Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/hmm.h>
  36#include <linux/pagemap.h>
  37#include <linux/sched/task.h>
  38#include <linux/sched/mm.h>
  39#include <linux/seq_file.h>
  40#include <linux/slab.h>
  41#include <linux/swap.h>
  42#include <linux/swiotlb.h>
  43#include <linux/dma-buf.h>
  44#include <linux/sizes.h>
 
  45
 
  46#include <drm/ttm/ttm_bo_api.h>
  47#include <drm/ttm/ttm_bo_driver.h>
  48#include <drm/ttm/ttm_placement.h>
  49#include <drm/ttm/ttm_module.h>
  50#include <drm/ttm/ttm_page_alloc.h>
  51
  52#include <drm/drm_debugfs.h>
  53#include <drm/amdgpu_drm.h>
 
  54
  55#include "amdgpu.h"
  56#include "amdgpu_object.h"
  57#include "amdgpu_trace.h"
  58#include "amdgpu_amdkfd.h"
  59#include "amdgpu_sdma.h"
  60#include "amdgpu_ras.h"
 
  61#include "amdgpu_atomfirmware.h"
 
  62#include "bif/bif_4_1_d.h"
  63
  64#define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
  65
 
  66
  67/**
  68 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
  69 * memory request.
  70 *
  71 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
  72 * @type: The type of memory requested
  73 * @man: The memory type manager for each domain
  74 *
  75 * This is called by ttm_bo_init_mm() when a buffer object is being
  76 * initialized.
  77 */
  78static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
  79				struct ttm_mem_type_manager *man)
  80{
  81	struct amdgpu_device *adev;
  82
  83	adev = amdgpu_ttm_adev(bdev);
  84
  85	switch (type) {
  86	case TTM_PL_SYSTEM:
  87		/* System memory */
  88		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
  89		man->available_caching = TTM_PL_MASK_CACHING;
  90		man->default_caching = TTM_PL_FLAG_CACHED;
  91		break;
  92	case TTM_PL_TT:
  93		/* GTT memory  */
  94		man->func = &amdgpu_gtt_mgr_func;
  95		man->available_caching = TTM_PL_MASK_CACHING;
  96		man->default_caching = TTM_PL_FLAG_CACHED;
  97		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
  98		break;
  99	case TTM_PL_VRAM:
 100		/* "On-card" video ram */
 101		man->func = &amdgpu_vram_mgr_func;
 102		man->flags = TTM_MEMTYPE_FLAG_FIXED |
 103			     TTM_MEMTYPE_FLAG_MAPPABLE;
 104		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
 105		man->default_caching = TTM_PL_FLAG_WC;
 106		break;
 107	case AMDGPU_PL_GDS:
 108	case AMDGPU_PL_GWS:
 109	case AMDGPU_PL_OA:
 110		/* On-chip GDS memory*/
 111		man->func = &ttm_bo_manager_func;
 112		man->flags = TTM_MEMTYPE_FLAG_FIXED;
 113		man->available_caching = TTM_PL_FLAG_UNCACHED;
 114		man->default_caching = TTM_PL_FLAG_UNCACHED;
 115		break;
 116	default:
 117		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
 118		return -EINVAL;
 119	}
 120	return 0;
 121}
 122
 123/**
 124 * amdgpu_evict_flags - Compute placement flags
 125 *
 126 * @bo: The buffer object to evict
 127 * @placement: Possible destination(s) for evicted BO
 128 *
 129 * Fill in placement data when ttm_bo_evict() is called
 130 */
 131static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
 132				struct ttm_placement *placement)
 133{
 134	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 135	struct amdgpu_bo *abo;
 136	static const struct ttm_place placements = {
 137		.fpfn = 0,
 138		.lpfn = 0,
 139		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
 
 140	};
 141
 142	/* Don't handle scatter gather BOs */
 143	if (bo->type == ttm_bo_type_sg) {
 144		placement->num_placement = 0;
 145		placement->num_busy_placement = 0;
 146		return;
 147	}
 148
 149	/* Object isn't an AMDGPU object so ignore */
 150	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 151		placement->placement = &placements;
 152		placement->busy_placement = &placements;
 153		placement->num_placement = 1;
 154		placement->num_busy_placement = 1;
 155		return;
 156	}
 157
 158	abo = ttm_to_amdgpu_bo(bo);
 159	switch (bo->mem.mem_type) {
 
 
 
 
 
 
 160	case AMDGPU_PL_GDS:
 161	case AMDGPU_PL_GWS:
 162	case AMDGPU_PL_OA:
 163		placement->num_placement = 0;
 164		placement->num_busy_placement = 0;
 165		return;
 166
 167	case TTM_PL_VRAM:
 168		if (!adev->mman.buffer_funcs_enabled) {
 169			/* Move to system memory */
 170			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 171		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 172			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 173			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 174
 175			/* Try evicting to the CPU inaccessible part of VRAM
 176			 * first, but only set GTT as busy placement, so this
 177			 * BO will be evicted to GTT rather than causing other
 178			 * BOs to be evicted from VRAM
 179			 */
 180			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 181							 AMDGPU_GEM_DOMAIN_GTT);
 
 182			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 183			abo->placements[0].lpfn = 0;
 184			abo->placement.busy_placement = &abo->placements[1];
 185			abo->placement.num_busy_placement = 1;
 186		} else {
 187			/* Move to GTT memory */
 188			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
 
 189		}
 190		break;
 191	case TTM_PL_TT:
 
 192	default:
 193		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 194		break;
 195	}
 196	*placement = abo->placement;
 197}
 198
 199/**
 200 * amdgpu_verify_access - Verify access for a mmap call
 201 *
 202 * @bo:	The buffer object to map
 203 * @filp: The file pointer from the process performing the mmap
 204 *
 205 * This is called by ttm_bo_mmap() to verify whether a process
 206 * has the right to mmap a BO to their process space.
 207 */
 208static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
 209{
 210	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 211
 212	/*
 213	 * Don't verify access for KFD BOs. They don't have a GEM
 214	 * object associated with them.
 215	 */
 216	if (abo->kfd_bo)
 217		return 0;
 218
 219	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
 220		return -EPERM;
 221	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
 222					  filp->private_data);
 223}
 224
 225/**
 226 * amdgpu_move_null - Register memory for a buffer object
 227 *
 228 * @bo: The bo to assign the memory to
 229 * @new_mem: The memory to be assigned.
 230 *
 231 * Assign the memory from new_mem to the memory of the buffer object bo.
 232 */
 233static void amdgpu_move_null(struct ttm_buffer_object *bo,
 234			     struct ttm_mem_reg *new_mem)
 235{
 236	struct ttm_mem_reg *old_mem = &bo->mem;
 237
 238	BUG_ON(old_mem->mm_node != NULL);
 239	*old_mem = *new_mem;
 240	new_mem->mm_node = NULL;
 241}
 242
 243/**
 244 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
 245 *
 246 * @bo: The bo to assign the memory to.
 247 * @mm_node: Memory manager node for drm allocator.
 248 * @mem: The region where the bo resides.
 249 *
 250 */
 251static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
 252				    struct drm_mm_node *mm_node,
 253				    struct ttm_mem_reg *mem)
 254{
 255	uint64_t addr = 0;
 256
 257	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
 258		addr = mm_node->start << PAGE_SHIFT;
 259		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
 260						mem->mem_type);
 261	}
 262	return addr;
 263}
 264
 265/**
 266 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
 267 * @offset. It also modifies the offset to be within the drm_mm_node returned
 268 *
 269 * @mem: The region where the bo resides.
 270 * @offset: The offset that drm_mm_node is used for finding.
 271 *
 272 */
 273static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
 274					       uint64_t *offset)
 275{
 276	struct drm_mm_node *mm_node = mem->mm_node;
 277
 278	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
 279		*offset -= (mm_node->size << PAGE_SHIFT);
 280		++mm_node;
 281	}
 282	return mm_node;
 283}
 284
 285/**
 286 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 287 * @bo: buffer object to map
 288 * @mem: memory object to map
 289 * @mm_node: drm_mm node object to map
 290 * @num_pages: number of pages to map
 291 * @offset: offset into @mm_node where to start
 292 * @window: which GART window to use
 293 * @ring: DMA ring to use for the copy
 294 * @tmz: if we should setup a TMZ enabled mapping
 
 295 * @addr: resulting address inside the MC address space
 296 *
 297 * Setup one of the GART windows to access a specific piece of memory or return
 298 * the physical address for local memory.
 299 */
 300static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 301				 struct ttm_mem_reg *mem,
 302				 struct drm_mm_node *mm_node,
 303				 unsigned num_pages, uint64_t offset,
 304				 unsigned window, struct amdgpu_ring *ring,
 305				 bool tmz, uint64_t *addr)
 306{
 307	struct amdgpu_device *adev = ring->adev;
 308	struct amdgpu_job *job;
 309	unsigned num_dw, num_bytes;
 310	struct dma_fence *fence;
 311	uint64_t src_addr, dst_addr;
 
 312	void *cpu_addr;
 313	uint64_t flags;
 314	unsigned int i;
 315	int r;
 316
 317	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 318	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 319
 
 
 
 320	/* Map only what can't be accessed directly */
 321	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 322		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
 
 323		return 0;
 324	}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 326	*addr = adev->gmc.gart_start;
 327	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 328		AMDGPU_GPU_PAGE_SIZE;
 329	*addr += offset & ~PAGE_MASK;
 330
 331	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 332	num_bytes = num_pages * 8;
 333
 334	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
 
 
 335				     AMDGPU_IB_POOL_DELAYED, &job);
 336	if (r)
 337		return r;
 338
 339	src_addr = num_dw * 4;
 340	src_addr += job->ibs[0].gpu_addr;
 341
 342	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 343	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 344	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 345				dst_addr, num_bytes, false);
 346
 347	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 348	WARN_ON(job->ibs[0].length_dw > num_dw);
 349
 350	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 351	if (tmz)
 352		flags |= AMDGPU_PTE_TMZ;
 353
 354	cpu_addr = &job->ibs[0].ptr[num_dw];
 355
 356	if (mem->mem_type == TTM_PL_TT) {
 357		struct ttm_dma_tt *dma;
 358		dma_addr_t *dma_address;
 359
 360		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
 361		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
 362		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
 363				    cpu_addr);
 364		if (r)
 365			goto error_free;
 366	} else {
 367		dma_addr_t dma_address;
 368
 369		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
 370		dma_address += adev->vm_manager.vram_base_offset;
 371
 372		for (i = 0; i < num_pages; ++i) {
 373			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
 374					    &dma_address, flags, cpu_addr);
 375			if (r)
 376				goto error_free;
 377
 378			dma_address += PAGE_SIZE;
 379		}
 380	}
 381
 382	r = amdgpu_job_submit(job, &adev->mman.entity,
 383			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
 384	if (r)
 385		goto error_free;
 386
 387	dma_fence_put(fence);
 388
 389	return r;
 390
 391error_free:
 392	amdgpu_job_free(job);
 393	return r;
 394}
 395
 396/**
 397 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
 398 * @adev: amdgpu device
 399 * @src: buffer/address where to read from
 400 * @dst: buffer/address where to write to
 401 * @size: number of bytes to copy
 402 * @tmz: if a secure copy should be used
 403 * @resv: resv object to sync to
 404 * @f: Returns the last fence if multiple jobs are submitted.
 405 *
 406 * The function copies @size bytes from {src->mem + src->offset} to
 407 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 408 * move and different for a BO to BO copy.
 409 *
 410 */
 411int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 412			       const struct amdgpu_copy_mem *src,
 413			       const struct amdgpu_copy_mem *dst,
 414			       uint64_t size, bool tmz,
 415			       struct dma_resv *resv,
 416			       struct dma_fence **f)
 417{
 418	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
 419					AMDGPU_GPU_PAGE_SIZE);
 420
 421	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
 422	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 423	struct drm_mm_node *src_mm, *dst_mm;
 424	struct dma_fence *fence = NULL;
 425	int r = 0;
 426
 427	if (!adev->mman.buffer_funcs_enabled) {
 428		DRM_ERROR("Trying to move memory with ring turned off.\n");
 429		return -EINVAL;
 430	}
 431
 432	src_offset = src->offset;
 433	if (src->mem->mm_node) {
 434		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
 435		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
 436	} else {
 437		src_mm = NULL;
 438		src_node_size = ULLONG_MAX;
 439	}
 440
 441	dst_offset = dst->offset;
 442	if (dst->mem->mm_node) {
 443		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
 444		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
 445	} else {
 446		dst_mm = NULL;
 447		dst_node_size = ULLONG_MAX;
 448	}
 449
 450	mutex_lock(&adev->mman.gtt_window_lock);
 451
 452	while (size) {
 453		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
 454		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
 455		struct dma_fence *next;
 456		uint32_t cur_size;
 457		uint64_t from, to;
 458
 459		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
 460		 * begins at an offset, then adjust the size accordingly
 461		 */
 462		cur_size = max(src_page_offset, dst_page_offset);
 463		cur_size = min(min3(src_node_size, dst_node_size, size),
 464			       (uint64_t)(GTT_MAX_BYTES - cur_size));
 465
 466		/* Map src to window 0 and dst to window 1. */
 467		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
 468					  PFN_UP(cur_size + src_page_offset),
 469					  src_offset, 0, ring, tmz, &from);
 470		if (r)
 471			goto error;
 472
 473		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
 474					  PFN_UP(cur_size + dst_page_offset),
 475					  dst_offset, 1, ring, tmz, &to);
 476		if (r)
 477			goto error;
 478
 479		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 480				       resv, &next, false, true, tmz);
 481		if (r)
 482			goto error;
 483
 484		dma_fence_put(fence);
 485		fence = next;
 486
 487		size -= cur_size;
 488		if (!size)
 489			break;
 490
 491		src_node_size -= cur_size;
 492		if (!src_node_size) {
 493			++src_mm;
 494			src_node_size = src_mm->size << PAGE_SHIFT;
 495			src_offset = 0;
 496		} else {
 497			src_offset += cur_size;
 498		}
 499
 500		dst_node_size -= cur_size;
 501		if (!dst_node_size) {
 502			++dst_mm;
 503			dst_node_size = dst_mm->size << PAGE_SHIFT;
 504			dst_offset = 0;
 505		} else {
 506			dst_offset += cur_size;
 507		}
 508	}
 509error:
 510	mutex_unlock(&adev->mman.gtt_window_lock);
 511	if (f)
 512		*f = dma_fence_get(fence);
 513	dma_fence_put(fence);
 514	return r;
 515}
 516
 517/**
 518 * amdgpu_move_blit - Copy an entire buffer to another buffer
 519 *
 520 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 521 * help move buffers to and from VRAM.
 522 */
 523static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 524			    bool evict, bool no_wait_gpu,
 525			    struct ttm_mem_reg *new_mem,
 526			    struct ttm_mem_reg *old_mem)
 527{
 528	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 529	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 530	struct amdgpu_copy_mem src, dst;
 531	struct dma_fence *fence = NULL;
 532	int r;
 533
 534	src.bo = bo;
 535	dst.bo = bo;
 536	src.mem = old_mem;
 537	dst.mem = new_mem;
 538	src.offset = 0;
 539	dst.offset = 0;
 540
 541	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 542				       new_mem->num_pages << PAGE_SHIFT,
 543				       amdgpu_bo_encrypted(abo),
 544				       bo->base.resv, &fence);
 545	if (r)
 546		goto error;
 547
 548	/* clear the space being freed */
 549	if (old_mem->mem_type == TTM_PL_VRAM &&
 550	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 551		struct dma_fence *wipe_fence = NULL;
 552
 553		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
 554				       NULL, &wipe_fence);
 555		if (r) {
 556			goto error;
 557		} else if (wipe_fence) {
 558			dma_fence_put(fence);
 559			fence = wipe_fence;
 560		}
 561	}
 562
 563	/* Always block for VM page tables before committing the new location */
 564	if (bo->type == ttm_bo_type_kernel)
 565		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
 566	else
 567		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
 568	dma_fence_put(fence);
 569	return r;
 570
 571error:
 572	if (fence)
 573		dma_fence_wait(fence, false);
 574	dma_fence_put(fence);
 575	return r;
 576}
 577
 578/**
 579 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
 580 *
 581 * Called by amdgpu_bo_move().
 582 */
 583static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
 584				struct ttm_operation_ctx *ctx,
 585				struct ttm_mem_reg *new_mem)
 586{
 587	struct ttm_mem_reg *old_mem = &bo->mem;
 588	struct ttm_mem_reg tmp_mem;
 589	struct ttm_place placements;
 590	struct ttm_placement placement;
 591	int r;
 592
 593	/* create space/pages for new_mem in GTT space */
 594	tmp_mem = *new_mem;
 595	tmp_mem.mm_node = NULL;
 596	placement.num_placement = 1;
 597	placement.placement = &placements;
 598	placement.num_busy_placement = 1;
 599	placement.busy_placement = &placements;
 600	placements.fpfn = 0;
 601	placements.lpfn = 0;
 602	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
 603	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
 604	if (unlikely(r)) {
 605		pr_err("Failed to find GTT space for blit from VRAM\n");
 606		return r;
 607	}
 608
 609	/* set caching flags */
 610	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
 611	if (unlikely(r)) {
 612		goto out_cleanup;
 613	}
 614
 615	/* Bind the memory to the GTT space */
 616	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
 617	if (unlikely(r)) {
 618		goto out_cleanup;
 619	}
 620
 621	/* blit VRAM to GTT */
 622	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
 623	if (unlikely(r)) {
 624		goto out_cleanup;
 625	}
 626
 627	/* move BO (in tmp_mem) to new_mem */
 628	r = ttm_bo_move_ttm(bo, ctx, new_mem);
 629out_cleanup:
 630	ttm_bo_mem_put(bo, &tmp_mem);
 631	return r;
 632}
 633
 634/**
 635 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
 636 *
 637 * Called by amdgpu_bo_move().
 638 */
 639static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
 640				struct ttm_operation_ctx *ctx,
 641				struct ttm_mem_reg *new_mem)
 642{
 643	struct ttm_mem_reg *old_mem = &bo->mem;
 644	struct ttm_mem_reg tmp_mem;
 645	struct ttm_placement placement;
 646	struct ttm_place placements;
 647	int r;
 648
 649	/* make space in GTT for old_mem buffer */
 650	tmp_mem = *new_mem;
 651	tmp_mem.mm_node = NULL;
 652	placement.num_placement = 1;
 653	placement.placement = &placements;
 654	placement.num_busy_placement = 1;
 655	placement.busy_placement = &placements;
 656	placements.fpfn = 0;
 657	placements.lpfn = 0;
 658	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
 659	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
 660	if (unlikely(r)) {
 661		pr_err("Failed to find GTT space for blit to VRAM\n");
 662		return r;
 663	}
 664
 665	/* move/bind old memory to GTT space */
 666	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
 667	if (unlikely(r)) {
 668		goto out_cleanup;
 669	}
 670
 671	/* copy to VRAM */
 672	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
 673	if (unlikely(r)) {
 674		goto out_cleanup;
 675	}
 676out_cleanup:
 677	ttm_bo_mem_put(bo, &tmp_mem);
 678	return r;
 679}
 680
 681/**
 682 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 683 *
 684 * Called by amdgpu_bo_move()
 685 */
 686static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 687			       struct ttm_mem_reg *mem)
 688{
 689	struct drm_mm_node *nodes = mem->mm_node;
 
