event_waiter),
 533					GFP_KERNEL);
 
 
 534
 535	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
 536		init_wait(&event_waiters[i].wait);
 537		event_waiters[i].activated = false;
 538	}
 539
 540	return event_waiters;
 541}
 542
 543static int init_event_waiter_get_status(struct kfd_process *p,
 544		struct kfd_event_waiter *waiter,
 545		uint32_t event_id)
 546{
 547	struct kfd_event *ev = lookup_event_by_id(p, event_id);
 548
 549	if (!ev)
 550		return -EINVAL;
 551
 
 552	waiter->event = ev;
 553	waiter->activated = ev->signaled;
 554	ev->signaled = ev->signaled && !ev->auto_reset;
 555
 556	return 0;
 557}
 558
 559static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
 560{
 561	struct kfd_event *ev = waiter->event;
 562
 563	/* Only add to the wait list if we actually need to
 564	 * wait on this event.
 565	 */
 566	if (!waiter->activated)
 567		add_wait_queue(&ev->wq, &waiter->wait);
 
 
 
 568}
 569
 570/* test_event_condition - Test condition of events being waited for
 571 * @all:           Return completion only if all events have signaled
 572 * @num_events:    Number of events to wait for
 573 * @event_waiters: Array of event waiters, one per event
 574 *
 575 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
 576 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
 577 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
 578 * the events have been destroyed.
 579 */
 580static uint32_t test_event_condition(bool all, uint32_t num_events,
 581				struct kfd_event_waiter *event_waiters)
 582{
 583	uint32_t i;
 584	uint32_t activated_count = 0;
 585
 586	for (i = 0; i < num_events; i++) {
 587		if (!event_waiters[i].event)
 588			return KFD_IOC_WAIT_RESULT_FAIL;
 589
 590		if (event_waiters[i].activated) {
 591			if (!all)
 592				return KFD_IOC_WAIT_RESULT_COMPLETE;
 593
 594			activated_count++;
 595		}
 596	}
 597
 598	return activated_count == num_events ?
 599		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
 600}
 601
 602/*
 603 * Copy event specific data, if defined.
 604 * Currently only memory exception events have additional data to copy to user
 605 */
 606static int copy_signaled_event_data(uint32_t num_events,
 607		struct kfd_event_waiter *event_waiters,
 608		struct kfd_event_data __user *data)
 609{
 610	struct kfd_hsa_memory_exception_data *src;
 611	struct kfd_hsa_memory_exception_data __user *dst;
 612	struct kfd_event_waiter *waiter;
 613	struct kfd_event *event;
 614	uint32_t i;
 615
 616	for (i = 0; i < num_events; i++) {
 617		waiter = &event_waiters[i];
 618		event = waiter->event;
 
 
 619		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
 620			dst = &data[i].memory_exception_data;
 621			src = &event->memory_exception_data;
 622			if (copy_to_user(dst, src,
 623				sizeof(struct kfd_hsa_memory_exception_data)))
 624				return -EFAULT;
 625		}
 626	}
 627
 628	return 0;
 629
 630}
 631
 632
 633
 634static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
 635{
 636	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
 637		return 0;
 638
 639	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
 640		return MAX_SCHEDULE_TIMEOUT;
 641
 642	/*
 643	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
 644	 * but we consider them finite.
 645	 * This hack is wrong, but nobody is likely to notice.
 646	 */
 647	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
 648
 649	return msecs_to_jiffies(user_timeout_ms) + 1;
 650}
 651
 652static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
 
 653{
 654	uint32_t i;
 655
 656	for (i = 0; i < num_events; i++)
 657		if (waiters[i].event)
 
 658			remove_wait_queue(&waiters[i].event->wq,
 659					  &waiters[i].wait);
 
 
 
 
 
 660
 661	kfree(waiters);
 662}
 663
 664int kfd_wait_on_events(struct kfd_process *p,
 665		       uint32_t num_events, void __user *data,
 666		       bool all, uint32_t user_timeout_ms,
 667		       uint32_t *wait_result)
 668{
 669	struct kfd_event_data __user *events =
 670			(struct kfd_event_data __user *) data;
 671	uint32_t i;
 672	int ret = 0;
 673
 674	struct kfd_event_waiter *event_waiters = NULL;
 675	long timeout = user_timeout_to_jiffies(user_timeout_ms);
 676
 677	event_waiters = alloc_event_waiters(num_events);
 678	if (!event_waiters) {
 679		ret = -ENOMEM;
 680		goto out;
 681	}
 682
 
 
 
 683	mutex_lock(&p->event_mutex);
 684
 685	for (i = 0; i < num_events; i++) {
 686		struct kfd_event_data event_data;
 687
 688		if (copy_from_user(&event_data, &events[i],
 689				sizeof(struct kfd_event_data))) {
 690			ret = -EFAULT;
 691			goto out_unlock;
 692		}
 693
 694		ret = init_event_waiter_get_status(p, &event_waiters[i],
 695				event_data.event_id);
 696		if (ret)
 697			goto out_unlock;
 698	}
 699
 700	/* Check condition once. */
 701	*wait_result = test_event_condition(all, num_events, event_waiters);
 702	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
 703		ret = copy_signaled_event_data(num_events,
 704					       event_waiters, events);
 705		goto out_unlock;
 706	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
 707		/* This should not happen. Events shouldn't be
 708		 * destroyed while we're holding the event_mutex
 709		 */
 710		goto out_unlock;
 711	}
 712
 713	/* Add to wait lists if we need to wait. */
 714	for (i = 0; i < num_events; i++)
 715		init_event_waiter_add_to_waitlist(&event_waiters[i]);
 716
 717	mutex_unlock(&p->event_mutex);
 718
 719	while (true) {
 720		if (fatal_signal_pending(current)) {
 721			ret = -EINTR;
 722			break;
 723		}
 724
 725		if (signal_pending(current)) {
 726			/*
 727			 * This is wrong when a nonzero, non-infinite timeout
 728			 * is specified. We need to use
 729			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
 730			 * contains a union with data for each user and it's
 731			 * in generic kernel code that I don't want to
 732			 * touch yet.
 733			 */
 734			ret = -ERESTARTSYS;
 
 
 
 
 735			break;
 736		}
 737
 738		/* Set task state to interruptible sleep before
 739		 * checking wake-up conditions. A concurrent wake-up
 740		 * will put the task back into runnable state. In that
 741		 * case schedule_timeout will not put the task to
 742		 * sleep and we'll get a chance to re-check the
 743		 * updated conditions almost immediately. Otherwise,
 744		 * this race condition would lead to a soft hang or a
 745		 * very long sleep.
 746		 */
 747		set_current_state(TASK_INTERRUPTIBLE);
 748
 749		*wait_result = test_event_condition(all, num_events,
 750						    event_waiters);
 751		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
 752			break;
 753
 754		if (timeout <= 0)
 755			break;
 756
 757		timeout = schedule_timeout(timeout);
 758	}
 759	__set_current_state(TASK_RUNNING);
 760
 
 761	/* copy_signaled_event_data may sleep. So this has to happen
 762	 * after the task state is set back to RUNNING.
 
