Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   4 * dump with assistance from firmware. This approach does not use kexec,
   5 * instead firmware assists in booting the kdump kernel while preserving
   6 * memory contents. The most of the code implementation has been adapted
   7 * from phyp assisted dump implementation written by Linas Vepstas and
   8 * Manish Ahuja
   9 *
  10 * Copyright 2011 IBM Corporation
  11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  12 */
  13
  14#undef DEBUG
  15#define pr_fmt(fmt) "fadump: " fmt
  16
  17#include <linux/string.h>
  18#include <linux/memblock.h>
  19#include <linux/delay.h>
  20#include <linux/seq_file.h>
  21#include <linux/crash_dump.h>
  22#include <linux/kobject.h>
  23#include <linux/sysfs.h>
  24#include <linux/slab.h>
  25#include <linux/cma.h>
  26#include <linux/hugetlb.h>
 
 
 
  27
  28#include <asm/debugfs.h>
  29#include <asm/page.h>
  30#include <asm/prom.h>
  31#include <asm/fadump.h>
  32#include <asm/fadump-internal.h>
  33#include <asm/setup.h>
 
  34
  35/*
  36 * The CPU who acquired the lock to trigger the fadump crash should
  37 * wait for other CPUs to enter.
  38 *
  39 * The timeout is in milliseconds.
  40 */
  41#define CRASH_TIMEOUT		500
  42
  43static struct fw_dump fw_dump;
  44
  45static void __init fadump_reserve_crash_area(u64 base);
  46
  47struct kobject *fadump_kobj;
  48
  49#ifndef CONFIG_PRESERVE_FA_DUMP
  50
 
 
  51static atomic_t cpus_in_fadump;
  52static DEFINE_MUTEX(fadump_mutex);
  53
  54struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
  55
  56#define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
  57#define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
  58				 sizeof(struct fadump_memory_range))
  59static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
  60struct fadump_mrange_info reserved_mrange_info = { "reserved", rngs,
  61						   RESERVED_RNGS_SZ, 0,
  62						   RESERVED_RNGS_CNT, true };
  63
  64static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
  65
  66#ifdef CONFIG_CMA
  67static struct cma *fadump_cma;
  68
  69/*
  70 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
  71 *
  72 * This function initializes CMA area from fadump reserved memory.
  73 * The total size of fadump reserved memory covers for boot memory size
  74 * + cpu data size + hpte size and metadata.
  75 * Initialize only the area equivalent to boot memory size for CMA use.
  76 * The reamining portion of fadump reserved memory will be not given
  77 * to CMA and pages for thoes will stay reserved. boot memory size is
  78 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
  79 * But for some reason even if it fails we still have the memory reservation
  80 * with us and we can still continue doing fadump.
  81 */
  82int __init fadump_cma_init(void)
  83{
  84	unsigned long long base, size;
  85	int rc;
  86
  87	if (!fw_dump.fadump_enabled)
  88		return 0;
  89
  90	/*
  91	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
  92	 * Return 1 to continue with fadump old behaviour.
  93	 */
  94	if (fw_dump.nocma)
  95		return 1;
  96
  97	base = fw_dump.reserve_dump_area_start;
  98	size = fw_dump.boot_memory_size;
  99
 100	if (!size)
 101		return 0;
 102
 103	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
 104	if (rc) {
 105		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
 106		/*
 107		 * Though the CMA init has failed we still have memory
 108		 * reservation with us. The reserved memory will be
 109		 * blocked from production system usage.  Hence return 1,
 110		 * so that we can continue with fadump.
 111		 */
 112		return 1;
 113	}
 114
 115	/*
 
 
 
 
 
 
 116	 * So we now have successfully initialized cma area for fadump.
 117	 */
 118	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
 119		"bytes of memory reserved for firmware-assisted dump\n",
 120		cma_get_size(fadump_cma),
 121		(unsigned long)cma_get_base(fadump_cma) >> 20,
 122		fw_dump.reserve_dump_area_size);
 123	return 1;
 124}
 125#else
 126static int __init fadump_cma_init(void) { return 1; }
 127#endif /* CONFIG_CMA */
 128
 129/* Scan the Firmware Assisted dump configuration details. */
 130int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
 131				      int depth, void *data)
 132{
 133	if (depth == 0) {
 134		early_init_dt_scan_reserved_ranges(node);
 135		return 0;
 136	}
 137
 138	if (depth != 1)
 139		return 0;
 140
 141	if (strcmp(uname, "rtas") == 0) {
 142		rtas_fadump_dt_scan(&fw_dump, node);
 143		return 1;
 144	}
 145
 146	if (strcmp(uname, "ibm,opal") == 0) {
 147		opal_fadump_dt_scan(&fw_dump, node);
 148		return 1;
 149	}
 150
 151	return 0;
 152}
 153
 154/*
 155 * If fadump is registered, check if the memory provided
 156 * falls within boot memory area and reserved memory area.
 157 */
 158int is_fadump_memory_area(u64 addr, unsigned long size)
 159{
 160	u64 d_start, d_end;
 161
 162	if (!fw_dump.dump_registered)
 163		return 0;
 164
 165	if (!size)
 166		return 0;
 167
 168	d_start = fw_dump.reserve_dump_area_start;
 169	d_end = d_start + fw_dump.reserve_dump_area_size;
 170	if (((addr + size) > d_start) && (addr <= d_end))
 171		return 1;
 172
 173	return (addr <= fw_dump.boot_mem_top);
 174}
 175
 176int should_fadump_crash(void)
 177{
 178	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 179		return 0;
 180	return 1;
 181}
 182
 183int is_fadump_active(void)
 184{
 185	return fw_dump.dump_active;
 186}
 187
 188/*
 189 * Returns true, if there are no holes in memory area between d_start to d_end,
 190 * false otherwise.
 191 */
 192static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
 193{
 194	struct memblock_region *reg;
 195	bool ret = false;
 196	u64 start, end;
 197
 198	for_each_memblock(memory, reg) {
 199		start = max_t(u64, d_start, reg->base);
 200		end = min_t(u64, d_end, (reg->base + reg->size));
 201		if (d_start < end) {
 202			/* Memory hole from d_start to start */
 203			if (start > d_start)
 204				break;
 205
 206			if (end == d_end) {
 207				ret = true;
 208				break;
 209			}
 210
 211			d_start = end + 1;
 212		}
 213	}
 214
 215	return ret;
 216}
 217
 218/*
 219 * Returns true, if there are no holes in boot memory area,
 220 * false otherwise.
 221 */
 222bool is_fadump_boot_mem_contiguous(void)
 223{
 224	unsigned long d_start, d_end;
 225	bool ret = false;
 226	int i;
 227
 228	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 229		d_start = fw_dump.boot_mem_addr[i];
 230		d_end   = d_start + fw_dump.boot_mem_sz[i];
 231
 232		ret = is_fadump_mem_area_contiguous(d_start, d_end);
 233		if (!ret)
 234			break;
 235	}
 236
 237	return ret;
 238}
 239
 240/*
 241 * Returns true, if there are no holes in reserved memory area,
 242 * false otherwise.
 243 */
 244bool is_fadump_reserved_mem_contiguous(void)
 245{
 246	u64 d_start, d_end;
 247
 248	d_start	= fw_dump.reserve_dump_area_start;
 249	d_end	= d_start + fw_dump.reserve_dump_area_size;
 250	return is_fadump_mem_area_contiguous(d_start, d_end);
 251}
 252
 253/* Print firmware assisted dump configurations for debugging purpose. */
 254static void fadump_show_config(void)
 255{
 256	int i;
 257
 258	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 259			(fw_dump.fadump_supported ? "present" : "no support"));
 260
 261	if (!fw_dump.fadump_supported)
 262		return;
 263
 264	pr_debug("Fadump enabled    : %s\n",
 265				(fw_dump.fadump_enabled ? "yes" : "no"));
 266	pr_debug("Dump Active       : %s\n",
 267				(fw_dump.dump_active ? "yes" : "no"));
 268	pr_debug("Dump section sizes:\n");
 269	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 270	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 271	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
 272	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
 273	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
 274	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 275		pr_debug("[%03d] base = %llx, size = %llx\n", i,
 276			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
 277	}
 278}
 279
 280/**
 281 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 282 *
 283 * Function to find the largest memory size we need to reserve during early
 284 * boot process. This will be the size of the memory that is required for a
 285 * kernel to boot successfully.
 286 *
 287 * This function has been taken from phyp-assisted dump feature implementation.
 288 *
 289 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 290 *
 291 * TODO: Come up with better approach to find out more accurate memory size
 292 * that is required for a kernel to boot successfully.
 293 *
 294 */
 295static inline u64 fadump_calculate_reserve_size(void)
 296{
 297	u64 base, size, bootmem_min;
 298	int ret;
 299
 300	if (fw_dump.reserve_bootvar)
 301		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 302
 303	/*
 304	 * Check if the size is specified through crashkernel= cmdline
 305	 * option. If yes, then use that but ignore base as fadump reserves
 306	 * memory at a predefined offset.
 307	 */
 308	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 309				&size, &base);
 310	if (ret == 0 && size > 0) {
 311		unsigned long max_size;
 312
 313		if (fw_dump.reserve_bootvar)
 314			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 315
 316		fw_dump.reserve_bootvar = (unsigned long)size;
 317
 318		/*
 319		 * Adjust if the boot memory size specified is above
 320		 * the upper limit.
 321		 */
 322		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 323		if (fw_dump.reserve_bootvar > max_size) {
 324			fw_dump.reserve_bootvar = max_size;
 325			pr_info("Adjusted boot memory size to %luMB\n",
 326				(fw_dump.reserve_bootvar >> 20));
 327		}
 328
 329		return fw_dump.reserve_bootvar;
 330	} else if (fw_dump.reserve_bootvar) {
 331		/*
 332		 * 'fadump_reserve_mem=' is being used to reserve memory
 333		 * for firmware-assisted dump.
 334		 */
 335		return fw_dump.reserve_bootvar;
 336	}
 337
 338	/* divide by 20 to get 5% of value */
 339	size = memblock_phys_mem_size() / 20;
 340
 341	/* round it down in multiples of 256 */
 342	size = size & ~0x0FFFFFFFUL;
 343
 344	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 345	if (memory_limit && size > memory_limit)
 346		size = memory_limit;
 347
 348	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 349	return (size > bootmem_min ? size : bootmem_min);
 350}
 351
 352/*
 353 * Calculate the total memory size required to be reserved for
 354 * firmware-assisted dump registration.
 355 */
 356static unsigned long get_fadump_area_size(void)
 357{
 358	unsigned long size = 0;
 359
 360	size += fw_dump.cpu_state_data_size;
 361	size += fw_dump.hpte_region_size;
 
 
 
 
 
 362	size += fw_dump.boot_memory_size;
 363	size += sizeof(struct fadump_crash_info_header);
 364	size += sizeof(struct elfhdr); /* ELF core header.*/
 365	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 366	/* Program headers for crash memory regions. */
 367	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 368
 369	size = PAGE_ALIGN(size);
 370
 371	/* This is to hold kernel metadata on platforms that support it */
 372	size += (fw_dump.ops->fadump_get_metadata_size ?
 373		 fw_dump.ops->fadump_get_metadata_size() : 0);
 374	return size;
 375}
 376
 377static int __init add_boot_mem_region(unsigned long rstart,
 378				      unsigned long rsize)
 379{
 380	int i = fw_dump.boot_mem_regs_cnt++;
 381
 382	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
 383		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
 384		return 0;
 385	}
 386
 387	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
 388		 i, rstart, (rstart + rsize));
 389	fw_dump.boot_mem_addr[i] = rstart;
 390	fw_dump.boot_mem_sz[i] = rsize;
 391	return 1;
 392}
 393
 394/*
 395 * Firmware usually has a hard limit on the data it can copy per region.
 396 * Honour that by splitting a memory range into multiple regions.
 397 */
 398static int __init add_boot_mem_regions(unsigned long mstart,
 399				       unsigned long msize)
 400{
 401	unsigned long rstart, rsize, max_size;
 402	int ret = 1;
 403
 404	rstart = mstart;
 405	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
 406	while (msize) {
 407		if (msize > max_size)
 408			rsize = max_size;
 409		else
 410			rsize = msize;
 411
 412		ret = add_boot_mem_region(rstart, rsize);
 413		if (!ret)
 414			break;
 415
 416		msize -= rsize;
 417		rstart += rsize;
 418	}
 419
 420	return ret;
 421}
 422
 423static int __init fadump_get_boot_mem_regions(void)
 424{
 425	unsigned long base, size, cur_size, hole_size, last_end;
 426	unsigned long mem_size = fw_dump.boot_memory_size;
 427	struct memblock_region *reg;
 428	int ret = 1;
 
