Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Ram backed block device driver.
  4 *
  5 * Copyright (C) 2007 Nick Piggin
  6 * Copyright (C) 2007 Novell Inc.
  7 *
  8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  9 * of their respective owners.
 10 */
 11
 12#include <linux/init.h>
 13#include <linux/initrd.h>
 14#include <linux/module.h>
 15#include <linux/moduleparam.h>
 16#include <linux/major.h>
 17#include <linux/blkdev.h>
 18#include <linux/bio.h>
 19#include <linux/highmem.h>
 20#include <linux/mutex.h>
 
 21#include <linux/radix-tree.h>
 22#include <linux/fs.h>
 23#include <linux/slab.h>
 24#include <linux/backing-dev.h>
 
 25
 26#include <linux/uaccess.h>
 27
 28#define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
 29#define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
 30
 31/*
 32 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
 33 * the pages containing the block device's contents. A brd page's ->index is
 34 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
 35 * with, the kernel's pagecache or buffer cache (which sit above our block
 36 * device).
 37 */
 38struct brd_device {
 39	int		brd_number;
 40
 41	struct request_queue	*brd_queue;
 42	struct gendisk		*brd_disk;
 43	struct list_head	brd_list;
 44
 45	/*
 46	 * Backing store of pages and lock to protect it. This is the contents
 47	 * of the block device.
 48	 */
 49	spinlock_t		brd_lock;
 50	struct radix_tree_root	brd_pages;
 
 51};
 52
 53/*
 54 * Look up and return a brd's page for a given sector.
 55 */
 56static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
 57{
 58	pgoff_t idx;
 59	struct page *page;
 60
 61	/*
 62	 * The page lifetime is protected by the fact that we have opened the
 63	 * device node -- brd pages will never be deleted under us, so we
 64	 * don't need any further locking or refcounting.
 65	 *
 66	 * This is strictly true for the radix-tree nodes as well (ie. we
 67	 * don't actually need the rcu_read_lock()), however that is not a
 68	 * documented feature of the radix-tree API so it is better to be
 69	 * safe here (we don't have total exclusion from radix tree updates
 70	 * here, only deletes).
 71	 */
 72	rcu_read_lock();
 73	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
 74	page = radix_tree_lookup(&brd->brd_pages, idx);
 75	rcu_read_unlock();
 76
 77	BUG_ON(page && page->index != idx);
 78
 79	return page;
 80}
 81
 82/*
 83 * Look up and return a brd's page for a given sector.
 84 * If one does not exist, allocate an empty page, and insert that. Then
 85 * return it.
 86 */
 87static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
 88{
 89	pgoff_t idx;
 90	struct page *page;
 91	gfp_t gfp_flags;
 92
 93	page = brd_lookup_page(brd, sector);
 94	if (page)
 95		return page;
 96
 97	/*
 98	 * Must use NOIO because we don't want to recurse back into the
 99	 * block or filesystem layers from page reclaim.
100	 */
101	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
102	page = alloc_page(gfp_flags);
103	if (!page)
104		return NULL;
105
106	if (radix_tree_preload(GFP_NOIO)) {
107		__free_page(page);
108		return NULL;
109	}
110
111	spin_lock(&brd->brd_lock);
112	idx = sector >> PAGE_SECTORS_SHIFT;
113	page->index = idx;
114	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
115		__free_page(page);
116		page = radix_tree_lookup(&brd->brd_pages, idx);
117		BUG_ON(!page);
118		BUG_ON(page->index != idx);
 
