Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#include "cpumap.h"
  3#include "debug.h"
  4#include "env.h"
  5#include "util/header.h"
  6#include <linux/ctype.h>
  7#include <linux/zalloc.h>
  8#include "bpf-event.h"
  9#include "cgroup.h"
 10#include <errno.h>
 11#include <sys/utsname.h>
 12#include <bpf/libbpf.h>
 13#include <stdlib.h>
 14#include <string.h>
 
 15
 16struct perf_env perf_env;
 17
 
 
 
 
 
 18void perf_env__insert_bpf_prog_info(struct perf_env *env,
 19				    struct bpf_prog_info_node *info_node)
 20{
 21	__u32 prog_id = info_node->info_linear->info.id;
 22	struct bpf_prog_info_node *node;
 23	struct rb_node *parent = NULL;
 24	struct rb_node **p;
 25
 26	down_write(&env->bpf_progs.lock);
 27	p = &env->bpf_progs.infos.rb_node;
 28
 29	while (*p != NULL) {
 30		parent = *p;
 31		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
 32		if (prog_id < node->info_linear->info.id) {
 33			p = &(*p)->rb_left;
 34		} else if (prog_id > node->info_linear->info.id) {
 35			p = &(*p)->rb_right;
 36		} else {
 37			pr_debug("duplicated bpf prog info %u\n", prog_id);
 38			goto out;
 39		}
 40	}
 41
 42	rb_link_node(&info_node->rb_node, parent, p);
 43	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
 44	env->bpf_progs.infos_cnt++;
 45out:
 46	up_write(&env->bpf_progs.lock);
 47}
 48
 49struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
 50							__u32 prog_id)
 51{
 52	struct bpf_prog_info_node *node = NULL;
 53	struct rb_node *n;
 54
 55	down_read(&env->bpf_progs.lock);
 56	n = env->bpf_progs.infos.rb_node;
 57
 58	while (n) {
 59		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
 60		if (prog_id < node->info_linear->info.id)
 61			n = n->rb_left;
 62		else if (prog_id > node->info_linear->info.id)
 63			n = n->rb_right;
 64		else
 65			goto out;
 66	}
 67	node = NULL;
 68
 69out:
 70	up_read(&env->bpf_progs.lock);
 71	return node;
 72}
 73
 74void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
 75{
 76	struct rb_node *parent = NULL;
 77	__u32 btf_id = btf_node->id;
 78	struct btf_node *node;
 79	struct rb_node **p;
 
 80
 81	down_write(&env->bpf_progs.lock);
 82	p = &env->bpf_progs.btfs.rb_node;
 83
 84	while (*p != NULL) {
 85		parent = *p;
 86		node = rb_entry(parent, struct btf_node, rb_node);
 87		if (btf_id < node->id) {
 88			p = &(*p)->rb_left;
 89		} else if (btf_id > node->id) {
 90			p = &(*p)->rb_right;
 91		} else {
 92			pr_debug("duplicated btf %u\n", btf_id);
 
 93			goto out;
 94		}
 95	}
 96
 97	rb_link_node(&btf_node->rb_node, parent, p);
 98	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
 99	env->bpf_progs.btfs_cnt++;
100out:
101	up_write(&env->bpf_progs.lock);
 
102}
103
104struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
105{
106	struct btf_node *node = NULL;
107	struct rb_node *n;
108
109	down_read(&env->bpf_progs.lock);
110	n = env->bpf_progs.btfs.rb_node;
111
112	while (n) {
113		node = rb_entry(n, struct btf_node, rb_node);
114		if (btf_id < node->id)
115			n = n->rb_left;
116		else if (btf_id > node->id)
117			n = n->rb_right;
118		else
119			goto out;
120	}
121	node = NULL;
122
123out:
124	up_read(&env->bpf_progs.lock);
125	return node;
126}
127
128/* purge data in bpf_progs.infos tree */
129static void perf_env__purge_bpf(struct perf_env *env)
130{
131	struct rb_root *root;
132	struct rb_node *next;
133
134	down_write(&env->bpf_progs.lock);
135
136	root = &env->bpf_progs.infos;
137	next = rb_first(root);
138
139	while (next) {
140		struct bpf_prog_info_node *node;
141
142		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
143		next = rb_next(&node->rb_node);
144		rb_erase(&node->rb_node, root);
 