 429
 430	fw_dump.boot_mem_regs_cnt = 0;
 431
 432	last_end = 0;
 433	hole_size = 0;
 434	cur_size = 0;
 435	for_each_memblock(memory, reg) {
 436		base = reg->base;
 437		size = reg->size;
 438		hole_size += (base - last_end);
 439
 440		if ((cur_size + size) >= mem_size) {
 441			size = (mem_size - cur_size);
 442			ret = add_boot_mem_regions(base, size);
 443			break;
 444		}
 445
 446		mem_size -= size;
 447		cur_size += size;
 448		ret = add_boot_mem_regions(base, size);
 449		if (!ret)
 450			break;
 451
 452		last_end = base + size;
 453	}
 454	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
 455
 456	return ret;
 457}
 458
 459/*
 460 * Returns true, if the given range overlaps with reserved memory ranges
 461 * starting at idx. Also, updates idx to index of overlapping memory range
 462 * with the given memory range.
 463 * False, otherwise.
 464 */
 465static bool overlaps_reserved_ranges(u64 base, u64 end, int *idx)
 466{
 467	bool ret = false;
 468	int i;
 469
 470	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
 471		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
 472		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
 473
 474		if (end <= rbase)
 475			break;
 476
 477		if ((end > rbase) &&  (base < rend)) {
 478			*idx = i;
 479			ret = true;
 480			break;
 481		}
 482	}
 483
 484	return ret;
 485}
 486
 487/*
 488 * Locate a suitable memory area to reserve memory for FADump. While at it,
 489 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
 490 */
 491static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
 492{
 493	struct fadump_memory_range *mrngs;
 494	phys_addr_t mstart, mend;
 495	int idx = 0;
 496	u64 i, ret = 0;
 497
 498	mrngs = reserved_mrange_info.mem_ranges;
 499	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 500				&mstart, &mend, NULL) {
 501		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
 502			 i, mstart, mend, base);
 503
 504		if (mstart > base)
 505			base = PAGE_ALIGN(mstart);
 506
 507		while ((mend > base) && ((mend - base) >= size)) {
 508			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
 509				ret = base;
 510				goto out;
 511			}
 512
 513			base = mrngs[idx].base + mrngs[idx].size;
 514			base = PAGE_ALIGN(base);
 515		}
 516	}
 517
 518out:
 519	return ret;
 520}
 521
 522int __init fadump_reserve_mem(void)
 523{
 524	u64 base, size, mem_boundary, bootmem_min;
 525	int ret = 1;
 526
 527	if (!fw_dump.fadump_enabled)
 528		return 0;
 529
 530	if (!fw_dump.fadump_supported) {
 531		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
 532		goto error_out;
 533	}
 534
 535	/*
 536	 * Initialize boot memory size
 537	 * If dump is active then we have already calculated the size during
 538	 * first kernel.
 539	 */
 540	if (!fw_dump.dump_active) {
 541		fw_dump.boot_memory_size =
 542			PAGE_ALIGN(fadump_calculate_reserve_size());
 543#ifdef CONFIG_CMA
 544		if (!fw_dump.nocma) {
 545			fw_dump.boot_memory_size =
 546				ALIGN(fw_dump.boot_memory_size,
 547				      FADUMP_CMA_ALIGNMENT);
 548		}
 549#endif
 550
 551		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 552		if (fw_dump.boot_memory_size < bootmem_min) {
 553			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
 554			       fw_dump.boot_memory_size, bootmem_min);
 555			goto error_out;
 556		}
 557
 558		if (!fadump_get_boot_mem_regions()) {
 559			pr_err("Too many holes in boot memory area to enable fadump\n");
 560			goto error_out;
 561		}
 562	}
 563
 564	/*
 565	 * Calculate the memory boundary.
 566	 * If memory_limit is less than actual memory boundary then reserve
 567	 * the memory for fadump beyond the memory_limit and adjust the
 568	 * memory_limit accordingly, so that the running kernel can run with
 569	 * specified memory_limit.
 570	 */
 571	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 572		size = get_fadump_area_size();
 573		if ((memory_limit + size) < memblock_end_of_DRAM())
 574			memory_limit += size;
 575		else
 576			memory_limit = memblock_end_of_DRAM();
 577		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 578				" dump, now %#016llx\n", memory_limit);
 579	}
 580	if (memory_limit)
 581		mem_boundary = memory_limit;
 582	else
 583		mem_boundary = memblock_end_of_DRAM();
 584
 585	base = fw_dump.boot_mem_top;
 586	size = get_fadump_area_size();
 587	fw_dump.reserve_dump_area_size = size;
 588	if (fw_dump.dump_active) {
 589		pr_info("Firmware-assisted dump is active.\n");
 590
 591#ifdef CONFIG_HUGETLB_PAGE
 592		/*
 593		 * FADump capture kernel doesn't care much about hugepages.
 594		 * In fact, handling hugepages in capture kernel is asking for
 595		 * trouble. So, disable HugeTLB support when fadump is active.
 596		 */
 597		hugetlb_disabled = true;
 598#endif
 599		/*
 600		 * If last boot has crashed then reserve all the memory
 601		 * above boot memory size so that we don't touch it until
 602		 * dump is written to disk by userspace tool. This memory
 603		 * can be released for general use by invalidating fadump.
 604		 */
 605		fadump_reserve_crash_area(base);
 606
 607		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
 608		pr_debug("Reserve dump area start address: 0x%lx\n",
 609			 fw_dump.reserve_dump_area_start);
 610	} else {
 611		/*
 612		 * Reserve memory at an offset closer to bottom of the RAM to
 613		 * minimize the impact of memory hot-remove operation.
 614		 */
 615		base = fadump_locate_reserve_mem(base, size);
 616
 617		if (!base || (base + size > mem_boundary)) {
 618			pr_err("Failed to find memory chunk for reservation!\n");
 619			goto error_out;
 620		}
 621		fw_dump.reserve_dump_area_start = base;
 622
 623		/*
 624		 * Calculate the kernel metadata address and register it with
 625		 * f/w if the platform supports.
 626		 */
 627		if (fw_dump.ops->fadump_setup_metadata &&
 628		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
 629			goto error_out;
 630
 631		if (memblock_reserve(base, size)) {
 632			pr_err("Failed to reserve memory!\n");
 633			goto error_out;
 634		}
 635
 636		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
 637			(size >> 20), base, (memblock_phys_mem_size() >> 20));
 638
 639		ret = fadump_cma_init();
 640	}
 641
 642	return ret;
 643error_out:
 644	fw_dump.fadump_enabled = 0;
 645	return 0;
 646}
 647
 648/* Look for fadump= cmdline option. */
 649static int __init early_fadump_param(char *p)
 650{
 651	if (!p)
 652		return 1;
 653
 654	if (strncmp(p, "on", 2) == 0)
 655		fw_dump.fadump_enabled = 1;
 656	else if (strncmp(p, "off", 3) == 0)
 657		fw_dump.fadump_enabled = 0;
 658	else if (strncmp(p, "nocma", 5) == 0) {
 659		fw_dump.fadump_enabled = 1;
 660		fw_dump.nocma = 1;
 661	}
 662
 663	return 0;
 664}
 665early_param("fadump", early_fadump_param);
 666
 667/*
 668 * Look for fadump_reserve_mem= cmdline option
 669 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 670 *       the sooner 'crashkernel=' parameter is accustomed to.
 671 */
 672static int __init early_fadump_reserve_mem(char *p)
 673{
 674	if (p)
 675		fw_dump.reserve_bootvar = memparse(p, &p);
 676	return 0;
 677}
 678early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 679
 680void crash_fadump(struct pt_regs *regs, const char *str)
 681{
 682	unsigned int msecs;
 683	struct fadump_crash_info_header *fdh = NULL;
 684	int old_cpu, this_cpu;
 685	/* Do not include first CPU */
 686	unsigned int ncpus = num_online_cpus() - 1;
 687
 688	if (!should_fadump_crash())
 689		return;
 690
 691	/*
 692	 * old_cpu == -1 means this is the first CPU which has come here,
 693	 * go ahead and trigger fadump.
 694	 *
 695	 * old_cpu != -1 means some other CPU has already on it's way
 696	 * to trigger fadump, just keep looping here.
 697	 */
 698	this_cpu = smp_processor_id();
 699	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 700
 701	if (old_cpu != -1) {
 702		atomic_inc(&cpus_in_fadump);
 703
 704		/*
 705		 * We can't loop here indefinitely. Wait as long as fadump
 706		 * is in force. If we race with fadump un-registration this
 707		 * loop will break and then we go down to normal panic path
 708		 * and reboot. If fadump is in force the first crashing
 709		 * cpu will definitely trigger fadump.
 710		 */
 711		while (fw_dump.dump_registered)
 712			cpu_relax();
 713		return;
 714	}
 715
 716	fdh = __va(fw_dump.fadumphdr_addr);
 717	fdh->crashing_cpu = crashing_cpu;
 718	crash_save_vmcoreinfo();
 719
 720	if (regs)
 721		fdh->regs = *regs;
 722	else
 723		ppc_save_regs(&fdh->regs);
 724
 725	fdh->online_mask = *cpu_online_mask;
 726
 727	/*
 728	 * If we came in via system reset, wait a while for the secondary
 729	 * CPUs to enter.
 730	 */
 731	if (TRAP(&(fdh->regs)) == 0x100) {
 732		msecs = CRASH_TIMEOUT;
 733		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
 734			mdelay(1);
 735	}
 736
 737	fw_dump.ops->fadump_trigger(fdh, str);
 738}
 739
 740u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 741{
 742	struct elf_prstatus prstatus;
 743
 744	memset(&prstatus, 0, sizeof(prstatus));
 745	/*
 746	 * FIXME: How do i get PID? Do I really need it?
 747	 * prstatus.pr_pid = ????
 748	 */
 749	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 750	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 751			      &prstatus, sizeof(prstatus));
 752	return buf;
 753}
 754
 755void fadump_update_elfcore_header(char *bufp)
 756{
 757	struct elfhdr *elf;
 758	struct elf_phdr *phdr;
 759
 760	elf = (struct elfhdr *)bufp;
 761	bufp += sizeof(struct elfhdr);
 762
 763	/* First note is a place holder for cpu notes info. */
 764	phdr = (struct elf_phdr *)bufp;
 765
 766	if (phdr->p_type == PT_NOTE) {
 767		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
 768		phdr->p_offset	= phdr->p_paddr;
 769		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 770		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 771	}
 772	return;
 773}
 774
 775static void *fadump_alloc_buffer(unsigned long size)
 776{
 777	unsigned long count, i;
 778	struct page *page;
 779	void *vaddr;
 780
 781	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
 782	if (!vaddr)
 783		return NULL;
 784
 785	count = PAGE_ALIGN(size) / PAGE_SIZE;
 786	page = virt_to_page(vaddr);
 787	for (i = 0; i < count; i++)
 788		mark_page_reserved(page + i);
 789	return vaddr;
 790}
 791
 792static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
 793{
 794	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
 795}
 796
 797s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
 798{
 799	/* Allocate buffer to hold cpu crash notes. */
 800	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 801	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 802	fw_dump.cpu_notes_buf_vaddr =
 803		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
 804	if (!fw_dump.cpu_notes_buf_vaddr) {
 805		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
 806		       fw_dump.cpu_notes_buf_size);
 807		return -ENOMEM;
 808	}
 809
 810	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
 811		 fw_dump.cpu_notes_buf_size,
 812		 fw_dump.cpu_notes_buf_vaddr);
 813	return 0;
 814}
 815
 816void fadump_free_cpu_notes_buf(void)
 817{
 818	if (!fw_dump.cpu_notes_buf_vaddr)
 819		return;
 820
 821	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
 822			   fw_dump.cpu_notes_buf_size);
 823	fw_dump.cpu_notes_buf_vaddr = 0;
 824	fw_dump.cpu_notes_buf_size = 0;
 825}
 826
 827static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
 828{
 829	if (mrange_info->is_static) {
 830		mrange_info->mem_range_cnt = 0;
 831		return;
 832	}
 833
 834	kfree(mrange_info->mem_ranges);
 835	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
 836	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
 837}
 838
 839/*
 840 * Allocate or reallocate mem_ranges array in incremental units
 841 * of PAGE_SIZE.
 842 */
 843static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
 844{
 845	struct fadump_memory_range *new_array;
 846	u64 new_size;
 847
 848	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
 849	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
 850		 new_size, mrange_info->name);
 851
 852	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
 853	if (new_array == NULL) {
 854		pr_err("Insufficient memory for setting up %s memory ranges\n",
 855		       mrange_info->name);
 856		fadump_free_mem_ranges(mrange_info);
 857		return -ENOMEM;
 858	}
 859
 860	mrange_info->mem_ranges = new_array;
 861	mrange_info->mem_ranges_sz = new_size;
 862	mrange_info->max_mem_ranges = (new_size /
 863				       sizeof(struct fadump_memory_range));
 864	return 0;
 865}
 866
 867static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
 868				       u64 base, u64 end)
 869{
 870	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
 871	bool is_adjacent = false;
 872	u64 start, size;
 873
 874	if (base == end)
 875		return 0;
 876
 877	/*
 878	 * Fold adjacent memory ranges to bring down the memory ranges/
 879	 * PT_LOAD segments count.
 880	 */
 881	if (mrange_info->mem_range_cnt) {
 882		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
 883		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
 884
 885		if ((start + size) == base)
 
