Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/capability.h>
14#include <linux/device.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/timer.h>
18#include <linux/vmalloc.h>
19#include <linux/interrupt.h>
20#include <linux/bitops.h>
21#include <linux/mutex.h>
22#include <linux/workqueue.h>
23#include <linux/highmem.h>
24#include <linux/firmware.h>
25#include <linux/slab.h>
26#include <linux/sched.h>
27#include <linux/file.h>
28#include <linux/list.h>
29#include <linux/fs.h>
30#include <linux/async.h>
31#include <linux/pm.h>
32#include <linux/suspend.h>
33#include <linux/syscore_ops.h>
34#include <linux/reboot.h>
35#include <linux/security.h>
36#include <linux/xz.h>
37
38#include <generated/utsrelease.h>
39
40#include "../base.h"
41#include "firmware.h"
42#include "fallback.h"
43
44MODULE_AUTHOR("Manuel Estrada Sainz");
45MODULE_DESCRIPTION("Multi purpose firmware loading support");
46MODULE_LICENSE("GPL");
47
48struct firmware_cache {
49 /* firmware_buf instance will be added into the below list */
50 spinlock_t lock;
51 struct list_head head;
52 int state;
53
54#ifdef CONFIG_FW_CACHE
55 /*
56 * Names of firmware images which have been cached successfully
57 * will be added into the below list so that device uncache
58 * helper can trace which firmware images have been cached
59 * before.
60 */
61 spinlock_t name_lock;
62 struct list_head fw_names;
63
64 struct delayed_work work;
65
66 struct notifier_block pm_notify;
67#endif
68};
69
70struct fw_cache_entry {
71 struct list_head list;
72 const char *name;
73};
74
75struct fw_name_devm {
76 unsigned long magic;
77 const char *name;
78};
79
80static inline struct fw_priv *to_fw_priv(struct kref *ref)
81{
82 return container_of(ref, struct fw_priv, ref);
83}
84
85#define FW_LOADER_NO_CACHE 0
86#define FW_LOADER_START_CACHE 1
87
88/* fw_lock could be moved to 'struct fw_sysfs' but since it is just
89 * guarding for corner cases a global lock should be OK */
90DEFINE_MUTEX(fw_lock);
91
92static struct firmware_cache fw_cache;
93
94/* Builtin firmware support */
95
96#ifdef CONFIG_FW_LOADER
97
98extern struct builtin_fw __start_builtin_fw[];
99extern struct builtin_fw __end_builtin_fw[];
100
101static void fw_copy_to_prealloc_buf(struct firmware *fw,
102 void *buf, size_t size)
103{
104 if (!buf || size < fw->size)
105 return;
106 memcpy(buf, fw->data, fw->size);
107}
108
109static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
110 void *buf, size_t size)
111{
112 struct builtin_fw *b_fw;
113
114 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
115 if (strcmp(name, b_fw->name) == 0) {
116 fw->size = b_fw->size;
117 fw->data = b_fw->data;
118 fw_copy_to_prealloc_buf(fw, buf, size);
119
120 return true;
121 }
122 }
123
124 return false;
125}
126
127static bool fw_is_builtin_firmware(const struct firmware *fw)
128{
129 struct builtin_fw *b_fw;
130
131 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
132 if (fw->data == b_fw->data)
133 return true;
134
135 return false;
136}
137
138#else /* Module case - no builtin firmware support */
139
140static inline bool fw_get_builtin_firmware(struct firmware *fw,
141 const char *name, void *buf,
142 size_t size)
143{
144 return false;
145}
146
147static inline bool fw_is_builtin_firmware(const struct firmware *fw)
148{
149 return false;
150}
151#endif
152
153static void fw_state_init(struct fw_priv *fw_priv)
154{
155 struct fw_state *fw_st = &fw_priv->fw_st;
156
157 init_completion(&fw_st->completion);
158 fw_st->status = FW_STATUS_UNKNOWN;
159}
160
161static inline int fw_state_wait(struct fw_priv *fw_priv)
162{
163 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
164}
165
166static int fw_cache_piggyback_on_request(const char *name);
167
168static struct fw_priv *__allocate_fw_priv(const char *fw_name,
169 struct firmware_cache *fwc,
170 void *dbuf, size_t size)
171{
172 struct fw_priv *fw_priv;
173
174 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
175 if (!fw_priv)
176 return NULL;
177
178 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
179 if (!fw_priv->fw_name) {
180 kfree(fw_priv);
181 return NULL;
182 }
183
184 kref_init(&fw_priv->ref);
185 fw_priv->fwc = fwc;
186 fw_priv->data = dbuf;
187 fw_priv->allocated_size = size;
188 fw_state_init(fw_priv);
189#ifdef CONFIG_FW_LOADER_USER_HELPER
190 INIT_LIST_HEAD(&fw_priv->pending_list);
191#endif
192
193 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
194
195 return fw_priv;
196}
197
198static struct fw_priv *__lookup_fw_priv(const char *fw_name)
199{
200 struct fw_priv *tmp;
201 struct firmware_cache *fwc = &fw_cache;
202
203 list_for_each_entry(tmp, &fwc->head, list)
204 if (!strcmp(tmp->fw_name, fw_name))
205 return tmp;
206 return NULL;
207}
208
209/* Returns 1 for batching firmware requests with the same name */
210static int alloc_lookup_fw_priv(const char *fw_name,
211 struct firmware_cache *fwc,
212 struct fw_priv **fw_priv, void *dbuf,
213 size_t size, u32 opt_flags)
214{
215 struct fw_priv *tmp;
216
217 spin_lock(&fwc->lock);
218 if (!(opt_flags & FW_OPT_NOCACHE)) {
219 tmp = __lookup_fw_priv(fw_name);
220 if (tmp) {
221 kref_get(&tmp->ref);
222 spin_unlock(&fwc->lock);
223 *fw_priv = tmp;
224 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
225 return 1;
226 }
227 }
228
229 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size);
230 if (tmp) {
231 INIT_LIST_HEAD(&tmp->list);
232 if (!(opt_flags & FW_OPT_NOCACHE))
233 list_add(&tmp->list, &fwc->head);
234 }
235 spin_unlock(&fwc->lock);
236
237 *fw_priv = tmp;
238
239 return tmp ? 0 : -ENOMEM;
240}
241
242static void __free_fw_priv(struct kref *ref)
243 __releases(&fwc->lock)
244{
245 struct fw_priv *fw_priv = to_fw_priv(ref);
246 struct firmware_cache *fwc = fw_priv->fwc;
247
248 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
249 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
250 (unsigned int)fw_priv->size);
251
252 list_del(&fw_priv->list);
253 spin_unlock(&fwc->lock);
254
255 if (fw_is_paged_buf(fw_priv))
256 fw_free_paged_buf(fw_priv);
257 else if (!fw_priv->allocated_size)
258 vfree(fw_priv->data);
259
260 kfree_const(fw_priv->fw_name);
261 kfree(fw_priv);
262}
263
264static void free_fw_priv(struct fw_priv *fw_priv)
265{
266 struct firmware_cache *fwc = fw_priv->fwc;
267 spin_lock(&fwc->lock);
268 if (!kref_put(&fw_priv->ref, __free_fw_priv))
269 spin_unlock(&fwc->lock);
270}
271
272#ifdef CONFIG_FW_LOADER_PAGED_BUF
273bool fw_is_paged_buf(struct fw_priv *fw_priv)
274{
275 return fw_priv->is_paged_buf;
276}
277
278void fw_free_paged_buf(struct fw_priv *fw_priv)
279{
280 int i;
281
282 if (!fw_priv->pages)
283 return;
284
285 vunmap(fw_priv->data);
286
287 for (i = 0; i < fw_priv->nr_pages; i++)
288 __free_page(fw_priv->pages[i]);
289 kvfree(fw_priv->pages);
290 fw_priv->pages = NULL;
291 fw_priv->page_array_size = 0;
292 fw_priv->nr_pages = 0;
293}
294
295int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
296{
297 /* If the array of pages is too small, grow it */
298 if (fw_priv->page_array_size < pages_needed) {
299 int new_array_size = max(pages_needed,
300 fw_priv->page_array_size * 2);
301 struct page **new_pages;
302
303 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
304 GFP_KERNEL);
305 if (!new_pages)
306 return -ENOMEM;
307 memcpy(new_pages, fw_priv->pages,
308 fw_priv->page_array_size * sizeof(void *));
309 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
310 (new_array_size - fw_priv->page_array_size));
311 kvfree(fw_priv->pages);
312 fw_priv->pages = new_pages;
313 fw_priv->page_array_size = new_array_size;
314 }
315
316 while (fw_priv->nr_pages < pages_needed) {
317 fw_priv->pages[fw_priv->nr_pages] =
318 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
319
320 if (!fw_priv->pages[fw_priv->nr_pages])
321 return -ENOMEM;
322 fw_priv->nr_pages++;
323 }
324
325 return 0;
326}
327
328int fw_map_paged_buf(struct fw_priv *fw_priv)
329{
330 /* one pages buffer should be mapped/unmapped only once */
331 if (!fw_priv->pages)
332 return 0;
333
334 vunmap(fw_priv->data);
335 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
336 PAGE_KERNEL_RO);
337 if (!fw_priv->data)
338 return -ENOMEM;
339
340 return 0;
341}
342#endif
343
344/*
345 * XZ-compressed firmware support
346 */
347#ifdef CONFIG_FW_LOADER_COMPRESS
348/* show an error and return the standard error code */
349static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
350{
351 if (xz_ret != XZ_STREAM_END) {
352 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
353 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
354 }
355 return 0;
356}
357
358/* single-shot decompression onto the pre-allocated buffer */
359static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
360 size_t in_size, const void *in_buffer)
361{
362 struct xz_dec *xz_dec;
363 struct xz_buf xz_buf;
364 enum xz_ret xz_ret;
365
366 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
367 if (!xz_dec)
368 return -ENOMEM;
369
370 xz_buf.in_size = in_size;
371 xz_buf.in = in_buffer;
372 xz_buf.in_pos = 0;
373 xz_buf.out_size = fw_priv->allocated_size;
374 xz_buf.out = fw_priv->data;
375 xz_buf.out_pos = 0;
376
377 xz_ret = xz_dec_run(xz_dec, &xz_buf);
378 xz_dec_end(xz_dec);
379
380 fw_priv->size = xz_buf.out_pos;
381 return fw_decompress_xz_error(dev, xz_ret);
382}
383
384/* decompression on paged buffer and map it */
385static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
386 size_t in_size, const void *in_buffer)
387{
388 struct xz_dec *xz_dec;
389 struct xz_buf xz_buf;
390 enum xz_ret xz_ret;
391 struct page *page;
392 int err = 0;
393
394 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
395 if (!xz_dec)
396 return -ENOMEM;
397
398 xz_buf.in_size = in_size;
399 xz_buf.in = in_buffer;
400 xz_buf.in_pos = 0;
401
402 fw_priv->is_paged_buf = true;
403 fw_priv->size = 0;
404 do {
405 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
406 err = -ENOMEM;
407 goto out;
408 }
409
410 /* decompress onto the new allocated page */
411 page = fw_priv->pages[fw_priv->nr_pages - 1];
412 xz_buf.out = kmap(page);
413 xz_buf.out_pos = 0;
414 xz_buf.out_size = PAGE_SIZE;
415 xz_ret = xz_dec_run(xz_dec, &xz_buf);
416 kunmap(page);
417 fw_priv->size += xz_buf.out_pos;
418 /* partial decompression means either end or error */
419 if (xz_buf.out_pos != PAGE_SIZE)
420 break;
421 } while (xz_ret == XZ_OK);
422
423 err = fw_decompress_xz_error(dev, xz_ret);
424 if (!err)
425 err = fw_map_paged_buf(fw_priv);
426
427 out:
428 xz_dec_end(xz_dec);
429 return err;
430}
431
432static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
433 size_t in_size, const void *in_buffer)
434{
435 /* if the buffer is pre-allocated, we can perform in single-shot mode */
436 if (fw_priv->data)
437 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
438 else
439 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
440}
441#endif /* CONFIG_FW_LOADER_COMPRESS */
442
443/* direct firmware loading support */
444static char fw_path_para[256];
445static const char * const fw_path[] = {
446 fw_path_para,
447 "/lib/firmware/updates/" UTS_RELEASE,
448 "/lib/firmware/updates",
449 "/lib/firmware/" UTS_RELEASE,
450 "/lib/firmware"
451};
452
453/*
454 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
455 * from kernel command line because firmware_class is generally built in
456 * kernel instead of module.