 
 690
 691	if (mem->mem_type == TTM_PL_SYSTEM ||
 692	    mem->mem_type == TTM_PL_TT)
 693		return true;
 694	if (mem->mem_type != TTM_PL_VRAM)
 695		return false;
 696
 697	/* ttm_mem_reg_ioremap only supports contiguous memory */
 698	if (nodes->size != mem->num_pages)
 699		return false;
 
 
 
 
 700
 701	return ((nodes->start + nodes->size) << PAGE_SHIFT)
 702		<= adev->gmc.visible_vram_size;
 
 
 
 
 
 
 703}
 704
 705/**
 706 * amdgpu_bo_move - Move a buffer object to a new memory location
 707 *
 708 * Called by ttm_bo_handle_move_mem()
 709 */
 710static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 711			  struct ttm_operation_ctx *ctx,
 712			  struct ttm_mem_reg *new_mem)
 
 713{
 714	struct amdgpu_device *adev;
 715	struct amdgpu_bo *abo;
 716	struct ttm_mem_reg *old_mem = &bo->mem;
 717	int r;
 718
 
 
 
 
 
 
 
 719	/* Can't move a pinned BO */
 720	abo = ttm_to_amdgpu_bo(bo);
 721	if (WARN_ON_ONCE(abo->pin_count > 0))
 722		return -EINVAL;
 723
 724	adev = amdgpu_ttm_adev(bo->bdev);
 725
 726	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
 727		amdgpu_move_null(bo, new_mem);
 728		return 0;
 
 729	}
 730	if ((old_mem->mem_type == TTM_PL_TT &&
 731	     new_mem->mem_type == TTM_PL_SYSTEM) ||
 732	    (old_mem->mem_type == TTM_PL_SYSTEM &&
 733	     new_mem->mem_type == TTM_PL_TT)) {
 734		/* bind is enough */
 735		amdgpu_move_null(bo, new_mem);
 736		return 0;
 
 
 
 
 
 
 
 
 
 
 737	}
 
 738	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 739	    old_mem->mem_type == AMDGPU_PL_GWS ||
 740	    old_mem->mem_type == AMDGPU_PL_OA ||
 741	    new_mem->mem_type == AMDGPU_PL_GDS ||
 742	    new_mem->mem_type == AMDGPU_PL_GWS ||
 743	    new_mem->mem_type == AMDGPU_PL_OA) {
 744		/* Nothing to save here */
 745		amdgpu_move_null(bo, new_mem);
 746		return 0;
 747	}
 748
 749	if (!adev->mman.buffer_funcs_enabled) {
 750		r = -ENODEV;
 751		goto memcpy;
 
 
 
 
 752	}
 753
 754	if (old_mem->mem_type == TTM_PL_VRAM &&
 755	    new_mem->mem_type == TTM_PL_SYSTEM) {
 756		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
 757	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
 758		   new_mem->mem_type == TTM_PL_VRAM) {
 759		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
 
 
 
 
 
 
 
 760	} else {
 761		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
 762				     new_mem, old_mem);
 763	}
 764
 765	if (r) {
 766memcpy:
 767		/* Check that all memory is CPU accessible */
 768		if (!amdgpu_mem_visible(adev, old_mem) ||
 769		    !amdgpu_mem_visible(adev, new_mem)) {
 770			pr_err("Move buffer fallback to memcpy unavailable\n");
 771			return r;
 772		}
 773
 774		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 775		if (r)
 776			return r;
 777	}
 778
 779	if (bo->type == ttm_bo_type_device &&
 780	    new_mem->mem_type == TTM_PL_VRAM &&
 781	    old_mem->mem_type != TTM_PL_VRAM) {
 782		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 783		 * accesses the BO after it's moved.
 784		 */
 785		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 786	}
 787
 788	/* update statistics */
 789	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
 
 790	return 0;
 791}
 792
 793/**
 794 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 795 *
 796 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 797 */
 798static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
 
 799{
 800	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
 801	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 802	struct drm_mm_node *mm_node = mem->mm_node;
 803
 804	mem->bus.addr = NULL;
 805	mem->bus.offset = 0;
 806	mem->bus.size = mem->num_pages << PAGE_SHIFT;
 807	mem->bus.base = 0;
 808	mem->bus.is_iomem = false;
 809	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
 810		return -EINVAL;
 811	switch (mem->mem_type) {
 812	case TTM_PL_SYSTEM:
 813		/* system memory */
 814		return 0;
 815	case TTM_PL_TT:
 
 816		break;
 817	case TTM_PL_VRAM:
 818		mem->bus.offset = mem->start << PAGE_SHIFT;
 819		/* check if it's visible */
 820		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
 821			return -EINVAL;
 822		/* Only physically contiguous buffers apply. In a contiguous
 823		 * buffer, size of the first mm_node would match the number of
 824		 * pages in ttm_mem_reg.
 825		 */
 826		if (adev->mman.aper_base_kaddr &&
 827		    (mm_node->size == mem->num_pages))
 828			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 829					mem->bus.offset;
 830
 831		mem->bus.base = adev->gmc.aper_base;
 832		mem->bus.is_iomem = true;
 833		break;
 834	default:
 835		return -EINVAL;
 836	}
 837	return 0;
 838}
 839
 840static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 841					   unsigned long page_offset)
 842{
 843	uint64_t offset = (page_offset << PAGE_SHIFT);
 844	struct drm_mm_node *mm;
 845
 846	mm = amdgpu_find_mm_node(&bo->mem, &offset);
 847	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
 848		(offset >> PAGE_SHIFT);
 849}
 850
 851/**
 852 * amdgpu_ttm_domain_start - Returns GPU start address
 853 * @adev: amdgpu device object
 854 * @type: type of the memory
 855 *
 856 * Returns:
 857 * GPU start address of a memory domain
 858 */
 859
 860uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 861{
 862	switch (type) {
 863	case TTM_PL_TT:
 864		return adev->gmc.gart_start;
 865	case TTM_PL_VRAM:
 866		return adev->gmc.vram_start;
 867	}
 868
 869	return 0;
 870}
 871
 872/*
 873 * TTM backend functions.
 874 */
 875struct amdgpu_ttm_tt {
 876	struct ttm_dma_tt	ttm;
 877	struct drm_gem_object	*gobj;
 878	u64			offset;
 879	uint64_t		userptr;
 880	struct task_struct	*usertask;
 881	uint32_t		userflags;
 882#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 883	struct hmm_range	*range;
 884#endif
 885};
 886
 
 
 887#ifdef CONFIG_DRM_AMDGPU_USERPTR
 888/**
 889 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 890 * memory and start HMM tracking CPU page table update
 891 *
 892 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 893 * once afterwards to stop HMM tracking
 894 */
 895int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
 
 896{
 897	struct ttm_tt *ttm = bo->tbo.ttm;
 898	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 899	unsigned long start = gtt->userptr;
 900	struct vm_area_struct *vma;
 901	struct hmm_range *range;
 902	unsigned long timeout;
 903	struct mm_struct *mm;
 904	unsigned long i;
 905	int r = 0;
 906
 
 
 
 907	mm = bo->notifier.mm;
 908	if (unlikely(!mm)) {
 909		DRM_DEBUG_DRIVER("BO is not registered?\n");
 910		return -EFAULT;
 911	}
 912
 913	/* Another get_user_pages is running at the same time?? */
 914	if (WARN_ON(gtt->range))
 915		return -EFAULT;
 916
 917	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 918		return -ESRCH;
 919
 920	range = kzalloc(sizeof(*range), GFP_KERNEL);
 921	if (unlikely(!range)) {
 922		r = -ENOMEM;
 923		goto out;
 924	}
 925	range->notifier = &bo->notifier;
 926	range->start = bo->notifier.interval_tree.start;
 927	range->end = bo->notifier.interval_tree.last + 1;
 928	range->default_flags = HMM_PFN_REQ_FAULT;
 929	if (!amdgpu_ttm_tt_is_readonly(ttm))
 930		range->default_flags |= HMM_PFN_REQ_WRITE;
 931
 932	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
 933					 sizeof(*range->hmm_pfns), GFP_KERNEL);
 934	if (unlikely(!range->hmm_pfns)) {
 935		r = -ENOMEM;
 936		goto out_free_ranges;
 937	}
 938
 939	mmap_read_lock(mm);
 940	vma = find_vma(mm, start);
 941	if (unlikely(!vma || start < vma->vm_start)) {
 942		r = -EFAULT;
 943		goto out_unlock;
 944	}
 945	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 946		vma->vm_file)) {
 947		r = -EPERM;
 948		goto out_unlock;
 949	}
 950	mmap_read_unlock(mm);
 951	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
 952
 953retry:
 954	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
 955
 956	mmap_read_lock(mm);
 957	r = hmm_range_fault(range);
 
 
 958	mmap_read_unlock(mm);
 959	if (unlikely(r)) {
 960		/*
 961		 * FIXME: This timeout should encompass the retry from
 962		 * mmu_interval_read_retry() as well.
 963		 */
 964		if (r == -EBUSY && !time_after(jiffies, timeout))
 965			goto retry;
 966		goto out_free_pfns;
 967	}
 968
 969	/*
 970	 * Due to default_flags, all pages are HMM_PFN_VALID or
 971	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
 972	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
 973	 */
 974	for (i = 0; i < ttm->num_pages; i++)
 975		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
 976
 977	gtt->range = range;
 978	mmput(mm);
 979
 980	return 0;
 981
 982out_unlock:
 983	mmap_read_unlock(mm);
 984out_free_pfns:
 985	kvfree(range->hmm_pfns);
 986out_free_ranges:
 987	kfree(range);
 988out:
 989	mmput(mm);
 990	return r;
 991}
 992
 993/**
 994 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
 
 
 
 
 
 
 
 
 
 
 
 995 * Check if the pages backing this ttm range have been invalidated
 996 *
 997 * Returns: true if pages are still valid
 998 */
 999bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
 
1000{
1001	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1002	bool r = false;
1003
1004	if (!gtt || !gtt->userptr)
1005		return false;
1006
1007	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
1008		gtt->userptr, ttm->num_pages);
1009
1010	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
1011		"No user pages to check\n");
1012
1013	if (gtt->range) {
1014		/*
1015		 * FIXME: Must always hold notifier_lock for this, and must
1016		 * not ignore the return code.
1017		 */
1018		r = mmu_interval_read_retry(gtt->range->notifier,
1019					 gtt->range->notifier_seq);
1020		kvfree(gtt->range->hmm_pfns);
1021		kfree(gtt->range);
1022		gtt->range = NULL;
1023	}
1024
1025	return !r;
1026}
1027#endif
1028
1029/**
1030 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1031 *
1032 * Called by amdgpu_cs_list_validate(). This creates the page list
1033 * that backs user memory and will ultimately be mapped into the device
1034 * address space.
1035 */
1036void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1037{
1038	unsigned long i;
1039
1040	for (i = 0; i < ttm->num_pages; ++i)
1041		ttm->pages[i] = pages ? pages[i] : NULL;
1042}
1043
1044/**
1045 * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
1046 *
1047 * Called by amdgpu_ttm_backend_bind()
1048 **/
1049static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
 
1050{
1051	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1052	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1053	int r;
1054
1055	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1056	enum dma_data_direction direction = write ?
1057		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 
1058
1059	/* Allocate an SG array and squash pages into it */
1060	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1061				      ttm->num_pages << PAGE_SHIFT,
1062				      GFP_KERNEL);
1063	if (r)
1064		goto release_sg;
1065
1066	/* Map SG to device */
1067	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1068	if (r)
1069		goto release_sg;
1070
1071	/* convert SG to linear array of pages and dma addresses */
1072	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1073					 gtt->ttm.dma_address, ttm->num_pages);
1074
1075	return 0;
1076
1077release_sg:
1078	kfree(ttm->sg);
1079	ttm->sg = NULL;
1080	return r;
1081}
1082
1083/**
1084 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1085 */
1086static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
 
1087{
1088	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1089	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1090
1091	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1092	enum dma_data_direction direction = write ?
1093		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1094
1095	/* double check that we don't free the table twice */
1096	if (!ttm->sg->sgl)
1097		return;
1098
1099	/* unmap the pages mapped to the device */
1100	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1101	sg_free_table(ttm->sg);
1102
1103#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1104	if (gtt->range) {
1105		unsigned long i;
1106
1107		for (i = 0; i < ttm->num_pages; i++) {
1108			if (ttm->pages[i] !=
1109			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1110				break;
1111		}
1112
1113		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1114	}
1115#endif
1116}
1117
1118static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1119				struct ttm_buffer_object *tbo,
1120				uint64_t flags)
1121{
1122	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1123	struct ttm_tt *ttm = tbo->ttm;
1124	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1125	int r;
1126
1127	if (amdgpu_bo_encrypted(abo))
1128		flags |= AMDGPU_PTE_TMZ;
1129
1130	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1131		uint64_t page_idx = 1;
1132
1133		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1134				ttm->pages, gtt->ttm.dma_address, flags);
1135		if (r)
1136			goto gart_bind_fail;
1137
1138		/* The memory type of the first page defaults to UC. Now
1139		 * modify the memory type to NC from the second page of
1140		 * the BO onward.
1141		 */
1142		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1143		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1144
1145		r = amdgpu_gart_bind(adev,
1146				gtt->offset + (page_idx << PAGE_SHIFT),
1147				ttm->num_pages - page_idx,
1148				&ttm->pages[page_idx],
1149				&(gtt->ttm.dma_address[page_idx]), flags);
1150	} else {
1151		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1152				     ttm->pages, gtt->ttm.dma_address, flags);
1153	}
1154
1155gart_bind_fail:
1156	if (r)
1157		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1158			  ttm->num_pages, gtt->offset);
1159
1160	return r;
1161}
1162
1163/**
1164 * amdgpu_ttm_backend_bind - Bind GTT memory
1165 *
1166 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1167 * This handles binding GTT memory to the device address space.
1168 */
1169static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1170				   struct ttm_mem_reg *bo_mem)
 
1171{
1172	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1173	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1174	uint64_t flags;
1175	int r = 0;
 
 
 
 
 
 
1176
1177	if (gtt->userptr) {
1178		r = amdgpu_ttm_tt_pin_userptr(ttm);
1179		if (r) {
1180			DRM_ERROR("failed to pin userptr\n");
1181			return r;
1182		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183	}
 
1184	if (!ttm->num_pages) {
1185		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1186		     ttm->num_pages, bo_mem, ttm);
1187	}
1188
1189	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1190	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1191	    bo_mem->mem_type == AMDGPU_PL_OA)
1192		return -EINVAL;
1193
1194	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1195		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1196		return 0;
1197	}
1198
1199	/* compute PTE flags relevant to this BO memory */
1200	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1201
1202	/* bind pages into GART page tables */
1203	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1204	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1205		ttm->pages, gtt->ttm.dma_address, flags);
1206
1207	if (r)
1208		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1209			  ttm->num_pages, gtt->offset);
1210	return r;
1211}
1212
1213/**
1214 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
 
