Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Syncookies implementation for the Linux kernel
  4 *
  5 *  Copyright (C) 1997 Andi Kleen
  6 *  Based on ideas by D.J.Bernstein and Eric Schenk.
  7 */
  8
  9#include <linux/tcp.h>
 10#include <linux/slab.h>
 11#include <linux/random.h>
 12#include <linux/siphash.h>
 13#include <linux/kernel.h>
 14#include <linux/export.h>
 15#include <net/secure_seq.h>
 16#include <net/tcp.h>
 17#include <net/route.h>
 18
 19static siphash_key_t syncookie_secret[2] __read_mostly;
 20
 21#define COOKIEBITS 24	/* Upper bits store count */
 22#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
 23
 24/* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
 25 * stores TCP options:
 26 *
 27 * MSB                               LSB
 28 * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
 29 * |  Timestamp | ECN | SACK | WScale  |
 30 *
 31 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
 32 * any) to figure out which TCP options we should use for the rebuilt
 33 * connection.
 34 *
 35 * A WScale setting of '0xf' (which is an invalid scaling value)
 36 * means that original syn did not include the TCP window scaling option.
 37 */
 38#define TS_OPT_WSCALE_MASK	0xf
 39#define TS_OPT_SACK		BIT(4)
 40#define TS_OPT_ECN		BIT(5)
 41/* There is no TS_OPT_TIMESTAMP:
 42 * if ACK contains timestamp option, we already know it was
 43 * requested/supported by the syn/synack exchange.
 44 */
 45#define TSBITS	6
 46#define TSMASK	(((__u32)1 << TSBITS) - 1)
 47
 48static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
 49		       u32 count, int c)
 50{
 51	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
 52	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
 53			    (__force u32)sport << 16 | (__force u32)dport,
 54			    count, &syncookie_secret[c]);
 55}
 56
 57
 58/*
 59 * when syncookies are in effect and tcp timestamps are enabled we encode
 60 * tcp options in the lower bits of the timestamp value that will be
 61 * sent in the syn-ack.
 62 * Since subsequent timestamps use the normal tcp_time_stamp value, we
 63 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
 64 */
 65u64 cookie_init_timestamp(struct request_sock *req, u64 now)
 66{
 67	struct inet_request_sock *ireq;
 68	u32 ts, ts_now = tcp_ns_to_ts(now);
 69	u32 options = 0;
 70
 71	ireq = inet_rsk(req);
 72
 73	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
 74	if (ireq->sack_ok)
 75		options |= TS_OPT_SACK;
 76	if (ireq->ecn_ok)
 77		options |= TS_OPT_ECN;
 78
 79	ts = ts_now & ~TSMASK;
 80	ts |= options;
 81	if (ts > ts_now) {
 82		ts >>= TSBITS;
 83		ts--;
 84		ts <<= TSBITS;
 85		ts |= options;
 86	}
 87	return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ);
 88}
 89
 90
 91static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
 92				   __be16 dport, __u32 sseq, __u32 data)
 93{
 94	/*
 95	 * Compute the secure sequence number.
 96	 * The output should be:
 97	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
 98	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
 99	 * Where sseq is their sequence number and count increases every
100	 * minute by 1.
101	 * As an extra hack, we add a small "data" value that encodes the
102	 * MSS into the second hash value.
103	 */
104	u32 count = tcp_cookie_time();
105	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
106		sseq + (count << COOKIEBITS) +
107		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
108		 & COOKIEMASK));
109}
110
111/*
112 * This retrieves the small "data" value from the syncookie.
113 * If the syncookie is bad, the data returned will be out of
114 * range.  This must be checked by the caller.
115 *
116 * The count value used to generate the cookie must be less than
117 * MAX_SYNCOOKIE_AGE minutes in the past.
118 * The return value (__u32)-1 if this test fails.