 
 
 
 
 886			is_adjacent = true;
 887	}
 888	if (!is_adjacent) {
 889		/* resize the array on reaching the limit */
 890		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
 891			int ret;
 892
 893			if (mrange_info->is_static) {
 894				pr_err("Reached array size limit for %s memory ranges\n",
 895				       mrange_info->name);
 896				return -ENOSPC;
 897			}
 898
 899			ret = fadump_alloc_mem_ranges(mrange_info);
 900			if (ret)
 901				return ret;
 902
 903			/* Update to the new resized array */
 904			mem_ranges = mrange_info->mem_ranges;
 905		}
 906
 907		start = base;
 908		mem_ranges[mrange_info->mem_range_cnt].base = start;
 909		mrange_info->mem_range_cnt++;
 910	}
 911
 912	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
 913	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 914		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
 915		 start, end - 1, (end - start));
 916	return 0;
 917}
 918
 919static int fadump_exclude_reserved_area(u64 start, u64 end)
 920{
 921	u64 ra_start, ra_end;
 922	int ret = 0;
 923
 924	ra_start = fw_dump.reserve_dump_area_start;
 925	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 926
 927	if ((ra_start < end) && (ra_end > start)) {
 928		if ((start < ra_start) && (end > ra_end)) {
 929			ret = fadump_add_mem_range(&crash_mrange_info,
 930						   start, ra_start);
 931			if (ret)
 932				return ret;
 933
 934			ret = fadump_add_mem_range(&crash_mrange_info,
 935						   ra_end, end);
 936		} else if (start < ra_start) {
 937			ret = fadump_add_mem_range(&crash_mrange_info,
 938						   start, ra_start);
 939		} else if (ra_end < end) {
 940			ret = fadump_add_mem_range(&crash_mrange_info,
 941						   ra_end, end);
 942		}
 943	} else
 944		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 945
 946	return ret;
 947}
 948
 949static int fadump_init_elfcore_header(char *bufp)
 950{
 951	struct elfhdr *elf;
 952
 953	elf = (struct elfhdr *) bufp;
 954	bufp += sizeof(struct elfhdr);
 955	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 956	elf->e_ident[EI_CLASS] = ELF_CLASS;
 957	elf->e_ident[EI_DATA] = ELF_DATA;
 958	elf->e_ident[EI_VERSION] = EV_CURRENT;
 959	elf->e_ident[EI_OSABI] = ELF_OSABI;
 960	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 961	elf->e_type = ET_CORE;
 962	elf->e_machine = ELF_ARCH;
 963	elf->e_version = EV_CURRENT;
 964	elf->e_entry = 0;
 965	elf->e_phoff = sizeof(struct elfhdr);
 966	elf->e_shoff = 0;
 967#if defined(_CALL_ELF)
 968	elf->e_flags = _CALL_ELF;
 969#else
 970	elf->e_flags = 0;
 971#endif
 
 
 
 972	elf->e_ehsize = sizeof(struct elfhdr);
 973	elf->e_phentsize = sizeof(struct elf_phdr);
 974	elf->e_phnum = 0;
 975	elf->e_shentsize = 0;
 976	elf->e_shnum = 0;
 977	elf->e_shstrndx = 0;
 978
 979	return 0;
 980}
 981
 982/*
 983 * Traverse through memblock structure and setup crash memory ranges. These
 984 * ranges will be used create PT_LOAD program headers in elfcore header.
 985 */
 986static int fadump_setup_crash_memory_ranges(void)
 987{
 988	struct memblock_region *reg;
 989	u64 start, end;
 990	int i, ret;
 991
 992	pr_debug("Setup crash memory ranges.\n");
 993	crash_mrange_info.mem_range_cnt = 0;
 994
 995	/*
 996	 * Boot memory region(s) registered with firmware are moved to
 997	 * different location at the time of crash. Create separate program
 998	 * header(s) for this memory chunk(s) with the correct offset.
 999	 */
1000	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1001		start = fw_dump.boot_mem_addr[i];
1002		end = start + fw_dump.boot_mem_sz[i];
1003		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1004		if (ret)
1005			return ret;
1006	}
1007
1008	for_each_memblock(memory, reg) {
1009		start = (u64)reg->base;
1010		end = start + (u64)reg->size;
1011
1012		/*
1013		 * skip the memory chunk that is already added
1014		 * (0 through boot_memory_top).
1015		 */
1016		if (start < fw_dump.boot_mem_top) {
1017			if (end > fw_dump.boot_mem_top)
1018				start = fw_dump.boot_mem_top;
1019			else
1020				continue;
1021		}
1022
1023		/* add this range excluding the reserved dump area. */
1024		ret = fadump_exclude_reserved_area(start, end);
1025		if (ret)
1026			return ret;
1027	}
1028
1029	return 0;
1030}
1031
1032/*
1033 * If the given physical address falls within the boot memory region then
1034 * return the relocated address that points to the dump region reserved
1035 * for saving initial boot memory contents.
1036 */
1037static inline unsigned long fadump_relocate(unsigned long paddr)
1038{
1039	unsigned long raddr, rstart, rend, rlast, hole_size;
1040	int i;
1041
1042	hole_size = 0;
1043	rlast = 0;
1044	raddr = paddr;
1045	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1046		rstart = fw_dump.boot_mem_addr[i];
1047		rend = rstart + fw_dump.boot_mem_sz[i];
1048		hole_size += (rstart - rlast);
1049
1050		if (paddr >= rstart && paddr < rend) {
1051			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1052			break;
1053		}
1054
1055		rlast = rend;
1056	}
1057
1058	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1059	return raddr;
1060}
1061
1062static int fadump_create_elfcore_headers(char *bufp)
1063{
1064	unsigned long long raddr, offset;
1065	struct elf_phdr *phdr;
1066	struct elfhdr *elf;
1067	int i, j;
1068
1069	fadump_init_elfcore_header(bufp);
1070	elf = (struct elfhdr *)bufp;
1071	bufp += sizeof(struct elfhdr);
1072
1073	/*
1074	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1075	 * will be populated during second kernel boot after crash. Hence
1076	 * this PT_NOTE will always be the first elf note.
1077	 *
1078	 * NOTE: Any new ELF note addition should be placed after this note.
1079	 */
1080	phdr = (struct elf_phdr *)bufp;
1081	bufp += sizeof(struct elf_phdr);
1082	phdr->p_type = PT_NOTE;
1083	phdr->p_flags = 0;
1084	phdr->p_vaddr = 0;
1085	phdr->p_align = 0;
1086
1087	phdr->p_offset = 0;
1088	phdr->p_paddr = 0;
1089	phdr->p_filesz = 0;
1090	phdr->p_memsz = 0;
1091
1092	(elf->e_phnum)++;
1093
1094	/* setup ELF PT_NOTE for vmcoreinfo */
1095	phdr = (struct elf_phdr *)bufp;
1096	bufp += sizeof(struct elf_phdr);
1097	phdr->p_type	= PT_NOTE;
1098	phdr->p_flags	= 0;
1099	phdr->p_vaddr	= 0;
1100	phdr->p_align	= 0;
1101
1102	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1103	phdr->p_offset	= phdr->p_paddr;
1104	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1105
1106	/* Increment number of program headers. */
1107	(elf->e_phnum)++;
1108
1109	/* setup PT_LOAD sections. */
1110	j = 0;
1111	offset = 0;
1112	raddr = fw_dump.boot_mem_addr[0];
1113	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1114		u64 mbase, msize;
1115
1116		mbase = crash_mrange_info.mem_ranges[i].base;
1117		msize = crash_mrange_info.mem_ranges[i].size;
1118		if (!msize)
1119			continue;
1120
1121		phdr = (struct elf_phdr *)bufp;
1122		bufp += sizeof(struct elf_phdr);
1123		phdr->p_type	= PT_LOAD;
1124		phdr->p_flags	= PF_R|PF_W|PF_X;
1125		phdr->p_offset	= mbase;
1126
1127		if (mbase == raddr) {
1128			/*
1129			 * The entire real memory region will be moved by
1130			 * firmware to the specified destination_address.
1131			 * Hence set the correct offset.
1132			 */
1133			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1134			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1135				offset += fw_dump.boot_mem_sz[j];
1136				raddr = fw_dump.boot_mem_addr[++j];
1137			}
1138		}
1139
1140		phdr->p_paddr = mbase;
1141		phdr->p_vaddr = (unsigned long)__va(mbase);
1142		phdr->p_filesz = msize;
1143		phdr->p_memsz = msize;
1144		phdr->p_align = 0;
1145
1146		/* Increment number of program headers. */
1147		(elf->e_phnum)++;
1148	}
1149	return 0;
1150}
1151
1152static unsigned long init_fadump_header(unsigned long addr)
1153{
1154	struct fadump_crash_info_header *fdh;
1155
1156	if (!addr)
1157		return 0;
1158
1159	fdh = __va(addr);
1160	addr += sizeof(struct fadump_crash_info_header);
1161
1162	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1163	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1164	fdh->elfcorehdr_addr = addr;
1165	/* We will set the crashing cpu id in crash_fadump() during crash. */
1166	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
 
 
 
 
 
1167
1168	return addr;
1169}
1170
1171static int register_fadump(void)
1172{
1173	unsigned long addr;
1174	void *vaddr;
1175	int ret;
1176
1177	/*
1178	 * If no memory is reserved then we can not register for firmware-
1179	 * assisted dump.
1180	 */
1181	if (!fw_dump.reserve_dump_area_size)
1182		return -ENODEV;
1183
1184	ret = fadump_setup_crash_memory_ranges();
1185	if (ret)
1186		return ret;
1187
1188	addr = fw_dump.fadumphdr_addr;
1189
1190	/* Initialize fadump crash info header. */
1191	addr = init_fadump_header(addr);
1192	vaddr = __va(addr);
1193
1194	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1195	fadump_create_elfcore_headers(vaddr);
1196
1197	/* register the future kernel dump with firmware. */
1198	pr_debug("Registering for firmware-assisted kernel dump...\n");
1199	return fw_dump.ops->fadump_register(&fw_dump);
1200}
1201
1202void fadump_cleanup(void)
1203{
1204	if (!fw_dump.fadump_supported)
1205		return;
1206
1207	/* Invalidate the registration only if dump is active. */
1208	if (fw_dump.dump_active) {
1209		pr_debug("Invalidating firmware-assisted dump registration\n");
1210		fw_dump.ops->fadump_invalidate(&fw_dump);
1211	} else if (fw_dump.dump_registered) {
1212		/* Un-register Firmware-assisted dump if it was registered. */
1213		fw_dump.ops->fadump_unregister(&fw_dump);
1214		fadump_free_mem_ranges(&crash_mrange_info);
1215	}
1216
1217	if (fw_dump.ops->fadump_cleanup)
1218		fw_dump.ops->fadump_cleanup(&fw_dump);
1219}
1220
1221static void fadump_free_reserved_memory(unsigned long start_pfn,
1222					unsigned long end_pfn)
1223{
1224	unsigned long pfn;
1225	unsigned long time_limit = jiffies + HZ;
1226
1227	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1228		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1229
1230	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1231		free_reserved_page(pfn_to_page(pfn));
1232
1233		if (time_after(jiffies, time_limit)) {
1234			cond_resched();
1235			time_limit = jiffies + HZ;
1236		}
1237	}
1238}
1239
1240/*
1241 * Skip memory holes and free memory that was actually reserved.
1242 */
1243static void fadump_release_reserved_area(u64 start, u64 end)
1244{
 
1245	u64 tstart, tend, spfn, epfn;
1246	struct memblock_region *reg;
1247
1248	spfn = PHYS_PFN(start);
1249	epfn = PHYS_PFN(end);
1250	for_each_memblock(memory, reg) {
1251		tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg));
1252		tend   = min_t(u64, epfn, memblock_region_memory_end_pfn(reg));
 