 
 
 
 
 763	 */
 764	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
 765		ret = copy_signaled_event_data(num_events,
 766					       event_waiters, events);
 767
 768	mutex_lock(&p->event_mutex);
 769out_unlock:
 770	free_waiters(num_events, event_waiters);
 771	mutex_unlock(&p->event_mutex);
 772out:
 773	if (ret)
 774		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
 775	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
 776		ret = -EIO;
 777
 778	return ret;
 779}
 780
 781int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
 782{
 783	unsigned long pfn;
 784	struct kfd_signal_page *page;
 785	int ret;
 786
 787	/* check required size doesn't exceed the allocated size */
 788	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
 789			get_order(vma->vm_end - vma->vm_start)) {
 790		pr_err("Event page mmap requested illegal size\n");
 791		return -EINVAL;
 792	}
 793
 794	page = p->signal_page;
 795	if (!page) {
 796		/* Probably KFD bug, but mmap is user-accessible. */
 797		pr_debug("Signal page could not be found\n");
 798		return -EINVAL;
 799	}
 800
 801	pfn = __pa(page->kernel_address);
 802	pfn >>= PAGE_SHIFT;
 803
 804	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
 805		       | VM_DONTDUMP | VM_PFNMAP;
 806
 807	pr_debug("Mapping signal page\n");
 808	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
 809	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
 810	pr_debug("     pfn                 == 0x%016lX\n", pfn);
 811	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
 812	pr_debug("     size                == 0x%08lX\n",
 813			vma->vm_end - vma->vm_start);
 814
 815	page->user_address = (uint64_t __user *)vma->vm_start;
 816
 817	/* mapping the page to user process */
 818	ret = remap_pfn_range(vma, vma->vm_start, pfn,
 819			vma->vm_end - vma->vm_start, vma->vm_page_prot);
 820	if (!ret)
 821		p->signal_mapped_size = vma->vm_end - vma->vm_start;
 822
 823	return ret;
 824}
 825
 826/*
 827 * Assumes that p->event_mutex is held and of course
 828 * that p is not going away (current or locked).
 829 */
 830static void lookup_events_by_type_and_signal(struct kfd_process *p,
 831		int type, void *event_data)
 832{
 833	struct kfd_hsa_memory_exception_data *ev_data;
 834	struct kfd_event *ev;
 835	uint32_t id;
 836	bool send_signal = true;
 837
 838	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
 839
 
 
 840	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
 841	idr_for_each_entry_continue(&p->event_idr, ev, id)
 842		if (ev->type == type) {
 843			send_signal = false;
 844			dev_dbg(kfd_device,
 845					"Event found: id %X type %d",
 846					ev->event_id, ev->type);
 
 847			set_event(ev);
 848			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
 849				ev->memory_exception_data = *ev_data;
 
 850		}
 851
 852	if (type == KFD_EVENT_TYPE_MEMORY) {
 853		dev_warn(kfd_device,
 854			"Sending SIGSEGV to process %d (pasid 0x%x)",
 855				p->lead_thread->pid, p->pasid);
 856		send_sig(SIGSEGV, p->lead_thread, 0);
 857	}
 858
 859	/* Send SIGTERM no event of type "type" has been found*/
 860	if (send_signal) {
 861		if (send_sigterm) {
 862			dev_warn(kfd_device,
 863				"Sending SIGTERM to process %d (pasid 0x%x)",
 864					p->lead_thread->pid, p->pasid);
 865			send_sig(SIGTERM, p->lead_thread, 0);
 866		} else {
 867			dev_err(kfd_device,
 868				"Process %d (pasid 0x%x) got unhandled exception",
 869				p->lead_thread->pid, p->pasid);
 870		}
 871	}
 
 
 872}
 873
 874#ifdef KFD_SUPPORT_IOMMU_V2
 875void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
 876		unsigned long address, bool is_write_requested,
 877		bool is_execute_requested)
 878{
 879	struct kfd_hsa_memory_exception_data memory_exception_data;
 880	struct vm_area_struct *vma;
 
 881
 882	/*
 883	 * Because we are called from arbitrary context (workqueue) as opposed
 884	 * to process context, kfd_process could attempt to exit while we are
 885	 * running so the lookup function increments the process ref count.
 886	 */
 887	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 888	struct mm_struct *mm;
 889
 890	if (!p)
 891		return; /* Presumably process exited. */
 892
 893	/* Take a safe reference to the mm_struct, which may otherwise
 894	 * disappear even while the kfd_process is still referenced.
 895	 */
 896	mm = get_task_mm(p->lead_thread);
 897	if (!mm) {
 898		kfd_unref_process(p);
 899		return; /* Process is exiting */
 900	}
 901
 
 
 
 
 
 902	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
 903
 904	mmap_read_lock(mm);
 905	vma = find_vma(mm, address);
 906
 907	memory_exception_data.gpu_id = dev->id;
 908	memory_exception_data.va = address;
 909	/* Set failure reason */
 910	memory_exception_data.failure.NotPresent = 1;
 911	memory_exception_data.failure.NoExecute = 0;
 912	memory_exception_data.failure.ReadOnly = 0;
 913	if (vma && address >= vma->vm_start) {
 914		memory_exception_data.failure.NotPresent = 0;
 915
 916		if (is_write_requested && !(vma->vm_flags & VM_WRITE))
 917			memory_exception_data.failure.ReadOnly = 1;
 918		else
 919			memory_exception_data.failure.ReadOnly = 0;
 920
 921		if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
 922			memory_exception_data.failure.NoExecute = 1;
 923		else
 924			memory_exception_data.failure.NoExecute = 0;
 925	}
 926
 927	mmap_read_unlock(mm);
 928	mmput(mm);
 929
 930	pr_debug("notpresent %d, noexecute %d, readonly %d\n",
 931			memory_exception_data.failure.NotPresent,
 932			memory_exception_data.failure.NoExecute,
 933			memory_exception_data.failure.ReadOnly);
 934
 935	/* Workaround on Raven to not kill the process when memory is freed
 936	 * before IOMMU is able to finish processing all the excessive PPRs
 937	 */
 938	if (dev->device_info->asic_family != CHIP_RAVEN &&
 939	    dev->device_info->asic_family != CHIP_RENOIR) {
 940		mutex_lock(&p->event_mutex);
 941
 942		/* Lookup events by type and signal them */
 
 
 943		lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
 944				&memory_exception_data);
 945
 946		mutex_unlock(&p->event_mutex);
 947	}
 948
 949	kfd_unref_process(p);
 950}
 951#endif /* KFD_SUPPORT_IOMMU_V2 */
 952
 953void kfd_signal_hw_exception_event(unsigned int pasid)
 954{
 955	/*
 956	 * Because we are called from arbitrary context (workqueue) as opposed
 957	 * to process context, kfd_process could attempt to exit while we are
 958	 * running so the lookup function increments the process ref count.
 959	 */
 960	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 961
 962	if (!p)
 963		return; /* Presumably process exited. */
 964
 965	mutex_lock(&p->event_mutex);
 966
 967	/* Lookup events by type and signal them */
 968	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
 969
 970	mutex_unlock(&p->event_mutex);
 971	kfd_unref_process(p);
 972}
 973
 974void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
 975				struct kfd_vm_fault_info *info)
 976{
 977	struct kfd_event *ev;
 978	uint32_t id;
 979	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 980	struct kfd_hsa_memory_exception_data memory_exception_data;
 
 981
 982	if (!p)
 983		return; /* Presumably process exited. */
 
 
 
 
 
 
 
