Loading...
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom ->submit_bio function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49#include <linux/pktcdvd.h>
50#include <linux/module.h>
51#include <linux/types.h>
52#include <linux/kernel.h>
53#include <linux/compat.h>
54#include <linux/kthread.h>
55#include <linux/errno.h>
56#include <linux/spinlock.h>
57#include <linux/file.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/miscdevice.h>
61#include <linux/freezer.h>
62#include <linux/mutex.h>
63#include <linux/slab.h>
64#include <linux/backing-dev.h>
65#include <scsi/scsi_cmnd.h>
66#include <scsi/scsi_ioctl.h>
67#include <scsi/scsi.h>
68#include <linux/debugfs.h>
69#include <linux/device.h>
70#include <linux/nospec.h>
71#include <linux/uaccess.h>
72
73#define DRIVER_NAME "pktcdvd"
74
75#define pkt_err(pd, fmt, ...) \
76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77#define pkt_notice(pd, fmt, ...) \
78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79#define pkt_info(pd, fmt, ...) \
80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81
82#define pkt_dbg(level, pd, fmt, ...) \
83do { \
84 if (level == 2 && PACKET_DEBUG >= 2) \
85 pr_notice("%s: %s():" fmt, \
86 pd->name, __func__, ##__VA_ARGS__); \
87 else if (level == 1 && PACKET_DEBUG >= 1) \
88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
89} while (0)
90
91#define MAX_SPEED 0xffff
92
93static DEFINE_MUTEX(pktcdvd_mutex);
94static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95static struct proc_dir_entry *pkt_proc;
96static int pktdev_major;
97static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
98static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
100static mempool_t psd_pool;
101static struct bio_set pkt_bio_set;
102
103static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
104static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105
106/* forward declaration */
107static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108static int pkt_remove_dev(dev_t pkt_dev);
109static int pkt_seq_show(struct seq_file *m, void *p);
110
111static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112{
113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114}
115
116/*
117 * create and register a pktcdvd kernel object.
118 */
119static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
120 const char* name,
121 struct kobject* parent,
122 struct kobj_type* ktype)
123{
124 struct pktcdvd_kobj *p;
125 int error;
126
127 p = kzalloc(sizeof(*p), GFP_KERNEL);
128 if (!p)
129 return NULL;
130 p->pd = pd;
131 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
132 if (error) {
133 kobject_put(&p->kobj);
134 return NULL;
135 }
136 kobject_uevent(&p->kobj, KOBJ_ADD);
137 return p;
138}
139/*
140 * remove a pktcdvd kernel object.
141 */
142static void pkt_kobj_remove(struct pktcdvd_kobj *p)
143{
144 if (p)
145 kobject_put(&p->kobj);
146}
147/*
148 * default release function for pktcdvd kernel objects.
149 */
150static void pkt_kobj_release(struct kobject *kobj)
151{
152 kfree(to_pktcdvdkobj(kobj));
153}
154
155
156/**********************************************************
157 *
158 * sysfs interface for pktcdvd
159 * by (C) 2006 Thomas Maier <balagi@justmail.de>
160 *
161 **********************************************************/
162
163#define DEF_ATTR(_obj,_name,_mode) \
164 static struct attribute _obj = { .name = _name, .mode = _mode }
165
166/**********************************************************
167 /sys/class/pktcdvd/pktcdvd[0-7]/
168 stat/reset
169 stat/packets_started
170 stat/packets_finished
171 stat/kb_written
172 stat/kb_read
173 stat/kb_read_gather
174 write_queue/size
175 write_queue/congestion_off
176 write_queue/congestion_on
177 **********************************************************/
178
179DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
180DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
181DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
182DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
183DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
184DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
185
186static struct attribute *kobj_pkt_attrs_stat[] = {
187 &kobj_pkt_attr_st1,
188 &kobj_pkt_attr_st2,
189 &kobj_pkt_attr_st3,
190 &kobj_pkt_attr_st4,
191 &kobj_pkt_attr_st5,
192 &kobj_pkt_attr_st6,
193 NULL
194};
195
196DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
197DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
198DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
199
200static struct attribute *kobj_pkt_attrs_wqueue[] = {
201 &kobj_pkt_attr_wq1,
202 &kobj_pkt_attr_wq2,
203 &kobj_pkt_attr_wq3,
204 NULL
205};
206
207static ssize_t kobj_pkt_show(struct kobject *kobj,
208 struct attribute *attr, char *data)
209{
210 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
211 int n = 0;
212 int v;
213 if (strcmp(attr->name, "packets_started") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
215
216 } else if (strcmp(attr->name, "packets_finished") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
218
219 } else if (strcmp(attr->name, "kb_written") == 0) {
220 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
221
222 } else if (strcmp(attr->name, "kb_read") == 0) {
223 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
224
225 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
226 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
227
228 } else if (strcmp(attr->name, "size") == 0) {
229 spin_lock(&pd->lock);
230 v = pd->bio_queue_size;
231 spin_unlock(&pd->lock);
232 n = sprintf(data, "%d\n", v);
233
234 } else if (strcmp(attr->name, "congestion_off") == 0) {
235 spin_lock(&pd->lock);
236 v = pd->write_congestion_off;
237 spin_unlock(&pd->lock);
238 n = sprintf(data, "%d\n", v);
239
240 } else if (strcmp(attr->name, "congestion_on") == 0) {
241 spin_lock(&pd->lock);
242 v = pd->write_congestion_on;
243 spin_unlock(&pd->lock);
244 n = sprintf(data, "%d\n", v);
245 }
246 return n;
247}
248
249static void init_write_congestion_marks(int* lo, int* hi)
250{
251 if (*hi > 0) {
252 *hi = max(*hi, 500);
253 *hi = min(*hi, 1000000);
254 if (*lo <= 0)
255 *lo = *hi - 100;
256 else {
257 *lo = min(*lo, *hi - 100);
258 *lo = max(*lo, 100);
259 }
260 } else {
261 *hi = -1;
262 *lo = -1;
263 }
264}
265
266static ssize_t kobj_pkt_store(struct kobject *kobj,
267 struct attribute *attr,
268 const char *data, size_t len)
269{
270 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
271 int val;
272
273 if (strcmp(attr->name, "reset") == 0 && len > 0) {
274 pd->stats.pkt_started = 0;
275 pd->stats.pkt_ended = 0;
276 pd->stats.secs_w = 0;
277 pd->stats.secs_rg = 0;
278 pd->stats.secs_r = 0;
279
280 } else if (strcmp(attr->name, "congestion_off") == 0
281 && sscanf(data, "%d", &val) == 1) {
282 spin_lock(&pd->lock);
283 pd->write_congestion_off = val;
284 init_write_congestion_marks(&pd->write_congestion_off,
285 &pd->write_congestion_on);
286 spin_unlock(&pd->lock);
287
288 } else if (strcmp(attr->name, "congestion_on") == 0
289 && sscanf(data, "%d", &val) == 1) {
290 spin_lock(&pd->lock);
291 pd->write_congestion_on = val;
292 init_write_congestion_marks(&pd->write_congestion_off,
293 &pd->write_congestion_on);
294 spin_unlock(&pd->lock);
295 }
296 return len;
297}
298
299static const struct sysfs_ops kobj_pkt_ops = {
300 .show = kobj_pkt_show,
301 .store = kobj_pkt_store
302};
303static struct kobj_type kobj_pkt_type_stat = {
304 .release = pkt_kobj_release,
305 .sysfs_ops = &kobj_pkt_ops,
306 .default_attrs = kobj_pkt_attrs_stat
307};
308static struct kobj_type kobj_pkt_type_wqueue = {
309 .release = pkt_kobj_release,
310 .sysfs_ops = &kobj_pkt_ops,
311 .default_attrs = kobj_pkt_attrs_wqueue
312};
313
314static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
315{
316 if (class_pktcdvd) {
317 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
318 "%s", pd->name);
319 if (IS_ERR(pd->dev))
320 pd->dev = NULL;
321 }
322 if (pd->dev) {
323 pd->kobj_stat = pkt_kobj_create(pd, "stat",
324 &pd->dev->kobj,
325 &kobj_pkt_type_stat);
326 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
327 &pd->dev->kobj,
328 &kobj_pkt_type_wqueue);
329 }
330}
331
332static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
333{
334 pkt_kobj_remove(pd->kobj_stat);
335 pkt_kobj_remove(pd->kobj_wqueue);
336 if (class_pktcdvd)
337 device_unregister(pd->dev);
338}
339
340
341/********************************************************************
342 /sys/class/pktcdvd/
343 add map block device
344 remove unmap packet dev
345 device_map show mappings
346 *******************************************************************/
347
348static void class_pktcdvd_release(struct class *cls)
349{
350 kfree(cls);
351}
352
353static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
354 char *data)
355{
356 int n = 0;
357 int idx;
358 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
359 for (idx = 0; idx < MAX_WRITERS; idx++) {
360 struct pktcdvd_device *pd = pkt_devs[idx];
361 if (!pd)
362 continue;
363 n += sprintf(data+n, "%s %u:%u %u:%u\n",
364 pd->name,
365 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
366 MAJOR(pd->bdev->bd_dev),
367 MINOR(pd->bdev->bd_dev));
368 }
369 mutex_unlock(&ctl_mutex);
370 return n;
371}
372static CLASS_ATTR_RO(device_map);
373
374static ssize_t add_store(struct class *c, struct class_attribute *attr,
375 const char *buf, size_t count)
376{
377 unsigned int major, minor;
378
379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 /* pkt_setup_dev() expects caller to hold reference to self */
381 if (!try_module_get(THIS_MODULE))
382 return -ENODEV;
383
384 pkt_setup_dev(MKDEV(major, minor), NULL);
385
386 module_put(THIS_MODULE);
387
388 return count;
389 }
390
391 return -EINVAL;
392}
393static CLASS_ATTR_WO(add);
394
395static ssize_t remove_store(struct class *c, struct class_attribute *attr,
396 const char *buf, size_t count)
397{
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
402 }
403 return -EINVAL;
404}
405static CLASS_ATTR_WO(remove);
406
407static struct attribute *class_pktcdvd_attrs[] = {
408 &class_attr_add.attr,
409 &class_attr_remove.attr,
410 &class_attr_device_map.attr,
411 NULL,
412};
413ATTRIBUTE_GROUPS(class_pktcdvd);
414
415static int pkt_sysfs_init(void)
416{
417 int ret = 0;
418
419 /*
420 * create control files in sysfs
421 * /sys/class/pktcdvd/...
422 */
423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 if (!class_pktcdvd)
425 return -ENOMEM;
426 class_pktcdvd->name = DRIVER_NAME;
427 class_pktcdvd->owner = THIS_MODULE;
428 class_pktcdvd->class_release = class_pktcdvd_release;
429 class_pktcdvd->class_groups = class_pktcdvd_groups;
430 ret = class_register(class_pktcdvd);
431 if (ret) {
432 kfree(class_pktcdvd);
433 class_pktcdvd = NULL;
434 pr_err("failed to create class pktcdvd\n");
435 return ret;
436 }
437 return 0;
438}
439
440static void pkt_sysfs_cleanup(void)
441{
442 if (class_pktcdvd)
443 class_destroy(class_pktcdvd);
444 class_pktcdvd = NULL;
445}
446
447/********************************************************************
448 entries in debugfs
449
450 /sys/kernel/debug/pktcdvd[0-7]/
451 info
452
453 *******************************************************************/
454
455static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
456{
457 return pkt_seq_show(m, p);
458}
459
460static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
461{
462 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
463}
464
465static const struct file_operations debug_fops = {
466 .open = pkt_debugfs_fops_open,
467 .read = seq_read,
468 .llseek = seq_lseek,
469 .release = single_release,
470 .owner = THIS_MODULE,
471};
472
473static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
474{
475 if (!pkt_debugfs_root)
476 return;
477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 if (!pd->dfs_d_root)
479 return;
480
481 pd->dfs_f_info = debugfs_create_file("info", 0444,
482 pd->dfs_d_root, pd, &debug_fops);
483}
484
485static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
486{
487 if (!pkt_debugfs_root)
488 return;
489 debugfs_remove(pd->dfs_f_info);
490 debugfs_remove(pd->dfs_d_root);
491 pd->dfs_f_info = NULL;
492 pd->dfs_d_root = NULL;
493}
494
495static void pkt_debugfs_init(void)
496{
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498}
499
500static void pkt_debugfs_cleanup(void)
501{
502 debugfs_remove(pkt_debugfs_root);
503 pkt_debugfs_root = NULL;
504}
505
506/* ----------------------------------------------------------*/
507
508
509static void pkt_bio_finished(struct pktcdvd_device *pd)
510{
511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 pkt_dbg(2, pd, "queue empty\n");
514 atomic_set(&pd->iosched.attention, 1);
515 wake_up(&pd->wqueue);
516 }
517}
518
519/*
520 * Allocate a packet_data struct
521 */
522static struct packet_data *pkt_alloc_packet_data(int frames)
523{
524 int i;
525 struct packet_data *pkt;
526
527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 if (!pkt)
529 goto no_pkt;
530
531 pkt->frames = frames;
532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 if (!pkt->w_bio)
534 goto no_bio;
535
536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 if (!pkt->pages[i])
539 goto no_page;
540 }
541
542 spin_lock_init(&pkt->lock);
543 bio_list_init(&pkt->orig_bios);
544
545 for (i = 0; i < frames; i++) {
546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 if (!bio)
548 goto no_rd_bio;
549
550 pkt->r_bios[i] = bio;
551 }
552
553 return pkt;
554
555no_rd_bio:
556 for (i = 0; i < frames; i++) {
557 struct bio *bio = pkt->r_bios[i];
558 if (bio)
559 bio_put(bio);
560 }
561
562no_page:
563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 if (pkt->pages[i])
565 __free_page(pkt->pages[i]);
566 bio_put(pkt->w_bio);
567no_bio:
568 kfree(pkt);
569no_pkt:
570 return NULL;
571}
572
573/*
574 * Free a packet_data struct
575 */
576static void pkt_free_packet_data(struct packet_data *pkt)
577{
578 int i;
579
580 for (i = 0; i < pkt->frames; i++) {
581 struct bio *bio = pkt->r_bios[i];
582 if (bio)
583 bio_put(bio);
584 }
585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 __free_page(pkt->pages[i]);
587 bio_put(pkt->w_bio);
588 kfree(pkt);
589}
590
591static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
592{
593 struct packet_data *pkt, *next;
594
595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
596
597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 pkt_free_packet_data(pkt);
599 }
600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
601}
602
603static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
604{
605 struct packet_data *pkt;
606
607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
608
609 while (nr_packets > 0) {
610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 if (!pkt) {
612 pkt_shrink_pktlist(pd);
613 return 0;
614 }
615 pkt->id = nr_packets;
616 pkt->pd = pd;
617 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 nr_packets--;
619 }
620 return 1;
621}
622
623static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
624{
625 struct rb_node *n = rb_next(&node->rb_node);
626 if (!n)
627 return NULL;
628 return rb_entry(n, struct pkt_rb_node, rb_node);
629}
630
631static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
632{
633 rb_erase(&node->rb_node, &pd->bio_queue);
634 mempool_free(node, &pd->rb_pool);
635 pd->bio_queue_size--;
636 BUG_ON(pd->bio_queue_size < 0);
637}
638
639/*
640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
641 */
642static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
643{
644 struct rb_node *n = pd->bio_queue.rb_node;
645 struct rb_node *next;
646 struct pkt_rb_node *tmp;
647
648 if (!n) {
649 BUG_ON(pd->bio_queue_size > 0);
650 return NULL;
651 }
652
653 for (;;) {
654 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 if (s <= tmp->bio->bi_iter.bi_sector)
656 next = n->rb_left;
657 else
658 next = n->rb_right;
659 if (!next)
660 break;
661 n = next;
662 }
663
664 if (s > tmp->bio->bi_iter.bi_sector) {
665 tmp = pkt_rbtree_next(tmp);
666 if (!tmp)
667 return NULL;
668 }
669 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 return tmp;
671}
672
673/*
674 * Insert a node into the pd->bio_queue rb tree.
675 */
676static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
677{
678 struct rb_node **p = &pd->bio_queue.rb_node;
679 struct rb_node *parent = NULL;
680 sector_t s = node->bio->bi_iter.bi_sector;
681 struct pkt_rb_node *tmp;
682
683 while (*p) {
684 parent = *p;
685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 if (s < tmp->bio->bi_iter.bi_sector)
687 p = &(*p)->rb_left;
688 else
689 p = &(*p)->rb_right;
690 }
691 rb_link_node(&node->rb_node, parent, p);
692 rb_insert_color(&node->rb_node, &pd->bio_queue);
693 pd->bio_queue_size++;
694}
695
696/*
697 * Send a packet_command to the underlying block device and
698 * wait for completion.
699 */
700static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
701{
702 struct request_queue *q = bdev_get_queue(pd->bdev);
703 struct request *rq;
704 int ret = 0;
705
706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, 0);
708 if (IS_ERR(rq))
709 return PTR_ERR(rq);
710
711 if (cgc->buflen) {
712 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 GFP_NOIO);
714 if (ret)
715 goto out;
716 }
717
718 scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
720
721 rq->timeout = 60*HZ;
722 if (cgc->quiet)
723 rq->rq_flags |= RQF_QUIET;
724
725 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
726 if (scsi_req(rq)->result)
727 ret = -EIO;
728out:
729 blk_put_request(rq);
730 return ret;
731}
732
733static const char *sense_key_string(__u8 index)
734{
735 static const char * const info[] = {
736 "No sense", "Recovered error", "Not ready",
737 "Medium error", "Hardware error", "Illegal request",
738 "Unit attention", "Data protect", "Blank check",
739 };
740
741 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
742}
743
744/*
745 * A generic sense dump / resolve mechanism should be implemented across
746 * all ATAPI + SCSI devices.
747 */
748static void pkt_dump_sense(struct pktcdvd_device *pd,
749 struct packet_command *cgc)
750{
751 struct scsi_sense_hdr *sshdr = cgc->sshdr;
752
753 if (sshdr)
754 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 CDROM_PACKET_SIZE, cgc->cmd,
756 sshdr->sense_key, sshdr->asc, sshdr->ascq,
757 sense_key_string(sshdr->sense_key));
758 else
759 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
760}
761
762/*
763 * flush the drive cache to media
764 */
765static int pkt_flush_cache(struct pktcdvd_device *pd)
766{
767 struct packet_command cgc;
768
769 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 cgc.quiet = 1;
772
773 /*
774 * the IMMED bit -- we default to not setting it, although that
775 * would allow a much faster close, this is safer
776 */
777#if 0
778 cgc.cmd[1] = 1 << 1;
779#endif
780 return pkt_generic_packet(pd, &cgc);
781}
782
783/*
784 * speed is given as the normal factor, e.g. 4 for 4x
785 */
786static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 unsigned write_speed, unsigned read_speed)
788{
789 struct packet_command cgc;
790 struct scsi_sense_hdr sshdr;
791 int ret;
792
793 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 cgc.sshdr = &sshdr;
795 cgc.cmd[0] = GPCMD_SET_SPEED;
796 cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 cgc.cmd[3] = read_speed & 0xff;
798 cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 cgc.cmd[5] = write_speed & 0xff;
800
801 ret = pkt_generic_packet(pd, &cgc);
802 if (ret)
803 pkt_dump_sense(pd, &cgc);
804
805 return ret;
806}
807
808/*
809 * Queue a bio for processing by the low-level CD device. Must be called
810 * from process context.
811 */
812static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
813{
814 spin_lock(&pd->iosched.lock);
815 if (bio_data_dir(bio) == READ)
816 bio_list_add(&pd->iosched.read_queue, bio);
817 else
818 bio_list_add(&pd->iosched.write_queue, bio);
819 spin_unlock(&pd->iosched.lock);
820
821 atomic_set(&pd->iosched.attention, 1);
822 wake_up(&pd->wqueue);
823}
824
825/*
826 * Process the queued read/write requests. This function handles special
827 * requirements for CDRW drives:
828 * - A cache flush command must be inserted before a read request if the
829 * previous request was a write.