 
 
 
 
1215 */
1216int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1217{
1218	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1219	struct ttm_operation_ctx ctx = { false, false };
1220	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1221	struct ttm_mem_reg tmp;
1222	struct ttm_placement placement;
1223	struct ttm_place placements;
 
1224	uint64_t addr, flags;
1225	int r;
1226
1227	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1228		return 0;
1229
1230	addr = amdgpu_gmc_agp_addr(bo);
1231	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1232		bo->mem.start = addr >> PAGE_SHIFT;
1233	} else {
1234
1235		/* allocate GART space */
1236		tmp = bo->mem;
1237		tmp.mm_node = NULL;
1238		placement.num_placement = 1;
1239		placement.placement = &placements;
1240		placement.num_busy_placement = 1;
1241		placement.busy_placement = &placements;
1242		placements.fpfn = 0;
1243		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1244		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1245			TTM_PL_FLAG_TT;
1246
1247		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1248		if (unlikely(r))
1249			return r;
 
 
 
 
 
 
1250
1251		/* compute PTE flags for this buffer object */
1252		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
 
1253
1254		/* Bind pages */
1255		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1256		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1257		if (unlikely(r)) {
1258			ttm_bo_mem_put(bo, &tmp);
1259			return r;
1260		}
1261
1262		ttm_bo_mem_put(bo, &bo->mem);
1263		bo->mem = tmp;
1264	}
 
 
 
1265
1266	return 0;
1267}
1268
1269/**
1270 * amdgpu_ttm_recover_gart - Rebind GTT pages
1271 *
1272 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1273 * rebind GTT pages during a GPU reset.
1274 */
1275int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1276{
1277	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1278	uint64_t flags;
1279	int r;
1280
1281	if (!tbo->ttm)
1282		return 0;
1283
1284	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1285	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1286
1287	return r;
 
1288}
1289
1290/**
1291 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1292 *
1293 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1294 * ttm_tt_destroy().
1295 */
1296static void amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
 
1297{
1298	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1299	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1300	int r;
1301
1302	/* if the pages have userptr pinning then clear that first */
1303	if (gtt->userptr)
1304		amdgpu_ttm_tt_unpin_userptr(ttm);
 
 
 
 
 
 
 
 
 
 
1305
1306	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1307		return;
1308
1309	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1310	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1311	if (r)
1312		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1313			  gtt->ttm.ttm.num_pages, gtt->offset);
1314}
1315
1316static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
 
1317{
1318	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1319
1320	if (gtt->usertask)
1321		put_task_struct(gtt->usertask);
1322
1323	ttm_dma_tt_fini(&gtt->ttm);
1324	kfree(gtt);
1325}
1326
1327static struct ttm_backend_func amdgpu_backend_func = {
1328	.bind = &amdgpu_ttm_backend_bind,
1329	.unbind = &amdgpu_ttm_backend_unbind,
1330	.destroy = &amdgpu_ttm_backend_destroy,
1331};
1332
1333/**
1334 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1335 *
1336 * @bo: The buffer object to create a GTT ttm_tt object around
 
1337 *
1338 * Called by ttm_tt_create().
1339 */
1340static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1341					   uint32_t page_flags)
1342{
 
1343	struct amdgpu_ttm_tt *gtt;
 
1344
1345	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1346	if (gtt == NULL) {
1347		return NULL;
1348	}
1349	gtt->ttm.ttm.func = &amdgpu_backend_func;
1350	gtt->gobj = &bo->base;
1351
 
 
 
 
 
1352	/* allocate space for the uninitialized page entries */
1353	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1354		kfree(gtt);
1355		return NULL;
1356	}
1357	return &gtt->ttm.ttm;
1358}
1359
1360/**
1361 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1362 *
1363 * Map the pages of a ttm_tt object to an address space visible
1364 * to the underlying device.
1365 */
1366static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1367			struct ttm_operation_ctx *ctx)
 
1368{
1369	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1370	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 
 
1371
1372	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1373	if (gtt && gtt->userptr) {
1374		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1375		if (!ttm->sg)
1376			return -ENOMEM;
1377
1378		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1379		ttm->state = tt_unbound;
1380		return 0;
1381	}
1382
1383	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1384		if (!ttm->sg) {
1385			struct dma_buf_attachment *attach;
1386			struct sg_table *sgt;
1387
1388			attach = gtt->gobj->import_attach;
1389			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1390			if (IS_ERR(sgt))
1391				return PTR_ERR(sgt);
1392
1393			ttm->sg = sgt;
1394		}
1395
1396		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1397						 gtt->ttm.dma_address,
1398						 ttm->num_pages);
1399		ttm->state = tt_unbound;
1400		return 0;
1401	}
1402
1403#ifdef CONFIG_SWIOTLB
1404	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1405		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1406	}
1407#endif
1408
1409	/* fall back to generic helper to populate the page array
1410	 * and map them to the device */
1411	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
 
1412}
1413
1414/**
1415 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1416 *
1417 * Unmaps pages of a ttm_tt object from the device address space and
1418 * unpopulates the page array backing it.
1419 */
1420static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
 
1421{
1422	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1423	struct amdgpu_device *adev;
 
1424
1425	if (gtt && gtt->userptr) {
 
 
1426		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1427		kfree(ttm->sg);
1428		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1429		return;
1430	}
1431
1432	if (ttm->sg && gtt->gobj->import_attach) {
1433		struct dma_buf_attachment *attach;
1434
1435		attach = gtt->gobj->import_attach;
1436		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1437		ttm->sg = NULL;
1438		return;
1439	}
1440
1441	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1442		return;
1443
1444	adev = amdgpu_ttm_adev(ttm->bdev);
 
1445
1446#ifdef CONFIG_SWIOTLB
1447	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1448		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1449		return;
1450	}
1451#endif
1452
1453	/* fall back to generic helper to unmap and unpopulate array */
1454	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455}
1456
1457/**
1458 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1459 * task
1460 *
1461 * @ttm: The ttm_tt object to bind this userptr object to
1462 * @addr:  The address in the current tasks VM space to use
1463 * @flags: Requirements of userptr object.
1464 *
1465 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1466 * to current task
 
1467 */
1468int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1469			      uint32_t flags)
1470{
1471	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1472
1473	if (gtt == NULL)
1474		return -EINVAL;
 
 
 
 
1475
 
 
 
 
1476	gtt->userptr = addr;
1477	gtt->userflags = flags;
1478
1479	if (gtt->usertask)
1480		put_task_struct(gtt->usertask);
1481	gtt->usertask = current->group_leader;
1482	get_task_struct(gtt->usertask);
1483
1484	return 0;
1485}
1486
1487/**
1488 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1489 */
1490struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1491{
1492	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1493
1494	if (gtt == NULL)
1495		return NULL;
1496
1497	if (gtt->usertask == NULL)
1498		return NULL;
1499
1500	return gtt->usertask->mm;
1501}
1502
1503/**
1504 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1505 * address range for the current task.
1506 *
1507 */
1508bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1509				  unsigned long end)
1510{
1511	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1512	unsigned long size;
1513
1514	if (gtt == NULL || !gtt->userptr)
1515		return false;
1516
1517	/* Return false if no part of the ttm_tt object lies within
1518	 * the range
1519	 */
1520	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1521	if (gtt->userptr > end || gtt->userptr + size <= start)
1522		return false;
1523
 
 
1524	return true;
1525}
1526
1527/**
1528 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1529 */
1530bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1531{
1532	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1533
1534	if (gtt == NULL || !gtt->userptr)
1535		return false;
1536
1537	return true;
1538}
1539
1540/**
1541 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1542 */
1543bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1544{
1545	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1546
1547	if (gtt == NULL)
1548		return false;
1549
1550	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1551}
1552
1553/**
1554 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1555 *
1556 * @ttm: The ttm_tt object to compute the flags for
1557 * @mem: The memory registry backing this ttm_tt object
1558 *
1559 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1560 */
1561uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1562{
1563	uint64_t flags = 0;
1564
1565	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1566		flags |= AMDGPU_PTE_VALID;
1567
1568	if (mem && mem->mem_type == TTM_PL_TT) {
 
1569		flags |= AMDGPU_PTE_SYSTEM;
1570
1571		if (ttm->caching_state == tt_cached)
1572			flags |= AMDGPU_PTE_SNOOPED;
1573	}
1574
 
 
 
 
1575	return flags;
1576}
1577
1578/**
1579 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1580 *
 
1581 * @ttm: The ttm_tt object to compute the flags for
1582 * @mem: The memory registry backing this ttm_tt object
1583
1584 * Figure out the flags to use for a VM PTE (Page Table Entry).
1585 */
1586uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1587				 struct ttm_mem_reg *mem)
1588{
1589	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1590
1591	flags |= adev->gart.gart_pte_flags;
1592	flags |= AMDGPU_PTE_READABLE;
1593
1594	if (!amdgpu_ttm_tt_is_readonly(ttm))
1595		flags |= AMDGPU_PTE_WRITEABLE;
1596
1597	return flags;
1598}
1599
1600/**
1601 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1602 * object.
1603 *
1604 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1605 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1606 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1607 * used to clean out a memory space.
1608 */
1609static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1610					    const struct ttm_place *place)
1611{
1612	unsigned long num_pages = bo->mem.num_pages;
1613	struct drm_mm_node *node = bo->mem.mm_node;
1614	struct dma_resv_list *flist;
1615	struct dma_fence *f;
1616	int i;
 
 
 
 
 
 
1617
1618	if (bo->type == ttm_bo_type_kernel &&
1619	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1620		return false;
1621
1622	/* If bo is a KFD BO, check if the bo belongs to the current process.
1623	 * If true, then return false as any KFD process needs all its BOs to
1624	 * be resident to run successfully
1625	 */
1626	flist = dma_resv_get_list(bo->base.resv);
1627	if (flist) {
1628		for (i = 0; i < flist->shared_count; ++i) {
1629			f = rcu_dereference_protected(flist->shared[i],
1630				dma_resv_held(bo->base.resv));
1631			if (amdkfd_fence_check_mm(f, current->mm))
1632				return false;
1633		}
1634	}
1635
1636	switch (bo->mem.mem_type) {
1637	case TTM_PL_TT:
1638		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1639		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1640			return false;
1641		return true;
 
 
 
1642
1643	case TTM_PL_VRAM:
1644		/* Check each drm MM node individually */
1645		while (num_pages) {
1646			if (place->fpfn < (node->start + node->size) &&
1647			    !(place->lpfn && place->lpfn <= node->start))
1648				return true;
 
 
 
 
 
 
 
 
 
 
1649
1650			num_pages -= node->size;
1651			++node;
 
1652		}
1653		return false;
1654
1655	default:
1656		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657	}
 
1658
1659	return ttm_bo_eviction_valuable(bo, place);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660}
1661
1662/**
1663 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1664 *
1665 * @bo:  The buffer object to read/write
1666 * @offset:  Offset into buffer object
1667 * @buf:  Secondary buffer to write/read from
1668 * @len: Length in bytes of access
1669 * @write:  true if writing
1670 *
1671 * This is used to access VRAM that backs a buffer object via MMIO
1672 * access for debugging purposes.
1673 */
1674static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1675				    unsigned long offset,
1676				    void *buf, int len, int write)
1677{
1678	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1679	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1680	struct drm_mm_node *nodes;
1681	uint32_t value = 0;
1682	int ret = 0;
1683	uint64_t pos;
1684	unsigned long flags;
1685
1686	if (bo->mem.mem_type != TTM_PL_VRAM)
1687		return -EIO;
1688
1689	pos = offset;
1690	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1691	pos += (nodes->start << PAGE_SHIFT);
1692
1693	while (len && pos < adev->gmc.mc_vram_size) {
1694		uint64_t aligned_pos = pos & ~(uint64_t)3;
1695		uint64_t bytes = 4 - (pos & 3);
1696		uint32_t shift = (pos & 3) * 8;
1697		uint32_t mask = 0xffffffff << shift;
1698
1699		if (len < bytes) {
1700			mask &= 0xffffffff >> (bytes - len) * 8;
1701			bytes = len;
 
 
 
1702		}
1703
1704		if (mask != 0xffffffff) {
1705			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1706			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1707			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1708			if (!write || mask != 0xffffffff)
1709				value = RREG32_NO_KIQ(mmMM_DATA);
1710			if (write) {
1711				value &= ~mask;
1712				value |= (*(uint32_t *)buf << shift) & mask;
1713				WREG32_NO_KIQ(mmMM_DATA, value);
1714			}
1715			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1716			if (!write) {
1717				value = (value & mask) >> shift;
1718				memcpy(buf, &value, bytes);
1719			}
1720		} else {
1721			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1722			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1723
1724			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1725						  bytes, write);
1726		}
1727
1728		ret += bytes;
1729		buf = (uint8_t *)buf + bytes;
1730		pos += bytes;
1731		len -= bytes;
1732		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1733			++nodes;
1734			pos = (nodes->start << PAGE_SHIFT);
1735		}
1736	}
1737
1738	return ret;
1739}
1740
1741static struct ttm_bo_driver amdgpu_bo_driver = {
 
 
 
 
 
 
1742	.ttm_tt_create = &amdgpu_ttm_tt_create,
1743	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1744	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1745	.init_mem_type = &amdgpu_init_mem_type,
1746	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1747	.evict_flags = &amdgpu_evict_flags,
1748	.move = &amdgpu_bo_move,
1749	.verify_access = &amdgpu_verify_access,
1750	.move_notify = &amdgpu_bo_move_notify,
1751	.release_notify = &amdgpu_bo_release_notify,
1752	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1753	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1754	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1755	.access_memory = &amdgpu_ttm_access_memory,
1756	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1757};
1758
1759/*
1760 * Firmware Reservation functions
1761 */
1762/**
1763 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1764 *
1765 * @adev: amdgpu_device pointer
1766 *
1767 * free fw reserved vram if it has been reserved.
1768 */
1769static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1770{
1771	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1772		NULL, &adev->fw_vram_usage.va);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773}
1774
1775/**
1776 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1777 *
1778 * @adev: amdgpu_device pointer
1779 *
1780 * create bo vram reservation from fw.
1781 */
1782static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1783{
1784	uint64_t vram_size = adev->gmc.visible_vram_size;
1785
1786	adev->fw_vram_usage.va = NULL;
1787	adev->fw_vram_usage.reserved_bo = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1788
1789	if (adev->fw_vram_usage.size == 0 ||
1790	    adev->fw_vram_usage.size > vram_size)
1791		return 0;
1792
1793	return amdgpu_bo_create_kernel_at(adev,
1794					  adev->fw_vram_usage.start_offset,
1795					  adev->fw_vram_usage.size,
1796					  AMDGPU_GEM_DOMAIN_VRAM,
1797					  &adev->fw_vram_usage.reserved_bo,
1798					  &adev->fw_vram_usage.va);
1799}
1800
1801/*
1802 * Memoy training reservation functions
1803 */
1804
1805/**
1806 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1807 *
1808 * @adev: amdgpu_device pointer
1809 *
1810 * free memory training reserved vram if it has been reserved.
1811 */
1812static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1813{
1814	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1815
1816	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1817	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1818	ctx->c2p_bo = NULL;
1819
1820	return 0;
1821}
1822
1823static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1824{
1825	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1826
1827	memset(ctx, 0, sizeof(*ctx));
1828
1829	ctx->c2p_train_data_offset =
1830		ALIGN((adev->gmc.mc_vram_size - adev->discovery_tmr_size - SZ_1M), SZ_1M);
1831	ctx->p2c_train_data_offset =
1832		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1833	ctx->train_data_size =
1834		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1835	
1836	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1837			ctx->train_data_size,
1838			ctx->p2c_train_data_offset,
1839			ctx->c2p_train_data_offset);
1840}
1841
1842/*
1843 * reserve TMR memory at the top of VRAM which holds
1844 * IP Discovery data and is protected by PSP.
1845 */
1846static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1847{
1848	int ret;
1849	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1850	bool mem_train_support = false;
1851
1852	if (!amdgpu_sriov_vf(adev)) {
1853		ret = amdgpu_mem_train_support(adev);
1854		if (ret == 1)
1855			mem_train_support = true;
1856		else if (ret == -1)
1857			return -EINVAL;
1858		else
1859			DRM_DEBUG("memory training does not support!\n");
1860	}
1861
1862	/*
1863	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1864	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1865	 *
1866	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1867	 * discovery data and G6 memory training data respectively
1868	 */
1869	adev->discovery_tmr_size =
1870		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1871	if (!adev->discovery_tmr_size)
1872		adev->discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1873
1874	if (mem_train_support) {
1875		/* reserve vram for mem train according to TMR location */
1876		amdgpu_ttm_training_data_block_init(adev);
1877		ret = amdgpu_bo_create_kernel_at(adev,
1878					 ctx->c2p_train_data_offset,
1879					 ctx->train_data_size,
1880					 AMDGPU_GEM_DOMAIN_VRAM,
1881					 &ctx->c2p_bo,
1882					 NULL);
1883		if (ret) {
1884			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1885			amdgpu_ttm_training_reserve_vram_fini(adev);
1886			return ret;
1887		}
1888		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1889	}
1890
1891	ret = amdgpu_bo_create_kernel_at(adev,
1892				adev->gmc.real_vram_size - adev->discovery_tmr_size,
1893				adev->discovery_tmr_size,
1894				AMDGPU_GEM_DOMAIN_VRAM,
1895				&adev->discovery_memory,
1896				NULL);
1897	if (ret) {
1898		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1899		amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1900		return ret;
1901	}
1902
1903	return 0;
1904}
1905
1906/**
1907 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1908 * gtt/vram related fields.
1909 *
1910 * This initializes all of the memory space pools that the TTM layer
1911 * will need such as the GTT space (system memory mapped to the device),
1912 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1913 * can be mapped per VMID.
1914 */
1915int amdgpu_ttm_init(struct amdgpu_device *adev)
1916{
1917	uint64_t gtt_size;
1918	int r;
1919	u64 vis_vram_limit;
1920	void *stolen_vga_buf;
1921
1922	mutex_init(&adev->mman.gtt_window_lock);
1923
1924	/* No others user of address space so set it to 0 */
1925	r = ttm_bo_device_init(&adev->mman.bdev,
1926			       &amdgpu_bo_driver,
1927			       adev->ddev->anon_inode->i_mapping,
1928			       adev->ddev->vma_offset_manager,
1929			       dma_addressing_limited(adev->dev));
1930	if (r) {
1931		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1932		return r;
1933	}
1934	adev->mman.initialized = true;
1935
1936	/* We opt to avoid OOM on system pages allocations */
1937	adev->mman.bdev.no_retry = true;
1938
1939	/* Initialize VRAM pool with all of VRAM divided into pages */
1940	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1941				adev->gmc.real_vram_size >> PAGE_SHIFT);
1942	if (r) {
1943		DRM_ERROR("Failed initializing VRAM heap.\n");
1944		return r;
1945	}
1946
1947	/* Reduce size of CPU-visible VRAM if requested */
1948	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1949	if (amdgpu_vis_vram_limit > 0 &&
1950	    vis_vram_limit <= adev->gmc.visible_vram_size)
1951		adev->gmc.visible_vram_size = vis_vram_limit;
1952
1953	/* Change the size here instead of the init above so only lpfn is affected */
1954	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1955#ifdef CONFIG_64BIT
1956	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1957						adev->gmc.visible_vram_size);
 