145		free(node);
146	}
147
148	env->bpf_progs.infos_cnt = 0;
149
150	root = &env->bpf_progs.btfs;
151	next = rb_first(root);
152
153	while (next) {
154		struct btf_node *node;
155
156		node = rb_entry(next, struct btf_node, rb_node);
157		next = rb_next(&node->rb_node);
158		rb_erase(&node->rb_node, root);
159		free(node);
160	}
161
162	env->bpf_progs.btfs_cnt = 0;
163
164	up_write(&env->bpf_progs.lock);
165}
 
 
 
 
 
166
167void perf_env__exit(struct perf_env *env)
168{
169	int i;
170
171	perf_env__purge_bpf(env);
172	perf_env__purge_cgroups(env);
173	zfree(&env->hostname);
174	zfree(&env->os_release);
175	zfree(&env->version);
176	zfree(&env->arch);
177	zfree(&env->cpu_desc);
178	zfree(&env->cpuid);
179	zfree(&env->cmdline);
180	zfree(&env->cmdline_argv);
 
181	zfree(&env->sibling_cores);
182	zfree(&env->sibling_threads);
183	zfree(&env->pmu_mappings);
184	zfree(&env->cpu);
 
 
 
185	zfree(&env->numa_map);
186
187	for (i = 0; i < env->nr_numa_nodes; i++)
188		perf_cpu_map__put(env->numa_nodes[i].map);
189	zfree(&env->numa_nodes);
190
191	for (i = 0; i < env->caches_cnt; i++)
192		cpu_cache_level__free(&env->caches[i]);
193	zfree(&env->caches);
194
195	for (i = 0; i < env->nr_memory_nodes; i++)
196		zfree(&env->memory_nodes[i].set);
197	zfree(&env->memory_nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198}
199
200void perf_env__init(struct perf_env *env)
201{
 
202	env->bpf_progs.infos = RB_ROOT;
203	env->bpf_progs.btfs = RB_ROOT;
204	init_rwsem(&env->bpf_progs.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205}
206
207int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
208{
209	int i;
210
211	/* do not include NULL termination */
212	env->cmdline_argv = calloc(argc, sizeof(char *));
213	if (env->cmdline_argv == NULL)
214		goto out_enomem;
215
216	/*
217	 * Must copy argv contents because it gets moved around during option
218	 * parsing:
219	 */
220	for (i = 0; i < argc ; i++) {
221		env->cmdline_argv[i] = argv[i];
222		if (env->cmdline_argv[i] == NULL)
223			goto out_free;
224	}
225
226	env->nr_cmdline = argc;
227
228	return 0;
229out_free:
230	zfree(&env->cmdline_argv);
231out_enomem:
232	return -ENOMEM;
233}
234
235int perf_env__read_cpu_topology_map(struct perf_env *env)
236{
237	int cpu, nr_cpus;
238
239	if (env->cpu != NULL)
240		return 0;
241
242	if (env->nr_cpus_avail == 0)
243		env->nr_cpus_avail = cpu__max_present_cpu();
244
245	nr_cpus = env->nr_cpus_avail;
246	if (nr_cpus == -1)
247		return -EINVAL;
248
249	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
250	if (env->cpu == NULL)
251		return -ENOMEM;
252
253	for (cpu = 0; cpu < nr_cpus; ++cpu) {
254		env->cpu[cpu].core_id	= cpu_map__get_core_id(cpu);
255		env->cpu[cpu].socket_id	= cpu_map__get_socket_id(cpu);
256		env->cpu[cpu].die_id	= cpu_map__get_die_id(cpu);
 
