Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/alpha/kernel/process.c
  4 *
  5 *  Copyright (C) 1995  Linus Torvalds
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling.
 10 */
 11
 12#include <linux/errno.h>
 13#include <linux/module.h>
 14#include <linux/sched.h>
 15#include <linux/sched/debug.h>
 16#include <linux/sched/task.h>
 17#include <linux/sched/task_stack.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/smp.h>
 21#include <linux/stddef.h>
 22#include <linux/unistd.h>
 23#include <linux/ptrace.h>
 24#include <linux/user.h>
 25#include <linux/time.h>
 26#include <linux/major.h>
 27#include <linux/stat.h>
 28#include <linux/vt.h>
 29#include <linux/mman.h>
 30#include <linux/elfcore.h>
 31#include <linux/reboot.h>
 32#include <linux/tty.h>
 33#include <linux/console.h>
 34#include <linux/slab.h>
 35#include <linux/rcupdate.h>
 36
 37#include <asm/reg.h>
 38#include <linux/uaccess.h>
 39#include <asm/io.h>
 40#include <asm/hwrpb.h>
 41#include <asm/fpu.h>
 42
 43#include "proto.h"
 44#include "pci_impl.h"
 45
 46/*
 47 * Power off function, if any
 48 */
 49void (*pm_power_off)(void) = machine_power_off;
 50EXPORT_SYMBOL(pm_power_off);
 51
 52#ifdef CONFIG_ALPHA_WTINT
 53/*
 54 * Sleep the CPU.
 55 * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
 56 */
 57void arch_cpu_idle(void)
 58{
 59	wtint(0);
 60	local_irq_enable();
 61}
 62
 63void arch_cpu_idle_dead(void)
 64{
 65	wtint(INT_MAX);
 66}
 67#endif /* ALPHA_WTINT */
 68
 69struct halt_info {
 70	int mode;
 71	char *restart_cmd;
 72};
 73
 74static void
 75common_shutdown_1(void *generic_ptr)
 76{
 77	struct halt_info *how = (struct halt_info *)generic_ptr;
 78	struct percpu_struct *cpup;
 79	unsigned long *pflags, flags;
 80	int cpuid = smp_processor_id();
 81
 82	/* No point in taking interrupts anymore. */
 83	local_irq_disable();
 84
 85	cpup = (struct percpu_struct *)
 86			((unsigned long)hwrpb + hwrpb->processor_offset
 87			 + hwrpb->processor_size * cpuid);
 88	pflags = &cpup->flags;
 89	flags = *pflags;
 90
 91	/* Clear reason to "default"; clear "bootstrap in progress". */
 92	flags &= ~0x00ff0001UL;
 93
 94#ifdef CONFIG_SMP
 95	/* Secondaries halt here. */
 96	if (cpuid != boot_cpuid) {
 97		flags |= 0x00040000UL; /* "remain halted" */
 98		*pflags = flags;
 99		set_cpu_present(cpuid, false);
100		set_cpu_possible(cpuid, false);
101		halt();
102	}
103#endif
104
105	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
106		if (!how->restart_cmd) {
107			flags |= 0x00020000UL; /* "cold bootstrap" */
108		} else {
109			/* For SRM, we could probably set environment
110			   variables to get this to work.  We'd have to
111			   delay this until after srm_paging_stop unless
112			   we ever got srm_fixup working.