 984	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
 985	memory_exception_data.gpu_id = dev->id;
 986	memory_exception_data.failure.imprecise = true;
 987	/* Set failure reason */
 988	if (info) {
 989		memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
 990		memory_exception_data.failure.NotPresent =
 991			info->prot_valid ? 1 : 0;
 992		memory_exception_data.failure.NoExecute =
 993			info->prot_exec ? 1 : 0;
 994		memory_exception_data.failure.ReadOnly =
 995			info->prot_write ? 1 : 0;
 996		memory_exception_data.failure.imprecise = 0;
 997	}
 998	mutex_lock(&p->event_mutex);
 
 999
1000	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1001	idr_for_each_entry_continue(&p->event_idr, ev, id)
1002		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
 
1003			ev->memory_exception_data = memory_exception_data;
1004			set_event(ev);
 
1005		}
1006
1007	mutex_unlock(&p->event_mutex);
1008	kfd_unref_process(p);
1009}
1010
1011void kfd_signal_reset_event(struct kfd_dev *dev)
1012{
1013	struct kfd_hsa_hw_exception_data hw_exception_data;
1014	struct kfd_hsa_memory_exception_data memory_exception_data;
1015	struct kfd_process *p;
1016	struct kfd_event *ev;
1017	unsigned int temp;
1018	uint32_t id, idx;
1019	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1020			KFD_HW_EXCEPTION_ECC :
1021			KFD_HW_EXCEPTION_GPU_HANG;
1022
1023	/* Whole gpu reset caused by GPU hang and memory is lost */
1024	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1025	hw_exception_data.gpu_id = dev->id;
1026	hw_exception_data.memory_lost = 1;
1027	hw_exception_data.reset_cause = reset_cause;
1028
1029	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1030	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1031	memory_exception_data.gpu_id = dev->id;
1032	memory_exception_data.failure.imprecise = true;
1033
1034	idx = srcu_read_lock(&kfd_processes_srcu);
1035	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1036		mutex_lock(&p->event_mutex);
 
 
 
 
 
 
 
 
1037		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1038		idr_for_each_entry_continue(&p->event_idr, ev, id) {
1039			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
 
1040				ev->hw_exception_data = hw_exception_data;
 
1041				set_event(ev);
 
1042			}
1043			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1044			    reset_cause == KFD_HW_EXCEPTION_ECC) {
 
1045				ev->memory_exception_data = memory_exception_data;
 
1046				set_event(ev);
 
1047			}
1048		}
1049		mutex_unlock(&p->event_mutex);
 
1050	}
1051	srcu_read_unlock(&kfd_processes_srcu, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052}
v6.2
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/mm_types.h>
  25#include <linux/slab.h>
  26#include <linux/types.h>
  27#include <linux/sched/signal.h>
  28#include <linux/sched/mm.h>
  29#include <linux/uaccess.h>
  30#include <linux/mman.h>
  31#include <linux/memory.h>
  32#include "kfd_priv.h"
  33#include "kfd_events.h"
  34#include "kfd_iommu.h"
  35#include <linux/device.h>
  36
  37/*
  38 * Wrapper around wait_queue_entry_t
  39 */
  40struct kfd_event_waiter {
  41	wait_queue_entry_t wait;
  42	struct kfd_event *event; /* Event to wait for */
  43	bool activated;		 /* Becomes true when event is signaled */
  44};
  45
  46/*
  47 * Each signal event needs a 64-bit signal slot where the signaler will write
  48 * a 1 before sending an interrupt. (This is needed because some interrupts
  49 * do not contain enough spare data bits to identify an event.)
  50 * We get whole pages and map them to the process VA.
  51 * Individual signal events use their event_id as slot index.
  52 */
  53struct kfd_signal_page {
  54	uint64_t *kernel_address;
  55	uint64_t __user *user_address;
  56	bool need_to_free_pages;
  57};
  58
 
  59static uint64_t *page_slots(struct kfd_signal_page *page)
  60{
  61	return page->kernel_address;
  62}
  63
  64static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
  65{
  66	void *backing_store;
  67	struct kfd_signal_page *page;
  68
  69	page = kzalloc(sizeof(*page), GFP_KERNEL);
  70	if (!page)
  71		return NULL;
  72
  73	backing_store = (void *) __get_free_pages(GFP_KERNEL,
  74					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
  75	if (!backing_store)
  76		goto fail_alloc_signal_store;
  77
  78	/* Initialize all events to unsignaled */
  79	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
  80	       KFD_SIGNAL_EVENT_LIMIT * 8);
  81
  82	page->kernel_address = backing_store;
  83	page->need_to_free_pages = true;
  84	pr_debug("Allocated new event signal page at %p, for process %p\n",
  85			page, p);
  86
  87	return page;
  88
  89fail_alloc_signal_store:
  90	kfree(page);
  91	return NULL;
  92}
  93
  94static int allocate_event_notification_slot(struct kfd_process *p,
  95					    struct kfd_event *ev,
  96					    const int *restore_id)
  97{
  98	int id;
  99
 100	if (!p->signal_page) {
 101		p->signal_page = allocate_signal_page(p);
 102		if (!p->signal_page)
 103			return -ENOMEM;
 104		/* Oldest user mode expects 256 event slots */
 105		p->signal_mapped_size = 256*8;
 106	}
 107
 108	if (restore_id) {
 109		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
 110				GFP_KERNEL);
 111	} else {
 112		/*
 113		 * Compatibility with old user mode: Only use signal slots
 114		 * user mode has mapped, may be less than
 115		 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
 116		 * of the event limit without breaking user mode.
 117		 */
 118		id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
 119				GFP_KERNEL);
 120	}
 121	if (id < 0)
 122		return id;
 123
 124	ev->event_id = id;
 125	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
 126
 127	return 0;
 128}
 129
 130/*
 131 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
 132 * not going away.
 133 */
 134static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
 135{
 136	return idr_find(&p->event_idr, id);
 137}
 138
 139/**
 140 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
 141 * @p:     Pointer to struct kfd_process
 142 * @id:    ID to look up
 143 * @bits:  Number of valid bits in @id
 144 *
 145 * Finds the first signaled event with a matching partial ID. If no
 146 * matching signaled event is found, returns NULL. In that case the
 147 * caller should assume that the partial ID is invalid and do an
 148 * exhaustive search of all siglaned events.
 149 *
 150 * If multiple events with the same partial ID signal at the same
 151 * time, they will be found one interrupt at a time, not necessarily
 152 * in the same order the interrupts occurred. As long as the number of
 153 * interrupts is correct, all signaled events will be seen by the
 154 * driver.
 155 */
 156static struct kfd_event *lookup_signaled_event_by_partial_id(
 157	struct kfd_process *p, uint32_t id, uint32_t bits)
 158{
 159	struct kfd_event *ev;
 160
 161	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
 162		return NULL;
 163
 164	/* Fast path for the common case that @id is not a partial ID
 165	 * and we only need a single lookup.
 166	 */
 167	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
 168		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
 169			return NULL;
 170
 171		return idr_find(&p->event_idr, id);
 172	}
 173
 174	/* General case for partial IDs: Iterate over all matching IDs
 175	 * and find the first one that has signaled.
 176	 */
 177	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
 178		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
 179			continue;
 180
 181		ev = idr_find(&p->event_idr, id);
 182	}
 183
 184	return ev;
 185}
 186
 187static int create_signal_event(struct file *devkfd, struct kfd_process *p,
 188				struct kfd_event *ev, const int *restore_id)
 