 
 
 
 
 
 
1958#endif
1959
1960	/*
1961	 *The reserved vram for firmware must be pinned to the specified
1962	 *place on the VRAM, so reserve it early.
1963	 */
1964	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1965	if (r) {
1966		return r;
1967	}
1968
1969	/*
 
 
 
 
 
 
 
 
1970	 * only NAVI10 and onwards ASIC support for IP discovery.
1971	 * If IP discovery enabled, a block of memory should be
1972	 * reserved for IP discovey.
1973	 */
1974	if (adev->discovery_bin) {
1975		r = amdgpu_ttm_reserve_tmr(adev);
1976		if (r)
1977			return r;
1978	}
1979
1980	/* allocate memory as required for VGA
1981	 * This is used for VGA emulation and pre-OS scanout buffers to
1982	 * avoid display artifacts while transitioning between pre-OS
1983	 * and driver.  */
1984	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1985				    AMDGPU_GEM_DOMAIN_VRAM,
1986				    &adev->stolen_vga_memory,
1987				    NULL, &stolen_vga_buf);
 
 
 
 
 
 
 
 
 
 
 
1988	if (r)
1989		return r;
1990
1991	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1992		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1993
1994	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1995	 * or whatever the user passed on module init */
1996	if (amdgpu_gtt_size == -1) {
1997		struct sysinfo si;
1998
1999		si_meminfo(&si);
2000		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
2001			       adev->gmc.mc_vram_size),
2002			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
2003	}
2004	else
 
 
 
 
 
 
 
2005		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
 
2006
2007	/* Initialize GTT memory pool */
2008	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
2009	if (r) {
2010		DRM_ERROR("Failed initializing GTT heap.\n");
2011		return r;
2012	}
2013	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2014		 (unsigned)(gtt_size / (1024 * 1024)));
2015
 
 
 
 
 
 
 
2016	/* Initialize various on-chip memory pools */
2017	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
2018			   adev->gds.gds_size);
2019	if (r) {
2020		DRM_ERROR("Failed initializing GDS heap.\n");
2021		return r;
2022	}
2023
2024	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2025			   adev->gds.gws_size);
2026	if (r) {
2027		DRM_ERROR("Failed initializing gws heap.\n");
2028		return r;
2029	}
2030
2031	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2032			   adev->gds.oa_size);
2033	if (r) {
2034		DRM_ERROR("Failed initializing oa heap.\n");
2035		return r;
2036	}
2037
2038	return 0;
2039}
 
 
 
2040
2041/**
2042 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2043 */
2044void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2045{
2046	void *stolen_vga_buf;
2047	/* return the VGA stolen memory (if any) back to VRAM */
2048	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2049}
2050
2051/**
2052 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2053 */
2054void amdgpu_ttm_fini(struct amdgpu_device *adev)
2055{
 
2056	if (!adev->mman.initialized)
2057		return;
2058
2059	amdgpu_ttm_training_reserve_vram_fini(adev);
 
 
 
2060	/* return the IP Discovery TMR memory back to VRAM */
2061	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
 
 
 
 
 
2062	amdgpu_ttm_fw_reserve_vram_fini(adev);
 
2063
2064	if (adev->mman.aper_base_kaddr)
2065		iounmap(adev->mman.aper_base_kaddr);
2066	adev->mman.aper_base_kaddr = NULL;
2067
2068	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2069	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2070	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2071	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2072	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2073	ttm_bo_device_release(&adev->mman.bdev);
 
 
 
 
 
 
2074	adev->mman.initialized = false;
2075	DRM_INFO("amdgpu: ttm finalized\n");
2076}
2077
2078/**
2079 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2080 *
2081 * @adev: amdgpu_device pointer
2082 * @enable: true when we can use buffer functions.
2083 *
2084 * Enable/disable use of buffer functions during suspend/resume. This should
2085 * only be called at bootup or when userspace isn't running.
2086 */
2087void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2088{
2089	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2090	uint64_t size;
2091	int r;
2092
2093	if (!adev->mman.initialized || adev->in_gpu_reset ||
2094	    adev->mman.buffer_funcs_enabled == enable)
2095		return;
2096
2097	if (enable) {
2098		struct amdgpu_ring *ring;
2099		struct drm_gpu_scheduler *sched;
2100
2101		ring = adev->mman.buffer_funcs_ring;
2102		sched = &ring->sched;
2103		r = drm_sched_entity_init(&adev->mman.entity,
2104				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2105					  1, NULL);
2106		if (r) {
2107			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2108				  r);
2109			return;
2110		}
2111	} else {
2112		drm_sched_entity_destroy(&adev->mman.entity);
2113		dma_fence_put(man->move);
2114		man->move = NULL;
2115	}
2116
2117	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2118	if (enable)
2119		size = adev->gmc.real_vram_size;
2120	else
2121		size = adev->gmc.visible_vram_size;
2122	man->size = size >> PAGE_SHIFT;
2123	adev->mman.buffer_funcs_enabled = enable;
2124}
2125
2126int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
 
 
 
 
 
2127{
2128	struct drm_file *file_priv = filp->private_data;
2129	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
 
 
2130
2131	if (adev == NULL)
2132		return -EINVAL;
 
 
 
2133
2134	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
 
 
 
 
 
 
 
 
 
 
2135}
2136
2137int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2138		       uint64_t dst_offset, uint32_t byte_count,
2139		       struct dma_resv *resv,
2140		       struct dma_fence **fence, bool direct_submit,
2141		       bool vm_needs_flush, bool tmz)
2142{
2143	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2144		AMDGPU_IB_POOL_DELAYED;
2145	struct amdgpu_device *adev = ring->adev;
 
2146	struct amdgpu_job *job;
2147
2148	uint32_t max_bytes;
2149	unsigned num_loops, num_dw;
2150	unsigned i;
2151	int r;
2152
2153	if (direct_submit && !ring->sched.ready) {
2154		DRM_ERROR("Trying to move memory with ring turned off.\n");
2155		return -EINVAL;
2156	}
2157
2158	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2159	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2160	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2161
2162	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2163	if (r)
2164		return r;
2165
2166	if (vm_needs_flush) {
2167		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2168		job->vm_needs_flush = true;
2169	}
2170	if (resv) {
2171		r = amdgpu_sync_resv(adev, &job->sync, resv,
2172				     AMDGPU_SYNC_ALWAYS,
2173				     AMDGPU_FENCE_OWNER_UNDEFINED);
2174		if (r) {
2175			DRM_ERROR("sync failed (%d).\n", r);
2176			goto error_free;
2177		}
2178	}
2179
2180	for (i = 0; i < num_loops; i++) {
2181		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2182
2183		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2184					dst_offset, cur_size_in_bytes, tmz);
2185
2186		src_offset += cur_size_in_bytes;
2187		dst_offset += cur_size_in_bytes;
2188		byte_count -= cur_size_in_bytes;
2189	}
2190
2191	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2192	WARN_ON(job->ibs[0].length_dw > num_dw);
2193	if (direct_submit)
2194		r = amdgpu_job_submit_direct(job, ring, fence);
2195	else
2196		r = amdgpu_job_submit(job, &adev->mman.entity,
2197				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2198	if (r)
2199		goto error_free;
2200
2201	return r;
2202
2203error_free:
2204	amdgpu_job_free(job);
2205	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2206	return r;
2207}
2208
2209int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2210		       uint32_t src_data,
2211		       struct dma_resv *resv,
2212		       struct dma_fence **fence)
 
2213{
2214	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2215	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2216	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2217
2218	struct drm_mm_node *mm_node;
2219	unsigned long num_pages;
2220	unsigned int num_loops, num_dw;
2221
2222	struct amdgpu_job *job;
 
 
2223	int r;
2224
2225	if (!adev->mman.buffer_funcs_enabled) {
2226		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2227		return -EINVAL;
2228	}
 
 
 
2229
2230	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2231		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2232		if (r)
2233			return r;
2234	}
2235
2236	num_pages = bo->tbo.num_pages;
2237	mm_node = bo->tbo.mem.mm_node;
2238	num_loops = 0;
2239	while (num_pages) {
2240		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2241
2242		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2243		num_pages -= mm_node->size;
2244		++mm_node;
2245	}
2246	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2247
2248	/* for IB padding */
2249	num_dw += 64;
 
 
 
2250
2251	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2252				     &job);
2253	if (r)
2254		return r;
 
 
 
 
 
 
2255
2256	if (resv) {
2257		r = amdgpu_sync_resv(adev, &job->sync, resv,
2258				     AMDGPU_SYNC_ALWAYS,
2259				     AMDGPU_FENCE_OWNER_UNDEFINED);
2260		if (r) {
2261			DRM_ERROR("sync failed (%d).\n", r);
2262			goto error_free;
2263		}
2264	}
2265
2266	num_pages = bo->tbo.num_pages;
2267	mm_node = bo->tbo.mem.mm_node;
 
 
 
 
2268
2269	while (num_pages) {
2270		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2271		uint64_t dst_addr;
2272
2273		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2274		while (byte_count) {
2275			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2276							   max_bytes);
2277
2278			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2279						dst_addr, cur_size_in_bytes);
 
 
2280
2281			dst_addr += cur_size_in_bytes;
2282			byte_count -= cur_size_in_bytes;
2283		}
 
2284
2285		num_pages -= mm_node->size;
2286		++mm_node;
 
 
2287	}
 
 
 
 
 
 
 
2288
2289	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2290	WARN_ON(job->ibs[0].length_dw > num_dw);
2291	r = amdgpu_job_submit(job, &adev->mman.entity,
2292			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2293	if (r)
2294		goto error_free;
 
 
 
 
 
 
 
2295
2296	return 0;
 
 
 
 
 
 
 
 
 
 
 
2297
2298error_free:
2299	amdgpu_job_free(job);
2300	return r;
2301}
2302
2303#if defined(CONFIG_DEBUG_FS)
2304
2305static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2306{
2307	struct drm_info_node *node = (struct drm_info_node *)m->private;
2308	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2309	struct drm_device *dev = node->minor->dev;
2310	struct amdgpu_device *adev = dev->dev_private;
2311	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2312	struct drm_printer p = drm_seq_file_printer(m);
2313
2314	man->func->debug(man, &p);
2315	return 0;
2316}
2317
2318static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2319	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2320	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2321	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2322	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2323	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2324	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2325#ifdef CONFIG_SWIOTLB
2326	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2327#endif
2328};
2329
2330/**
2331 * amdgpu_ttm_vram_read - Linear read access to VRAM
2332 *
2333 * Accesses VRAM via MMIO for debugging purposes.
2334 */
2335static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2336				    size_t size, loff_t *pos)
2337{
2338	struct amdgpu_device *adev = file_inode(f)->i_private;
2339	ssize_t result = 0;
2340
2341	if (size & 0x3 || *pos & 0x3)
2342		return -EINVAL;
2343
2344	if (*pos >= adev->gmc.mc_vram_size)
2345		return -ENXIO;
2346
2347	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2348	while (size) {
2349		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2350		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2351
2352		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2353		if (copy_to_user(buf, value, bytes))
2354			return -EFAULT;
2355
2356		result += bytes;
2357		buf += bytes;
2358		*pos += bytes;
2359		size -= bytes;
2360	}
2361
2362	return result;
2363}
2364
2365/**
2366 * amdgpu_ttm_vram_write - Linear write access to VRAM
2367 *
2368 * Accesses VRAM via MMIO for debugging purposes.
2369 */
2370static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2371				    size_t size, loff_t *pos)
2372{
2373	struct amdgpu_device *adev = file_inode(f)->i_private;
2374	ssize_t result = 0;
2375	int r;
2376
2377	if (size & 0x3 || *pos & 0x3)
2378		return -EINVAL;
2379
2380	if (*pos >= adev->gmc.mc_vram_size)
2381		return -ENXIO;
2382
2383	while (size) {
2384		unsigned long flags;
2385		uint32_t value;
2386
2387		if (*pos >= adev->gmc.mc_vram_size)
2388			return result;
2389
2390		r = get_user(value, (uint32_t *)buf);
2391		if (r)
2392			return r;
2393
2394		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2395		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2396		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2397		WREG32_NO_KIQ(mmMM_DATA, value);
2398		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2399
2400		result += 4;
2401		buf += 4;
2402		*pos += 4;
2403		size -= 4;
2404	}
2405
2406	return result;
2407}
2408
2409static const struct file_operations amdgpu_ttm_vram_fops = {
2410	.owner = THIS_MODULE,
2411	.read = amdgpu_ttm_vram_read,
2412	.write = amdgpu_ttm_vram_write,
2413	.llseek = default_llseek,
2414};
2415
2416#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2417
2418/**
2419 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2420 */
2421static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2422				   size_t size, loff_t *pos)
2423{
2424	struct amdgpu_device *adev = file_inode(f)->i_private;
2425	ssize_t result = 0;
2426	int r;
2427
2428	while (size) {
2429		loff_t p = *pos / PAGE_SIZE;
2430		unsigned off = *pos & ~PAGE_MASK;
2431		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2432		struct page *page;
2433		void *ptr;
2434
2435		if (p >= adev->gart.num_cpu_pages)
2436			return result;
2437
2438		page = adev->gart.pages[p];
2439		if (page) {
2440			ptr = kmap(page);
2441			ptr += off;
2442
2443			r = copy_to_user(buf, ptr, cur_size);
2444			kunmap(adev->gart.pages[p]);
2445		} else
2446			r = clear_user(buf, cur_size);
2447
2448		if (r)
2449			return -EFAULT;
2450
2451		result += cur_size;
2452		buf += cur_size;
2453		*pos += cur_size;
2454		size -= cur_size;
2455	}
2456
2457	return result;
2458}
2459
2460static const struct file_operations amdgpu_ttm_gtt_fops = {
2461	.owner = THIS_MODULE,
2462	.read = amdgpu_ttm_gtt_read,
2463	.llseek = default_llseek
2464};
2465
2466#endif
2467
2468/**
2469 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2470 *
2471 * This function is used to read memory that has been mapped to the
2472 * GPU and the known addresses are not physical addresses but instead
2473 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2474 */
2475static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2476				 size_t size, loff_t *pos)
2477{
2478	struct amdgpu_device *adev = file_inode(f)->i_private;
2479	struct iommu_domain *dom;
2480	ssize_t result = 0;
2481	int r;
2482
2483	/* retrieve the IOMMU domain if any for this device */
2484	dom = iommu_get_domain_for_dev(adev->dev);
2485
2486	while (size) {
2487		phys_addr_t addr = *pos & PAGE_MASK;
2488		loff_t off = *pos & ~PAGE_MASK;
2489		size_t bytes = PAGE_SIZE - off;
2490		unsigned long pfn;
2491		struct page *p;
2492		void *ptr;
2493
2494		bytes = bytes < size ? bytes : size;
2495
2496		/* Translate the bus address to a physical address.  If
2497		 * the domain is NULL it means there is no IOMMU active
2498		 * and the address translation is the identity
2499		 */
2500		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2501
2502		pfn = addr >> PAGE_SHIFT;
2503		if (!pfn_valid(pfn))
2504			return -EPERM;
2505
2506		p = pfn_to_page(pfn);
2507		if (p->mapping != adev->mman.bdev.dev_mapping)
2508			return -EPERM;
2509
2510		ptr = kmap(p);
2511		r = copy_to_user(buf, ptr + off, bytes);
2512		kunmap(p);
2513		if (r)
2514			return -EFAULT;
2515
2516		size -= bytes;
2517		*pos += bytes;
2518		result += bytes;
2519	}
2520
2521	return result;
2522}
2523
2524/**
2525 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2526 *
2527 * This function is used to write memory that has been mapped to the
2528 * GPU and the known addresses are not physical addresses but instead
2529 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2530 */
2531static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2532				 size_t size, loff_t *pos)
2533{
2534	struct amdgpu_device *adev = file_inode(f)->i_private;
2535	struct iommu_domain *dom;
2536	ssize_t result = 0;
2537	int r;
2538
2539	dom = iommu_get_domain_for_dev(adev->dev);
2540
2541	while (size) {
2542		phys_addr_t addr = *pos & PAGE_MASK;
2543		loff_t off = *pos & ~PAGE_MASK;
2544		size_t bytes = PAGE_SIZE - off;
2545		unsigned long pfn;
2546		struct page *p;
2547		void *ptr;
2548
2549		bytes = bytes < size ? bytes : size;
2550
2551		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2552
2553		pfn = addr >> PAGE_SHIFT;
2554		if (!pfn_valid(pfn))
2555			return -EPERM;
2556
2557		p = pfn_to_page(pfn);
2558		if (p->mapping != adev->mman.bdev.dev_mapping)
2559			return -EPERM;
2560
2561		ptr = kmap(p);
2562		r = copy_from_user(ptr + off, buf, bytes);
2563		kunmap(p);
2564		if (r)
2565			return -EFAULT;
2566
2567		size -= bytes;
2568		*pos += bytes;
2569		result += bytes;
2570	}
2571
2572	return result;
2573}
2574
2575static const struct file_operations amdgpu_ttm_iomem_fops = {
2576	.owner = THIS_MODULE,
2577	.read = amdgpu_iomem_read,
2578	.write = amdgpu_iomem_write,
2579	.llseek = default_llseek
2580};
2581
2582static const struct {
2583	char *name;
2584	const struct file_operations *fops;
2585	int domain;
2586} ttm_debugfs_entries[] = {
2587	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2588#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2589	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2590#endif
2591	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2592};
2593
2594#endif
2595
2596int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2597{
2598#if defined(CONFIG_DEBUG_FS)
2599	unsigned count;
 