457 */
458module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
459MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
460
461static int
462fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
463 const char *suffix,
464 int (*decompress)(struct device *dev,
465 struct fw_priv *fw_priv,
466 size_t in_size,
467 const void *in_buffer))
468{
469 loff_t size;
470 int i, len;
471 int rc = -ENOENT;
472 char *path;
473 enum kernel_read_file_id id = READING_FIRMWARE;
474 size_t msize = INT_MAX;
475 void *buffer = NULL;
476
477 /* Already populated data member means we're loading into a buffer */
478 if (!decompress && fw_priv->data) {
479 buffer = fw_priv->data;
480 id = READING_FIRMWARE_PREALLOC_BUFFER;
481 msize = fw_priv->allocated_size;
482 }
483
484 path = __getname();
485 if (!path)
486 return -ENOMEM;
487
488 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
489 /* skip the unset customized path */
490 if (!fw_path[i][0])
491 continue;
492
493 len = snprintf(path, PATH_MAX, "%s/%s%s",
494 fw_path[i], fw_priv->fw_name, suffix);
495 if (len >= PATH_MAX) {
496 rc = -ENAMETOOLONG;
497 break;
498 }
499
500 fw_priv->size = 0;
501
502 /* load firmware files from the mount namespace of init */
503 rc = kernel_read_file_from_path_initns(path, &buffer,
504 &size, msize, id);
505 if (rc) {
506 if (rc != -ENOENT)
507 dev_warn(device, "loading %s failed with error %d\n",
508 path, rc);
509 else
510 dev_dbg(device, "loading %s failed for no such file or directory.\n",
511 path);
512 continue;
513 }
514 dev_dbg(device, "Loading firmware from %s\n", path);
515 if (decompress) {
516 dev_dbg(device, "f/w decompressing %s\n",
517 fw_priv->fw_name);
518 rc = decompress(device, fw_priv, size, buffer);
519 /* discard the superfluous original content */
520 vfree(buffer);
521 buffer = NULL;
522 if (rc) {
523 fw_free_paged_buf(fw_priv);
524 continue;
525 }
526 } else {
527 dev_dbg(device, "direct-loading %s\n",
528 fw_priv->fw_name);
529 if (!fw_priv->data)
530 fw_priv->data = buffer;
531 fw_priv->size = size;
532 }
533 fw_state_done(fw_priv);
534 break;
535 }
536 __putname(path);
537
538 return rc;
539}
540
541/* firmware holds the ownership of pages */
542static void firmware_free_data(const struct firmware *fw)
543{
544 /* Loaded directly? */
545 if (!fw->priv) {
546 vfree(fw->data);
547 return;
548 }
549 free_fw_priv(fw->priv);
550}
551
552/* store the pages buffer info firmware from buf */
553static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
554{
555 fw->priv = fw_priv;
556 fw->size = fw_priv->size;
557 fw->data = fw_priv->data;
558
559 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
560 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
561 (unsigned int)fw_priv->size);
562}
563
564#ifdef CONFIG_FW_CACHE
565static void fw_name_devm_release(struct device *dev, void *res)
566{
567 struct fw_name_devm *fwn = res;
568
569 if (fwn->magic == (unsigned long)&fw_cache)
570 pr_debug("%s: fw_name-%s devm-%p released\n",
571 __func__, fwn->name, res);
572 kfree_const(fwn->name);
573}
574
575static int fw_devm_match(struct device *dev, void *res,
576 void *match_data)
577{
578 struct fw_name_devm *fwn = res;
579
580 return (fwn->magic == (unsigned long)&fw_cache) &&
581 !strcmp(fwn->name, match_data);
582}
583
584static struct fw_name_devm *fw_find_devm_name(struct device *dev,
585 const char *name)
586{
587 struct fw_name_devm *fwn;
588
589 fwn = devres_find(dev, fw_name_devm_release,
590 fw_devm_match, (void *)name);
591 return fwn;
592}
593
594static bool fw_cache_is_setup(struct device *dev, const char *name)
595{
596 struct fw_name_devm *fwn;
597
598 fwn = fw_find_devm_name(dev, name);
599 if (fwn)
600 return true;
601
602 return false;
603}
604
605/* add firmware name into devres list */
606static int fw_add_devm_name(struct device *dev, const char *name)
607{
608 struct fw_name_devm *fwn;
609
610 if (fw_cache_is_setup(dev, name))
611 return 0;
612
613 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
614 GFP_KERNEL);
615 if (!fwn)
616 return -ENOMEM;
617 fwn->name = kstrdup_const(name, GFP_KERNEL);
618 if (!fwn->name) {
619 devres_free(fwn);
620 return -ENOMEM;
621 }
622
623 fwn->magic = (unsigned long)&fw_cache;
624 devres_add(dev, fwn);
625
626 return 0;
627}
628#else
629static bool fw_cache_is_setup(struct device *dev, const char *name)
630{
631 return false;
632}
633
634static int fw_add_devm_name(struct device *dev, const char *name)
635{
636 return 0;
637}
638#endif
639
640int assign_fw(struct firmware *fw, struct device *device, u32 opt_flags)
641{
642 struct fw_priv *fw_priv = fw->priv;
643 int ret;
644
645 mutex_lock(&fw_lock);
646 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
647 mutex_unlock(&fw_lock);
648 return -ENOENT;
649 }
650
651 /*
652 * add firmware name into devres list so that we can auto cache
653 * and uncache firmware for device.
654 *
655 * device may has been deleted already, but the problem
656 * should be fixed in devres or driver core.
657 */
658 /* don't cache firmware handled without uevent */
659 if (device && (opt_flags & FW_OPT_UEVENT) &&
660 !(opt_flags & FW_OPT_NOCACHE)) {
661 ret = fw_add_devm_name(device, fw_priv->fw_name);
662 if (ret) {
663 mutex_unlock(&fw_lock);
664 return ret;
665 }
666 }
667
668 /*
669 * After caching firmware image is started, let it piggyback
670 * on request firmware.
671 */
672 if (!(opt_flags & FW_OPT_NOCACHE) &&
673 fw_priv->fwc->state == FW_LOADER_START_CACHE) {
674 if (fw_cache_piggyback_on_request(fw_priv->fw_name))
675 kref_get(&fw_priv->ref);
676 }
677
678 /* pass the pages buffer to driver at the last minute */
679 fw_set_page_data(fw_priv, fw);
680 mutex_unlock(&fw_lock);
681 return 0;
682}
683
684/* prepare firmware and firmware_buf structs;
685 * return 0 if a firmware is already assigned, 1 if need to load one,
686 * or a negative error code
687 */
688static int
689_request_firmware_prepare(struct firmware **firmware_p, const char *name,
690 struct device *device, void *dbuf, size_t size,
691 u32 opt_flags)
692{
693 struct firmware *firmware;
694 struct fw_priv *fw_priv;
695 int ret;
696
697 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
698 if (!firmware) {
699 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
700 __func__);
701 return -ENOMEM;
702 }
703
704 if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
705 dev_dbg(device, "using built-in %s\n", name);
706 return 0; /* assigned */
707 }
708
709 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
710 opt_flags);
711
712 /*
713 * bind with 'priv' now to avoid warning in failure path
714 * of requesting firmware.
715 */
716 firmware->priv = fw_priv;
717
718 if (ret > 0) {
719 ret = fw_state_wait(fw_priv);
720 if (!ret) {
721 fw_set_page_data(fw_priv, firmware);
722 return 0; /* assigned */
723 }
724 }
725
726 if (ret < 0)
727 return ret;
728 return 1; /* need to load */
729}
730
731/*
732 * Batched requests need only one wake, we need to do this step last due to the
733 * fallback mechanism. The buf is protected with kref_get(), and it won't be
734 * released until the last user calls release_firmware().
735 *
736 * Failed batched requests are possible as well, in such cases we just share
737 * the struct fw_priv and won't release it until all requests are woken
738 * and have gone through this same path.
739 */
740static void fw_abort_batch_reqs(struct firmware *fw)
741{
742 struct fw_priv *fw_priv;
743
744 /* Loaded directly? */
745 if (!fw || !fw->priv)
746 return;
747
748 fw_priv = fw->priv;
749 if (!fw_state_is_aborted(fw_priv))
750 fw_state_aborted(fw_priv);
751}
752
753/* called from request_firmware() and request_firmware_work_func() */
754static int
755_request_firmware(const struct firmware **firmware_p, const char *name,
756 struct device *device, void *buf, size_t size,
757 u32 opt_flags)
758{
759 struct firmware *fw = NULL;
760 int ret;
761
762 if (!firmware_p)
763 return -EINVAL;
764
765 if (!name || name[0] == '\0') {
766 ret = -EINVAL;
767 goto out;
768 }
769
770 ret = _request_firmware_prepare(&fw, name, device, buf, size,
771 opt_flags);
772 if (ret <= 0) /* error or already assigned */
773 goto out;
774
775 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
776#ifdef CONFIG_FW_LOADER_COMPRESS
777 if (ret == -ENOENT)
778 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
779 fw_decompress_xz);
780#endif
781
782 if (ret == -ENOENT)
783 ret = firmware_fallback_platform(fw->priv, opt_flags);
784
785 if (ret) {
786 if (!(opt_flags & FW_OPT_NO_WARN))
787 dev_warn(device,
788 "Direct firmware load for %s failed with error %d\n",
789 name, ret);
790 ret = firmware_fallback_sysfs(fw, name, device, opt_flags, ret);
791 } else
792 ret = assign_fw(fw, device, opt_flags);
793
794 out:
795 if (ret < 0) {
796 fw_abort_batch_reqs(fw);
797 release_firmware(fw);
798 fw = NULL;
799 }
800
801 *firmware_p = fw;
802 return ret;
803}
804
805/**
806 * request_firmware() - send firmware request and wait for it
807 * @firmware_p: pointer to firmware image
808 * @name: name of firmware file
809 * @device: device for which firmware is being loaded
810 *
811 * @firmware_p will be used to return a firmware image by the name
812 * of @name for device @device.
813 *
814 * Should be called from user context where sleeping is allowed.
815 *
816 * @name will be used as $FIRMWARE in the uevent environment and
817 * should be distinctive enough not to be confused with any other
818 * firmware image for this or any other device.
