Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Architecture-specific setup.
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
  8 *
  9 * 2005-10-07 Keith Owens <kaos@sgi.com>
 10 *	      Add notify_die() hooks.
 11 */
 12#include <linux/cpu.h>
 13#include <linux/pm.h>
 14#include <linux/elf.h>
 15#include <linux/errno.h>
 16#include <linux/kernel.h>
 17#include <linux/mm.h>
 18#include <linux/slab.h>
 19#include <linux/module.h>
 20#include <linux/notifier.h>
 21#include <linux/personality.h>
 
 22#include <linux/sched.h>
 23#include <linux/sched/debug.h>
 24#include <linux/sched/hotplug.h>
 25#include <linux/sched/task.h>
 26#include <linux/sched/task_stack.h>
 27#include <linux/stddef.h>
 28#include <linux/thread_info.h>
 29#include <linux/unistd.h>
 30#include <linux/efi.h>
 31#include <linux/interrupt.h>
 32#include <linux/delay.h>
 33#include <linux/kdebug.h>
 34#include <linux/utsname.h>
 35#include <linux/tracehook.h>
 36#include <linux/rcupdate.h>
 37
 38#include <asm/cpu.h>
 39#include <asm/delay.h>
 40#include <asm/elf.h>
 41#include <asm/irq.h>
 42#include <asm/kexec.h>
 43#include <asm/processor.h>
 44#include <asm/sal.h>
 45#include <asm/switch_to.h>
 46#include <asm/tlbflush.h>
 47#include <linux/uaccess.h>
 48#include <asm/unwind.h>
 49#include <asm/user.h>
 50#include <asm/xtp.h>
 51
 52#include "entry.h"
 53
 54#ifdef CONFIG_PERFMON
 55# include <asm/perfmon.h>
 56#endif
 57
 58#include "sigframe.h"
 59
 60void (*ia64_mark_idle)(int);
 61
 62unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 63EXPORT_SYMBOL(boot_option_idle_override);
 64void (*pm_power_off) (void);
 65EXPORT_SYMBOL(pm_power_off);
 66
 67static void
 68ia64_do_show_stack (struct unw_frame_info *info, void *arg)
 69{
 70	unsigned long ip, sp, bsp;
 71	const char *loglvl = arg;
 72
 73	printk("%s\nCall Trace:\n", loglvl);
 74	do {
 75		unw_get_ip(info, &ip);
 76		if (ip == 0)
 77			break;
 78
 79		unw_get_sp(info, &sp);
 80		unw_get_bsp(info, &bsp);
 81		printk("%s [<%016lx>] %pS\n"
 82			 "                                sp=%016lx bsp=%016lx\n",
 83			 loglvl, ip, (void *)ip, sp, bsp);
 84	} while (unw_unwind(info) >= 0);
 85}
 86
 87void
 88show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
 89{
 90	if (!task)
 91		unw_init_running(ia64_do_show_stack, (void *)loglvl);
 92	else {
 93		struct unw_frame_info info;
 94
 95		unw_init_from_blocked_task(&info, task);
 96		ia64_do_show_stack(&info, (void *)loglvl);
 97	}
 98}
 99
100void
101show_regs (struct pt_regs *regs)
102{
103	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
104
105	print_modules();
106	printk("\n");
107	show_regs_print_info(KERN_DEFAULT);
108	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
109	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
110	       init_utsname()->release);
111	printk("ip is at %pS\n", (void *)ip);
112	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
113	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
114	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
115	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
116	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
117	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
118	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
119	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
120	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
121	       regs->f6.u.bits[1], regs->f6.u.bits[0],
122	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
123	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
124	       regs->f8.u.bits[1], regs->f8.u.bits[0],
125	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
126	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
127	       regs->f10.u.bits[1], regs->f10.u.bits[0],
128	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
129
130	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
131	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
132	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
133	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
134	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
135	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
136	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
137	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
138	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
139
140	if (user_mode(regs)) {
141		/* print the stacked registers */
142		unsigned long val, *bsp, ndirty;
143		int i, sof, is_nat = 0;
144
145		sof = regs->cr_ifs & 0x7f;	/* size of frame */
146		ndirty = (regs->loadrs >> 19);
147		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
148		for (i = 0; i < sof; ++i) {
149			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
150			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
151			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
152		}
153	} else
154		show_stack(NULL, NULL, KERN_DEFAULT);
155}
156
157/* local support for deprecated console_print */
158void
159console_print(const char *s)
160{
161	printk(KERN_EMERG "%s", s);
162}
163
164void
165do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
166{
167	if (fsys_mode(current, &scr->pt)) {
168		/*
169		 * defer signal-handling etc. until we return to
170		 * privilege-level 0.
171		 */
172		if (!ia64_psr(&scr->pt)->lp)
173			ia64_psr(&scr->pt)->lp = 1;
174		return;
175	}
176
177#ifdef CONFIG_PERFMON
178	if (current->thread.pfm_needs_checking)
179		/*
180		 * Note: pfm_handle_work() allow us to call it with interrupts
181		 * disabled, and may enable interrupts within the function.
182		 */
183		pfm_handle_work();
184#endif
185
186	/* deal with pending signal delivery */
187	if (test_thread_flag(TIF_SIGPENDING)) {
 