 
257	}
258
259	env->nr_cpus_avail = nr_cpus;
260	return 0;
261}
262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263int perf_env__read_cpuid(struct perf_env *env)
264{
265	char cpuid[128];
266	int err = get_cpuid(cpuid, sizeof(cpuid));
267
268	if (err)
269		return err;
270
271	free(env->cpuid);
272	env->cpuid = strdup(cpuid);
273	if (env->cpuid == NULL)
274		return ENOMEM;
275	return 0;
276}
277
278static int perf_env__read_arch(struct perf_env *env)
279{
280	struct utsname uts;
281
282	if (env->arch)
283		return 0;
284
285	if (!uname(&uts))
286		env->arch = strdup(uts.machine);
287
288	return env->arch ? 0 : -ENOMEM;
289}
290
291static int perf_env__read_nr_cpus_avail(struct perf_env *env)
292{
293	if (env->nr_cpus_avail == 0)
294		env->nr_cpus_avail = cpu__max_present_cpu();
295
296	return env->nr_cpus_avail ? 0 : -ENOENT;
297}
298
299const char *perf_env__raw_arch(struct perf_env *env)
300{
301	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
302}
303
304int perf_env__nr_cpus_avail(struct perf_env *env)
305{
306	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
307}
308
309void cpu_cache_level__free(struct cpu_cache_level *cache)
310{
311	zfree(&cache->type);
312	zfree(&cache->map);
313	zfree(&cache->size);
314}
315
316/*
317 * Return architecture name in a normalized form.
318 * The conversion logic comes from the Makefile.
319 */
320static const char *normalize_arch(char *arch)
321{
322	if (!strcmp(arch, "x86_64"))
323		return "x86";
324	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
325		return "x86";
326	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
327		return "sparc";
328	if (!strcmp(arch, "aarch64") || !strcmp(arch, "arm64"))
329		return "arm64";
330	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
331		return "arm";
332	if (!strncmp(arch, "s390", 4))
333		return "s390";
334	if (!strncmp(arch, "parisc", 6))
335		return "parisc";
336	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
337		return "powerpc";
338	if (!strncmp(arch, "mips", 4))
339		return "mips";
340	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
341		return "sh";
342
343	return arch;
344}
345
346const char *perf_env__arch(struct perf_env *env)
347{
348	char *arch_name;
349
350	if (!env || !env->arch) { /* Assume local operation */
351		static struct utsname uts = { .machine[0] = '\0', };
352		if (uts.machine[0] == '\0' && uname(&uts) < 0)
353			return NULL;
354		arch_name = uts.machine;
355	} else
356		arch_name = env->arch;
357
358	return normalize_arch(arch_name);
359}
360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361
362int perf_env__numa_node(struct perf_env *env, int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
363{
364	if (!env->nr_numa_map) {
365		struct numa_node *nn;
366		int i, nr = 0;
367
368		for (i = 0; i < env->nr_numa_nodes; i++) {
369			nn = &env->numa_nodes[i];
370			nr = max(nr, perf_cpu_map__max(nn->map));
371		}
372
373		nr++;
374
375		/*
376		 * We initialize the numa_map array to prepare
377		 * it for missing cpus, which return node -1
378		 */
379		env->numa_map = malloc(nr * sizeof(int));
380		if (!env->numa_map)
381			return -1;
382
383		for (i = 0; i < nr; i++)
384			env->numa_map[i] = -1;
385
386		env->nr_numa_map = nr;
387
388		for (i = 0; i < env->nr_numa_nodes; i++) {
389			int tmp, j;
 
390
391			nn = &env->numa_nodes[i];
392			perf_cpu_map__for_each_cpu(j, tmp, nn->map)
393				env->numa_map[j] = i;
394		}
395	}
396
397	return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include "cpumap.h"
  3#include "debug.h"
  4#include "env.h"
  5#include "util/header.h"
  6#include <linux/ctype.h>
  7#include <linux/zalloc.h>
 