819 *
820 * Caller must hold the reference count of @device.
821 *
822 * The function can be called safely inside device's suspend and
823 * resume callback.
824 **/
825int
826request_firmware(const struct firmware **firmware_p, const char *name,
827 struct device *device)
828{
829 int ret;
830
831 /* Need to pin this module until return */
832 __module_get(THIS_MODULE);
833 ret = _request_firmware(firmware_p, name, device, NULL, 0,
834 FW_OPT_UEVENT);
835 module_put(THIS_MODULE);
836 return ret;
837}
838EXPORT_SYMBOL(request_firmware);
839
840/**
841 * firmware_request_nowarn() - request for an optional fw module
842 * @firmware: pointer to firmware image
843 * @name: name of firmware file
844 * @device: device for which firmware is being loaded
845 *
846 * This function is similar in behaviour to request_firmware(), except it
847 * doesn't produce warning messages when the file is not found. The sysfs
848 * fallback mechanism is enabled if direct filesystem lookup fails. However,
849 * failures to find the firmware file with it are still suppressed. It is
850 * therefore up to the driver to check for the return value of this call and to
851 * decide when to inform the users of errors.
852 **/
853int firmware_request_nowarn(const struct firmware **firmware, const char *name,
854 struct device *device)
855{
856 int ret;
857
858 /* Need to pin this module until return */
859 __module_get(THIS_MODULE);
860 ret = _request_firmware(firmware, name, device, NULL, 0,
861 FW_OPT_UEVENT | FW_OPT_NO_WARN);
862 module_put(THIS_MODULE);
863 return ret;
864}
865EXPORT_SYMBOL_GPL(firmware_request_nowarn);
866
867/**
868 * request_firmware_direct() - load firmware directly without usermode helper
869 * @firmware_p: pointer to firmware image
870 * @name: name of firmware file
871 * @device: device for which firmware is being loaded
872 *
873 * This function works pretty much like request_firmware(), but this doesn't
874 * fall back to usermode helper even if the firmware couldn't be loaded
875 * directly from fs. Hence it's useful for loading optional firmwares, which
876 * aren't always present, without extra long timeouts of udev.
877 **/
878int request_firmware_direct(const struct firmware **firmware_p,
879 const char *name, struct device *device)
880{
881 int ret;
882
883 __module_get(THIS_MODULE);
884 ret = _request_firmware(firmware_p, name, device, NULL, 0,
885 FW_OPT_UEVENT | FW_OPT_NO_WARN |
886 FW_OPT_NOFALLBACK_SYSFS);
887 module_put(THIS_MODULE);
888 return ret;
889}
890EXPORT_SYMBOL_GPL(request_firmware_direct);
891
892/**
893 * firmware_request_platform() - request firmware with platform-fw fallback
894 * @firmware: pointer to firmware image
895 * @name: name of firmware file
896 * @device: device for which firmware is being loaded
897 *
898 * This function is similar in behaviour to request_firmware, except that if
899 * direct filesystem lookup fails, it will fallback to looking for a copy of the
900 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
901 **/
902int firmware_request_platform(const struct firmware **firmware,
903 const char *name, struct device *device)
904{
905 int ret;
906
907 /* Need to pin this module until return */
908 __module_get(THIS_MODULE);
909 ret = _request_firmware(firmware, name, device, NULL, 0,
910 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
911 module_put(THIS_MODULE);
912 return ret;
913}
914EXPORT_SYMBOL_GPL(firmware_request_platform);
915
916/**
917 * firmware_request_cache() - cache firmware for suspend so resume can use it
918 * @name: name of firmware file
919 * @device: device for which firmware should be cached for
920 *
921 * There are some devices with an optimization that enables the device to not
922 * require loading firmware on system reboot. This optimization may still
923 * require the firmware present on resume from suspend. This routine can be
924 * used to ensure the firmware is present on resume from suspend in these
925 * situations. This helper is not compatible with drivers which use
926 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
927 **/
928int firmware_request_cache(struct device *device, const char *name)
929{
930 int ret;
931
932 mutex_lock(&fw_lock);
933 ret = fw_add_devm_name(device, name);
934 mutex_unlock(&fw_lock);
935
936 return ret;
937}
938EXPORT_SYMBOL_GPL(firmware_request_cache);
939
940/**
941 * request_firmware_into_buf() - load firmware into a previously allocated buffer
942 * @firmware_p: pointer to firmware image
943 * @name: name of firmware file
944 * @device: device for which firmware is being loaded and DMA region allocated
945 * @buf: address of buffer to load firmware into
946 * @size: size of buffer
947 *
948 * This function works pretty much like request_firmware(), but it doesn't
949 * allocate a buffer to hold the firmware data. Instead, the firmware
950 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
951 * data member is pointed at @buf.
952 *
953 * This function doesn't cache firmware either.
954 */
955int
956request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
957 struct device *device, void *buf, size_t size)
958{
959 int ret;
960
961 if (fw_cache_is_setup(device, name))
962 return -EOPNOTSUPP;
963
964 __module_get(THIS_MODULE);
965 ret = _request_firmware(firmware_p, name, device, buf, size,
966 FW_OPT_UEVENT | FW_OPT_NOCACHE);
967 module_put(THIS_MODULE);
968 return ret;
969}
970EXPORT_SYMBOL(request_firmware_into_buf);
971
972/**
973 * release_firmware() - release the resource associated with a firmware image
974 * @fw: firmware resource to release
975 **/
976void release_firmware(const struct firmware *fw)
977{
978 if (fw) {
979 if (!fw_is_builtin_firmware(fw))
980 firmware_free_data(fw);
981 kfree(fw);
982 }
983}
984EXPORT_SYMBOL(release_firmware);
985
986/* Async support */
987struct firmware_work {
988 struct work_struct work;
989 struct module *module;
990 const char *name;
991 struct device *device;
992 void *context;
993 void (*cont)(const struct firmware *fw, void *context);
994 u32 opt_flags;
995};
996
997static void request_firmware_work_func(struct work_struct *work)
998{
999 struct firmware_work *fw_work;
1000 const struct firmware *fw;
1001
1002 fw_work = container_of(work, struct firmware_work, work);
1003
1004 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0,
1005 fw_work->opt_flags);
1006 fw_work->cont(fw, fw_work->context);
1007 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1008
1009 module_put(fw_work->module);
1010 kfree_const(fw_work->name);
1011 kfree(fw_work);
1012}
1013
1014/**
1015 * request_firmware_nowait() - asynchronous version of request_firmware
1016 * @module: module requesting the firmware
1017 * @uevent: sends uevent to copy the firmware image if this flag
1018 * is non-zero else the firmware copy must be done manually.
1019 * @name: name of firmware file
1020 * @device: device for which firmware is being loaded
1021 * @gfp: allocation flags
1022 * @context: will be passed over to @cont, and
1023 * @fw may be %NULL if firmware request fails.
1024 * @cont: function will be called asynchronously when the firmware
1025 * request is over.
1026 *
1027 * Caller must hold the reference count of @device.
1028 *
1029 * Asynchronous variant of request_firmware() for user contexts:
1030 * - sleep for as small periods as possible since it may
1031 * increase kernel boot time of built-in device drivers
1032 * requesting firmware in their ->probe() methods, if
1033 * @gfp is GFP_KERNEL.
1034 *
1035 * - can't sleep at all if @gfp is GFP_ATOMIC.
1036 **/
1037int
1038request_firmware_nowait(
1039 struct module *module, bool uevent,
1040 const char *name, struct device *device, gfp_t gfp, void *context,
1041 void (*cont)(const struct firmware *fw, void *context))
1042{
1043 struct firmware_work *fw_work;
1044
1045 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1046 if (!fw_work)
1047 return -ENOMEM;
1048
1049 fw_work->module = module;
1050 fw_work->name = kstrdup_const(name, gfp);
1051 if (!fw_work->name) {
1052 kfree(fw_work);
1053 return -ENOMEM;
1054 }
1055 fw_work->device = device;
1056 fw_work->context = context;
1057 fw_work->cont = cont;
1058 fw_work->opt_flags = FW_OPT_NOWAIT |
1059 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1060
1061 if (!uevent && fw_cache_is_setup(device, name)) {
1062 kfree_const(fw_work->name);
1063 kfree(fw_work);
1064 return -EOPNOTSUPP;
1065 }
1066
1067 if (!try_module_get(module)) {
1068 kfree_const(fw_work->name);
1069 kfree(fw_work);
1070 return -EFAULT;
1071 }
1072
1073 get_device(fw_work->device);
1074 INIT_WORK(&fw_work->work, request_firmware_work_func);
1075 schedule_work(&fw_work->work);
1076 return 0;
1077}
1078EXPORT_SYMBOL(request_firmware_nowait);
1079
1080#ifdef CONFIG_FW_CACHE
1081static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1082
1083/**
1084 * cache_firmware() - cache one firmware image in kernel memory space
1085 * @fw_name: the firmware image name
1086 *
1087 * Cache firmware in kernel memory so that drivers can use it when
1088 * system isn't ready for them to request firmware image from userspace.
1089 * Once it returns successfully, driver can use request_firmware or its
1090 * nowait version to get the cached firmware without any interacting
1091 * with userspace
1092 *
1093 * Return 0 if the firmware image has been cached successfully
1094 * Return !0 otherwise
1095 *
1096 */
1097static int cache_firmware(const char *fw_name)
1098{
1099 int ret;
1100 const struct firmware *fw;
1101
1102 pr_debug("%s: %s\n", __func__, fw_name);
1103
1104 ret = request_firmware(&fw, fw_name, NULL);
1105 if (!ret)
1106 kfree(fw);
1107
1108 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1109
1110 return ret;
1111}
1112
1113static struct fw_priv *lookup_fw_priv(const char *fw_name)
1114{
1115 struct fw_priv *tmp;
1116 struct firmware_cache *fwc = &fw_cache;
1117
1118 spin_lock(&fwc->lock);
1119 tmp = __lookup_fw_priv(fw_name);
1120 spin_unlock(&fwc->lock);
1121
1122 return tmp;
1123}
1124
1125/**
1126 * uncache_firmware() - remove one cached firmware image
1127 * @fw_name: the firmware image name
1128 *
1129 * Uncache one firmware image which has been cached successfully
1130 * before.