830 * - Switching between reading and writing is slow, so don't do it more often
831 * than necessary.
832 * - Optimize for throughput at the expense of latency. This means that streaming
833 * writes will never be interrupted by a read, but if the drive has to seek
834 * before the next write, switch to reading instead if there are any pending
835 * read requests.
836 * - Set the read speed according to current usage pattern. When only reading
837 * from the device, it's best to use the highest possible read speed, but
838 * when switching often between reading and writing, it's better to have the
839 * same read and write speeds.
840 */
841static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
842{
843
844 if (atomic_read(&pd->iosched.attention) == 0)
845 return;
846 atomic_set(&pd->iosched.attention, 0);
847
848 for (;;) {
849 struct bio *bio;
850 int reads_queued, writes_queued;
851
852 spin_lock(&pd->iosched.lock);
853 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 spin_unlock(&pd->iosched.lock);
856
857 if (!reads_queued && !writes_queued)
858 break;
859
860 if (pd->iosched.writing) {
861 int need_write_seek = 1;
862 spin_lock(&pd->iosched.lock);
863 bio = bio_list_peek(&pd->iosched.write_queue);
864 spin_unlock(&pd->iosched.lock);
865 if (bio && (bio->bi_iter.bi_sector ==
866 pd->iosched.last_write))
867 need_write_seek = 0;
868 if (need_write_seek && reads_queued) {
869 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
870 pkt_dbg(2, pd, "write, waiting\n");
871 break;
872 }
873 pkt_flush_cache(pd);
874 pd->iosched.writing = 0;
875 }
876 } else {
877 if (!reads_queued && writes_queued) {
878 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
879 pkt_dbg(2, pd, "read, waiting\n");
880 break;
881 }
882 pd->iosched.writing = 1;
883 }
884 }
885
886 spin_lock(&pd->iosched.lock);
887 if (pd->iosched.writing)
888 bio = bio_list_pop(&pd->iosched.write_queue);
889 else
890 bio = bio_list_pop(&pd->iosched.read_queue);
891 spin_unlock(&pd->iosched.lock);
892
893 if (!bio)
894 continue;
895
896 if (bio_data_dir(bio) == READ)
897 pd->iosched.successive_reads +=
898 bio->bi_iter.bi_size >> 10;
899 else {
900 pd->iosched.successive_reads = 0;
901 pd->iosched.last_write = bio_end_sector(bio);
902 }
903 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
904 if (pd->read_speed == pd->write_speed) {
905 pd->read_speed = MAX_SPEED;
906 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 }
908 } else {
909 if (pd->read_speed != pd->write_speed) {
910 pd->read_speed = pd->write_speed;
911 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
912 }
913 }
914
915 atomic_inc(&pd->cdrw.pending_bios);
916 submit_bio_noacct(bio);
917 }
918}
919
920/*
921 * Special care is needed if the underlying block device has a small
922 * max_phys_segments value.
923 */
924static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
925{
926 if ((pd->settings.size << 9) / CD_FRAMESIZE
927 <= queue_max_segments(q)) {
928 /*
929 * The cdrom device can handle one segment/frame
930 */
931 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
932 return 0;
933 } else if ((pd->settings.size << 9) / PAGE_SIZE
934 <= queue_max_segments(q)) {
935 /*
936 * We can handle this case at the expense of some extra memory
937 * copies during write operations
938 */
939 set_bit(PACKET_MERGE_SEGS, &pd->flags);
940 return 0;
941 } else {
942 pkt_err(pd, "cdrom max_phys_segments too small\n");
943 return -EIO;
944 }
945}
946
947static void pkt_end_io_read(struct bio *bio)
948{
949 struct packet_data *pkt = bio->bi_private;
950 struct pktcdvd_device *pd = pkt->pd;
951 BUG_ON(!pd);
952
953 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
954 bio, (unsigned long long)pkt->sector,
955 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
956
957 if (bio->bi_status)
958 atomic_inc(&pkt->io_errors);
959 if (atomic_dec_and_test(&pkt->io_wait)) {
960 atomic_inc(&pkt->run_sm);
961 wake_up(&pd->wqueue);
962 }
963 pkt_bio_finished(pd);
964}
965
966static void pkt_end_io_packet_write(struct bio *bio)
967{
968 struct packet_data *pkt = bio->bi_private;
969 struct pktcdvd_device *pd = pkt->pd;
970 BUG_ON(!pd);
971
972 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
973
974 pd->stats.pkt_ended++;
975
976 pkt_bio_finished(pd);
977 atomic_dec(&pkt->io_wait);
978 atomic_inc(&pkt->run_sm);
979 wake_up(&pd->wqueue);
980}
981
982/*
983 * Schedule reads for the holes in a packet
984 */
985static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
986{
987 int frames_read = 0;
988 struct bio *bio;
989 int f;
990 char written[PACKET_MAX_SIZE];
991
992 BUG_ON(bio_list_empty(&pkt->orig_bios));
993
994 atomic_set(&pkt->io_wait, 0);
995 atomic_set(&pkt->io_errors, 0);
996
997 /*
998 * Figure out which frames we need to read before we can write.
999 */
1000 memset(written, 0, sizeof(written));
1001 spin_lock(&pkt->lock);
1002 bio_list_for_each(bio, &pkt->orig_bios) {
1003 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1004 (CD_FRAMESIZE >> 9);
1005 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1006 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1007 BUG_ON(first_frame < 0);
1008 BUG_ON(first_frame + num_frames > pkt->frames);
1009 for (f = first_frame; f < first_frame + num_frames; f++)
1010 written[f] = 1;
1011 }
1012 spin_unlock(&pkt->lock);
1013
1014 if (pkt->cache_valid) {
1015 pkt_dbg(2, pd, "zone %llx cached\n",
1016 (unsigned long long)pkt->sector);
1017 goto out_account;
1018 }
1019
1020 /*
1021 * Schedule reads for missing parts of the packet.
1022 */
1023 for (f = 0; f < pkt->frames; f++) {
1024 int p, offset;
1025
1026 if (written[f])
1027 continue;
1028
1029 bio = pkt->r_bios[f];
1030 bio_reset(bio);
1031 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1032 bio_set_dev(bio, pd->bdev);
1033 bio->bi_end_io = pkt_end_io_read;
1034 bio->bi_private = pkt;
1035
1036 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1037 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1038 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1039 f, pkt->pages[p], offset);
1040 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1041 BUG();
1042
1043 atomic_inc(&pkt->io_wait);
1044 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1045 pkt_queue_bio(pd, bio);
1046 frames_read++;
1047 }
1048
1049out_account:
1050 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1051 frames_read, (unsigned long long)pkt->sector);
1052 pd->stats.pkt_started++;
1053 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1054}
1055
1056/*
1057 * Find a packet matching zone, or the least recently used packet if
1058 * there is no match.
1059 */
1060static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1061{
1062 struct packet_data *pkt;
1063
1064 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1065 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1066 list_del_init(&pkt->list);
1067 if (pkt->sector != zone)
1068 pkt->cache_valid = 0;
1069 return pkt;
1070 }
1071 }
1072 BUG();
1073 return NULL;
1074}
1075
1076static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
1078 if (pkt->cache_valid) {
1079 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1080 } else {
1081 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1082 }
1083}
1084
1085/*
1086 * recover a failed write, query for relocation if possible
1087 *
1088 * returns 1 if recovery is possible, or 0 if not
1089 *
1090 */
1091static int pkt_start_recovery(struct packet_data *pkt)
1092{
1093 /*
1094 * FIXME. We need help from the file system to implement
1095 * recovery handling.
1096 */
1097 return 0;
1098#if 0
1099 struct request *rq = pkt->rq;
1100 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1101 struct block_device *pkt_bdev;
1102 struct super_block *sb = NULL;
1103 unsigned long old_block, new_block;
1104 sector_t new_sector;
1105
1106 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1107 if (pkt_bdev) {
1108 sb = get_super(pkt_bdev);
1109 bdput(pkt_bdev);
1110 }
1111
1112 if (!sb)
1113 return 0;
1114
1115 if (!sb->s_op->relocate_blocks)
1116 goto out;
1117
1118 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1119 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1120 goto out;
1121
1122 new_sector = new_block * (CD_FRAMESIZE >> 9);
1123 pkt->sector = new_sector;
1124
1125 bio_reset(pkt->bio);
1126 bio_set_dev(pkt->bio, pd->bdev);
1127 bio_set_op_attrs(pkt->bio, REQ_OP_WRITE, 0);
1128 pkt->bio->bi_iter.bi_sector = new_sector;
1129 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1130 pkt->bio->bi_vcnt = pkt->frames;
1131
1132 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1133 pkt->bio->bi_private = pkt;
1134
1135 drop_super(sb);
1136 return 1;
1137
1138out:
1139 drop_super(sb);
1140 return 0;
1141#endif
1142}
1143
1144static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1145{
1146#if PACKET_DEBUG > 1
1147 static const char *state_name[] = {
1148 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1149 };
1150 enum packet_data_state old_state = pkt->state;
1151 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1152 pkt->id, (unsigned long long)pkt->sector,
1153 state_name[old_state], state_name[state]);
1154#endif
1155 pkt->state = state;
1156}
1157
1158/*
1159 * Scan the work queue to see if we can start a new packet.
1160 * returns non-zero if any work was done.
1161 */
1162static int pkt_handle_queue(struct pktcdvd_device *pd)
1163{
1164 struct packet_data *pkt, *p;
1165 struct bio *bio = NULL;
1166 sector_t zone = 0; /* Suppress gcc warning */
1167 struct pkt_rb_node *node, *first_node;
1168 struct rb_node *n;
1169 int wakeup;
1170
1171 atomic_set(&pd->scan_queue, 0);
1172
1173 if (list_empty(&pd->cdrw.pkt_free_list)) {
1174 pkt_dbg(2, pd, "no pkt\n");
1175 return 0;
1176 }
1177
1178 /*
1179 * Try to find a zone we are not already working on.
1180 */
1181 spin_lock(&pd->lock);
1182 first_node = pkt_rbtree_find(pd, pd->current_sector);
1183 if (!first_node) {
1184 n = rb_first(&pd->bio_queue);
1185 if (n)
1186 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1187 }
1188 node = first_node;
1189 while (node) {
1190 bio = node->bio;
1191 zone = get_zone(bio->bi_iter.bi_sector, pd);
1192 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1193 if (p->sector == zone) {
1194 bio = NULL;
1195 goto try_next_bio;
1196 }
1197 }
1198 break;
1199try_next_bio:
1200 node = pkt_rbtree_next(node);
1201 if (!node) {
1202 n = rb_first(&pd->bio_queue);
1203 if (n)
1204 node = rb_entry(n, struct pkt_rb_node, rb_node);
1205 }
1206 if (node == first_node)
1207 node = NULL;
1208 }
1209 spin_unlock(&pd->lock);
1210 if (!bio) {
1211 pkt_dbg(2, pd, "no bio\n");
1212 return 0;
1213 }
1214
1215 pkt = pkt_get_packet_data(pd, zone);
1216
1217 pd->current_sector = zone + pd->settings.size;
1218 pkt->sector = zone;
1219 BUG_ON(pkt->frames != pd->settings.size >> 2);
1220 pkt->write_size = 0;
1221
1222 /*
1223 * Scan work queue for bios in the same zone and link them
1224 * to this packet.
1225 */
1226 spin_lock(&pd->lock);
1227 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1228 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1229 bio = node->bio;
1230 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1231 get_zone(bio->bi_iter.bi_sector, pd));
1232 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1233 break;
1234 pkt_rbtree_erase(pd, node);
1235 spin_lock(&pkt->lock);
1236 bio_list_add(&pkt->orig_bios, bio);
1237 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1238 spin_unlock(&pkt->lock);
1239 }
1240 /* check write congestion marks, and if bio_queue_size is
1241 below, wake up any waiters */
1242 wakeup = (pd->write_congestion_on > 0
1243 && pd->bio_queue_size <= pd->write_congestion_off);
1244 spin_unlock(&pd->lock);
1245 if (wakeup) {
1246 clear_bdi_congested(pd->disk->queue->backing_dev_info,
1247 BLK_RW_ASYNC);
1248 }
1249
1250 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1251 pkt_set_state(pkt, PACKET_WAITING_STATE);
1252 atomic_set(&pkt->run_sm, 1);
1253
1254 spin_lock(&pd->cdrw.active_list_lock);
1255 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1256 spin_unlock(&pd->cdrw.active_list_lock);
1257
1258 return 1;
1259}
1260
1261/*
1262 * Assemble a bio to write one packet and queue the bio for processing
1263 * by the underlying block device.
1264 */
1265static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1266{
1267 int f;
1268
1269 bio_reset(pkt->w_bio);
1270 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1271 bio_set_dev(pkt->w_bio, pd->bdev);
1272 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1273 pkt->w_bio->bi_private = pkt;
1274
1275 /* XXX: locking? */
1276 for (f = 0; f < pkt->frames; f++) {
1277 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1278 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1279
1280 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1281 BUG();
1282 }
1283 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1284
1285 /*
1286 * Fill-in bvec with data from orig_bios.
1287 */
1288 spin_lock(&pkt->lock);
1289 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1290
1291 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1292 spin_unlock(&pkt->lock);
1293
1294 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1295 pkt->write_size, (unsigned long long)pkt->sector);
1296
1297 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1298 pkt->cache_valid = 1;
1299 else
1300 pkt->cache_valid = 0;
1301
1302 /* Start the write request */
1303 atomic_set(&pkt->io_wait, 1);
1304 bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1305 pkt_queue_bio(pd, pkt->w_bio);
1306}
1307
1308static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1309{
1310 struct bio *bio;
1311
1312 if (status)
1313 pkt->cache_valid = 0;
1314
1315 /* Finish all bios corresponding to this packet */
1316 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1317 bio->bi_status = status;
1318 bio_endio(bio);
1319 }
1320}
1321
1322static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1323{
1324 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1325
1326 for (;;) {
1327 switch (pkt->state) {
1328 case PACKET_WAITING_STATE:
1329 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1330 return;
1331
1332 pkt->sleep_time = 0;
1333 pkt_gather_data(pd, pkt);
1334 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1335 break;
1336
1337 case PACKET_READ_WAIT_STATE:
1338 if (atomic_read(&pkt->io_wait) > 0)
1339 return;
1340
1341 if (atomic_read(&pkt->io_errors) > 0) {
1342 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1343 } else {
1344 pkt_start_write(pd, pkt);
1345 }
1346 break;
1347
1348 case PACKET_WRITE_WAIT_STATE:
1349 if (atomic_read(&pkt->io_wait) > 0)
1350 return;
1351
1352 if (!pkt->w_bio->bi_status) {
1353 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1354 } else {
1355 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1356 }
1357 break;
1358
1359 case PACKET_RECOVERY_STATE:
1360 if (pkt_start_recovery(pkt)) {
1361 pkt_start_write(pd, pkt);
1362 } else {
1363 pkt_dbg(2, pd, "No recovery possible\n");
1364 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1365 }
1366 break;
1367
1368 case PACKET_FINISHED_STATE:
1369 pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1370 return;
1371
1372 default:
1373 BUG();
1374 break;
1375 }
1376 }
1377}
1378
1379static void pkt_handle_packets(struct pktcdvd_device *pd)
1380{
1381 struct packet_data *pkt, *next;
1382
1383 /*
1384 * Run state machine for active packets
1385 */
1386 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1387 if (atomic_read(&pkt->run_sm) > 0) {
1388 atomic_set(&pkt->run_sm, 0);
1389 pkt_run_state_machine(pd, pkt);
1390 }
1391 }
1392
1393 /*
1394 * Move no longer active packets to the free list
1395 */
1396 spin_lock(&pd->cdrw.active_list_lock);
1397 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1398 if (pkt->state == PACKET_FINISHED_STATE) {
1399 list_del(&pkt->list);
1400 pkt_put_packet_data(pd, pkt);
1401 pkt_set_state(pkt, PACKET_IDLE_STATE);
1402 atomic_set(&pd->scan_queue, 1);
1403 }
1404 }
1405 spin_unlock(&pd->cdrw.active_list_lock);
1406}
1407
1408static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1409{
1410 struct packet_data *pkt;
1411 int i;
1412
1413 for (i = 0; i < PACKET_NUM_STATES; i++)
1414 states[i] = 0;
1415
1416 spin_lock(&pd->cdrw.active_list_lock);
1417 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1418 states[pkt->state]++;
1419 }
1420 spin_unlock(&pd->cdrw.active_list_lock);
1421}
1422
1423/*
1424 * kcdrwd is woken up when writes have been queued for one of our
1425 * registered devices
1426 */
1427static int kcdrwd(void *foobar)
1428{
1429 struct pktcdvd_device *pd = foobar;
1430 struct packet_data *pkt;
1431 long min_sleep_time, residue;
1432
1433 set_user_nice(current, MIN_NICE);
1434 set_freezable();
1435
1436 for (;;) {
1437 DECLARE_WAITQUEUE(wait, current);
1438
1439 /*
1440 * Wait until there is something to do
1441 */
1442 add_wait_queue(&pd->wqueue, &wait);
1443 for (;;) {
1444 set_current_state(TASK_INTERRUPTIBLE);
1445
1446 /* Check if we need to run pkt_handle_queue */
1447 if (atomic_read(&pd->scan_queue) > 0)
1448 goto work_to_do;
1449
1450 /* Check if we need to run the state machine for some packet */
1451 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1452 if (atomic_read(&pkt->run_sm) > 0)
1453 goto work_to_do;
1454 }
1455
1456 /* Check if we need to process the iosched queues */
1457 if (atomic_read(&pd->iosched.attention) != 0)
1458 goto work_to_do;
1459
1460 /* Otherwise, go to sleep */
1461 if (PACKET_DEBUG > 1) {
1462 int states[PACKET_NUM_STATES];
1463 pkt_count_states(pd, states);
1464 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1465 states[0], states[1], states[2],
1466 states[3], states[4], states[5]);
1467 }
1468
1469 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1470 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1471 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1472 min_sleep_time = pkt->sleep_time;
1473 }
1474
1475 pkt_dbg(2, pd, "sleeping\n");
1476 residue = schedule_timeout(min_sleep_time);
1477 pkt_dbg(2, pd, "wake up\n");
1478
1479 /* make swsusp happy with our thread */
1480 try_to_freeze();
1481
1482 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1483 if (!pkt->sleep_time)
1484 continue;
1485 pkt->sleep_time -= min_sleep_time - residue;
1486 if (pkt->sleep_time <= 0) {
1487 pkt->sleep_time = 0;
1488 atomic_inc(&pkt->run_sm);
1489 }
1490 }
1491
1492 if (kthread_should_stop())
1493 break;
1494 }
1495work_to_do:
1496 set_current_state(TASK_RUNNING);
1497 remove_wait_queue(&pd->wqueue, &wait);
1498
1499 if (kthread_should_stop())
1500 break;
1501
1502 /*
1503 * if pkt_handle_queue returns true, we can queue
1504 * another request.