 
119	}
120	spin_unlock(&brd->brd_lock);
121
122	radix_tree_preload_end();
123
124	return page;
125}
126
127/*
128 * Free all backing store pages and radix tree. This must only be called when
129 * there are no other users of the device.
130 */
131#define FREE_BATCH 16
132static void brd_free_pages(struct brd_device *brd)
133{
134	unsigned long pos = 0;
135	struct page *pages[FREE_BATCH];
136	int nr_pages;
137
138	do {
139		int i;
140
141		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
142				(void **)pages, pos, FREE_BATCH);
143
144		for (i = 0; i < nr_pages; i++) {
145			void *ret;
146
147			BUG_ON(pages[i]->index < pos);
148			pos = pages[i]->index;
149			ret = radix_tree_delete(&brd->brd_pages, pos);
150			BUG_ON(!ret || ret != pages[i]);
151			__free_page(pages[i]);
152		}
153
154		pos++;
155
156		/*
157		 * It takes 3.4 seconds to remove 80GiB ramdisk.
158		 * So, we need cond_resched to avoid stalling the CPU.
159		 */
160		cond_resched();
161
162		/*
163		 * This assumes radix_tree_gang_lookup always returns as
164		 * many pages as possible. If the radix-tree code changes,
165		 * so will this have to.
166		 */
167	} while (nr_pages == FREE_BATCH);
168}
169
170/*
171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
172 */
173static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
174{
175	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
176	size_t copy;
177
178	copy = min_t(size_t, n, PAGE_SIZE - offset);
179	if (!brd_insert_page(brd, sector))
180		return -ENOSPC;
181	if (copy < n) {
182		sector += copy >> SECTOR_SHIFT;
183		if (!brd_insert_page(brd, sector))
184			return -ENOSPC;
185	}
186	return 0;
187}
188
189/*
190 * Copy n bytes from src to the brd starting at sector. Does not sleep.
191 */
192static void copy_to_brd(struct brd_device *brd, const void *src,
193			sector_t sector, size_t n)
194{
195	struct page *page;
196	void *dst;
197	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
198	size_t copy;
199
200	copy = min_t(size_t, n, PAGE_SIZE - offset);
201	page = brd_lookup_page(brd, sector);
202	BUG_ON(!page);
203
204	dst = kmap_atomic(page);
205	memcpy(dst + offset, src, copy);
206	kunmap_atomic(dst);
207
208	if (copy < n) {
209		src += copy;
210		sector += copy >> SECTOR_SHIFT;
211		copy = n - copy;
212		page = brd_lookup_page(brd, sector);
213		BUG_ON(!page);
214
215		dst = kmap_atomic(page);
216		memcpy(dst, src, copy);
217		kunmap_atomic(dst);
218	}
219}
220
221/*
222 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
223 */
224static void copy_from_brd(void *dst, struct brd_device *brd,
225			sector_t sector, size_t n)
226{
227	struct page *page;
228	void *src;
229	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
230	size_t copy;
231
232	copy = min_t(size_t, n, PAGE_SIZE - offset);
233	page = brd_lookup_page(brd, sector);
234	if (page) {
235		src = kmap_atomic(page);
236		memcpy(dst, src + offset, copy);
237		kunmap_atomic(src);
238	} else
239		memset(dst, 0, copy);
240
241	if (copy < n) {
242		dst += copy;
243		sector += copy >> SECTOR_SHIFT;
244		copy = n - copy;
245		page = brd_lookup_page(brd, sector);
246		if (page) {
247			src = kmap_atomic(page);
248			memcpy(dst, src, copy);
249			kunmap_atomic(src);
250		} else
251			memset(dst, 0, copy);
252	}
253}
254
255/*
256 * Process a single bvec of a bio.
257 */
258static int brd_do_bvec(struct brd_device *brd, struct page *page,
259			unsigned int len, unsigned int off, unsigned int op,
260			sector_t sector)
261{
262	void *mem;
263	int err = 0;
264
265	if (op_is_write(op)) {
266		err = copy_to_brd_setup(brd, sector, len);
267		if (err)
268			goto out;
269	}
270
271	mem = kmap_atomic(page);
272	if (!op_is_write(op)) {
273		copy_from_brd(mem + off, brd, sector, len);
274		flush_dcache_page(page);
275	} else {
276		flush_dcache_page(page);
277		copy_to_brd(brd, mem + off, sector, len);
278	}
279	kunmap_atomic(mem);
280
281out:
282	return err;
283}
284
285static blk_qc_t brd_submit_bio(struct bio *bio)
286{
287	struct brd_device *brd = bio->bi_disk->private_data;
 
288	struct bio_vec bvec;
289	sector_t sector;
290	struct bvec_iter iter;
291
292	sector = bio->bi_iter.bi_sector;
293	if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
294		goto io_error;
295
296	bio_for_each_segment(bvec, bio, iter) {
297		unsigned int len = bvec.bv_len;
298		int err;
299
300		/* Don't support un-aligned buffer */
301		WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
302				(len & (SECTOR_SIZE - 1)));
303
304		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
305				  bio_op(bio), sector);
306		if (err)
307			goto io_error;
 