 
1253		if (tstart < tend) {
1254			fadump_free_reserved_memory(tstart, tend);
1255
1256			if (tend == epfn)
1257				break;
1258
1259			spfn = tend;
1260		}
1261	}
1262}
1263
1264/*
1265 * Sort the mem ranges in-place and merge adjacent ranges
1266 * to minimize the memory ranges count.
1267 */
1268static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1269{
1270	struct fadump_memory_range *mem_ranges;
1271	struct fadump_memory_range tmp_range;
1272	u64 base, size;
1273	int i, j, idx;
1274
1275	if (!reserved_mrange_info.mem_range_cnt)
1276		return;
1277
1278	/* Sort the memory ranges */
1279	mem_ranges = mrange_info->mem_ranges;
1280	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1281		idx = i;
1282		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1283			if (mem_ranges[idx].base > mem_ranges[j].base)
1284				idx = j;
1285		}
1286		if (idx != i) {
1287			tmp_range = mem_ranges[idx];
1288			mem_ranges[idx] = mem_ranges[i];
1289			mem_ranges[i] = tmp_range;
1290		}
1291	}
1292
1293	/* Merge adjacent reserved ranges */
1294	idx = 0;
1295	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1296		base = mem_ranges[i-1].base;
1297		size = mem_ranges[i-1].size;
1298		if (mem_ranges[i].base == (base + size))
1299			mem_ranges[idx].size += mem_ranges[i].size;
1300		else {
1301			idx++;
1302			if (i == idx)
1303				continue;
1304
1305			mem_ranges[idx] = mem_ranges[i];
1306		}
1307	}
1308	mrange_info->mem_range_cnt = idx + 1;
1309}
1310
1311/*
1312 * Scan reserved-ranges to consider them while reserving/releasing
1313 * memory for FADump.
1314 */
1315static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1316{
1317	const __be32 *prop;
1318	int len, ret = -1;
1319	unsigned long i;
1320
1321	/* reserved-ranges already scanned */
1322	if (reserved_mrange_info.mem_range_cnt != 0)
1323		return;
1324
1325	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1326	if (!prop)
1327		return;
1328
1329	/*
1330	 * Each reserved range is an (address,size) pair, 2 cells each,
1331	 * totalling 4 cells per range.
1332	 */
1333	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1334		u64 base, size;
1335
1336		base = of_read_number(prop + (i * 4) + 0, 2);
1337		size = of_read_number(prop + (i * 4) + 2, 2);
1338
1339		if (size) {
1340			ret = fadump_add_mem_range(&reserved_mrange_info,
1341						   base, base + size);
1342			if (ret < 0) {
1343				pr_warn("some reserved ranges are ignored!\n");
1344				break;
1345			}
1346		}
1347	}
1348
1349	/* Compact reserved ranges */
1350	sort_and_merge_mem_ranges(&reserved_mrange_info);
1351}
1352
1353/*
1354 * Release the memory that was reserved during early boot to preserve the
1355 * crash'ed kernel's memory contents except reserved dump area (permanent
1356 * reservation) and reserved ranges used by F/W. The released memory will
1357 * be available for general use.
1358 */
1359static void fadump_release_memory(u64 begin, u64 end)
1360{
1361	u64 ra_start, ra_end, tstart;
1362	int i, ret;
1363
1364	ra_start = fw_dump.reserve_dump_area_start;
1365	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1366
1367	/*
1368	 * If reserved ranges array limit is hit, overwrite the last reserved
1369	 * memory range with reserved dump area to ensure it is excluded from
1370	 * the memory being released (reused for next FADump registration).
1371	 */
1372	if (reserved_mrange_info.mem_range_cnt ==
1373	    reserved_mrange_info.max_mem_ranges)
1374		reserved_mrange_info.mem_range_cnt--;
1375
1376	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1377	if (ret != 0)
1378		return;
1379
1380	/* Get the reserved ranges list in order first. */
1381	sort_and_merge_mem_ranges(&reserved_mrange_info);
1382
1383	/* Exclude reserved ranges and release remaining memory */
1384	tstart = begin;
1385	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1386		ra_start = reserved_mrange_info.mem_ranges[i].base;
1387		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1388
1389		if (tstart >= ra_end)
1390			continue;
1391
1392		if (tstart < ra_start)
1393			fadump_release_reserved_area(tstart, ra_start);
1394		tstart = ra_end;
1395	}
1396
1397	if (tstart < end)
1398		fadump_release_reserved_area(tstart, end);
1399}
1400
1401static void fadump_invalidate_release_mem(void)
1402{
1403	mutex_lock(&fadump_mutex);
1404	if (!fw_dump.dump_active) {
1405		mutex_unlock(&fadump_mutex);
1406		return;
1407	}
1408
1409	fadump_cleanup();
1410	mutex_unlock(&fadump_mutex);
1411
1412	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1413	fadump_free_cpu_notes_buf();
1414
1415	/*
1416	 * Setup kernel metadata and initialize the kernel dump
1417	 * memory structure for FADump re-registration.
1418	 */
1419	if (fw_dump.ops->fadump_setup_metadata &&
1420	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1421		pr_warn("Failed to setup kernel metadata!\n");
1422	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1423}
1424
1425static ssize_t release_mem_store(struct kobject *kobj,
1426				 struct kobj_attribute *attr,
1427				 const char *buf, size_t count)
1428{
1429	int input = -1;
1430
1431	if (!fw_dump.dump_active)
1432		return -EPERM;
1433
1434	if (kstrtoint(buf, 0, &input))
1435		return -EINVAL;
1436
1437	if (input == 1) {
1438		/*
1439		 * Take away the '/proc/vmcore'. We are releasing the dump
1440		 * memory, hence it will not be valid anymore.
1441		 */
1442#ifdef CONFIG_PROC_VMCORE
1443		vmcore_cleanup();
1444#endif
1445		fadump_invalidate_release_mem();
1446
1447	} else
1448		return -EINVAL;
1449	return count;
1450}
1451
1452/* Release the reserved memory and disable the FADump */
1453static void unregister_fadump(void)
1454{
1455	fadump_cleanup();
1456	fadump_release_memory(fw_dump.reserve_dump_area_start,
1457			      fw_dump.reserve_dump_area_size);
1458	fw_dump.fadump_enabled = 0;
1459	kobject_put(fadump_kobj);
1460}
1461
1462static ssize_t enabled_show(struct kobject *kobj,
1463			    struct kobj_attribute *attr,
1464			    char *buf)
1465{
1466	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1467}
1468
1469static ssize_t mem_reserved_show(struct kobject *kobj,
1470				 struct kobj_attribute *attr,
1471				 char *buf)
1472{
1473	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1474}
1475
1476static ssize_t registered_show(struct kobject *kobj,
1477			       struct kobj_attribute *attr,
1478			       char *buf)
1479{
1480	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1481}
1482
1483static ssize_t registered_store(struct kobject *kobj,
1484				struct kobj_attribute *attr,
1485				const char *buf, size_t count)
1486{
1487	int ret = 0;
1488	int input = -1;
1489
1490	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1491		return -EPERM;
1492
1493	if (kstrtoint(buf, 0, &input))
1494		return -EINVAL;
1495
1496	mutex_lock(&fadump_mutex);
1497
1498	switch (input) {
1499	case 0:
1500		if (fw_dump.dump_registered == 0) {
1501			goto unlock_out;
1502		}
1503
1504		/* Un-register Firmware-assisted dump */
1505		pr_debug("Un-register firmware-assisted dump\n");
1506		fw_dump.ops->fadump_unregister(&fw_dump);
1507		break;
1508	case 1:
1509		if (fw_dump.dump_registered == 1) {
1510			/* Un-register Firmware-assisted dump */
1511			fw_dump.ops->fadump_unregister(&fw_dump);
1512		}
1513		/* Register Firmware-assisted dump */
1514		ret = register_fadump();
1515		break;
1516	default:
1517		ret = -EINVAL;
1518		break;
1519	}
1520
1521unlock_out:
1522	mutex_unlock(&fadump_mutex);
1523	return ret < 0 ? ret : count;
1524}
1525
1526static int fadump_region_show(struct seq_file *m, void *private)
1527{
1528	if (!fw_dump.fadump_enabled)
1529		return 0;
1530
1531	mutex_lock(&fadump_mutex);
1532	fw_dump.ops->fadump_region_show(&fw_dump, m);
1533	mutex_unlock(&fadump_mutex);
1534	return 0;
1535}
1536
1537static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1538static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1539static struct kobj_attribute register_attr = __ATTR_RW(registered);
1540static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1541
1542static struct attribute *fadump_attrs[] = {
1543	&enable_attr.attr,
1544	&register_attr.attr,
1545	&mem_reserved_attr.attr,
1546	NULL,
1547};
1548
1549ATTRIBUTE_GROUPS(fadump);
1550
1551DEFINE_SHOW_ATTRIBUTE(fadump_region);
1552
1553static void fadump_init_files(void)
1554{
1555	int rc = 0;
1556
1557	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1558	if (!fadump_kobj) {
1559		pr_err("failed to create fadump kobject\n");
1560		return;
1561	}
1562
1563	debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL,
1564			    &fadump_region_fops);
1565
1566	if (fw_dump.dump_active) {
1567		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1568		if (rc)
1569			pr_err("unable to create release_mem sysfs file (%d)\n",
1570			       rc);
1571	}
1572
1573	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1574	if (rc) {
1575		pr_err("sysfs group creation failed (%d), unregistering FADump",
1576		       rc);
1577		unregister_fadump();
1578		return;
1579	}
1580
1581	/*
1582	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1583	 * create symlink at old location to maintain backward compatibility.
1584	 *
1585	 *      - fadump_enabled -> fadump/enabled
1586	 *      - fadump_registered -> fadump/registered
1587	 *      - fadump_release_mem -> fadump/release_mem
1588	 */
1589	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1590						  "enabled", "fadump_enabled");
1591	if (rc) {
1592		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1593		return;
1594	}
1595
1596	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1597						  "registered",
1598						  "fadump_registered");
1599	if (rc) {
1600		pr_err("unable to create fadump_registered symlink (%d)", rc);
1601		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1602		return;
1603	}
1604
1605	if (fw_dump.dump_active) {
1606		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1607							  fadump_kobj,
1608							  "release_mem",
1609							  "fadump_release_mem");
1610		if (rc)
1611			pr_err("unable to create fadump_release_mem symlink (%d)",
1612			       rc);
1613	}
1614	return;
1615}
1616
1617/*
1618 * Prepare for firmware-assisted dump.
1619 */
1620int __init setup_fadump(void)
1621{
1622	if (!fw_dump.fadump_supported)
1623		return 0;
1624
1625	fadump_init_files();
1626	fadump_show_config();
1627
1628	if (!fw_dump.fadump_enabled)
1629		return 1;
1630
1631	/*
1632	 * If dump data is available then see if it is valid and prepare for
1633	 * saving it to the disk.
1634	 */
1635	if (fw_dump.dump_active) {
1636		/*
1637		 * if dump process fails then invalidate the registration
1638		 * and release memory before proceeding for re-registration.
1639		 */
1640		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1641			fadump_invalidate_release_mem();
1642	}
1643	/* Initialize the kernel dump memory structure for FAD registration. */
1644	else if (fw_dump.reserve_dump_area_size)
1645		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
 
 
 
 
 
 
 
 
 
 
1646
1647	return 1;
1648}
1649subsys_initcall(setup_fadump);
 
 
 
 
 
1650#else /* !CONFIG_PRESERVE_FA_DUMP */
1651
1652/* Scan the Firmware Assisted dump configuration details. */
1653int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1654				      int depth, void *data)
1655{
1656	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1657		return 0;
1658
1659	opal_fadump_dt_scan(&fw_dump, node);
1660	return 1;
1661}
1662
1663/*
1664 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1665 * preserve crash data. The subsequent memory preserving kernel boot
1666 * is likely to process this crash data.
1667 */
1668int __init fadump_reserve_mem(void)
1669{
1670	if (fw_dump.dump_active) {
1671		/*
1672		 * If last boot has crashed then reserve all the memory
1673		 * above boot memory to preserve crash data.
1674		 */
1675		pr_info("Preserving crash data for processing in next boot.\n");
1676		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1677	} else
1678		pr_debug("FADump-aware kernel..\n");
1679
1680	return 1;
1681}
1682#endif /* CONFIG_PRESERVE_FA_DUMP */
1683
1684/* Preserve everything above the base address */
1685static void __init fadump_reserve_crash_area(u64 base)
1686{
1687	struct memblock_region *reg;
1688	u64 mstart, msize;
1689
1690	for_each_memblock(memory, reg) {
1691		mstart = reg->base;
1692		msize  = reg->size;
1693
1694		if ((mstart + msize) < base)
1695			continue;
1696
1697		if (mstart < base) {
1698			msize -= (base - mstart);
1699			mstart = base;
1700		}
1701
1702		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1703			(msize >> 20), mstart);
1704		memblock_reserve(mstart, msize);
1705	}
1706}
1707
1708unsigned long __init arch_reserved_kernel_pages(void)
1709{
1710	return memblock_reserved_size() / PAGE_SIZE;
1711}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   4 * dump with assistance from firmware. This approach does not use kexec,
   5 * instead firmware assists in booting the kdump kernel while preserving
   6 * memory contents. The most of the code implementation has been adapted
   7 * from phyp assisted dump implementation written by Linas Vepstas and
   8 * Manish Ahuja
   9 *
  10 * Copyright 2011 IBM Corporation
  11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  12 */
  13
  14#undef DEBUG
  15#define pr_fmt(fmt) "fadump: " fmt
  16
  17#include <linux/string.h>
  18#include <linux/memblock.h>
  19#include <linux/delay.h>
  20#include <linux/seq_file.h>
  21#include <linux/crash_dump.h>
  22#include <linux/kobject.h>
  23#include <linux/sysfs.h>
  24#include <linux/slab.h>
  25#include <linux/cma.h>
  26#include <linux/hugetlb.h>
  27#include <linux/debugfs.h>
  28#include <linux/of.h>
  29#include <linux/of_fdt.h>
  30
 