1505 */
1506 while (pkt_handle_queue(pd))
1507 ;
1508
1509 /*
1510 * Handle packet state machine
1511 */
1512 pkt_handle_packets(pd);
1513
1514 /*
1515 * Handle iosched queues
1516 */
1517 pkt_iosched_process_queue(pd);
1518 }
1519
1520 return 0;
1521}
1522
1523static void pkt_print_settings(struct pktcdvd_device *pd)
1524{
1525 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1526 pd->settings.fp ? "Fixed" : "Variable",
1527 pd->settings.size >> 2,
1528 pd->settings.block_mode == 8 ? '1' : '2');
1529}
1530
1531static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1532{
1533 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1534
1535 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1536 cgc->cmd[2] = page_code | (page_control << 6);
1537 cgc->cmd[7] = cgc->buflen >> 8;
1538 cgc->cmd[8] = cgc->buflen & 0xff;
1539 cgc->data_direction = CGC_DATA_READ;
1540 return pkt_generic_packet(pd, cgc);
1541}
1542
1543static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1544{
1545 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1546 memset(cgc->buffer, 0, 2);
1547 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1548 cgc->cmd[1] = 0x10; /* PF */
1549 cgc->cmd[7] = cgc->buflen >> 8;
1550 cgc->cmd[8] = cgc->buflen & 0xff;
1551 cgc->data_direction = CGC_DATA_WRITE;
1552 return pkt_generic_packet(pd, cgc);
1553}
1554
1555static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1556{
1557 struct packet_command cgc;
1558 int ret;
1559
1560 /* set up command and get the disc info */
1561 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1562 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1563 cgc.cmd[8] = cgc.buflen = 2;
1564 cgc.quiet = 1;
1565
1566 ret = pkt_generic_packet(pd, &cgc);
1567 if (ret)
1568 return ret;
1569
1570 /* not all drives have the same disc_info length, so requeue
1571 * packet with the length the drive tells us it can supply
1572 */
1573 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1574 sizeof(di->disc_information_length);
1575
1576 if (cgc.buflen > sizeof(disc_information))
1577 cgc.buflen = sizeof(disc_information);
1578
1579 cgc.cmd[8] = cgc.buflen;
1580 return pkt_generic_packet(pd, &cgc);
1581}
1582
1583static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1584{
1585 struct packet_command cgc;
1586 int ret;
1587
1588 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1589 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1590 cgc.cmd[1] = type & 3;
1591 cgc.cmd[4] = (track & 0xff00) >> 8;
1592 cgc.cmd[5] = track & 0xff;
1593 cgc.cmd[8] = 8;
1594 cgc.quiet = 1;
1595
1596 ret = pkt_generic_packet(pd, &cgc);
1597 if (ret)
1598 return ret;
1599
1600 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1601 sizeof(ti->track_information_length);
1602
1603 if (cgc.buflen > sizeof(track_information))
1604 cgc.buflen = sizeof(track_information);
1605
1606 cgc.cmd[8] = cgc.buflen;
1607 return pkt_generic_packet(pd, &cgc);
1608}
1609
1610static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1611 long *last_written)
1612{
1613 disc_information di;
1614 track_information ti;
1615 __u32 last_track;
1616 int ret;
1617
1618 ret = pkt_get_disc_info(pd, &di);
1619 if (ret)
1620 return ret;
1621
1622 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1623 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1624 if (ret)
1625 return ret;
1626
1627 /* if this track is blank, try the previous. */
1628 if (ti.blank) {
1629 last_track--;
1630 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1631 if (ret)
1632 return ret;
1633 }
1634
1635 /* if last recorded field is valid, return it. */
1636 if (ti.lra_v) {
1637 *last_written = be32_to_cpu(ti.last_rec_address);
1638 } else {
1639 /* make it up instead */
1640 *last_written = be32_to_cpu(ti.track_start) +
1641 be32_to_cpu(ti.track_size);
1642 if (ti.free_blocks)
1643 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1644 }
1645 return 0;
1646}
1647
1648/*
1649 * write mode select package based on pd->settings
1650 */
1651static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1652{
1653 struct packet_command cgc;
1654 struct scsi_sense_hdr sshdr;
1655 write_param_page *wp;
1656 char buffer[128];
1657 int ret, size;
1658
1659 /* doesn't apply to DVD+RW or DVD-RAM */
1660 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1661 return 0;
1662
1663 memset(buffer, 0, sizeof(buffer));
1664 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1665 cgc.sshdr = &sshdr;
1666 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1667 if (ret) {
1668 pkt_dump_sense(pd, &cgc);
1669 return ret;
1670 }
1671
1672 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1673 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1674 if (size > sizeof(buffer))
1675 size = sizeof(buffer);
1676
1677 /*
1678 * now get it all
1679 */
1680 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1681 cgc.sshdr = &sshdr;
1682 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1683 if (ret) {
1684 pkt_dump_sense(pd, &cgc);
1685 return ret;
1686 }
1687
1688 /*
1689 * write page is offset header + block descriptor length
1690 */
1691 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1692
1693 wp->fp = pd->settings.fp;
1694 wp->track_mode = pd->settings.track_mode;
1695 wp->write_type = pd->settings.write_type;
1696 wp->data_block_type = pd->settings.block_mode;
1697
1698 wp->multi_session = 0;
1699
1700#ifdef PACKET_USE_LS
1701 wp->link_size = 7;
1702 wp->ls_v = 1;
1703#endif
1704
1705 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1706 wp->session_format = 0;
1707 wp->subhdr2 = 0x20;
1708 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1709 wp->session_format = 0x20;
1710 wp->subhdr2 = 8;
1711#if 0
1712 wp->mcn[0] = 0x80;
1713 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1714#endif
1715 } else {
1716 /*
1717 * paranoia
1718 */
1719 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1720 return 1;
1721 }
1722 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1723
1724 cgc.buflen = cgc.cmd[8] = size;
1725 ret = pkt_mode_select(pd, &cgc);
1726 if (ret) {
1727 pkt_dump_sense(pd, &cgc);
1728 return ret;
1729 }
1730
1731 pkt_print_settings(pd);
1732 return 0;
1733}
1734
1735/*
1736 * 1 -- we can write to this track, 0 -- we can't
1737 */
1738static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1739{
1740 switch (pd->mmc3_profile) {
1741 case 0x1a: /* DVD+RW */
1742 case 0x12: /* DVD-RAM */
1743 /* The track is always writable on DVD+RW/DVD-RAM */
1744 return 1;
1745 default:
1746 break;
1747 }
1748
1749 if (!ti->packet || !ti->fp)
1750 return 0;
1751
1752 /*
1753 * "good" settings as per Mt Fuji.
1754 */
1755 if (ti->rt == 0 && ti->blank == 0)
1756 return 1;
1757
1758 if (ti->rt == 0 && ti->blank == 1)
1759 return 1;
1760
1761 if (ti->rt == 1 && ti->blank == 0)
1762 return 1;
1763
1764 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1765 return 0;
1766}
1767
1768/*
1769 * 1 -- we can write to this disc, 0 -- we can't
1770 */
1771static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1772{
1773 switch (pd->mmc3_profile) {
1774 case 0x0a: /* CD-RW */
1775 case 0xffff: /* MMC3 not supported */
1776 break;
1777 case 0x1a: /* DVD+RW */
1778 case 0x13: /* DVD-RW */
1779 case 0x12: /* DVD-RAM */
1780 return 1;
1781 default:
1782 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1783 pd->mmc3_profile);
1784 return 0;
1785 }
1786
1787 /*
1788 * for disc type 0xff we should probably reserve a new track.
1789 * but i'm not sure, should we leave this to user apps? probably.
1790 */
1791 if (di->disc_type == 0xff) {
1792 pkt_notice(pd, "unknown disc - no track?\n");
1793 return 0;
1794 }
1795
1796 if (di->disc_type != 0x20 && di->disc_type != 0) {
1797 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1798 return 0;
1799 }
1800
1801 if (di->erasable == 0) {
1802 pkt_notice(pd, "disc not erasable\n");
1803 return 0;
1804 }
1805
1806 if (di->border_status == PACKET_SESSION_RESERVED) {
1807 pkt_err(pd, "can't write to last track (reserved)\n");
1808 return 0;
1809 }
1810
1811 return 1;
1812}
1813
1814static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1815{
1816 struct packet_command cgc;
1817 unsigned char buf[12];
1818 disc_information di;
1819 track_information ti;
1820 int ret, track;
1821
1822 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1823 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1824 cgc.cmd[8] = 8;
1825 ret = pkt_generic_packet(pd, &cgc);
1826 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1827
1828 memset(&di, 0, sizeof(disc_information));
1829 memset(&ti, 0, sizeof(track_information));
1830
1831 ret = pkt_get_disc_info(pd, &di);
1832 if (ret) {
1833 pkt_err(pd, "failed get_disc\n");
1834 return ret;
1835 }
1836
1837 if (!pkt_writable_disc(pd, &di))
1838 return -EROFS;
1839
1840 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1841
1842 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1843 ret = pkt_get_track_info(pd, track, 1, &ti);
1844 if (ret) {
1845 pkt_err(pd, "failed get_track\n");
1846 return ret;
1847 }
1848
1849 if (!pkt_writable_track(pd, &ti)) {
1850 pkt_err(pd, "can't write to this track\n");
1851 return -EROFS;
1852 }
1853
1854 /*
1855 * we keep packet size in 512 byte units, makes it easier to
1856 * deal with request calculations.
1857 */
1858 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1859 if (pd->settings.size == 0) {
1860 pkt_notice(pd, "detected zero packet size!\n");
1861 return -ENXIO;
1862 }
1863 if (pd->settings.size > PACKET_MAX_SECTORS) {
1864 pkt_err(pd, "packet size is too big\n");
1865 return -EROFS;
1866 }
1867 pd->settings.fp = ti.fp;
1868 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1869
1870 if (ti.nwa_v) {
1871 pd->nwa = be32_to_cpu(ti.next_writable);
1872 set_bit(PACKET_NWA_VALID, &pd->flags);
1873 }
1874
1875 /*
1876 * in theory we could use lra on -RW media as well and just zero
1877 * blocks that haven't been written yet, but in practice that
1878 * is just a no-go. we'll use that for -R, naturally.
1879 */
1880 if (ti.lra_v) {
1881 pd->lra = be32_to_cpu(ti.last_rec_address);
1882 set_bit(PACKET_LRA_VALID, &pd->flags);
1883 } else {
1884 pd->lra = 0xffffffff;
1885 set_bit(PACKET_LRA_VALID, &pd->flags);
1886 }
1887
1888 /*
1889 * fine for now
1890 */
1891 pd->settings.link_loss = 7;
1892 pd->settings.write_type = 0; /* packet */
1893 pd->settings.track_mode = ti.track_mode;
1894
1895 /*
1896 * mode1 or mode2 disc
1897 */
1898 switch (ti.data_mode) {
1899 case PACKET_MODE1:
1900 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1901 break;
1902 case PACKET_MODE2:
1903 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1904 break;
1905 default:
1906 pkt_err(pd, "unknown data mode\n");
1907 return -EROFS;
1908 }
1909 return 0;
1910}
1911
1912/*
1913 * enable/disable write caching on drive
1914 */
1915static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1916 int set)
1917{
1918 struct packet_command cgc;
1919 struct scsi_sense_hdr sshdr;
1920 unsigned char buf[64];
1921 int ret;
1922
1923 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1924 cgc.sshdr = &sshdr;
1925 cgc.buflen = pd->mode_offset + 12;
1926
1927 /*
1928 * caching mode page might not be there, so quiet this command
1929 */
1930 cgc.quiet = 1;
1931
1932 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1933 if (ret)
1934 return ret;
1935
1936 buf[pd->mode_offset + 10] |= (!!set << 2);
1937
1938 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1939 ret = pkt_mode_select(pd, &cgc);
1940 if (ret) {
1941 pkt_err(pd, "write caching control failed\n");
1942 pkt_dump_sense(pd, &cgc);
1943 } else if (!ret && set)
1944 pkt_notice(pd, "enabled write caching\n");
1945 return ret;
1946}
1947
1948static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1949{
1950 struct packet_command cgc;
1951
1952 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1953 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1954 cgc.cmd[4] = lockflag ? 1 : 0;
1955 return pkt_generic_packet(pd, &cgc);
1956}
1957
1958/*
1959 * Returns drive maximum write speed
1960 */
1961static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1962 unsigned *write_speed)
1963{
1964 struct packet_command cgc;
1965 struct scsi_sense_hdr sshdr;
1966 unsigned char buf[256+18];
1967 unsigned char *cap_buf;
1968 int ret, offset;
1969
1970 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1971 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1972 cgc.sshdr = &sshdr;
1973
1974 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1975 if (ret) {
1976 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1977 sizeof(struct mode_page_header);
1978 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1979 if (ret) {
1980 pkt_dump_sense(pd, &cgc);
1981 return ret;
1982 }
1983 }
1984
1985 offset = 20; /* Obsoleted field, used by older drives */
1986 if (cap_buf[1] >= 28)
1987 offset = 28; /* Current write speed selected */
1988 if (cap_buf[1] >= 30) {
1989 /* If the drive reports at least one "Logical Unit Write
1990 * Speed Performance Descriptor Block", use the information
1991 * in the first block. (contains the highest speed)
1992 */
1993 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1994 if (num_spdb > 0)
1995 offset = 34;
1996 }
1997
1998 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1999 return 0;
2000}
2001
2002/* These tables from cdrecord - I don't have orange book */
2003/* standard speed CD-RW (1-4x) */
2004static char clv_to_speed[16] = {
2005 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2006 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2007};
2008/* high speed CD-RW (-10x) */
2009static char hs_clv_to_speed[16] = {
2010 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2011 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2012};
2013/* ultra high speed CD-RW */
2014static char us_clv_to_speed[16] = {
2015 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2016 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2017};
2018
2019/*
2020 * reads the maximum media speed from ATIP
2021 */
2022static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2023 unsigned *speed)
2024{
2025 struct packet_command cgc;
2026 struct scsi_sense_hdr sshdr;
2027 unsigned char buf[64];
2028 unsigned int size, st, sp;
2029 int ret;
2030
2031 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2032 cgc.sshdr = &sshdr;
2033 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2034 cgc.cmd[1] = 2;
2035 cgc.cmd[2] = 4; /* READ ATIP */
2036 cgc.cmd[8] = 2;
2037 ret = pkt_generic_packet(pd, &cgc);
2038 if (ret) {
2039 pkt_dump_sense(pd, &cgc);
2040 return ret;
2041 }
2042 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2043 if (size > sizeof(buf))
2044 size = sizeof(buf);
2045
2046 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2047 cgc.sshdr = &sshdr;
2048 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2049 cgc.cmd[1] = 2;
2050 cgc.cmd[2] = 4;
2051 cgc.cmd[8] = size;
2052 ret = pkt_generic_packet(pd, &cgc);
2053 if (ret) {
2054 pkt_dump_sense(pd, &cgc);
2055 return ret;
2056 }
2057
2058 if (!(buf[6] & 0x40)) {
2059 pkt_notice(pd, "disc type is not CD-RW\n");
2060 return 1;
2061 }
2062 if (!(buf[6] & 0x4)) {
2063 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2064 return 1;
2065 }
2066
2067 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2068
2069 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2070
2071 /* Info from cdrecord */
2072 switch (st) {
2073 case 0: /* standard speed */
2074 *speed = clv_to_speed[sp];
2075 break;
2076 case 1: /* high speed */
2077 *speed = hs_clv_to_speed[sp];
2078 break;
2079 case 2: /* ultra high speed */
2080 *speed = us_clv_to_speed[sp];
2081 break;
2082 default:
2083 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2084 return 1;
2085 }
2086 if (*speed) {
2087 pkt_info(pd, "maximum media speed: %d\n", *speed);
2088 return 0;
2089 } else {
2090 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2091 return 1;
2092 }
2093}
2094
2095static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2096{
2097 struct packet_command cgc;
2098 struct scsi_sense_hdr sshdr;
2099 int ret;
2100
2101 pkt_dbg(2, pd, "Performing OPC\n");
2102
2103 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2104 cgc.sshdr = &sshdr;
2105 cgc.timeout = 60*HZ;
2106 cgc.cmd[0] = GPCMD_SEND_OPC;
2107 cgc.cmd[1] = 1;
2108 ret = pkt_generic_packet(pd, &cgc);
2109 if (ret)
2110 pkt_dump_sense(pd, &cgc);
2111 return ret;
2112}
2113
2114static int pkt_open_write(struct pktcdvd_device *pd)
2115{
2116 int ret;
2117 unsigned int write_speed, media_write_speed, read_speed;
2118
2119 ret = pkt_probe_settings(pd);
2120 if (ret) {
2121 pkt_dbg(2, pd, "failed probe\n");
2122 return ret;
2123 }
2124
2125 ret = pkt_set_write_settings(pd);
2126 if (ret) {
2127 pkt_dbg(1, pd, "failed saving write settings\n");
2128 return -EIO;
2129 }
2130
2131 pkt_write_caching(pd, USE_WCACHING);
2132
2133 ret = pkt_get_max_speed(pd, &write_speed);
2134 if (ret)
2135 write_speed = 16 * 177;
2136 switch (pd->mmc3_profile) {
2137 case 0x13: /* DVD-RW */
2138 case 0x1a: /* DVD+RW */
2139 case 0x12: /* DVD-RAM */
2140 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2141 break;
2142 default:
2143 ret = pkt_media_speed(pd, &media_write_speed);
2144 if (ret)
2145 media_write_speed = 16;
2146 write_speed = min(write_speed, media_write_speed * 177);
2147 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2148 break;
2149 }
2150 read_speed = write_speed;
2151
2152 ret = pkt_set_speed(pd, write_speed, read_speed);
2153 if (ret) {
2154 pkt_dbg(1, pd, "couldn't set write speed\n");
2155 return -EIO;
2156 }
2157 pd->write_speed = write_speed;
2158 pd->read_speed = read_speed;
2159
2160 ret = pkt_perform_opc(pd);
2161 if (ret) {
2162 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2163 }
2164
2165 return 0;
2166}
2167
2168/*
2169 * called at open time.
2170 */
2171static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2172{
2173 int ret;
2174 long lba;
2175 struct request_queue *q;
2176
2177 /*
2178 * We need to re-open the cdrom device without O_NONBLOCK to be able
2179 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2180 * so bdget() can't fail.
2181 */
2182 bdget(pd->bdev->bd_dev);
2183 ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd);
2184 if (ret)
2185 goto out;
2186
2187 ret = pkt_get_last_written(pd, &lba);
2188 if (ret) {
2189 pkt_err(pd, "pkt_get_last_written failed\n");
2190 goto out_putdev;
2191 }
2192
2193 set_capacity(pd->disk, lba << 2);
2194 set_capacity(pd->bdev->bd_disk, lba << 2);
2195 bd_set_size(pd->bdev, (loff_t)lba << 11);
2196
2197 q = bdev_get_queue(pd->bdev);
2198 if (write) {
2199 ret = pkt_open_write(pd);
2200 if (ret)
2201 goto out_putdev;
2202 /*
2203 * Some CDRW drives can not handle writes larger than one packet,
2204 * even if the size is a multiple of the packet size.
2205 */
2206 blk_queue_max_hw_sectors(q, pd->settings.size);
2207 set_bit(PACKET_WRITABLE, &pd->flags);
2208 } else {
2209 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2210 clear_bit(PACKET_WRITABLE, &pd->flags);
2211 }
2212
2213 ret = pkt_set_segment_merging(pd, q);
2214 if (ret)
2215 goto out_putdev;
2216
2217 if (write) {
2218 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2219 pkt_err(pd, "not enough memory for buffers\n");
2220 ret = -ENOMEM;
2221 goto out_putdev;
2222 }
2223 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2224 }
2225
2226 return 0;
2227
2228out_putdev:
2229 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2230out:
2231 return ret;
2232}
2233
2234/*
2235 * called when the device is closed. makes sure that the device flushes
2236 * the internal cache before we close.