 
308		sector += len >> SECTOR_SHIFT;
309	}
310
311	bio_endio(bio);
312	return BLK_QC_T_NONE;
313io_error:
314	bio_io_error(bio);
315	return BLK_QC_T_NONE;
316}
317
318static int brd_rw_page(struct block_device *bdev, sector_t sector,
319		       struct page *page, unsigned int op)
320{
321	struct brd_device *brd = bdev->bd_disk->private_data;
322	int err;
323
324	if (PageTransHuge(page))
325		return -ENOTSUPP;
326	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
327	page_endio(page, op_is_write(op), err);
328	return err;
329}
330
331static const struct block_device_operations brd_fops = {
332	.owner =		THIS_MODULE,
333	.submit_bio =		brd_submit_bio,
334	.rw_page =		brd_rw_page,
335};
336
337/*
338 * And now the modules code and kernel interface.
339 */
340static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
341module_param(rd_nr, int, 0444);
342MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
343
344unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
345module_param(rd_size, ulong, 0444);
346MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
347
348static int max_part = 1;
349module_param(max_part, int, 0444);
350MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
351
352MODULE_LICENSE("GPL");
353MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
354MODULE_ALIAS("rd");
355
356#ifndef MODULE
357/* Legacy boot options - nonmodular */
358static int __init ramdisk_size(char *str)
359{
360	rd_size = simple_strtol(str, NULL, 0);
361	return 1;
362}
363__setup("ramdisk_size=", ramdisk_size);
364#endif
365
366/*
367 * The device scheme is derived from loop.c. Keep them in synch where possible
368 * (should share code eventually).
369 */
370static LIST_HEAD(brd_devices);
371static DEFINE_MUTEX(brd_devices_mutex);
372
373static struct brd_device *brd_alloc(int i)
374{
375	struct brd_device *brd;
376	struct gendisk *disk;
 
 
377
 
 
 
378	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
379	if (!brd)
380		goto out;
381	brd->brd_number		= i;
 
 
382	spin_lock_init(&brd->brd_lock);
383	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
384
385	brd->brd_queue = blk_alloc_queue(NUMA_NO_NODE);
386	if (!brd->brd_queue)
387		goto out_free_dev;
 
388
389	/* This is so fdisk will align partitions on 4k, because of
390	 * direct_access API needing 4k alignment, returning a PFN
391	 * (This is only a problem on very small devices <= 4M,
392	 *  otherwise fdisk will align on 1M. Regardless this call
393	 *  is harmless)
394	 */
395	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
396	disk = brd->brd_disk = alloc_disk(max_part);
397	if (!disk)
398		goto out_free_queue;
 
399	disk->major		= RAMDISK_MAJOR;
400	disk->first_minor	= i * max_part;
 
401	disk->fops		= &brd_fops;
402	disk->private_data	= brd;
403	disk->flags		= GENHD_FL_EXT_DEVT;
404	sprintf(disk->disk_name, "ram%d", i);
405	set_capacity(disk, rd_size * 2);
406	brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
 
 
 
 
 
 
 
 
407
408	/* Tell the block layer that this is not a rotational device */
409	blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
410	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
 
 
 
411
412	return brd;
413
414out_free_queue:
415	blk_cleanup_queue(brd->brd_queue);
416out_free_dev:
 
417	kfree(brd);
418out:
419	return NULL;
420}
421
422static void brd_free(struct brd_device *brd)
423{
424	put_disk(brd->brd_disk);
425	blk_cleanup_queue(brd->brd_queue);
426	brd_free_pages(brd);
427	kfree(brd);
428}
429
430static struct brd_device *brd_init_one(int i, bool *new)
431{
432	struct brd_device *brd;
433
434	*new = false;
435	list_for_each_entry(brd, &brd_devices, brd_list) {
436		if (brd->brd_number == i)
437			goto out;
438	}
439
440	brd = brd_alloc(i);
441	if (brd) {
442		brd->brd_disk->queue = brd->brd_queue;
443		add_disk(brd->brd_disk);
444		list_add_tail(&brd->brd_list, &brd_devices);
 