 189{
 190	int ret;
 191
 192	if (p->signal_mapped_size &&
 193	    p->signal_event_count == p->signal_mapped_size / 8) {
 194		if (!p->signal_event_limit_reached) {
 195			pr_debug("Signal event wasn't created because limit was reached\n");
 196			p->signal_event_limit_reached = true;
 197		}
 198		return -ENOSPC;
 199	}
 200
 201	ret = allocate_event_notification_slot(p, ev, restore_id);
 202	if (ret) {
 203		pr_warn("Signal event wasn't created because out of kernel memory\n");
 204		return ret;
 205	}
 206
 207	p->signal_event_count++;
 208
 209	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
 210	pr_debug("Signal event number %zu created with id %d, address %p\n",
 211			p->signal_event_count, ev->event_id,
 212			ev->user_signal_address);
 213
 214	return 0;
 215}
 216
 217static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
 218{
 219	int id;
 220
 221	if (restore_id)
 222		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
 223			GFP_KERNEL);
 224	else
 225		/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
 226		 * intentional integer overflow to -1 without a compiler
 227		 * warning. idr_alloc treats a negative value as "maximum
 228		 * signed integer".
 229		 */
 230		id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
 231				(uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
 232				GFP_KERNEL);
 233
 234	if (id < 0)
 235		return id;
 236	ev->event_id = id;
 237
 238	return 0;
 239}
 240
 241int kfd_event_init_process(struct kfd_process *p)
 242{
 243	int id;
 244
 245	mutex_init(&p->event_mutex);
 246	idr_init(&p->event_idr);
 247	p->signal_page = NULL;
 248	p->signal_event_count = 1;
 249	/* Allocate event ID 0. It is used for a fast path to ignore bogus events
 250	 * that are sent by the CP without a context ID
 251	 */
 252	id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
 253	if (id < 0) {
 254		idr_destroy(&p->event_idr);
 255		mutex_destroy(&p->event_mutex);
 256		return id;
 257	}
 258	return 0;
 259}
 260
 261static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
 262{
 263	struct kfd_event_waiter *waiter;
 264
 265	/* Wake up pending waiters. They will return failure */
 266	spin_lock(&ev->lock);
 267	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
 268		WRITE_ONCE(waiter->event, NULL);
 269	wake_up_all(&ev->wq);
 270	spin_unlock(&ev->lock);
 271
 272	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
 273	    ev->type == KFD_EVENT_TYPE_DEBUG)
 274		p->signal_event_count--;
 275
 276	idr_remove(&p->event_idr, ev->event_id);
 277	kfree_rcu(ev, rcu);
 278}
 279
 280static void destroy_events(struct kfd_process *p)
 281{
 282	struct kfd_event *ev;
 283	uint32_t id;
 284
 285	idr_for_each_entry(&p->event_idr, ev, id)
 286		if (ev)
 287			destroy_event(p, ev);
 288	idr_destroy(&p->event_idr);
 289	mutex_destroy(&p->event_mutex);
 290}
 291
 292/*
 293 * We assume that the process is being destroyed and there is no need to
 294 * unmap the pages or keep bookkeeping data in order.
 295 */
 296static void shutdown_signal_page(struct kfd_process *p)
 297{
 298	struct kfd_signal_page *page = p->signal_page;
 299
 300	if (page) {
 301		if (page->need_to_free_pages)
 302			free_pages((unsigned long)page->kernel_address,
 303				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
 304		kfree(page);
 305	}
 306}
 307
 308void kfd_event_free_process(struct kfd_process *p)
 309{
 310	destroy_events(p);
 311	shutdown_signal_page(p);
 312}
 313
 314static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
 315{
 316	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
 317					ev->type == KFD_EVENT_TYPE_DEBUG;
 318}
 319
 320static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
 321{
 322	return ev->type == KFD_EVENT_TYPE_SIGNAL;
 323}
 324
 325static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
 326		       uint64_t size, uint64_t user_handle)
 327{
 328	struct kfd_signal_page *page;
 329
 330	if (p->signal_page)
 331		return -EBUSY;
 332
 333	page = kzalloc(sizeof(*page), GFP_KERNEL);
 334	if (!page)
 335		return -ENOMEM;
 336
 337	/* Initialize all events to unsignaled */
 338	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
 339	       KFD_SIGNAL_EVENT_LIMIT * 8);
 340
 341	page->kernel_address = kernel_address;
 342
 343	p->signal_page = page;
 344	p->signal_mapped_size = size;
 345	p->signal_handle = user_handle;
 346	return 0;
 347}
 348
 349int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
 350{
 351	struct kfd_dev *kfd;
 352	struct kfd_process_device *pdd;
 353	void *mem, *kern_addr;
 354	uint64_t size;
 355	int err = 0;
 356
 357	if (p->signal_page) {
 358		pr_err("Event page is already set\n");
 359		return -EINVAL;
 360	}
 361
 362	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
 363	if (!pdd) {
 364		pr_err("Getting device by id failed in %s\n", __func__);
 365		return -EINVAL;
 366	}
 367	kfd = pdd->dev;
 368
 369	pdd = kfd_bind_process_to_device(kfd, p);
 370	if (IS_ERR(pdd))
 371		return PTR_ERR(pdd);
 372
 373	mem = kfd_process_device_translate_handle(pdd,
 374			GET_IDR_HANDLE(event_page_offset));
 375	if (!mem) {
 376		pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
 377		return -EINVAL;
 378	}
 379
 380	err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size);
 381	if (err) {
 382		pr_err("Failed to map event page to kernel\n");
 383		return err;
 384	}
 385
 386	err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
 387	if (err) {
 388		pr_err("Failed to set event page\n");
 389		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
 390		return err;
 391	}
 392	return err;
 393}
 394
 395int kfd_event_create(struct file *devkfd, struct kfd_process *p,
 396		     uint32_t event_type, bool auto_reset, uint32_t node_id,
 397		     uint32_t *event_id, uint32_t *event_trigger_data,
 398		     uint64_t *event_page_offset, uint32_t *event_slot_index)
 399{
 400	int ret = 0;
 401	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 402
 403	if (!ev)
 404		return -ENOMEM;
 405
 406	ev->type = event_type;
 407	ev->auto_reset = auto_reset;
 408	ev->signaled = false;
 409
 410	spin_lock_init(&ev->lock);
 411	init_waitqueue_head(&ev->wq);
 412
 413	*event_page_offset = 0;
 414
 415	mutex_lock(&p->event_mutex);
 416
 417	switch (event_type) {
 418	case KFD_EVENT_TYPE_SIGNAL:
 419	case KFD_EVENT_TYPE_DEBUG:
 420		ret = create_signal_event(devkfd, p, ev, NULL);
 421		if (!ret) {
 422			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
 423			*event_slot_index = ev->event_id;
 424		}
 425		break;
 426	default:
 427		ret = create_other_event(p, ev, NULL);
 428		break;
 429	}
 430
 431	if (!ret) {
 432		*event_id = ev->event_id;
 433		*event_trigger_data = ev->event_id;
 434	} else {
 435		kfree(ev);
 436	}
 437
 438	mutex_unlock(&p->event_mutex);
 439
 440	return ret;
 441}
 442
 443int kfd_criu_restore_event(struct file *devkfd,
 444			   struct kfd_process *p,
 445			   uint8_t __user *user_priv_ptr,
 446			   uint64_t *priv_data_offset,
 447			   uint64_t max_priv_data_size)
 448{
 449	struct kfd_criu_event_priv_data *ev_priv;
 450	struct kfd_event *ev = NULL;
 451	int ret = 0;
 452
 453	ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
 454	if (!ev_priv)
 455		return -ENOMEM;
 456
 457	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 458	if (!ev) {
 459		ret = -ENOMEM;
 460		goto exit;
 461	}
 462
 463	if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
 464		ret = -EINVAL;
 465		goto exit;
 466	}
 467
 468	ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
 469	if (ret) {
 470		ret = -EFAULT;
 471		goto exit;
 472	}
 473	*priv_data_offset += sizeof(*ev_priv);
 474
 475	if (ev_priv->user_handle) {
 476		ret = kfd_kmap_event_page(p, ev_priv->user_handle);
 477		if (ret)
 478			goto exit;
 479	}
 480
 481	ev->type = ev_priv->type;
 482	ev->auto_reset = ev_priv->auto_reset;
 483	ev->signaled = ev_priv->signaled;
 484
 485	spin_lock_init(&ev->lock);
 486	init_waitqueue_head(&ev->wq);
 487
 488	mutex_lock(&p->event_mutex);
 489	switch (ev->type) {
 490	case KFD_EVENT_TYPE_SIGNAL:
 491	case KFD_EVENT_TYPE_DEBUG:
 492		ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
 493		break;
 494	case KFD_EVENT_TYPE_MEMORY:
 495		memcpy(&ev->memory_exception_data,