2237 */
2238static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2239{
2240 if (flush && pkt_flush_cache(pd))
2241 pkt_dbg(1, pd, "not flushing cache\n");
2242
2243 pkt_lock_door(pd, 0);
2244
2245 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2246 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2247
2248 pkt_shrink_pktlist(pd);
2249}
2250
2251static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2252{
2253 if (dev_minor >= MAX_WRITERS)
2254 return NULL;
2255
2256 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2257 return pkt_devs[dev_minor];
2258}
2259
2260static int pkt_open(struct block_device *bdev, fmode_t mode)
2261{
2262 struct pktcdvd_device *pd = NULL;
2263 int ret;
2264
2265 mutex_lock(&pktcdvd_mutex);
2266 mutex_lock(&ctl_mutex);
2267 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2268 if (!pd) {
2269 ret = -ENODEV;
2270 goto out;
2271 }
2272 BUG_ON(pd->refcnt < 0);
2273
2274 pd->refcnt++;
2275 if (pd->refcnt > 1) {
2276 if ((mode & FMODE_WRITE) &&
2277 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2278 ret = -EBUSY;
2279 goto out_dec;
2280 }
2281 } else {
2282 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2283 if (ret)
2284 goto out_dec;
2285 /*
2286 * needed here as well, since ext2 (among others) may change
2287 * the blocksize at mount time
2288 */
2289 set_blocksize(bdev, CD_FRAMESIZE);
2290 }
2291
2292 mutex_unlock(&ctl_mutex);
2293 mutex_unlock(&pktcdvd_mutex);
2294 return 0;
2295
2296out_dec:
2297 pd->refcnt--;
2298out:
2299 mutex_unlock(&ctl_mutex);
2300 mutex_unlock(&pktcdvd_mutex);
2301 return ret;
2302}
2303
2304static void pkt_close(struct gendisk *disk, fmode_t mode)
2305{
2306 struct pktcdvd_device *pd = disk->private_data;
2307
2308 mutex_lock(&pktcdvd_mutex);
2309 mutex_lock(&ctl_mutex);
2310 pd->refcnt--;
2311 BUG_ON(pd->refcnt < 0);
2312 if (pd->refcnt == 0) {
2313 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2314 pkt_release_dev(pd, flush);
2315 }
2316 mutex_unlock(&ctl_mutex);
2317 mutex_unlock(&pktcdvd_mutex);
2318}
2319
2320
2321static void pkt_end_io_read_cloned(struct bio *bio)
2322{
2323 struct packet_stacked_data *psd = bio->bi_private;
2324 struct pktcdvd_device *pd = psd->pd;
2325
2326 psd->bio->bi_status = bio->bi_status;
2327 bio_put(bio);
2328 bio_endio(psd->bio);
2329 mempool_free(psd, &psd_pool);
2330 pkt_bio_finished(pd);
2331}
2332
2333static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2334{
2335 struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, &pkt_bio_set);
2336 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2337
2338 psd->pd = pd;
2339 psd->bio = bio;
2340 bio_set_dev(cloned_bio, pd->bdev);
2341 cloned_bio->bi_private = psd;
2342 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2343 pd->stats.secs_r += bio_sectors(bio);
2344 pkt_queue_bio(pd, cloned_bio);
2345}
2346
2347static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2348{
2349 struct pktcdvd_device *pd = q->queuedata;
2350 sector_t zone;
2351 struct packet_data *pkt;
2352 int was_empty, blocked_bio;
2353 struct pkt_rb_node *node;
2354
2355 zone = get_zone(bio->bi_iter.bi_sector, pd);
2356
2357 /*
2358 * If we find a matching packet in state WAITING or READ_WAIT, we can
2359 * just append this bio to that packet.
2360 */
2361 spin_lock(&pd->cdrw.active_list_lock);
2362 blocked_bio = 0;
2363 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2364 if (pkt->sector == zone) {
2365 spin_lock(&pkt->lock);
2366 if ((pkt->state == PACKET_WAITING_STATE) ||
2367 (pkt->state == PACKET_READ_WAIT_STATE)) {
2368 bio_list_add(&pkt->orig_bios, bio);
2369 pkt->write_size +=
2370 bio->bi_iter.bi_size / CD_FRAMESIZE;
2371 if ((pkt->write_size >= pkt->frames) &&
2372 (pkt->state == PACKET_WAITING_STATE)) {
2373 atomic_inc(&pkt->run_sm);
2374 wake_up(&pd->wqueue);
2375 }
2376 spin_unlock(&pkt->lock);
2377 spin_unlock(&pd->cdrw.active_list_lock);
2378 return;
2379 } else {
2380 blocked_bio = 1;
2381 }
2382 spin_unlock(&pkt->lock);
2383 }
2384 }
2385 spin_unlock(&pd->cdrw.active_list_lock);
2386
2387 /*
2388 * Test if there is enough room left in the bio work queue
2389 * (queue size >= congestion on mark).
2390 * If not, wait till the work queue size is below the congestion off mark.
2391 */
2392 spin_lock(&pd->lock);
2393 if (pd->write_congestion_on > 0
2394 && pd->bio_queue_size >= pd->write_congestion_on) {
2395 set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC);
2396 do {
2397 spin_unlock(&pd->lock);
2398 congestion_wait(BLK_RW_ASYNC, HZ);
2399 spin_lock(&pd->lock);
2400 } while(pd->bio_queue_size > pd->write_congestion_off);
2401 }
2402 spin_unlock(&pd->lock);
2403
2404 /*
2405 * No matching packet found. Store the bio in the work queue.
2406 */
2407 node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2408 node->bio = bio;
2409 spin_lock(&pd->lock);
2410 BUG_ON(pd->bio_queue_size < 0);
2411 was_empty = (pd->bio_queue_size == 0);
2412 pkt_rbtree_insert(pd, node);
2413 spin_unlock(&pd->lock);
2414
2415 /*
2416 * Wake up the worker thread.
2417 */
2418 atomic_set(&pd->scan_queue, 1);
2419 if (was_empty) {
2420 /* This wake_up is required for correct operation */
2421 wake_up(&pd->wqueue);
2422 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2423 /*
2424 * This wake up is not required for correct operation,
2425 * but improves performance in some cases.
2426 */
2427 wake_up(&pd->wqueue);
2428 }
2429}
2430
2431static blk_qc_t pkt_submit_bio(struct bio *bio)
2432{
2433 struct pktcdvd_device *pd;
2434 char b[BDEVNAME_SIZE];
2435 struct bio *split;
2436
2437 blk_queue_split(&bio);
2438
2439 pd = bio->bi_disk->queue->queuedata;
2440 if (!pd) {
2441 pr_err("%s incorrect request queue\n", bio_devname(bio, b));
2442 goto end_io;
2443 }
2444
2445 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2446 (unsigned long long)bio->bi_iter.bi_sector,
2447 (unsigned long long)bio_end_sector(bio));
2448
2449 /*
2450 * Clone READ bios so we can have our own bi_end_io callback.
2451 */
2452 if (bio_data_dir(bio) == READ) {
2453 pkt_make_request_read(pd, bio);
2454 return BLK_QC_T_NONE;
2455 }
2456
2457 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2458 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2459 (unsigned long long)bio->bi_iter.bi_sector);
2460 goto end_io;
2461 }
2462
2463 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2464 pkt_err(pd, "wrong bio size\n");
2465 goto end_io;
2466 }
2467
2468 do {
2469 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2470 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2471
2472 if (last_zone != zone) {
2473 BUG_ON(last_zone != zone + pd->settings.size);
2474
2475 split = bio_split(bio, last_zone -
2476 bio->bi_iter.bi_sector,
2477 GFP_NOIO, &pkt_bio_set);
2478 bio_chain(split, bio);
2479 } else {
2480 split = bio;
2481 }
2482
2483 pkt_make_request_write(bio->bi_disk->queue, split);
2484 } while (split != bio);
2485
2486 return BLK_QC_T_NONE;
2487end_io:
2488 bio_io_error(bio);
2489 return BLK_QC_T_NONE;
2490}
2491
2492static void pkt_init_queue(struct pktcdvd_device *pd)
2493{
2494 struct request_queue *q = pd->disk->queue;
2495
2496 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2497 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2498 q->queuedata = pd;
2499}
2500
2501static int pkt_seq_show(struct seq_file *m, void *p)
2502{
2503 struct pktcdvd_device *pd = m->private;
2504 char *msg;
2505 char bdev_buf[BDEVNAME_SIZE];
2506 int states[PACKET_NUM_STATES];
2507
2508 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2509 bdevname(pd->bdev, bdev_buf));
2510
2511 seq_printf(m, "\nSettings:\n");
2512 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2513
2514 if (pd->settings.write_type == 0)
2515 msg = "Packet";
2516 else
2517 msg = "Unknown";
2518 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2519
2520 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2521 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2522
2523 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2524
2525 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2526 msg = "Mode 1";
2527 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2528 msg = "Mode 2";
2529 else
2530 msg = "Unknown";
2531 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2532
2533 seq_printf(m, "\nStatistics:\n");
2534 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2535 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2536 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2537 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2538 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2539
2540 seq_printf(m, "\nMisc:\n");
2541 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2542 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2543 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2544 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2545 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2546 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2547
2548 seq_printf(m, "\nQueue state:\n");
2549 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2550 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2551 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2552
2553 pkt_count_states(pd, states);
2554 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2555 states[0], states[1], states[2], states[3], states[4], states[5]);
2556
2557 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2558 pd->write_congestion_off,
2559 pd->write_congestion_on);
2560 return 0;
2561}
2562
2563static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2564{
2565 int i;
2566 int ret = 0;
2567 char b[BDEVNAME_SIZE];
2568 struct block_device *bdev;
2569
2570 if (pd->pkt_dev == dev) {
2571 pkt_err(pd, "recursive setup not allowed\n");
2572 return -EBUSY;
2573 }
2574 for (i = 0; i < MAX_WRITERS; i++) {
2575 struct pktcdvd_device *pd2 = pkt_devs[i];
2576 if (!pd2)
2577 continue;
2578 if (pd2->bdev->bd_dev == dev) {
2579 pkt_err(pd, "%s already setup\n",
2580 bdevname(pd2->bdev, b));
2581 return -EBUSY;
2582 }
2583 if (pd2->pkt_dev == dev) {
2584 pkt_err(pd, "can't chain pktcdvd devices\n");
2585 return -EBUSY;
2586 }
2587 }
2588
2589 bdev = bdget(dev);
2590 if (!bdev)
2591 return -ENOMEM;
2592 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2593 if (ret)
2594 return ret;
2595 if (!blk_queue_scsi_passthrough(bdev_get_queue(bdev))) {
2596 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2597 return -EINVAL;
2598 }
2599
2600 /* This is safe, since we have a reference from open(). */
2601 __module_get(THIS_MODULE);
2602
2603 pd->bdev = bdev;
2604 set_blocksize(bdev, CD_FRAMESIZE);
2605
2606 pkt_init_queue(pd);
2607
2608 atomic_set(&pd->cdrw.pending_bios, 0);
2609 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2610 if (IS_ERR(pd->cdrw.thread)) {
2611 pkt_err(pd, "can't start kernel thread\n");
2612 ret = -ENOMEM;
2613 goto out_mem;
2614 }
2615
2616 proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2617 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2618 return 0;
2619
2620out_mem:
2621 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2622 /* This is safe: open() is still holding a reference. */
2623 module_put(THIS_MODULE);
2624 return ret;
2625}
2626
2627static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2628{
2629 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2630 int ret;
2631
2632 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2633 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2634
2635 mutex_lock(&pktcdvd_mutex);
2636 switch (cmd) {
2637 case CDROMEJECT:
2638 /*
2639 * The door gets locked when the device is opened, so we
2640 * have to unlock it or else the eject command fails.
2641 */
2642 if (pd->refcnt == 1)
2643 pkt_lock_door(pd, 0);
2644 fallthrough;
2645 /*
2646 * forward selected CDROM ioctls to CD-ROM, for UDF
2647 */
2648 case CDROMMULTISESSION:
2649 case CDROMREADTOCENTRY:
2650 case CDROM_LAST_WRITTEN:
2651 case CDROM_SEND_PACKET:
2652 case SCSI_IOCTL_SEND_COMMAND:
2653 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2654 break;
2655
2656 default:
2657 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2658 ret = -ENOTTY;
2659 }
2660 mutex_unlock(&pktcdvd_mutex);
2661
2662 return ret;
2663}
2664
2665static unsigned int pkt_check_events(struct gendisk *disk,
2666 unsigned int clearing)
2667{
2668 struct pktcdvd_device *pd = disk->private_data;
2669 struct gendisk *attached_disk;
2670
2671 if (!pd)
2672 return 0;
2673 if (!pd->bdev)
2674 return 0;
2675 attached_disk = pd->bdev->bd_disk;
2676 if (!attached_disk || !attached_disk->fops->check_events)
2677 return 0;
2678 return attached_disk->fops->check_events(attached_disk, clearing);
2679}
2680
2681static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2682{
2683 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2684}
2685
2686static const struct block_device_operations pktcdvd_ops = {
2687 .owner = THIS_MODULE,
2688 .submit_bio = pkt_submit_bio,
2689 .open = pkt_open,
2690 .release = pkt_close,
2691 .ioctl = pkt_ioctl,
2692 .compat_ioctl = blkdev_compat_ptr_ioctl,
2693 .check_events = pkt_check_events,
2694 .devnode = pkt_devnode,
2695};
2696
2697/*
2698 * Set up mapping from pktcdvd device to CD-ROM device.
2699 */
2700static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2701{
2702 int idx;
2703 int ret = -ENOMEM;
2704 struct pktcdvd_device *pd;
2705 struct gendisk *disk;
2706
2707 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2708
2709 for (idx = 0; idx < MAX_WRITERS; idx++)
2710 if (!pkt_devs[idx])
2711 break;
2712 if (idx == MAX_WRITERS) {
2713 pr_err("max %d writers supported\n", MAX_WRITERS);
2714 ret = -EBUSY;
2715 goto out_mutex;
2716 }
2717
2718 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2719 if (!pd)
2720 goto out_mutex;
2721
2722 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2723 sizeof(struct pkt_rb_node));
2724 if (ret)
2725 goto out_mem;
2726
2727 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2728 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2729 spin_lock_init(&pd->cdrw.active_list_lock);
2730
2731 spin_lock_init(&pd->lock);
2732 spin_lock_init(&pd->iosched.lock);
2733 bio_list_init(&pd->iosched.read_queue);
2734 bio_list_init(&pd->iosched.write_queue);
2735 sprintf(pd->name, DRIVER_NAME"%d", idx);
2736 init_waitqueue_head(&pd->wqueue);
2737 pd->bio_queue = RB_ROOT;
2738
2739 pd->write_congestion_on = write_congestion_on;
2740 pd->write_congestion_off = write_congestion_off;
2741
2742 ret = -ENOMEM;
2743 disk = alloc_disk(1);
2744 if (!disk)
2745 goto out_mem;
2746 pd->disk = disk;
2747 disk->major = pktdev_major;
2748 disk->first_minor = idx;
2749 disk->fops = &pktcdvd_ops;
2750 disk->flags = GENHD_FL_REMOVABLE;
2751 strcpy(disk->disk_name, pd->name);
2752 disk->private_data = pd;
2753 disk->queue = blk_alloc_queue(NUMA_NO_NODE);
2754 if (!disk->queue)
2755 goto out_mem2;
2756
2757 pd->pkt_dev = MKDEV(pktdev_major, idx);
2758 ret = pkt_new_dev(pd, dev);
2759 if (ret)
2760 goto out_mem2;
2761
2762 /* inherit events of the host device */
2763 disk->events = pd->bdev->bd_disk->events;
2764
2765 add_disk(disk);
2766
2767 pkt_sysfs_dev_new(pd);
2768 pkt_debugfs_dev_new(pd);
2769
2770 pkt_devs[idx] = pd;
2771 if (pkt_dev)
2772 *pkt_dev = pd->pkt_dev;
2773
2774 mutex_unlock(&ctl_mutex);
2775 return 0;
2776
2777out_mem2:
2778 put_disk(disk);
2779out_mem:
2780 mempool_exit(&pd->rb_pool);
2781 kfree(pd);
2782out_mutex:
2783 mutex_unlock(&ctl_mutex);
2784 pr_err("setup of pktcdvd device failed\n");
2785 return ret;
2786}
2787
2788/*
2789 * Tear down mapping from pktcdvd device to CD-ROM device.