445	}
446	*new = true;
447out:
448	return brd;
449}
450
451static void brd_del_one(struct brd_device *brd)
452{
453	list_del(&brd->brd_list);
454	del_gendisk(brd->brd_disk);
455	brd_free(brd);
456}
457
458static struct kobject *brd_probe(dev_t dev, int *part, void *data)
459{
460	struct brd_device *brd;
461	struct kobject *kobj;
462	bool new;
463
464	mutex_lock(&brd_devices_mutex);
465	brd = brd_init_one(MINOR(dev) / max_part, &new);
466	kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
467	mutex_unlock(&brd_devices_mutex);
468
469	if (new)
470		*part = 0;
471
472	return kobj;
473}
474
475static inline void brd_check_and_reset_par(void)
476{
477	if (unlikely(!max_part))
478		max_part = 1;
479
480	/*
481	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
482	 * otherwise, it is possiable to get same dev_t when adding partitions.
483	 */
484	if ((1U << MINORBITS) % max_part != 0)
485		max_part = 1UL << fls(max_part);
486
487	if (max_part > DISK_MAX_PARTS) {
488		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
489			DISK_MAX_PARTS, DISK_MAX_PARTS);
490		max_part = DISK_MAX_PARTS;
491	}
492}
493
494static int __init brd_init(void)
495{
496	struct brd_device *brd, *next;
497	int i;
 
 
 
 
 
 
 
 
 
498
499	/*
500	 * brd module now has a feature to instantiate underlying device
501	 * structure on-demand, provided that there is an access dev node.
502	 *
503	 * (1) if rd_nr is specified, create that many upfront. else
504	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
505	 * (2) User can further extend brd devices by create dev node themselves
506	 *     and have kernel automatically instantiate actual device
507	 *     on-demand. Example:
508	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
509	 *		fdisk -l /path/devnod_name
510	 *	If (X / max_part) was not already created it will be created
511	 *	dynamically.
512	 */
513
514	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
515		return -EIO;
516
517	brd_check_and_reset_par();
518
519	for (i = 0; i < rd_nr; i++) {
520		brd = brd_alloc(i);
521		if (!brd)
522			goto out_free;
523		list_add_tail(&brd->brd_list, &brd_devices);
524	}
525
526	/* point of no return */
527
528	list_for_each_entry(brd, &brd_devices, brd_list) {
529		/*
530		 * associate with queue just before adding disk for
531		 * avoiding to mess up failure path
532		 */
533		brd->brd_disk->queue = brd->brd_queue;
534		add_disk(brd->brd_disk);
535	}
536
537	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
538				  THIS_MODULE, brd_probe, NULL, NULL);
539
540	pr_info("brd: module loaded\n");
541	return 0;
542
543out_free:
544	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
545		list_del(&brd->brd_list);
546		brd_free(brd);
547	}
548	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
549
550	pr_info("brd: module NOT loaded !!!\n");
551	return -ENOMEM;
552}
553
554static void __exit brd_exit(void)
555{
556	struct brd_device *brd, *next;
557
558	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
559		brd_del_one(brd);
560
561	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
562	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 
563
564	pr_info("brd: module unloaded\n");
565}
566
567module_init(brd_init);
568module_exit(brd_exit);
569
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Ram backed block device driver.
  4 *
  5 * Copyright (C) 2007 Nick Piggin
  6 * Copyright (C) 2007 Novell Inc.
  7 *
  8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  9 * of their respective owners.
 10 */
 11
 12#include <linux/init.h>
 13#include <linux/initrd.h>
 14#include <linux/module.h>
 15#include <linux/moduleparam.h>
 16#include <linux/major.h>
 17#include <linux/blkdev.h>
 18#include <linux/bio.h>
 19#include <linux/highmem.h>
 20#include <linux/mutex.h>
 21#include <linux/pagemap.h>
 22#include <linux/radix-tree.h>
 23#include <linux/fs.h>
 24#include <linux/slab.h>
 25#include <linux/backing-dev.h>
 26#include <linux/debugfs.h>
 27
 28#include <linux/uaccess.h>
 29
 
 
 
 30/*
 31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
 32 * the pages containing the block device's contents. A brd page's ->index is
 33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
 34 * with, the kernel's pagecache or buffer cache (which sit above our block
 35 * device).
 36 */
 37struct brd_device {
 38	int			brd_number;
 