 496			&ev_priv->memory_exception_data,
 497			sizeof(struct kfd_hsa_memory_exception_data));
 498
 499		ret = create_other_event(p, ev, &ev_priv->event_id);
 500		break;
 501	case KFD_EVENT_TYPE_HW_EXCEPTION:
 502		memcpy(&ev->hw_exception_data,
 503			&ev_priv->hw_exception_data,
 504			sizeof(struct kfd_hsa_hw_exception_data));
 505
 506		ret = create_other_event(p, ev, &ev_priv->event_id);
 507		break;
 508	}
 509	mutex_unlock(&p->event_mutex);
 510
 511exit:
 512	if (ret)
 513		kfree(ev);
 514
 515	kfree(ev_priv);
 516
 517	return ret;
 518}
 519
 520int kfd_criu_checkpoint_events(struct kfd_process *p,
 521			 uint8_t __user *user_priv_data,
 522			 uint64_t *priv_data_offset)
 523{
 524	struct kfd_criu_event_priv_data *ev_privs;
 525	int i = 0;
 526	int ret =  0;
 527	struct kfd_event *ev;
 528	uint32_t ev_id;
 529
 530	uint32_t num_events = kfd_get_num_events(p);
 531
 532	if (!num_events)
 533		return 0;
 534
 535	ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
 536	if (!ev_privs)
 537		return -ENOMEM;
 538
 539
 540	idr_for_each_entry(&p->event_idr, ev, ev_id) {
 541		struct kfd_criu_event_priv_data *ev_priv;
 542
 543		/*
 544		 * Currently, all events have same size of private_data, but the current ioctl's
 545		 * and CRIU plugin supports private_data of variable sizes
 546		 */
 547		ev_priv = &ev_privs[i];
 548
 549		ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
 550
 551		/* We store the user_handle with the first event */
 552		if (i == 0 && p->signal_page)
 553			ev_priv->user_handle = p->signal_handle;
 554
 555		ev_priv->event_id = ev->event_id;
 556		ev_priv->auto_reset = ev->auto_reset;
 557		ev_priv->type = ev->type;
 558		ev_priv->signaled = ev->signaled;
 559
 560		if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
 561			memcpy(&ev_priv->memory_exception_data,
 562				&ev->memory_exception_data,
 563				sizeof(struct kfd_hsa_memory_exception_data));
 564		else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
 565			memcpy(&ev_priv->hw_exception_data,
 566				&ev->hw_exception_data,
 567				sizeof(struct kfd_hsa_hw_exception_data));
 568
 569		pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
 570			  i,
 571			  ev_priv->event_id,
 572			  ev_priv->auto_reset,
 573			  ev_priv->type,
 574			  ev_priv->signaled);
 575		i++;
 576	}
 577
 578	ret = copy_to_user(user_priv_data + *priv_data_offset,
 579			   ev_privs, num_events * sizeof(*ev_privs));
 580	if (ret) {
 581		pr_err("Failed to copy events priv to user\n");
 582		ret = -EFAULT;
 583	}
 584
 585	*priv_data_offset += num_events * sizeof(*ev_privs);
 586
 587	kvfree(ev_privs);
 588	return ret;
 589}
 590
 591int kfd_get_num_events(struct kfd_process *p)
 592{
 593	struct kfd_event *ev;
 594	uint32_t id;
 595	u32 num_events = 0;
 596
 597	idr_for_each_entry(&p->event_idr, ev, id)
 598		num_events++;
 599
 600	return num_events;
 601}
 602
 603/* Assumes that p is current. */
 604int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
 605{
 606	struct kfd_event *ev;
 607	int ret = 0;
 608
 609	mutex_lock(&p->event_mutex);
 610
 611	ev = lookup_event_by_id(p, event_id);
 612
 613	if (ev)
 614		destroy_event(p, ev);
 615	else
 616		ret = -EINVAL;
 617
 618	mutex_unlock(&p->event_mutex);
 619	return ret;
 620}
 621
 622static void set_event(struct kfd_event *ev)
 623{
 624	struct kfd_event_waiter *waiter;
 625
 626	/* Auto reset if the list is non-empty and we're waking
 627	 * someone. waitqueue_active is safe here because we're
 628	 * protected by the ev->lock, which is also held when
 629	 * updating the wait queues in kfd_wait_on_events.
 630	 */
 631	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
 632
 633	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
 634		WRITE_ONCE(waiter->activated, true);
 635
 636	wake_up_all(&ev->wq);
 637}
 638
 639/* Assumes that p is current. */
 640int kfd_set_event(struct kfd_process *p, uint32_t event_id)
 641{
 642	int ret = 0;
 643	struct kfd_event *ev;
 644
 645	rcu_read_lock();
 646
 647	ev = lookup_event_by_id(p, event_id);
 648	if (!ev) {
 649		ret = -EINVAL;
 650		goto unlock_rcu;
 651	}
 652	spin_lock(&ev->lock);
 653
 654	if (event_can_be_cpu_signaled(ev))
 655		set_event(ev);
 656	else
 657		ret = -EINVAL;
 658
 659	spin_unlock(&ev->lock);
 660unlock_rcu:
 661	rcu_read_unlock();
 662	return ret;
 663}
 664
 665static void reset_event(struct kfd_event *ev)
 666{
 667	ev->signaled = false;
 668}
 669
 670/* Assumes that p is current. */
 671int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
 672{
 673	int ret = 0;
 674	struct kfd_event *ev;
 675
 676	rcu_read_lock();
 677
 678	ev = lookup_event_by_id(p, event_id);
 679	if (!ev) {
 680		ret = -EINVAL;
 681		goto unlock_rcu;
 682	}
 683	spin_lock(&ev->lock);
 684
 685	if (event_can_be_cpu_signaled(ev))
 686		reset_event(ev);
 687	else
 688		ret = -EINVAL;
 689
 690	spin_unlock(&ev->lock);
 691unlock_rcu:
 692	rcu_read_unlock();
 693	return ret;
 694
 695}
 696
 697static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
 698{
 699	WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
 700}
 701
 702static void set_event_from_interrupt(struct kfd_process *p,
 703					struct kfd_event *ev)
 704{
 705	if (ev && event_can_be_gpu_signaled(ev)) {
 706		acknowledge_signal(p, ev);
 707		spin_lock(&ev->lock);
 708		set_event(ev);
 709		spin_unlock(&ev->lock);
 710	}
 711}
 712
 713void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
 714				uint32_t valid_id_bits)
 715{
 716	struct kfd_event *ev = NULL;
 717
 718	/*
 719	 * Because we are called from arbitrary context (workqueue) as opposed
 720	 * to process context, kfd_process could attempt to exit while we are
 721	 * running so the lookup function increments the process ref count.
 722	 */
 723	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 724
 725	if (!p)
 726		return; /* Presumably process exited. */
 727
 728	rcu_read_lock();
 729
 730	if (valid_id_bits)
 731		ev = lookup_signaled_event_by_partial_id(p, partial_id,
 732							 valid_id_bits);
 733	if (ev) {
 734		set_event_from_interrupt(p, ev);
 735	} else if (p->signal_page) {
 736		/*
 737		 * Partial ID lookup failed. Assume that the event ID
 738		 * in the interrupt payload was invalid and do an
 739		 * exhaustive search of signaled events.
 740		 */
 741		uint64_t *slots = page_slots(p->signal_page);
 742		uint32_t id;
 743
 744		if (valid_id_bits)
 745			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
 746					     partial_id, valid_id_bits);
 747
 748		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
 749			/* With relatively few events, it's faster to
 750			 * iterate over the event IDR
 751			 */
 752			idr_for_each_entry(&p->event_idr, ev, id) {
 753				if (id >= KFD_SIGNAL_EVENT_LIMIT)
 754					break;
 755
 756				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
 757					set_event_from_interrupt(p, ev);
 758			}
 759		} else {
 760			/* With relatively many events, it's faster to
 761			 * iterate over the signal slots and lookup
 762			 * only signaled events from the IDR.
 763			 */
 764			for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
 765				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
 766					ev = lookup_event_by_id(p, id);
 767					set_event_from_interrupt(p, ev);
 768				}
 769		}
 770	}
 771
 772	rcu_read_unlock();
 773	kfd_unref_process(p);
 774}
 775
 776static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
 777{
 778	struct kfd_event_waiter *event_waiters;
 779	uint32_t i;
 780
 781	event_waiters = kmalloc_array(num_events,
 782					sizeof(struct kfd_event_waiter),
 783					GFP_KERNEL);
 784	if (!event_waiters)
 785		return NULL;
 786
 787	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
 788		init_wait(&event_waiters[i].wait);
 789		event_waiters[i].activated = false;
 790	}
 791
 792	return event_waiters;
 793}
 794
 795static int init_event_waiter(struct kfd_process *p,
 796		struct kfd_event_waiter *waiter,
 797		uint32_t event_id)
 798{
 799	struct kfd_event *ev = lookup_event_by_id(p, event_id);
 800
 801	if (!ev)
 802		return -EINVAL;
 803
 804	spin_lock(&ev->lock);
 805	waiter->event = ev;
 806	waiter->activated = ev->signaled;
 807	ev->signaled = ev->signaled && !ev->auto_reset;
 