188		local_irq_enable();	/* force interrupt enable */
189		ia64_do_signal(scr, in_syscall);
190	}
191
192	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
193		local_irq_enable();	/* force interrupt enable */
194		tracehook_notify_resume(&scr->pt);
195	}
196
197	/* copy user rbs to kernel rbs */
198	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
199		local_irq_enable();	/* force interrupt enable */
200		ia64_sync_krbs();
201	}
202
203	local_irq_disable();	/* force interrupt disable */
204}
205
206static int __init nohalt_setup(char * str)
207{
208	cpu_idle_poll_ctrl(true);
209	return 1;
210}
211__setup("nohalt", nohalt_setup);
212
213#ifdef CONFIG_HOTPLUG_CPU
214/* We don't actually take CPU down, just spin without interrupts. */
215static inline void play_dead(void)
216{
217	unsigned int this_cpu = smp_processor_id();
218
219	/* Ack it */
220	__this_cpu_write(cpu_state, CPU_DEAD);
221
222	max_xtp();
223	local_irq_disable();
224	idle_task_exit();
225	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
226	/*
227	 * The above is a point of no-return, the processor is
228	 * expected to be in SAL loop now.
229	 */
230	BUG();
231}
232#else
233static inline void play_dead(void)
234{
235	BUG();
236}
237#endif /* CONFIG_HOTPLUG_CPU */
238
239void arch_cpu_idle_dead(void)
240{
241	play_dead();
242}
243
244void arch_cpu_idle(void)
245{
246	void (*mark_idle)(int) = ia64_mark_idle;
247
248#ifdef CONFIG_SMP
249	min_xtp();
250#endif
251	rmb();
252	if (mark_idle)
253		(*mark_idle)(1);
254
255	safe_halt();
256
257	if (mark_idle)
258		(*mark_idle)(0);
259#ifdef CONFIG_SMP
260	normal_xtp();
261#endif
262}
263
264void
265ia64_save_extra (struct task_struct *task)
266{
267#ifdef CONFIG_PERFMON
268	unsigned long info;
269#endif
270
271	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
272		ia64_save_debug_regs(&task->thread.dbr[0]);
273
274#ifdef CONFIG_PERFMON
275	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
276		pfm_save_regs(task);
277
278	info = __this_cpu_read(pfm_syst_info);
279	if (info & PFM_CPUINFO_SYST_WIDE)
280		pfm_syst_wide_update_task(task, info, 0);
281#endif
282}
283
284void
285ia64_load_extra (struct task_struct *task)
286{
287#ifdef CONFIG_PERFMON
288	unsigned long info;
289#endif
290
291	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
292		ia64_load_debug_regs(&task->thread.dbr[0]);
293
294#ifdef CONFIG_PERFMON
295	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
296		pfm_load_regs(task);
297
298	info = __this_cpu_read(pfm_syst_info);
299	if (info & PFM_CPUINFO_SYST_WIDE)
300		pfm_syst_wide_update_task(task, info, 1);
301#endif
302}
303
304/*
305 * Copy the state of an ia-64 thread.
306 *
307 * We get here through the following  call chain:
308 *
309 *	from user-level:	from kernel:
310 *
311 *	<clone syscall>	        <some kernel call frames>
312 *	sys_clone		   :
313 *	_do_fork		_do_fork
314 *	copy_thread		copy_thread
315 *
316 * This means that the stack layout is as follows:
317 *
318 *	+---------------------+ (highest addr)
319 *	|   struct pt_regs    |
320 *	+---------------------+
321 *	| struct switch_stack |
322 *	+---------------------+
323 *	|                     |
324 *	|    memory stack     |
325 *	|                     | <-- sp (lowest addr)
326 *	+---------------------+
327 *
328 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
329 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
330 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
331 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
332 * the stack is page aligned and the page size is at least 4KB, this is always the case,
333 * so there is nothing to worry about.
334 */
335int
336copy_thread(unsigned long clone_flags, unsigned long user_stack_base,
337	    unsigned long user_stack_size, struct task_struct *p, unsigned long tls)
338{
 