2600
2601	struct drm_minor *minor = adev->ddev->primary;
2602	struct dentry *ent, *root = minor->debugfs_root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603
2604	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2605		ent = debugfs_create_file(
2606				ttm_debugfs_entries[count].name,
2607				S_IFREG | S_IRUGO, root,
2608				adev,
2609				ttm_debugfs_entries[count].fops);
2610		if (IS_ERR(ent))
2611			return PTR_ERR(ent);
2612		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2613			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2614		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2615			i_size_write(ent->d_inode, adev->gmc.gart_size);
2616		adev->mman.debugfs_entries[count] = ent;
2617	}
2618
2619	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2620
2621#ifdef CONFIG_SWIOTLB
2622	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2623		--count;
2624#endif
2625
2626	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2627#else
2628	return 0;
2629#endif
2630}
v6.2
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
 
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/swiotlb.h>
  42#include <linux/dma-buf.h>
  43#include <linux/sizes.h>
  44#include <linux/module.h>
  45
  46#include <drm/drm_drv.h>
  47#include <drm/ttm/ttm_bo_api.h>
  48#include <drm/ttm/ttm_bo_driver.h>
  49#include <drm/ttm/ttm_placement.h>
  50#include <drm/ttm/ttm_range_manager.h>
 
  51
 
  52#include <drm/amdgpu_drm.h>
  53#include <drm/drm_drv.h>
  54
  55#include "amdgpu.h"
  56#include "amdgpu_object.h"
  57#include "amdgpu_trace.h"
  58#include "amdgpu_amdkfd.h"
  59#include "amdgpu_sdma.h"
  60#include "amdgpu_ras.h"
  61#include "amdgpu_hmm.h"
  62#include "amdgpu_atomfirmware.h"
  63#include "amdgpu_res_cursor.h"
  64#include "bif/bif_4_1_d.h"
  65
  66MODULE_IMPORT_NS(DMA_BUF);
  67
  68#define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
  69
  70static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  71				   struct ttm_tt *ttm,
  72				   struct ttm_resource *bo_mem);
  73static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  74				      struct ttm_tt *ttm);
  75
  76static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  77				    unsigned int type,
  78				    uint64_t size_in_page)
 
 
 
 
  79{
  80	return ttm_range_man_init(&adev->mman.bdev, type,
  81				  false, size_in_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82}
  83
  84/**
  85 * amdgpu_evict_flags - Compute placement flags
  86 *
  87 * @bo: The buffer object to evict
  88 * @placement: Possible destination(s) for evicted BO
  89 *
  90 * Fill in placement data when ttm_bo_evict() is called
  91 */
  92static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  93				struct ttm_placement *placement)
  94{
  95	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  96	struct amdgpu_bo *abo;
  97	static const struct ttm_place placements = {
  98		.fpfn = 0,
  99		.lpfn = 0,
 100		.mem_type = TTM_PL_SYSTEM,
 101		.flags = 0
 102	};
 103
 104	/* Don't handle scatter gather BOs */
 105	if (bo->type == ttm_bo_type_sg) {
 106		placement->num_placement = 0;
 107		placement->num_busy_placement = 0;
 108		return;
 109	}
 110
 111	/* Object isn't an AMDGPU object so ignore */
 112	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 113		placement->placement = &placements;
 114		placement->busy_placement = &placements;
 115		placement->num_placement = 1;
 116		placement->num_busy_placement = 1;
 117		return;
 118	}
 119
 120	abo = ttm_to_amdgpu_bo(bo);
 121	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
 122		placement->num_placement = 0;
 123		placement->num_busy_placement = 0;
 124		return;
 125	}
 126
 127	switch (bo->resource->mem_type) {
 128	case AMDGPU_PL_GDS:
 129	case AMDGPU_PL_GWS:
 130	case AMDGPU_PL_OA:
 131		placement->num_placement = 0;
 132		placement->num_busy_placement = 0;
 133		return;
 134
 135	case TTM_PL_VRAM:
 136		if (!adev->mman.buffer_funcs_enabled) {
 137			/* Move to system memory */
 138			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 139		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 140			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 141			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 142
 143			/* Try evicting to the CPU inaccessible part of VRAM
 144			 * first, but only set GTT as busy placement, so this
 145			 * BO will be evicted to GTT rather than causing other
 146			 * BOs to be evicted from VRAM
 147			 */
 148			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 149							AMDGPU_GEM_DOMAIN_GTT |
 150							AMDGPU_GEM_DOMAIN_CPU);
 151			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 152			abo->placements[0].lpfn = 0;
 153			abo->placement.busy_placement = &abo->placements[1];
 154			abo->placement.num_busy_placement = 1;
 155		} else {
 156			/* Move to GTT memory */
 157			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
 158							AMDGPU_GEM_DOMAIN_CPU);
 159		}
 160		break;
 161	case TTM_PL_TT:
 162	case AMDGPU_PL_PREEMPT:
 163	default:
 164		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 165		break;
 166	}
 167	*placement = abo->placement;
 168}
 169
 170/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 172 * @bo: buffer object to map
 173 * @mem: memory object to map
 174 * @mm_cur: range to map
 
 
 175 * @window: which GART window to use
 176 * @ring: DMA ring to use for the copy
 177 * @tmz: if we should setup a TMZ enabled mapping
 178 * @size: in number of bytes to map, out number of bytes mapped
 179 * @addr: resulting address inside the MC address space
 180 *
 181 * Setup one of the GART windows to access a specific piece of memory or return
 182 * the physical address for local memory.
 183 */
 184static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 185				 struct ttm_resource *mem,
 186				 struct amdgpu_res_cursor *mm_cur,
 
 187				 unsigned window, struct amdgpu_ring *ring,
 188				 bool tmz, uint64_t *size, uint64_t *addr)
 189{
 190	struct amdgpu_device *adev = ring->adev;
 191	unsigned offset, num_pages, num_dw, num_bytes;
 
 
 192	uint64_t src_addr, dst_addr;
 193	struct amdgpu_job *job;
 194	void *cpu_addr;
 195	uint64_t flags;
 196	unsigned int i;
 197	int r;
 198
 199	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 200	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 201
 202	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
 203		return -EINVAL;
 204
 205	/* Map only what can't be accessed directly */
 206	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 207		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 208			mm_cur->start;
 209		return 0;
 210	}
 211
 212
 213	/*
 214	 * If start begins at an offset inside the page, then adjust the size
 215	 * and addr accordingly
 216	 */
 217	offset = mm_cur->start & ~PAGE_MASK;
 218
 219	num_pages = PFN_UP(*size + offset);
 220	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
 221
 222	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
 223
 224	*addr = adev->gmc.gart_start;
 225	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 226		AMDGPU_GPU_PAGE_SIZE;
 227	*addr += offset;
 228
 229	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 230	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 231
 232	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
 233				     AMDGPU_FENCE_OWNER_UNDEFINED,
 234				     num_dw * 4 + num_bytes,
 235				     AMDGPU_IB_POOL_DELAYED, &job);
 236	if (r)
 237		return r;
 238
 239	src_addr = num_dw * 4;
 240	src_addr += job->ibs[0].gpu_addr;
 241
 242	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 243	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 244	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 245				dst_addr, num_bytes, false);
 246
 247	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 248	WARN_ON(job->ibs[0].length_dw > num_dw);
 249
 250	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 251	if (tmz)
 252		flags |= AMDGPU_PTE_TMZ;
 253
 254	cpu_addr = &job->ibs[0].ptr[num_dw];
 255
 256	if (mem->mem_type == TTM_PL_TT) {
 257		dma_addr_t *dma_addr;
 
 258
 259		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 260		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
 
 
 
 
 261	} else {
 262		dma_addr_t dma_address;
 263
 264		dma_address = mm_cur->start;
 265		dma_address += adev->vm_manager.vram_base_offset;
 266
 267		for (i = 0; i < num_pages; ++i) {
 268			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
 269					flags, cpu_addr);
 
 
 
 270			dma_address += PAGE_SIZE;
 271		}
 272	}
 273
 274	dma_fence_put(amdgpu_job_submit(job));
 275	return 0;
 
 
 
 
 
 
 
 
 
 
 276}
 277
 278/**
 279 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 280 * @adev: amdgpu device
 281 * @src: buffer/address where to read from
 282 * @dst: buffer/address where to write to
 283 * @size: number of bytes to copy
 284 * @tmz: if a secure copy should be used
 285 * @resv: resv object to sync to
 286 * @f: Returns the last fence if multiple jobs are submitted.
 287 *
 288 * The function copies @size bytes from {src->mem + src->offset} to
 289 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 290 * move and different for a BO to BO copy.
 291 *
 292 */
 293int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 294			       const struct amdgpu_copy_mem *src,
 295			       const struct amdgpu_copy_mem *dst,
 296			       uint64_t size, bool tmz,
 297			       struct dma_resv *resv,
 298			       struct dma_fence **f)
 299{
 
 
 
 
 300	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 301	struct amdgpu_res_cursor src_mm, dst_mm;
 302	struct dma_fence *fence = NULL;
 303	int r = 0;
 304
 305	if (!adev->mman.buffer_funcs_enabled) {
 306		DRM_ERROR("Trying to move memory with ring turned off.\n");
 307		return -EINVAL;
 308	}
 309
 310	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 311	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312
 313	mutex_lock(&adev->mman.gtt_window_lock);
 314	while (src_mm.remaining) {
 315		uint64_t from, to, cur_size;
 
 
 316		struct dma_fence *next;
 
 
 317
 318		/* Never copy more than 256MiB at once to avoid a timeout */
 319		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
 
 
 
 
 320
 321		/* Map src to window 0 and dst to window 1. */
 322		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 323					  0, ring, tmz, &cur_size, &from);
 
 324		if (r)
 325			goto error;
 326
 327		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 328					  1, ring, tmz, &cur_size, &to);
 
 329		if (r)
 330			goto error;
 331
 332		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 333				       resv, &next, false, true, tmz);
 334		if (r)
 335			goto error;
 336
 337		dma_fence_put(fence);
 338		fence = next;
 339
 340		amdgpu_res_next(&src_mm, cur_size);
 341		amdgpu_res_next(&dst_mm, cur_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342	}
 343error:
 344	mutex_unlock(&adev->mman.gtt_window_lock);
 345	if (f)
 346		*f = dma_fence_get(fence);
 347	dma_fence_put(fence);
 348	return r;
 349}
 350
 351/*
 352 * amdgpu_move_blit - Copy an entire buffer to another buffer
 353 *
 354 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 355 * help move buffers to and from VRAM.
 356 */
 357static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 358			    bool evict,
 359			    struct ttm_resource *new_mem,
 360			    struct ttm_resource *old_mem)
 361{
 362	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 363	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 364	struct amdgpu_copy_mem src, dst;
 365	struct dma_fence *fence = NULL;
 366	int r;
 367
 368	src.bo = bo;
 369	dst.bo = bo;
 370	src.mem = old_mem;
 371	dst.mem = new_mem;
 372	src.offset = 0;
 373	dst.offset = 0;
 374
 375	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 376				       new_mem->size,
 377				       amdgpu_bo_encrypted(abo),
 378				       bo->base.resv, &fence);
 379	if (r)
 380		goto error;
 381
 382	/* clear the space being freed */
 383	if (old_mem->mem_type == TTM_PL_VRAM &&
 384	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 385		struct dma_fence *wipe_fence = NULL;
 386
 387		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
 
 388		if (r) {
 389			goto error;
 390		} else if (wipe_fence) {
 391			dma_fence_put(fence);
 392			fence = wipe_fence;
 393		}
 394	}
 395
 396	/* Always block for VM page tables before committing the new location */
 397	if (bo->type == ttm_bo_type_kernel)
 398		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 399	else
 400		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 401	dma_fence_put(fence);
 402	return r;
 403
 404error:
 405	if (fence)
 406		dma_fence_wait(fence, false);
 407	dma_fence_put(fence);
 408	return r;
 409}
 410
 411/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 413 *
 414 * Called by amdgpu_bo_move()
 415 */
 416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 417			       struct ttm_resource *mem)
 418{
 419	u64 mem_size = (u64)mem->size;
 420	struct amdgpu_res_cursor cursor;
 421	u64 end;
 422
 423	if (mem->mem_type == TTM_PL_SYSTEM ||
 424	    mem->mem_type == TTM_PL_TT)
 425		return true;
 426	if (mem->mem_type != TTM_PL_VRAM)
 427		return false;
 428
 429	amdgpu_res_first(mem, 0, mem_size, &cursor);
 430	end = cursor.start + cursor.size;
 431	while (cursor.remaining) {
 432		amdgpu_res_next(&cursor, cursor.size);
 433
 434		if (!cursor.remaining)
 435			break;
 436
 437		/* ttm_resource_ioremap only supports contiguous memory */
 438		if (end != cursor.start)
 439			return false;
 440
 441		end = cursor.start + cursor.size;
 442	}
 443
 444	return end <= adev->gmc.visible_vram_size;
 445}
 446
 447/*
 448 * amdgpu_bo_move - Move a buffer object to a new memory location
 449 *
 450 * Called by ttm_bo_handle_move_mem()
 451 */
 452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 453			  struct ttm_operation_ctx *ctx,
 454			  struct ttm_resource *new_mem,
 455			  struct ttm_place *hop)
 456{
 457	struct amdgpu_device *adev;
 458	struct amdgpu_bo *abo;
 459	struct ttm_resource *old_mem = bo->resource;
 460	int r;
 461
 462	if (new_mem->mem_type == TTM_PL_TT ||
 463	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 464		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 465		if (r)
 466			return r;
 467	}
 468
 469	/* Can't move a pinned BO */
 470	abo = ttm_to_amdgpu_bo(bo);
 471	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
 472		return -EINVAL;
 473
 474	adev = amdgpu_ttm_adev(bo->bdev);
 475
 476	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
 477			 bo->ttm == NULL)) {
 478		ttm_bo_move_null(bo, new_mem);
 479		goto out;
 480	}
 481	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 482	    (new_mem->mem_type == TTM_PL_TT ||
 483	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 484		ttm_bo_move_null(bo, new_mem);
 485		goto out;
 486	}
 487	if ((old_mem->mem_type == TTM_PL_TT ||
 488	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 489	    new_mem->mem_type == TTM_PL_SYSTEM) {
 490		r = ttm_bo_wait_ctx(bo, ctx);
 491		if (r)
 492			return r;
 493
 494		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 495		ttm_resource_free(bo, &bo->resource);
 496		ttm_bo_assign_mem(bo, new_mem);
 497		goto out;
 498	}
 499
 500	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 501	    old_mem->mem_type == AMDGPU_PL_GWS ||
 502	    old_mem->mem_type == AMDGPU_PL_OA ||
 503	    new_mem->mem_type == AMDGPU_PL_GDS ||
 504	    new_mem->mem_type == AMDGPU_PL_GWS ||
 505	    new_mem->mem_type == AMDGPU_PL_OA) {
 506		/* Nothing to save here */
 507		ttm_bo_move_null(bo, new_mem);
 508		goto out;
 509	}
 510
 511	if (bo->type == ttm_bo_type_device &&
 512	    new_mem->mem_type == TTM_PL_VRAM &&
 513	    old_mem->mem_type != TTM_PL_VRAM) {
 514		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 515		 * accesses the BO after it's moved.
 516		 */
 517		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 518	}
 519
 520	if (adev->mman.buffer_funcs_enabled) {
 521		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
 522		      new_mem->mem_type == TTM_PL_VRAM) ||
 523		     (old_mem->mem_type == TTM_PL_VRAM &&
 524		      new_mem->mem_type == TTM_PL_SYSTEM))) {
 525			hop->fpfn = 0;
 526			hop->lpfn = 0;
 527			hop->mem_type = TTM_PL_TT;
 528			hop->flags = TTM_PL_FLAG_TEMPORARY;
 529			return -EMULTIHOP;
 530		}
 531
 532		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 533	} else {
 534		r = -ENODEV;
 