 
 39	struct gendisk		*brd_disk;
 40	struct list_head	brd_list;
 41
 42	/*
 43	 * Backing store of pages and lock to protect it. This is the contents
 44	 * of the block device.
 45	 */
 46	spinlock_t		brd_lock;
 47	struct radix_tree_root	brd_pages;
 48	u64			brd_nr_pages;
 49};
 50
 51/*
 52 * Look up and return a brd's page for a given sector.
 53 */
 54static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
 55{
 56	pgoff_t idx;
 57	struct page *page;
 58
 59	/*
 60	 * The page lifetime is protected by the fact that we have opened the
 61	 * device node -- brd pages will never be deleted under us, so we
 62	 * don't need any further locking or refcounting.
 63	 *
 64	 * This is strictly true for the radix-tree nodes as well (ie. we
 65	 * don't actually need the rcu_read_lock()), however that is not a
 66	 * documented feature of the radix-tree API so it is better to be
 67	 * safe here (we don't have total exclusion from radix tree updates
 68	 * here, only deletes).
 69	 */
 70	rcu_read_lock();
 71	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
 72	page = radix_tree_lookup(&brd->brd_pages, idx);
 73	rcu_read_unlock();
 74
 75	BUG_ON(page && page->index != idx);
 76
 77	return page;
 78}
 79
 80/*
 81 * Look up and return a brd's page for a given sector.
 82 * If one does not exist, allocate an empty page, and insert that. Then
 83 * return it.
 84 */
 85static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
 86{
 87	pgoff_t idx;
 88	struct page *page;
 89	gfp_t gfp_flags;
 90
 91	page = brd_lookup_page(brd, sector);
 92	if (page)
 93		return page;
 94
 95	/*
 96	 * Must use NOIO because we don't want to recurse back into the
 97	 * block or filesystem layers from page reclaim.
 98	 */
 99	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
100	page = alloc_page(gfp_flags);
101	if (!page)
102		return NULL;
103
104	if (radix_tree_preload(GFP_NOIO)) {
105		__free_page(page);
106		return NULL;
107	}
108
109	spin_lock(&brd->brd_lock);
110	idx = sector >> PAGE_SECTORS_SHIFT;
111	page->index = idx;
112	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
113		__free_page(page);
114		page = radix_tree_lookup(&brd->brd_pages, idx);
115		BUG_ON(!page);
116		BUG_ON(page->index != idx);
117	} else {
118		brd->brd_nr_pages++;
119	}
120	spin_unlock(&brd->brd_lock);
121
122	radix_tree_preload_end();
123
124	return page;
125}
126
127/*
128 * Free all backing store pages and radix tree. This must only be called when
129 * there are no other users of the device.
130 */
131#define FREE_BATCH 16
132static void brd_free_pages(struct brd_device *brd)
133{
134	unsigned long pos = 0;
135	struct page *pages[FREE_BATCH];
136	int nr_pages;
137
138	do {
139		int i;
140
141		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
142				(void **)pages, pos, FREE_BATCH);
143
144		for (i = 0; i < nr_pages; i++) {
145			void *ret;
146
147			BUG_ON(pages[i]->index < pos);
148			pos = pages[i]->index;
149			ret = radix_tree_delete(&brd->brd_pages, pos);
150			BUG_ON(!ret || ret != pages[i]);
151			__free_page(pages[i]);
152		}
153
154		pos++;
155
156		/*
157		 * It takes 3.4 seconds to remove 80GiB ramdisk.
158		 * So, we need cond_resched to avoid stalling the CPU.
159		 */
160		cond_resched();
161
162		/*
163		 * This assumes radix_tree_gang_lookup always returns as
164		 * many pages as possible. If the radix-tree code changes,
165		 * so will this have to.
166		 */
167	} while (nr_pages == FREE_BATCH);
168}
169
170/*
171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
172 */
173static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
174{
175	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
176	size_t copy;
177
178	copy = min_t(size_t, n, PAGE_SIZE - offset);
179	if (!brd_insert_page(brd, sector))
180		return -ENOSPC;
181	if (copy < n) {
182		sector += copy >> SECTOR_SHIFT;
183		if (!brd_insert_page(brd, sector))
184			return -ENOSPC;
185	}
186	return 0;
187}
188
189/*
190 * Copy n bytes from src to the brd starting at sector. Does not sleep.
191 */
192static void copy_to_brd(struct brd_device *brd, const void *src,
193			sector_t sector, size_t n)
194{
195	struct page *page;
196	void *dst;
197	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
198	size_t copy;
199
200	copy = min_t(size_t, n, PAGE_SIZE - offset);
201	page = brd_lookup_page(brd, sector);
202	BUG_ON(!page);
203
204	dst = kmap_atomic(page);
205	memcpy(dst + offset, src, copy);
206	kunmap_atomic(dst);
207
208	if (copy < n) {
209		src += copy;
210		sector += copy >> SECTOR_SHIFT;
211		copy = n - copy;
212		page = brd_lookup_page(brd, sector);
213		BUG_ON(!page);
214
215		dst = kmap_atomic(page);
216		memcpy(dst, src, copy);
217		kunmap_atomic(dst);
218	}
219}
220
221/*
222 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
223 */
224static void copy_from_brd(void *dst, struct brd_device *brd,
225			sector_t sector, size_t n)
226{
227	struct page *page;
228	void *src;
229	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
230	size_t copy;
231
232	copy = min_t(size_t, n, PAGE_SIZE - offset);
233	page = brd_lookup_page(brd, sector);
234	if (page) {
235		src = kmap_atomic(page);
236		memcpy(dst, src + offset, copy);
237		kunmap_atomic(src);
238	} else
239		memset(dst, 0, copy);
240
241	if (copy < n) {
242		dst += copy;
243		sector += copy >> SECTOR_SHIFT;
244		copy = n - copy;
245		page = brd_lookup_page(brd, sector);
246		if (page) {
247			src = kmap_atomic(page);
248			memcpy(dst, src, copy);
249			kunmap_atomic(src);
250		} else
251			memset(dst, 0, copy);
252	}
253}
254
255/*
256 * Process a single bvec of a bio.
257 */
258static int brd_do_bvec(struct brd_device *brd, struct page *page,
259			unsigned int len, unsigned int off, enum req_op op,
260			sector_t sector)
261{
262	void *mem;
263	int err = 0;
264
265	if (op_is_write(op)) {
266		err = copy_to_brd_setup(brd, sector, len);
267		if (err)
268			goto out;
269	}
270
271	mem = kmap_atomic(page);
272	if (!op_is_write(op)) {
273		copy_from_brd(mem + off, brd, sector, len);
274		flush_dcache_page(page);
275	} else {
276		flush_dcache_page(page);
277		copy_to_brd(brd, mem + off, sector, len);
278	}
279	kunmap_atomic(mem);
280
281out:
282	return err;
283}
284
285static void brd_submit_bio(struct bio *bio)
286{
287	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
288	sector_t sector = bio->bi_iter.bi_sector;
289	struct bio_vec bvec;
 