113
114			   At the moment, SRM will use the last boot device,
115			   but the file and flags will be the defaults, when
116			   doing a "warm" bootstrap.  */
117			flags |= 0x00030000UL; /* "warm bootstrap" */
118		}
119	} else {
120		flags |= 0x00040000UL; /* "remain halted" */
121	}
122	*pflags = flags;
123
124#ifdef CONFIG_SMP
125	/* Wait for the secondaries to halt. */
126	set_cpu_present(boot_cpuid, false);
127	set_cpu_possible(boot_cpuid, false);
128	while (cpumask_weight(cpu_present_mask))
129		barrier();
130#endif
131
132	/* If booted from SRM, reset some of the original environment. */
133	if (alpha_using_srm) {
134#ifdef CONFIG_DUMMY_CONSOLE
135		/* If we've gotten here after SysRq-b, leave interrupt
136		   context before taking over the console. */
137		if (in_interrupt())
138			irq_exit();
139		/* This has the effect of resetting the VGA video origin.  */
140		console_lock();
141		do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
142		console_unlock();
143#endif
144		pci_restore_srm_config();
145		set_hae(srm_hae);
146	}
147
148	if (alpha_mv.kill_arch)
149		alpha_mv.kill_arch(how->mode);
150
151	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
152		/* Unfortunately, since MILO doesn't currently understand
153		   the hwrpb bits above, we can't reliably halt the 
154		   processor and keep it halted.  So just loop.  */
155		return;
156	}
157
158	if (alpha_using_srm)
159		srm_paging_stop();
160
161	halt();
162}
163
164static void
165common_shutdown(int mode, char *restart_cmd)
166{
167	struct halt_info args;
168	args.mode = mode;
169	args.restart_cmd = restart_cmd;
170	on_each_cpu(common_shutdown_1, &args, 0);
171}
172
173void
174machine_restart(char *restart_cmd)
175{
176	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
177}
178
179
180void
181machine_halt(void)
182{
183	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
184}
185
186
187void
188machine_power_off(void)
189{
190	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
191}
192
193
194/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
195   saved in the context it's used.  */
196
197void
198show_regs(struct pt_regs *regs)
199{
200	show_regs_print_info(KERN_DEFAULT);
201	dik_show_regs(regs, NULL);
202}
203
204/*
205 * Re-start a thread when doing execve()
206 */
207void
208start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
209{
210	regs->pc = pc;
211	regs->ps = 8;
212	wrusp(sp);
213}
214EXPORT_SYMBOL(start_thread);
215
216void
217flush_thread(void)
218{
219	/* Arrange for each exec'ed process to start off with a clean slate
220	   with respect to the FPU.  This is all exceptions disabled.  */
221	current_thread_info()->ieee_state = 0;
222	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
223
224	/* Clean slate for TLS.  */
225	current_thread_info()->pcb.unique = 0;
226}
227
228void
229release_thread(struct task_struct *dead_task)
230{
231}
232
233/*
234 * Copy architecture-specific thread state
235 */
236int copy_thread(unsigned long clone_flags, unsigned long usp,
237		unsigned long kthread_arg, struct task_struct *p,
238		unsigned long tls)
239{
 
 
 
240	extern void ret_from_fork(void);
241	extern void ret_from_kernel_thread(void);
242
243	struct thread_info *childti = task_thread_info(p);
244	struct pt_regs *childregs = task_pt_regs(p);
245	struct pt_regs *regs = current_pt_regs();
246	struct switch_stack *childstack, *stack;
247
248	childstack = ((struct switch_stack *) childregs) - 1;
249	childti->pcb.ksp = (unsigned long) childstack;
250	childti->pcb.flags = 1;	/* set FEN, clear everything else */
251
252	if (unlikely(p->flags & PF_KTHREAD)) {
253		/* kernel thread */
254		memset(childstack, 0,
255			sizeof(struct switch_stack) + sizeof(struct pt_regs));
256		childstack->r26 = (unsigned long) ret_from_kernel_thread;
257		childstack->r9 = usp;	/* function */
258		childstack->r10 = kthread_arg;
259		childregs->hae = alpha_mv.hae_cache,
260		childti->pcb.usp = 0;
261		return 0;
262	}
263	/* Note: if CLONE_SETTLS is not set, then we must inherit the
264	   value from the parent, which will have been set by the block
265	   copy in dup_task_struct.  This is non-intuitive, but is
266	   required for proper operation in the case of a threaded
267	   application calling fork.  */
268	if (clone_flags & CLONE_SETTLS)
269		childti->pcb.unique = tls;
270	else
271		regs->r20 = 0;	/* OSF/1 has some strange fork() semantics.  */
272	childti->pcb.usp = usp ?: rdusp();
273	*childregs = *regs;
274	childregs->r0 = 0;
275	childregs->r19 = 0;
276	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
277	stack = ((struct switch_stack *) regs) - 1;
278	*childstack = *stack;
279	childstack->r26 = (unsigned long) ret_from_fork;
280	return 0;
281}
282
283/*
284 * Fill in the user structure for a ELF core dump.