 
 
 
339	extern char ia64_ret_from_clone;
340	struct switch_stack *child_stack, *stack;
341	unsigned long rbs, child_rbs, rbs_size;
342	struct pt_regs *child_ptregs;
343	struct pt_regs *regs = current_pt_regs();
344	int retval = 0;
345
346	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
347	child_stack = (struct switch_stack *) child_ptregs - 1;
348
349	rbs = (unsigned long) current + IA64_RBS_OFFSET;
350	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
351
352	/* copy parts of thread_struct: */
353	p->thread.ksp = (unsigned long) child_stack - 16;
354
355	/*
356	 * NOTE: The calling convention considers all floating point
357	 * registers in the high partition (fph) to be scratch.  Since
358	 * the only way to get to this point is through a system call,
359	 * we know that the values in fph are all dead.  Hence, there
360	 * is no need to inherit the fph state from the parent to the
361	 * child and all we have to do is to make sure that
362	 * IA64_THREAD_FPH_VALID is cleared in the child.
363	 *
364	 * XXX We could push this optimization a bit further by
365	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
366	 * However, it's not clear this is worth doing.  Also, it
367	 * would be a slight deviation from the normal Linux system
368	 * call behavior where scratch registers are preserved across
369	 * system calls (unless used by the system call itself).
370	 */
371#	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
372					 | IA64_THREAD_PM_VALID)
373#	define THREAD_FLAGS_TO_SET	0
374	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
375			   | THREAD_FLAGS_TO_SET);
376
377	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
378
379	if (unlikely(p->flags & PF_KTHREAD)) {
380		if (unlikely(!user_stack_base)) {
381			/* fork_idle() called us */
382			return 0;
383		}
384		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
385		child_stack->r4 = user_stack_base;	/* payload */
386		child_stack->r5 = user_stack_size;	/* argument */
387		/*
388		 * Preserve PSR bits, except for bits 32-34 and 37-45,
389		 * which we can't read.
390		 */
391		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
392		/* mark as valid, empty frame */
393		child_ptregs->cr_ifs = 1UL << 63;
394		child_stack->ar_fpsr = child_ptregs->ar_fpsr
395			= ia64_getreg(_IA64_REG_AR_FPSR);
396		child_stack->pr = (1 << PRED_KERNEL_STACK);
397		child_stack->ar_bspstore = child_rbs;
398		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
399
400		/* stop some PSR bits from being inherited.
401		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
402		 * therefore we must specify them explicitly here and not include them in
403		 * IA64_PSR_BITS_TO_CLEAR.
404		 */
405		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
406				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
407
408		return 0;
409	}
410	stack = ((struct switch_stack *) regs) - 1;
411	/* copy parent's switch_stack & pt_regs to child: */
412	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
413
414	/* copy the parent's register backing store to the child: */
415	rbs_size = stack->ar_bspstore - rbs;
416	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
417	if (clone_flags & CLONE_SETTLS)
418		child_ptregs->r13 = tls;
419	if (user_stack_base) {
420		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
421		child_ptregs->ar_bspstore = user_stack_base;
422		child_ptregs->ar_rnat = 0;
423		child_ptregs->loadrs = 0;
424	}
425	child_stack->ar_bspstore = child_rbs + rbs_size;
426	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
427
428	/* stop some PSR bits from being inherited.
429	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
430	 * therefore we must specify them explicitly here and not include them in
431	 * IA64_PSR_BITS_TO_CLEAR.
432	 */
433	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
434				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
435
436#ifdef CONFIG_PERFMON
437	if (current->thread.pfm_context)
438		pfm_inherit(p, child_ptregs);
439#endif
440	return retval;
441}
442
443asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
444			   unsigned long stack_size, unsigned long parent_tidptr,
445			   unsigned long child_tidptr, unsigned long tls)
446{
447	struct kernel_clone_args args = {
448		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
449		.pidfd		= (int __user *)parent_tidptr,
450		.child_tid	= (int __user *)child_tidptr,
451		.parent_tid	= (int __user *)parent_tidptr,
452		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
453		.stack		= stack_start,
454		.stack_size	= stack_size,
455		.tls		= tls,
456	};
457
458	return _do_fork(&args);
459}
460
461static void
462do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
463{
464	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
465	unsigned long ip;
466	elf_greg_t *dst = arg;
467	struct pt_regs *pt;
468	char nat;
469	int i;
470
471	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
472
473	if (unw_unwind_to_user(info) < 0)
474		return;
475
476	unw_get_sp(info, &sp);
477	pt = (struct pt_regs *) (sp + 16);
478
479	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
480
481	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
482		return;
483
484	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
485		  &ar_rnat);
486
487	/*
488	 * coredump format:
489	 *	r0-r31
490	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
491	 *	predicate registers (p0-p63)
492	 *	b0-b7
493	 *	ip cfm user-mask
494	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
495	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
496	 */
497
498	/* r0 is zero */