  31#include <asm/page.h>
 
  32#include <asm/fadump.h>
  33#include <asm/fadump-internal.h>
  34#include <asm/setup.h>
  35#include <asm/interrupt.h>
  36
  37/*
  38 * The CPU who acquired the lock to trigger the fadump crash should
  39 * wait for other CPUs to enter.
  40 *
  41 * The timeout is in milliseconds.
  42 */
  43#define CRASH_TIMEOUT		500
  44
  45static struct fw_dump fw_dump;
  46
  47static void __init fadump_reserve_crash_area(u64 base);
  48
 
 
  49#ifndef CONFIG_PRESERVE_FA_DUMP
  50
  51static struct kobject *fadump_kobj;
  52
  53static atomic_t cpus_in_fadump;
  54static DEFINE_MUTEX(fadump_mutex);
  55
  56static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
  57
  58#define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
  59#define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
  60				 sizeof(struct fadump_memory_range))
  61static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
  62static struct fadump_mrange_info
  63reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
 
  64
  65static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
  66
  67#ifdef CONFIG_CMA
  68static struct cma *fadump_cma;
  69
  70/*
  71 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
  72 *
  73 * This function initializes CMA area from fadump reserved memory.
  74 * The total size of fadump reserved memory covers for boot memory size
  75 * + cpu data size + hpte size and metadata.
  76 * Initialize only the area equivalent to boot memory size for CMA use.
  77 * The remaining portion of fadump reserved memory will be not given
  78 * to CMA and pages for those will stay reserved. boot memory size is
  79 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
  80 * But for some reason even if it fails we still have the memory reservation
  81 * with us and we can still continue doing fadump.
  82 */
  83static int __init fadump_cma_init(void)
  84{
  85	unsigned long long base, size;
  86	int rc;
  87
  88	if (!fw_dump.fadump_enabled)
  89		return 0;
  90
  91	/*
  92	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
  93	 * Return 1 to continue with fadump old behaviour.
  94	 */
  95	if (fw_dump.nocma)
  96		return 1;
  97
  98	base = fw_dump.reserve_dump_area_start;
  99	size = fw_dump.boot_memory_size;
 100
 101	if (!size)
 102		return 0;
 103
 104	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
 105	if (rc) {
 106		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
 107		/*
 108		 * Though the CMA init has failed we still have memory
 109		 * reservation with us. The reserved memory will be
 110		 * blocked from production system usage.  Hence return 1,
 111		 * so that we can continue with fadump.
 112		 */
 113		return 1;
 114	}
 115
 116	/*
 117	 *  If CMA activation fails, keep the pages reserved, instead of
 118	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
 119	 */
 120	cma_reserve_pages_on_error(fadump_cma);
 121
 122	/*
 123	 * So we now have successfully initialized cma area for fadump.
 124	 */
 125	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
 126		"bytes of memory reserved for firmware-assisted dump\n",
 127		cma_get_size(fadump_cma),
 128		(unsigned long)cma_get_base(fadump_cma) >> 20,
 129		fw_dump.reserve_dump_area_size);
 130	return 1;
 131}
 132#else
 133static int __init fadump_cma_init(void) { return 1; }
 134#endif /* CONFIG_CMA */
 135
 136/* Scan the Firmware Assisted dump configuration details. */
 137int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
 138				      int depth, void *data)
 139{
 140	if (depth == 0) {
 141		early_init_dt_scan_reserved_ranges(node);
 142		return 0;
 143	}
 144
 145	if (depth != 1)
 146		return 0;
 147
 148	if (strcmp(uname, "rtas") == 0) {
 149		rtas_fadump_dt_scan(&fw_dump, node);
 150		return 1;
 151	}
 152
 153	if (strcmp(uname, "ibm,opal") == 0) {
 154		opal_fadump_dt_scan(&fw_dump, node);
 155		return 1;
 156	}
 157
 158	return 0;
 159}
 160
 161/*
 162 * If fadump is registered, check if the memory provided
 163 * falls within boot memory area and reserved memory area.
 164 */
 165int is_fadump_memory_area(u64 addr, unsigned long size)
 166{
 167	u64 d_start, d_end;
 168
 169	if (!fw_dump.dump_registered)
 170		return 0;
 171
 172	if (!size)
 173		return 0;
 174
 175	d_start = fw_dump.reserve_dump_area_start;
 176	d_end = d_start + fw_dump.reserve_dump_area_size;
 177	if (((addr + size) > d_start) && (addr <= d_end))
 178		return 1;
 179
 180	return (addr <= fw_dump.boot_mem_top);
 181}
 182
 183int should_fadump_crash(void)
 184{
 185	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 186		return 0;
 187	return 1;
 188}
 189
 190int is_fadump_active(void)
 191{
 192	return fw_dump.dump_active;
 193}
 194
 195/*
 196 * Returns true, if there are no holes in memory area between d_start to d_end,
 197 * false otherwise.
 198 */
 199static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
 200{
 201	phys_addr_t reg_start, reg_end;
 202	bool ret = false;
 203	u64 i, start, end;
 204
 205	for_each_mem_range(i, &reg_start, &reg_end) {
 206		start = max_t(u64, d_start, reg_start);
 207		end = min_t(u64, d_end, reg_end);
 208		if (d_start < end) {
 209			/* Memory hole from d_start to start */
 210			if (start > d_start)
 211				break;
 212
 213			if (end == d_end) {
 214				ret = true;
 215				break;
 216			}
 217
 218			d_start = end + 1;
 219		}
 220	}
 221
 222	return ret;
 223}
 224
 225/*
 226 * Returns true, if there are no holes in boot memory area,
 227 * false otherwise.
 228 */
 229bool is_fadump_boot_mem_contiguous(void)
 230{
 231	unsigned long d_start, d_end;
 232	bool ret = false;
 233	int i;
 234
 235	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 236		d_start = fw_dump.boot_mem_addr[i];
 237		d_end   = d_start + fw_dump.boot_mem_sz[i];
 238
 239		ret = is_fadump_mem_area_contiguous(d_start, d_end);
 240		if (!ret)
 241			break;
 242	}
 243
 244	return ret;
 245}
 246
 247/*
 248 * Returns true, if there are no holes in reserved memory area,
 249 * false otherwise.
 250 */
 251bool is_fadump_reserved_mem_contiguous(void)
 252{
 253	u64 d_start, d_end;
 254
 255	d_start	= fw_dump.reserve_dump_area_start;
 256	d_end	= d_start + fw_dump.reserve_dump_area_size;
 257	return is_fadump_mem_area_contiguous(d_start, d_end);
 258}
 259
 260/* Print firmware assisted dump configurations for debugging purpose. */
 261static void __init fadump_show_config(void)
 262{
 263	int i;
 264
 265	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 266			(fw_dump.fadump_supported ? "present" : "no support"));
 267
 268	if (!fw_dump.fadump_supported)
 269		return;
 270
 271	pr_debug("Fadump enabled    : %s\n",
 272				(fw_dump.fadump_enabled ? "yes" : "no"));
 273	pr_debug("Dump Active       : %s\n",
 274				(fw_dump.dump_active ? "yes" : "no"));
 275	pr_debug("Dump section sizes:\n");
 276	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 277	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 278	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
 279	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
 280	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
 281	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 282		pr_debug("[%03d] base = %llx, size = %llx\n", i,
 283			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
 284	}
 285}
 286
 287/**
 288 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 289 *
 290 * Function to find the largest memory size we need to reserve during early
 291 * boot process. This will be the size of the memory that is required for a
 292 * kernel to boot successfully.
 293 *
 294 * This function has been taken from phyp-assisted dump feature implementation.
 295 *
 296 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 297 *
 298 * TODO: Come up with better approach to find out more accurate memory size
 299 * that is required for a kernel to boot successfully.
 300 *
 301 */
 302static __init u64 fadump_calculate_reserve_size(void)
 303{
 304	u64 base, size, bootmem_min;
 305	int ret;
 306
 307	if (fw_dump.reserve_bootvar)
 308		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 309
 310	/*
 311	 * Check if the size is specified through crashkernel= cmdline
 312	 * option. If yes, then use that but ignore base as fadump reserves
 313	 * memory at a predefined offset.
 314	 */
 315	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 316				&size, &base);
 317	if (ret == 0 && size > 0) {
 318		unsigned long max_size;
 319
 320		if (fw_dump.reserve_bootvar)
 321			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 322
 323		fw_dump.reserve_bootvar = (unsigned long)size;
 324
 325		/*
 326		 * Adjust if the boot memory size specified is above
 327		 * the upper limit.
 328		 */
 329		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 330		if (fw_dump.reserve_bootvar > max_size) {
 331			fw_dump.reserve_bootvar = max_size;
 332			pr_info("Adjusted boot memory size to %luMB\n",
 333				(fw_dump.reserve_bootvar >> 20));
 334		}
 335
 336		return fw_dump.reserve_bootvar;
 337	} else if (fw_dump.reserve_bootvar) {
 338		/*
 339		 * 'fadump_reserve_mem=' is being used to reserve memory
 340		 * for firmware-assisted dump.
 341		 */
 342		return fw_dump.reserve_bootvar;
 343	}
 344
 345	/* divide by 20 to get 5% of value */
 346	size = memblock_phys_mem_size() / 20;
 347
 348	/* round it down in multiples of 256 */
 349	size = size & ~0x0FFFFFFFUL;
 350
 351	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 352	if (memory_limit && size > memory_limit)
 353		size = memory_limit;
 354
 355	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 356	return (size > bootmem_min ? size : bootmem_min);
 357}
 358
 359/*
 360 * Calculate the total memory size required to be reserved for
 361 * firmware-assisted dump registration.
 362 */
 363static unsigned long __init get_fadump_area_size(void)
 364{
 365	unsigned long size = 0;
 366
 367	size += fw_dump.cpu_state_data_size;
 368	size += fw_dump.hpte_region_size;
 369	/*
 370	 * Account for pagesize alignment of boot memory area destination address.
 371	 * This faciliates in mmap reading of first kernel's memory.
 372	 */
 373	size = PAGE_ALIGN(size);
 374	size += fw_dump.boot_memory_size;
 375	size += sizeof(struct fadump_crash_info_header);
 376	size += sizeof(struct elfhdr); /* ELF core header.*/
 377	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 378	/* Program headers for crash memory regions. */
 379	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 380
 381	size = PAGE_ALIGN(size);
 382
 383	/* This is to hold kernel metadata on platforms that support it */
 384	size += (fw_dump.ops->fadump_get_metadata_size ?
 385		 fw_dump.ops->fadump_get_metadata_size() : 0);
 386	return size;
 387}
 388
 389static int __init add_boot_mem_region(unsigned long rstart,
 390				      unsigned long rsize)
 391{
 392	int i = fw_dump.boot_mem_regs_cnt++;
 393
 394	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
 395		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
 396		return 0;
 397	}
 398
 399	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
 400		 i, rstart, (rstart + rsize));
 401	fw_dump.boot_mem_addr[i] = rstart;
 402	fw_dump.boot_mem_sz[i] = rsize;
 403	return 1;
 404}
 405
 406/*
 407 * Firmware usually has a hard limit on the data it can copy per region.
 408 * Honour that by splitting a memory range into multiple regions.
 409 */
 410static int __init add_boot_mem_regions(unsigned long mstart,
 411				       unsigned long msize)
 412{
 413	unsigned long rstart, rsize, max_size;
 414	int ret = 1;
 415
 416	rstart = mstart;
 417	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
 418	while (msize) {
 419		if (msize > max_size)
 420			rsize = max_size;
 421		else
 422			rsize = msize;
 423
 424		ret = add_boot_mem_region(rstart, rsize);
 425		if (!ret)
 426			break;
 427
 428		msize -= rsize;
 429		rstart += rsize;
 430	}
 431
 432	return ret;
 433}
 434
 435static int __init fadump_get_boot_mem_regions(void)
 436{
 437	unsigned long size, cur_size, hole_size, last_end;
 438	unsigned long mem_size = fw_dump.boot_memory_size;
 439	phys_addr_t reg_start, reg_end;
 440	int ret = 1;
 441	u64 i;
 442
 443	fw_dump.boot_mem_regs_cnt = 0;
 444
 445	last_end = 0;
 446	hole_size = 0;
 447	cur_size = 0;
 448	for_each_mem_range(i, &reg_start, &reg_end) {
 449		size = reg_end - reg_start;
 450		hole_size += (reg_start - last_end);
 