285 */
286void
287dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
288{
289	/* switch stack follows right below pt_regs: */
290	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
291
292	dest[ 0] = pt->r0;
293	dest[ 1] = pt->r1;
294	dest[ 2] = pt->r2;
295	dest[ 3] = pt->r3;
296	dest[ 4] = pt->r4;
297	dest[ 5] = pt->r5;
298	dest[ 6] = pt->r6;
299	dest[ 7] = pt->r7;
300	dest[ 8] = pt->r8;
301	dest[ 9] = sw->r9;
302	dest[10] = sw->r10;
303	dest[11] = sw->r11;
304	dest[12] = sw->r12;
305	dest[13] = sw->r13;
306	dest[14] = sw->r14;
307	dest[15] = sw->r15;
308	dest[16] = pt->r16;
309	dest[17] = pt->r17;
310	dest[18] = pt->r18;
311	dest[19] = pt->r19;
312	dest[20] = pt->r20;
313	dest[21] = pt->r21;
314	dest[22] = pt->r22;
315	dest[23] = pt->r23;
316	dest[24] = pt->r24;
317	dest[25] = pt->r25;
318	dest[26] = pt->r26;
319	dest[27] = pt->r27;
320	dest[28] = pt->r28;
321	dest[29] = pt->gp;
322	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
323	dest[31] = pt->pc;
324
325	/* Once upon a time this was the PS value.  Which is stupid
326	   since that is always 8 for usermode.  Usurped for the more
327	   useful value of the thread's UNIQUE field.  */
328	dest[32] = ti->pcb.unique;
329}
330EXPORT_SYMBOL(dump_elf_thread);
331
332int
333dump_elf_task(elf_greg_t *dest, struct task_struct *task)
334{
335	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
336	return 1;
337}
338EXPORT_SYMBOL(dump_elf_task);
339
340int
341dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
342{
343	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
344	memcpy(dest, sw->fp, 32 * 8);
345	return 1;
346}
347EXPORT_SYMBOL(dump_elf_task_fp);
348
349/*
350 * Return saved PC of a blocked thread.  This assumes the frame
351 * pointer is the 6th saved long on the kernel stack and that the
352 * saved return address is the first long in the frame.  This all
353 * holds provided the thread blocked through a call to schedule() ($15
354 * is the frame pointer in schedule() and $15 is saved at offset 48 by
355 * entry.S:do_switch_stack).
356 *
357 * Under heavy swap load I've seen this lose in an ugly way.  So do
358 * some extra sanity checking on the ranges we expect these pointers
359 * to be in so that we can fail gracefully.  This is just for ps after
360 * all.  -- r~
361 */
362
363static unsigned long
364thread_saved_pc(struct task_struct *t)
365{
366	unsigned long base = (unsigned long)task_stack_page(t);
367	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
368
369	if (sp > base && sp+6*8 < base + 16*1024) {
370		fp = ((unsigned long*)sp)[6];
371		if (fp > sp && fp < base + 16*1024)
372			return *(unsigned long *)fp;
373	}
374
375	return 0;
376}
377
378unsigned long
379get_wchan(struct task_struct *p)
380{
381	unsigned long schedule_frame;
382	unsigned long pc;
383	if (!p || p == current || p->state == TASK_RUNNING)
384		return 0;
385	/*
386	 * This one depends on the frame size of schedule().  Do a
387	 * "disass schedule" in gdb to find the frame size.  Also, the
388	 * code assumes that sleep_on() follows immediately after
389	 * interruptible_sleep_on() and that add_timer() follows
390	 * immediately after interruptible_sleep().  Ugly, isn't it?
391	 * Maybe adding a wchan field to task_struct would be better,
392	 * after all...