 535	}
 536
 537	if (r) {
 
 538		/* Check that all memory is CPU accessible */
 539		if (!amdgpu_mem_visible(adev, old_mem) ||
 540		    !amdgpu_mem_visible(adev, new_mem)) {
 541			pr_err("Move buffer fallback to memcpy unavailable\n");
 542			return r;
 543		}
 544
 545		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 546		if (r)
 547			return r;
 548	}
 549
 550out:
 
 
 
 
 
 
 
 
 551	/* update statistics */
 552	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 553	amdgpu_bo_move_notify(bo, evict, new_mem);
 554	return 0;
 555}
 556
 557/*
 558 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 559 *
 560 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 561 */
 562static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 563				     struct ttm_resource *mem)
 564{
 
 565	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 566	size_t bus_size = (size_t)mem->size;
 567
 
 
 
 
 
 
 
 568	switch (mem->mem_type) {
 569	case TTM_PL_SYSTEM:
 570		/* system memory */
 571		return 0;
 572	case TTM_PL_TT:
 573	case AMDGPU_PL_PREEMPT:
 574		break;
 575	case TTM_PL_VRAM:
 576		mem->bus.offset = mem->start << PAGE_SHIFT;
 577		/* check if it's visible */
 578		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
 579			return -EINVAL;
 580
 
 
 
 581		if (adev->mman.aper_base_kaddr &&
 582		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 583			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 584					mem->bus.offset;
 585
 586		mem->bus.offset += adev->gmc.aper_base;
 587		mem->bus.is_iomem = true;
 588		break;
 589	default:
 590		return -EINVAL;
 591	}
 592	return 0;
 593}
 594
 595static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 596					   unsigned long page_offset)
 597{
 598	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 599	struct amdgpu_res_cursor cursor;
 600
 601	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 602			 &cursor);
 603	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 604}
 605
 606/**
 607 * amdgpu_ttm_domain_start - Returns GPU start address
 608 * @adev: amdgpu device object
 609 * @type: type of the memory
 610 *
 611 * Returns:
 612 * GPU start address of a memory domain
 613 */
 614
 615uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 616{
 617	switch (type) {
 618	case TTM_PL_TT:
 619		return adev->gmc.gart_start;
 620	case TTM_PL_VRAM:
 621		return adev->gmc.vram_start;
 622	}
 623
 624	return 0;
 625}
 626
 627/*
 628 * TTM backend functions.
 629 */
 630struct amdgpu_ttm_tt {
 631	struct ttm_tt	ttm;
 632	struct drm_gem_object	*gobj;
 633	u64			offset;
 634	uint64_t		userptr;
 635	struct task_struct	*usertask;
 636	uint32_t		userflags;
 637	bool			bound;
 
 
 638};
 639
 640#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
 641
 642#ifdef CONFIG_DRM_AMDGPU_USERPTR
 643/*
 644 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 645 * memory and start HMM tracking CPU page table update
 646 *
 647 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 648 * once afterwards to stop HMM tracking
 649 */
 650int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
 651				 struct hmm_range **range)
 652{
 653	struct ttm_tt *ttm = bo->tbo.ttm;
 654	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 655	unsigned long start = gtt->userptr;
 656	struct vm_area_struct *vma;
 
 
 657	struct mm_struct *mm;
 658	bool readonly;
 659	int r = 0;
 660
 661	/* Make sure get_user_pages_done() can cleanup gracefully */
 662	*range = NULL;
 663
 664	mm = bo->notifier.mm;
 665	if (unlikely(!mm)) {
 666		DRM_DEBUG_DRIVER("BO is not registered?\n");
 667		return -EFAULT;
 668	}
 669
 
 
 
 
 670	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 671		return -ESRCH;
 672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673	mmap_read_lock(mm);
 674	vma = vma_lookup(mm, start);
 675	if (unlikely(!vma)) {
 676		r = -EFAULT;
 677		goto out_unlock;
 678	}
 679	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 680		vma->vm_file)) {
 681		r = -EPERM;
 682		goto out_unlock;
 683	}
 
 
 
 
 
 684
 685	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 686	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
 687				       readonly, NULL, pages, range);
 688out_unlock:
 689	mmap_read_unlock(mm);
 690	if (r)
 691		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692
 
 693	mmput(mm);
 694
 
 
 
 
 
 
 
 
 
 
 695	return r;
 696}
 697
 698/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
 699 */
 700void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
 701				      struct hmm_range *range)
 702{
 703	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 704
 705	if (gtt && gtt->userptr && range)
 706		amdgpu_hmm_range_get_pages_done(range);
 707}
 708
 709/*
 710 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
 711 * Check if the pages backing this ttm range have been invalidated
 712 *
 713 * Returns: true if pages are still valid
 714 */
 715bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
 716				       struct hmm_range *range)
 717{
 718	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 719
 720	if (!gtt || !gtt->userptr || !range)
 721		return false;
 722
 723	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 724		gtt->userptr, ttm->num_pages);
 725
 726	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
 
 727
 728	return !amdgpu_hmm_range_get_pages_done(range);
 
 
 
 
 
 
 
 
 
 
 
 
 729}
 730#endif
 731
 732/*
 733 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 734 *
 735 * Called by amdgpu_cs_list_validate(). This creates the page list
 736 * that backs user memory and will ultimately be mapped into the device
 737 * address space.
 738 */
 739void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 740{
 741	unsigned long i;
 742
 743	for (i = 0; i < ttm->num_pages; ++i)
 744		ttm->pages[i] = pages ? pages[i] : NULL;
 745}
 746
 747/*
 748 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 749 *
 750 * Called by amdgpu_ttm_backend_bind()
 751 **/
 752static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 753				     struct ttm_tt *ttm)
 754{
 755	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 756	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 
 757	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 758	enum dma_data_direction direction = write ?
 759		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 760	int r;
 761
 762	/* Allocate an SG array and squash pages into it */
 763	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 764				      (u64)ttm->num_pages << PAGE_SHIFT,
 765				      GFP_KERNEL);
 766	if (r)
 767		goto release_sg;
 768
 769	/* Map SG to device */
 770	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 771	if (r)
 772		goto release_sg;
 773
 774	/* convert SG to linear array of pages and dma addresses */
 775	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 776				       ttm->num_pages);
 777
 778	return 0;
 779
 780release_sg:
 781	kfree(ttm->sg);
 782	ttm->sg = NULL;
 783	return r;
 784}
 785
 786/*
 787 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 788 */
 789static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 790					struct ttm_tt *ttm)
 791{
 792	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 793	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 794	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 795	enum dma_data_direction direction = write ?
 796		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 797
 798	/* double check that we don't free the table twice */
 799	if (!ttm->sg || !ttm->sg->sgl)
 800		return;
 801
 802	/* unmap the pages mapped to the device */
 803	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 804	sg_free_table(ttm->sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805}
 806
 807static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 808				 struct ttm_buffer_object *tbo,
 809				 uint64_t flags)
 810{
 811	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 812	struct ttm_tt *ttm = tbo->ttm;
 813	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 814
 815	if (amdgpu_bo_encrypted(abo))
 816		flags |= AMDGPU_PTE_TMZ;
 817
 818	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 819		uint64_t page_idx = 1;
 820
 821		amdgpu_gart_bind(adev, gtt->offset, page_idx,
 822				 gtt->ttm.dma_address, flags);
 
 
 823
 824		/* The memory type of the first page defaults to UC. Now
 825		 * modify the memory type to NC from the second page of
 826		 * the BO onward.
 827		 */
 828		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
 829		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
 830
 831		amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
 832				 ttm->num_pages - page_idx,
 833				 &(gtt->ttm.dma_address[page_idx]), flags);
 
 
 834	} else {
 835		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 836				 gtt->ttm.dma_address, flags);
 837	}
 
 
 
 
 
 
 
 838}
 839
 840/*
 841 * amdgpu_ttm_backend_bind - Bind GTT memory
 842 *
 843 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 844 * This handles binding GTT memory to the device address space.
 845 */
 846static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 847				   struct ttm_tt *ttm,
 848				   struct ttm_resource *bo_mem)
 849{
 850	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 851	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 852	uint64_t flags;
 853	int r;
 854
 855	if (!bo_mem)
 856		return -EINVAL;
 857
 858	if (gtt->bound)
 859		return 0;
 860
 861	if (gtt->userptr) {
 862		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 863		if (r) {
 864			DRM_ERROR("failed to pin userptr\n");
 865			return r;
 866		}
 867	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
 868		if (!ttm->sg) {
 869			struct dma_buf_attachment *attach;
 870			struct sg_table *sgt;
 871
 872			attach = gtt->gobj->import_attach;
 873			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 874			if (IS_ERR(sgt))
 875				return PTR_ERR(sgt);
 876
 877			ttm->sg = sgt;
 878		}
 879
 880		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 881					       ttm->num_pages);
 882	}
 883
 884	if (!ttm->num_pages) {
 885		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 886		     ttm->num_pages, bo_mem, ttm);
 887	}
 888
 889	if (bo_mem->mem_type != TTM_PL_TT ||
 890	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 
 
 
 
 891		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 892		return 0;
 893	}
 894
 895	/* compute PTE flags relevant to this BO memory */
 896	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 897
 898	/* bind pages into GART page tables */
 899	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 900	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 901			 gtt->ttm.dma_address, flags);
 902	gtt->bound = true;
 903	return 0;
 
 
 
 904}
 905
 906/*
 907 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 908 * through AGP or GART aperture.
 909 *
 910 * If bo is accessible through AGP aperture, then use AGP aperture
 911 * to access bo; otherwise allocate logical space in GART aperture
 912 * and map bo to GART aperture.
 913 */
 914int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 915{
 916	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 917	struct ttm_operation_ctx ctx = { false, false };
 918	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
 
 919	struct ttm_placement placement;
 920	struct ttm_place placements;
 921	struct ttm_resource *tmp;
 922	uint64_t addr, flags;
 923	int r;
 924
 925	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 926		return 0;
 927
 928	addr = amdgpu_gmc_agp_addr(bo);
 929	if (addr != AMDGPU_BO_INVALID_OFFSET) {
 930		bo->resource->start = addr >> PAGE_SHIFT;
 931		return 0;
 932	}
 
 
 
 
 
 
 
 
 
 
 
 933
 934	/* allocate GART space */
 935	placement.num_placement = 1;
 936	placement.placement = &placements;
 937	placement.num_busy_placement = 1;
 938	placement.busy_placement = &placements;
 939	placements.fpfn = 0;
 940	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
 941	placements.mem_type = TTM_PL_TT;
 942	placements.flags = bo->resource->placement;
 943
 944	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
 945	if (unlikely(r))
 946		return r;
 947
 948	/* compute PTE flags for this buffer object */
 949	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
 
 
 
 
 
 950
 951	/* Bind pages */
 952	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
 953	amdgpu_ttm_gart_bind(adev, bo, flags);
 954	amdgpu_gart_invalidate_tlb(adev);
 955	ttm_resource_free(bo, &bo->resource);
 956	ttm_bo_assign_mem(bo, tmp);
 957
 958	return 0;
 959}
 960
 961/*
 962 * amdgpu_ttm_recover_gart - Rebind GTT pages
 963 *
 964 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
 965 * rebind GTT pages during a GPU reset.
 966 */
 967void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
 968{
 969	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
 970	uint64_t flags;
 
 971
 972	if (!tbo->ttm)
 973		return;
 
 
 
 974
 975	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
 976	amdgpu_ttm_gart_bind(adev, tbo, flags);
 977}
 978
 979/*
 980 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
 981 *
 982 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
 983 * ttm_tt_destroy().
 984 */
 985static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
 986				      struct ttm_tt *ttm)
 987{
 988	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 989	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 990
 991	/* if the pages have userptr pinning then clear that first */
 992	if (gtt->userptr) {
 993		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
 994	} else if (ttm->sg && gtt->gobj->import_attach) {
 995		struct dma_buf_attachment *attach;
 996
 997		attach = gtt->gobj->import_attach;
 998		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
 999		ttm->sg = NULL;
1000	}
1001
1002	if (!gtt->bound)
1003		return;
1004
1005	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1006		return;
1007
1008	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1009	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1010	gtt->bound = false;
 
 
1011}
1012
1013static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1014				       struct ttm_tt *ttm)
1015{
1016	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1017
1018	if (gtt->usertask)
1019		put_task_struct(gtt->usertask);
1020
1021	ttm_tt_fini(&gtt->ttm);
1022	kfree(gtt);
1023}
1024
 
 
 
 
 
 
1025/**
1026 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1027 *
1028 * @bo: The buffer object to create a GTT ttm_tt object around
1029 * @page_flags: Page flags to be added to the ttm_tt object
1030 *
1031 * Called by ttm_tt_create().
1032 */
1033static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1034					   uint32_t page_flags)
1035{
1036	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1037	struct amdgpu_ttm_tt *gtt;
1038	enum ttm_caching caching;
1039
1040	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1041	if (gtt == NULL) {
1042		return NULL;
1043	}
 
1044	gtt->gobj = &bo->base;
1045
1046	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1047		caching = ttm_write_combined;
1048	else
1049		caching = ttm_cached;
1050
1051	/* allocate space for the uninitialized page entries */
1052	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1053		kfree(gtt);
1054		return NULL;
1055	}
1056	return &gtt->ttm;
1057}
1058
1059/*
1060 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1061 *
1062 * Map the pages of a ttm_tt object to an address space visible
1063 * to the underlying device.
1064 */
1065static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1066				  struct ttm_tt *ttm,
1067				  struct ttm_operation_ctx *ctx)
1068{
1069	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1070	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1071	pgoff_t i;
1072	int ret;
1073
1074	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1075	if (gtt->userptr) {
1076		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1077		if (!ttm->sg)
1078			return -ENOMEM;
 
 
 
1079		return 0;
1080	}
1081
1082	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083		return 0;
 
1084
1085	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1086	if (ret)
1087		return ret;
 
 
1088
1089	for (i = 0; i < ttm->num_pages; ++i)
1090		ttm->pages[i]->mapping = bdev->dev_mapping;
1091
1092	return 0;
1093}
1094
1095/*
1096 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1097 *
1098 * Unmaps pages of a ttm_tt object from the device address space and
1099 * unpopulates the page array backing it.
1100 */
1101static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1102				     struct ttm_tt *ttm)
1103{
1104	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1105	struct amdgpu_device *adev;
1106	pgoff_t i;
1107
1108	amdgpu_ttm_backend_unbind(bdev, ttm);
1109
1110	if (gtt->userptr) {
1111		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1112		kfree(ttm->sg);
 
 
 
 
 
 
 
 
 
1113		ttm->sg = NULL;
1114		return;
1115	}
1116
1117	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1118		return;
1119
1120	for (i = 0; i < ttm->num_pages; ++i)
1121		ttm->pages[i]->mapping = NULL;
1122
1123	adev = amdgpu_ttm_adev(bdev);
1124	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1125}
 
 
 