290	struct bvec_iter iter;
291
 
 
 
 
292	bio_for_each_segment(bvec, bio, iter) {
293		unsigned int len = bvec.bv_len;
294		int err;
295
296		/* Don't support un-aligned buffer */
297		WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
298				(len & (SECTOR_SIZE - 1)));
299
300		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
301				  bio_op(bio), sector);
302		if (err) {
303			bio_io_error(bio);
304			return;
305		}
306		sector += len >> SECTOR_SHIFT;
307	}
308
309	bio_endio(bio);
 
 
 
 
310}
311
312static int brd_rw_page(struct block_device *bdev, sector_t sector,
313		       struct page *page, enum req_op op)
314{
315	struct brd_device *brd = bdev->bd_disk->private_data;
316	int err;
317
318	if (PageTransHuge(page))
319		return -ENOTSUPP;
320	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
321	page_endio(page, op_is_write(op), err);
322	return err;
323}
324
325static const struct block_device_operations brd_fops = {
326	.owner =		THIS_MODULE,
327	.submit_bio =		brd_submit_bio,
328	.rw_page =		brd_rw_page,
329};
330
331/*
332 * And now the modules code and kernel interface.
333 */
334static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
335module_param(rd_nr, int, 0444);
336MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
337
338unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
339module_param(rd_size, ulong, 0444);
340MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
341
342static int max_part = 1;
343module_param(max_part, int, 0444);
344MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
345
346MODULE_LICENSE("GPL");
347MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
348MODULE_ALIAS("rd");
349
350#ifndef MODULE
351/* Legacy boot options - nonmodular */
352static int __init ramdisk_size(char *str)
353{
354	rd_size = simple_strtol(str, NULL, 0);
355	return 1;
356}
357__setup("ramdisk_size=", ramdisk_size);
358#endif
359
360/*
361 * The device scheme is derived from loop.c. Keep them in synch where possible
362 * (should share code eventually).
363 */
364static LIST_HEAD(brd_devices);
365static struct dentry *brd_debugfs_dir;
366
367static int brd_alloc(int i)
368{
369	struct brd_device *brd;
370	struct gendisk *disk;
371	char buf[DISK_NAME_LEN];
372	int err = -ENOMEM;
373
374	list_for_each_entry(brd, &brd_devices, brd_list)
375		if (brd->brd_number == i)
376			return -EEXIST;
377	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
378	if (!brd)
379		return -ENOMEM;
380	brd->brd_number		= i;
381	list_add_tail(&brd->brd_list, &brd_devices);
382
383	spin_lock_init(&brd->brd_lock);
384	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
385
386	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
387	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
388		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
389				&brd->brd_nr_pages);
390
391	disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE);
 