 451
 452		if ((cur_size + size) >= mem_size) {
 453			size = (mem_size - cur_size);
 454			ret = add_boot_mem_regions(reg_start, size);
 455			break;
 456		}
 457
 458		mem_size -= size;
 459		cur_size += size;
 460		ret = add_boot_mem_regions(reg_start, size);
 461		if (!ret)
 462			break;
 463
 464		last_end = reg_end;
 465	}
 466	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
 467
 468	return ret;
 469}
 470
 471/*
 472 * Returns true, if the given range overlaps with reserved memory ranges
 473 * starting at idx. Also, updates idx to index of overlapping memory range
 474 * with the given memory range.
 475 * False, otherwise.
 476 */
 477static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
 478{
 479	bool ret = false;
 480	int i;
 481
 482	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
 483		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
 484		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
 485
 486		if (end <= rbase)
 487			break;
 488
 489		if ((end > rbase) &&  (base < rend)) {
 490			*idx = i;
 491			ret = true;
 492			break;
 493		}
 494	}
 495
 496	return ret;
 497}
 498
 499/*
 500 * Locate a suitable memory area to reserve memory for FADump. While at it,
 501 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
 502 */
 503static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
 504{
 505	struct fadump_memory_range *mrngs;
 506	phys_addr_t mstart, mend;
 507	int idx = 0;
 508	u64 i, ret = 0;
 509
 510	mrngs = reserved_mrange_info.mem_ranges;
 511	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 512				&mstart, &mend, NULL) {
 513		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
 514			 i, mstart, mend, base);
 515
 516		if (mstart > base)
 517			base = PAGE_ALIGN(mstart);
 518
 519		while ((mend > base) && ((mend - base) >= size)) {
 520			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
 521				ret = base;
 522				goto out;
 523			}
 524
 525			base = mrngs[idx].base + mrngs[idx].size;
 526			base = PAGE_ALIGN(base);
 527		}
 528	}
 529
 530out:
 531	return ret;
 532}
 533
 534int __init fadump_reserve_mem(void)
 535{
 536	u64 base, size, mem_boundary, bootmem_min;
 537	int ret = 1;
 538
 539	if (!fw_dump.fadump_enabled)
 540		return 0;
 541
 542	if (!fw_dump.fadump_supported) {
 543		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
 544		goto error_out;
 545	}
 546
 547	/*
 548	 * Initialize boot memory size
 549	 * If dump is active then we have already calculated the size during
 550	 * first kernel.
 551	 */
 552	if (!fw_dump.dump_active) {
 553		fw_dump.boot_memory_size =
 554			PAGE_ALIGN(fadump_calculate_reserve_size());
 555#ifdef CONFIG_CMA
 556		if (!fw_dump.nocma) {
 557			fw_dump.boot_memory_size =
 558				ALIGN(fw_dump.boot_memory_size,
 559				      CMA_MIN_ALIGNMENT_BYTES);
 560		}
 561#endif
 562
 563		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 564		if (fw_dump.boot_memory_size < bootmem_min) {
 565			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
 566			       fw_dump.boot_memory_size, bootmem_min);
 567			goto error_out;
 568		}
 569
 570		if (!fadump_get_boot_mem_regions()) {
 571			pr_err("Too many holes in boot memory area to enable fadump\n");
 572			goto error_out;
 573		}
 574	}
 575
 576	/*
 577	 * Calculate the memory boundary.
 578	 * If memory_limit is less than actual memory boundary then reserve
 579	 * the memory for fadump beyond the memory_limit and adjust the
 580	 * memory_limit accordingly, so that the running kernel can run with
 581	 * specified memory_limit.
 582	 */
 583	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 584		size = get_fadump_area_size();
 585		if ((memory_limit + size) < memblock_end_of_DRAM())
 586			memory_limit += size;
 587		else
 588			memory_limit = memblock_end_of_DRAM();
 589		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 590				" dump, now %#016llx\n", memory_limit);
 591	}
 592	if (memory_limit)
 593		mem_boundary = memory_limit;
 594	else
 595		mem_boundary = memblock_end_of_DRAM();
 596
 597	base = fw_dump.boot_mem_top;
 598	size = get_fadump_area_size();
 599	fw_dump.reserve_dump_area_size = size;
 600	if (fw_dump.dump_active) {
 601		pr_info("Firmware-assisted dump is active.\n");
 602
 603#ifdef CONFIG_HUGETLB_PAGE
 604		/*
 605		 * FADump capture kernel doesn't care much about hugepages.
 606		 * In fact, handling hugepages in capture kernel is asking for
 607		 * trouble. So, disable HugeTLB support when fadump is active.
 608		 */
 609		hugetlb_disabled = true;
 610#endif
 611		/*
 612		 * If last boot has crashed then reserve all the memory
 613		 * above boot memory size so that we don't touch it until
 614		 * dump is written to disk by userspace tool. This memory
 615		 * can be released for general use by invalidating fadump.
 616		 */
 617		fadump_reserve_crash_area(base);
 618
 619		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
 620		pr_debug("Reserve dump area start address: 0x%lx\n",
 621			 fw_dump.reserve_dump_area_start);
 622	} else {
 623		/*
 624		 * Reserve memory at an offset closer to bottom of the RAM to
 625		 * minimize the impact of memory hot-remove operation.
 626		 */
 627		base = fadump_locate_reserve_mem(base, size);
 628
 629		if (!base || (base + size > mem_boundary)) {
 630			pr_err("Failed to find memory chunk for reservation!\n");
 631			goto error_out;
 632		}
 633		fw_dump.reserve_dump_area_start = base;
 634
 635		/*
 636		 * Calculate the kernel metadata address and register it with
 637		 * f/w if the platform supports.
 638		 */
 639		if (fw_dump.ops->fadump_setup_metadata &&
 640		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
 641			goto error_out;
 642
 643		if (memblock_reserve(base, size)) {
 644			pr_err("Failed to reserve memory!\n");
 645			goto error_out;
 646		}
 647
 648		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
 649			(size >> 20), base, (memblock_phys_mem_size() >> 20));
 650
 651		ret = fadump_cma_init();
 652	}
 653
 654	return ret;
 655error_out:
 656	fw_dump.fadump_enabled = 0;
 657	return 0;
 658}
 659
 660/* Look for fadump= cmdline option. */
 661static int __init early_fadump_param(char *p)
 662{
 663	if (!p)
 664		return 1;
 665
 666	if (strncmp(p, "on", 2) == 0)
 667		fw_dump.fadump_enabled = 1;
 668	else if (strncmp(p, "off", 3) == 0)
 669		fw_dump.fadump_enabled = 0;
 670	else if (strncmp(p, "nocma", 5) == 0) {
 671		fw_dump.fadump_enabled = 1;
 672		fw_dump.nocma = 1;
 673	}
 674
 675	return 0;
 676}
 677early_param("fadump", early_fadump_param);
 678
 679/*
 680 * Look for fadump_reserve_mem= cmdline option
 681 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 682 *       the sooner 'crashkernel=' parameter is accustomed to.
 683 */
 684static int __init early_fadump_reserve_mem(char *p)
 685{
 686	if (p)
 687		fw_dump.reserve_bootvar = memparse(p, &p);
 688	return 0;
 689}
 690early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 691
 692void crash_fadump(struct pt_regs *regs, const char *str)
 693{
 694	unsigned int msecs;
 695	struct fadump_crash_info_header *fdh = NULL;
 696	int old_cpu, this_cpu;
 697	/* Do not include first CPU */
 698	unsigned int ncpus = num_online_cpus() - 1;
 699
 700	if (!should_fadump_crash())
 701		return;
 702
 703	/*
 704	 * old_cpu == -1 means this is the first CPU which has come here,
 705	 * go ahead and trigger fadump.
 706	 *
 707	 * old_cpu != -1 means some other CPU has already on it's way
 708	 * to trigger fadump, just keep looping here.
 709	 */
 710	this_cpu = smp_processor_id();
 711	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 712
 713	if (old_cpu != -1) {
 714		atomic_inc(&cpus_in_fadump);
 715
 716		/*
 717		 * We can't loop here indefinitely. Wait as long as fadump
 718		 * is in force. If we race with fadump un-registration this
 719		 * loop will break and then we go down to normal panic path
 720		 * and reboot. If fadump is in force the first crashing
 721		 * cpu will definitely trigger fadump.
 722		 */
 723		while (fw_dump.dump_registered)
 724			cpu_relax();
 725		return;
 726	}
 727
 728	fdh = __va(fw_dump.fadumphdr_addr);
 729	fdh->crashing_cpu = crashing_cpu;
 730	crash_save_vmcoreinfo();
 731
 732	if (regs)
 733		fdh->regs = *regs;
 734	else
 735		ppc_save_regs(&fdh->regs);
 736
 737	fdh->cpu_mask = *cpu_online_mask;
 738
 739	/*
 740	 * If we came in via system reset, wait a while for the secondary
 741	 * CPUs to enter.
 742	 */
 743	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
 744		msecs = CRASH_TIMEOUT;
 745		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
 746			mdelay(1);
 747	}
 748
 749	fw_dump.ops->fadump_trigger(fdh, str);
 750}
 751
 752u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 753{
 754	struct elf_prstatus prstatus;
 755
 756	memset(&prstatus, 0, sizeof(prstatus));
 757	/*
 758	 * FIXME: How do i get PID? Do I really need it?
 759	 * prstatus.pr_pid = ????
 760	 */
 761	elf_core_copy_regs(&prstatus.pr_reg, regs);
 762	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 763			      &prstatus, sizeof(prstatus));
 764	return buf;
 765}
 766
 767void __init fadump_update_elfcore_header(char *bufp)
 768{
 
 769	struct elf_phdr *phdr;
 770
 
 771	bufp += sizeof(struct elfhdr);
 772
 773	/* First note is a place holder for cpu notes info. */
 774	phdr = (struct elf_phdr *)bufp;
 775
 776	if (phdr->p_type == PT_NOTE) {
 777		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
 778		phdr->p_offset	= phdr->p_paddr;
 779		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 780		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 781	}
 782	return;
 783}
 784
 785static void *__init fadump_alloc_buffer(unsigned long size)
 786{
 787	unsigned long count, i;
 788	struct page *page;
 789	void *vaddr;
 790
 791	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
 792	if (!vaddr)
 793		return NULL;
 794
 795	count = PAGE_ALIGN(size) / PAGE_SIZE;
 796	page = virt_to_page(vaddr);
 797	for (i = 0; i < count; i++)
 798		mark_page_reserved(page + i);
 799	return vaddr;
 800}
 801
 802static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
 803{
 804	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
 805}
 806
 807s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
 808{
 809	/* Allocate buffer to hold cpu crash notes. */
 810	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 811	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 812	fw_dump.cpu_notes_buf_vaddr =
 813		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
 814	if (!fw_dump.cpu_notes_buf_vaddr) {
 815		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
 816		       fw_dump.cpu_notes_buf_size);
 817		return -ENOMEM;
 818	}
 819
 820	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
 821		 fw_dump.cpu_notes_buf_size,
 822		 fw_dump.cpu_notes_buf_vaddr);
 823	return 0;
 824}
 825
 826void fadump_free_cpu_notes_buf(void)
 827{
 828	if (!fw_dump.cpu_notes_buf_vaddr)
 829		return;
 830
 831	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
 832			   fw_dump.cpu_notes_buf_size);
 833	fw_dump.cpu_notes_buf_vaddr = 0;
 834	fw_dump.cpu_notes_buf_size = 0;
 835}
 836
 837static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
 838{
 839	if (mrange_info->is_static) {
 840		mrange_info->mem_range_cnt = 0;
 841		return;
 842	}
 843
 844	kfree(mrange_info->mem_ranges);
 845	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
 846	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
 847}
 848
 849/*
 850 * Allocate or reallocate mem_ranges array in incremental units
 851 * of PAGE_SIZE.
 852 */
 853static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
 854{
 855	struct fadump_memory_range *new_array;
 856	u64 new_size;
 857
 858	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
 859	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
 860		 new_size, mrange_info->name);
 861
 862	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
 863	if (new_array == NULL) {
 864		pr_err("Insufficient memory for setting up %s memory ranges\n",
 865		       mrange_info->name);
 866		fadump_free_mem_ranges(mrange_info);
 867		return -ENOMEM;
 868	}
 869
 870	mrange_info->mem_ranges = new_array;
 871	mrange_info->mem_ranges_sz = new_size;
 872	mrange_info->max_mem_ranges = (new_size /
 873				       sizeof(struct fadump_memory_range));
 874	return 0;
 875}
 