1126
1127/**
1128 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1129 * task
1130 *
1131 * @tbo: The ttm_buffer_object that contains the userptr
1132 * @user_addr:  The returned value
1133 */
1134int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1135			      uint64_t *user_addr)
1136{
1137	struct amdgpu_ttm_tt *gtt;
1138
1139	if (!tbo->ttm)
1140		return -EINVAL;
1141
1142	gtt = (void *)tbo->ttm;
1143	*user_addr = gtt->userptr;
1144	return 0;
1145}
1146
1147/**
1148 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1149 * task
1150 *
1151 * @bo: The ttm_buffer_object to bind this userptr to
1152 * @addr:  The address in the current tasks VM space to use
1153 * @flags: Requirements of userptr object.
1154 *
1155 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1156 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1157 * initialize GPU VM for a KFD process.
1158 */
1159int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1160			      uint64_t addr, uint32_t flags)
1161{
1162	struct amdgpu_ttm_tt *gtt;
1163
1164	if (!bo->ttm) {
1165		/* TODO: We want a separate TTM object type for userptrs */
1166		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1167		if (bo->ttm == NULL)
1168			return -ENOMEM;
1169	}
1170
1171	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1172	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1173
1174	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1175	gtt->userptr = addr;
1176	gtt->userflags = flags;
1177
1178	if (gtt->usertask)
1179		put_task_struct(gtt->usertask);
1180	gtt->usertask = current->group_leader;
1181	get_task_struct(gtt->usertask);
1182
1183	return 0;
1184}
1185
1186/*
1187 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1188 */
1189struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1190{
1191	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1192
1193	if (gtt == NULL)
1194		return NULL;
1195
1196	if (gtt->usertask == NULL)
1197		return NULL;
1198
1199	return gtt->usertask->mm;
1200}
1201
1202/*
1203 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1204 * address range for the current task.
1205 *
1206 */
1207bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1208				  unsigned long end, unsigned long *userptr)
1209{
1210	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1211	unsigned long size;
1212
1213	if (gtt == NULL || !gtt->userptr)
1214		return false;
1215
1216	/* Return false if no part of the ttm_tt object lies within
1217	 * the range
1218	 */
1219	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1220	if (gtt->userptr > end || gtt->userptr + size <= start)
1221		return false;
1222
1223	if (userptr)
1224		*userptr = gtt->userptr;
1225	return true;
1226}
1227
1228/*
1229 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1230 */
1231bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1232{
1233	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1234
1235	if (gtt == NULL || !gtt->userptr)
1236		return false;
1237
1238	return true;
1239}
1240
1241/*
1242 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1243 */
1244bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1245{
1246	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1247
1248	if (gtt == NULL)
1249		return false;
1250
1251	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1252}
1253
1254/**
1255 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1256 *
1257 * @ttm: The ttm_tt object to compute the flags for
1258 * @mem: The memory registry backing this ttm_tt object
1259 *
1260 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1261 */
1262uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1263{
1264	uint64_t flags = 0;
1265
1266	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1267		flags |= AMDGPU_PTE_VALID;
1268
1269	if (mem && (mem->mem_type == TTM_PL_TT ||
1270		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1271		flags |= AMDGPU_PTE_SYSTEM;
1272
1273		if (ttm->caching == ttm_cached)
1274			flags |= AMDGPU_PTE_SNOOPED;
1275	}
1276
1277	if (mem && mem->mem_type == TTM_PL_VRAM &&
1278			mem->bus.caching == ttm_cached)
1279		flags |= AMDGPU_PTE_SNOOPED;
1280
1281	return flags;
1282}
1283
1284/**
1285 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1286 *
1287 * @adev: amdgpu_device pointer
1288 * @ttm: The ttm_tt object to compute the flags for
1289 * @mem: The memory registry backing this ttm_tt object
1290 *
1291 * Figure out the flags to use for a VM PTE (Page Table Entry).
1292 */
1293uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1294				 struct ttm_resource *mem)
1295{
1296	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1297
1298	flags |= adev->gart.gart_pte_flags;
1299	flags |= AMDGPU_PTE_READABLE;
1300
1301	if (!amdgpu_ttm_tt_is_readonly(ttm))
1302		flags |= AMDGPU_PTE_WRITEABLE;
1303
1304	return flags;
1305}
1306
1307/*
1308 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1309 * object.
1310 *
1311 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1312 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1313 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1314 * used to clean out a memory space.
1315 */
1316static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1317					    const struct ttm_place *place)
1318{
1319	struct dma_resv_iter resv_cursor;
 
 
1320	struct dma_fence *f;
1321
1322	if (!amdgpu_bo_is_amdgpu_bo(bo))
1323		return ttm_bo_eviction_valuable(bo, place);
1324
1325	/* Swapout? */
1326	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1327		return true;
1328
1329	if (bo->type == ttm_bo_type_kernel &&
1330	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1331		return false;
1332
1333	/* If bo is a KFD BO, check if the bo belongs to the current process.
1334	 * If true, then return false as any KFD process needs all its BOs to
1335	 * be resident to run successfully
1336	 */
1337	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1338				DMA_RESV_USAGE_BOOKKEEP, f) {
1339		if (amdkfd_fence_check_mm(f, current->mm))
1340			return false;
 
 
 
 
1341	}
1342
1343	/* Preemptible BOs don't own system resources managed by the
1344	 * driver (pages, VRAM, GART space). They point to resources
1345	 * owned by someone else (e.g. pageable memory in user mode
1346	 * or a DMABuf). They are used in a preemptible context so we
1347	 * can guarantee no deadlocks and good QoS in case of MMU
1348	 * notifiers or DMABuf move notifiers from the resource owner.
1349	 */
1350	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1351		return false;
1352
1353	if (bo->resource->mem_type == TTM_PL_TT &&
1354	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1355		return false;
1356
1357	return ttm_bo_eviction_valuable(bo, place);
1358}
1359
1360static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1361				      void *buf, size_t size, bool write)
1362{
1363	while (size) {
1364		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1365		uint64_t bytes = 4 - (pos & 0x3);
1366		uint32_t shift = (pos & 0x3) * 8;
1367		uint32_t mask = 0xffffffff << shift;
1368		uint32_t value = 0;
1369
1370		if (size < bytes) {
1371			mask &= 0xffffffff >> (bytes - size) * 8;
1372			bytes = size;
1373		}
 
1374
1375		if (mask != 0xffffffff) {
1376			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1377			if (write) {
1378				value &= ~mask;
1379				value |= (*(uint32_t *)buf << shift) & mask;
1380				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1381			} else {
1382				value = (value & mask) >> shift;
1383				memcpy(buf, &value, bytes);
1384			}
1385		} else {
1386			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1387		}
1388
1389		pos += bytes;
1390		buf += bytes;
1391		size -= bytes;
1392	}
1393}
1394
1395static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1396					unsigned long offset, void *buf,
1397					int len, int write)
1398{
1399	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1400	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1401	struct amdgpu_res_cursor src_mm;
1402	struct amdgpu_job *job;
1403	struct dma_fence *fence;
1404	uint64_t src_addr, dst_addr;
1405	unsigned int num_dw;
1406	int r, idx;
1407
1408	if (len != PAGE_SIZE)
1409		return -EINVAL;
1410
1411	if (!adev->mman.sdma_access_ptr)
1412		return -EACCES;
1413
1414	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1415		return -ENODEV;
1416
1417	if (write)
1418		memcpy(adev->mman.sdma_access_ptr, buf, len);
1419
1420	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1421	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1422				     AMDGPU_FENCE_OWNER_UNDEFINED,
1423				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1424				     &job);
1425	if (r)
1426		goto out;
1427
1428	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1429	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1430		src_mm.start;
1431	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1432	if (write)
1433		swap(src_addr, dst_addr);
1434
1435	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1436				PAGE_SIZE, false);
1437
1438	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1439	WARN_ON(job->ibs[0].length_dw > num_dw);
1440
1441	fence = amdgpu_job_submit(job);
1442
1443	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1444		r = -ETIMEDOUT;
1445	dma_fence_put(fence);
1446
1447	if (!(r || write))
1448		memcpy(buf, adev->mman.sdma_access_ptr, len);
1449out:
1450	drm_dev_exit(idx);
1451	return r;
1452}
1453
1454/**
1455 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1456 *
1457 * @bo:  The buffer object to read/write
1458 * @offset:  Offset into buffer object
1459 * @buf:  Secondary buffer to write/read from
1460 * @len: Length in bytes of access
1461 * @write:  true if writing
1462 *
1463 * This is used to access VRAM that backs a buffer object via MMIO
1464 * access for debugging purposes.
1465 */
1466static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1467				    unsigned long offset, void *buf, int len,
1468				    int write)
1469{
1470	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1471	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1472	struct amdgpu_res_cursor cursor;
 
1473	int ret = 0;
 
 
1474
1475	if (bo->resource->mem_type != TTM_PL_VRAM)
1476		return -EIO;
1477
1478	if (amdgpu_device_has_timeouts_enabled(adev) &&
1479			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1480		return len;
1481
1482	amdgpu_res_first(bo->resource, offset, len, &cursor);
1483	while (cursor.remaining) {
1484		size_t count, size = cursor.size;
1485		loff_t pos = cursor.start;
1486
1487		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1488		size -= count;
1489		if (size) {
1490			/* using MM to access rest vram and handle un-aligned address */
1491			pos += count;
1492			buf += count;
1493			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1494		}
1495
1496		ret += cursor.size;
1497		buf += cursor.size;
1498		amdgpu_res_next(&cursor, cursor.size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499	}
1500
1501	return ret;
1502}
1503
1504static void
1505amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1506{
1507	amdgpu_bo_move_notify(bo, false, NULL);
1508}
1509
1510static struct ttm_device_funcs amdgpu_bo_driver = {
1511	.ttm_tt_create = &amdgpu_ttm_tt_create,
1512	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1513	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1514	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1515	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1516	.evict_flags = &amdgpu_evict_flags,
1517	.move = &amdgpu_bo_move,
1518	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
 
1519	.release_notify = &amdgpu_bo_release_notify,
 
1520	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1521	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1522	.access_memory = &amdgpu_ttm_access_memory,
 
1523};
1524
1525/*
1526 * Firmware Reservation functions
1527 */
1528/**
1529 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1530 *
1531 * @adev: amdgpu_device pointer
1532 *
1533 * free fw reserved vram if it has been reserved.
1534 */
1535static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1536{
1537	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1538		NULL, &adev->mman.fw_vram_usage_va);
1539}
1540
1541/*
1542 * Driver Reservation functions
1543 */
1544/**
1545 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1546 *
1547 * @adev: amdgpu_device pointer
1548 *
1549 * free drv reserved vram if it has been reserved.
1550 */
1551static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1552{
1553	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1554						  NULL,
1555						  &adev->mman.drv_vram_usage_va);
1556}
1557
1558/**
1559 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1560 *
1561 * @adev: amdgpu_device pointer
1562 *
1563 * create bo vram reservation from fw.
1564 */
1565static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1566{
1567	uint64_t vram_size = adev->gmc.visible_vram_size;
1568
1569	adev->mman.fw_vram_usage_va = NULL;
1570	adev->mman.fw_vram_usage_reserved_bo = NULL;
1571
1572	if (adev->mman.fw_vram_usage_size == 0 ||
1573	    adev->mman.fw_vram_usage_size > vram_size)
1574		return 0;
1575
1576	return amdgpu_bo_create_kernel_at(adev,
1577					  adev->mman.fw_vram_usage_start_offset,
1578					  adev->mman.fw_vram_usage_size,
1579					  &adev->mman.fw_vram_usage_reserved_bo,
1580					  &adev->mman.fw_vram_usage_va);
1581}
1582
1583/**
1584 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1585 *
1586 * @adev: amdgpu_device pointer
1587 *
1588 * create bo vram reservation from drv.
1589 */
1590static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1591{
1592	u64 vram_size = adev->gmc.visible_vram_size;
1593
1594	adev->mman.drv_vram_usage_va = NULL;
1595	adev->mman.drv_vram_usage_reserved_bo = NULL;
1596
1597	if (adev->mman.drv_vram_usage_size == 0 ||
1598	    adev->mman.drv_vram_usage_size > vram_size)
1599		return 0;
1600
1601	return amdgpu_bo_create_kernel_at(adev,
1602					  adev->mman.drv_vram_usage_start_offset,
1603					  adev->mman.drv_vram_usage_size,
1604					  &adev->mman.drv_vram_usage_reserved_bo,
1605					  &adev->mman.drv_vram_usage_va);
 
1606}
1607
1608/*
1609 * Memoy training reservation functions
1610 */
1611
1612/**
1613 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1614 *
1615 * @adev: amdgpu_device pointer
1616 *
1617 * free memory training reserved vram if it has been reserved.
1618 */
1619static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1620{
1621	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1622
1623	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1624	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1625	ctx->c2p_bo = NULL;
1626
1627	return 0;
1628}
1629
1630static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1631{
1632	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1633
1634	memset(ctx, 0, sizeof(*ctx));
1635
1636	ctx->c2p_train_data_offset =
1637		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1638	ctx->p2c_train_data_offset =
1639		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1640	ctx->train_data_size =
1641		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1642
1643	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1644			ctx->train_data_size,
1645			ctx->p2c_train_data_offset,
1646			ctx->c2p_train_data_offset);
1647}
1648
1649/*
1650 * reserve TMR memory at the top of VRAM which holds
1651 * IP Discovery data and is protected by PSP.
1652 */
1653static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1654{
1655	int ret;
1656	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1657	bool mem_train_support = false;
1658
1659	if (!amdgpu_sriov_vf(adev)) {
1660		if (amdgpu_atomfirmware_mem_training_supported(adev))
 
1661			mem_train_support = true;
 
 
1662		else
1663			DRM_DEBUG("memory training does not support!\n");
1664	}
1665
1666	/*
1667	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1668	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1669	 *
1670	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1671	 * discovery data and G6 memory training data respectively
1672	 */
1673	adev->mman.discovery_tmr_size =
1674		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1675	if (!adev->mman.discovery_tmr_size)
1676		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1677
1678	if (mem_train_support) {
1679		/* reserve vram for mem train according to TMR location */
1680		amdgpu_ttm_training_data_block_init(adev);
1681		ret = amdgpu_bo_create_kernel_at(adev,
1682					 ctx->c2p_train_data_offset,
1683					 ctx->train_data_size,
 
1684					 &ctx->c2p_bo,
1685					 NULL);
1686		if (ret) {
1687			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1688			amdgpu_ttm_training_reserve_vram_fini(adev);
1689			return ret;
1690		}
1691		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1692	}
1693
1694	ret = amdgpu_bo_create_kernel_at(adev,
1695				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1696				adev->mman.discovery_tmr_size,
1697				&adev->mman.discovery_memory,
 
1698				NULL);
1699	if (ret) {
1700		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1701		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1702		return ret;
1703	}
1704
1705	return 0;
1706}
1707
1708/*
1709 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1710 * gtt/vram related fields.
1711 *
1712 * This initializes all of the memory space pools that the TTM layer
1713 * will need such as the GTT space (system memory mapped to the device),
1714 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1715 * can be mapped per VMID.
1716 */
1717int amdgpu_ttm_init(struct amdgpu_device *adev)
1718{
1719	uint64_t gtt_size;
1720	int r;
1721	u64 vis_vram_limit;
 
1722
1723	mutex_init(&adev->mman.gtt_window_lock);
1724
1725	/* No others user of address space so set it to 0 */
1726	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1727			       adev_to_drm(adev)->anon_inode->i_mapping,
1728			       adev_to_drm(adev)->vma_offset_manager,
1729			       adev->need_swiotlb,
1730			       dma_addressing_limited(adev->dev));
1731	if (r) {
1732		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1733		return r;
1734	}
1735	adev->mman.initialized = true;
1736
 
 
 
1737	/* Initialize VRAM pool with all of VRAM divided into pages */
1738	r = amdgpu_vram_mgr_init(adev);
 
1739	if (r) {
1740		DRM_ERROR("Failed initializing VRAM heap.\n");
1741		return r;
1742	}
1743
1744	/* Reduce size of CPU-visible VRAM if requested */
1745	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1746	if (amdgpu_vis_vram_limit > 0 &&
1747	    vis_vram_limit <= adev->gmc.visible_vram_size)
1748		adev->gmc.visible_vram_size = vis_vram_limit;
1749
1750	/* Change the size here instead of the init above so only lpfn is affected */
1751	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1752#ifdef CONFIG_64BIT
1753#ifdef CONFIG_X86
1754	if (adev->gmc.xgmi.connected_to_cpu)
1755		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1756				adev->gmc.visible_vram_size);
1757
1758	else
1759#endif
1760		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1761				adev->gmc.visible_vram_size);
1762#endif
1763
1764	/*
1765	 *The reserved vram for firmware must be pinned to the specified
1766	 *place on the VRAM, so reserve it early.
1767	 */
1768	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1769	if (r) {
1770		return r;
1771	}
1772
1773	/*
1774	 *The reserved vram for driver must be pinned to the specified
1775	 *place on the VRAM, so reserve it early.
1776	 */
1777	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1778	if (r)
1779		return r;
1780
1781	/*
1782	 * only NAVI10 and onwards ASIC support for IP discovery.
1783	 * If IP discovery enabled, a block of memory should be
1784	 * reserved for IP discovey.
1785	 */
1786	if (adev->mman.discovery_bin) {
1787		r = amdgpu_ttm_reserve_tmr(adev);
1788		if (r)
1789			return r;
1790	}
1791
1792	/* allocate memory as required for VGA
1793	 * This is used for VGA emulation and pre-OS scanout buffers to
1794	 * avoid display artifacts while transitioning between pre-OS
1795	 * and driver.  */
1796	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1797				       &adev->mman.stolen_vga_memory,
1798				       NULL);
1799	if (r)
1800		return r;
1801	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1802				       adev->mman.stolen_extended_size,
1803				       &adev->mman.stolen_extended_memory,
1804				       NULL);
1805	if (r)
1806		return r;
1807	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1808				       adev->mman.stolen_reserved_size,
1809				       &adev->mman.stolen_reserved_memory,
1810				       NULL);
1811	if (r)
1812		return r;
1813
1814	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1815		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1816
1817	/* Compute GTT size, either based on 1/2 the size of RAM size
1818	 * or whatever the user passed on module init */
1819	if (amdgpu_gtt_size == -1) {
1820		struct sysinfo si;
1821
1822		si_meminfo(&si);
1823		/* Certain GL unit tests for large textures can cause problems
1824		 * with the OOM killer since there is no way to link this memory
1825		 * to a process.  This was originally mitigated (but not necessarily
1826		 * eliminated) by limiting the GTT size.  The problem is this limit
1827		 * is often too low for many modern games so just make the limit 1/2
1828		 * of system memory which aligns with TTM. The OOM accounting needs
1829		 * to be addressed, but we shouldn't prevent common 3D applications
1830		 * from being usable just to potentially mitigate that corner case.
1831		 */
1832		gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1833			       (u64)si.totalram * si.mem_unit / 2);
1834	} else {
1835		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1836	}
1837
1838	/* Initialize GTT memory pool */
1839	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1840	if (r) {
1841		DRM_ERROR("Failed initializing GTT heap.\n");
1842		return r;
1843	}
1844	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1845		 (unsigned)(gtt_size / (1024 * 1024)));
1846
1847	/* Initialize preemptible memory pool */
1848	r = amdgpu_preempt_mgr_init(adev);
1849	if (r) {
1850		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1851		return r;
1852	}
1853
1854	/* Initialize various on-chip memory pools */
1855	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
 
