Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  arch/ia64/kernel/kprobes.c
   5 *
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 * Copyright (C) Intel Corporation, 2005
   8 *
   9 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
  10 *              <anil.s.keshavamurthy@intel.com> adapted from i386
  11 */
  12
  13#include <linux/kprobes.h>
  14#include <linux/ptrace.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/preempt.h>
  18#include <linux/extable.h>
  19#include <linux/kdebug.h>
  20#include <linux/pgtable.h>
  21
  22#include <asm/sections.h>
  23#include <asm/exception.h>
  24
  25DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  27
  28struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  29
  30enum instruction_type {A, I, M, F, B, L, X, u};
  31static enum instruction_type bundle_encoding[32][3] = {
  32  { M, I, I },				/* 00 */
  33  { M, I, I },				/* 01 */
  34  { M, I, I },				/* 02 */
  35  { M, I, I },				/* 03 */
  36  { M, L, X },				/* 04 */
  37  { M, L, X },				/* 05 */
  38  { u, u, u },  			/* 06 */
  39  { u, u, u },  			/* 07 */
  40  { M, M, I },				/* 08 */
  41  { M, M, I },				/* 09 */
  42  { M, M, I },				/* 0A */
  43  { M, M, I },				/* 0B */
  44  { M, F, I },				/* 0C */
  45  { M, F, I },				/* 0D */
  46  { M, M, F },				/* 0E */
  47  { M, M, F },				/* 0F */
  48  { M, I, B },				/* 10 */
  49  { M, I, B },				/* 11 */
  50  { M, B, B },				/* 12 */
  51  { M, B, B },				/* 13 */
  52  { u, u, u },  			/* 14 */
  53  { u, u, u },  			/* 15 */
  54  { B, B, B },				/* 16 */
  55  { B, B, B },				/* 17 */
  56  { M, M, B },				/* 18 */
  57  { M, M, B },				/* 19 */
  58  { u, u, u },  			/* 1A */
  59  { u, u, u },  			/* 1B */
  60  { M, F, B },				/* 1C */
  61  { M, F, B },				/* 1D */
  62  { u, u, u },  			/* 1E */
  63  { u, u, u },  			/* 1F */
  64};
  65
  66/* Insert a long branch code */
  67static void __kprobes set_brl_inst(void *from, void *to)
  68{
  69	s64 rel = ((s64) to - (s64) from) >> 4;
  70	bundle_t *brl;
  71	brl = (bundle_t *) ((u64) from & ~0xf);
  72	brl->quad0.template = 0x05;	/* [MLX](stop) */
  73	brl->quad0.slot0 = NOP_M_INST;	/* nop.m 0x0 */
  74	brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
  75	brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
  76	/* brl.cond.sptk.many.clr rel<<4 (qp=0) */
  77	brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
  78}
  79
  80/*
  81 * In this function we check to see if the instruction
  82 * is IP relative instruction and update the kprobe
  83 * inst flag accordingly
  84 */
  85static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
  86					      uint major_opcode,
  87					      unsigned long kprobe_inst,
  88					      struct kprobe *p)
  89{
  90	p->ainsn.inst_flag = 0;
  91	p->ainsn.target_br_reg = 0;
  92	p->ainsn.slot = slot;
  93
  94	/* Check for Break instruction
  95	 * Bits 37:40 Major opcode to be zero
  96	 * Bits 27:32 X6 to be zero
  97	 * Bits 32:35 X3 to be zero
  98	 */
  99	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
 100		/* is a break instruction */
 101	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
 102		return;
 103	}
 104
 105	if (bundle_encoding[template][slot] == B) {
 106		switch (major_opcode) {
 107		  case INDIRECT_CALL_OPCODE:
 108	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 109			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 110			break;
 111		  case IP_RELATIVE_PREDICT_OPCODE:
 112		  case IP_RELATIVE_BRANCH_OPCODE:
 113			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 114			break;
 115		  case IP_RELATIVE_CALL_OPCODE:
 116			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 117			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 118			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 119			break;
 120		}
 121	} else if (bundle_encoding[template][slot] == X) {
 122		switch (major_opcode) {
 123		  case LONG_CALL_OPCODE:
 124			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 125			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 126		  break;
 127		}
 128	}
 129	return;
 130}
 131
 132/*
 133 * In this function we check to see if the instruction
 134 * (qp) cmpx.crel.ctype p1,p2=r2,r3
 135 * on which we are inserting kprobe is cmp instruction
 136 * with ctype as unc.
 137 */
 138static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
 139					    uint major_opcode,
 140					    unsigned long kprobe_inst)
 141{
 142	cmp_inst_t cmp_inst;
 143	uint ctype_unc = 0;
 144
 145	if (!((bundle_encoding[template][slot] == I) ||
 146		(bundle_encoding[template][slot] == M)))
 147		goto out;
 148
 149	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
 150		(major_opcode == 0xE)))
 151		goto out;
 152
 153	cmp_inst.l = kprobe_inst;
 154	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
 155		/* Integer compare - Register Register (A6 type)*/
 156		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
 157				&&(cmp_inst.f.c == 1))
 158			ctype_unc = 1;
 159	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
 160		/* Integer compare - Immediate Register (A8 type)*/
 161		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
 162			ctype_unc = 1;
 163	}
 164out:
 165	return ctype_unc;
 166}
 167
 168/*
 169 * In this function we check to see if the instruction
 170 * on which we are inserting kprobe is supported.