 
 
 
 
 
 
 
 
 
 
 808	if (!waiter->activated)
 809		add_wait_queue(&ev->wq, &waiter->wait);
 810	spin_unlock(&ev->lock);
 811
 812	return 0;
 813}
 814
 815/* test_event_condition - Test condition of events being waited for
 816 * @all:           Return completion only if all events have signaled
 817 * @num_events:    Number of events to wait for
 818 * @event_waiters: Array of event waiters, one per event
 819 *
 820 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
 821 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
 822 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
 823 * the events have been destroyed.
 824 */
 825static uint32_t test_event_condition(bool all, uint32_t num_events,
 826				struct kfd_event_waiter *event_waiters)
 827{
 828	uint32_t i;
 829	uint32_t activated_count = 0;
 830
 831	for (i = 0; i < num_events; i++) {
 832		if (!READ_ONCE(event_waiters[i].event))
 833			return KFD_IOC_WAIT_RESULT_FAIL;
 834
 835		if (READ_ONCE(event_waiters[i].activated)) {
 836			if (!all)
 837				return KFD_IOC_WAIT_RESULT_COMPLETE;
 838
 839			activated_count++;
 840		}
 841	}
 842
 843	return activated_count == num_events ?
 844		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
 845}
 846
 847/*
 848 * Copy event specific data, if defined.
 849 * Currently only memory exception events have additional data to copy to user
 850 */
 851static int copy_signaled_event_data(uint32_t num_events,
 852		struct kfd_event_waiter *event_waiters,
 853		struct kfd_event_data __user *data)
 854{
 855	struct kfd_hsa_memory_exception_data *src;
 856	struct kfd_hsa_memory_exception_data __user *dst;
 857	struct kfd_event_waiter *waiter;
 858	struct kfd_event *event;
 859	uint32_t i;
 860
 861	for (i = 0; i < num_events; i++) {
 862		waiter = &event_waiters[i];
 863		event = waiter->event;
 864		if (!event)
 865			return -EINVAL; /* event was destroyed */
 866		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
 867			dst = &data[i].memory_exception_data;
 868			src = &event->memory_exception_data;
 869			if (copy_to_user(dst, src,
 870				sizeof(struct kfd_hsa_memory_exception_data)))
 871				return -EFAULT;
 872		}
 873	}
 874
 875	return 0;
 
 876}
 877
 
 
 878static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
 879{
 880	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
 881		return 0;
 882
 883	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
 884		return MAX_SCHEDULE_TIMEOUT;
 885
 886	/*
 887	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
 888	 * but we consider them finite.
 889	 * This hack is wrong, but nobody is likely to notice.
 890	 */
 891	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
 892
 893	return msecs_to_jiffies(user_timeout_ms) + 1;
 894}
 895
 896static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters,
 897			 bool undo_auto_reset)
 898{
 899	uint32_t i;
 900
 901	for (i = 0; i < num_events; i++)
 902		if (waiters[i].event) {
 903			spin_lock(&waiters[i].event->lock);
 904			remove_wait_queue(&waiters[i].event->wq,
 905					  &waiters[i].wait);
 906			if (undo_auto_reset && waiters[i].activated &&
 907			    waiters[i].event && waiters[i].event->auto_reset)
 908				set_event(waiters[i].event);
 909			spin_unlock(&waiters[i].event->lock);
 910		}
 911
 912	kfree(waiters);
 913}
 914
 915int kfd_wait_on_events(struct kfd_process *p,
 916		       uint32_t num_events, void __user *data,
 917		       bool all, uint32_t *user_timeout_ms,
 918		       uint32_t *wait_result)
 919{
 920	struct kfd_event_data __user *events =
 921			(struct kfd_event_data __user *) data;
 922	uint32_t i;
 923	int ret = 0;
 924
 925	struct kfd_event_waiter *event_waiters = NULL;
 926	long timeout = user_timeout_to_jiffies(*user_timeout_ms);
 927
 928	event_waiters = alloc_event_waiters(num_events);
 929	if (!event_waiters) {
 930		ret = -ENOMEM;
 931		goto out;
 932	}
 933
 934	/* Use p->event_mutex here to protect against concurrent creation and
 935	 * destruction of events while we initialize event_waiters.
 936	 */
 937	mutex_lock(&p->event_mutex);
 938
 939	for (i = 0; i < num_events; i++) {
 940		struct kfd_event_data event_data;
 941
 942		if (copy_from_user(&event_data, &events[i],
 943				sizeof(struct kfd_event_data))) {
 944			ret = -EFAULT;
 945			goto out_unlock;
 946		}
 947
 948		ret = init_event_waiter(p, &event_waiters[i],
 949					event_data.event_id);
 950		if (ret)
 951			goto out_unlock;
 952	}
 953
 954	/* Check condition once. */
 955	*wait_result = test_event_condition(all, num_events, event_waiters);
 956	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
 957		ret = copy_signaled_event_data(num_events,
 958					       event_waiters, events);
 959		goto out_unlock;
 960	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
 961		/* This should not happen. Events shouldn't be
 962		 * destroyed while we're holding the event_mutex
 963		 */
 964		goto out_unlock;
 965	}
 966
 