499	for (i = 1, mask = (1UL << i); i < 32; ++i) {
500		unw_get_gr(info, i, &dst[i], &nat);
501		if (nat)
502			nat_bits |= mask;
503		mask <<= 1;
504	}
505	dst[32] = nat_bits;
506	unw_get_pr(info, &dst[33]);
507
508	for (i = 0; i < 8; ++i)
509		unw_get_br(info, i, &dst[34 + i]);
510
511	unw_get_rp(info, &ip);
512	dst[42] = ip + ia64_psr(pt)->ri;
513	dst[43] = cfm;
514	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
515
516	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
517	/*
518	 * For bsp and bspstore, unw_get_ar() would return the kernel
519	 * addresses, but we need the user-level addresses instead:
520	 */
521	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
522	dst[47] = pt->ar_bspstore;
523	dst[48] = ar_rnat;
524	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
525	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
526	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
527	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
528	unw_get_ar(info, UNW_AR_LC, &dst[53]);
529	unw_get_ar(info, UNW_AR_EC, &dst[54]);
530	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
531	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
532}
533
534void
535do_copy_regs (struct unw_frame_info *info, void *arg)
536{
537	do_copy_task_regs(current, info, arg);
538}
539
540void
541ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
542{
543	unw_init_running(do_copy_regs, dst);
544}
545
546/*
547 * Flush thread state.  This is called when a thread does an execve().
548 */
549void
550flush_thread (void)
551{
552	/* drop floating-point and debug-register state if it exists: */
553	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
554	ia64_drop_fpu(current);
555}
556
557/*
558 * Clean up state associated with a thread.  This is called when
559 * the thread calls exit().
560 */
561void
562exit_thread (struct task_struct *tsk)
563{
564
565	ia64_drop_fpu(tsk);
566#ifdef CONFIG_PERFMON
567       /* if needed, stop monitoring and flush state to perfmon context */
568	if (tsk->thread.pfm_context)
569		pfm_exit_thread(tsk);
570
571	/* free debug register resources */
572	if (tsk->thread.flags & IA64_THREAD_DBG_VALID)
573		pfm_release_debug_registers(tsk);
574#endif
575}
576
577unsigned long
578get_wchan (struct task_struct *p)
579{
580	struct unw_frame_info info;
581	unsigned long ip;
582	int count = 0;
583
584	if (!p || p == current || p->state == TASK_RUNNING)
585		return 0;
586
587	/*
588	 * Note: p may not be a blocked task (it could be current or
589	 * another process running on some other CPU.  Rather than
590	 * trying to determine if p is really blocked, we just assume
591	 * it's blocked and rely on the unwind routines to fail
592	 * gracefully if the process wasn't really blocked after all.
593	 * --davidm 99/12/15
594	 */
595	unw_init_from_blocked_task(&info, p);
596	do {
597		if (p->state == TASK_RUNNING)
598			return 0;
599		if (unw_unwind(&info) < 0)
600			return 0;
601		unw_get_ip(&info, &ip);
602		if (!in_sched_functions(ip))
603			return ip;
604	} while (count++ < 16);
605	return 0;
606}
607
608void
609cpu_halt (void)
610{
611	pal_power_mgmt_info_u_t power_info[8];
612	unsigned long min_power;
613	int i, min_power_state;
614
615	if (ia64_pal_halt_info(power_info) != 0)
616		return;
617
618	min_power_state = 0;
619	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
620	for (i = 1; i < 8; ++i)
621		if (power_info[i].pal_power_mgmt_info_s.im
622		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
623			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
624			min_power_state = i;
625		}
626
627	while (1)
628		ia64_pal_halt(min_power_state);
629}
630
631void machine_shutdown(void)
632{
633	smp_shutdown_nonboot_cpus(reboot_cpu);
634
635#ifdef CONFIG_KEXEC
636	kexec_disable_iosapic();
637#endif
638}
639
640void
641machine_restart (char *restart_cmd)
642{
643	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
644	efi_reboot(REBOOT_WARM, NULL);
645}
646
647void
648machine_halt (void)
649{
650	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
651	cpu_halt();
652}
653
654void
655machine_power_off (void)
656{
657	if (pm_power_off)
658		pm_power_off();
659	machine_halt();
660}
661
662EXPORT_SYMBOL(ia64_delay_loop);
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Architecture-specific setup.
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
  8 *
  9 * 2005-10-07 Keith Owens <kaos@sgi.com>
 10 *	      Add notify_die() hooks.
 11 */
 12#include <linux/cpu.h>
 13#include <linux/pm.h>
 14#include <linux/elf.h>
 15#include <linux/errno.h>
 16#include <linux/kernel.h>
 17#include <linux/mm.h>
 18#include <linux/slab.h>
 19#include <linux/module.h>
 20#include <linux/notifier.h>
 21#include <linux/personality.h>
 22#include <linux/reboot.h>
 23#include <linux/sched.h>
 24#include <linux/sched/debug.h>
 25#include <linux/sched/hotplug.h>
 26#include <linux/sched/task.h>
 27#include <linux/sched/task_stack.h>
 28#include <linux/stddef.h>
 29#include <linux/thread_info.h>
 30#include <linux/unistd.h>
 31#include <linux/efi.h>
 32#include <linux/interrupt.h>
 33#include <linux/delay.h>
 34#include <linux/kdebug.h>
 35#include <linux/utsname.h>
 36#include <linux/resume_user_mode.h>
 37#include <linux/rcupdate.h>
 38
 39#include <asm/cpu.h>
 40#include <asm/delay.h>
 41#include <asm/elf.h>
 42#include <asm/irq.h>
 43#include <asm/kexec.h>
 44#include <asm/processor.h>
 45#include <asm/sal.h>
 46#include <asm/switch_to.h>
 47#include <asm/tlbflush.h>
 48#include <linux/uaccess.h>
 49#include <asm/unwind.h>
 50#include <asm/user.h>
 51#include <asm/xtp.h>
 52
 53#include "entry.h"
 54
 