 171 * Returns qp value if supported
 172 * Returns -EINVAL if unsupported
 173 */
 174static int __kprobes unsupported_inst(uint template, uint  slot,
 175				      uint major_opcode,
 176				      unsigned long kprobe_inst,
 177				      unsigned long addr)
 178{
 179	int qp;
 180
 181	qp = kprobe_inst & 0x3f;
 182	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
 183		if (slot == 1 && qp)  {
 184			printk(KERN_WARNING "Kprobes on cmp unc "
 185					"instruction on slot 1 at <0x%lx> "
 186					"is not supported\n", addr);
 187			return -EINVAL;
 188
 189		}
 190		qp = 0;
 191	}
 192	else if (bundle_encoding[template][slot] == I) {
 193		if (major_opcode == 0) {
 194			/*
 195			 * Check for Integer speculation instruction
 196			 * - Bit 33-35 to be equal to 0x1
 197			 */
 198			if (((kprobe_inst >> 33) & 0x7) == 1) {
 199				printk(KERN_WARNING
 200					"Kprobes on speculation inst at <0x%lx> not supported\n",
 201						addr);
 202				return -EINVAL;
 203			}
 204			/*
 205			 * IP relative mov instruction
 206			 *  - Bit 27-35 to be equal to 0x30
 207			 */
 208			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
 209				printk(KERN_WARNING
 210					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
 211						addr);
 212				return -EINVAL;
 213
 214			}
 215		}
 216		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
 217				(kprobe_inst & (0x1UL << 12))) {
 218			/* test bit instructions, tbit,tnat,tf
 219			 * bit 33-36 to be equal to 0
 220			 * bit 12 to be equal to 1
 221			 */
 222			if (slot == 1 && qp) {
 223				printk(KERN_WARNING "Kprobes on test bit "
 224						"instruction on slot at <0x%lx> "
 225						"is not supported\n", addr);
 226				return -EINVAL;
 227			}
 228			qp = 0;
 229		}
 230	}
 231	else if (bundle_encoding[template][slot] == B) {
 232		if (major_opcode == 7) {
 233			/* IP-Relative Predict major code is 7 */
 234			printk(KERN_WARNING "Kprobes on IP-Relative"
 235					"Predict is not supported\n");
 236			return -EINVAL;
 237		}
 238		else if (major_opcode == 2) {
 239			/* Indirect Predict, major code is 2
 240			 * bit 27-32 to be equal to 10 or 11
 241			 */
 242			int x6=(kprobe_inst >> 27) & 0x3F;
 243			if ((x6 == 0x10) || (x6 == 0x11)) {
 244				printk(KERN_WARNING "Kprobes on "
 245					"Indirect Predict is not supported\n");
 246				return -EINVAL;
 247			}
 248		}
 249	}
 250	/* kernel does not use float instruction, here for safety kprobe
 251	 * will judge whether it is fcmp/flass/float approximation instruction
 252	 */
 253	else if (unlikely(bundle_encoding[template][slot] == F)) {
 254		if ((major_opcode == 4 || major_opcode == 5) &&
 255				(kprobe_inst  & (0x1 << 12))) {
 256			/* fcmp/fclass unc instruction */
 257			if (slot == 1 && qp) {
 258				printk(KERN_WARNING "Kprobes on fcmp/fclass "
 259					"instruction on slot at <0x%lx> "
 260					"is not supported\n", addr);
 261				return -EINVAL;
 262
 263			}
 264			qp = 0;
 265		}
 266		if ((major_opcode == 0 || major_opcode == 1) &&
 267			(kprobe_inst & (0x1UL << 33))) {
 268			/* float Approximation instruction */
 269			if (slot == 1 && qp) {
 270				printk(KERN_WARNING "Kprobes on float Approx "
 271					"instr at <0x%lx> is not supported\n",
 272						addr);
 273				return -EINVAL;
 274			}
 275			qp = 0;
 276		}
 277	}
 278	return qp;
 279}
 280
 281/*
 282 * In this function we override the bundle with
 283 * the break instruction at the given slot.
 284 */
 285static void __kprobes prepare_break_inst(uint template, uint  slot,
 286					 uint major_opcode,
 287					 unsigned long kprobe_inst,
 288					 struct kprobe *p,
 289					 int qp)
 290{
 291	unsigned long break_inst = BREAK_INST;
 292	bundle_t *bundle = &p->opcode.bundle;
 293
 294	/*
 295	 * Copy the original kprobe_inst qualifying predicate(qp)
 296	 * to the break instruction
 297	 */
 298	break_inst |= qp;
 299
 300	switch (slot) {
 301	  case 0:
 302		bundle->quad0.slot0 = break_inst;
 303		break;
 304	  case 1:
 305		bundle->quad0.slot1_p0 = break_inst;
 306		bundle->quad1.slot1_p1 = break_inst >> (64-46);
 307		break;
 308	  case 2:
 309		bundle->quad1.slot2 = break_inst;
 310		break;
 311	}
 312
 313	/*
 314	 * Update the instruction flag, so that we can
 315	 * emulate the instruction properly after we
 316	 * single step on original instruction
 317	 */
 318	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
 319}
 320
 321static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
 322	       	unsigned long *kprobe_inst, uint *major_opcode)
 323{
 324	unsigned long kprobe_inst_p0, kprobe_inst_p1;
 325	unsigned int template;
 326
 327	template = bundle->quad0.template;
 328
 329	switch (slot) {
 330	  case 0:
 331		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
 332		*kprobe_inst = bundle->quad0.slot0;
 333		  break;
 334	  case 1:
 335		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
 336		kprobe_inst_p0 = bundle->quad0.slot1_p0;
 337		kprobe_inst_p1 = bundle->quad1.slot1_p1;
 338		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
 339		break;
 340	  case 2:
 341		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
 342		*kprobe_inst = bundle->quad1.slot2;
 343		break;
 344	}
 345}
 346
 347/* Returns non-zero if the addr is in the Interrupt Vector Table */
 348static int __kprobes in_ivt_functions(unsigned long addr)
 349{
 350	return (addr >= (unsigned long)__start_ivt_text
 351		&& addr < (unsigned long)__end_ivt_text);
 352}
 353
 354static int __kprobes valid_kprobe_addr(int template, int slot,
 355				       unsigned long addr)
 356{
 357	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
 358		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
 359				"at 0x%lx\n", addr);
 360		return -EINVAL;
 361	}
 362
 363	if (in_ivt_functions(addr)) {
 364		printk(KERN_WARNING "Kprobes can't be inserted inside "
 365				"IVT functions at 0x%lx\n", addr);
 366		return -EINVAL;
 367	}
 368
 369	return 0;
 370}
 371
 372static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 373{
 374	unsigned int i;
 375	i = atomic_add_return(1, &kcb->prev_kprobe_index);
 376	kcb->prev_kprobe[i-1].kp = kprobe_running();
 377	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
 378}
 379
 380static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 381{
 382	unsigned int i;
 383	i = atomic_read(&kcb->prev_kprobe_index);
 384	__this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
 385	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
 386	atomic_sub(1, &kcb->prev_kprobe_index);
 387}
 388
 389static void __kprobes set_current_kprobe(struct kprobe *p,
 390			struct kprobe_ctlblk *kcb)
 391{
 392	__this_cpu_write(current_kprobe, p);
 393}
 394
 395static void kretprobe_trampoline(void)
 396{
 397}
 398
 399/*
 400 * At this point the target function has been tricked into
 401 * returning into our trampoline.  Lookup the associated instance
 402 * and then:
 403 *    - call the handler function
 404 *    - cleanup by marking the instance as unused
 405 *    - long jump back to the original return address
 406 */
 407int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 408{
 409	struct kretprobe_instance *ri = NULL;
 410	struct hlist_head *head, empty_rp;
 411	struct hlist_node *tmp;
 412	unsigned long flags, orig_ret_address = 0;
 413	unsigned long trampoline_address =
 414		((struct fnptr *)kretprobe_trampoline)->ip;
 415
 416	INIT_HLIST_HEAD(&empty_rp);
 417	kretprobe_hash_lock(current, &head, &flags);
 418
 419	/*
 420	 * It is possible to have multiple instances associated with a given
 421	 * task either because an multiple functions in the call path
 422	 * have a return probe installed on them, and/or more than one return
 423	 * return probe was registered for a target function.