1131 *
1132 * Return 0 if the firmware cache has been removed successfully
1133 * Return !0 otherwise
1134 *
1135 */
1136static int uncache_firmware(const char *fw_name)
1137{
1138 struct fw_priv *fw_priv;
1139 struct firmware fw;
1140
1141 pr_debug("%s: %s\n", __func__, fw_name);
1142
1143 if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1144 return 0;
1145
1146 fw_priv = lookup_fw_priv(fw_name);
1147 if (fw_priv) {
1148 free_fw_priv(fw_priv);
1149 return 0;
1150 }
1151
1152 return -EINVAL;
1153}
1154
1155static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1156{
1157 struct fw_cache_entry *fce;
1158
1159 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1160 if (!fce)
1161 goto exit;
1162
1163 fce->name = kstrdup_const(name, GFP_ATOMIC);
1164 if (!fce->name) {
1165 kfree(fce);
1166 fce = NULL;
1167 goto exit;
1168 }
1169exit:
1170 return fce;
1171}
1172
1173static int __fw_entry_found(const char *name)
1174{
1175 struct firmware_cache *fwc = &fw_cache;
1176 struct fw_cache_entry *fce;
1177
1178 list_for_each_entry(fce, &fwc->fw_names, list) {
1179 if (!strcmp(fce->name, name))
1180 return 1;
1181 }
1182 return 0;
1183}
1184
1185static int fw_cache_piggyback_on_request(const char *name)
1186{
1187 struct firmware_cache *fwc = &fw_cache;
1188 struct fw_cache_entry *fce;
1189 int ret = 0;
1190
1191 spin_lock(&fwc->name_lock);
1192 if (__fw_entry_found(name))
1193 goto found;
1194
1195 fce = alloc_fw_cache_entry(name);
1196 if (fce) {
1197 ret = 1;
1198 list_add(&fce->list, &fwc->fw_names);
1199 pr_debug("%s: fw: %s\n", __func__, name);
1200 }
1201found:
1202 spin_unlock(&fwc->name_lock);
1203 return ret;
1204}
1205
1206static void free_fw_cache_entry(struct fw_cache_entry *fce)
1207{
1208 kfree_const(fce->name);
1209 kfree(fce);
1210}
1211
1212static void __async_dev_cache_fw_image(void *fw_entry,
1213 async_cookie_t cookie)
1214{
1215 struct fw_cache_entry *fce = fw_entry;
1216 struct firmware_cache *fwc = &fw_cache;
1217 int ret;
1218
1219 ret = cache_firmware(fce->name);
1220 if (ret) {
1221 spin_lock(&fwc->name_lock);
1222 list_del(&fce->list);
1223 spin_unlock(&fwc->name_lock);
1224
1225 free_fw_cache_entry(fce);
1226 }
1227}
1228
1229/* called with dev->devres_lock held */
1230static void dev_create_fw_entry(struct device *dev, void *res,
1231 void *data)
1232{
1233 struct fw_name_devm *fwn = res;
1234 const char *fw_name = fwn->name;
1235 struct list_head *head = data;
1236 struct fw_cache_entry *fce;
1237
1238 fce = alloc_fw_cache_entry(fw_name);
1239 if (fce)
1240 list_add(&fce->list, head);
1241}
1242
1243static int devm_name_match(struct device *dev, void *res,
1244 void *match_data)
1245{
1246 struct fw_name_devm *fwn = res;
1247 return (fwn->magic == (unsigned long)match_data);
1248}
1249
1250static void dev_cache_fw_image(struct device *dev, void *data)
1251{
1252 LIST_HEAD(todo);
1253 struct fw_cache_entry *fce;
1254 struct fw_cache_entry *fce_next;
1255 struct firmware_cache *fwc = &fw_cache;
1256
1257 devres_for_each_res(dev, fw_name_devm_release,
1258 devm_name_match, &fw_cache,
1259 dev_create_fw_entry, &todo);
1260
1261 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1262 list_del(&fce->list);
1263
1264 spin_lock(&fwc->name_lock);
1265 /* only one cache entry for one firmware */
1266 if (!__fw_entry_found(fce->name)) {
1267 list_add(&fce->list, &fwc->fw_names);
1268 } else {
1269 free_fw_cache_entry(fce);
1270 fce = NULL;
1271 }
1272 spin_unlock(&fwc->name_lock);
1273
1274 if (fce)
1275 async_schedule_domain(__async_dev_cache_fw_image,
1276 (void *)fce,
1277 &fw_cache_domain);
1278 }
1279}
1280
1281static void __device_uncache_fw_images(void)
1282{
1283 struct firmware_cache *fwc = &fw_cache;
1284 struct fw_cache_entry *fce;
1285
1286 spin_lock(&fwc->name_lock);
1287 while (!list_empty(&fwc->fw_names)) {
1288 fce = list_entry(fwc->fw_names.next,
1289 struct fw_cache_entry, list);
1290 list_del(&fce->list);
1291 spin_unlock(&fwc->name_lock);
1292
1293 uncache_firmware(fce->name);
1294 free_fw_cache_entry(fce);
1295
1296 spin_lock(&fwc->name_lock);
1297 }
1298 spin_unlock(&fwc->name_lock);
1299}
1300
1301/**
1302 * device_cache_fw_images() - cache devices' firmware
1303 *
1304 * If one device called request_firmware or its nowait version
1305 * successfully before, the firmware names are recored into the
1306 * device's devres link list, so device_cache_fw_images can call
1307 * cache_firmware() to cache these firmwares for the device,
1308 * then the device driver can load its firmwares easily at
1309 * time when system is not ready to complete loading firmware.
1310 */
1311static void device_cache_fw_images(void)
1312{
1313 struct firmware_cache *fwc = &fw_cache;
1314 DEFINE_WAIT(wait);
1315
1316 pr_debug("%s\n", __func__);
1317
1318 /* cancel uncache work */
1319 cancel_delayed_work_sync(&fwc->work);
1320
1321 fw_fallback_set_cache_timeout();
1322
1323 mutex_lock(&fw_lock);
1324 fwc->state = FW_LOADER_START_CACHE;
1325 dpm_for_each_dev(NULL, dev_cache_fw_image);
1326 mutex_unlock(&fw_lock);
1327
1328 /* wait for completion of caching firmware for all devices */
1329 async_synchronize_full_domain(&fw_cache_domain);
1330
1331 fw_fallback_set_default_timeout();
1332}
1333
1334/**
1335 * device_uncache_fw_images() - uncache devices' firmware
1336 *
1337 * uncache all firmwares which have been cached successfully
1338 * by device_uncache_fw_images earlier
1339 */
1340static void device_uncache_fw_images(void)
1341{
1342 pr_debug("%s\n", __func__);
1343 __device_uncache_fw_images();
1344}
1345
1346static void device_uncache_fw_images_work(struct work_struct *work)
1347{
1348 device_uncache_fw_images();
1349}
1350
1351/**
1352 * device_uncache_fw_images_delay() - uncache devices firmwares
1353 * @delay: number of milliseconds to delay uncache device firmwares
1354 *
1355 * uncache all devices's firmwares which has been cached successfully
1356 * by device_cache_fw_images after @delay milliseconds.
1357 */
1358static void device_uncache_fw_images_delay(unsigned long delay)
1359{
1360 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1361 msecs_to_jiffies(delay));
1362}
1363
1364static int fw_pm_notify(struct notifier_block *notify_block,
1365 unsigned long mode, void *unused)
1366{
1367 switch (mode) {
1368 case PM_HIBERNATION_PREPARE:
1369 case PM_SUSPEND_PREPARE:
1370 case PM_RESTORE_PREPARE:
1371 /*
1372 * kill pending fallback requests with a custom fallback
1373 * to avoid stalling suspend.
1374 */
1375 kill_pending_fw_fallback_reqs(true);
1376 device_cache_fw_images();
1377 break;
1378
1379 case PM_POST_SUSPEND:
1380 case PM_POST_HIBERNATION:
1381 case PM_POST_RESTORE:
1382 /*
1383 * In case that system sleep failed and syscore_suspend is
1384 * not called.
1385 */
1386 mutex_lock(&fw_lock);
1387 fw_cache.state = FW_LOADER_NO_CACHE;
1388 mutex_unlock(&fw_lock);
1389
1390 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1391 break;
1392 }
1393
1394 return 0;
1395}
1396
1397/* stop caching firmware once syscore_suspend is reached */
1398static int fw_suspend(void)
1399{
1400 fw_cache.state = FW_LOADER_NO_CACHE;
1401 return 0;
1402}
1403
1404static struct syscore_ops fw_syscore_ops = {
1405 .suspend = fw_suspend,
1406};
1407
1408static int __init register_fw_pm_ops(void)
1409{
1410 int ret;
1411
1412 spin_lock_init(&fw_cache.name_lock);
1413 INIT_LIST_HEAD(&fw_cache.fw_names);
1414
1415 INIT_DELAYED_WORK(&fw_cache.work,
1416 device_uncache_fw_images_work);
1417
1418 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1419 ret = register_pm_notifier(&fw_cache.pm_notify);
1420 if (ret)
1421 return ret;
1422
1423 register_syscore_ops(&fw_syscore_ops);
1424
1425 return ret;
1426}
1427
1428static inline void unregister_fw_pm_ops(void)
1429{
1430 unregister_syscore_ops(&fw_syscore_ops);
1431 unregister_pm_notifier(&fw_cache.pm_notify);
1432}
1433#else
1434static int fw_cache_piggyback_on_request(const char *name)
1435{
1436 return 0;
1437}
1438static inline int register_fw_pm_ops(void)
1439{
1440 return 0;
1441}
1442static inline void unregister_fw_pm_ops(void)
1443{
1444}
1445#endif
1446
1447static void __init fw_cache_init(void)
1448{
1449 spin_lock_init(&fw_cache.lock);
1450 INIT_LIST_HEAD(&fw_cache.head);
1451 fw_cache.state = FW_LOADER_NO_CACHE;
1452}
1453
1454static int fw_shutdown_notify(struct notifier_block *unused1,
1455 unsigned long unused2, void *unused3)
1456{
1457 /*
1458 * Kill all pending fallback requests to avoid both stalling shutdown,
1459 * and avoid a deadlock with the usermode_lock.
1460 */
1461 kill_pending_fw_fallback_reqs(false);
1462
1463 return NOTIFY_DONE;
1464}
1465
1466static struct notifier_block fw_shutdown_nb = {
1467 .notifier_call = fw_shutdown_notify,
1468};
1469
1470static int __init firmware_class_init(void)
1471{
1472 int ret;
1473
1474 /* No need to unfold these on exit */
1475 fw_cache_init();
1476
1477 ret = register_fw_pm_ops();
1478 if (ret)
1479 return ret;
1480
1481 ret = register_reboot_notifier(&fw_shutdown_nb);
1482 if (ret)
1483 goto out;
1484
1485 return register_sysfs_loader();
1486
1487out:
1488 unregister_fw_pm_ops();
1489 return ret;
1490}
1491
1492static void __exit firmware_class_exit(void)
1493{
1494 unregister_fw_pm_ops();
1495 unregister_reboot_notifier(&fw_shutdown_nb);
1496 unregister_sysfs_loader();
1497}
1498
1499fs_initcall(firmware_class_init);
1500module_exit(firmware_class_exit);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/capability.h>
14#include <linux/device.h>
15#include <linux/kernel_read_file.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/initrd.h>
19#include <linux/timer.h>
20#include <linux/vmalloc.h>
21#include <linux/interrupt.h>
22#include <linux/bitops.h>
23#include <linux/mutex.h>
24#include <linux/workqueue.h>
25#include <linux/highmem.h>
26#include <linux/firmware.h>
27#include <linux/slab.h>
28#include <linux/sched.h>
29#include <linux/file.h>
30#include <linux/list.h>
31#include <linux/fs.h>
32#include <linux/async.h>
33#include <linux/pm.h>
34#include <linux/suspend.h>
35#include <linux/syscore_ops.h>
36#include <linux/reboot.h>
37#include <linux/security.h>
38#include <linux/zstd.h>
39#include <linux/xz.h>
40
41#include <generated/utsrelease.h>
42
43#include "../base.h"
44#include "firmware.h"
45#include "fallback.h"
46
47MODULE_AUTHOR("Manuel Estrada Sainz");
48MODULE_DESCRIPTION("Multi purpose firmware loading support");
49MODULE_LICENSE("GPL");
50
51struct firmware_cache {
52 /* firmware_buf instance will be added into the below list */
53 spinlock_t lock;
54 struct list_head head;
55 int state;
56
57#ifdef CONFIG_FW_CACHE
58 /*
59 * Names of firmware images which have been cached successfully
60 * will be added into the below list so that device uncache
61 * helper can trace which firmware images have been cached
62 * before.