2790 */
2791static int pkt_remove_dev(dev_t pkt_dev)
2792{
2793 struct pktcdvd_device *pd;
2794 int idx;
2795 int ret = 0;
2796
2797 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2798
2799 for (idx = 0; idx < MAX_WRITERS; idx++) {
2800 pd = pkt_devs[idx];
2801 if (pd && (pd->pkt_dev == pkt_dev))
2802 break;
2803 }
2804 if (idx == MAX_WRITERS) {
2805 pr_debug("dev not setup\n");
2806 ret = -ENXIO;
2807 goto out;
2808 }
2809
2810 if (pd->refcnt > 0) {
2811 ret = -EBUSY;
2812 goto out;
2813 }
2814 if (!IS_ERR(pd->cdrw.thread))
2815 kthread_stop(pd->cdrw.thread);
2816
2817 pkt_devs[idx] = NULL;
2818
2819 pkt_debugfs_dev_remove(pd);
2820 pkt_sysfs_dev_remove(pd);
2821
2822 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2823
2824 remove_proc_entry(pd->name, pkt_proc);
2825 pkt_dbg(1, pd, "writer unmapped\n");
2826
2827 del_gendisk(pd->disk);
2828 blk_cleanup_queue(pd->disk->queue);
2829 put_disk(pd->disk);
2830
2831 mempool_exit(&pd->rb_pool);
2832 kfree(pd);
2833
2834 /* This is safe: open() is still holding a reference. */
2835 module_put(THIS_MODULE);
2836
2837out:
2838 mutex_unlock(&ctl_mutex);
2839 return ret;
2840}
2841
2842static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2843{
2844 struct pktcdvd_device *pd;
2845
2846 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2847
2848 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2849 if (pd) {
2850 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2851 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2852 } else {
2853 ctrl_cmd->dev = 0;
2854 ctrl_cmd->pkt_dev = 0;
2855 }
2856 ctrl_cmd->num_devices = MAX_WRITERS;
2857
2858 mutex_unlock(&ctl_mutex);
2859}
2860
2861static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2862{
2863 void __user *argp = (void __user *)arg;
2864 struct pkt_ctrl_command ctrl_cmd;
2865 int ret = 0;
2866 dev_t pkt_dev = 0;
2867
2868 if (cmd != PACKET_CTRL_CMD)
2869 return -ENOTTY;
2870
2871 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2872 return -EFAULT;
2873
2874 switch (ctrl_cmd.command) {
2875 case PKT_CTRL_CMD_SETUP:
2876 if (!capable(CAP_SYS_ADMIN))
2877 return -EPERM;
2878 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2879 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2880 break;
2881 case PKT_CTRL_CMD_TEARDOWN:
2882 if (!capable(CAP_SYS_ADMIN))
2883 return -EPERM;
2884 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2885 break;
2886 case PKT_CTRL_CMD_STATUS:
2887 pkt_get_status(&ctrl_cmd);
2888 break;
2889 default:
2890 return -ENOTTY;
2891 }
2892
2893 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2894 return -EFAULT;
2895 return ret;
2896}
2897
2898#ifdef CONFIG_COMPAT
2899static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2900{
2901 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2902}
2903#endif
2904
2905static const struct file_operations pkt_ctl_fops = {
2906 .open = nonseekable_open,
2907 .unlocked_ioctl = pkt_ctl_ioctl,
2908#ifdef CONFIG_COMPAT
2909 .compat_ioctl = pkt_ctl_compat_ioctl,
2910#endif
2911 .owner = THIS_MODULE,
2912 .llseek = no_llseek,
2913};
2914
2915static struct miscdevice pkt_misc = {
2916 .minor = MISC_DYNAMIC_MINOR,
2917 .name = DRIVER_NAME,
2918 .nodename = "pktcdvd/control",
2919 .fops = &pkt_ctl_fops
2920};
2921
2922static int __init pkt_init(void)
2923{
2924 int ret;
2925
2926 mutex_init(&ctl_mutex);
2927
2928 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2929 sizeof(struct packet_stacked_data));
2930 if (ret)
2931 return ret;
2932 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2933 if (ret) {
2934 mempool_exit(&psd_pool);
2935 return ret;
2936 }
2937
2938 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2939 if (ret < 0) {
2940 pr_err("unable to register block device\n");
2941 goto out2;
2942 }
2943 if (!pktdev_major)
2944 pktdev_major = ret;
2945
2946 ret = pkt_sysfs_init();
2947 if (ret)
2948 goto out;
2949
2950 pkt_debugfs_init();
2951
2952 ret = misc_register(&pkt_misc);
2953 if (ret) {
2954 pr_err("unable to register misc device\n");
2955 goto out_misc;
2956 }
2957
2958 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2959
2960 return 0;
2961
2962out_misc:
2963 pkt_debugfs_cleanup();
2964 pkt_sysfs_cleanup();
2965out:
2966 unregister_blkdev(pktdev_major, DRIVER_NAME);
2967out2:
2968 mempool_exit(&psd_pool);
2969 bioset_exit(&pkt_bio_set);
2970 return ret;
2971}
2972
2973static void __exit pkt_exit(void)
2974{
2975 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2976 misc_deregister(&pkt_misc);
2977
2978 pkt_debugfs_cleanup();
2979 pkt_sysfs_cleanup();
2980
2981 unregister_blkdev(pktdev_major, DRIVER_NAME);
2982 mempool_exit(&psd_pool);
2983 bioset_exit(&pkt_bio_set);
2984}
2985
2986MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2987MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2988MODULE_LICENSE("GPL");
2989
2990module_init(pkt_init);
2991module_exit(pkt_exit);
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom ->submit_bio function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49#include <linux/pktcdvd.h>
50#include <linux/module.h>
51#include <linux/types.h>
52#include <linux/kernel.h>
53#include <linux/compat.h>
54#include <linux/kthread.h>
55#include <linux/errno.h>
56#include <linux/spinlock.h>
57#include <linux/file.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/miscdevice.h>
61#include <linux/freezer.h>
62#include <linux/mutex.h>
63#include <linux/slab.h>
64#include <linux/backing-dev.h>
65#include <scsi/scsi_cmnd.h>
66#include <scsi/scsi_ioctl.h>
67#include <scsi/scsi.h>
68#include <linux/debugfs.h>
69#include <linux/device.h>
70#include <linux/nospec.h>
71#include <linux/uaccess.h>
72
73#define DRIVER_NAME "pktcdvd"
74
75#define pkt_err(pd, fmt, ...) \
76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77#define pkt_notice(pd, fmt, ...) \
78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79#define pkt_info(pd, fmt, ...) \
80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81
82#define pkt_dbg(level, pd, fmt, ...) \
83do { \
84 if (level == 2 && PACKET_DEBUG >= 2) \
85 pr_notice("%s: %s():" fmt, \
86 pd->name, __func__, ##__VA_ARGS__); \
87 else if (level == 1 && PACKET_DEBUG >= 1) \
88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
89} while (0)
90
91#define MAX_SPEED 0xffff
92
93static DEFINE_MUTEX(pktcdvd_mutex);
94static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95static struct proc_dir_entry *pkt_proc;
96static int pktdev_major;
97static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
98static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
100static mempool_t psd_pool;
101static struct bio_set pkt_bio_set;
102
103static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
104static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105
106/* forward declaration */
107static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108static int pkt_remove_dev(dev_t pkt_dev);
109static int pkt_seq_show(struct seq_file *m, void *p);
110
111static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112{
113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114}
115
116/**********************************************************
117 * sysfs interface for pktcdvd
118 * by (C) 2006 Thomas Maier <balagi@justmail.de>
119
120 /sys/class/pktcdvd/pktcdvd[0-7]/
121 stat/reset
122 stat/packets_started
123 stat/packets_finished
124 stat/kb_written
125 stat/kb_read
126 stat/kb_read_gather
127 write_queue/size
128 write_queue/congestion_off
129 write_queue/congestion_on
130 **********************************************************/
131
132static ssize_t packets_started_show(struct device *dev,
133 struct device_attribute *attr, char *buf)
134{
135 struct pktcdvd_device *pd = dev_get_drvdata(dev);
136
137 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
138}
139static DEVICE_ATTR_RO(packets_started);
140
141static ssize_t packets_finished_show(struct device *dev,
142 struct device_attribute *attr, char *buf)
143{
144 struct pktcdvd_device *pd = dev_get_drvdata(dev);
145
146 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
147}
148static DEVICE_ATTR_RO(packets_finished);
149
150static ssize_t kb_written_show(struct device *dev,
151 struct device_attribute *attr, char *buf)
152{
153 struct pktcdvd_device *pd = dev_get_drvdata(dev);
154
155 return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
156}
157static DEVICE_ATTR_RO(kb_written);
158
159static ssize_t kb_read_show(struct device *dev,
160 struct device_attribute *attr, char *buf)
161{
162 struct pktcdvd_device *pd = dev_get_drvdata(dev);
163
164 return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
165}
166static DEVICE_ATTR_RO(kb_read);
167
168static ssize_t kb_read_gather_show(struct device *dev,
169 struct device_attribute *attr, char *buf)
170{
171 struct pktcdvd_device *pd = dev_get_drvdata(dev);
172
173 return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
174}
175static DEVICE_ATTR_RO(kb_read_gather);
176
177static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
178 const char *buf, size_t len)
179{
180 struct pktcdvd_device *pd = dev_get_drvdata(dev);
181
182 if (len > 0) {
183 pd->stats.pkt_started = 0;
184 pd->stats.pkt_ended = 0;
185 pd->stats.secs_w = 0;
186 pd->stats.secs_rg = 0;
187 pd->stats.secs_r = 0;
188 }
189 return len;
190}
191static DEVICE_ATTR_WO(reset);
192
193static struct attribute *pkt_stat_attrs[] = {
194 &dev_attr_packets_finished.attr,
195 &dev_attr_packets_started.attr,
196 &dev_attr_kb_read.attr,
197 &dev_attr_kb_written.attr,
198 &dev_attr_kb_read_gather.attr,
199 &dev_attr_reset.attr,
200 NULL,
201};
202
203static const struct attribute_group pkt_stat_group = {
204 .name = "stat",
205 .attrs = pkt_stat_attrs,
206};
207
208static ssize_t size_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210{
211 struct pktcdvd_device *pd = dev_get_drvdata(dev);
212 int n;
213
214 spin_lock(&pd->lock);
215 n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
216 spin_unlock(&pd->lock);
217 return n;
218}
219static DEVICE_ATTR_RO(size);
220
221static void init_write_congestion_marks(int* lo, int* hi)
222{
223 if (*hi > 0) {
224 *hi = max(*hi, 500);
225 *hi = min(*hi, 1000000);
226 if (*lo <= 0)
227 *lo = *hi - 100;
228 else {
229 *lo = min(*lo, *hi - 100);
230 *lo = max(*lo, 100);
231 }
232 } else {
233 *hi = -1;
234 *lo = -1;
235 }
236}
237
238static ssize_t congestion_off_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240{
241 struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 int n;
243
244 spin_lock(&pd->lock);
245 n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
246 spin_unlock(&pd->lock);
247 return n;
248}
249
250static ssize_t congestion_off_store(struct device *dev,
251 struct device_attribute *attr,
252 const char *buf, size_t len)
253{
254 struct pktcdvd_device *pd = dev_get_drvdata(dev);
255 int val;
256
257 if (sscanf(buf, "%d", &val) == 1) {
258 spin_lock(&pd->lock);
259 pd->write_congestion_off = val;
260 init_write_congestion_marks(&pd->write_congestion_off,
261 &pd->write_congestion_on);
262 spin_unlock(&pd->lock);
263 }
264 return len;
265}
266static DEVICE_ATTR_RW(congestion_off);
267
268static ssize_t congestion_on_show(struct device *dev,
269 struct device_attribute *attr, char *buf)
270{
271 struct pktcdvd_device *pd = dev_get_drvdata(dev);
272 int n;
273
274 spin_lock(&pd->lock);
275 n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
276 spin_unlock(&pd->lock);
277 return n;
278}
279
280static ssize_t congestion_on_store(struct device *dev,
281 struct device_attribute *attr,
282 const char *buf, size_t len)
283{
284 struct pktcdvd_device *pd = dev_get_drvdata(dev);
285 int val;
286
287 if (sscanf(buf, "%d", &val) == 1) {
288 spin_lock(&pd->lock);
289 pd->write_congestion_on = val;
290 init_write_congestion_marks(&pd->write_congestion_off,
291 &pd->write_congestion_on);
292 spin_unlock(&pd->lock);
293 }
294 return len;
295}
296static DEVICE_ATTR_RW(congestion_on);
297
298static struct attribute *pkt_wq_attrs[] = {
299 &dev_attr_congestion_on.attr,
300 &dev_attr_congestion_off.attr,
301 &dev_attr_size.attr,
302 NULL,
303};
304
305static const struct attribute_group pkt_wq_group = {
306 .name = "write_queue",
307 .attrs = pkt_wq_attrs,
308};
309
310static const struct attribute_group *pkt_groups[] = {
311 &pkt_stat_group,
312 &pkt_wq_group,
313 NULL,
314};
315
316static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
317{
318 if (class_pktcdvd) {
319 pd->dev = device_create_with_groups(class_pktcdvd, NULL,
320 MKDEV(0, 0), pd, pkt_groups,
321 "%s", pd->name);
322 if (IS_ERR(pd->dev))
323 pd->dev = NULL;
324 }
325}
326
327static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
328{
329 if (class_pktcdvd)
330 device_unregister(pd->dev);
331}
332
333
334/********************************************************************
335 /sys/class/pktcdvd/
336 add map block device
337 remove unmap packet dev
338 device_map show mappings
339 *******************************************************************/
340
341static void class_pktcdvd_release(struct class *cls)
342{
343 kfree(cls);
344}
345
346static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
347 char *data)
348{
349 int n = 0;
350 int idx;
351 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
352 for (idx = 0; idx < MAX_WRITERS; idx++) {
353 struct pktcdvd_device *pd = pkt_devs[idx];
354 if (!pd)
355 continue;
356 n += sprintf(data+n, "%s %u:%u %u:%u\n",
357 pd->name,
358 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
359 MAJOR(pd->bdev->bd_dev),
360 MINOR(pd->bdev->bd_dev));
361 }
362 mutex_unlock(&ctl_mutex);
363 return n;
364}
365static CLASS_ATTR_RO(device_map);
366
367static ssize_t add_store(struct class *c, struct class_attribute *attr,
368 const char *buf, size_t count)
369{
370 unsigned int major, minor;
371
372 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
373 /* pkt_setup_dev() expects caller to hold reference to self */
374 if (!try_module_get(THIS_MODULE))
375 return -ENODEV;
376
377 pkt_setup_dev(MKDEV(major, minor), NULL);
378
379 module_put(THIS_MODULE);
380
381 return count;
382 }
383
384 return -EINVAL;
385}
386static CLASS_ATTR_WO(add);
387
388static ssize_t remove_store(struct class *c, struct class_attribute *attr,
389 const char *buf, size_t count)
390{
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
395 }
396 return -EINVAL;
397}
398static CLASS_ATTR_WO(remove);
399
400static struct attribute *class_pktcdvd_attrs[] = {
401 &class_attr_add.attr,
402 &class_attr_remove.attr,
403 &class_attr_device_map.attr,
404 NULL,
405};
406ATTRIBUTE_GROUPS(class_pktcdvd);
407
408static int pkt_sysfs_init(void)
409{
410 int ret = 0;
411
412 /*
413 * create control files in sysfs
414 * /sys/class/pktcdvd/...
415 */
416 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
417 if (!class_pktcdvd)
418 return -ENOMEM;
419 class_pktcdvd->name = DRIVER_NAME;
420 class_pktcdvd->owner = THIS_MODULE;
421 class_pktcdvd->class_release = class_pktcdvd_release;
422 class_pktcdvd->class_groups = class_pktcdvd_groups;
423 ret = class_register(class_pktcdvd);
424 if (ret) {
425 kfree(class_pktcdvd);
426 class_pktcdvd = NULL;
427 pr_err("failed to create class pktcdvd\n");
428 return ret;
429 }
430 return 0;
431}
432
433static void pkt_sysfs_cleanup(void)
434{
435 if (class_pktcdvd)
436 class_destroy(class_pktcdvd);
437 class_pktcdvd = NULL;
438}
439
440/********************************************************************
441 entries in debugfs
442
443 /sys/kernel/debug/pktcdvd[0-7]/
444 info
445
446 *******************************************************************/
447
448static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
449{
450 return pkt_seq_show(m, p);
451}
452
453static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
454{
455 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
456}
457
458static const struct file_operations debug_fops = {
459 .open = pkt_debugfs_fops_open,
460 .read = seq_read,
461 .llseek = seq_lseek,
462 .release = single_release,
463 .owner = THIS_MODULE,
464};
465
466static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
467{
468 if (!pkt_debugfs_root)
469 return;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (!pd->dfs_d_root)
472 return;
473
474 pd->dfs_f_info = debugfs_create_file("info", 0444,
475 pd->dfs_d_root, pd, &debug_fops);
476}
477
478static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
479{
480 if (!pkt_debugfs_root)
481 return;
482 debugfs_remove(pd->dfs_f_info);
483 debugfs_remove(pd->dfs_d_root);
484 pd->dfs_f_info = NULL;
485 pd->dfs_d_root = NULL;
486}
487
488static void pkt_debugfs_init(void)
489{
490 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
491}
492
493static void pkt_debugfs_cleanup(void)
494{
495 debugfs_remove(pkt_debugfs_root);
496 pkt_debugfs_root = NULL;
497}
498
499/* ----------------------------------------------------------*/
500
501
502static void pkt_bio_finished(struct pktcdvd_device *pd)
503{
504 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
505 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
506 pkt_dbg(2, pd, "queue empty\n");
507 atomic_set(&pd->iosched.attention, 1);
508 wake_up(&pd->wqueue);
509 }
510}
511
512/*
513 * Allocate a packet_data struct
514 */
515static struct packet_data *pkt_alloc_packet_data(int frames)
516{
517 int i;
518 struct packet_data *pkt;
519
520 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
521 if (!pkt)
522 goto no_pkt;
523
524 pkt->frames = frames;
525 pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
526 if (!pkt->w_bio)
527 goto no_bio;
528
529 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
530 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
531 if (!pkt->pages[i])
532 goto no_page;
533 }
534
535 spin_lock_init(&pkt->lock);
536 bio_list_init(&pkt->orig_bios);
537
538 for (i = 0; i < frames; i++) {
539 pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
540 if (!pkt->r_bios[i])
541 goto no_rd_bio;
542 }
543
544 return pkt;
545
546no_rd_bio:
547 for (i = 0; i < frames; i++)
548 kfree(pkt->r_bios[i]);
549no_page:
550 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
551 if (pkt->pages[i])
552 __free_page(pkt->pages[i]);
553 kfree(pkt->w_bio);
554no_bio:
555 kfree(pkt);
556no_pkt:
557 return NULL;
558}
559
560/*
561 * Free a packet_data struct
562 */
563static void pkt_free_packet_data(struct packet_data *pkt)
564{
565 int i;
566
567 for (i = 0; i < pkt->frames; i++)
568 kfree(pkt->r_bios[i]);
569 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
570 __free_page(pkt->pages[i]);
571 kfree(pkt->w_bio);
572 kfree(pkt);
573}
574
575static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
576{
577 struct packet_data *pkt, *next;
578
579 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
580
581 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
582 pkt_free_packet_data(pkt);
583 }
584 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
585}
586
587static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
588{
589 struct packet_data *pkt;
590
591 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
592
593 while (nr_packets > 0) {
594 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
595 if (!pkt) {
596 pkt_shrink_pktlist(pd);
597 return 0;
598 }
599 pkt->id = nr_packets;
600 pkt->pd = pd;
601 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
602 nr_packets--;
603 }
604 return 1;
605}
606
607static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
608{
609 struct rb_node *n = rb_next(&node->rb_node);
610 if (!n)
611 return NULL;
612 return rb_entry(n, struct pkt_rb_node, rb_node);
613}
614
615static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
616{
617 rb_erase(&node->rb_node, &pd->bio_queue);
618 mempool_free(node, &pd->rb_pool);
619 pd->bio_queue_size--;
620 BUG_ON(pd->bio_queue_size < 0);
621}
622
623/*
624 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
625 */
626static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
627{
628 struct rb_node *n = pd->bio_queue.rb_node;
629 struct rb_node *next;
630 struct pkt_rb_node *tmp;
631
632 if (!n) {
633 BUG_ON(pd->bio_queue_size > 0);
634 return NULL;
635 }
636
637 for (;;) {
638 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
639 if (s <= tmp->bio->bi_iter.bi_sector)
640 next = n->rb_left;
641 else
642 next = n->rb_right;
643 if (!next)
644 break;
645 n = next;
646 }
647
648 if (s > tmp->bio->bi_iter.bi_sector) {
649 tmp = pkt_rbtree_next(tmp);
650 if (!tmp)
651 return NULL;
652 }
653 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
654 return tmp;
655}
656
657/*
658 * Insert a node into the pd->bio_queue rb tree.
659 */
660static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
661{
662 struct rb_node **p = &pd->bio_queue.rb_node;
663 struct rb_node *parent = NULL;
664 sector_t s = node->bio->bi_iter.bi_sector;
665 struct pkt_rb_node *tmp;
666
667 while (*p) {
668 parent = *p;
669 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
670 if (s < tmp->bio->bi_iter.bi_sector)
671 p = &(*p)->rb_left;
672 else
673 p = &(*p)->rb_right;
674 }
675 rb_link_node(&node->rb_node, parent, p);
676 rb_insert_color(&node->rb_node, &pd->bio_queue);
677 pd->bio_queue_size++;
678}
679
680/*
681 * Send a packet_command to the underlying block device and
682 * wait for completion.
683 */
684static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
685{
686 struct request_queue *q = bdev_get_queue(pd->bdev);
687 struct scsi_cmnd *scmd;
688 struct request *rq;
689 int ret = 0;
690
691 rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
692 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
693 if (IS_ERR(rq))
694 return PTR_ERR(rq);
695 scmd = blk_mq_rq_to_pdu(rq);
696
697 if (cgc->buflen) {
698 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
699 GFP_NOIO);
700 if (ret)
701 goto out;
702 }
703
704 scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
705 memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
706
707 rq->timeout = 60*HZ;
708 if (cgc->quiet)
709 rq->rq_flags |= RQF_QUIET;
710
711 blk_execute_rq(rq, false);
712 if (scmd->result)
713 ret = -EIO;
714out:
715 blk_mq_free_request(rq);
716 return ret;
717}
718
719static const char *sense_key_string(__u8 index)
720{
721 static const char * const info[] = {
722 "No sense", "Recovered error", "Not ready",
723 "Medium error", "Hardware error", "Illegal request",
724 "Unit attention", "Data protect", "Blank check",
725 };
726
727 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
728}
729
730/*
731 * A generic sense dump / resolve mechanism should be implemented across
732 * all ATAPI + SCSI devices.
733 */
734static void pkt_dump_sense(struct pktcdvd_device *pd,
735 struct packet_command *cgc)
736{
737 struct scsi_sense_hdr *sshdr = cgc->sshdr;
738
739 if (sshdr)
740 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
741 CDROM_PACKET_SIZE, cgc->cmd,
742 sshdr->sense_key, sshdr->asc, sshdr->ascq,
743 sense_key_string(sshdr->sense_key));
744 else
745 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
746}
747
748/*
749 * flush the drive cache to media
750 */
751static int pkt_flush_cache(struct pktcdvd_device *pd)
752{
753 struct packet_command cgc;
754
755 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
756 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
757 cgc.quiet = 1;
758
759 /*
760 * the IMMED bit -- we default to not setting it, although that
761 * would allow a much faster close, this is safer
762 */
763#if 0
764 cgc.cmd[1] = 1 << 1;
765#endif
766 return pkt_generic_packet(pd, &cgc);
767}
768
769/*
770 * speed is given as the normal factor, e.g. 4 for 4x
771 */
772static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
773 unsigned write_speed, unsigned read_speed)
774{
775 struct packet_command cgc;
776 struct scsi_sense_hdr sshdr;
777 int ret;
778
779 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
780 cgc.sshdr = &sshdr;
781 cgc.cmd[0] = GPCMD_SET_SPEED;
782 cgc.cmd[2] = (read_speed >> 8) & 0xff;
783 cgc.cmd[3] = read_speed & 0xff;
784 cgc.cmd[4] = (write_speed >> 8) & 0xff;
785 cgc.cmd[5] = write_speed & 0xff;
786
787 ret = pkt_generic_packet(pd, &cgc);
788 if (ret)
789 pkt_dump_sense(pd, &cgc);
790
791 return ret;
792}
793
794/*
795 * Queue a bio for processing by the low-level CD device. Must be called
796 * from process context.