 424	 *
 425	 * We can handle this because:
 426	 *     - instances are always inserted at the head of the list
 427	 *     - when multiple return probes are registered for the same
 428	 *       function, the first instance's ret_addr will point to the
 429	 *       real return address, and all the rest will point to
 430	 *       kretprobe_trampoline
 431	 */
 432	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 433		if (ri->task != current)
 434			/* another task is sharing our hash bucket */
 435			continue;
 436
 437		orig_ret_address = (unsigned long)ri->ret_addr;
 438		if (orig_ret_address != trampoline_address)
 439			/*
 440			 * This is the real return address. Any other
 441			 * instances associated with this task are for
 442			 * other calls deeper on the call stack
 443			 */
 444			break;
 445	}
 446
 447	regs->cr_iip = orig_ret_address;
 448
 449	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 450		if (ri->task != current)
 451			/* another task is sharing our hash bucket */
 452			continue;
 453
 454		if (ri->rp && ri->rp->handler)
 455			ri->rp->handler(ri, regs);
 456
 457		orig_ret_address = (unsigned long)ri->ret_addr;
 458		recycle_rp_inst(ri, &empty_rp);
 459
 460		if (orig_ret_address != trampoline_address)
 461			/*
 462			 * This is the real return address. Any other
 463			 * instances associated with this task are for
 464			 * other calls deeper on the call stack
 465			 */
 466			break;
 467	}
 468	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 469
 470	kretprobe_hash_unlock(current, &flags);
 471
 472	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 473		hlist_del(&ri->hlist);
 474		kfree(ri);
 475	}
 476	/*
 477	 * By returning a non-zero value, we are telling
 478	 * kprobe_handler() that we don't want the post_handler
 479	 * to run (and have re-enabled preemption)
 480	 */
 481	return 1;
 482}
 483
 484void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 485				      struct pt_regs *regs)
 486{
 487	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
 
 488
 489	/* Replace the return addr with trampoline addr */
 490	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
 491}
 492
 493/* Check the instruction in the slot is break */
 494static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
 495{
 496	unsigned int major_opcode;
 497	unsigned int template = bundle->quad0.template;
 498	unsigned long kprobe_inst;
 499
 500	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 501	if (slot == 1 && bundle_encoding[template][1] == L)
 502		slot++;
 503
 504	/* Get Kprobe probe instruction at given slot*/
 505	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
 506
 507	/* For break instruction,
 508	 * Bits 37:40 Major opcode to be zero
 509	 * Bits 27:32 X6 to be zero
 510	 * Bits 32:35 X3 to be zero
 511	 */
 512	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
 513		/* Not a break instruction */
 514		return 0;
 515	}
 516
 517	/* Is a break instruction */
 518	return 1;
 519}
 520
 521/*
 522 * In this function, we check whether the target bundle modifies IP or
 523 * it triggers an exception. If so, it cannot be boostable.
 524 */
 525static int __kprobes can_boost(bundle_t *bundle, uint slot,
 526			       unsigned long bundle_addr)
 527{
 528	unsigned int template = bundle->quad0.template;
 529
 530	do {
 531		if (search_exception_tables(bundle_addr + slot) ||
 532		    __is_ia64_break_inst(bundle, slot))
 533			return 0;	/* exception may occur in this bundle*/
 534	} while ((++slot) < 3);
 535	template &= 0x1e;
 536	if (template >= 0x10 /* including B unit */ ||
 537	    template == 0x04 /* including X unit */ ||
 538	    template == 0x06) /* undefined */
 539		return 0;
 540
 541	return 1;
 542}
 543
 544/* Prepare long jump bundle and disables other boosters if need */
 545static void __kprobes prepare_booster(struct kprobe *p)
 546{
 547	unsigned long addr = (unsigned long)p->addr & ~0xFULL;
 548	unsigned int slot = (unsigned long)p->addr & 0xf;
 549	struct kprobe *other_kp;
 550
 551	if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
 552		set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
 553		p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
 554	}
 555
 556	/* disables boosters in previous slots */
 557	for (; addr < (unsigned long)p->addr; addr++) {
 558		other_kp = get_kprobe((void *)addr);
 559		if (other_kp)
 560			other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
 561	}
 562}
 563
 564int __kprobes arch_prepare_kprobe(struct kprobe *p)
 565{
 566	unsigned long addr = (unsigned long) p->addr;
 567	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
 568	unsigned long kprobe_inst=0;
 569	unsigned int slot = addr & 0xf, template, major_opcode = 0;
 570	bundle_t *bundle;
 571	int qp;
 572
 573	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
 574	template = bundle->quad0.template;
 575
 576	if(valid_kprobe_addr(template, slot, addr))
 577		return -EINVAL;
 578
 579	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 580	if (slot == 1 && bundle_encoding[template][1] == L)
 581		slot++;
 582
 583	/* Get kprobe_inst and major_opcode from the bundle */
 584	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
 585
 586	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
 587	if (qp < 0)
 588		return -EINVAL;
 589
 590	p->ainsn.insn = get_insn_slot();
 591	if (!p->ainsn.insn)
 592		return -ENOMEM;
 593	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
 594	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
 595
 596	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
 597
 598	prepare_booster(p);
 599
 600	return 0;
 601}
 602
 603void __kprobes arch_arm_kprobe(struct kprobe *p)
 604{
 605	unsigned long arm_addr;
 606	bundle_t *src, *dest;
 607
 608	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
 609	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
 610	src = &p->opcode.bundle;
 611
 612	flush_icache_range((unsigned long)p->ainsn.insn,
 613			   (unsigned long)p->ainsn.insn +
 614			   sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
 615
 616	switch (p->ainsn.slot) {
 617		case 0:
 618			dest->quad0.slot0 = src->quad0.slot0;
 619			break;
 620		case 1:
 621			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
 622			break;
 623		case 2:
 624			dest->quad1.slot2 = src->quad1.slot2;
 625			break;
 626	}
 627	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
 628}
 629
 630void __kprobes arch_disarm_kprobe(struct kprobe *p)
 631{
 632	unsigned long arm_addr;
 633	bundle_t *src, *dest;
 634
 635	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
 636	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
 637	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
 638	src = &p->ainsn.insn->bundle;
 639	switch (p->ainsn.slot) {
 640		case 0:
 641			dest->quad0.slot0 = src->quad0.slot0;
 642			break;
 643		case 1:
 644			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
 645			break;
 646		case 2:
 647			dest->quad1.slot2 = src->quad1.slot2;
 648			break;
 649	}
 650	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
 651}
 652
 653void __kprobes arch_remove_kprobe(struct kprobe *p)
 654{
 655	if (p->ainsn.insn) {
 656		free_insn_slot(p->ainsn.insn,
 657			       p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
 658		p->ainsn.insn = NULL;
 659	}
 660}
 661/*
 662 * We are resuming execution after a single step fault, so the pt_regs
 663 * structure reflects the register state after we executed the instruction
 664 * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
 665 * the ip to point back to the original stack address. To set the IP address
 666 * to original stack address, handle the case where we need to fixup the
 667 * relative IP address and/or fixup branch register.