63 */
64 spinlock_t name_lock;
65 struct list_head fw_names;
66
67 struct delayed_work work;
68
69 struct notifier_block pm_notify;
70#endif
71};
72
73struct fw_cache_entry {
74 struct list_head list;
75 const char *name;
76};
77
78struct fw_name_devm {
79 unsigned long magic;
80 const char *name;
81};
82
83static inline struct fw_priv *to_fw_priv(struct kref *ref)
84{
85 return container_of(ref, struct fw_priv, ref);
86}
87
88#define FW_LOADER_NO_CACHE 0
89#define FW_LOADER_START_CACHE 1
90
91/* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92 * guarding for corner cases a global lock should be OK */
93DEFINE_MUTEX(fw_lock);
94
95struct firmware_cache fw_cache;
96
97void fw_state_init(struct fw_priv *fw_priv)
98{
99 struct fw_state *fw_st = &fw_priv->fw_st;
100
101 init_completion(&fw_st->completion);
102 fw_st->status = FW_STATUS_UNKNOWN;
103}
104
105static inline int fw_state_wait(struct fw_priv *fw_priv)
106{
107 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
108}
109
110static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
111
112static struct fw_priv *__allocate_fw_priv(const char *fw_name,
113 struct firmware_cache *fwc,
114 void *dbuf,
115 size_t size,
116 size_t offset,
117 u32 opt_flags)
118{
119 struct fw_priv *fw_priv;
120
121 /* For a partial read, the buffer must be preallocated. */
122 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
123 return NULL;
124
125 /* Only partial reads are allowed to use an offset. */
126 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
127 return NULL;
128
129 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
130 if (!fw_priv)
131 return NULL;
132
133 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
134 if (!fw_priv->fw_name) {
135 kfree(fw_priv);
136 return NULL;
137 }
138
139 kref_init(&fw_priv->ref);
140 fw_priv->fwc = fwc;
141 fw_priv->data = dbuf;
142 fw_priv->allocated_size = size;
143 fw_priv->offset = offset;
144 fw_priv->opt_flags = opt_flags;
145 fw_state_init(fw_priv);
146#ifdef CONFIG_FW_LOADER_USER_HELPER
147 INIT_LIST_HEAD(&fw_priv->pending_list);
148#endif
149
150 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
151
152 return fw_priv;
153}
154
155static struct fw_priv *__lookup_fw_priv(const char *fw_name)
156{
157 struct fw_priv *tmp;
158 struct firmware_cache *fwc = &fw_cache;
159
160 list_for_each_entry(tmp, &fwc->head, list)
161 if (!strcmp(tmp->fw_name, fw_name))
162 return tmp;
163 return NULL;
164}
165
166/* Returns 1 for batching firmware requests with the same name */
167int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
168 struct fw_priv **fw_priv, void *dbuf, size_t size,
169 size_t offset, u32 opt_flags)
170{
171 struct fw_priv *tmp;
172
173 spin_lock(&fwc->lock);
174 /*
175 * Do not merge requests that are marked to be non-cached or
176 * are performing partial reads.
177 */
178 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
179 tmp = __lookup_fw_priv(fw_name);
180 if (tmp) {
181 kref_get(&tmp->ref);
182 spin_unlock(&fwc->lock);
183 *fw_priv = tmp;
184 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
185 return 1;
186 }
187 }
188
189 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
190 if (tmp) {
191 INIT_LIST_HEAD(&tmp->list);
192 if (!(opt_flags & FW_OPT_NOCACHE))
193 list_add(&tmp->list, &fwc->head);
194 }
195 spin_unlock(&fwc->lock);
196
197 *fw_priv = tmp;
198
199 return tmp ? 0 : -ENOMEM;
200}
201
202static void __free_fw_priv(struct kref *ref)
203 __releases(&fwc->lock)
204{
205 struct fw_priv *fw_priv = to_fw_priv(ref);
206 struct firmware_cache *fwc = fw_priv->fwc;
207
208 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
209 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
210 (unsigned int)fw_priv->size);
211
212 list_del(&fw_priv->list);
213 spin_unlock(&fwc->lock);
214
215 if (fw_is_paged_buf(fw_priv))
216 fw_free_paged_buf(fw_priv);
217 else if (!fw_priv->allocated_size)
218 vfree(fw_priv->data);
219
220 kfree_const(fw_priv->fw_name);
221 kfree(fw_priv);
222}
223
224void free_fw_priv(struct fw_priv *fw_priv)
225{
226 struct firmware_cache *fwc = fw_priv->fwc;
227 spin_lock(&fwc->lock);
228 if (!kref_put(&fw_priv->ref, __free_fw_priv))
229 spin_unlock(&fwc->lock);
230}
231
232#ifdef CONFIG_FW_LOADER_PAGED_BUF
233bool fw_is_paged_buf(struct fw_priv *fw_priv)
234{
235 return fw_priv->is_paged_buf;
236}
237
238void fw_free_paged_buf(struct fw_priv *fw_priv)
239{
240 int i;
241
242 if (!fw_priv->pages)
243 return;
244
245 vunmap(fw_priv->data);
246
247 for (i = 0; i < fw_priv->nr_pages; i++)
248 __free_page(fw_priv->pages[i]);
249 kvfree(fw_priv->pages);
250 fw_priv->pages = NULL;
251 fw_priv->page_array_size = 0;
252 fw_priv->nr_pages = 0;
253 fw_priv->data = NULL;
254 fw_priv->size = 0;
255}
256
257int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
258{
259 /* If the array of pages is too small, grow it */
260 if (fw_priv->page_array_size < pages_needed) {
261 int new_array_size = max(pages_needed,
262 fw_priv->page_array_size * 2);
263 struct page **new_pages;
264
265 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
266 GFP_KERNEL);
267 if (!new_pages)
268 return -ENOMEM;
269 memcpy(new_pages, fw_priv->pages,
270 fw_priv->page_array_size * sizeof(void *));
271 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
272 (new_array_size - fw_priv->page_array_size));
273 kvfree(fw_priv->pages);
274 fw_priv->pages = new_pages;
275 fw_priv->page_array_size = new_array_size;
276 }
277
278 while (fw_priv->nr_pages < pages_needed) {
279 fw_priv->pages[fw_priv->nr_pages] =
280 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
281
282 if (!fw_priv->pages[fw_priv->nr_pages])
283 return -ENOMEM;
284 fw_priv->nr_pages++;
285 }
286
287 return 0;
288}
289
290int fw_map_paged_buf(struct fw_priv *fw_priv)
291{
292 /* one pages buffer should be mapped/unmapped only once */
293 if (!fw_priv->pages)
294 return 0;
295
296 vunmap(fw_priv->data);
297 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
298 PAGE_KERNEL_RO);
299 if (!fw_priv->data)
300 return -ENOMEM;
301
302 return 0;
303}
304#endif
305
306/*
307 * ZSTD-compressed firmware support
308 */
309#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
310static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
311 size_t in_size, const void *in_buffer)
312{
313 size_t len, out_size, workspace_size;
314 void *workspace, *out_buf;
315 zstd_dctx *ctx;
316 int err;
317
318 if (fw_priv->allocated_size) {
319 out_size = fw_priv->allocated_size;
320 out_buf = fw_priv->data;
321 } else {
322 zstd_frame_header params;
323
324 if (zstd_get_frame_header(¶ms, in_buffer, in_size) ||
325 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
326 dev_dbg(dev, "%s: invalid zstd header\n", __func__);
327 return -EINVAL;
328 }
329 out_size = params.frameContentSize;
330 out_buf = vzalloc(out_size);
331 if (!out_buf)
332 return -ENOMEM;
333 }
334
335 workspace_size = zstd_dctx_workspace_bound();
336 workspace = kvzalloc(workspace_size, GFP_KERNEL);
337 if (!workspace) {
338 err = -ENOMEM;
339 goto error;
340 }
341
342 ctx = zstd_init_dctx(workspace, workspace_size);
343 if (!ctx) {
344 dev_dbg(dev, "%s: failed to initialize context\n", __func__);
345 err = -EINVAL;
346 goto error;
347 }
348
349 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
350 if (zstd_is_error(len)) {
351 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
352 zstd_get_error_code(len));
353 err = -EINVAL;
354 goto error;
355 }
356
357 if (!fw_priv->allocated_size)
358 fw_priv->data = out_buf;
359 fw_priv->size = len;
360 err = 0;
361
362 error:
363 kvfree(workspace);
364 if (err && !fw_priv->allocated_size)
365 vfree(out_buf);
366 return err;
367}
368#endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
369
370/*
371 * XZ-compressed firmware support
372 */
373#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
374/* show an error and return the standard error code */
375static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
376{
377 if (xz_ret != XZ_STREAM_END) {
378 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
379 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
380 }
381 return 0;
382}
383
384/* single-shot decompression onto the pre-allocated buffer */
385static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
386 size_t in_size, const void *in_buffer)
387{
388 struct xz_dec *xz_dec;
389 struct xz_buf xz_buf;
390 enum xz_ret xz_ret;
391
392 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
393 if (!xz_dec)
394 return -ENOMEM;
395
396 xz_buf.in_size = in_size;
397 xz_buf.in = in_buffer;
398 xz_buf.in_pos = 0;
399 xz_buf.out_size = fw_priv->allocated_size;
400 xz_buf.out = fw_priv->data;
401 xz_buf.out_pos = 0;
402
403 xz_ret = xz_dec_run(xz_dec, &xz_buf);
404 xz_dec_end(xz_dec);
405
406 fw_priv->size = xz_buf.out_pos;
407 return fw_decompress_xz_error(dev, xz_ret);
408}
409
410/* decompression on paged buffer and map it */
411static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
412 size_t in_size, const void *in_buffer)
413{
414 struct xz_dec *xz_dec;
415 struct xz_buf xz_buf;
416 enum xz_ret xz_ret;
417 struct page *page;
418 int err = 0;
419
420 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
421 if (!xz_dec)
422 return -ENOMEM;
423
424 xz_buf.in_size = in_size;
425 xz_buf.in = in_buffer;
426 xz_buf.in_pos = 0;
427
428 fw_priv->is_paged_buf = true;
429 fw_priv->size = 0;
430 do {
431 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
432 err = -ENOMEM;
433 goto out;
434 }
435
436 /* decompress onto the new allocated page */
437 page = fw_priv->pages[fw_priv->nr_pages - 1];
438 xz_buf.out = kmap_local_page(page);
439 xz_buf.out_pos = 0;
440 xz_buf.out_size = PAGE_SIZE;
441 xz_ret = xz_dec_run(xz_dec, &xz_buf);
442 kunmap_local(xz_buf.out);
443 fw_priv->size += xz_buf.out_pos;
444 /* partial decompression means either end or error */
445 if (xz_buf.out_pos != PAGE_SIZE)
446 break;
447 } while (xz_ret == XZ_OK);
448
449 err = fw_decompress_xz_error(dev, xz_ret);
450 if (!err)
451 err = fw_map_paged_buf(fw_priv);
452
453 out:
454 xz_dec_end(xz_dec);
455 return err;
456}
457
458static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
459 size_t in_size, const void *in_buffer)
460{
461 /* if the buffer is pre-allocated, we can perform in single-shot mode */
462 if (fw_priv->data)
463 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
464 else
465 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
466}
467#endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
468
469/* direct firmware loading support */
470static char fw_path_para[256];
471static const char * const fw_path[] = {
472 fw_path_para,
473 "/lib/firmware/updates/" UTS_RELEASE,
474 "/lib/firmware/updates",
475 "/lib/firmware/" UTS_RELEASE,
476 "/lib/firmware"
477};
478
479/*
480 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
481 * from kernel command line because firmware_class is generally built in
482 * kernel instead of module.