393	 */
394
395	pc = thread_saved_pc(p);
396	if (in_sched_functions(pc)) {
397		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
398		return ((unsigned long *)schedule_frame)[12];
399	}
400	return pc;
401}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/alpha/kernel/process.c
  4 *
  5 *  Copyright (C) 1995  Linus Torvalds
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling.
 10 */
 11
 12#include <linux/errno.h>
 13#include <linux/module.h>
 14#include <linux/sched.h>
 15#include <linux/sched/debug.h>
 16#include <linux/sched/task.h>
 17#include <linux/sched/task_stack.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/smp.h>
 21#include <linux/stddef.h>
 22#include <linux/unistd.h>
 23#include <linux/ptrace.h>
 24#include <linux/user.h>
 25#include <linux/time.h>
 26#include <linux/major.h>
 27#include <linux/stat.h>
 28#include <linux/vt.h>
 29#include <linux/mman.h>
 30#include <linux/elfcore.h>
 31#include <linux/reboot.h>
 32#include <linux/tty.h>
 33#include <linux/console.h>
 34#include <linux/slab.h>
 35#include <linux/rcupdate.h>
 36
 37#include <asm/reg.h>
 38#include <linux/uaccess.h>
 39#include <asm/io.h>
 40#include <asm/hwrpb.h>
 41#include <asm/fpu.h>
 42
 43#include "proto.h"
 44#include "pci_impl.h"
 45
 46/*
 47 * Power off function, if any
 48 */
 49void (*pm_power_off)(void) = machine_power_off;
 50EXPORT_SYMBOL(pm_power_off);
 51
 52#ifdef CONFIG_ALPHA_WTINT
 53/*
 54 * Sleep the CPU.
 55 * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
 56 */
 57void arch_cpu_idle(void)
 58{
 59	wtint(0);
 60	raw_local_irq_enable();
 61}
 62
 63void arch_cpu_idle_dead(void)
 64{
 65	wtint(INT_MAX);
 66}
 67#endif /* ALPHA_WTINT */
 68
 69struct halt_info {
 70	int mode;
 71	char *restart_cmd;
 72};
 73
 74static void
 75common_shutdown_1(void *generic_ptr)
 76{
 77	struct halt_info *how = (struct halt_info *)generic_ptr;
 78	struct percpu_struct *cpup;
 79	unsigned long *pflags, flags;
 80	int cpuid = smp_processor_id();
 81
 82	/* No point in taking interrupts anymore. */
 83	local_irq_disable();
 84
 85	cpup = (struct percpu_struct *)
 86			((unsigned long)hwrpb + hwrpb->processor_offset
 87			 + hwrpb->processor_size * cpuid);
 88	pflags = &cpup->flags;
 89	flags = *pflags;
 90
 91	/* Clear reason to "default"; clear "bootstrap in progress". */
 92	flags &= ~0x00ff0001UL;
 93
 94#ifdef CONFIG_SMP
 95	/* Secondaries halt here. */
 96	if (cpuid != boot_cpuid) {
 97		flags |= 0x00040000UL; /* "remain halted" */
 98		*pflags = flags;
 99		set_cpu_present(cpuid, false);
100		set_cpu_possible(cpuid, false);
101		halt();
102	}
103#endif
104
105	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
106		if (!how->restart_cmd) {
107			flags |= 0x00020000UL; /* "cold bootstrap" */
108		} else {
109			/* For SRM, we could probably set environment
110			   variables to get this to work.  We'd have to
111			   delay this until after srm_paging_stop unless
112			   we ever got srm_fixup working.