 668 */
 669static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 670{
 671	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
 672	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
 673	unsigned long template;
 674	int slot = ((unsigned long)p->addr & 0xf);
 675
 676	template = p->ainsn.insn->bundle.quad0.template;
 677
 678	if (slot == 1 && bundle_encoding[template][1] == L)
 679		slot = 2;
 680
 681	if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
 682
 683		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
 684			/* Fix relative IP address */
 685			regs->cr_iip = (regs->cr_iip - bundle_addr) +
 686					resume_addr;
 687		}
 688
 689		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
 690		/*
 691		 * Fix target branch register, software convention is
 692		 * to use either b0 or b6 or b7, so just checking
 693		 * only those registers
 694		 */
 695			switch (p->ainsn.target_br_reg) {
 696			case 0:
 697				if ((regs->b0 == bundle_addr) ||
 698					(regs->b0 == bundle_addr + 0x10)) {
 699					regs->b0 = (regs->b0 - bundle_addr) +
 700						resume_addr;
 701				}
 702				break;
 703			case 6:
 704				if ((regs->b6 == bundle_addr) ||
 705					(regs->b6 == bundle_addr + 0x10)) {
 706					regs->b6 = (regs->b6 - bundle_addr) +
 707						resume_addr;
 708				}
 709				break;
 710			case 7:
 711				if ((regs->b7 == bundle_addr) ||
 712					(regs->b7 == bundle_addr + 0x10)) {
 713					regs->b7 = (regs->b7 - bundle_addr) +
 714						resume_addr;
 715				}
 716				break;
 717			} /* end switch */
 718		}
 719		goto turn_ss_off;
 720	}
 721
 722	if (slot == 2) {
 723		if (regs->cr_iip == bundle_addr + 0x10) {
 724			regs->cr_iip = resume_addr + 0x10;
 725		}
 726	} else {
 727		if (regs->cr_iip == bundle_addr) {
 728			regs->cr_iip = resume_addr;
 729		}
 730	}
 731
 732turn_ss_off:
 733	/* Turn off Single Step bit */
 734	ia64_psr(regs)->ss = 0;
 735}
 736
 737static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
 738{
 739	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
 740	unsigned long slot = (unsigned long)p->addr & 0xf;
 741
 742	/* single step inline if break instruction */
 743	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
 744		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
 745	else
 746		regs->cr_iip = bundle_addr & ~0xFULL;
 747
 748	if (slot > 2)
 749		slot = 0;
 750
 751	ia64_psr(regs)->ri = slot;
 752
 753	/* turn on single stepping */
 754	ia64_psr(regs)->ss = 1;
 755}
 756
 757static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
 758{
 759	unsigned int slot = ia64_psr(regs)->ri;
 760	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
 761	bundle_t bundle;
 762
 763	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
 764
 765	return __is_ia64_break_inst(&bundle, slot);
 766}
 767
 768static int __kprobes pre_kprobes_handler(struct die_args *args)
 769{
 770	struct kprobe *p;
 771	int ret = 0;
 772	struct pt_regs *regs = args->regs;
 773	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
 774	struct kprobe_ctlblk *kcb;
 775
 776	/*
 777	 * We don't want to be preempted for the entire
 778	 * duration of kprobe processing
 779	 */
 780	preempt_disable();
 781	kcb = get_kprobe_ctlblk();
 782
 783	/* Handle recursion cases */
 784	if (kprobe_running()) {
 785		p = get_kprobe(addr);
 786		if (p) {
 787			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
 788	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
 789				ia64_psr(regs)->ss = 0;
 790				goto no_kprobe;
 791			}
 792			/* We have reentered the pre_kprobe_handler(), since
 793			 * another probe was hit while within the handler.
 794			 * We here save the original kprobes variables and
 795			 * just single step on the instruction of the new probe
 796			 * without calling any user handlers.
 797			 */
 798			save_previous_kprobe(kcb);
 799			set_current_kprobe(p, kcb);
 800			kprobes_inc_nmissed_count(p);
 801			prepare_ss(p, regs);
 802			kcb->kprobe_status = KPROBE_REENTER;
 803			return 1;
 804		} else if (!is_ia64_break_inst(regs)) {
 805			/* The breakpoint instruction was removed by
 806			 * another cpu right after we hit, no further
 807			 * handling of this interrupt is appropriate
 808			 */
 809			ret = 1;
 810			goto no_kprobe;
 811		} else {
 812			/* Not our break */
 813			goto no_kprobe;
 814		}
 815	}
 816
 817	p = get_kprobe(addr);
 818	if (!p) {
 819		if (!is_ia64_break_inst(regs)) {
 820			/*
 821			 * The breakpoint instruction was removed right
 822			 * after we hit it.  Another cpu has removed
 823			 * either a probepoint or a debugger breakpoint
 824			 * at this address.  In either case, no further
 825			 * handling of this interrupt is appropriate.
 826			 */
 827			ret = 1;
 828
 829		}
 830
 831		/* Not one of our break, let kernel handle it */
 832		goto no_kprobe;
 833	}
 834
 835	set_current_kprobe(p, kcb);
 836	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 837
 838	if (p->pre_handler && p->pre_handler(p, regs)) {
 839		reset_current_kprobe();
 840		preempt_enable_no_resched();
 841		return 1;
 842	}
 843
 844#if !defined(CONFIG_PREEMPTION)
 845	if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
 846		/* Boost up -- we can execute copied instructions directly */
 847		ia64_psr(regs)->ri = p->ainsn.slot;
 848		regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
 849		/* turn single stepping off */
 850		ia64_psr(regs)->ss = 0;
 851
 852		reset_current_kprobe();
 853		preempt_enable_no_resched();
 854		return 1;
 855	}
 856#endif
 857	prepare_ss(p, regs);
 858	kcb->kprobe_status = KPROBE_HIT_SS;
 859	return 1;
 860
 861no_kprobe:
 862	preempt_enable_no_resched();
 863	return ret;
 864}
 865
 866static int __kprobes post_kprobes_handler(struct pt_regs *regs)
 867{
 868	struct kprobe *cur = kprobe_running();
 869	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 870
 871	if (!cur)
 872		return 0;
 873
 874	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 875		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 876		cur->post_handler(cur, regs, 0);
 877	}
 878
 879	resume_execution(cur, regs);
 880
 881	/*Restore back the original saved kprobes variables and continue. */
 882	if (kcb->kprobe_status == KPROBE_REENTER) {
 883		restore_previous_kprobe(kcb);
 884		goto out;
 885	}
 886	reset_current_kprobe();
 887
 888out:
 889	preempt_enable_no_resched();
 890	return 1;
 891}
 892
 893int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 894{
 895	struct kprobe *cur = kprobe_running();
 896	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 897
 898
 899	switch(kcb->kprobe_status) {
 900	case KPROBE_HIT_SS:
 901	case KPROBE_REENTER:
 902		/*
 903		 * We are here because the instruction being single
 904		 * stepped caused a page fault. We reset the current
 905		 * kprobe and the instruction pointer points back to
 906		 * the probe address and allow the page fault handler
 907		 * to continue as a normal page fault.
 908		 */
 909		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
 910		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
 911		if (kcb->kprobe_status == KPROBE_REENTER)
 912			restore_previous_kprobe(kcb);
 913		else
 914			reset_current_kprobe();
 915		preempt_enable_no_resched();
 916		break;
 917	case KPROBE_HIT_ACTIVE:
 918	case KPROBE_HIT_SSDONE:
 919		/*
 920		 * We increment the nmissed count for accounting,
 921		 * we can also use npre/npostfault count for accounting
 922		 * these specific fault cases.