 
 
 
 
 
 
392	if (!disk)
393		goto out_free_dev;
394
395	disk->major		= RAMDISK_MAJOR;
396	disk->first_minor	= i * max_part;
397	disk->minors		= max_part;
398	disk->fops		= &brd_fops;
399	disk->private_data	= brd;
400	strscpy(disk->disk_name, buf, DISK_NAME_LEN);
 
401	set_capacity(disk, rd_size * 2);
402	
403	/*
404	 * This is so fdisk will align partitions on 4k, because of
405	 * direct_access API needing 4k alignment, returning a PFN
406	 * (This is only a problem on very small devices <= 4M,
407	 *  otherwise fdisk will align on 1M. Regardless this call
408	 *  is harmless)
409	 */
410	blk_queue_physical_block_size(disk->queue, PAGE_SIZE);
411
412	/* Tell the block layer that this is not a rotational device */
413	blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
414	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
415	err = add_disk(disk);
416	if (err)
417		goto out_cleanup_disk;
418
419	return 0;
420
421out_cleanup_disk:
422	put_disk(disk);
423out_free_dev:
424	list_del(&brd->brd_list);
425	kfree(brd);
426	return err;
 
427}
428
429static void brd_probe(dev_t dev)
430{
431	brd_alloc(MINOR(dev) / max_part);
 
 
 
432}
433
434static void brd_cleanup(void)
435{
436	struct brd_device *brd, *next;
437
438	debugfs_remove_recursive(brd_debugfs_dir);
 
 
 
 
439
440	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
441		del_gendisk(brd->brd_disk);
442		put_disk(brd->brd_disk);
443		brd_free_pages(brd);
444		list_del(&brd->brd_list);
445		kfree(brd);
446	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447}
448
449static inline void brd_check_and_reset_par(void)
450{
451	if (unlikely(!max_part))
452		max_part = 1;
453
454	/*
455	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
456	 * otherwise, it is possiable to get same dev_t when adding partitions.
457	 */
458	if ((1U << MINORBITS) % max_part != 0)
459		max_part = 1UL << fls(max_part);
460
461	if (max_part > DISK_MAX_PARTS) {
462		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
463			DISK_MAX_PARTS, DISK_MAX_PARTS);
464		max_part = DISK_MAX_PARTS;
465	}
466}
467
468static int __init brd_init(void)
469{
470	int err, i;
471
472	brd_check_and_reset_par();
473
474	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
475
476	for (i = 0; i < rd_nr; i++) {
477		err = brd_alloc(i);
478		if (err)
479			goto out_free;
480	}
481
482	/*
483	 * brd module now has a feature to instantiate underlying device
484	 * structure on-demand, provided that there is an access dev node.
485	 *
486	 * (1) if rd_nr is specified, create that many upfront. else
487	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
488	 * (2) User can further extend brd devices by create dev node themselves
489	 *     and have kernel automatically instantiate actual device
490	 *     on-demand. Example:
491	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
492	 *		fdisk -l /path/devnod_name
493	 *	If (X / max_part) was not already created it will be created
494	 *	dynamically.
495	 */
496
497	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
498		err = -EIO;
499		goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500	}
501
 
 
 
502	pr_info("brd: module loaded\n");
503	return 0;
504
505out_free:
506	brd_cleanup();
 
 
 
 
507
508	pr_info("brd: module NOT loaded !!!\n");
509	return err;
510}
511
512static void __exit brd_exit(void)
513{
 
 
 
 
514
 
515	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
516	brd_cleanup();
517
518	pr_info("brd: module unloaded\n");
519}
520
521module_init(brd_init);
522module_exit(brd_exit);
523