483 */
484module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
485MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
486
487static int
488fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
489 const char *suffix,
490 int (*decompress)(struct device *dev,
491 struct fw_priv *fw_priv,
492 size_t in_size,
493 const void *in_buffer))
494{
495 size_t size;
496 int i, len;
497 int rc = -ENOENT;
498 char *path;
499 size_t msize = INT_MAX;
500 void *buffer = NULL;
501
502 /* Already populated data member means we're loading into a buffer */
503 if (!decompress && fw_priv->data) {
504 buffer = fw_priv->data;
505 msize = fw_priv->allocated_size;
506 }
507
508 path = __getname();
509 if (!path)
510 return -ENOMEM;
511
512 wait_for_initramfs();
513 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
514 size_t file_size = 0;
515 size_t *file_size_ptr = NULL;
516
517 /* skip the unset customized path */
518 if (!fw_path[i][0])
519 continue;
520
521 len = snprintf(path, PATH_MAX, "%s/%s%s",
522 fw_path[i], fw_priv->fw_name, suffix);
523 if (len >= PATH_MAX) {
524 rc = -ENAMETOOLONG;
525 break;
526 }
527
528 fw_priv->size = 0;
529
530 /*
531 * The total file size is only examined when doing a partial
532 * read; the "full read" case needs to fail if the whole
533 * firmware was not completely loaded.
534 */
535 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
536 file_size_ptr = &file_size;
537
538 /* load firmware files from the mount namespace of init */
539 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
540 &buffer, msize,
541 file_size_ptr,
542 READING_FIRMWARE);
543 if (rc < 0) {
544 if (rc != -ENOENT)
545 dev_warn(device, "loading %s failed with error %d\n",
546 path, rc);
547 else
548 dev_dbg(device, "loading %s failed for no such file or directory.\n",
549 path);
550 continue;
551 }
552 size = rc;
553 rc = 0;
554
555 dev_dbg(device, "Loading firmware from %s\n", path);
556 if (decompress) {
557 dev_dbg(device, "f/w decompressing %s\n",
558 fw_priv->fw_name);
559 rc = decompress(device, fw_priv, size, buffer);
560 /* discard the superfluous original content */
561 vfree(buffer);
562 buffer = NULL;
563 if (rc) {
564 fw_free_paged_buf(fw_priv);
565 continue;
566 }
567 } else {
568 dev_dbg(device, "direct-loading %s\n",
569 fw_priv->fw_name);
570 if (!fw_priv->data)
571 fw_priv->data = buffer;
572 fw_priv->size = size;
573 }
574 fw_state_done(fw_priv);
575 break;
576 }
577 __putname(path);
578
579 return rc;
580}
581
582/* firmware holds the ownership of pages */
583static void firmware_free_data(const struct firmware *fw)
584{
585 /* Loaded directly? */
586 if (!fw->priv) {
587 vfree(fw->data);
588 return;
589 }
590 free_fw_priv(fw->priv);
591}
592
593/* store the pages buffer info firmware from buf */
594static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
595{
596 fw->priv = fw_priv;
597 fw->size = fw_priv->size;
598 fw->data = fw_priv->data;
599
600 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
601 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
602 (unsigned int)fw_priv->size);
603}
604
605#ifdef CONFIG_FW_CACHE
606static void fw_name_devm_release(struct device *dev, void *res)
607{
608 struct fw_name_devm *fwn = res;
609
610 if (fwn->magic == (unsigned long)&fw_cache)
611 pr_debug("%s: fw_name-%s devm-%p released\n",
612 __func__, fwn->name, res);
613 kfree_const(fwn->name);
614}
615
616static int fw_devm_match(struct device *dev, void *res,
617 void *match_data)
618{
619 struct fw_name_devm *fwn = res;
620
621 return (fwn->magic == (unsigned long)&fw_cache) &&
622 !strcmp(fwn->name, match_data);
623}
624
625static struct fw_name_devm *fw_find_devm_name(struct device *dev,
626 const char *name)
627{
628 struct fw_name_devm *fwn;
629
630 fwn = devres_find(dev, fw_name_devm_release,
631 fw_devm_match, (void *)name);
632 return fwn;
633}
634
635static bool fw_cache_is_setup(struct device *dev, const char *name)
636{
637 struct fw_name_devm *fwn;
638
639 fwn = fw_find_devm_name(dev, name);
640 if (fwn)
641 return true;
642
643 return false;
644}
645
646/* add firmware name into devres list */
647static int fw_add_devm_name(struct device *dev, const char *name)
648{
649 struct fw_name_devm *fwn;
650
651 if (fw_cache_is_setup(dev, name))
652 return 0;
653
654 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
655 GFP_KERNEL);
656 if (!fwn)
657 return -ENOMEM;
658 fwn->name = kstrdup_const(name, GFP_KERNEL);
659 if (!fwn->name) {
660 devres_free(fwn);
661 return -ENOMEM;
662 }
663
664 fwn->magic = (unsigned long)&fw_cache;
665 devres_add(dev, fwn);
666
667 return 0;
668}
669#else
670static bool fw_cache_is_setup(struct device *dev, const char *name)
671{
672 return false;
673}
674
675static int fw_add_devm_name(struct device *dev, const char *name)
676{
677 return 0;
678}
679#endif
680
681int assign_fw(struct firmware *fw, struct device *device)
682{
683 struct fw_priv *fw_priv = fw->priv;
684 int ret;
685
686 mutex_lock(&fw_lock);
687 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
688 mutex_unlock(&fw_lock);
689 return -ENOENT;
690 }
691
692 /*
693 * add firmware name into devres list so that we can auto cache
694 * and uncache firmware for device.
695 *
696 * device may has been deleted already, but the problem
697 * should be fixed in devres or driver core.
698 */
699 /* don't cache firmware handled without uevent */
700 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
701 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
702 ret = fw_add_devm_name(device, fw_priv->fw_name);
703 if (ret) {
704 mutex_unlock(&fw_lock);
705 return ret;
706 }
707 }
708
709 /*
710 * After caching firmware image is started, let it piggyback
711 * on request firmware.
712 */
713 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
714 fw_priv->fwc->state == FW_LOADER_START_CACHE)
715 fw_cache_piggyback_on_request(fw_priv);
716
717 /* pass the pages buffer to driver at the last minute */
718 fw_set_page_data(fw_priv, fw);
719 mutex_unlock(&fw_lock);
720 return 0;
721}
722
723/* prepare firmware and firmware_buf structs;
724 * return 0 if a firmware is already assigned, 1 if need to load one,
725 * or a negative error code
726 */
727static int
728_request_firmware_prepare(struct firmware **firmware_p, const char *name,
729 struct device *device, void *dbuf, size_t size,
730 size_t offset, u32 opt_flags)
731{
732 struct firmware *firmware;
733 struct fw_priv *fw_priv;
734 int ret;
735
736 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
737 if (!firmware) {
738 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
739 __func__);
740 return -ENOMEM;
741 }
742
743 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
744 dev_dbg(device, "using built-in %s\n", name);
745 return 0; /* assigned */
746 }
747
748 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
749 offset, opt_flags);
750
751 /*
752 * bind with 'priv' now to avoid warning in failure path
753 * of requesting firmware.
754 */
755 firmware->priv = fw_priv;
756
757 if (ret > 0) {
758 ret = fw_state_wait(fw_priv);
759 if (!ret) {
760 fw_set_page_data(fw_priv, firmware);
761 return 0; /* assigned */
762 }
763 }
764
765 if (ret < 0)
766 return ret;
767 return 1; /* need to load */
768}
769
770/*
771 * Batched requests need only one wake, we need to do this step last due to the
772 * fallback mechanism. The buf is protected with kref_get(), and it won't be
773 * released until the last user calls release_firmware().
774 *
775 * Failed batched requests are possible as well, in such cases we just share
776 * the struct fw_priv and won't release it until all requests are woken
777 * and have gone through this same path.
778 */
779static void fw_abort_batch_reqs(struct firmware *fw)
780{
781 struct fw_priv *fw_priv;
782
783 /* Loaded directly? */
784 if (!fw || !fw->priv)
785 return;
786
787 fw_priv = fw->priv;
788 mutex_lock(&fw_lock);
789 if (!fw_state_is_aborted(fw_priv))
790 fw_state_aborted(fw_priv);
791 mutex_unlock(&fw_lock);
792}
793
794/* called from request_firmware() and request_firmware_work_func() */
795static int
796_request_firmware(const struct firmware **firmware_p, const char *name,
797 struct device *device, void *buf, size_t size,
798 size_t offset, u32 opt_flags)
799{
800 struct firmware *fw = NULL;
801 struct cred *kern_cred = NULL;
802 const struct cred *old_cred;
803 bool nondirect = false;
804 int ret;
805
806 if (!firmware_p)
807 return -EINVAL;
808
809 if (!name || name[0] == '\0') {
810 ret = -EINVAL;
811 goto out;
812 }
813
814 ret = _request_firmware_prepare(&fw, name, device, buf, size,
815 offset, opt_flags);
816 if (ret <= 0) /* error or already assigned */
817 goto out;
818
819 /*
820 * We are about to try to access the firmware file. Because we may have been
821 * called by a driver when serving an unrelated request from userland, we use
822 * the kernel credentials to read the file.
823 */
824 kern_cred = prepare_kernel_cred(&init_task);
825 if (!kern_cred) {
826 ret = -ENOMEM;
827 goto out;
828 }
829 old_cred = override_creds(kern_cred);
830
831 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
832
833 /* Only full reads can support decompression, platform, and sysfs. */
834 if (!(opt_flags & FW_OPT_PARTIAL))
835 nondirect = true;
836
837#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
838 if (ret == -ENOENT && nondirect)
839 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
840 fw_decompress_zstd);
841#endif
842#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
843 if (ret == -ENOENT && nondirect)
844 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
845 fw_decompress_xz);
846#endif
847 if (ret == -ENOENT && nondirect)
848 ret = firmware_fallback_platform(fw->priv);
849
850 if (ret) {
851 if (!(opt_flags & FW_OPT_NO_WARN))
852 dev_warn(device,
853 "Direct firmware load for %s failed with error %d\n",
854 name, ret);
855 if (nondirect)
856 ret = firmware_fallback_sysfs(fw, name, device,
857 opt_flags, ret);
858 } else
859 ret = assign_fw(fw, device);
860
861 revert_creds(old_cred);
862 put_cred(kern_cred);
863
864 out:
865 if (ret < 0) {
866 fw_abort_batch_reqs(fw);
867 release_firmware(fw);
868 fw = NULL;
869 }
870
871 *firmware_p = fw;
872 return ret;
873}
874
875/**
876 * request_firmware() - send firmware request and wait for it
877 * @firmware_p: pointer to firmware image
878 * @name: name of firmware file
879 * @device: device for which firmware is being loaded
880 *
881 * @firmware_p will be used to return a firmware image by the name
882 * of @name for device @device.