 923		 */
 924		kprobes_inc_nmissed_count(cur);
 925
 926		/*
 927		 * We come here because instructions in the pre/post
 928		 * handler caused the page_fault, this could happen
 929		 * if handler tries to access user space by
 930		 * copy_from_user(), get_user() etc. Let the
 931		 * user-specified handler try to fix it first.
 932		 */
 933		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 934			return 1;
 935		/*
 936		 * In case the user-specified fault handler returned
 937		 * zero, try to fix up.
 938		 */
 939		if (ia64_done_with_exception(regs))
 940			return 1;
 941
 942		/*
 943		 * Let ia64_do_page_fault() fix it.
 944		 */
 945		break;
 946	default:
 947		break;
 948	}
 949
 950	return 0;
 951}
 952
 953int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 954				       unsigned long val, void *data)
 955{
 956	struct die_args *args = (struct die_args *)data;
 957	int ret = NOTIFY_DONE;
 958
 959	if (args->regs && user_mode(args->regs))
 960		return ret;
 961
 962	switch(val) {
 963	case DIE_BREAK:
 964		/* err is break number from ia64_bad_break() */
 965		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
 966			|| args->err == 0)
 967			if (pre_kprobes_handler(args))
 968				ret = NOTIFY_STOP;
 969		break;
 970	case DIE_FAULT:
 971		/* err is vector number from ia64_fault() */
 972		if (args->err == 36)
 973			if (post_kprobes_handler(args->regs))
 974				ret = NOTIFY_STOP;
 975		break;
 976	default:
 977		break;
 978	}
 979	return ret;
 980}
 981
 982unsigned long arch_deref_entry_point(void *entry)
 983{
 984	return ((struct fnptr *)entry)->ip;
 985}
 986
 987static struct kprobe trampoline_p = {
 988	.pre_handler = trampoline_probe_handler
 989};
 990
 991int __init arch_init_kprobes(void)
 992{
 993	trampoline_p.addr =
 994		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
 995	return register_kprobe(&trampoline_p);
 996}
 997
 998int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 999{
1000	if (p->addr ==
1001		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1002		return 1;
1003
1004	return 0;
1005}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Kernel Probes (KProbes)
  4 *  arch/ia64/kernel/kprobes.c
  5 *
  6 * Copyright (C) IBM Corporation, 2002, 2004
  7 * Copyright (C) Intel Corporation, 2005
  8 *
  9 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
 10 *              <anil.s.keshavamurthy@intel.com> adapted from i386
 11 */
 12
 13#include <linux/kprobes.h>
 14#include <linux/ptrace.h>
 15#include <linux/string.h>
 16#include <linux/slab.h>
 17#include <linux/preempt.h>
 18#include <linux/extable.h>
 19#include <linux/kdebug.h>
 20#include <linux/pgtable.h>
 21
 22#include <asm/sections.h>
 23#include <asm/exception.h>
 24
 25DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 27
 28struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 29
 30enum instruction_type {A, I, M, F, B, L, X, u};
 31static enum instruction_type bundle_encoding[32][3] = {
 32	[0x00] = { M, I, I },
 33	[0x01] = { M, I, I },
 34	[0x02] = { M, I, I },
 35	[0x03] = { M, I, I },
 36	[0x04] = { M, L, X },
 37	[0x05] = { M, L, X },
 38	[0x06] = { u, u, u },
 39	[0x07] = { u, u, u },
 40	[0x08] = { M, M, I },
 41	[0x09] = { M, M, I },
 42	[0x0A] = { M, M, I },
 43	[0x0B] = { M, M, I },
 44	[0x0C] = { M, F, I },
 45	[0x0D] = { M, F, I },
 46	[0x0E] = { M, M, F },
 47	[0x0F] = { M, M, F },
 48	[0x10] = { M, I, B },
 49	[0x11] = { M, I, B },
 50	[0x12] = { M, B, B },
 51	[0x13] = { M, B, B },
 52	[0x14] = { u, u, u },
 53	[0x15] = { u, u, u },
 54	[0x16] = { B, B, B },
 55	[0x17] = { B, B, B },
 56	[0x18] = { M, M, B },
 57	[0x19] = { M, M, B },
 58	[0x1A] = { u, u, u },
 59	[0x1B] = { u, u, u },
 60	[0x1C] = { M, F, B },
 61	[0x1D] = { M, F, B },
 62	[0x1E] = { u, u, u },
 63	[0x1F] = { u, u, u },
 64};
 65
 66/* Insert a long branch code */
 67static void __kprobes set_brl_inst(void *from, void *to)
 68{
 69	s64 rel = ((s64) to - (s64) from) >> 4;
 70	bundle_t *brl;
 71	brl = (bundle_t *) ((u64) from & ~0xf);
 72	brl->quad0.template = 0x05;	/* [MLX](stop) */
 73	brl->quad0.slot0 = NOP_M_INST;	/* nop.m 0x0 */
 74	brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
 75	brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
 76	/* brl.cond.sptk.many.clr rel<<4 (qp=0) */
 77	brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
 78}
 79
 80/*
 81 * In this function we check to see if the instruction
 82 * is IP relative instruction and update the kprobe
 83 * inst flag accordingly
 84 */
 85static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
 86					      uint major_opcode,
 87					      unsigned long kprobe_inst,
 88					      struct kprobe *p)
 89{
 90	p->ainsn.inst_flag = 0;
 91	p->ainsn.target_br_reg = 0;
 92	p->ainsn.slot = slot;
 93
 94	/* Check for Break instruction
 95	 * Bits 37:40 Major opcode to be zero
 96	 * Bits 27:32 X6 to be zero
 97	 * Bits 32:35 X3 to be zero
 98	 */
 99	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
100		/* is a break instruction */
101	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
102		return;
103	}
104
105	if (bundle_encoding[template][slot] == B) {
106		switch (major_opcode) {
107		  case INDIRECT_CALL_OPCODE:
108	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
109			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
110			break;
111		  case IP_RELATIVE_PREDICT_OPCODE:
112		  case IP_RELATIVE_BRANCH_OPCODE:
113			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
114			break;
115		  case IP_RELATIVE_CALL_OPCODE:
116			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
117			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
118			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
119			break;
120		}
121	} else if (bundle_encoding[template][slot] == X) {
122		switch (major_opcode) {
123		  case LONG_CALL_OPCODE:
124			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
125			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
126		  break;
127		}
128	}
129	return;
130}
131
132/*
133 * In this function we check to see if the instruction
134 * (qp) cmpx.crel.ctype p1,p2=r2,r3
135 * on which we are inserting kprobe is cmp instruction
136 * with ctype as unc.