 
 
 
 55#include "sigframe.h"
 56
 57void (*ia64_mark_idle)(int);
 58
 59unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 60EXPORT_SYMBOL(boot_option_idle_override);
 61void (*pm_power_off) (void);
 62EXPORT_SYMBOL(pm_power_off);
 63
 64static void
 65ia64_do_show_stack (struct unw_frame_info *info, void *arg)
 66{
 67	unsigned long ip, sp, bsp;
 68	const char *loglvl = arg;
 69
 70	printk("%s\nCall Trace:\n", loglvl);
 71	do {
 72		unw_get_ip(info, &ip);
 73		if (ip == 0)
 74			break;
 75
 76		unw_get_sp(info, &sp);
 77		unw_get_bsp(info, &bsp);
 78		printk("%s [<%016lx>] %pS\n"
 79			 "                                sp=%016lx bsp=%016lx\n",
 80			 loglvl, ip, (void *)ip, sp, bsp);
 81	} while (unw_unwind(info) >= 0);
 82}
 83
 84void
 85show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
 86{
 87	if (!task)
 88		unw_init_running(ia64_do_show_stack, (void *)loglvl);
 89	else {
 90		struct unw_frame_info info;
 91
 92		unw_init_from_blocked_task(&info, task);
 93		ia64_do_show_stack(&info, (void *)loglvl);
 94	}
 95}
 96
 97void
 98show_regs (struct pt_regs *regs)
 99{
100	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
101
102	print_modules();
103	printk("\n");
104	show_regs_print_info(KERN_DEFAULT);
105	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
106	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
107	       init_utsname()->release);
108	printk("ip is at %pS\n", (void *)ip);
109	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
110	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
111	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
112	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
113	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
114	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
115	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
116	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
117	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
118	       regs->f6.u.bits[1], regs->f6.u.bits[0],
119	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
120	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
121	       regs->f8.u.bits[1], regs->f8.u.bits[0],
122	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
123	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
124	       regs->f10.u.bits[1], regs->f10.u.bits[0],
125	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
126
127	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
128	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
129	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
130	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
131	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
132	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
133	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
134	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
135	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
136
137	if (user_mode(regs)) {
138		/* print the stacked registers */
139		unsigned long val, *bsp, ndirty;
140		int i, sof, is_nat = 0;
141
142		sof = regs->cr_ifs & 0x7f;	/* size of frame */
143		ndirty = (regs->loadrs >> 19);
144		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
145		for (i = 0; i < sof; ++i) {
146			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
147			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
148			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
149		}
150	} else
151		show_stack(NULL, NULL, KERN_DEFAULT);
152}
153
154/* local support for deprecated console_print */
155void
156console_print(const char *s)
157{
158	printk(KERN_EMERG "%s", s);
159}
160
161void
162do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
163{
164	if (fsys_mode(current, &scr->pt)) {
165		/*
166		 * defer signal-handling etc. until we return to
167		 * privilege-level 0.
168		 */
169		if (!ia64_psr(&scr->pt)->lp)
170			ia64_psr(&scr->pt)->lp = 1;
171		return;
172	}
173
 