113
114			   At the moment, SRM will use the last boot device,
115			   but the file and flags will be the defaults, when
116			   doing a "warm" bootstrap.  */
117			flags |= 0x00030000UL; /* "warm bootstrap" */
118		}
119	} else {
120		flags |= 0x00040000UL; /* "remain halted" */
121	}
122	*pflags = flags;
123
124#ifdef CONFIG_SMP
125	/* Wait for the secondaries to halt. */
126	set_cpu_present(boot_cpuid, false);
127	set_cpu_possible(boot_cpuid, false);
128	while (!cpumask_empty(cpu_present_mask))
129		barrier();
130#endif
131
132	/* If booted from SRM, reset some of the original environment. */
133	if (alpha_using_srm) {
134#ifdef CONFIG_DUMMY_CONSOLE
135		/* If we've gotten here after SysRq-b, leave interrupt
136		   context before taking over the console. */
137		if (in_irq())
138			irq_exit();
139		/* This has the effect of resetting the VGA video origin.  */
140		console_lock();
141		do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
142		console_unlock();
143#endif
144		pci_restore_srm_config();
145		set_hae(srm_hae);
146	}
147
148	if (alpha_mv.kill_arch)
149		alpha_mv.kill_arch(how->mode);
150
151	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
152		/* Unfortunately, since MILO doesn't currently understand
153		   the hwrpb bits above, we can't reliably halt the 
154		   processor and keep it halted.  So just loop.  */
155		return;
156	}
157
158	if (alpha_using_srm)
159		srm_paging_stop();
160
161	halt();
162}
163
164static void
165common_shutdown(int mode, char *restart_cmd)
166{
167	struct halt_info args;
168	args.mode = mode;
169	args.restart_cmd = restart_cmd;
170	on_each_cpu(common_shutdown_1, &args, 0);
171}
172
173void
174machine_restart(char *restart_cmd)
175{
176	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
177}
178
179
180void
181machine_halt(void)
182{
183	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
184}
185
186
187void
188machine_power_off(void)
189{
190	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
191}
192
193
194/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
195   saved in the context it's used.  */
196
197void
198show_regs(struct pt_regs *regs)
199{
200	show_regs_print_info(KERN_DEFAULT);
201	dik_show_regs(regs, NULL);
202}
203
204/*
205 * Re-start a thread when doing execve()
206 */
207void
208start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
209{
210	regs->pc = pc;
211	regs->ps = 8;
212	wrusp(sp);
213}
214EXPORT_SYMBOL(start_thread);
215
216void
217flush_thread(void)
218{
219	/* Arrange for each exec'ed process to start off with a clean slate
220	   with respect to the FPU.  This is all exceptions disabled.  */
221	current_thread_info()->ieee_state = 0;
222	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
223
224	/* Clean slate for TLS.  */
225	current_thread_info()->pcb.unique = 0;
226}
227
 
 
 
 
 
228/*
229 * Copy architecture-specific thread state
230 */
231int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
 
232{
233	unsigned long clone_flags = args->flags;
234	unsigned long usp = args->stack;
235	unsigned long tls = args->tls;
236	extern void ret_from_fork(void);
237	extern void ret_from_kernel_thread(void);
238
239	struct thread_info *childti = task_thread_info(p);
240	struct pt_regs *childregs = task_pt_regs(p);
241	struct pt_regs *regs = current_pt_regs();
242	struct switch_stack *childstack, *stack;
243
244	childstack = ((struct switch_stack *) childregs) - 1;
245	childti->pcb.ksp = (unsigned long) childstack;
246	childti->pcb.flags = 1;	/* set FEN, clear everything else */
247
248	if (unlikely(args->fn)) {
249		/* kernel thread */
250		memset(childstack, 0,
251			sizeof(struct switch_stack) + sizeof(struct pt_regs));
252		childstack->r26 = (unsigned long) ret_from_kernel_thread;
253		childstack->r9 = (unsigned long) args->fn;
254		childstack->r10 = (unsigned long) args->fn_arg;
255		childregs->hae = alpha_mv.hae_cache;
256		childti->pcb.usp = 0;
257		return 0;
258	}
259	/* Note: if CLONE_SETTLS is not set, then we must inherit the
260	   value from the parent, which will have been set by the block
261	   copy in dup_task_struct.  This is non-intuitive, but is
262	   required for proper operation in the case of a threaded
263	   application calling fork.  */
264	if (clone_flags & CLONE_SETTLS)
265		childti->pcb.unique = tls;
266	else
267		regs->r20 = 0;	/* OSF/1 has some strange fork() semantics.  */
268	childti->pcb.usp = usp ?: rdusp();
269	*childregs = *regs;
270	childregs->r0 = 0;
271	childregs->r19 = 0;
272	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
273	stack = ((struct switch_stack *) regs) - 1;
274	*childstack = *stack;
275	childstack->r26 = (unsigned long) ret_from_fork;
276	return 0;
277}
278
279/*
280 * Fill in the user structure for a ELF core dump.