137 */
138static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
139					    uint major_opcode,
140					    unsigned long kprobe_inst)
141{
142	cmp_inst_t cmp_inst;
143	uint ctype_unc = 0;
144
145	if (!((bundle_encoding[template][slot] == I) ||
146		(bundle_encoding[template][slot] == M)))
147		goto out;
148
149	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
150		(major_opcode == 0xE)))
151		goto out;
152
153	cmp_inst.l = kprobe_inst;
154	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
155		/* Integer compare - Register Register (A6 type)*/
156		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
157				&&(cmp_inst.f.c == 1))
158			ctype_unc = 1;
159	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
160		/* Integer compare - Immediate Register (A8 type)*/
161		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
162			ctype_unc = 1;
163	}
164out:
165	return ctype_unc;
166}
167
168/*
169 * In this function we check to see if the instruction
170 * on which we are inserting kprobe is supported.
171 * Returns qp value if supported
172 * Returns -EINVAL if unsupported
173 */
174static int __kprobes unsupported_inst(uint template, uint  slot,
175				      uint major_opcode,
176				      unsigned long kprobe_inst,
177				      unsigned long addr)
178{
179	int qp;
180
181	qp = kprobe_inst & 0x3f;
182	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
183		if (slot == 1 && qp)  {
184			printk(KERN_WARNING "Kprobes on cmp unc "
185					"instruction on slot 1 at <0x%lx> "
186					"is not supported\n", addr);
187			return -EINVAL;
188
189		}
190		qp = 0;
191	}
192	else if (bundle_encoding[template][slot] == I) {
193		if (major_opcode == 0) {
194			/*
195			 * Check for Integer speculation instruction
196			 * - Bit 33-35 to be equal to 0x1
197			 */
198			if (((kprobe_inst >> 33) & 0x7) == 1) {
199				printk(KERN_WARNING
200					"Kprobes on speculation inst at <0x%lx> not supported\n",
201						addr);
202				return -EINVAL;
203			}
204			/*
205			 * IP relative mov instruction
206			 *  - Bit 27-35 to be equal to 0x30
207			 */
208			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
209				printk(KERN_WARNING
210					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
211						addr);
212				return -EINVAL;
213
214			}
215		}
216		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
217				(kprobe_inst & (0x1UL << 12))) {
218			/* test bit instructions, tbit,tnat,tf
219			 * bit 33-36 to be equal to 0
220			 * bit 12 to be equal to 1
221			 */
222			if (slot == 1 && qp) {
223				printk(KERN_WARNING "Kprobes on test bit "
224						"instruction on slot at <0x%lx> "
225						"is not supported\n", addr);
226				return -EINVAL;
227			}
228			qp = 0;
229		}
230	}
231	else if (bundle_encoding[template][slot] == B) {
232		if (major_opcode == 7) {
233			/* IP-Relative Predict major code is 7 */
234			printk(KERN_WARNING "Kprobes on IP-Relative"
235					"Predict is not supported\n");
236			return -EINVAL;
237		}
238		else if (major_opcode == 2) {
239			/* Indirect Predict, major code is 2
240			 * bit 27-32 to be equal to 10 or 11
241			 */
242			int x6=(kprobe_inst >> 27) & 0x3F;
243			if ((x6 == 0x10) || (x6 == 0x11)) {
244				printk(KERN_WARNING "Kprobes on "
245					"Indirect Predict is not supported\n");
246				return -EINVAL;
247			}
248		}
249	}
250	/* kernel does not use float instruction, here for safety kprobe
251	 * will judge whether it is fcmp/flass/float approximation instruction
252	 */
253	else if (unlikely(bundle_encoding[template][slot] == F)) {
254		if ((major_opcode == 4 || major_opcode == 5) &&
255				(kprobe_inst  & (0x1 << 12))) {
256			/* fcmp/fclass unc instruction */
257			if (slot == 1 && qp) {
258				printk(KERN_WARNING "Kprobes on fcmp/fclass "
259					"instruction on slot at <0x%lx> "
260					"is not supported\n", addr);
261				return -EINVAL;
262
263			}
264			qp = 0;
265		}
266		if ((major_opcode == 0 || major_opcode == 1) &&
267			(kprobe_inst & (0x1UL << 33))) {
268			/* float Approximation instruction */
269			if (slot == 1 && qp) {
270				printk(KERN_WARNING "Kprobes on float Approx "
271					"instr at <0x%lx> is not supported\n",
272						addr);
273				return -EINVAL;
274			}
275			qp = 0;
276		}
277	}
278	return qp;
279}
280
281/*
282 * In this function we override the bundle with
283 * the break instruction at the given slot.
284 */
285static void __kprobes prepare_break_inst(uint template, uint  slot,
286					 uint major_opcode,
287					 unsigned long kprobe_inst,
288					 struct kprobe *p,
289					 int qp)
290{
291	unsigned long break_inst = BREAK_INST;
292	bundle_t *bundle = &p->opcode.bundle;
293
294	/*
295	 * Copy the original kprobe_inst qualifying predicate(qp)
296	 * to the break instruction
297	 */
298	break_inst |= qp;
299
300	switch (slot) {
301	  case 0:
302		bundle->quad0.slot0 = break_inst;
303		break;
304	  case 1:
305		bundle->quad0.slot1_p0 = break_inst;
306		bundle->quad1.slot1_p1 = break_inst >> (64-46);
307		break;
308	  case 2:
309		bundle->quad1.slot2 = break_inst;
310		break;
311	}
312
313	/*
314	 * Update the instruction flag, so that we can
315	 * emulate the instruction properly after we
316	 * single step on original instruction
317	 */
318	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
319}
320
321static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
322	       	unsigned long *kprobe_inst, uint *major_opcode)
323{
324	unsigned long kprobe_inst_p0, kprobe_inst_p1;
325	unsigned int template;
326
327	template = bundle->quad0.template;
328
329	switch (slot) {
330	  case 0:
331		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
332		*kprobe_inst = bundle->quad0.slot0;
333		  break;
334	  case 1:
335		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
336		kprobe_inst_p0 = bundle->quad0.slot1_p0;
337		kprobe_inst_p1 = bundle->quad1.slot1_p1;
338		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
339		break;
340	  case 2:
341		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
342		*kprobe_inst = bundle->quad1.slot2;
343		break;
344	}
345}
346
347/* Returns non-zero if the addr is in the Interrupt Vector Table */
348static int __kprobes in_ivt_functions(unsigned long addr)
349{
350	return (addr >= (unsigned long)__start_ivt_text
351		&& addr < (unsigned long)__end_ivt_text);
352}
353
354static int __kprobes valid_kprobe_addr(int template, int slot,
355				       unsigned long addr)
356{
357	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
358		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
359				"at 0x%lx\n", addr);
360		return -EINVAL;
361	}
362
363	if (in_ivt_functions(addr)) {
364		printk(KERN_WARNING "Kprobes can't be inserted inside "
365				"IVT functions at 0x%lx\n", addr);
366		return -EINVAL;
367	}
368
369	return 0;
370}
371
372static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
373{
374	unsigned int i;
375	i = atomic_add_return(1, &kcb->prev_kprobe_index);
376	kcb->prev_kprobe[i-1].kp = kprobe_running();
377	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
378}
379
380static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
381{
382	unsigned int i;
383	i = atomic_read(&kcb->prev_kprobe_index);
384	__this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
385	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
386	atomic_sub(1, &kcb->prev_kprobe_index);
387}
388
389static void __kprobes set_current_kprobe(struct kprobe *p,
390			struct kprobe_ctlblk *kcb)
391{
392	__this_cpu_write(current_kprobe, p);
393}
394
395void __kretprobe_trampoline(void)
396{
397}
398
 
 
 
 
 
 
 
 
399int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
400{
401	regs->cr_iip = __kretprobe_trampoline_handler(regs, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402	/*
403	 * By returning a non-zero value, we are telling
404	 * kprobe_handler() that we don't want the post_handler
405	 * to run (and have re-enabled preemption)
406	 */
407	return 1;
408}
409
410void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
411				      struct pt_regs *regs)
412{
413	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
414	ri->fp = NULL;
415
416	/* Replace the return addr with trampoline addr */
417	regs->b0 = (unsigned long)dereference_function_descriptor(__kretprobe_trampoline);
418}
419
420/* Check the instruction in the slot is break */
421static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
422{
423	unsigned int major_opcode;
424	unsigned int template = bundle->quad0.template;
425	unsigned long kprobe_inst;
426
427	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
428	if (slot == 1 && bundle_encoding[template][1] == L)
429		slot++;
430
431	/* Get Kprobe probe instruction at given slot*/
432	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
433
434	/* For break instruction,
435	 * Bits 37:40 Major opcode to be zero
436	 * Bits 27:32 X6 to be zero
437	 * Bits 32:35 X3 to be zero
438	 */
439	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
440		/* Not a break instruction */
441		return 0;
442	}
443
444	/* Is a break instruction */
445	return 1;
446}
447
448/*
449 * In this function, we check whether the target bundle modifies IP or
450 * it triggers an exception. If so, it cannot be boostable.