 
 
 
 
 
 
 
 
174	/* deal with pending signal delivery */
175	if (test_thread_flag(TIF_SIGPENDING) ||
176	    test_thread_flag(TIF_NOTIFY_SIGNAL)) {
177		local_irq_enable();	/* force interrupt enable */
178		ia64_do_signal(scr, in_syscall);
179	}
180
181	if (test_thread_flag(TIF_NOTIFY_RESUME)) {
182		local_irq_enable();	/* force interrupt enable */
183		resume_user_mode_work(&scr->pt);
184	}
185
186	/* copy user rbs to kernel rbs */
187	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
188		local_irq_enable();	/* force interrupt enable */
189		ia64_sync_krbs();
190	}
191
192	local_irq_disable();	/* force interrupt disable */
193}
194
195static int __init nohalt_setup(char * str)
196{
197	cpu_idle_poll_ctrl(true);
198	return 1;
199}
200__setup("nohalt", nohalt_setup);
201
202#ifdef CONFIG_HOTPLUG_CPU
203/* We don't actually take CPU down, just spin without interrupts. */
204static inline void play_dead(void)
205{
206	unsigned int this_cpu = smp_processor_id();
207
208	/* Ack it */
209	__this_cpu_write(cpu_state, CPU_DEAD);
210
211	max_xtp();
212	local_irq_disable();
213	idle_task_exit();
214	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
215	/*
216	 * The above is a point of no-return, the processor is
217	 * expected to be in SAL loop now.
218	 */
219	BUG();
220}
221#else
222static inline void play_dead(void)
223{
224	BUG();
225}
226#endif /* CONFIG_HOTPLUG_CPU */
227
228void arch_cpu_idle_dead(void)
229{
230	play_dead();
231}
232
233void arch_cpu_idle(void)
234{
235	void (*mark_idle)(int) = ia64_mark_idle;
236
237#ifdef CONFIG_SMP
238	min_xtp();
239#endif
240	rmb();
241	if (mark_idle)
242		(*mark_idle)(1);
243
244	raw_safe_halt();
245
246	if (mark_idle)
247		(*mark_idle)(0);
248#ifdef CONFIG_SMP
249	normal_xtp();
250#endif
251}
252
253void
254ia64_save_extra (struct task_struct *task)
255{
 
 
 
 
256	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
257		ia64_save_debug_regs(&task->thread.dbr[0]);
 
 
 
 
 
 
 
 
 
258}
259
260void
261ia64_load_extra (struct task_struct *task)
262{
 
 
 
 
263	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
264		ia64_load_debug_regs(&task->thread.dbr[0]);
 
 
 
 
 
 
 
 
 