 876static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
 877				       u64 base, u64 end)
 878{
 879	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
 880	bool is_adjacent = false;
 881	u64 start, size;
 882
 883	if (base == end)
 884		return 0;
 885
 886	/*
 887	 * Fold adjacent memory ranges to bring down the memory ranges/
 888	 * PT_LOAD segments count.
 889	 */
 890	if (mrange_info->mem_range_cnt) {
 891		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
 892		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
 893
 894		/*
 895		 * Boot memory area needs separate PT_LOAD segment(s) as it
 896		 * is moved to a different location at the time of crash.
 897		 * So, fold only if the region is not boot memory area.
 898		 */
 899		if ((start + size) == base && start >= fw_dump.boot_mem_top)
 900			is_adjacent = true;
 901	}
 902	if (!is_adjacent) {
 903		/* resize the array on reaching the limit */
 904		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
 905			int ret;
 906
 907			if (mrange_info->is_static) {
 908				pr_err("Reached array size limit for %s memory ranges\n",
 909				       mrange_info->name);
 910				return -ENOSPC;
 911			}
 912
 913			ret = fadump_alloc_mem_ranges(mrange_info);
 914			if (ret)
 915				return ret;
 916
 917			/* Update to the new resized array */
 918			mem_ranges = mrange_info->mem_ranges;
 919		}
 920
 921		start = base;
 922		mem_ranges[mrange_info->mem_range_cnt].base = start;
 923		mrange_info->mem_range_cnt++;
 924	}
 925
 926	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
 927	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 928		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
 929		 start, end - 1, (end - start));
 930	return 0;
 931}
 932
 933static int fadump_exclude_reserved_area(u64 start, u64 end)
 934{
 935	u64 ra_start, ra_end;
 936	int ret = 0;
 937
 938	ra_start = fw_dump.reserve_dump_area_start;
 939	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 940
 941	if ((ra_start < end) && (ra_end > start)) {
 942		if ((start < ra_start) && (end > ra_end)) {
 943			ret = fadump_add_mem_range(&crash_mrange_info,
 944						   start, ra_start);
 945			if (ret)
 946				return ret;
 947
 948			ret = fadump_add_mem_range(&crash_mrange_info,
 949						   ra_end, end);
 950		} else if (start < ra_start) {
 951			ret = fadump_add_mem_range(&crash_mrange_info,
 952						   start, ra_start);
 953		} else if (ra_end < end) {
 954			ret = fadump_add_mem_range(&crash_mrange_info,
 955						   ra_end, end);
 956		}
 957	} else
 958		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 959
 960	return ret;
 961}
 962
 963static int fadump_init_elfcore_header(char *bufp)
 964{
 965	struct elfhdr *elf;
 966
 967	elf = (struct elfhdr *) bufp;
 968	bufp += sizeof(struct elfhdr);
 969	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 970	elf->e_ident[EI_CLASS] = ELF_CLASS;
 971	elf->e_ident[EI_DATA] = ELF_DATA;
 972	elf->e_ident[EI_VERSION] = EV_CURRENT;
 973	elf->e_ident[EI_OSABI] = ELF_OSABI;
 974	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 975	elf->e_type = ET_CORE;
 976	elf->e_machine = ELF_ARCH;
 977	elf->e_version = EV_CURRENT;
 978	elf->e_entry = 0;
 979	elf->e_phoff = sizeof(struct elfhdr);
 980	elf->e_shoff = 0;
 981
 982	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
 983		elf->e_flags = 2;
 984	else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
 985		elf->e_flags = 1;
 986	else
 987		elf->e_flags = 0;
 988
 989	elf->e_ehsize = sizeof(struct elfhdr);
 990	elf->e_phentsize = sizeof(struct elf_phdr);
 991	elf->e_phnum = 0;
 992	elf->e_shentsize = 0;
 993	elf->e_shnum = 0;
 994	elf->e_shstrndx = 0;
 995
 996	return 0;
 997}
 998
 999/*
1000 * Traverse through memblock structure and setup crash memory ranges. These
1001 * ranges will be used create PT_LOAD program headers in elfcore header.
1002 */
1003static int fadump_setup_crash_memory_ranges(void)
1004{
1005	u64 i, start, end;
1006	int ret;
 
1007
1008	pr_debug("Setup crash memory ranges.\n");
1009	crash_mrange_info.mem_range_cnt = 0;
1010
1011	/*
1012	 * Boot memory region(s) registered with firmware are moved to
1013	 * different location at the time of crash. Create separate program
1014	 * header(s) for this memory chunk(s) with the correct offset.
1015	 */
1016	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1017		start = fw_dump.boot_mem_addr[i];
1018		end = start + fw_dump.boot_mem_sz[i];
1019		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1020		if (ret)
1021			return ret;
1022	}
1023
1024	for_each_mem_range(i, &start, &end) {
 
 
 
1025		/*
1026		 * skip the memory chunk that is already added
1027		 * (0 through boot_memory_top).
1028		 */
1029		if (start < fw_dump.boot_mem_top) {
1030			if (end > fw_dump.boot_mem_top)
1031				start = fw_dump.boot_mem_top;
1032			else
1033				continue;
1034		}
1035
1036		/* add this range excluding the reserved dump area. */
1037		ret = fadump_exclude_reserved_area(start, end);
1038		if (ret)
1039			return ret;
1040	}
1041
1042	return 0;
1043}
1044
1045/*
1046 * If the given physical address falls within the boot memory region then
1047 * return the relocated address that points to the dump region reserved
1048 * for saving initial boot memory contents.
1049 */
1050static inline unsigned long fadump_relocate(unsigned long paddr)
1051{
1052	unsigned long raddr, rstart, rend, rlast, hole_size;
1053	int i;
1054
1055	hole_size = 0;
1056	rlast = 0;
1057	raddr = paddr;
1058	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1059		rstart = fw_dump.boot_mem_addr[i];
1060		rend = rstart + fw_dump.boot_mem_sz[i];
1061		hole_size += (rstart - rlast);
1062
1063		if (paddr >= rstart && paddr < rend) {
1064			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1065			break;
1066		}
1067
1068		rlast = rend;
1069	}
1070
1071	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1072	return raddr;
1073}
1074
1075static int fadump_create_elfcore_headers(char *bufp)
1076{
1077	unsigned long long raddr, offset;
1078	struct elf_phdr *phdr;
1079	struct elfhdr *elf;
1080	int i, j;
1081
1082	fadump_init_elfcore_header(bufp);
1083	elf = (struct elfhdr *)bufp;
1084	bufp += sizeof(struct elfhdr);
1085
1086	/*
1087	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1088	 * will be populated during second kernel boot after crash. Hence
1089	 * this PT_NOTE will always be the first elf note.
1090	 *
1091	 * NOTE: Any new ELF note addition should be placed after this note.
1092	 */
1093	phdr = (struct elf_phdr *)bufp;
1094	bufp += sizeof(struct elf_phdr);
1095	phdr->p_type = PT_NOTE;
1096	phdr->p_flags = 0;
1097	phdr->p_vaddr = 0;
1098	phdr->p_align = 0;
1099
1100	phdr->p_offset = 0;
1101	phdr->p_paddr = 0;
1102	phdr->p_filesz = 0;
1103	phdr->p_memsz = 0;
1104
1105	(elf->e_phnum)++;
1106
1107	/* setup ELF PT_NOTE for vmcoreinfo */
1108	phdr = (struct elf_phdr *)bufp;
1109	bufp += sizeof(struct elf_phdr);
1110	phdr->p_type	= PT_NOTE;
1111	phdr->p_flags	= 0;
1112	phdr->p_vaddr	= 0;
1113	phdr->p_align	= 0;
1114
1115	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1116	phdr->p_offset	= phdr->p_paddr;
1117	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1118
1119	/* Increment number of program headers. */
1120	(elf->e_phnum)++;
1121
1122	/* setup PT_LOAD sections. */
1123	j = 0;
1124	offset = 0;
1125	raddr = fw_dump.boot_mem_addr[0];
1126	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1127		u64 mbase, msize;
1128
1129		mbase = crash_mrange_info.mem_ranges[i].base;
1130		msize = crash_mrange_info.mem_ranges[i].size;
1131		if (!msize)
1132			continue;
1133
1134		phdr = (struct elf_phdr *)bufp;
1135		bufp += sizeof(struct elf_phdr);
1136		phdr->p_type	= PT_LOAD;
1137		phdr->p_flags	= PF_R|PF_W|PF_X;
1138		phdr->p_offset	= mbase;
1139
1140		if (mbase == raddr) {
1141			/*
1142			 * The entire real memory region will be moved by
1143			 * firmware to the specified destination_address.
1144			 * Hence set the correct offset.
1145			 */
1146			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1147			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1148				offset += fw_dump.boot_mem_sz[j];
1149				raddr = fw_dump.boot_mem_addr[++j];
1150			}
1151		}
1152
1153		phdr->p_paddr = mbase;
1154		phdr->p_vaddr = (unsigned long)__va(mbase);
1155		phdr->p_filesz = msize;
1156		phdr->p_memsz = msize;
1157		phdr->p_align = 0;
1158
1159		/* Increment number of program headers. */
1160		(elf->e_phnum)++;
1161	}
1162	return 0;
1163}
1164
1165static unsigned long init_fadump_header(unsigned long addr)
1166{
1167	struct fadump_crash_info_header *fdh;
1168
1169	if (!addr)
1170		return 0;
1171
1172	fdh = __va(addr);
1173	addr += sizeof(struct fadump_crash_info_header);
1174
1175	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1176	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1177	fdh->elfcorehdr_addr = addr;
1178	/* We will set the crashing cpu id in crash_fadump() during crash. */
1179	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1180	/*
1181	 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1182	 * register data is processed while exporting the vmcore.
1183	 */
1184	fdh->cpu_mask = *cpu_possible_mask;
1185
1186	return addr;
1187}
1188
1189static int register_fadump(void)
1190{
1191	unsigned long addr;
1192	void *vaddr;
1193	int ret;
1194
1195	/*
1196	 * If no memory is reserved then we can not register for firmware-
1197	 * assisted dump.
1198	 */
1199	if (!fw_dump.reserve_dump_area_size)
1200		return -ENODEV;
1201
1202	ret = fadump_setup_crash_memory_ranges();
1203	if (ret)
1204		return ret;
1205
1206	addr = fw_dump.fadumphdr_addr;
1207
1208	/* Initialize fadump crash info header. */
1209	addr = init_fadump_header(addr);
1210	vaddr = __va(addr);
1211
1212	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1213	fadump_create_elfcore_headers(vaddr);
1214
1215	/* register the future kernel dump with firmware. */
1216	pr_debug("Registering for firmware-assisted kernel dump...\n");
1217	return fw_dump.ops->fadump_register(&fw_dump);
1218}
1219
1220void fadump_cleanup(void)
1221{
1222	if (!fw_dump.fadump_supported)
1223		return;
1224
1225	/* Invalidate the registration only if dump is active. */
1226	if (fw_dump.dump_active) {
1227		pr_debug("Invalidating firmware-assisted dump registration\n");
1228		fw_dump.ops->fadump_invalidate(&fw_dump);
1229	} else if (fw_dump.dump_registered) {
1230		/* Un-register Firmware-assisted dump if it was registered. */
1231		fw_dump.ops->fadump_unregister(&fw_dump);
1232		fadump_free_mem_ranges(&crash_mrange_info);
1233	}
1234
1235	if (fw_dump.ops->fadump_cleanup)
1236		fw_dump.ops->fadump_cleanup(&fw_dump);
1237}
1238
1239static void fadump_free_reserved_memory(unsigned long start_pfn,
1240					unsigned long end_pfn)
1241{
1242	unsigned long pfn;
1243	unsigned long time_limit = jiffies + HZ;
1244
1245	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1246		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1247
1248	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1249		free_reserved_page(pfn_to_page(pfn));
1250
1251		if (time_after(jiffies, time_limit)) {
1252			cond_resched();
1253			time_limit = jiffies + HZ;
1254		}
1255	}
1256}
1257
1258/*
1259 * Skip memory holes and free memory that was actually reserved.
1260 */
1261static void fadump_release_reserved_area(u64 start, u64 end)
1262{
1263	unsigned long reg_spfn, reg_epfn;
1264	u64 tstart, tend, spfn, epfn;
1265	int i;
1266
1267	spfn = PHYS_PFN(start);
1268	epfn = PHYS_PFN(end);
1269
1270	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1271		tstart = max_t(u64, spfn, reg_spfn);
1272		tend   = min_t(u64, epfn, reg_epfn);
1273
1274		if (tstart < tend) {
1275			fadump_free_reserved_memory(tstart, tend);
1276
1277			if (tend == epfn)
1278				break;
1279
1280			spfn = tend;
1281		}
1282	}
1283}
1284
1285/*
1286 * Sort the mem ranges in-place and merge adjacent ranges
1287 * to minimize the memory ranges count.
1288 */
1289static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1290{
1291	struct fadump_memory_range *mem_ranges;
 