451 */
452static int __kprobes can_boost(bundle_t *bundle, uint slot,
453			       unsigned long bundle_addr)
454{
455	unsigned int template = bundle->quad0.template;
456
457	do {
458		if (search_exception_tables(bundle_addr + slot) ||
459		    __is_ia64_break_inst(bundle, slot))
460			return 0;	/* exception may occur in this bundle*/
461	} while ((++slot) < 3);
462	template &= 0x1e;
463	if (template >= 0x10 /* including B unit */ ||
464	    template == 0x04 /* including X unit */ ||
465	    template == 0x06) /* undefined */
466		return 0;
467
468	return 1;
469}
470
471/* Prepare long jump bundle and disables other boosters if need */
472static void __kprobes prepare_booster(struct kprobe *p)
473{
474	unsigned long addr = (unsigned long)p->addr & ~0xFULL;
475	unsigned int slot = (unsigned long)p->addr & 0xf;
476	struct kprobe *other_kp;
477
478	if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
479		set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
480		p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
481	}
482
483	/* disables boosters in previous slots */
484	for (; addr < (unsigned long)p->addr; addr++) {
485		other_kp = get_kprobe((void *)addr);
486		if (other_kp)
487			other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
488	}
489}
490
491int __kprobes arch_prepare_kprobe(struct kprobe *p)
492{
493	unsigned long addr = (unsigned long) p->addr;
494	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
495	unsigned long kprobe_inst=0;
496	unsigned int slot = addr & 0xf, template, major_opcode = 0;
497	bundle_t *bundle;
498	int qp;
499
500	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
501	template = bundle->quad0.template;
502
503	if(valid_kprobe_addr(template, slot, addr))
504		return -EINVAL;
505
506	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
507	if (slot == 1 && bundle_encoding[template][1] == L)
508		slot++;
509
510	/* Get kprobe_inst and major_opcode from the bundle */
511	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
512
513	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
514	if (qp < 0)
515		return -EINVAL;
516
517	p->ainsn.insn = get_insn_slot();
518	if (!p->ainsn.insn)
519		return -ENOMEM;
520	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
521	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
522
523	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
524
525	prepare_booster(p);
526
527	return 0;
528}
529
530void __kprobes arch_arm_kprobe(struct kprobe *p)
531{
532	unsigned long arm_addr;
533	bundle_t *src, *dest;
534
535	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
536	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
537	src = &p->opcode.bundle;
538
539	flush_icache_range((unsigned long)p->ainsn.insn,
540			   (unsigned long)p->ainsn.insn +
541			   sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
542
543	switch (p->ainsn.slot) {
544		case 0:
545			dest->quad0.slot0 = src->quad0.slot0;
546			break;
547		case 1:
548			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
549			break;
550		case 2:
551			dest->quad1.slot2 = src->quad1.slot2;
552			break;
553	}
554	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
555}
556
557void __kprobes arch_disarm_kprobe(struct kprobe *p)
558{
559	unsigned long arm_addr;
560	bundle_t *src, *dest;
561
562	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
563	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
564	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
565	src = &p->ainsn.insn->bundle;
566	switch (p->ainsn.slot) {
567		case 0:
568			dest->quad0.slot0 = src->quad0.slot0;
569			break;
570		case 1:
571			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
572			break;
573		case 2:
574			dest->quad1.slot2 = src->quad1.slot2;
575			break;
576	}
577	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
578}
579
580void __kprobes arch_remove_kprobe(struct kprobe *p)
581{
582	if (p->ainsn.insn) {
583		free_insn_slot(p->ainsn.insn,
584			       p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
585		p->ainsn.insn = NULL;
586	}
587}
588/*
589 * We are resuming execution after a single step fault, so the pt_regs
590 * structure reflects the register state after we executed the instruction
591 * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
592 * the ip to point back to the original stack address. To set the IP address
593 * to original stack address, handle the case where we need to fixup the
594 * relative IP address and/or fixup branch register.