265}
266
267/*
268 * Copy the state of an ia-64 thread.
269 *
270 * We get here through the following  call chain:
271 *
272 *	from user-level:	from kernel:
273 *
274 *	<clone syscall>	        <some kernel call frames>
275 *	sys_clone		   :
276 *	kernel_clone		kernel_clone
277 *	copy_thread		copy_thread
278 *
279 * This means that the stack layout is as follows:
280 *
281 *	+---------------------+ (highest addr)
282 *	|   struct pt_regs    |
283 *	+---------------------+
284 *	| struct switch_stack |
285 *	+---------------------+
286 *	|                     |
287 *	|    memory stack     |
288 *	|                     | <-- sp (lowest addr)
289 *	+---------------------+
290 *
291 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
292 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
293 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
294 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
295 * the stack is page aligned and the page size is at least 4KB, this is always the case,
296 * so there is nothing to worry about.
297 */
298int
299copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
300{
301	unsigned long clone_flags = args->flags;
302	unsigned long user_stack_base = args->stack;
303	unsigned long user_stack_size = args->stack_size;
304	unsigned long tls = args->tls;
305	extern char ia64_ret_from_clone;
306	struct switch_stack *child_stack, *stack;
307	unsigned long rbs, child_rbs, rbs_size;
308	struct pt_regs *child_ptregs;
309	struct pt_regs *regs = current_pt_regs();
310	int retval = 0;
311
312	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
313	child_stack = (struct switch_stack *) child_ptregs - 1;
314
315	rbs = (unsigned long) current + IA64_RBS_OFFSET;
316	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
317
318	/* copy parts of thread_struct: */
319	p->thread.ksp = (unsigned long) child_stack - 16;
320
321	/*
322	 * NOTE: The calling convention considers all floating point
323	 * registers in the high partition (fph) to be scratch.  Since
324	 * the only way to get to this point is through a system call,
325	 * we know that the values in fph are all dead.  Hence, there
326	 * is no need to inherit the fph state from the parent to the
327	 * child and all we have to do is to make sure that
328	 * IA64_THREAD_FPH_VALID is cleared in the child.
329	 *
330	 * XXX We could push this optimization a bit further by
331	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
332	 * However, it's not clear this is worth doing.  Also, it
333	 * would be a slight deviation from the normal Linux system
334	 * call behavior where scratch registers are preserved across
335	 * system calls (unless used by the system call itself).
336	 */
337#	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
338					 | IA64_THREAD_PM_VALID)
339#	define THREAD_FLAGS_TO_SET	0
340	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
341			   | THREAD_FLAGS_TO_SET);
342
343	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
344
345	if (unlikely(args->fn)) {
346		if (unlikely(args->idle)) {
347			/* fork_idle() called us */
348			return 0;
349		}
350		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
351		child_stack->r4 = (unsigned long) args->fn;
352		child_stack->r5 = (unsigned long) args->fn_arg;
353		/*
354		 * Preserve PSR bits, except for bits 32-34 and 37-45,
355		 * which we can't read.
356		 */
357		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
358		/* mark as valid, empty frame */
359		child_ptregs->cr_ifs = 1UL << 63;
360		child_stack->ar_fpsr = child_ptregs->ar_fpsr
361			= ia64_getreg(_IA64_REG_AR_FPSR);
362		child_stack->pr = (1 << PRED_KERNEL_STACK);
363		child_stack->ar_bspstore = child_rbs;
364		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
365
366		/* stop some PSR bits from being inherited.
367		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
368		 * therefore we must specify them explicitly here and not include them in
369		 * IA64_PSR_BITS_TO_CLEAR.
370		 */
371		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
372				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
373
374		return 0;
375	}
376	stack = ((struct switch_stack *) regs) - 1;
377	/* copy parent's switch_stack & pt_regs to child: */
378	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
379
380	/* copy the parent's register backing store to the child: */
381	rbs_size = stack->ar_bspstore - rbs;
382	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
383	if (clone_flags & CLONE_SETTLS)
384		child_ptregs->r13 = tls;
385	if (user_stack_base) {
386		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
387		child_ptregs->ar_bspstore = user_stack_base;
388		child_ptregs->ar_rnat = 0;
389		child_ptregs->loadrs = 0;
390	}
391	child_stack->ar_bspstore = child_rbs + rbs_size;
392	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
393
394	/* stop some PSR bits from being inherited.
395	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
396	 * therefore we must specify them explicitly here and not include them in
397	 * IA64_PSR_BITS_TO_CLEAR.
398	 */
399	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
400				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
 
 
 
 
 