883 *
884 * Should be called from user context where sleeping is allowed.
885 *
886 * @name will be used as $FIRMWARE in the uevent environment and
887 * should be distinctive enough not to be confused with any other
888 * firmware image for this or any other device.
889 *
890 * Caller must hold the reference count of @device.
891 *
892 * The function can be called safely inside device's suspend and
893 * resume callback.
894 **/
895int
896request_firmware(const struct firmware **firmware_p, const char *name,
897 struct device *device)
898{
899 int ret;
900
901 /* Need to pin this module until return */
902 __module_get(THIS_MODULE);
903 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
904 FW_OPT_UEVENT);
905 module_put(THIS_MODULE);
906 return ret;
907}
908EXPORT_SYMBOL(request_firmware);
909
910/**
911 * firmware_request_nowarn() - request for an optional fw module
912 * @firmware: pointer to firmware image
913 * @name: name of firmware file
914 * @device: device for which firmware is being loaded
915 *
916 * This function is similar in behaviour to request_firmware(), except it
917 * doesn't produce warning messages when the file is not found. The sysfs
918 * fallback mechanism is enabled if direct filesystem lookup fails. However,
919 * failures to find the firmware file with it are still suppressed. It is
920 * therefore up to the driver to check for the return value of this call and to
921 * decide when to inform the users of errors.
922 **/
923int firmware_request_nowarn(const struct firmware **firmware, const char *name,
924 struct device *device)
925{
926 int ret;
927
928 /* Need to pin this module until return */
929 __module_get(THIS_MODULE);
930 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
931 FW_OPT_UEVENT | FW_OPT_NO_WARN);
932 module_put(THIS_MODULE);
933 return ret;
934}
935EXPORT_SYMBOL_GPL(firmware_request_nowarn);
936
937/**
938 * request_firmware_direct() - load firmware directly without usermode helper
939 * @firmware_p: pointer to firmware image
940 * @name: name of firmware file
941 * @device: device for which firmware is being loaded
942 *
943 * This function works pretty much like request_firmware(), but this doesn't
944 * fall back to usermode helper even if the firmware couldn't be loaded
945 * directly from fs. Hence it's useful for loading optional firmwares, which
946 * aren't always present, without extra long timeouts of udev.
947 **/
948int request_firmware_direct(const struct firmware **firmware_p,
949 const char *name, struct device *device)
950{
951 int ret;
952
953 __module_get(THIS_MODULE);
954 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
955 FW_OPT_UEVENT | FW_OPT_NO_WARN |
956 FW_OPT_NOFALLBACK_SYSFS);
957 module_put(THIS_MODULE);
958 return ret;
959}
960EXPORT_SYMBOL_GPL(request_firmware_direct);
961
962/**
963 * firmware_request_platform() - request firmware with platform-fw fallback
964 * @firmware: pointer to firmware image
965 * @name: name of firmware file
966 * @device: device for which firmware is being loaded
967 *
968 * This function is similar in behaviour to request_firmware, except that if
969 * direct filesystem lookup fails, it will fallback to looking for a copy of the
970 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
971 **/
972int firmware_request_platform(const struct firmware **firmware,
973 const char *name, struct device *device)
974{
975 int ret;
976
977 /* Need to pin this module until return */
978 __module_get(THIS_MODULE);
979 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
980 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
981 module_put(THIS_MODULE);
982 return ret;
983}
984EXPORT_SYMBOL_GPL(firmware_request_platform);
985
986/**
987 * firmware_request_cache() - cache firmware for suspend so resume can use it
988 * @name: name of firmware file
989 * @device: device for which firmware should be cached for
990 *
991 * There are some devices with an optimization that enables the device to not
992 * require loading firmware on system reboot. This optimization may still
993 * require the firmware present on resume from suspend. This routine can be
994 * used to ensure the firmware is present on resume from suspend in these
995 * situations. This helper is not compatible with drivers which use
996 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
997 **/
998int firmware_request_cache(struct device *device, const char *name)
999{
1000 int ret;
1001
1002 mutex_lock(&fw_lock);
1003 ret = fw_add_devm_name(device, name);
1004 mutex_unlock(&fw_lock);
1005
1006 return ret;
1007}
1008EXPORT_SYMBOL_GPL(firmware_request_cache);
1009
1010/**
1011 * request_firmware_into_buf() - load firmware into a previously allocated buffer
1012 * @firmware_p: pointer to firmware image
1013 * @name: name of firmware file
1014 * @device: device for which firmware is being loaded and DMA region allocated
1015 * @buf: address of buffer to load firmware into
1016 * @size: size of buffer
1017 *
1018 * This function works pretty much like request_firmware(), but it doesn't
1019 * allocate a buffer to hold the firmware data. Instead, the firmware
1020 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1021 * data member is pointed at @buf.
1022 *
1023 * This function doesn't cache firmware either.
1024 */
1025int
1026request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1027 struct device *device, void *buf, size_t size)
1028{
1029 int ret;
1030
1031 if (fw_cache_is_setup(device, name))
1032 return -EOPNOTSUPP;
1033
1034 __module_get(THIS_MODULE);
1035 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1036 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1037 module_put(THIS_MODULE);
1038 return ret;
1039}
1040EXPORT_SYMBOL(request_firmware_into_buf);
1041
1042/**
1043 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1044 * @firmware_p: pointer to firmware image
1045 * @name: name of firmware file
1046 * @device: device for which firmware is being loaded and DMA region allocated
1047 * @buf: address of buffer to load firmware into
1048 * @size: size of buffer
1049 * @offset: offset into file to read
1050 *
1051 * This function works pretty much like request_firmware_into_buf except
1052 * it allows a partial read of the file.
1053 */
1054int
1055request_partial_firmware_into_buf(const struct firmware **firmware_p,
1056 const char *name, struct device *device,
1057 void *buf, size_t size, size_t offset)
1058{
1059 int ret;
1060
1061 if (fw_cache_is_setup(device, name))
1062 return -EOPNOTSUPP;
1063
1064 __module_get(THIS_MODULE);
1065 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1066 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1067 FW_OPT_PARTIAL);
1068 module_put(THIS_MODULE);
1069 return ret;
1070}
1071EXPORT_SYMBOL(request_partial_firmware_into_buf);
1072
1073/**
1074 * release_firmware() - release the resource associated with a firmware image
1075 * @fw: firmware resource to release
1076 **/
1077void release_firmware(const struct firmware *fw)
1078{
1079 if (fw) {
1080 if (!firmware_is_builtin(fw))
1081 firmware_free_data(fw);
1082 kfree(fw);
1083 }
1084}
1085EXPORT_SYMBOL(release_firmware);
1086
1087/* Async support */
1088struct firmware_work {
1089 struct work_struct work;
1090 struct module *module;
1091 const char *name;
1092 struct device *device;
1093 void *context;
1094 void (*cont)(const struct firmware *fw, void *context);
1095 u32 opt_flags;
1096};
1097
1098static void request_firmware_work_func(struct work_struct *work)
1099{
1100 struct firmware_work *fw_work;
1101 const struct firmware *fw;
1102
1103 fw_work = container_of(work, struct firmware_work, work);
1104
1105 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1106 fw_work->opt_flags);
1107 fw_work->cont(fw, fw_work->context);
1108 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1109
1110 module_put(fw_work->module);
1111 kfree_const(fw_work->name);
1112 kfree(fw_work);
1113}
1114
1115/**
1116 * request_firmware_nowait() - asynchronous version of request_firmware
1117 * @module: module requesting the firmware
1118 * @uevent: sends uevent to copy the firmware image if this flag
1119 * is non-zero else the firmware copy must be done manually.
1120 * @name: name of firmware file
1121 * @device: device for which firmware is being loaded
1122 * @gfp: allocation flags
1123 * @context: will be passed over to @cont, and
1124 * @fw may be %NULL if firmware request fails.
1125 * @cont: function will be called asynchronously when the firmware
1126 * request is over.
1127 *
1128 * Caller must hold the reference count of @device.
1129 *
1130 * Asynchronous variant of request_firmware() for user contexts:
1131 * - sleep for as small periods as possible since it may
1132 * increase kernel boot time of built-in device drivers
1133 * requesting firmware in their ->probe() methods, if
1134 * @gfp is GFP_KERNEL.
1135 *
1136 * - can't sleep at all if @gfp is GFP_ATOMIC.
1137 **/
1138int
1139request_firmware_nowait(
1140 struct module *module, bool uevent,
1141 const char *name, struct device *device, gfp_t gfp, void *context,
1142 void (*cont)(const struct firmware *fw, void *context))
1143{
1144 struct firmware_work *fw_work;
1145
1146 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1147 if (!fw_work)
1148 return -ENOMEM;
1149
1150 fw_work->module = module;
1151 fw_work->name = kstrdup_const(name, gfp);
1152 if (!fw_work->name) {
1153 kfree(fw_work);
1154 return -ENOMEM;
1155 }
1156 fw_work->device = device;
1157 fw_work->context = context;
1158 fw_work->cont = cont;
1159 fw_work->opt_flags = FW_OPT_NOWAIT |
1160 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1161
1162 if (!uevent && fw_cache_is_setup(device, name)) {
1163 kfree_const(fw_work->name);
1164 kfree(fw_work);
1165 return -EOPNOTSUPP;
1166 }
1167
1168 if (!try_module_get(module)) {
1169 kfree_const(fw_work->name);
1170 kfree(fw_work);
1171 return -EFAULT;
1172 }
1173
1174 get_device(fw_work->device);
1175 INIT_WORK(&fw_work->work, request_firmware_work_func);
1176 schedule_work(&fw_work->work);
1177 return 0;
1178}
1179EXPORT_SYMBOL(request_firmware_nowait);
1180
1181#ifdef CONFIG_FW_CACHE
1182static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1183
1184/**
1185 * cache_firmware() - cache one firmware image in kernel memory space
1186 * @fw_name: the firmware image name
1187 *
1188 * Cache firmware in kernel memory so that drivers can use it when
1189 * system isn't ready for them to request firmware image from userspace.
1190 * Once it returns successfully, driver can use request_firmware or its
1191 * nowait version to get the cached firmware without any interacting
1192 * with userspace
1193 *
1194 * Return 0 if the firmware image has been cached successfully
1195 * Return !0 otherwise
1196 *
1197 */
1198static int cache_firmware(const char *fw_name)
1199{
1200 int ret;
1201 const struct firmware *fw;
1202
1203 pr_debug("%s: %s\n", __func__, fw_name);
1204
1205 ret = request_firmware(&fw, fw_name, NULL);
1206 if (!ret)
1207 kfree(fw);
1208
1209 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1210
1211 return ret;
1212}
1213
1214static struct fw_priv *lookup_fw_priv(const char *fw_name)
1215{
1216 struct fw_priv *tmp;
1217 struct firmware_cache *fwc = &fw_cache;
1218
1219 spin_lock(&fwc->lock);
1220 tmp = __lookup_fw_priv(fw_name);
1221 spin_unlock(&fwc->lock);
1222
1223 return tmp;
1224}
1225
1226/**
1227 * uncache_firmware() - remove one cached firmware image
1228 * @fw_name: the firmware image name
1229 *
1230 * Uncache one firmware image which has been cached successfully
1231 * before.