 
 
 
 967	mutex_unlock(&p->event_mutex);
 968
 969	while (true) {
 970		if (fatal_signal_pending(current)) {
 971			ret = -EINTR;
 972			break;
 973		}
 974
 975		if (signal_pending(current)) {
 
 
 
 
 
 
 
 
 976			ret = -ERESTARTSYS;
 977			if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE &&
 978			    *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE)
 979				*user_timeout_ms = jiffies_to_msecs(
 980					max(0l, timeout-1));
 981			break;
 982		}
 983
 984		/* Set task state to interruptible sleep before
 985		 * checking wake-up conditions. A concurrent wake-up
 986		 * will put the task back into runnable state. In that
 987		 * case schedule_timeout will not put the task to
 988		 * sleep and we'll get a chance to re-check the
 989		 * updated conditions almost immediately. Otherwise,
 990		 * this race condition would lead to a soft hang or a
 991		 * very long sleep.
 992		 */
 993		set_current_state(TASK_INTERRUPTIBLE);
 994
 995		*wait_result = test_event_condition(all, num_events,
 996						    event_waiters);
 997		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
 998			break;
 999
1000		if (timeout <= 0)
1001			break;
1002
1003		timeout = schedule_timeout(timeout);
1004	}
1005	__set_current_state(TASK_RUNNING);
1006
1007	mutex_lock(&p->event_mutex);
1008	/* copy_signaled_event_data may sleep. So this has to happen
1009	 * after the task state is set back to RUNNING.
1010	 *
1011	 * The event may also have been destroyed after signaling. So
1012	 * copy_signaled_event_data also must confirm that the event
1013	 * still exists. Therefore this must be under the p->event_mutex
1014	 * which is also held when events are destroyed.
1015	 */
1016	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
1017		ret = copy_signaled_event_data(num_events,
1018					       event_waiters, events);
1019
 
1020out_unlock:
1021	free_waiters(num_events, event_waiters, ret == -ERESTARTSYS);
1022	mutex_unlock(&p->event_mutex);
1023out:
1024	if (ret)
1025		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
1026	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
1027		ret = -EIO;
1028
1029	return ret;
1030}
1031
1032int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
1033{
1034	unsigned long pfn;
1035	struct kfd_signal_page *page;
1036	int ret;
1037
1038	/* check required size doesn't exceed the allocated size */
1039	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
1040			get_order(vma->vm_end - vma->vm_start)) {
1041		pr_err("Event page mmap requested illegal size\n");
1042		return -EINVAL;
1043	}
1044
1045	page = p->signal_page;
1046	if (!page) {
1047		/* Probably KFD bug, but mmap is user-accessible. */
1048		pr_debug("Signal page could not be found\n");
1049		return -EINVAL;
1050	}
1051
1052	pfn = __pa(page->kernel_address);
1053	pfn >>= PAGE_SHIFT;
1054
1055	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
1056		       | VM_DONTDUMP | VM_PFNMAP;
1057
1058	pr_debug("Mapping signal page\n");
1059	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
1060	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
1061	pr_debug("     pfn                 == 0x%016lX\n", pfn);
1062	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
1063	pr_debug("     size                == 0x%08lX\n",
1064			vma->vm_end - vma->vm_start);
1065
1066	page->user_address = (uint64_t __user *)vma->vm_start;
1067
1068	/* mapping the page to user process */
1069	ret = remap_pfn_range(vma, vma->vm_start, pfn,
1070			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1071	if (!ret)
1072		p->signal_mapped_size = vma->vm_end - vma->vm_start;
1073
1074	return ret;
1075}
1076
1077/*
1078 * Assumes that p is not going away.
 
1079 */
1080static void lookup_events_by_type_and_signal(struct kfd_process *p,
1081		int type, void *event_data)
1082{
1083	struct kfd_hsa_memory_exception_data *ev_data;
1084	struct kfd_event *ev;
1085	uint32_t id;
1086	bool send_signal = true;
1087
1088	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
1089
1090	rcu_read_lock();
1091
1092	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1093	idr_for_each_entry_continue(&p->event_idr, ev, id)
1094		if (ev->type == type) {
1095			send_signal = false;
1096			dev_dbg(kfd_device,
1097					"Event found: id %X type %d",
1098					ev->event_id, ev->type);
1099			spin_lock(&ev->lock);
1100			set_event(ev);
1101			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
1102				ev->memory_exception_data = *ev_data;
1103			spin_unlock(&ev->lock);
1104		}
1105
1106	if (type == KFD_EVENT_TYPE_MEMORY) {
1107		dev_warn(kfd_device,
1108			"Sending SIGSEGV to process %d (pasid 0x%x)",
1109				p->lead_thread->pid, p->pasid);
1110		send_sig(SIGSEGV, p->lead_thread, 0);
1111	}
1112
1113	/* Send SIGTERM no event of type "type" has been found*/
1114	if (send_signal) {
1115		if (send_sigterm) {
1116			dev_warn(kfd_device,
1117				"Sending SIGTERM to process %d (pasid 0x%x)",
1118					p->lead_thread->pid, p->pasid);
1119			send_sig(SIGTERM, p->lead_thread, 0);
1120		} else {
1121			dev_err(kfd_device,
1122				"Process %d (pasid 0x%x) got unhandled exception",
1123				p->lead_thread->pid, p->pasid);
1124		}
1125	}
1126
1127	rcu_read_unlock();
1128}
1129
1130#ifdef KFD_SUPPORT_IOMMU_V2
1131void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid,
1132		unsigned long address, bool is_write_requested,
1133		bool is_execute_requested)
1134{
1135	struct kfd_hsa_memory_exception_data memory_exception_data;
1136	struct vm_area_struct *vma;
1137	int user_gpu_id;
1138
1139	/*
1140	 * Because we are called from arbitrary context (workqueue) as opposed
1141	 * to process context, kfd_process could attempt to exit while we are
1142	 * running so the lookup function increments the process ref count.
1143	 */
1144	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1145	struct mm_struct *mm;
1146
1147	if (!p)
1148		return; /* Presumably process exited. */
1149
1150	/* Take a safe reference to the mm_struct, which may otherwise
1151	 * disappear even while the kfd_process is still referenced.
1152	 */
1153	mm = get_task_mm(p->lead_thread);
1154	if (!mm) {
1155		kfd_unref_process(p);
1156		return; /* Process is exiting */
1157	}
1158
1159	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1160	if (unlikely(user_gpu_id == -EINVAL)) {
1161		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1162		return;
1163	}
1164	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1165
1166	mmap_read_lock(mm);
1167	vma = find_vma(mm, address);
1168
1169	memory_exception_data.gpu_id = user_gpu_id;
1170	memory_exception_data.va = address;
1171	/* Set failure reason */
1172	memory_exception_data.failure.NotPresent = 1;
1173	memory_exception_data.failure.NoExecute = 0;
1174	memory_exception_data.failure.ReadOnly = 0;
1175	if (vma && address >= vma->vm_start) {
1176		memory_exception_data.failure.NotPresent = 0;
1177
1178		if (is_write_requested && !(vma->vm_flags & VM_WRITE))
1179			memory_exception_data.failure.ReadOnly = 1;
1180		else
1181			memory_exception_data.failure.ReadOnly = 0;
1182
1183		if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
1184			memory_exception_data.failure.NoExecute = 1;
1185		else
1186			memory_exception_data.failure.NoExecute = 0;
1187	}
1188
1189	mmap_read_unlock(mm);
1190	mmput(mm);
1191
1192	pr_debug("notpresent %d, noexecute %d, readonly %d\n",
1193			memory_exception_data.failure.NotPresent,
1194			memory_exception_data.failure.NoExecute,
1195			memory_exception_data.failure.ReadOnly);
1196
1197	/* Workaround on Raven to not kill the process when memory is freed
1198	 * before IOMMU is able to finish processing all the excessive PPRs
1199	 */
 