797 */
798static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
799{
800 spin_lock(&pd->iosched.lock);
801 if (bio_data_dir(bio) == READ)
802 bio_list_add(&pd->iosched.read_queue, bio);
803 else
804 bio_list_add(&pd->iosched.write_queue, bio);
805 spin_unlock(&pd->iosched.lock);
806
807 atomic_set(&pd->iosched.attention, 1);
808 wake_up(&pd->wqueue);
809}
810
811/*
812 * Process the queued read/write requests. This function handles special
813 * requirements for CDRW drives:
814 * - A cache flush command must be inserted before a read request if the
815 * previous request was a write.
816 * - Switching between reading and writing is slow, so don't do it more often
817 * than necessary.
818 * - Optimize for throughput at the expense of latency. This means that streaming
819 * writes will never be interrupted by a read, but if the drive has to seek
820 * before the next write, switch to reading instead if there are any pending
821 * read requests.
822 * - Set the read speed according to current usage pattern. When only reading
823 * from the device, it's best to use the highest possible read speed, but
824 * when switching often between reading and writing, it's better to have the
825 * same read and write speeds.
826 */
827static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
828{
829
830 if (atomic_read(&pd->iosched.attention) == 0)
831 return;
832 atomic_set(&pd->iosched.attention, 0);
833
834 for (;;) {
835 struct bio *bio;
836 int reads_queued, writes_queued;
837
838 spin_lock(&pd->iosched.lock);
839 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
840 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
841 spin_unlock(&pd->iosched.lock);
842
843 if (!reads_queued && !writes_queued)
844 break;
845
846 if (pd->iosched.writing) {
847 int need_write_seek = 1;
848 spin_lock(&pd->iosched.lock);
849 bio = bio_list_peek(&pd->iosched.write_queue);
850 spin_unlock(&pd->iosched.lock);
851 if (bio && (bio->bi_iter.bi_sector ==
852 pd->iosched.last_write))
853 need_write_seek = 0;
854 if (need_write_seek && reads_queued) {
855 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
856 pkt_dbg(2, pd, "write, waiting\n");
857 break;
858 }
859 pkt_flush_cache(pd);
860 pd->iosched.writing = 0;
861 }
862 } else {
863 if (!reads_queued && writes_queued) {
864 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
865 pkt_dbg(2, pd, "read, waiting\n");
866 break;
867 }
868 pd->iosched.writing = 1;
869 }
870 }
871
872 spin_lock(&pd->iosched.lock);
873 if (pd->iosched.writing)
874 bio = bio_list_pop(&pd->iosched.write_queue);
875 else
876 bio = bio_list_pop(&pd->iosched.read_queue);
877 spin_unlock(&pd->iosched.lock);
878
879 if (!bio)
880 continue;
881
882 if (bio_data_dir(bio) == READ)
883 pd->iosched.successive_reads +=
884 bio->bi_iter.bi_size >> 10;
885 else {
886 pd->iosched.successive_reads = 0;
887 pd->iosched.last_write = bio_end_sector(bio);
888 }
889 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
890 if (pd->read_speed == pd->write_speed) {
891 pd->read_speed = MAX_SPEED;
892 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
893 }
894 } else {
895 if (pd->read_speed != pd->write_speed) {
896 pd->read_speed = pd->write_speed;
897 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
898 }
899 }
900
901 atomic_inc(&pd->cdrw.pending_bios);
902 submit_bio_noacct(bio);
903 }
904}
905
906/*
907 * Special care is needed if the underlying block device has a small
908 * max_phys_segments value.
909 */
910static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
911{
912 if ((pd->settings.size << 9) / CD_FRAMESIZE
913 <= queue_max_segments(q)) {
914 /*
915 * The cdrom device can handle one segment/frame
916 */
917 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
918 return 0;
919 } else if ((pd->settings.size << 9) / PAGE_SIZE
920 <= queue_max_segments(q)) {
921 /*
922 * We can handle this case at the expense of some extra memory
923 * copies during write operations
924 */
925 set_bit(PACKET_MERGE_SEGS, &pd->flags);
926 return 0;
927 } else {
928 pkt_err(pd, "cdrom max_phys_segments too small\n");
929 return -EIO;
930 }
931}
932
933static void pkt_end_io_read(struct bio *bio)
934{
935 struct packet_data *pkt = bio->bi_private;
936 struct pktcdvd_device *pd = pkt->pd;
937 BUG_ON(!pd);
938
939 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
940 bio, (unsigned long long)pkt->sector,
941 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
942
943 if (bio->bi_status)
944 atomic_inc(&pkt->io_errors);
945 bio_uninit(bio);
946 if (atomic_dec_and_test(&pkt->io_wait)) {
947 atomic_inc(&pkt->run_sm);
948 wake_up(&pd->wqueue);
949 }
950 pkt_bio_finished(pd);
951}
952
953static void pkt_end_io_packet_write(struct bio *bio)
954{
955 struct packet_data *pkt = bio->bi_private;
956 struct pktcdvd_device *pd = pkt->pd;
957 BUG_ON(!pd);
958
959 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
960
961 pd->stats.pkt_ended++;
962
963 bio_uninit(bio);
964 pkt_bio_finished(pd);
965 atomic_dec(&pkt->io_wait);
966 atomic_inc(&pkt->run_sm);
967 wake_up(&pd->wqueue);
968}
969
970/*
971 * Schedule reads for the holes in a packet
972 */
973static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
974{
975 int frames_read = 0;
976 struct bio *bio;
977 int f;
978 char written[PACKET_MAX_SIZE];
979
980 BUG_ON(bio_list_empty(&pkt->orig_bios));
981
982 atomic_set(&pkt->io_wait, 0);
983 atomic_set(&pkt->io_errors, 0);
984
985 /*
986 * Figure out which frames we need to read before we can write.
987 */
988 memset(written, 0, sizeof(written));
989 spin_lock(&pkt->lock);
990 bio_list_for_each(bio, &pkt->orig_bios) {
991 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
992 (CD_FRAMESIZE >> 9);
993 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
994 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
995 BUG_ON(first_frame < 0);
996 BUG_ON(first_frame + num_frames > pkt->frames);
997 for (f = first_frame; f < first_frame + num_frames; f++)
998 written[f] = 1;
999 }
1000 spin_unlock(&pkt->lock);
1001
1002 if (pkt->cache_valid) {
1003 pkt_dbg(2, pd, "zone %llx cached\n",
1004 (unsigned long long)pkt->sector);
1005 goto out_account;
1006 }
1007
1008 /*
1009 * Schedule reads for missing parts of the packet.
1010 */
1011 for (f = 0; f < pkt->frames; f++) {
1012 int p, offset;
1013
1014 if (written[f])
1015 continue;
1016
1017 bio = pkt->r_bios[f];
1018 bio_init(bio, pd->bdev, bio->bi_inline_vecs, 1, REQ_OP_READ);
1019 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1020 bio->bi_end_io = pkt_end_io_read;
1021 bio->bi_private = pkt;
1022
1023 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1024 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1025 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1026 f, pkt->pages[p], offset);
1027 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1028 BUG();
1029
1030 atomic_inc(&pkt->io_wait);
1031 pkt_queue_bio(pd, bio);
1032 frames_read++;
1033 }
1034
1035out_account:
1036 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1037 frames_read, (unsigned long long)pkt->sector);
1038 pd->stats.pkt_started++;
1039 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1040}
1041
1042/*
1043 * Find a packet matching zone, or the least recently used packet if
1044 * there is no match.
1045 */
1046static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1047{
1048 struct packet_data *pkt;
1049
1050 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1051 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1052 list_del_init(&pkt->list);
1053 if (pkt->sector != zone)
1054 pkt->cache_valid = 0;
1055 return pkt;
1056 }
1057 }
1058 BUG();
1059 return NULL;
1060}
1061
1062static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1063{
1064 if (pkt->cache_valid) {
1065 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1066 } else {
1067 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1068 }
1069}
1070
1071static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1072{
1073#if PACKET_DEBUG > 1
1074 static const char *state_name[] = {
1075 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1076 };
1077 enum packet_data_state old_state = pkt->state;
1078 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1079 pkt->id, (unsigned long long)pkt->sector,
1080 state_name[old_state], state_name[state]);
1081#endif
1082 pkt->state = state;
1083}
1084
1085/*
1086 * Scan the work queue to see if we can start a new packet.
1087 * returns non-zero if any work was done.
1088 */
1089static int pkt_handle_queue(struct pktcdvd_device *pd)
1090{
1091 struct packet_data *pkt, *p;
1092 struct bio *bio = NULL;
1093 sector_t zone = 0; /* Suppress gcc warning */
1094 struct pkt_rb_node *node, *first_node;
1095 struct rb_node *n;
1096
1097 atomic_set(&pd->scan_queue, 0);
1098
1099 if (list_empty(&pd->cdrw.pkt_free_list)) {
1100 pkt_dbg(2, pd, "no pkt\n");
1101 return 0;
1102 }
1103
1104 /*
1105 * Try to find a zone we are not already working on.
1106 */
1107 spin_lock(&pd->lock);
1108 first_node = pkt_rbtree_find(pd, pd->current_sector);
1109 if (!first_node) {
1110 n = rb_first(&pd->bio_queue);
1111 if (n)
1112 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1113 }
1114 node = first_node;
1115 while (node) {
1116 bio = node->bio;
1117 zone = get_zone(bio->bi_iter.bi_sector, pd);
1118 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1119 if (p->sector == zone) {
1120 bio = NULL;
1121 goto try_next_bio;
1122 }
1123 }
1124 break;
1125try_next_bio:
1126 node = pkt_rbtree_next(node);
1127 if (!node) {
1128 n = rb_first(&pd->bio_queue);
1129 if (n)
1130 node = rb_entry(n, struct pkt_rb_node, rb_node);
1131 }
1132 if (node == first_node)
1133 node = NULL;
1134 }
1135 spin_unlock(&pd->lock);
1136 if (!bio) {
1137 pkt_dbg(2, pd, "no bio\n");
1138 return 0;
1139 }
1140
1141 pkt = pkt_get_packet_data(pd, zone);
1142
1143 pd->current_sector = zone + pd->settings.size;
1144 pkt->sector = zone;
1145 BUG_ON(pkt->frames != pd->settings.size >> 2);
1146 pkt->write_size = 0;
1147
1148 /*
1149 * Scan work queue for bios in the same zone and link them
1150 * to this packet.
1151 */
1152 spin_lock(&pd->lock);
1153 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1154 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1155 bio = node->bio;
1156 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1157 get_zone(bio->bi_iter.bi_sector, pd));
1158 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1159 break;
1160 pkt_rbtree_erase(pd, node);
1161 spin_lock(&pkt->lock);
1162 bio_list_add(&pkt->orig_bios, bio);
1163 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1164 spin_unlock(&pkt->lock);
1165 }
1166 /* check write congestion marks, and if bio_queue_size is
1167 * below, wake up any waiters
1168 */
1169 if (pd->congested &&
1170 pd->bio_queue_size <= pd->write_congestion_off) {
1171 pd->congested = false;
1172 wake_up_var(&pd->congested);
1173 }
1174 spin_unlock(&pd->lock);
1175
1176 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1177 pkt_set_state(pkt, PACKET_WAITING_STATE);
1178 atomic_set(&pkt->run_sm, 1);
1179
1180 spin_lock(&pd->cdrw.active_list_lock);
1181 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1182 spin_unlock(&pd->cdrw.active_list_lock);
1183
1184 return 1;
1185}
1186
1187/**
1188 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1189 * another
1190 * @src: source bio list
1191 * @dst: destination bio list
1192 *
1193 * Stops when it reaches the end of either the @src list or @dst list - that is,
1194 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1195 * bios).
1196 */
1197static void bio_list_copy_data(struct bio *dst, struct bio *src)
1198{
1199 struct bvec_iter src_iter = src->bi_iter;
1200 struct bvec_iter dst_iter = dst->bi_iter;
1201
1202 while (1) {
1203 if (!src_iter.bi_size) {
1204 src = src->bi_next;
1205 if (!src)
1206 break;
1207
1208 src_iter = src->bi_iter;
1209 }
1210
1211 if (!dst_iter.bi_size) {
1212 dst = dst->bi_next;
1213 if (!dst)
1214 break;
1215
1216 dst_iter = dst->bi_iter;
1217 }
1218
1219 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1220 }
1221}
1222
1223/*
1224 * Assemble a bio to write one packet and queue the bio for processing
1225 * by the underlying block device.
1226 */
1227static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1228{
1229 int f;
1230
1231 bio_init(pkt->w_bio, pd->bdev, pkt->w_bio->bi_inline_vecs, pkt->frames,
1232 REQ_OP_WRITE);
1233 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1234 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1235 pkt->w_bio->bi_private = pkt;
1236
1237 /* XXX: locking? */
1238 for (f = 0; f < pkt->frames; f++) {
1239 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1240 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1241
1242 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1243 BUG();
1244 }
1245 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1246
1247 /*
1248 * Fill-in bvec with data from orig_bios.
1249 */
1250 spin_lock(&pkt->lock);
1251 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1252
1253 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1254 spin_unlock(&pkt->lock);
1255
1256 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1257 pkt->write_size, (unsigned long long)pkt->sector);
1258
1259 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1260 pkt->cache_valid = 1;
1261 else
1262 pkt->cache_valid = 0;
1263
1264 /* Start the write request */
1265 atomic_set(&pkt->io_wait, 1);
1266 pkt_queue_bio(pd, pkt->w_bio);
1267}
1268
1269static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1270{
1271 struct bio *bio;
1272
1273 if (status)
1274 pkt->cache_valid = 0;
1275
1276 /* Finish all bios corresponding to this packet */
1277 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1278 bio->bi_status = status;
1279 bio_endio(bio);
1280 }
1281}
1282
1283static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1284{
1285 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1286
1287 for (;;) {
1288 switch (pkt->state) {
1289 case PACKET_WAITING_STATE:
1290 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1291 return;
1292
1293 pkt->sleep_time = 0;
1294 pkt_gather_data(pd, pkt);
1295 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1296 break;
1297
1298 case PACKET_READ_WAIT_STATE:
1299 if (atomic_read(&pkt->io_wait) > 0)
1300 return;
1301
1302 if (atomic_read(&pkt->io_errors) > 0) {
1303 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1304 } else {
1305 pkt_start_write(pd, pkt);
1306 }
1307 break;
1308
1309 case PACKET_WRITE_WAIT_STATE:
1310 if (atomic_read(&pkt->io_wait) > 0)
1311 return;
1312
1313 if (!pkt->w_bio->bi_status) {
1314 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1315 } else {
1316 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1317 }
1318 break;
1319
1320 case PACKET_RECOVERY_STATE:
1321 pkt_dbg(2, pd, "No recovery possible\n");
1322 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1323 break;
1324
1325 case PACKET_FINISHED_STATE:
1326 pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1327 return;
1328
1329 default:
1330 BUG();
1331 break;
1332 }
1333 }
1334}
1335
1336static void pkt_handle_packets(struct pktcdvd_device *pd)
1337{
1338 struct packet_data *pkt, *next;
1339
1340 /*
1341 * Run state machine for active packets
1342 */
1343 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1344 if (atomic_read(&pkt->run_sm) > 0) {
1345 atomic_set(&pkt->run_sm, 0);
1346 pkt_run_state_machine(pd, pkt);
1347 }
1348 }
1349
1350 /*
1351 * Move no longer active packets to the free list
1352 */
1353 spin_lock(&pd->cdrw.active_list_lock);
1354 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1355 if (pkt->state == PACKET_FINISHED_STATE) {
1356 list_del(&pkt->list);
1357 pkt_put_packet_data(pd, pkt);
1358 pkt_set_state(pkt, PACKET_IDLE_STATE);
1359 atomic_set(&pd->scan_queue, 1);
1360 }
1361 }
1362 spin_unlock(&pd->cdrw.active_list_lock);
1363}
1364
1365static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1366{
1367 struct packet_data *pkt;
1368 int i;
1369
1370 for (i = 0; i < PACKET_NUM_STATES; i++)
1371 states[i] = 0;
1372
1373 spin_lock(&pd->cdrw.active_list_lock);
1374 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1375 states[pkt->state]++;
1376 }
1377 spin_unlock(&pd->cdrw.active_list_lock);
1378}
1379
1380/*
1381 * kcdrwd is woken up when writes have been queued for one of our
1382 * registered devices
1383 */
1384static int kcdrwd(void *foobar)
1385{
1386 struct pktcdvd_device *pd = foobar;
1387 struct packet_data *pkt;
1388 long min_sleep_time, residue;
1389
1390 set_user_nice(current, MIN_NICE);
1391 set_freezable();
1392
1393 for (;;) {
1394 DECLARE_WAITQUEUE(wait, current);
1395
1396 /*
1397 * Wait until there is something to do
1398 */
1399 add_wait_queue(&pd->wqueue, &wait);
1400 for (;;) {
1401 set_current_state(TASK_INTERRUPTIBLE);
1402
1403 /* Check if we need to run pkt_handle_queue */
1404 if (atomic_read(&pd->scan_queue) > 0)
1405 goto work_to_do;
1406
1407 /* Check if we need to run the state machine for some packet */
1408 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1409 if (atomic_read(&pkt->run_sm) > 0)
1410 goto work_to_do;
1411 }
1412
1413 /* Check if we need to process the iosched queues */
1414 if (atomic_read(&pd->iosched.attention) != 0)
1415 goto work_to_do;
1416
1417 /* Otherwise, go to sleep */
1418 if (PACKET_DEBUG > 1) {
1419 int states[PACKET_NUM_STATES];
1420 pkt_count_states(pd, states);
1421 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1422 states[0], states[1], states[2],
1423 states[3], states[4], states[5]);
1424 }
1425
1426 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1427 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1428 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1429 min_sleep_time = pkt->sleep_time;
1430 }
1431
1432 pkt_dbg(2, pd, "sleeping\n");
1433 residue = schedule_timeout(min_sleep_time);
1434 pkt_dbg(2, pd, "wake up\n");
1435
1436 /* make swsusp happy with our thread */
1437 try_to_freeze();
1438
1439 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1440 if (!pkt->sleep_time)
1441 continue;
1442 pkt->sleep_time -= min_sleep_time - residue;
1443 if (pkt->sleep_time <= 0) {
1444 pkt->sleep_time = 0;
1445 atomic_inc(&pkt->run_sm);
1446 }
1447 }
1448
1449 if (kthread_should_stop())
1450 break;
1451 }
1452work_to_do:
1453 set_current_state(TASK_RUNNING);
1454 remove_wait_queue(&pd->wqueue, &wait);
1455
1456 if (kthread_should_stop())
1457 break;
1458
1459 /*
1460 * if pkt_handle_queue returns true, we can queue
1461 * another request.