595 */
596static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
597{
598	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
599	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
600	unsigned long template;
601	int slot = ((unsigned long)p->addr & 0xf);
602
603	template = p->ainsn.insn->bundle.quad0.template;
604
605	if (slot == 1 && bundle_encoding[template][1] == L)
606		slot = 2;
607
608	if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
609
610		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
611			/* Fix relative IP address */
612			regs->cr_iip = (regs->cr_iip - bundle_addr) +
613					resume_addr;
614		}
615
616		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
617		/*
618		 * Fix target branch register, software convention is
619		 * to use either b0 or b6 or b7, so just checking
620		 * only those registers
621		 */
622			switch (p->ainsn.target_br_reg) {
623			case 0:
624				if ((regs->b0 == bundle_addr) ||
625					(regs->b0 == bundle_addr + 0x10)) {
626					regs->b0 = (regs->b0 - bundle_addr) +
627						resume_addr;
628				}
629				break;
630			case 6:
631				if ((regs->b6 == bundle_addr) ||
632					(regs->b6 == bundle_addr + 0x10)) {
633					regs->b6 = (regs->b6 - bundle_addr) +
634						resume_addr;
635				}
636				break;
637			case 7:
638				if ((regs->b7 == bundle_addr) ||
639					(regs->b7 == bundle_addr + 0x10)) {
640					regs->b7 = (regs->b7 - bundle_addr) +
641						resume_addr;
642				}
643				break;
644			} /* end switch */
645		}
646		goto turn_ss_off;
647	}
648
649	if (slot == 2) {
650		if (regs->cr_iip == bundle_addr + 0x10) {
651			regs->cr_iip = resume_addr + 0x10;
652		}
653	} else {
654		if (regs->cr_iip == bundle_addr) {
655			regs->cr_iip = resume_addr;
656		}
657	}
658
659turn_ss_off:
660	/* Turn off Single Step bit */
661	ia64_psr(regs)->ss = 0;
662}
663
664static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
665{
666	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
667	unsigned long slot = (unsigned long)p->addr & 0xf;
668
669	/* single step inline if break instruction */
670	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
671		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
672	else
673		regs->cr_iip = bundle_addr & ~0xFULL;
674
675	if (slot > 2)
676		slot = 0;
677
678	ia64_psr(regs)->ri = slot;
679
680	/* turn on single stepping */
681	ia64_psr(regs)->ss = 1;
682}
683
684static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
685{
686	unsigned int slot = ia64_psr(regs)->ri;
687	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
688	bundle_t bundle;
689
690	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
691
692	return __is_ia64_break_inst(&bundle, slot);
693}
694
695static int __kprobes pre_kprobes_handler(struct die_args *args)
696{
697	struct kprobe *p;
698	int ret = 0;
699	struct pt_regs *regs = args->regs;
700	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
701	struct kprobe_ctlblk *kcb;
702
703	/*
704	 * We don't want to be preempted for the entire
705	 * duration of kprobe processing
706	 */
707	preempt_disable();
708	kcb = get_kprobe_ctlblk();
709
710	/* Handle recursion cases */
711	if (kprobe_running()) {
712		p = get_kprobe(addr);
713		if (p) {
714			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
715	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
716				ia64_psr(regs)->ss = 0;
717				goto no_kprobe;
718			}
719			/* We have reentered the pre_kprobe_handler(), since
720			 * another probe was hit while within the handler.
721			 * We here save the original kprobes variables and
722			 * just single step on the instruction of the new probe
723			 * without calling any user handlers.
724			 */
725			save_previous_kprobe(kcb);
726			set_current_kprobe(p, kcb);
727			kprobes_inc_nmissed_count(p);
728			prepare_ss(p, regs);
729			kcb->kprobe_status = KPROBE_REENTER;
730			return 1;
731		} else if (!is_ia64_break_inst(regs)) {
732			/* The breakpoint instruction was removed by
733			 * another cpu right after we hit, no further
734			 * handling of this interrupt is appropriate
735			 */
736			ret = 1;
737			goto no_kprobe;
738		} else {
739			/* Not our break */
740			goto no_kprobe;
741		}
742	}
743
744	p = get_kprobe(addr);
745	if (!p) {
746		if (!is_ia64_break_inst(regs)) {
747			/*
748			 * The breakpoint instruction was removed right
749			 * after we hit it.  Another cpu has removed
750			 * either a probepoint or a debugger breakpoint
751			 * at this address.  In either case, no further
752			 * handling of this interrupt is appropriate.
753			 */
754			ret = 1;
755
756		}
757
758		/* Not one of our break, let kernel handle it */
759		goto no_kprobe;
760	}
761
762	set_current_kprobe(p, kcb);
763	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
764
765	if (p->pre_handler && p->pre_handler(p, regs)) {
766		reset_current_kprobe();
767		preempt_enable_no_resched();
768		return 1;
769	}
770
771#if !defined(CONFIG_PREEMPTION)
772	if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
773		/* Boost up -- we can execute copied instructions directly */
774		ia64_psr(regs)->ri = p->ainsn.slot;
775		regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
776		/* turn single stepping off */
777		ia64_psr(regs)->ss = 0;
778
779		reset_current_kprobe();
780		preempt_enable_no_resched();
781		return 1;
782	}
783#endif
784	prepare_ss(p, regs);
785	kcb->kprobe_status = KPROBE_HIT_SS;
786	return 1;
787
788no_kprobe:
789	preempt_enable_no_resched();
790	return ret;
791}
792
793static int __kprobes post_kprobes_handler(struct pt_regs *regs)
794{
795	struct kprobe *cur = kprobe_running();
796	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
797
798	if (!cur)
799		return 0;
800
801	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
802		kcb->kprobe_status = KPROBE_HIT_SSDONE;
803		cur->post_handler(cur, regs, 0);
804	}
805
806	resume_execution(cur, regs);
807
808	/*Restore back the original saved kprobes variables and continue. */
809	if (kcb->kprobe_status == KPROBE_REENTER) {
810		restore_previous_kprobe(kcb);
811		goto out;
812	}
813	reset_current_kprobe();
814
815out:
816	preempt_enable_no_resched();
817	return 1;
818}
819
820int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
821{
822	struct kprobe *cur = kprobe_running();
823	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
824
825
826	switch(kcb->kprobe_status) {
827	case KPROBE_HIT_SS:
828	case KPROBE_REENTER:
829		/*
830		 * We are here because the instruction being single
831		 * stepped caused a page fault. We reset the current
832		 * kprobe and the instruction pointer points back to
833		 * the probe address and allow the page fault handler
834		 * to continue as a normal page fault.
835		 */
836		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
837		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
838		if (kcb->kprobe_status == KPROBE_REENTER)
839			restore_previous_kprobe(kcb);
840		else
841			reset_current_kprobe();
842		preempt_enable_no_resched();
843		break;
844	case KPROBE_HIT_ACTIVE:
845	case KPROBE_HIT_SSDONE:
846		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
847		 * In case the user-specified fault handler returned
848		 * zero, try to fix up.
849		 */
850		if (ia64_done_with_exception(regs))
851			return 1;
852
853		/*
854		 * Let ia64_do_page_fault() fix it.
855		 */
856		break;
857	default:
858		break;
859	}
860
861	return 0;
862}
863
864int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
865				       unsigned long val, void *data)
866{
867	struct die_args *args = (struct die_args *)data;
868	int ret = NOTIFY_DONE;
869
870	if (args->regs && user_mode(args->regs))
871		return ret;
872
873	switch(val) {
874	case DIE_BREAK:
875		/* err is break number from ia64_bad_break() */
876		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
877			|| args->err == 0)
878			if (pre_kprobes_handler(args))
879				ret = NOTIFY_STOP;
880		break;
881	case DIE_FAULT:
882		/* err is vector number from ia64_fault() */
883		if (args->err == 36)
884			if (post_kprobes_handler(args->regs))
885				ret = NOTIFY_STOP;
886		break;
887	default:
888		break;
889	}
890	return ret;
891}
892
 
 
 
 
 
893static struct kprobe trampoline_p = {
894	.pre_handler = trampoline_probe_handler
895};
896
897int __init arch_init_kprobes(void)
898{
899	trampoline_p.addr =
900		dereference_function_descriptor(__kretprobe_trampoline);
901	return register_kprobe(&trampoline_p);
902}
903
904int __kprobes arch_trampoline_kprobe(struct kprobe *p)
905{
906	if (p->addr ==
907		dereference_function_descriptor(__kretprobe_trampoline))
908		return 1;
909
910	return 0;
911}