1292	u64 base, size;
1293	int i, j, idx;
1294
1295	if (!reserved_mrange_info.mem_range_cnt)
1296		return;
1297
1298	/* Sort the memory ranges */
1299	mem_ranges = mrange_info->mem_ranges;
1300	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1301		idx = i;
1302		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1303			if (mem_ranges[idx].base > mem_ranges[j].base)
1304				idx = j;
1305		}
1306		if (idx != i)
1307			swap(mem_ranges[idx], mem_ranges[i]);
 
 
 
1308	}
1309
1310	/* Merge adjacent reserved ranges */
1311	idx = 0;
1312	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1313		base = mem_ranges[i-1].base;
1314		size = mem_ranges[i-1].size;
1315		if (mem_ranges[i].base == (base + size))
1316			mem_ranges[idx].size += mem_ranges[i].size;
1317		else {
1318			idx++;
1319			if (i == idx)
1320				continue;
1321
1322			mem_ranges[idx] = mem_ranges[i];
1323		}
1324	}
1325	mrange_info->mem_range_cnt = idx + 1;
1326}
1327
1328/*
1329 * Scan reserved-ranges to consider them while reserving/releasing
1330 * memory for FADump.
1331 */
1332static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1333{
1334	const __be32 *prop;
1335	int len, ret = -1;
1336	unsigned long i;
1337
1338	/* reserved-ranges already scanned */
1339	if (reserved_mrange_info.mem_range_cnt != 0)
1340		return;
1341
1342	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1343	if (!prop)
1344		return;
1345
1346	/*
1347	 * Each reserved range is an (address,size) pair, 2 cells each,
1348	 * totalling 4 cells per range.
1349	 */
1350	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1351		u64 base, size;
1352
1353		base = of_read_number(prop + (i * 4) + 0, 2);
1354		size = of_read_number(prop + (i * 4) + 2, 2);
1355
1356		if (size) {
1357			ret = fadump_add_mem_range(&reserved_mrange_info,
1358						   base, base + size);
1359			if (ret < 0) {
1360				pr_warn("some reserved ranges are ignored!\n");
1361				break;
1362			}
1363		}
1364	}
1365
1366	/* Compact reserved ranges */
1367	sort_and_merge_mem_ranges(&reserved_mrange_info);
1368}
1369
1370/*
1371 * Release the memory that was reserved during early boot to preserve the
1372 * crash'ed kernel's memory contents except reserved dump area (permanent
1373 * reservation) and reserved ranges used by F/W. The released memory will
1374 * be available for general use.
1375 */
1376static void fadump_release_memory(u64 begin, u64 end)
1377{
1378	u64 ra_start, ra_end, tstart;
1379	int i, ret;
1380
1381	ra_start = fw_dump.reserve_dump_area_start;
1382	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1383
1384	/*
1385	 * If reserved ranges array limit is hit, overwrite the last reserved
1386	 * memory range with reserved dump area to ensure it is excluded from
1387	 * the memory being released (reused for next FADump registration).
1388	 */
1389	if (reserved_mrange_info.mem_range_cnt ==
1390	    reserved_mrange_info.max_mem_ranges)
1391		reserved_mrange_info.mem_range_cnt--;
1392
1393	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1394	if (ret != 0)
1395		return;
1396
1397	/* Get the reserved ranges list in order first. */
1398	sort_and_merge_mem_ranges(&reserved_mrange_info);
1399
1400	/* Exclude reserved ranges and release remaining memory */
1401	tstart = begin;
1402	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1403		ra_start = reserved_mrange_info.mem_ranges[i].base;
1404		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1405
1406		if (tstart >= ra_end)
1407			continue;
1408
1409		if (tstart < ra_start)
1410			fadump_release_reserved_area(tstart, ra_start);
1411		tstart = ra_end;
1412	}
1413
1414	if (tstart < end)
1415		fadump_release_reserved_area(tstart, end);
1416}
1417
1418static void fadump_invalidate_release_mem(void)
1419{
1420	mutex_lock(&fadump_mutex);
1421	if (!fw_dump.dump_active) {
1422		mutex_unlock(&fadump_mutex);
1423		return;
1424	}
1425
1426	fadump_cleanup();
1427	mutex_unlock(&fadump_mutex);
1428
1429	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1430	fadump_free_cpu_notes_buf();
1431
1432	/*
1433	 * Setup kernel metadata and initialize the kernel dump
1434	 * memory structure for FADump re-registration.
1435	 */
1436	if (fw_dump.ops->fadump_setup_metadata &&
1437	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1438		pr_warn("Failed to setup kernel metadata!\n");
1439	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1440}
1441
1442static ssize_t release_mem_store(struct kobject *kobj,
1443				 struct kobj_attribute *attr,
1444				 const char *buf, size_t count)
1445{
1446	int input = -1;
1447
1448	if (!fw_dump.dump_active)
1449		return -EPERM;
1450
1451	if (kstrtoint(buf, 0, &input))
1452		return -EINVAL;
1453
1454	if (input == 1) {
1455		/*
1456		 * Take away the '/proc/vmcore'. We are releasing the dump
1457		 * memory, hence it will not be valid anymore.
1458		 */
1459#ifdef CONFIG_PROC_VMCORE
1460		vmcore_cleanup();
1461#endif
1462		fadump_invalidate_release_mem();
1463
1464	} else
1465		return -EINVAL;
1466	return count;
1467}
1468
1469/* Release the reserved memory and disable the FADump */
1470static void __init unregister_fadump(void)
1471{
1472	fadump_cleanup();
1473	fadump_release_memory(fw_dump.reserve_dump_area_start,
1474			      fw_dump.reserve_dump_area_size);
1475	fw_dump.fadump_enabled = 0;
1476	kobject_put(fadump_kobj);
1477}
1478
1479static ssize_t enabled_show(struct kobject *kobj,
1480			    struct kobj_attribute *attr,
1481			    char *buf)
1482{
1483	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1484}
1485
1486static ssize_t mem_reserved_show(struct kobject *kobj,
1487				 struct kobj_attribute *attr,
1488				 char *buf)
1489{
1490	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1491}
1492
1493static ssize_t registered_show(struct kobject *kobj,
1494			       struct kobj_attribute *attr,
1495			       char *buf)
1496{
1497	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1498}
1499
1500static ssize_t registered_store(struct kobject *kobj,
1501				struct kobj_attribute *attr,
1502				const char *buf, size_t count)
1503{
1504	int ret = 0;
1505	int input = -1;
1506
1507	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1508		return -EPERM;
1509
1510	if (kstrtoint(buf, 0, &input))
1511		return -EINVAL;
1512
1513	mutex_lock(&fadump_mutex);
1514
1515	switch (input) {
1516	case 0:
1517		if (fw_dump.dump_registered == 0) {
1518			goto unlock_out;
1519		}
1520
1521		/* Un-register Firmware-assisted dump */
1522		pr_debug("Un-register firmware-assisted dump\n");
1523		fw_dump.ops->fadump_unregister(&fw_dump);
1524		break;
1525	case 1:
1526		if (fw_dump.dump_registered == 1) {
1527			/* Un-register Firmware-assisted dump */
1528			fw_dump.ops->fadump_unregister(&fw_dump);
1529		}
1530		/* Register Firmware-assisted dump */
1531		ret = register_fadump();
1532		break;
1533	default:
1534		ret = -EINVAL;
1535		break;
1536	}
1537
1538unlock_out:
1539	mutex_unlock(&fadump_mutex);
1540	return ret < 0 ? ret : count;
1541}
1542
1543static int fadump_region_show(struct seq_file *m, void *private)
1544{
1545	if (!fw_dump.fadump_enabled)
1546		return 0;
1547
1548	mutex_lock(&fadump_mutex);
1549	fw_dump.ops->fadump_region_show(&fw_dump, m);
1550	mutex_unlock(&fadump_mutex);
1551	return 0;
1552}
1553
1554static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1555static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1556static struct kobj_attribute register_attr = __ATTR_RW(registered);
1557static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1558
1559static struct attribute *fadump_attrs[] = {
1560	&enable_attr.attr,
1561	&register_attr.attr,
1562	&mem_reserved_attr.attr,
1563	NULL,
1564};
1565
1566ATTRIBUTE_GROUPS(fadump);
1567
1568DEFINE_SHOW_ATTRIBUTE(fadump_region);
1569
1570static void __init fadump_init_files(void)
1571{
1572	int rc = 0;
1573
1574	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1575	if (!fadump_kobj) {
1576		pr_err("failed to create fadump kobject\n");
1577		return;
1578	}
1579
1580	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1581			    &fadump_region_fops);
1582
1583	if (fw_dump.dump_active) {
1584		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1585		if (rc)
1586			pr_err("unable to create release_mem sysfs file (%d)\n",
1587			       rc);
1588	}
1589
1590	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1591	if (rc) {
1592		pr_err("sysfs group creation failed (%d), unregistering FADump",
1593		       rc);
1594		unregister_fadump();
1595		return;
1596	}
1597
1598	/*
1599	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1600	 * create symlink at old location to maintain backward compatibility.
1601	 *
1602	 *      - fadump_enabled -> fadump/enabled
1603	 *      - fadump_registered -> fadump/registered
1604	 *      - fadump_release_mem -> fadump/release_mem
1605	 */
1606	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1607						  "enabled", "fadump_enabled");
1608	if (rc) {
1609		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1610		return;
1611	}
1612
1613	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1614						  "registered",
1615						  "fadump_registered");
1616	if (rc) {
1617		pr_err("unable to create fadump_registered symlink (%d)", rc);
1618		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1619		return;
1620	}
1621
1622	if (fw_dump.dump_active) {
1623		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1624							  fadump_kobj,
1625							  "release_mem",
1626							  "fadump_release_mem");
1627		if (rc)
1628			pr_err("unable to create fadump_release_mem symlink (%d)",
1629			       rc);
1630	}
1631	return;
1632}
1633
1634/*
1635 * Prepare for firmware-assisted dump.
1636 */
1637int __init setup_fadump(void)
1638{
1639	if (!fw_dump.fadump_supported)
1640		return 0;
1641
1642	fadump_init_files();
1643	fadump_show_config();
1644
1645	if (!fw_dump.fadump_enabled)
1646		return 1;
1647
1648	/*
1649	 * If dump data is available then see if it is valid and prepare for
1650	 * saving it to the disk.
1651	 */
1652	if (fw_dump.dump_active) {
1653		/*
1654		 * if dump process fails then invalidate the registration
1655		 * and release memory before proceeding for re-registration.
1656		 */
1657		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1658			fadump_invalidate_release_mem();
1659	}
1660	/* Initialize the kernel dump memory structure and register with f/w */
1661	else if (fw_dump.reserve_dump_area_size) {
1662		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1663		register_fadump();
1664	}
1665
1666	/*
1667	 * In case of panic, fadump is triggered via ppc_panic_event()
1668	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1669	 * lets panic() function take crash friendly path before panic
1670	 * notifiers are invoked.
1671	 */
1672	crash_kexec_post_notifiers = true;
1673
1674	return 1;
1675}
1676/*
1677 * Use subsys_initcall_sync() here because there is dependency with
1678 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1679 * is done before registering with f/w.
1680 */
1681subsys_initcall_sync(setup_fadump);
1682#else /* !CONFIG_PRESERVE_FA_DUMP */
1683
1684/* Scan the Firmware Assisted dump configuration details. */
1685int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1686				      int depth, void *data)
1687{
1688	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1689		return 0;
1690
1691	opal_fadump_dt_scan(&fw_dump, node);
1692	return 1;
1693}
1694
1695/*
1696 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1697 * preserve crash data. The subsequent memory preserving kernel boot
1698 * is likely to process this crash data.
1699 */
1700int __init fadump_reserve_mem(void)
1701{
1702	if (fw_dump.dump_active) {
1703		/*
1704		 * If last boot has crashed then reserve all the memory
1705		 * above boot memory to preserve crash data.
1706		 */
1707		pr_info("Preserving crash data for processing in next boot.\n");
1708		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1709	} else
1710		pr_debug("FADump-aware kernel..\n");
1711
1712	return 1;
1713}
1714#endif /* CONFIG_PRESERVE_FA_DUMP */
1715
1716/* Preserve everything above the base address */
1717static void __init fadump_reserve_crash_area(u64 base)
1718{
1719	u64 i, mstart, mend, msize;
 
1720
1721	for_each_mem_range(i, &mstart, &mend) {
1722		msize  = mend - mstart;
 
1723
1724		if ((mstart + msize) < base)
1725			continue;
1726
1727		if (mstart < base) {
1728			msize -= (base - mstart);
1729			mstart = base;
1730		}
1731
1732		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1733			(msize >> 20), mstart);
1734		memblock_reserve(mstart, msize);
1735	}
1736}
1737
1738unsigned long __init arch_reserved_kernel_pages(void)
1739{
1740	return memblock_reserved_size() / PAGE_SIZE;
1741}