1462 */
1463 while (pkt_handle_queue(pd))
1464 ;
1465
1466 /*
1467 * Handle packet state machine
1468 */
1469 pkt_handle_packets(pd);
1470
1471 /*
1472 * Handle iosched queues
1473 */
1474 pkt_iosched_process_queue(pd);
1475 }
1476
1477 return 0;
1478}
1479
1480static void pkt_print_settings(struct pktcdvd_device *pd)
1481{
1482 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1483 pd->settings.fp ? "Fixed" : "Variable",
1484 pd->settings.size >> 2,
1485 pd->settings.block_mode == 8 ? '1' : '2');
1486}
1487
1488static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1489{
1490 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1491
1492 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1493 cgc->cmd[2] = page_code | (page_control << 6);
1494 cgc->cmd[7] = cgc->buflen >> 8;
1495 cgc->cmd[8] = cgc->buflen & 0xff;
1496 cgc->data_direction = CGC_DATA_READ;
1497 return pkt_generic_packet(pd, cgc);
1498}
1499
1500static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1501{
1502 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1503 memset(cgc->buffer, 0, 2);
1504 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1505 cgc->cmd[1] = 0x10; /* PF */
1506 cgc->cmd[7] = cgc->buflen >> 8;
1507 cgc->cmd[8] = cgc->buflen & 0xff;
1508 cgc->data_direction = CGC_DATA_WRITE;
1509 return pkt_generic_packet(pd, cgc);
1510}
1511
1512static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1513{
1514 struct packet_command cgc;
1515 int ret;
1516
1517 /* set up command and get the disc info */
1518 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1519 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1520 cgc.cmd[8] = cgc.buflen = 2;
1521 cgc.quiet = 1;
1522
1523 ret = pkt_generic_packet(pd, &cgc);
1524 if (ret)
1525 return ret;
1526
1527 /* not all drives have the same disc_info length, so requeue
1528 * packet with the length the drive tells us it can supply
1529 */
1530 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1531 sizeof(di->disc_information_length);
1532
1533 if (cgc.buflen > sizeof(disc_information))
1534 cgc.buflen = sizeof(disc_information);
1535
1536 cgc.cmd[8] = cgc.buflen;
1537 return pkt_generic_packet(pd, &cgc);
1538}
1539
1540static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1541{
1542 struct packet_command cgc;
1543 int ret;
1544
1545 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1546 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1547 cgc.cmd[1] = type & 3;
1548 cgc.cmd[4] = (track & 0xff00) >> 8;
1549 cgc.cmd[5] = track & 0xff;
1550 cgc.cmd[8] = 8;
1551 cgc.quiet = 1;
1552
1553 ret = pkt_generic_packet(pd, &cgc);
1554 if (ret)
1555 return ret;
1556
1557 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1558 sizeof(ti->track_information_length);
1559
1560 if (cgc.buflen > sizeof(track_information))
1561 cgc.buflen = sizeof(track_information);
1562
1563 cgc.cmd[8] = cgc.buflen;
1564 return pkt_generic_packet(pd, &cgc);
1565}
1566
1567static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1568 long *last_written)
1569{
1570 disc_information di;
1571 track_information ti;
1572 __u32 last_track;
1573 int ret;
1574
1575 ret = pkt_get_disc_info(pd, &di);
1576 if (ret)
1577 return ret;
1578
1579 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1580 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1581 if (ret)
1582 return ret;
1583
1584 /* if this track is blank, try the previous. */
1585 if (ti.blank) {
1586 last_track--;
1587 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1588 if (ret)
1589 return ret;
1590 }
1591
1592 /* if last recorded field is valid, return it. */
1593 if (ti.lra_v) {
1594 *last_written = be32_to_cpu(ti.last_rec_address);
1595 } else {
1596 /* make it up instead */
1597 *last_written = be32_to_cpu(ti.track_start) +
1598 be32_to_cpu(ti.track_size);
1599 if (ti.free_blocks)
1600 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1601 }
1602 return 0;
1603}
1604
1605/*
1606 * write mode select package based on pd->settings
1607 */
1608static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1609{
1610 struct packet_command cgc;
1611 struct scsi_sense_hdr sshdr;
1612 write_param_page *wp;
1613 char buffer[128];
1614 int ret, size;
1615
1616 /* doesn't apply to DVD+RW or DVD-RAM */
1617 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1618 return 0;
1619
1620 memset(buffer, 0, sizeof(buffer));
1621 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1622 cgc.sshdr = &sshdr;
1623 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1624 if (ret) {
1625 pkt_dump_sense(pd, &cgc);
1626 return ret;
1627 }
1628
1629 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1630 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1631 if (size > sizeof(buffer))
1632 size = sizeof(buffer);
1633
1634 /*
1635 * now get it all
1636 */
1637 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1638 cgc.sshdr = &sshdr;
1639 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1640 if (ret) {
1641 pkt_dump_sense(pd, &cgc);
1642 return ret;
1643 }
1644
1645 /*
1646 * write page is offset header + block descriptor length
1647 */
1648 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1649
1650 wp->fp = pd->settings.fp;
1651 wp->track_mode = pd->settings.track_mode;
1652 wp->write_type = pd->settings.write_type;
1653 wp->data_block_type = pd->settings.block_mode;
1654
1655 wp->multi_session = 0;
1656
1657#ifdef PACKET_USE_LS
1658 wp->link_size = 7;
1659 wp->ls_v = 1;
1660#endif
1661
1662 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1663 wp->session_format = 0;
1664 wp->subhdr2 = 0x20;
1665 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1666 wp->session_format = 0x20;
1667 wp->subhdr2 = 8;
1668#if 0
1669 wp->mcn[0] = 0x80;
1670 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1671#endif
1672 } else {
1673 /*
1674 * paranoia
1675 */
1676 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1677 return 1;
1678 }
1679 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1680
1681 cgc.buflen = cgc.cmd[8] = size;
1682 ret = pkt_mode_select(pd, &cgc);
1683 if (ret) {
1684 pkt_dump_sense(pd, &cgc);
1685 return ret;
1686 }
1687
1688 pkt_print_settings(pd);
1689 return 0;
1690}
1691
1692/*
1693 * 1 -- we can write to this track, 0 -- we can't
1694 */
1695static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1696{
1697 switch (pd->mmc3_profile) {
1698 case 0x1a: /* DVD+RW */
1699 case 0x12: /* DVD-RAM */
1700 /* The track is always writable on DVD+RW/DVD-RAM */
1701 return 1;
1702 default:
1703 break;
1704 }
1705
1706 if (!ti->packet || !ti->fp)
1707 return 0;
1708
1709 /*
1710 * "good" settings as per Mt Fuji.
1711 */
1712 if (ti->rt == 0 && ti->blank == 0)
1713 return 1;
1714
1715 if (ti->rt == 0 && ti->blank == 1)
1716 return 1;
1717
1718 if (ti->rt == 1 && ti->blank == 0)
1719 return 1;
1720
1721 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1722 return 0;
1723}
1724
1725/*
1726 * 1 -- we can write to this disc, 0 -- we can't
1727 */
1728static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1729{
1730 switch (pd->mmc3_profile) {
1731 case 0x0a: /* CD-RW */
1732 case 0xffff: /* MMC3 not supported */
1733 break;
1734 case 0x1a: /* DVD+RW */
1735 case 0x13: /* DVD-RW */
1736 case 0x12: /* DVD-RAM */
1737 return 1;
1738 default:
1739 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1740 pd->mmc3_profile);
1741 return 0;
1742 }
1743
1744 /*
1745 * for disc type 0xff we should probably reserve a new track.
1746 * but i'm not sure, should we leave this to user apps? probably.
1747 */
1748 if (di->disc_type == 0xff) {
1749 pkt_notice(pd, "unknown disc - no track?\n");
1750 return 0;
1751 }
1752
1753 if (di->disc_type != 0x20 && di->disc_type != 0) {
1754 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1755 return 0;
1756 }
1757
1758 if (di->erasable == 0) {
1759 pkt_notice(pd, "disc not erasable\n");
1760 return 0;
1761 }
1762
1763 if (di->border_status == PACKET_SESSION_RESERVED) {
1764 pkt_err(pd, "can't write to last track (reserved)\n");
1765 return 0;
1766 }
1767
1768 return 1;
1769}
1770
1771static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1772{
1773 struct packet_command cgc;
1774 unsigned char buf[12];
1775 disc_information di;
1776 track_information ti;
1777 int ret, track;
1778
1779 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1780 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1781 cgc.cmd[8] = 8;
1782 ret = pkt_generic_packet(pd, &cgc);
1783 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1784
1785 memset(&di, 0, sizeof(disc_information));
1786 memset(&ti, 0, sizeof(track_information));
1787
1788 ret = pkt_get_disc_info(pd, &di);
1789 if (ret) {
1790 pkt_err(pd, "failed get_disc\n");
1791 return ret;
1792 }
1793
1794 if (!pkt_writable_disc(pd, &di))
1795 return -EROFS;
1796
1797 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1798
1799 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1800 ret = pkt_get_track_info(pd, track, 1, &ti);
1801 if (ret) {
1802 pkt_err(pd, "failed get_track\n");
1803 return ret;
1804 }
1805
1806 if (!pkt_writable_track(pd, &ti)) {
1807 pkt_err(pd, "can't write to this track\n");
1808 return -EROFS;
1809 }
1810
1811 /*
1812 * we keep packet size in 512 byte units, makes it easier to
1813 * deal with request calculations.
1814 */
1815 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1816 if (pd->settings.size == 0) {
1817 pkt_notice(pd, "detected zero packet size!\n");
1818 return -ENXIO;
1819 }
1820 if (pd->settings.size > PACKET_MAX_SECTORS) {
1821 pkt_err(pd, "packet size is too big\n");
1822 return -EROFS;
1823 }
1824 pd->settings.fp = ti.fp;
1825 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1826
1827 if (ti.nwa_v) {
1828 pd->nwa = be32_to_cpu(ti.next_writable);
1829 set_bit(PACKET_NWA_VALID, &pd->flags);
1830 }
1831
1832 /*
1833 * in theory we could use lra on -RW media as well and just zero
1834 * blocks that haven't been written yet, but in practice that
1835 * is just a no-go. we'll use that for -R, naturally.
1836 */
1837 if (ti.lra_v) {
1838 pd->lra = be32_to_cpu(ti.last_rec_address);
1839 set_bit(PACKET_LRA_VALID, &pd->flags);
1840 } else {
1841 pd->lra = 0xffffffff;
1842 set_bit(PACKET_LRA_VALID, &pd->flags);
1843 }
1844
1845 /*
1846 * fine for now
1847 */
1848 pd->settings.link_loss = 7;
1849 pd->settings.write_type = 0; /* packet */
1850 pd->settings.track_mode = ti.track_mode;
1851
1852 /*
1853 * mode1 or mode2 disc
1854 */
1855 switch (ti.data_mode) {
1856 case PACKET_MODE1:
1857 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1858 break;
1859 case PACKET_MODE2:
1860 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1861 break;
1862 default:
1863 pkt_err(pd, "unknown data mode\n");
1864 return -EROFS;
1865 }
1866 return 0;
1867}
1868
1869/*
1870 * enable/disable write caching on drive
1871 */
1872static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1873 int set)
1874{
1875 struct packet_command cgc;
1876 struct scsi_sense_hdr sshdr;
1877 unsigned char buf[64];
1878 int ret;
1879
1880 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1881 cgc.sshdr = &sshdr;
1882 cgc.buflen = pd->mode_offset + 12;
1883
1884 /*
1885 * caching mode page might not be there, so quiet this command
1886 */
1887 cgc.quiet = 1;
1888
1889 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1890 if (ret)
1891 return ret;
1892
1893 buf[pd->mode_offset + 10] |= (!!set << 2);
1894
1895 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1896 ret = pkt_mode_select(pd, &cgc);
1897 if (ret) {
1898 pkt_err(pd, "write caching control failed\n");
1899 pkt_dump_sense(pd, &cgc);
1900 } else if (!ret && set)
1901 pkt_notice(pd, "enabled write caching\n");
1902 return ret;
1903}
1904
1905static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1906{
1907 struct packet_command cgc;
1908
1909 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1910 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1911 cgc.cmd[4] = lockflag ? 1 : 0;
1912 return pkt_generic_packet(pd, &cgc);
1913}
1914
1915/*
1916 * Returns drive maximum write speed
1917 */
1918static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1919 unsigned *write_speed)
1920{
1921 struct packet_command cgc;
1922 struct scsi_sense_hdr sshdr;
1923 unsigned char buf[256+18];
1924 unsigned char *cap_buf;
1925 int ret, offset;
1926
1927 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1928 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1929 cgc.sshdr = &sshdr;
1930
1931 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1932 if (ret) {
1933 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1934 sizeof(struct mode_page_header);
1935 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1936 if (ret) {
1937 pkt_dump_sense(pd, &cgc);
1938 return ret;
1939 }
1940 }
1941
1942 offset = 20; /* Obsoleted field, used by older drives */
1943 if (cap_buf[1] >= 28)
1944 offset = 28; /* Current write speed selected */
1945 if (cap_buf[1] >= 30) {
1946 /* If the drive reports at least one "Logical Unit Write
1947 * Speed Performance Descriptor Block", use the information
1948 * in the first block. (contains the highest speed)
1949 */
1950 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1951 if (num_spdb > 0)
1952 offset = 34;
1953 }
1954
1955 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1956 return 0;
1957}
1958
1959/* These tables from cdrecord - I don't have orange book */
1960/* standard speed CD-RW (1-4x) */
1961static char clv_to_speed[16] = {
1962 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1963 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1964};
1965/* high speed CD-RW (-10x) */
1966static char hs_clv_to_speed[16] = {
1967 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1968 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1969};
1970/* ultra high speed CD-RW */
1971static char us_clv_to_speed[16] = {
1972 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1973 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1974};
1975
1976/*
1977 * reads the maximum media speed from ATIP
1978 */
1979static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
1980 unsigned *speed)
1981{
1982 struct packet_command cgc;
1983 struct scsi_sense_hdr sshdr;
1984 unsigned char buf[64];
1985 unsigned int size, st, sp;
1986 int ret;
1987
1988 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1989 cgc.sshdr = &sshdr;
1990 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1991 cgc.cmd[1] = 2;
1992 cgc.cmd[2] = 4; /* READ ATIP */
1993 cgc.cmd[8] = 2;
1994 ret = pkt_generic_packet(pd, &cgc);
1995 if (ret) {
1996 pkt_dump_sense(pd, &cgc);
1997 return ret;
1998 }
1999 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2000 if (size > sizeof(buf))
2001 size = sizeof(buf);
2002
2003 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2004 cgc.sshdr = &sshdr;
2005 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2006 cgc.cmd[1] = 2;
2007 cgc.cmd[2] = 4;
2008 cgc.cmd[8] = size;
2009 ret = pkt_generic_packet(pd, &cgc);
2010 if (ret) {
2011 pkt_dump_sense(pd, &cgc);
2012 return ret;
2013 }
2014
2015 if (!(buf[6] & 0x40)) {
2016 pkt_notice(pd, "disc type is not CD-RW\n");
2017 return 1;
2018 }
2019 if (!(buf[6] & 0x4)) {
2020 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2021 return 1;
2022 }
2023
2024 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2025
2026 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2027
2028 /* Info from cdrecord */
2029 switch (st) {
2030 case 0: /* standard speed */
2031 *speed = clv_to_speed[sp];
2032 break;
2033 case 1: /* high speed */
2034 *speed = hs_clv_to_speed[sp];
2035 break;
2036 case 2: /* ultra high speed */
2037 *speed = us_clv_to_speed[sp];
2038 break;
2039 default:
2040 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2041 return 1;
2042 }
2043 if (*speed) {
2044 pkt_info(pd, "maximum media speed: %d\n", *speed);
2045 return 0;
2046 } else {
2047 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2048 return 1;
2049 }
2050}
2051
2052static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2053{
2054 struct packet_command cgc;
2055 struct scsi_sense_hdr sshdr;
2056 int ret;
2057
2058 pkt_dbg(2, pd, "Performing OPC\n");
2059
2060 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2061 cgc.sshdr = &sshdr;
2062 cgc.timeout = 60*HZ;
2063 cgc.cmd[0] = GPCMD_SEND_OPC;
2064 cgc.cmd[1] = 1;
2065 ret = pkt_generic_packet(pd, &cgc);
2066 if (ret)
2067 pkt_dump_sense(pd, &cgc);
2068 return ret;
2069}
2070
2071static int pkt_open_write(struct pktcdvd_device *pd)
2072{
2073 int ret;
2074 unsigned int write_speed, media_write_speed, read_speed;
2075
2076 ret = pkt_probe_settings(pd);
2077 if (ret) {
2078 pkt_dbg(2, pd, "failed probe\n");
2079 return ret;
2080 }
2081
2082 ret = pkt_set_write_settings(pd);
2083 if (ret) {
2084 pkt_dbg(1, pd, "failed saving write settings\n");
2085 return -EIO;
2086 }
2087
2088 pkt_write_caching(pd, USE_WCACHING);
2089
2090 ret = pkt_get_max_speed(pd, &write_speed);
2091 if (ret)
2092 write_speed = 16 * 177;
2093 switch (pd->mmc3_profile) {
2094 case 0x13: /* DVD-RW */
2095 case 0x1a: /* DVD+RW */
2096 case 0x12: /* DVD-RAM */
2097 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2098 break;
2099 default:
2100 ret = pkt_media_speed(pd, &media_write_speed);
2101 if (ret)
2102 media_write_speed = 16;
2103 write_speed = min(write_speed, media_write_speed * 177);
2104 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2105 break;
2106 }
2107 read_speed = write_speed;
2108
2109 ret = pkt_set_speed(pd, write_speed, read_speed);
2110 if (ret) {
2111 pkt_dbg(1, pd, "couldn't set write speed\n");
2112 return -EIO;
2113 }
2114 pd->write_speed = write_speed;
2115 pd->read_speed = read_speed;
2116
2117 ret = pkt_perform_opc(pd);
2118 if (ret) {
2119 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2120 }
2121
2122 return 0;
2123}
2124
2125/*
2126 * called at open time.
2127 */
2128static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2129{
2130 int ret;
2131 long lba;
2132 struct request_queue *q;
2133 struct block_device *bdev;
2134
2135 /*
2136 * We need to re-open the cdrom device without O_NONBLOCK to be able
2137 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2138 * so open should not fail.
2139 */
2140 bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd);
2141 if (IS_ERR(bdev)) {
2142 ret = PTR_ERR(bdev);
2143 goto out;
2144 }
2145
2146 ret = pkt_get_last_written(pd, &lba);
2147 if (ret) {
2148 pkt_err(pd, "pkt_get_last_written failed\n");
2149 goto out_putdev;
2150 }
2151
2152 set_capacity(pd->disk, lba << 2);
2153 set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2154
2155 q = bdev_get_queue(pd->bdev);
2156 if (write) {
2157 ret = pkt_open_write(pd);
2158 if (ret)
2159 goto out_putdev;
2160 /*
2161 * Some CDRW drives can not handle writes larger than one packet,
2162 * even if the size is a multiple of the packet size.
2163 */
2164 blk_queue_max_hw_sectors(q, pd->settings.size);
2165 set_bit(PACKET_WRITABLE, &pd->flags);
2166 } else {
2167 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2168 clear_bit(PACKET_WRITABLE, &pd->flags);
2169 }
2170
2171 ret = pkt_set_segment_merging(pd, q);
2172 if (ret)
2173 goto out_putdev;
2174
2175 if (write) {
2176 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2177 pkt_err(pd, "not enough memory for buffers\n");
2178 ret = -ENOMEM;
2179 goto out_putdev;
2180 }
2181 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2182 }
2183
2184 return 0;
2185
2186out_putdev:
2187 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2188out:
2189 return ret;
2190}
2191
2192/*
2193 * called when the device is closed. makes sure that the device flushes
2194 * the internal cache before we close.