281 */
282void
283dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
284{
285	/* switch stack follows right below pt_regs: */
286	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
287
288	dest[ 0] = pt->r0;
289	dest[ 1] = pt->r1;
290	dest[ 2] = pt->r2;
291	dest[ 3] = pt->r3;
292	dest[ 4] = pt->r4;
293	dest[ 5] = pt->r5;
294	dest[ 6] = pt->r6;
295	dest[ 7] = pt->r7;
296	dest[ 8] = pt->r8;
297	dest[ 9] = sw->r9;
298	dest[10] = sw->r10;
299	dest[11] = sw->r11;
300	dest[12] = sw->r12;
301	dest[13] = sw->r13;
302	dest[14] = sw->r14;
303	dest[15] = sw->r15;
304	dest[16] = pt->r16;
305	dest[17] = pt->r17;
306	dest[18] = pt->r18;
307	dest[19] = pt->r19;
308	dest[20] = pt->r20;
309	dest[21] = pt->r21;
310	dest[22] = pt->r22;
311	dest[23] = pt->r23;
312	dest[24] = pt->r24;
313	dest[25] = pt->r25;
314	dest[26] = pt->r26;
315	dest[27] = pt->r27;
316	dest[28] = pt->r28;
317	dest[29] = pt->gp;
318	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
319	dest[31] = pt->pc;
320
321	/* Once upon a time this was the PS value.  Which is stupid
322	   since that is always 8 for usermode.  Usurped for the more
323	   useful value of the thread's UNIQUE field.  */
324	dest[32] = ti->pcb.unique;
325}
326EXPORT_SYMBOL(dump_elf_thread);
327
328int
329dump_elf_task(elf_greg_t *dest, struct task_struct *task)
330{
331	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
332	return 1;
333}
334EXPORT_SYMBOL(dump_elf_task);
335
336int elf_core_copy_task_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
 
337{
338	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(t) - 1;
339	memcpy(fpu, sw->fp, 32 * 8);
340	return 1;
341}
 
342
343/*
344 * Return saved PC of a blocked thread.  This assumes the frame
345 * pointer is the 6th saved long on the kernel stack and that the
346 * saved return address is the first long in the frame.  This all
347 * holds provided the thread blocked through a call to schedule() ($15
348 * is the frame pointer in schedule() and $15 is saved at offset 48 by
349 * entry.S:do_switch_stack).
350 *
351 * Under heavy swap load I've seen this lose in an ugly way.  So do
352 * some extra sanity checking on the ranges we expect these pointers
353 * to be in so that we can fail gracefully.  This is just for ps after
354 * all.  -- r~
355 */
356
357static unsigned long
358thread_saved_pc(struct task_struct *t)
359{
360	unsigned long base = (unsigned long)task_stack_page(t);
361	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
362
363	if (sp > base && sp+6*8 < base + 16*1024) {
364		fp = ((unsigned long*)sp)[6];
365		if (fp > sp && fp < base + 16*1024)
366			return *(unsigned long *)fp;
367	}
368
369	return 0;
370}
371
372unsigned long
373__get_wchan(struct task_struct *p)
374{
375	unsigned long schedule_frame;
376	unsigned long pc;
377
 
378	/*
379	 * This one depends on the frame size of schedule().  Do a
380	 * "disass schedule" in gdb to find the frame size.  Also, the
381	 * code assumes that sleep_on() follows immediately after
382	 * interruptible_sleep_on() and that add_timer() follows
383	 * immediately after interruptible_sleep().  Ugly, isn't it?
384	 * Maybe adding a wchan field to task_struct would be better,
385	 * after all...
386	 */
387
388	pc = thread_saved_pc(p);
389	if (in_sched_functions(pc)) {
390		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
391		return ((unsigned long *)schedule_frame)[12];
392	}
393	return pc;
394}