1856	if (r) {
1857		DRM_ERROR("Failed initializing GDS heap.\n");
1858		return r;
1859	}
1860
1861	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
 
1862	if (r) {
1863		DRM_ERROR("Failed initializing gws heap.\n");
1864		return r;
1865	}
1866
1867	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
 
1868	if (r) {
1869		DRM_ERROR("Failed initializing oa heap.\n");
1870		return r;
1871	}
1872
1873	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1874				AMDGPU_GEM_DOMAIN_GTT,
1875				&adev->mman.sdma_access_bo, NULL,
1876				&adev->mman.sdma_access_ptr))
1877		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1878
1879	return 0;
 
 
 
 
 
 
 
1880}
1881
1882/*
1883 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1884 */
1885void amdgpu_ttm_fini(struct amdgpu_device *adev)
1886{
1887	int idx;
1888	if (!adev->mman.initialized)
1889		return;
1890
1891	amdgpu_ttm_training_reserve_vram_fini(adev);
1892	/* return the stolen vga memory back to VRAM */
1893	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1894	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1895	/* return the IP Discovery TMR memory back to VRAM */
1896	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1897	if (adev->mman.stolen_reserved_size)
1898		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1899				      NULL, NULL);
1900	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1901					&adev->mman.sdma_access_ptr);
1902	amdgpu_ttm_fw_reserve_vram_fini(adev);
1903	amdgpu_ttm_drv_reserve_vram_fini(adev);
1904
1905	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1906
1907		if (adev->mman.aper_base_kaddr)
1908			iounmap(adev->mman.aper_base_kaddr);
1909		adev->mman.aper_base_kaddr = NULL;
1910
1911		drm_dev_exit(idx);
1912	}
1913
1914	amdgpu_vram_mgr_fini(adev);
1915	amdgpu_gtt_mgr_fini(adev);
1916	amdgpu_preempt_mgr_fini(adev);
1917	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1918	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1919	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1920	ttm_device_fini(&adev->mman.bdev);
1921	adev->mman.initialized = false;
1922	DRM_INFO("amdgpu: ttm finalized\n");
1923}
1924
1925/**
1926 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1927 *
1928 * @adev: amdgpu_device pointer
1929 * @enable: true when we can use buffer functions.
1930 *
1931 * Enable/disable use of buffer functions during suspend/resume. This should
1932 * only be called at bootup or when userspace isn't running.
1933 */
1934void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1935{
1936	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1937	uint64_t size;
1938	int r;
1939
1940	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1941	    adev->mman.buffer_funcs_enabled == enable)
1942		return;
1943
1944	if (enable) {
1945		struct amdgpu_ring *ring;
1946		struct drm_gpu_scheduler *sched;
1947
1948		ring = adev->mman.buffer_funcs_ring;
1949		sched = &ring->sched;
1950		r = drm_sched_entity_init(&adev->mman.entity,
1951					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1952					  1, NULL);
1953		if (r) {
1954			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1955				  r);
1956			return;
1957		}
1958	} else {
1959		drm_sched_entity_destroy(&adev->mman.entity);
1960		dma_fence_put(man->move);
1961		man->move = NULL;
1962	}
1963
1964	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1965	if (enable)
1966		size = adev->gmc.real_vram_size;
1967	else
1968		size = adev->gmc.visible_vram_size;
1969	man->size = size;
1970	adev->mman.buffer_funcs_enabled = enable;
1971}
1972
1973static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1974				  bool direct_submit,
1975				  unsigned int num_dw,
1976				  struct dma_resv *resv,
1977				  bool vm_needs_flush,
1978				  struct amdgpu_job **job)
1979{
1980	enum amdgpu_ib_pool_type pool = direct_submit ?
1981		AMDGPU_IB_POOL_DIRECT :
1982		AMDGPU_IB_POOL_DELAYED;
1983	int r;
1984
1985	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1986				     AMDGPU_FENCE_OWNER_UNDEFINED,
1987				     num_dw * 4, pool, job);
1988	if (r)
1989		return r;
1990
1991	if (vm_needs_flush) {
1992		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1993							adev->gmc.pdb0_bo :
1994							adev->gart.bo);
1995		(*job)->vm_needs_flush = true;
1996	}
1997	if (!resv)
1998		return 0;
1999
2000	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2001						   DMA_RESV_USAGE_BOOKKEEP);
2002}
2003
2004int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2005		       uint64_t dst_offset, uint32_t byte_count,
2006		       struct dma_resv *resv,
2007		       struct dma_fence **fence, bool direct_submit,
2008		       bool vm_needs_flush, bool tmz)
2009{
 
 
2010	struct amdgpu_device *adev = ring->adev;
2011	unsigned num_loops, num_dw;
2012	struct amdgpu_job *job;
 
2013	uint32_t max_bytes;
 
2014	unsigned i;
2015	int r;
2016
2017	if (!direct_submit && !ring->sched.ready) {
2018		DRM_ERROR("Trying to move memory with ring turned off.\n");
2019		return -EINVAL;
2020	}
2021
2022	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2023	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2024	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2025	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2026				   resv, vm_needs_flush, &job);
2027	if (r)
2028		return r;
2029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030	for (i = 0; i < num_loops; i++) {
2031		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2032
2033		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2034					dst_offset, cur_size_in_bytes, tmz);
2035
2036		src_offset += cur_size_in_bytes;
2037		dst_offset += cur_size_in_bytes;
2038		byte_count -= cur_size_in_bytes;
2039	}
2040
2041	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2042	WARN_ON(job->ibs[0].length_dw > num_dw);
2043	if (direct_submit)
2044		r = amdgpu_job_submit_direct(job, ring, fence);
2045	else
2046		*fence = amdgpu_job_submit(job);
 
2047	if (r)
2048		goto error_free;
2049
2050	return r;
2051
2052error_free:
2053	amdgpu_job_free(job);
2054	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2055	return r;
2056}
2057
2058static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2059			       uint64_t dst_addr, uint32_t byte_count,
2060			       struct dma_resv *resv,
2061			       struct dma_fence **fence,
2062			       bool vm_needs_flush)
2063{
2064	struct amdgpu_device *adev = ring->adev;
 
 
 
 
 
2065	unsigned int num_loops, num_dw;
 
2066	struct amdgpu_job *job;
2067	uint32_t max_bytes;
2068	unsigned int i;
2069	int r;
2070
2071	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2072	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2073	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2074	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2075				   &job);
2076	if (r)
2077		return r;
2078
2079	for (i = 0; i < num_loops; i++) {
2080		uint32_t cur_size = min(byte_count, max_bytes);
2081
2082		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2083					cur_size);
2084
2085		dst_addr += cur_size;
2086		byte_count -= cur_size;
 
 
 
 
 
 
 
2087	}
 
2088
2089	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2090	WARN_ON(job->ibs[0].length_dw > num_dw);
2091	*fence = amdgpu_job_submit(job);
2092	return 0;
2093}
2094
2095int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2096			uint32_t src_data,
2097			struct dma_resv *resv,
2098			struct dma_fence **f)
2099{
2100	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2101	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2102	struct dma_fence *fence = NULL;
2103	struct amdgpu_res_cursor dst;
2104	int r;
2105
2106	if (!adev->mman.buffer_funcs_enabled) {
2107		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2108		return -EINVAL;
 
 
 
 
 
2109	}
2110
2111	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2112
2113	mutex_lock(&adev->mman.gtt_window_lock);
2114	while (dst.remaining) {
2115		struct dma_fence *next;
2116		uint64_t cur_size, to;
2117
2118		/* Never fill more than 256MiB at once to avoid timeouts */
2119		cur_size = min(dst.size, 256ULL << 20);
 
 
 
 
 
 
2120
2121		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2122					  1, ring, false, &cur_size, &to);
2123		if (r)
2124			goto error;
2125
2126		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2127					&next, true);
2128		if (r)
2129			goto error;
2130
2131		dma_fence_put(fence);
2132		fence = next;
2133
2134		amdgpu_res_next(&dst, cur_size);
2135	}
2136error:
2137	mutex_unlock(&adev->mman.gtt_window_lock);
2138	if (f)
2139		*f = dma_fence_get(fence);
2140	dma_fence_put(fence);
2141	return r;
2142}
2143
2144/**
2145 * amdgpu_ttm_evict_resources - evict memory buffers
2146 * @adev: amdgpu device object
2147 * @mem_type: evicted BO's memory type
2148 *
2149 * Evicts all @mem_type buffers on the lru list of the memory type.
2150 *
2151 * Returns:
2152 * 0 for success or a negative error code on failure.
2153 */
2154int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2155{
2156	struct ttm_resource_manager *man;
2157
2158	switch (mem_type) {
2159	case TTM_PL_VRAM:
2160	case TTM_PL_TT:
2161	case AMDGPU_PL_GWS:
2162	case AMDGPU_PL_GDS:
2163	case AMDGPU_PL_OA:
2164		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2165		break;
2166	default:
2167		DRM_ERROR("Trying to evict invalid memory type\n");
2168		return -EINVAL;
2169	}
2170
2171	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
 
 
2172}
2173
2174#if defined(CONFIG_DEBUG_FS)
2175
2176static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2177{
2178	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
 
 
 
 
 
2179
2180	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
 
2181}
2182
2183DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
 
 
 
 
 
 
 
 
 
 
2184
2185/*
2186 * amdgpu_ttm_vram_read - Linear read access to VRAM
2187 *
2188 * Accesses VRAM via MMIO for debugging purposes.
2189 */
2190static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2191				    size_t size, loff_t *pos)
2192{
2193	struct amdgpu_device *adev = file_inode(f)->i_private;
2194	ssize_t result = 0;
2195
2196	if (size & 0x3 || *pos & 0x3)
2197		return -EINVAL;
2198
2199	if (*pos >= adev->gmc.mc_vram_size)
2200		return -ENXIO;
2201
2202	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2203	while (size) {
2204		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2205		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2206
2207		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2208		if (copy_to_user(buf, value, bytes))
2209			return -EFAULT;
2210
2211		result += bytes;
2212		buf += bytes;
2213		*pos += bytes;
2214		size -= bytes;
2215	}
2216
2217	return result;
2218}
2219
2220/*
2221 * amdgpu_ttm_vram_write - Linear write access to VRAM
2222 *
2223 * Accesses VRAM via MMIO for debugging purposes.
2224 */
2225static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2226				    size_t size, loff_t *pos)
2227{
2228	struct amdgpu_device *adev = file_inode(f)->i_private;
2229	ssize_t result = 0;
2230	int r;
2231
2232	if (size & 0x3 || *pos & 0x3)
2233		return -EINVAL;
2234
2235	if (*pos >= adev->gmc.mc_vram_size)
2236		return -ENXIO;
2237
2238	while (size) {
 
2239		uint32_t value;
2240
2241		if (*pos >= adev->gmc.mc_vram_size)
2242			return result;
2243
2244		r = get_user(value, (uint32_t *)buf);
2245		if (r)
2246			return r;
2247
2248		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
 
 
 
 
2249
2250		result += 4;
2251		buf += 4;
2252		*pos += 4;
2253		size -= 4;
2254	}
2255
2256	return result;
2257}
2258
2259static const struct file_operations amdgpu_ttm_vram_fops = {
2260	.owner = THIS_MODULE,
2261	.read = amdgpu_ttm_vram_read,
2262	.write = amdgpu_ttm_vram_write,
2263	.llseek = default_llseek,
2264};
2265
2266/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2267 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2268 *
2269 * This function is used to read memory that has been mapped to the
2270 * GPU and the known addresses are not physical addresses but instead
2271 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2272 */
2273static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2274				 size_t size, loff_t *pos)
2275{
2276	struct amdgpu_device *adev = file_inode(f)->i_private;
2277	struct iommu_domain *dom;
2278	ssize_t result = 0;
2279	int r;
2280
2281	/* retrieve the IOMMU domain if any for this device */
2282	dom = iommu_get_domain_for_dev(adev->dev);
2283
2284	while (size) {
2285		phys_addr_t addr = *pos & PAGE_MASK;
2286		loff_t off = *pos & ~PAGE_MASK;
2287		size_t bytes = PAGE_SIZE - off;
2288		unsigned long pfn;
2289		struct page *p;
2290		void *ptr;
2291
2292		bytes = bytes < size ? bytes : size;
2293
2294		/* Translate the bus address to a physical address.  If
2295		 * the domain is NULL it means there is no IOMMU active
2296		 * and the address translation is the identity
2297		 */
2298		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2299
2300		pfn = addr >> PAGE_SHIFT;
2301		if (!pfn_valid(pfn))
2302			return -EPERM;
2303
2304		p = pfn_to_page(pfn);
2305		if (p->mapping != adev->mman.bdev.dev_mapping)
2306			return -EPERM;
2307
2308		ptr = kmap_local_page(p);
2309		r = copy_to_user(buf, ptr + off, bytes);
2310		kunmap_local(ptr);
2311		if (r)
2312			return -EFAULT;
2313
2314		size -= bytes;
2315		*pos += bytes;
2316		result += bytes;
2317	}
2318
2319	return result;
2320}
2321
2322/*
2323 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2324 *
2325 * This function is used to write memory that has been mapped to the
2326 * GPU and the known addresses are not physical addresses but instead
2327 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2328 */
2329static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2330				 size_t size, loff_t *pos)
2331{
2332	struct amdgpu_device *adev = file_inode(f)->i_private;
2333	struct iommu_domain *dom;
2334	ssize_t result = 0;
2335	int r;
2336
2337	dom = iommu_get_domain_for_dev(adev->dev);
2338
2339	while (size) {
2340		phys_addr_t addr = *pos & PAGE_MASK;
2341		loff_t off = *pos & ~PAGE_MASK;
2342		size_t bytes = PAGE_SIZE - off;
2343		unsigned long pfn;
2344		struct page *p;
2345		void *ptr;
2346
2347		bytes = bytes < size ? bytes : size;
2348
2349		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2350
2351		pfn = addr >> PAGE_SHIFT;
2352		if (!pfn_valid(pfn))
2353			return -EPERM;
2354
2355		p = pfn_to_page(pfn);
2356		if (p->mapping != adev->mman.bdev.dev_mapping)
2357			return -EPERM;
2358
2359		ptr = kmap_local_page(p);
2360		r = copy_from_user(ptr + off, buf, bytes);
2361		kunmap_local(ptr);
2362		if (r)
2363			return -EFAULT;
2364
2365		size -= bytes;
2366		*pos += bytes;
2367		result += bytes;
2368	}
2369
2370	return result;
2371}
2372
2373static const struct file_operations amdgpu_ttm_iomem_fops = {
2374	.owner = THIS_MODULE,
2375	.read = amdgpu_iomem_read,
2376	.write = amdgpu_iomem_write,
2377	.llseek = default_llseek
2378};
2379
 
 
 
 
 
 
 
 
2380#endif
 
 
2381
2382void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
 
 
2383{
2384#if defined(CONFIG_DEBUG_FS)
2385	struct drm_minor *minor = adev_to_drm(adev)->primary;
2386	struct dentry *root = minor->debugfs_root;
2387
2388	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2389				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2390	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2391			    &amdgpu_ttm_iomem_fops);
2392	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2393			    &amdgpu_ttm_page_pool_fops);
2394	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2395							     TTM_PL_VRAM),
2396					    root, "amdgpu_vram_mm");
2397	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2398							     TTM_PL_TT),
2399					    root, "amdgpu_gtt_mm");
2400	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2401							     AMDGPU_PL_GDS),
2402					    root, "amdgpu_gds_mm");
2403	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2404							     AMDGPU_PL_GWS),
2405					    root, "amdgpu_gws_mm");
2406	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2407							     AMDGPU_PL_OA),
2408					    root, "amdgpu_oa_mm");
2409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2410#endif
2411}