 
 
1200
1201	if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) &&
1202	    KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) &&
1203	    KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0))
1204		lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
1205				&memory_exception_data);
1206
 
 
 
1207	kfd_unref_process(p);
1208}
1209#endif /* KFD_SUPPORT_IOMMU_V2 */
1210
1211void kfd_signal_hw_exception_event(u32 pasid)
1212{
1213	/*
1214	 * Because we are called from arbitrary context (workqueue) as opposed
1215	 * to process context, kfd_process could attempt to exit while we are
1216	 * running so the lookup function increments the process ref count.
1217	 */
1218	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1219
1220	if (!p)
1221		return; /* Presumably process exited. */
1222
 
 
 
1223	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
 
 
1224	kfd_unref_process(p);
1225}
1226
1227void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1228				struct kfd_vm_fault_info *info)
1229{
1230	struct kfd_event *ev;
1231	uint32_t id;
1232	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1233	struct kfd_hsa_memory_exception_data memory_exception_data;
1234	int user_gpu_id;
1235
1236	if (!p)
1237		return; /* Presumably process exited. */
1238
1239	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1240	if (unlikely(user_gpu_id == -EINVAL)) {
1241		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1242		return;
1243	}
1244
1245	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1246	memory_exception_data.gpu_id = user_gpu_id;
1247	memory_exception_data.failure.imprecise = true;
1248	/* Set failure reason */
1249	if (info) {
1250		memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
1251		memory_exception_data.failure.NotPresent =
1252			info->prot_valid ? 1 : 0;
1253		memory_exception_data.failure.NoExecute =
1254			info->prot_exec ? 1 : 0;
1255		memory_exception_data.failure.ReadOnly =
1256			info->prot_write ? 1 : 0;
1257		memory_exception_data.failure.imprecise = 0;
1258	}
1259
1260	rcu_read_lock();
1261
1262	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1263	idr_for_each_entry_continue(&p->event_idr, ev, id)
1264		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1265			spin_lock(&ev->lock);
1266			ev->memory_exception_data = memory_exception_data;
1267			set_event(ev);
1268			spin_unlock(&ev->lock);
1269		}
1270
1271	rcu_read_unlock();
1272	kfd_unref_process(p);
1273}
1274
1275void kfd_signal_reset_event(struct kfd_dev *dev)
1276{
1277	struct kfd_hsa_hw_exception_data hw_exception_data;
1278	struct kfd_hsa_memory_exception_data memory_exception_data;
1279	struct kfd_process *p;
1280	struct kfd_event *ev;
1281	unsigned int temp;
1282	uint32_t id, idx;
1283	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1284			KFD_HW_EXCEPTION_ECC :
1285			KFD_HW_EXCEPTION_GPU_HANG;
1286
1287	/* Whole gpu reset caused by GPU hang and memory is lost */
1288	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
 
1289	hw_exception_data.memory_lost = 1;
1290	hw_exception_data.reset_cause = reset_cause;
1291
1292	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1293	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
 
1294	memory_exception_data.failure.imprecise = true;
1295
1296	idx = srcu_read_lock(&kfd_processes_srcu);
1297	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1298		int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1299
1300		if (unlikely(user_gpu_id == -EINVAL)) {
1301			WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1302			continue;
1303		}
1304
1305		rcu_read_lock();
1306
1307		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1308		idr_for_each_entry_continue(&p->event_idr, ev, id) {
1309			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1310				spin_lock(&ev->lock);
1311				ev->hw_exception_data = hw_exception_data;
1312				ev->hw_exception_data.gpu_id = user_gpu_id;
1313				set_event(ev);
1314				spin_unlock(&ev->lock);
1315			}
1316			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1317			    reset_cause == KFD_HW_EXCEPTION_ECC) {
1318				spin_lock(&ev->lock);
1319				ev->memory_exception_data = memory_exception_data;
1320				ev->memory_exception_data.gpu_id = user_gpu_id;
1321				set_event(ev);
1322				spin_unlock(&ev->lock);
1323			}
1324		}
1325
1326		rcu_read_unlock();
1327	}
1328	srcu_read_unlock(&kfd_processes_srcu, idx);
1329}
1330
1331void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid)
1332{
1333	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1334	struct kfd_hsa_memory_exception_data memory_exception_data;
1335	struct kfd_hsa_hw_exception_data hw_exception_data;
1336	struct kfd_event *ev;
1337	uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1338	int user_gpu_id;
1339
1340	if (!p)
1341		return; /* Presumably process exited. */
1342
1343	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1344	if (unlikely(user_gpu_id == -EINVAL)) {
1345		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1346		return;
1347	}
1348
1349	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1350	hw_exception_data.gpu_id = user_gpu_id;
1351	hw_exception_data.memory_lost = 1;
1352	hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
1353
1354	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1355	memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
1356	memory_exception_data.gpu_id = user_gpu_id;
1357	memory_exception_data.failure.imprecise = true;
1358
1359	rcu_read_lock();
1360
1361	idr_for_each_entry_continue(&p->event_idr, ev, id) {
1362		if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1363			spin_lock(&ev->lock);
1364			ev->hw_exception_data = hw_exception_data;
1365			set_event(ev);
1366			spin_unlock(&ev->lock);
1367		}
1368
1369		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1370			spin_lock(&ev->lock);
1371			ev->memory_exception_data = memory_exception_data;
1372			set_event(ev);
1373			spin_unlock(&ev->lock);
1374		}
1375	}
1376
1377	rcu_read_unlock();
1378
1379	/* user application will handle SIGBUS signal */
1380	send_sig(SIGBUS, p->lead_thread, 0);
1381
1382	kfd_unref_process(p);
1383}