1232 *
1233 * Return 0 if the firmware cache has been removed successfully
1234 * Return !0 otherwise
1235 *
1236 */
1237static int uncache_firmware(const char *fw_name)
1238{
1239 struct fw_priv *fw_priv;
1240 struct firmware fw;
1241
1242 pr_debug("%s: %s\n", __func__, fw_name);
1243
1244 if (firmware_request_builtin(&fw, fw_name))
1245 return 0;
1246
1247 fw_priv = lookup_fw_priv(fw_name);
1248 if (fw_priv) {
1249 free_fw_priv(fw_priv);
1250 return 0;
1251 }
1252
1253 return -EINVAL;
1254}
1255
1256static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1257{
1258 struct fw_cache_entry *fce;
1259
1260 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1261 if (!fce)
1262 goto exit;
1263
1264 fce->name = kstrdup_const(name, GFP_ATOMIC);
1265 if (!fce->name) {
1266 kfree(fce);
1267 fce = NULL;
1268 goto exit;
1269 }
1270exit:
1271 return fce;
1272}
1273
1274static int __fw_entry_found(const char *name)
1275{
1276 struct firmware_cache *fwc = &fw_cache;
1277 struct fw_cache_entry *fce;
1278
1279 list_for_each_entry(fce, &fwc->fw_names, list) {
1280 if (!strcmp(fce->name, name))
1281 return 1;
1282 }
1283 return 0;
1284}
1285
1286static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1287{
1288 const char *name = fw_priv->fw_name;
1289 struct firmware_cache *fwc = fw_priv->fwc;
1290 struct fw_cache_entry *fce;
1291
1292 spin_lock(&fwc->name_lock);
1293 if (__fw_entry_found(name))
1294 goto found;
1295
1296 fce = alloc_fw_cache_entry(name);
1297 if (fce) {
1298 list_add(&fce->list, &fwc->fw_names);
1299 kref_get(&fw_priv->ref);
1300 pr_debug("%s: fw: %s\n", __func__, name);
1301 }
1302found:
1303 spin_unlock(&fwc->name_lock);
1304}
1305
1306static void free_fw_cache_entry(struct fw_cache_entry *fce)
1307{
1308 kfree_const(fce->name);
1309 kfree(fce);
1310}
1311
1312static void __async_dev_cache_fw_image(void *fw_entry,
1313 async_cookie_t cookie)
1314{
1315 struct fw_cache_entry *fce = fw_entry;
1316 struct firmware_cache *fwc = &fw_cache;
1317 int ret;
1318
1319 ret = cache_firmware(fce->name);
1320 if (ret) {
1321 spin_lock(&fwc->name_lock);
1322 list_del(&fce->list);
1323 spin_unlock(&fwc->name_lock);
1324
1325 free_fw_cache_entry(fce);
1326 }
1327}
1328
1329/* called with dev->devres_lock held */
1330static void dev_create_fw_entry(struct device *dev, void *res,
1331 void *data)
1332{
1333 struct fw_name_devm *fwn = res;
1334 const char *fw_name = fwn->name;
1335 struct list_head *head = data;
1336 struct fw_cache_entry *fce;
1337
1338 fce = alloc_fw_cache_entry(fw_name);
1339 if (fce)
1340 list_add(&fce->list, head);
1341}
1342
1343static int devm_name_match(struct device *dev, void *res,
1344 void *match_data)
1345{
1346 struct fw_name_devm *fwn = res;
1347 return (fwn->magic == (unsigned long)match_data);
1348}
1349
1350static void dev_cache_fw_image(struct device *dev, void *data)
1351{
1352 LIST_HEAD(todo);
1353 struct fw_cache_entry *fce;
1354 struct fw_cache_entry *fce_next;
1355 struct firmware_cache *fwc = &fw_cache;
1356
1357 devres_for_each_res(dev, fw_name_devm_release,
1358 devm_name_match, &fw_cache,
1359 dev_create_fw_entry, &todo);
1360
1361 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1362 list_del(&fce->list);
1363
1364 spin_lock(&fwc->name_lock);
1365 /* only one cache entry for one firmware */
1366 if (!__fw_entry_found(fce->name)) {
1367 list_add(&fce->list, &fwc->fw_names);
1368 } else {
1369 free_fw_cache_entry(fce);
1370 fce = NULL;
1371 }
1372 spin_unlock(&fwc->name_lock);
1373
1374 if (fce)
1375 async_schedule_domain(__async_dev_cache_fw_image,
1376 (void *)fce,
1377 &fw_cache_domain);
1378 }
1379}
1380
1381static void __device_uncache_fw_images(void)
1382{
1383 struct firmware_cache *fwc = &fw_cache;
1384 struct fw_cache_entry *fce;
1385
1386 spin_lock(&fwc->name_lock);
1387 while (!list_empty(&fwc->fw_names)) {
1388 fce = list_entry(fwc->fw_names.next,
1389 struct fw_cache_entry, list);
1390 list_del(&fce->list);
1391 spin_unlock(&fwc->name_lock);
1392
1393 uncache_firmware(fce->name);
1394 free_fw_cache_entry(fce);
1395
1396 spin_lock(&fwc->name_lock);
1397 }
1398 spin_unlock(&fwc->name_lock);
1399}
1400
1401/**
1402 * device_cache_fw_images() - cache devices' firmware
1403 *
1404 * If one device called request_firmware or its nowait version
1405 * successfully before, the firmware names are recored into the
1406 * device's devres link list, so device_cache_fw_images can call
1407 * cache_firmware() to cache these firmwares for the device,
1408 * then the device driver can load its firmwares easily at
1409 * time when system is not ready to complete loading firmware.
1410 */
1411static void device_cache_fw_images(void)
1412{
1413 struct firmware_cache *fwc = &fw_cache;
1414 DEFINE_WAIT(wait);
1415
1416 pr_debug("%s\n", __func__);
1417
1418 /* cancel uncache work */
1419 cancel_delayed_work_sync(&fwc->work);
1420
1421 fw_fallback_set_cache_timeout();
1422
1423 mutex_lock(&fw_lock);
1424 fwc->state = FW_LOADER_START_CACHE;
1425 dpm_for_each_dev(NULL, dev_cache_fw_image);
1426 mutex_unlock(&fw_lock);
1427
1428 /* wait for completion of caching firmware for all devices */
1429 async_synchronize_full_domain(&fw_cache_domain);
1430
1431 fw_fallback_set_default_timeout();
1432}
1433
1434/**
1435 * device_uncache_fw_images() - uncache devices' firmware
1436 *
1437 * uncache all firmwares which have been cached successfully
1438 * by device_uncache_fw_images earlier
1439 */
1440static void device_uncache_fw_images(void)
1441{
1442 pr_debug("%s\n", __func__);
1443 __device_uncache_fw_images();
1444}
1445
1446static void device_uncache_fw_images_work(struct work_struct *work)
1447{
1448 device_uncache_fw_images();
1449}
1450
1451/**
1452 * device_uncache_fw_images_delay() - uncache devices firmwares
1453 * @delay: number of milliseconds to delay uncache device firmwares
1454 *
1455 * uncache all devices's firmwares which has been cached successfully
1456 * by device_cache_fw_images after @delay milliseconds.
1457 */
1458static void device_uncache_fw_images_delay(unsigned long delay)
1459{
1460 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1461 msecs_to_jiffies(delay));
1462}
1463
1464static int fw_pm_notify(struct notifier_block *notify_block,
1465 unsigned long mode, void *unused)
1466{
1467 switch (mode) {
1468 case PM_HIBERNATION_PREPARE:
1469 case PM_SUSPEND_PREPARE:
1470 case PM_RESTORE_PREPARE:
1471 /*
1472 * kill pending fallback requests with a custom fallback
1473 * to avoid stalling suspend.
1474 */
1475 kill_pending_fw_fallback_reqs(true);
1476 device_cache_fw_images();
1477 break;
1478
1479 case PM_POST_SUSPEND:
1480 case PM_POST_HIBERNATION:
1481 case PM_POST_RESTORE:
1482 /*
1483 * In case that system sleep failed and syscore_suspend is
1484 * not called.
1485 */
1486 mutex_lock(&fw_lock);
1487 fw_cache.state = FW_LOADER_NO_CACHE;
1488 mutex_unlock(&fw_lock);
1489
1490 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1491 break;
1492 }
1493
1494 return 0;
1495}
1496
1497/* stop caching firmware once syscore_suspend is reached */
1498static int fw_suspend(void)
1499{
1500 fw_cache.state = FW_LOADER_NO_CACHE;
1501 return 0;
1502}
1503
1504static struct syscore_ops fw_syscore_ops = {
1505 .suspend = fw_suspend,
1506};
1507
1508static int __init register_fw_pm_ops(void)
1509{
1510 int ret;
1511
1512 spin_lock_init(&fw_cache.name_lock);
1513 INIT_LIST_HEAD(&fw_cache.fw_names);
1514
1515 INIT_DELAYED_WORK(&fw_cache.work,
1516 device_uncache_fw_images_work);
1517
1518 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1519 ret = register_pm_notifier(&fw_cache.pm_notify);
1520 if (ret)
1521 return ret;
1522
1523 register_syscore_ops(&fw_syscore_ops);
1524
1525 return ret;
1526}
1527
1528static inline void unregister_fw_pm_ops(void)
1529{
1530 unregister_syscore_ops(&fw_syscore_ops);
1531 unregister_pm_notifier(&fw_cache.pm_notify);
1532}
1533#else
1534static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1535{
1536}
1537static inline int register_fw_pm_ops(void)
1538{
1539 return 0;
1540}
1541static inline void unregister_fw_pm_ops(void)
1542{
1543}
1544#endif
1545
1546static void __init fw_cache_init(void)
1547{
1548 spin_lock_init(&fw_cache.lock);
1549 INIT_LIST_HEAD(&fw_cache.head);
1550 fw_cache.state = FW_LOADER_NO_CACHE;
1551}
1552
1553static int fw_shutdown_notify(struct notifier_block *unused1,
1554 unsigned long unused2, void *unused3)
1555{
1556 /*
1557 * Kill all pending fallback requests to avoid both stalling shutdown,
1558 * and avoid a deadlock with the usermode_lock.
1559 */
1560 kill_pending_fw_fallback_reqs(false);
1561
1562 return NOTIFY_DONE;
1563}
1564
1565static struct notifier_block fw_shutdown_nb = {
1566 .notifier_call = fw_shutdown_notify,
1567};
1568
1569static int __init firmware_class_init(void)
1570{
1571 int ret;
1572
1573 /* No need to unfold these on exit */
1574 fw_cache_init();
1575
1576 ret = register_fw_pm_ops();
1577 if (ret)
1578 return ret;
1579
1580 ret = register_reboot_notifier(&fw_shutdown_nb);
1581 if (ret)
1582 goto out;
1583
1584 return register_sysfs_loader();
1585
1586out:
1587 unregister_fw_pm_ops();
1588 return ret;
1589}
1590
1591static void __exit firmware_class_exit(void)
1592{
1593 unregister_fw_pm_ops();
1594 unregister_reboot_notifier(&fw_shutdown_nb);
1595 unregister_sysfs_loader();
1596}
1597
1598fs_initcall(firmware_class_init);
1599module_exit(firmware_class_exit);