  8#include "cgroup.h"
  9#include <errno.h>
 10#include <sys/utsname.h>
 
 11#include <stdlib.h>
 12#include <string.h>
 13#include "strbuf.h"
 14
 15struct perf_env perf_env;
 16
 17#ifdef HAVE_LIBBPF_SUPPORT
 18#include "bpf-event.h"
 19#include "bpf-utils.h"
 20#include <bpf/libbpf.h>
 21
 22void perf_env__insert_bpf_prog_info(struct perf_env *env,
 23				    struct bpf_prog_info_node *info_node)
 24{
 25	__u32 prog_id = info_node->info_linear->info.id;
 26	struct bpf_prog_info_node *node;
 27	struct rb_node *parent = NULL;
 28	struct rb_node **p;
 29
 30	down_write(&env->bpf_progs.lock);
 31	p = &env->bpf_progs.infos.rb_node;
 32
 33	while (*p != NULL) {
 34		parent = *p;
 35		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
 36		if (prog_id < node->info_linear->info.id) {
 37			p = &(*p)->rb_left;
 38		} else if (prog_id > node->info_linear->info.id) {
 39			p = &(*p)->rb_right;
 40		} else {
 41			pr_debug("duplicated bpf prog info %u\n", prog_id);
 42			goto out;
 43		}
 44	}
 45
 46	rb_link_node(&info_node->rb_node, parent, p);
 47	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
 48	env->bpf_progs.infos_cnt++;
 49out:
 50	up_write(&env->bpf_progs.lock);
 51}
 52
 53struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
 54							__u32 prog_id)
 55{
 56	struct bpf_prog_info_node *node = NULL;
 57	struct rb_node *n;
 58
 59	down_read(&env->bpf_progs.lock);
 60	n = env->bpf_progs.infos.rb_node;
 61
 62	while (n) {
 63		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
 64		if (prog_id < node->info_linear->info.id)
 65			n = n->rb_left;
 66		else if (prog_id > node->info_linear->info.id)
 67			n = n->rb_right;
 68		else
 69			goto out;
 70	}
 71	node = NULL;
 72
 73out:
 74	up_read(&env->bpf_progs.lock);
 75	return node;
 76}
 77
 78bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
 79{
 80	struct rb_node *parent = NULL;
 81	__u32 btf_id = btf_node->id;
 82	struct btf_node *node;
 83	struct rb_node **p;
 84	bool ret = true;
 85
 86	down_write(&env->bpf_progs.lock);
 87	p = &env->bpf_progs.btfs.rb_node;
 88
 89	while (*p != NULL) {
 90		parent = *p;
 91		node = rb_entry(parent, struct btf_node, rb_node);
 92		if (btf_id < node->id) {
 93			p = &(*p)->rb_left;
 94		} else if (btf_id > node->id) {
 95			p = &(*p)->rb_right;
 96		} else {
 97			pr_debug("duplicated btf %u\n", btf_id);
 98			ret = false;
 99			goto out;
100		}
101	}
102
103	rb_link_node(&btf_node->rb_node, parent, p);
104	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
105	env->bpf_progs.btfs_cnt++;
106out:
107	up_write(&env->bpf_progs.lock);
108	return ret;
109}
110
111struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
112{
113	struct btf_node *node = NULL;
114	struct rb_node *n;
115
116	down_read(&env->bpf_progs.lock);
117	n = env->bpf_progs.btfs.rb_node;
118
119	while (n) {
120		node = rb_entry(n, struct btf_node, rb_node);
121		if (btf_id < node->id)
122			n = n->rb_left;
123		else if (btf_id > node->id)
124			n = n->rb_right;
125		else
126			goto out;
127	}
128	node = NULL;
129
130out:
131	up_read(&env->bpf_progs.lock);
132	return node;
133}
134
135/* purge data in bpf_progs.infos tree */
136static void perf_env__purge_bpf(struct perf_env *env)
137{
138	struct rb_root *root;
139	struct rb_node *next;
140
141	down_write(&env->bpf_progs.lock);
142
143	root = &env->bpf_progs.infos;
144	next = rb_first(root);
145
146	while (next) {
147		struct bpf_prog_info_node *node;
148
149		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