2195 */
2196static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2197{
2198 if (flush && pkt_flush_cache(pd))
2199 pkt_dbg(1, pd, "not flushing cache\n");
2200
2201 pkt_lock_door(pd, 0);
2202
2203 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2204 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2205
2206 pkt_shrink_pktlist(pd);
2207}
2208
2209static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2210{
2211 if (dev_minor >= MAX_WRITERS)
2212 return NULL;
2213
2214 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2215 return pkt_devs[dev_minor];
2216}
2217
2218static int pkt_open(struct block_device *bdev, fmode_t mode)
2219{
2220 struct pktcdvd_device *pd = NULL;
2221 int ret;
2222
2223 mutex_lock(&pktcdvd_mutex);
2224 mutex_lock(&ctl_mutex);
2225 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2226 if (!pd) {
2227 ret = -ENODEV;
2228 goto out;
2229 }
2230 BUG_ON(pd->refcnt < 0);
2231
2232 pd->refcnt++;
2233 if (pd->refcnt > 1) {
2234 if ((mode & FMODE_WRITE) &&
2235 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2236 ret = -EBUSY;
2237 goto out_dec;
2238 }
2239 } else {
2240 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2241 if (ret)
2242 goto out_dec;
2243 /*
2244 * needed here as well, since ext2 (among others) may change
2245 * the blocksize at mount time
2246 */
2247 set_blocksize(bdev, CD_FRAMESIZE);
2248 }
2249
2250 mutex_unlock(&ctl_mutex);
2251 mutex_unlock(&pktcdvd_mutex);
2252 return 0;
2253
2254out_dec:
2255 pd->refcnt--;
2256out:
2257 mutex_unlock(&ctl_mutex);
2258 mutex_unlock(&pktcdvd_mutex);
2259 return ret;
2260}
2261
2262static void pkt_close(struct gendisk *disk, fmode_t mode)
2263{
2264 struct pktcdvd_device *pd = disk->private_data;
2265
2266 mutex_lock(&pktcdvd_mutex);
2267 mutex_lock(&ctl_mutex);
2268 pd->refcnt--;
2269 BUG_ON(pd->refcnt < 0);
2270 if (pd->refcnt == 0) {
2271 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2272 pkt_release_dev(pd, flush);
2273 }
2274 mutex_unlock(&ctl_mutex);
2275 mutex_unlock(&pktcdvd_mutex);
2276}
2277
2278
2279static void pkt_end_io_read_cloned(struct bio *bio)
2280{
2281 struct packet_stacked_data *psd = bio->bi_private;
2282 struct pktcdvd_device *pd = psd->pd;
2283
2284 psd->bio->bi_status = bio->bi_status;
2285 bio_put(bio);
2286 bio_endio(psd->bio);
2287 mempool_free(psd, &psd_pool);
2288 pkt_bio_finished(pd);
2289}
2290
2291static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2292{
2293 struct bio *cloned_bio =
2294 bio_alloc_clone(pd->bdev, bio, GFP_NOIO, &pkt_bio_set);
2295 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2296
2297 psd->pd = pd;
2298 psd->bio = bio;
2299 cloned_bio->bi_private = psd;
2300 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2301 pd->stats.secs_r += bio_sectors(bio);
2302 pkt_queue_bio(pd, cloned_bio);
2303}
2304
2305static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2306{
2307 struct pktcdvd_device *pd = q->queuedata;
2308 sector_t zone;
2309 struct packet_data *pkt;
2310 int was_empty, blocked_bio;
2311 struct pkt_rb_node *node;
2312
2313 zone = get_zone(bio->bi_iter.bi_sector, pd);
2314
2315 /*
2316 * If we find a matching packet in state WAITING or READ_WAIT, we can
2317 * just append this bio to that packet.
2318 */
2319 spin_lock(&pd->cdrw.active_list_lock);
2320 blocked_bio = 0;
2321 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2322 if (pkt->sector == zone) {
2323 spin_lock(&pkt->lock);
2324 if ((pkt->state == PACKET_WAITING_STATE) ||
2325 (pkt->state == PACKET_READ_WAIT_STATE)) {
2326 bio_list_add(&pkt->orig_bios, bio);
2327 pkt->write_size +=
2328 bio->bi_iter.bi_size / CD_FRAMESIZE;
2329 if ((pkt->write_size >= pkt->frames) &&
2330 (pkt->state == PACKET_WAITING_STATE)) {
2331 atomic_inc(&pkt->run_sm);
2332 wake_up(&pd->wqueue);
2333 }
2334 spin_unlock(&pkt->lock);
2335 spin_unlock(&pd->cdrw.active_list_lock);
2336 return;
2337 } else {
2338 blocked_bio = 1;
2339 }
2340 spin_unlock(&pkt->lock);
2341 }
2342 }
2343 spin_unlock(&pd->cdrw.active_list_lock);
2344
2345 /*
2346 * Test if there is enough room left in the bio work queue
2347 * (queue size >= congestion on mark).
2348 * If not, wait till the work queue size is below the congestion off mark.
2349 */
2350 spin_lock(&pd->lock);
2351 if (pd->write_congestion_on > 0
2352 && pd->bio_queue_size >= pd->write_congestion_on) {
2353 struct wait_bit_queue_entry wqe;
2354
2355 init_wait_var_entry(&wqe, &pd->congested, 0);
2356 for (;;) {
2357 prepare_to_wait_event(__var_waitqueue(&pd->congested),
2358 &wqe.wq_entry,
2359 TASK_UNINTERRUPTIBLE);
2360 if (pd->bio_queue_size <= pd->write_congestion_off)
2361 break;
2362 pd->congested = true;
2363 spin_unlock(&pd->lock);
2364 schedule();
2365 spin_lock(&pd->lock);
2366 }
2367 }
2368 spin_unlock(&pd->lock);
2369
2370 /*
2371 * No matching packet found. Store the bio in the work queue.
2372 */
2373 node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2374 node->bio = bio;
2375 spin_lock(&pd->lock);
2376 BUG_ON(pd->bio_queue_size < 0);
2377 was_empty = (pd->bio_queue_size == 0);
2378 pkt_rbtree_insert(pd, node);
2379 spin_unlock(&pd->lock);
2380
2381 /*
2382 * Wake up the worker thread.
2383 */
2384 atomic_set(&pd->scan_queue, 1);
2385 if (was_empty) {
2386 /* This wake_up is required for correct operation */
2387 wake_up(&pd->wqueue);
2388 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2389 /*
2390 * This wake up is not required for correct operation,
2391 * but improves performance in some cases.
2392 */
2393 wake_up(&pd->wqueue);
2394 }
2395}
2396
2397static void pkt_submit_bio(struct bio *bio)
2398{
2399 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata;
2400 struct bio *split;
2401
2402 bio = bio_split_to_limits(bio);
2403 if (!bio)
2404 return;
2405
2406 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2407 (unsigned long long)bio->bi_iter.bi_sector,
2408 (unsigned long long)bio_end_sector(bio));
2409
2410 /*
2411 * Clone READ bios so we can have our own bi_end_io callback.
2412 */
2413 if (bio_data_dir(bio) == READ) {
2414 pkt_make_request_read(pd, bio);
2415 return;
2416 }
2417
2418 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2419 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2420 (unsigned long long)bio->bi_iter.bi_sector);
2421 goto end_io;
2422 }
2423
2424 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2425 pkt_err(pd, "wrong bio size\n");
2426 goto end_io;
2427 }
2428
2429 do {
2430 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2431 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2432
2433 if (last_zone != zone) {
2434 BUG_ON(last_zone != zone + pd->settings.size);
2435
2436 split = bio_split(bio, last_zone -
2437 bio->bi_iter.bi_sector,
2438 GFP_NOIO, &pkt_bio_set);
2439 bio_chain(split, bio);
2440 } else {
2441 split = bio;
2442 }
2443
2444 pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2445 } while (split != bio);
2446
2447 return;
2448end_io:
2449 bio_io_error(bio);
2450}
2451
2452static void pkt_init_queue(struct pktcdvd_device *pd)
2453{
2454 struct request_queue *q = pd->disk->queue;
2455
2456 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2457 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2458 q->queuedata = pd;
2459}
2460
2461static int pkt_seq_show(struct seq_file *m, void *p)
2462{
2463 struct pktcdvd_device *pd = m->private;
2464 char *msg;
2465 int states[PACKET_NUM_STATES];
2466
2467 seq_printf(m, "Writer %s mapped to %pg:\n", pd->name, pd->bdev);
2468
2469 seq_printf(m, "\nSettings:\n");
2470 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2471
2472 if (pd->settings.write_type == 0)
2473 msg = "Packet";
2474 else
2475 msg = "Unknown";
2476 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2477
2478 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2479 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2480
2481 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2482
2483 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2484 msg = "Mode 1";
2485 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2486 msg = "Mode 2";
2487 else
2488 msg = "Unknown";
2489 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2490
2491 seq_printf(m, "\nStatistics:\n");
2492 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2493 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2494 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2495 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2496 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2497
2498 seq_printf(m, "\nMisc:\n");
2499 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2500 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2501 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2502 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2503 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2504 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2505
2506 seq_printf(m, "\nQueue state:\n");
2507 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2508 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2509 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2510
2511 pkt_count_states(pd, states);
2512 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2513 states[0], states[1], states[2], states[3], states[4], states[5]);
2514
2515 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2516 pd->write_congestion_off,
2517 pd->write_congestion_on);
2518 return 0;
2519}
2520
2521static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2522{
2523 int i;
2524 struct block_device *bdev;
2525 struct scsi_device *sdev;
2526
2527 if (pd->pkt_dev == dev) {
2528 pkt_err(pd, "recursive setup not allowed\n");
2529 return -EBUSY;
2530 }
2531 for (i = 0; i < MAX_WRITERS; i++) {
2532 struct pktcdvd_device *pd2 = pkt_devs[i];
2533 if (!pd2)
2534 continue;
2535 if (pd2->bdev->bd_dev == dev) {
2536 pkt_err(pd, "%pg already setup\n", pd2->bdev);
2537 return -EBUSY;
2538 }
2539 if (pd2->pkt_dev == dev) {
2540 pkt_err(pd, "can't chain pktcdvd devices\n");
2541 return -EBUSY;
2542 }
2543 }
2544
2545 bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL);
2546 if (IS_ERR(bdev))
2547 return PTR_ERR(bdev);
2548 sdev = scsi_device_from_queue(bdev->bd_disk->queue);
2549 if (!sdev) {
2550 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2551 return -EINVAL;
2552 }
2553 put_device(&sdev->sdev_gendev);
2554
2555 /* This is safe, since we have a reference from open(). */
2556 __module_get(THIS_MODULE);
2557
2558 pd->bdev = bdev;
2559 set_blocksize(bdev, CD_FRAMESIZE);
2560
2561 pkt_init_queue(pd);
2562
2563 atomic_set(&pd->cdrw.pending_bios, 0);
2564 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2565 if (IS_ERR(pd->cdrw.thread)) {
2566 pkt_err(pd, "can't start kernel thread\n");
2567 goto out_mem;
2568 }
2569
2570 proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2571 pkt_dbg(1, pd, "writer mapped to %pg\n", bdev);
2572 return 0;
2573
2574out_mem:
2575 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2576 /* This is safe: open() is still holding a reference. */
2577 module_put(THIS_MODULE);
2578 return -ENOMEM;
2579}
2580
2581static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2582{
2583 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2584 int ret;
2585
2586 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2587 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2588
2589 mutex_lock(&pktcdvd_mutex);
2590 switch (cmd) {
2591 case CDROMEJECT:
2592 /*
2593 * The door gets locked when the device is opened, so we
2594 * have to unlock it or else the eject command fails.
2595 */
2596 if (pd->refcnt == 1)
2597 pkt_lock_door(pd, 0);
2598 fallthrough;
2599 /*
2600 * forward selected CDROM ioctls to CD-ROM, for UDF
2601 */
2602 case CDROMMULTISESSION:
2603 case CDROMREADTOCENTRY:
2604 case CDROM_LAST_WRITTEN:
2605 case CDROM_SEND_PACKET:
2606 case SCSI_IOCTL_SEND_COMMAND:
2607 if (!bdev->bd_disk->fops->ioctl)
2608 ret = -ENOTTY;
2609 else
2610 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2611 break;
2612 default:
2613 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2614 ret = -ENOTTY;
2615 }
2616 mutex_unlock(&pktcdvd_mutex);
2617
2618 return ret;
2619}
2620
2621static unsigned int pkt_check_events(struct gendisk *disk,
2622 unsigned int clearing)
2623{
2624 struct pktcdvd_device *pd = disk->private_data;
2625 struct gendisk *attached_disk;
2626
2627 if (!pd)
2628 return 0;
2629 if (!pd->bdev)
2630 return 0;
2631 attached_disk = pd->bdev->bd_disk;
2632 if (!attached_disk || !attached_disk->fops->check_events)
2633 return 0;
2634 return attached_disk->fops->check_events(attached_disk, clearing);
2635}
2636
2637static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2638{
2639 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2640}
2641
2642static const struct block_device_operations pktcdvd_ops = {
2643 .owner = THIS_MODULE,
2644 .submit_bio = pkt_submit_bio,
2645 .open = pkt_open,
2646 .release = pkt_close,
2647 .ioctl = pkt_ioctl,
2648 .compat_ioctl = blkdev_compat_ptr_ioctl,
2649 .check_events = pkt_check_events,
2650 .devnode = pkt_devnode,
2651};
2652
2653/*
2654 * Set up mapping from pktcdvd device to CD-ROM device.
2655 */
2656static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2657{
2658 int idx;
2659 int ret = -ENOMEM;
2660 struct pktcdvd_device *pd;
2661 struct gendisk *disk;
2662
2663 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2664
2665 for (idx = 0; idx < MAX_WRITERS; idx++)
2666 if (!pkt_devs[idx])
2667 break;
2668 if (idx == MAX_WRITERS) {
2669 pr_err("max %d writers supported\n", MAX_WRITERS);
2670 ret = -EBUSY;
2671 goto out_mutex;
2672 }
2673
2674 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2675 if (!pd)
2676 goto out_mutex;
2677
2678 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2679 sizeof(struct pkt_rb_node));
2680 if (ret)
2681 goto out_mem;
2682
2683 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2684 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2685 spin_lock_init(&pd->cdrw.active_list_lock);
2686
2687 spin_lock_init(&pd->lock);
2688 spin_lock_init(&pd->iosched.lock);
2689 bio_list_init(&pd->iosched.read_queue);
2690 bio_list_init(&pd->iosched.write_queue);
2691 sprintf(pd->name, DRIVER_NAME"%d", idx);
2692 init_waitqueue_head(&pd->wqueue);
2693 pd->bio_queue = RB_ROOT;
2694
2695 pd->write_congestion_on = write_congestion_on;
2696 pd->write_congestion_off = write_congestion_off;
2697
2698 ret = -ENOMEM;
2699 disk = blk_alloc_disk(NUMA_NO_NODE);
2700 if (!disk)
2701 goto out_mem;
2702 pd->disk = disk;
2703 disk->major = pktdev_major;
2704 disk->first_minor = idx;
2705 disk->minors = 1;
2706 disk->fops = &pktcdvd_ops;
2707 disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2708 strcpy(disk->disk_name, pd->name);
2709 disk->private_data = pd;
2710
2711 pd->pkt_dev = MKDEV(pktdev_major, idx);
2712 ret = pkt_new_dev(pd, dev);
2713 if (ret)
2714 goto out_mem2;
2715
2716 /* inherit events of the host device */
2717 disk->events = pd->bdev->bd_disk->events;
2718
2719 ret = add_disk(disk);
2720 if (ret)
2721 goto out_mem2;
2722
2723 pkt_sysfs_dev_new(pd);
2724 pkt_debugfs_dev_new(pd);
2725
2726 pkt_devs[idx] = pd;
2727 if (pkt_dev)
2728 *pkt_dev = pd->pkt_dev;
2729
2730 mutex_unlock(&ctl_mutex);
2731 return 0;
2732
2733out_mem2:
2734 put_disk(disk);
2735out_mem:
2736 mempool_exit(&pd->rb_pool);
2737 kfree(pd);
2738out_mutex:
2739 mutex_unlock(&ctl_mutex);
2740 pr_err("setup of pktcdvd device failed\n");
2741 return ret;
2742}
2743
2744/*
2745 * Tear down mapping from pktcdvd device to CD-ROM device.
2746 */
2747static int pkt_remove_dev(dev_t pkt_dev)
2748{
2749 struct pktcdvd_device *pd;
2750 int idx;
2751 int ret = 0;
2752
2753 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2754
2755 for (idx = 0; idx < MAX_WRITERS; idx++) {
2756 pd = pkt_devs[idx];
2757 if (pd && (pd->pkt_dev == pkt_dev))
2758 break;
2759 }
2760 if (idx == MAX_WRITERS) {
2761 pr_debug("dev not setup\n");
2762 ret = -ENXIO;
2763 goto out;
2764 }
2765
2766 if (pd->refcnt > 0) {
2767 ret = -EBUSY;
2768 goto out;
2769 }
2770 if (!IS_ERR(pd->cdrw.thread))
2771 kthread_stop(pd->cdrw.thread);
2772
2773 pkt_devs[idx] = NULL;
2774
2775 pkt_debugfs_dev_remove(pd);
2776 pkt_sysfs_dev_remove(pd);
2777
2778 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2779
2780 remove_proc_entry(pd->name, pkt_proc);
2781 pkt_dbg(1, pd, "writer unmapped\n");
2782
2783 del_gendisk(pd->disk);
2784 put_disk(pd->disk);
2785
2786 mempool_exit(&pd->rb_pool);
2787 kfree(pd);
2788
2789 /* This is safe: open() is still holding a reference. */
2790 module_put(THIS_MODULE);
2791
2792out:
2793 mutex_unlock(&ctl_mutex);
2794 return ret;
2795}
2796
2797static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2798{
2799 struct pktcdvd_device *pd;
2800
2801 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2802
2803 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2804 if (pd) {
2805 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2806 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2807 } else {
2808 ctrl_cmd->dev = 0;
2809 ctrl_cmd->pkt_dev = 0;
2810 }
2811 ctrl_cmd->num_devices = MAX_WRITERS;
2812
2813 mutex_unlock(&ctl_mutex);
2814}
2815
2816static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2817{
2818 void __user *argp = (void __user *)arg;
2819 struct pkt_ctrl_command ctrl_cmd;
2820 int ret = 0;
2821 dev_t pkt_dev = 0;
2822
2823 if (cmd != PACKET_CTRL_CMD)
2824 return -ENOTTY;
2825
2826 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2827 return -EFAULT;
2828
2829 switch (ctrl_cmd.command) {
2830 case PKT_CTRL_CMD_SETUP:
2831 if (!capable(CAP_SYS_ADMIN))
2832 return -EPERM;
2833 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2834 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2835 break;
2836 case PKT_CTRL_CMD_TEARDOWN:
2837 if (!capable(CAP_SYS_ADMIN))
2838 return -EPERM;
2839 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2840 break;
2841 case PKT_CTRL_CMD_STATUS:
2842 pkt_get_status(&ctrl_cmd);
2843 break;
2844 default:
2845 return -ENOTTY;
2846 }
2847
2848 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2849 return -EFAULT;
2850 return ret;
2851}
2852
2853#ifdef CONFIG_COMPAT
2854static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2855{
2856 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2857}
2858#endif
2859
2860static const struct file_operations pkt_ctl_fops = {
2861 .open = nonseekable_open,
2862 .unlocked_ioctl = pkt_ctl_ioctl,
2863#ifdef CONFIG_COMPAT
2864 .compat_ioctl = pkt_ctl_compat_ioctl,
2865#endif
2866 .owner = THIS_MODULE,
2867 .llseek = no_llseek,
2868};
2869
2870static struct miscdevice pkt_misc = {
2871 .minor = MISC_DYNAMIC_MINOR,
2872 .name = DRIVER_NAME,
2873 .nodename = "pktcdvd/control",
2874 .fops = &pkt_ctl_fops
2875};
2876
2877static int __init pkt_init(void)
2878{
2879 int ret;
2880
2881 mutex_init(&ctl_mutex);
2882
2883 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2884 sizeof(struct packet_stacked_data));
2885 if (ret)
2886 return ret;
2887 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2888 if (ret) {
2889 mempool_exit(&psd_pool);
2890 return ret;
2891 }
2892
2893 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2894 if (ret < 0) {
2895 pr_err("unable to register block device\n");
2896 goto out2;
2897 }
2898 if (!pktdev_major)
2899 pktdev_major = ret;
2900
2901 ret = pkt_sysfs_init();
2902 if (ret)
2903 goto out;
2904
2905 pkt_debugfs_init();
2906
2907 ret = misc_register(&pkt_misc);
2908 if (ret) {
2909 pr_err("unable to register misc device\n");
2910 goto out_misc;
2911 }
2912
2913 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2914
2915 return 0;
2916
2917out_misc:
2918 pkt_debugfs_cleanup();
2919 pkt_sysfs_cleanup();
2920out:
2921 unregister_blkdev(pktdev_major, DRIVER_NAME);
2922out2:
2923 mempool_exit(&psd_pool);
2924 bioset_exit(&pkt_bio_set);
2925 return ret;
2926}
2927
2928static void __exit pkt_exit(void)
2929{
2930 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2931 misc_deregister(&pkt_misc);
2932
2933 pkt_debugfs_cleanup();
2934 pkt_sysfs_cleanup();
2935
2936 unregister_blkdev(pktdev_major, DRIVER_NAME);
2937 mempool_exit(&psd_pool);
2938 bioset_exit(&pkt_bio_set);
2939}
2940
2941MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2942MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2943MODULE_LICENSE("GPL");
2944
2945module_init(pkt_init);
2946module_exit(pkt_exit);