401	return retval;
402}
403
404asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
405			   unsigned long stack_size, unsigned long parent_tidptr,
406			   unsigned long child_tidptr, unsigned long tls)
407{
408	struct kernel_clone_args args = {
409		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
410		.pidfd		= (int __user *)parent_tidptr,
411		.child_tid	= (int __user *)child_tidptr,
412		.parent_tid	= (int __user *)parent_tidptr,
413		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
414		.stack		= stack_start,
415		.stack_size	= stack_size,
416		.tls		= tls,
417	};
418
419	return kernel_clone(&args);
420}
421
422static void
423do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
424{
425	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
426	unsigned long ip;
427	elf_greg_t *dst = arg;
428	struct pt_regs *pt;
429	char nat;
430	int i;
431
432	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
433
434	if (unw_unwind_to_user(info) < 0)
435		return;
436
437	unw_get_sp(info, &sp);
438	pt = (struct pt_regs *) (sp + 16);
439
440	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
441
442	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
443		return;
444
445	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
446		  &ar_rnat);
447
448	/*
449	 * coredump format:
450	 *	r0-r31
451	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
452	 *	predicate registers (p0-p63)
453	 *	b0-b7
454	 *	ip cfm user-mask
455	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
456	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
457	 */
458
459	/* r0 is zero */
460	for (i = 1, mask = (1UL << i); i < 32; ++i) {
461		unw_get_gr(info, i, &dst[i], &nat);
462		if (nat)
463			nat_bits |= mask;
464		mask <<= 1;
465	}
466	dst[32] = nat_bits;
467	unw_get_pr(info, &dst[33]);
468
469	for (i = 0; i < 8; ++i)
470		unw_get_br(info, i, &dst[34 + i]);
471
472	unw_get_rp(info, &ip);
473	dst[42] = ip + ia64_psr(pt)->ri;
474	dst[43] = cfm;
475	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
476
477	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
478	/*
479	 * For bsp and bspstore, unw_get_ar() would return the kernel
480	 * addresses, but we need the user-level addresses instead:
481	 */
482	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
483	dst[47] = pt->ar_bspstore;
484	dst[48] = ar_rnat;
485	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
486	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
487	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
488	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
489	unw_get_ar(info, UNW_AR_LC, &dst[53]);
490	unw_get_ar(info, UNW_AR_EC, &dst[54]);
491	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
492	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
493}
494
495static void
496do_copy_regs (struct unw_frame_info *info, void *arg)
497{
498	do_copy_task_regs(current, info, arg);
499}
500
501void
502ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
503{
504	unw_init_running(do_copy_regs, dst);
505}
506
507/*
508 * Flush thread state.  This is called when a thread does an execve().
509 */
510void
511flush_thread (void)
512{
513	/* drop floating-point and debug-register state if it exists: */
514	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
515	ia64_drop_fpu(current);
516}
517
518/*
519 * Clean up state associated with a thread.  This is called when
520 * the thread calls exit().
521 */
522void
523exit_thread (struct task_struct *tsk)
524{
525
526	ia64_drop_fpu(tsk);
 
 
 
 
 
 
 
 
 
527}
528
529unsigned long
530__get_wchan (struct task_struct *p)
531{
532	struct unw_frame_info info;
533	unsigned long ip;
534	int count = 0;
535
 
 
 
536	/*
537	 * Note: p may not be a blocked task (it could be current or
538	 * another process running on some other CPU.  Rather than
539	 * trying to determine if p is really blocked, we just assume
540	 * it's blocked and rely on the unwind routines to fail
541	 * gracefully if the process wasn't really blocked after all.
542	 * --davidm 99/12/15
543	 */
544	unw_init_from_blocked_task(&info, p);
545	do {
546		if (task_is_running(p))
547			return 0;
548		if (unw_unwind(&info) < 0)
549			return 0;
550		unw_get_ip(&info, &ip);
551		if (!in_sched_functions(ip))
552			return ip;
553	} while (count++ < 16);
554	return 0;
555}
556
557void
558cpu_halt (void)
559{
560	pal_power_mgmt_info_u_t power_info[8];
561	unsigned long min_power;
562	int i, min_power_state;
563
564	if (ia64_pal_halt_info(power_info) != 0)
565		return;
566
567	min_power_state = 0;
568	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
569	for (i = 1; i < 8; ++i)
570		if (power_info[i].pal_power_mgmt_info_s.im
571		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
572			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
573			min_power_state = i;
574		}
575
576	while (1)
577		ia64_pal_halt(min_power_state);
578}
579
580void machine_shutdown(void)
581{
582	smp_shutdown_nonboot_cpus(reboot_cpu);
583
584#ifdef CONFIG_KEXEC
585	kexec_disable_iosapic();
586#endif
587}
588
589void
590machine_restart (char *restart_cmd)
591{
592	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
593	efi_reboot(REBOOT_WARM, NULL);
594}
595
596void
597machine_halt (void)
598{
599	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
600	cpu_halt();
601}
602
603void
604machine_power_off (void)
605{
606	do_kernel_power_off();
 
607	machine_halt();
608}
609
610EXPORT_SYMBOL(ia64_delay_loop);