150		next = rb_next(&node->rb_node);
151		rb_erase(&node->rb_node, root);
152		free(node->info_linear);
153		free(node);
154	}
155
156	env->bpf_progs.infos_cnt = 0;
157
158	root = &env->bpf_progs.btfs;
159	next = rb_first(root);
160
161	while (next) {
162		struct btf_node *node;
163
164		node = rb_entry(next, struct btf_node, rb_node);
165		next = rb_next(&node->rb_node);
166		rb_erase(&node->rb_node, root);
167		free(node);
168	}
169
170	env->bpf_progs.btfs_cnt = 0;
171
172	up_write(&env->bpf_progs.lock);
173}
174#else // HAVE_LIBBPF_SUPPORT
175static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
176{
177}
178#endif // HAVE_LIBBPF_SUPPORT
179
180void perf_env__exit(struct perf_env *env)
181{
182	int i, j;
183
184	perf_env__purge_bpf(env);
185	perf_env__purge_cgroups(env);
186	zfree(&env->hostname);
187	zfree(&env->os_release);
188	zfree(&env->version);
189	zfree(&env->arch);
190	zfree(&env->cpu_desc);
191	zfree(&env->cpuid);
192	zfree(&env->cmdline);
193	zfree(&env->cmdline_argv);
194	zfree(&env->sibling_dies);
195	zfree(&env->sibling_cores);
196	zfree(&env->sibling_threads);
197	zfree(&env->pmu_mappings);
198	zfree(&env->cpu);
199	for (i = 0; i < env->nr_cpu_pmu_caps; i++)
200		zfree(&env->cpu_pmu_caps[i]);
201	zfree(&env->cpu_pmu_caps);
202	zfree(&env->numa_map);
203
204	for (i = 0; i < env->nr_numa_nodes; i++)
205		perf_cpu_map__put(env->numa_nodes[i].map);
206	zfree(&env->numa_nodes);
207
208	for (i = 0; i < env->caches_cnt; i++)
209		cpu_cache_level__free(&env->caches[i]);
210	zfree(&env->caches);
211
212	for (i = 0; i < env->nr_memory_nodes; i++)
213		zfree(&env->memory_nodes[i].set);
214	zfree(&env->memory_nodes);
215
216	for (i = 0; i < env->nr_hybrid_nodes; i++) {
217		zfree(&env->hybrid_nodes[i].pmu_name);
218		zfree(&env->hybrid_nodes[i].cpus);
219	}
220	zfree(&env->hybrid_nodes);
221
222	for (i = 0; i < env->nr_pmus_with_caps; i++) {
223		for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
224			zfree(&env->pmu_caps[i].caps[j]);
225		zfree(&env->pmu_caps[i].caps);
226		zfree(&env->pmu_caps[i].pmu_name);
227	}
228	zfree(&env->pmu_caps);
229}
230
231void perf_env__init(struct perf_env *env)
232{
233#ifdef HAVE_LIBBPF_SUPPORT
234	env->bpf_progs.infos = RB_ROOT;
235	env->bpf_progs.btfs = RB_ROOT;
236	init_rwsem(&env->bpf_progs.lock);
237#endif
238	env->kernel_is_64_bit = -1;
239}
240
241static void perf_env__init_kernel_mode(struct perf_env *env)
242{
243	const char *arch = perf_env__raw_arch(env);
244
245	if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
246	    !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
247	    !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
248	    !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
249		env->kernel_is_64_bit = 1;
250	else
251		env->kernel_is_64_bit = 0;
252}
253
254int perf_env__kernel_is_64_bit(struct perf_env *env)
255{
256	if (env->kernel_is_64_bit == -1)
257		perf_env__init_kernel_mode(env);
258
259	return env->kernel_is_64_bit;
260}
261
262int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
263{
264	int i;
265
266	/* do not include NULL termination */
267	env->cmdline_argv = calloc(argc, sizeof(char *));
268	if (env->cmdline_argv == NULL)
269		goto out_enomem;
270
271	/*
272	 * Must copy argv contents because it gets moved around during option
273	 * parsing:
274	 */
275	for (i = 0; i < argc ; i++) {
276		env->cmdline_argv[i] = argv[i];
277		if (env->cmdline_argv[i] == NULL)
278			goto out_free;
279	}
280
281	env->nr_cmdline = argc;
282
283	return 0;
284out_free:
285	zfree(&env->cmdline_argv);
286out_enomem:
287	return -ENOMEM;
288}
289
290int perf_env__read_cpu_topology_map(struct perf_env *env)
291{
292	int idx, nr_cpus;
293
294	if (env->cpu != NULL)
295		return 0;
296
297	if (env->nr_cpus_avail == 0)
298		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
299
300	nr_cpus = env->nr_cpus_avail;
301	if (nr_cpus == -1)
302		return -EINVAL;
303
304	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
305	if (env->cpu == NULL)
306		return -ENOMEM;
307
308	for (idx = 0; idx < nr_cpus; ++idx) {
309		struct perf_cpu cpu = { .cpu = idx };
310
311		env->cpu[idx].core_id	= cpu__get_core_id(cpu);
312		env->cpu[idx].socket_id	= cpu__get_socket_id(cpu);
313		env->cpu[idx].die_id	= cpu__get_die_id(cpu);
314	}
315
316	env->nr_cpus_avail = nr_cpus;
317	return 0;
318}
319
320int perf_env__read_pmu_mappings(struct perf_env *env)
321{
322	struct perf_pmu *pmu = NULL;
323	u32 pmu_num = 0;
324	struct strbuf sb;
325
326	while ((pmu = perf_pmu__scan(pmu))) {
327		if (!pmu->name)
328			continue;
329		pmu_num++;
330	}
331	if (!pmu_num) {
332		pr_debug("pmu mappings not available\n");
333		return -ENOENT;
334	}
335	env->nr_pmu_mappings = pmu_num;
336
337	if (strbuf_init(&sb, 128 * pmu_num) < 0)
338		return -ENOMEM;
339
340	while ((pmu = perf_pmu__scan(pmu))) {
341		if (!pmu->name)
342			continue;
343		if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
344			goto error;
345		/* include a NULL character at the end */
346		if (strbuf_add(&sb, "", 1) < 0)
347			goto error;
348	}
349
350	env->pmu_mappings = strbuf_detach(&sb, NULL);
351
352	return 0;
353
354error:
355	strbuf_release(&sb);
356	return -1;
357}
358
359int perf_env__read_cpuid(struct perf_env *env)
360{
361	char cpuid[128];
362	int err = get_cpuid(cpuid, sizeof(cpuid));
363
364	if (err)
365		return err;
366
367	free(env->cpuid);
368	env->cpuid = strdup(cpuid);
369	if (env->cpuid == NULL)
370		return ENOMEM;
371	return 0;
372}
373
374static int perf_env__read_arch(struct perf_env *env)
375{
376	struct utsname uts;
377
378	if (env->arch)
379		return 0;
380
381	if (!uname(&uts))
382		env->arch = strdup(uts.machine);
383
384	return env->arch ? 0 : -ENOMEM;
385}
386
387static int perf_env__read_nr_cpus_avail(struct perf_env *env)
388{
389	if (env->nr_cpus_avail == 0)
390		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
391
392	return env->nr_cpus_avail ? 0 : -ENOENT;
393}
394
395const char *perf_env__raw_arch(struct perf_env *env)
396{
397	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
398}
399
400int perf_env__nr_cpus_avail(struct perf_env *env)
401{
402	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
403}
404
405void cpu_cache_level__free(struct cpu_cache_level *cache)
406{
407	zfree(&cache->type);
408	zfree(&cache->map);
409	zfree(&cache->size);
410}
411
412/*
413 * Return architecture name in a normalized form.
414 * The conversion logic comes from the Makefile.
415 */
416static const char *normalize_arch(char *arch)
417{
418	if (!strcmp(arch, "x86_64"))
419		return "x86";
420	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
421		return "x86";
422	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
423		return "sparc";
424	if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
425		return "arm64";
426	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
427		return "arm";
428	if (!strncmp(arch, "s390", 4))
429		return "s390";
430	if (!strncmp(arch, "parisc", 6))
431		return "parisc";
432	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
433		return "powerpc";
434	if (!strncmp(arch, "mips", 4))
435		return "mips";
436	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
437		return "sh";
438
439	return arch;
440}
441
442const char *perf_env__arch(struct perf_env *env)
443{
444	char *arch_name;
445
446	if (!env || !env->arch) { /* Assume local operation */
447		static struct utsname uts = { .machine[0] = '\0', };
448		if (uts.machine[0] == '\0' && uname(&uts) < 0)
449			return NULL;
450		arch_name = uts.machine;
451	} else
452		arch_name = env->arch;
453
454	return normalize_arch(arch_name);
455}
456
457const char *perf_env__cpuid(struct perf_env *env)
458{
459	int status;
460
461	if (!env || !env->cpuid) { /* Assume local operation */
462		status = perf_env__read_cpuid(env);
463		if (status)
464			return NULL;
465	}
466
467	return env->cpuid;
468}
469
470int perf_env__nr_pmu_mappings(struct perf_env *env)
471{
472	int status;
473
474	if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
475		status = perf_env__read_pmu_mappings(env);
476		if (status)
477			return 0;
478	}
479
480	return env->nr_pmu_mappings;
481}
482
483const char *perf_env__pmu_mappings(struct perf_env *env)
484{
485	int status;
486
487	if (!env || !env->pmu_mappings) { /* Assume local operation */
488		status = perf_env__read_pmu_mappings(env);
489		if (status)
490			return NULL;
491	}
492
493	return env->pmu_mappings;
494}
495
496int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
497{
498	if (!env->nr_numa_map) {
499		struct numa_node *nn;
500		int i, nr = 0;
501
502		for (i = 0; i < env->nr_numa_nodes; i++) {
503			nn = &env->numa_nodes[i];
504			nr = max(nr, perf_cpu_map__max(nn->map).cpu);
505		}
506
507		nr++;
508
509		/*
510		 * We initialize the numa_map array to prepare
511		 * it for missing cpus, which return node -1
512		 */
513		env->numa_map = malloc(nr * sizeof(int));
514		if (!env->numa_map)
515			return -1;
516
517		for (i = 0; i < nr; i++)
518			env->numa_map[i] = -1;
519
520		env->nr_numa_map = nr;
521
522		for (i = 0; i < env->nr_numa_nodes; i++) {
523			struct perf_cpu tmp;
524			int j;
525
526			nn = &env->numa_nodes[i];
527			perf_cpu_map__for_each_cpu(tmp, j, nn->map)
528				env->numa_map[tmp.cpu] = i;
529		}
530	}
531
532	return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
533}
534
535char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
536			     const char *cap)
537{
538	char *cap_eq;
539	int cap_size;
540	char **ptr;
541	int i, j;
542
543	if (!pmu_name || !cap)
544		return NULL;
545
546	cap_size = strlen(cap);
547	cap_eq = zalloc(cap_size + 2);
548	if (!cap_eq)
549		return NULL;
550
551	memcpy(cap_eq, cap, cap_size);
552	cap_eq[cap_size] = '=';
553
554	if (!strcmp(pmu_name, "cpu")) {
555		for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
556			if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
557				free(cap_eq);
558				return &env->cpu_pmu_caps[i][cap_size + 1];
559			}
560		}
561		goto out;
562	}
563
564	for (i = 0; i < env->nr_pmus_with_caps; i++) {
565		if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
566			continue;
567
568		ptr = env->pmu_caps[i].caps;
569
570		for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
571			if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
572				free(cap_eq);
573				return &ptr[j][cap_size + 1];
574			}
575		}
576	}
577
578out:
579	free(cap_eq);
580	return NULL;
581}