119 */
120static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
121				  __be16 sport, __be16 dport, __u32 sseq)
122{
123	u32 diff, count = tcp_cookie_time();
124
125	/* Strip away the layers from the cookie */
126	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
127
128	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
129	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
130	if (diff >= MAX_SYNCOOKIE_AGE)
131		return (__u32)-1;
132
133	return (cookie -
134		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
135		& COOKIEMASK;	/* Leaving the data behind */
136}
137
138/*
139 * MSS Values are chosen based on the 2011 paper
140 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
141 * Values ..
142 *  .. lower than 536 are rare (< 0.2%)
143 *  .. between 537 and 1299 account for less than < 1.5% of observed values
144 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
145 *  .. exceeding 1460 are very rare (< 0.04%)
146 *
147 *  1460 is the single most frequently announced mss value (30 to 46% depending
148 *  on monitor location).  Table must be sorted.
149 */
150static __u16 const msstab[] = {
151	536,
152	1300,
153	1440,	/* 1440, 1452: PPPoE */
154	1460,
155};
156
157/*
158 * Generate a syncookie.  mssp points to the mss, which is returned
159 * rounded down to the value encoded in the cookie.
160 */
161u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
162			      u16 *mssp)
163{
164	int mssind;
165	const __u16 mss = *mssp;
166
167	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
168		if (mss >= msstab[mssind])
169			break;
170	*mssp = msstab[mssind];
171
172	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
173				     th->source, th->dest, ntohl(th->seq),
174				     mssind);
175}
176EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
177
178__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
179{
180	const struct iphdr *iph = ip_hdr(skb);
181	const struct tcphdr *th = tcp_hdr(skb);
182
183	return __cookie_v4_init_sequence(iph, th, mssp);
184}
185
186/*
187 * Check if a ack sequence number is a valid syncookie.
188 * Return the decoded mss if it is, or 0 if not.
189 */
190int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
191		      u32 cookie)
192{
193	__u32 seq = ntohl(th->seq) - 1;
194	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
195					    th->source, th->dest, seq);
196
197	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
198}
199EXPORT_SYMBOL_GPL(__cookie_v4_check);
200
201struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
202				 struct request_sock *req,
203				 struct dst_entry *dst, u32 tsoff)
204{
205	struct inet_connection_sock *icsk = inet_csk(sk);
206	struct sock *child;
207	bool own_req;
208
209	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
210						 NULL, &own_req);
211	if (child) {
212		refcount_set(&req->rsk_refcnt, 1);
213		tcp_sk(child)->tsoffset = tsoff;
214		sock_rps_save_rxhash(child, skb);
215
216		if (rsk_drop_req(req)) {
217			reqsk_put(req);
218			return child;
219		}
220
221		if (inet_csk_reqsk_queue_add(sk, req, child))
222			return child;
223
224		bh_unlock_sock(child);
225		sock_put(child);
226	}
227	__reqsk_free(req);
228
229	return NULL;
230}
231EXPORT_SYMBOL(tcp_get_cookie_sock);
232
233/*
234 * when syncookies are in effect and tcp timestamps are enabled we stored
235 * additional tcp options in the timestamp.
236 * This extracts these options from the timestamp echo.
237 *
238 * return false if we decode a tcp option that is disabled
239 * on the host.
240 */
241bool cookie_timestamp_decode(const struct net *net,
242			     struct tcp_options_received *tcp_opt)
243{
244	/* echoed timestamp, lowest bits contain options */
245	u32 options = tcp_opt->rcv_tsecr;
246
247	if (!tcp_opt->saw_tstamp)  {
248		tcp_clear_options(tcp_opt);
249		return true;
250	}
251
252	if (!net->ipv4.sysctl_tcp_timestamps)
253		return false;
254
255	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
256
257	if (tcp_opt->sack_ok && !net->ipv4.sysctl_tcp_sack)
258		return false;
259
260	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
261		return true; /* no window scaling */
262
263	tcp_opt->wscale_ok = 1;
264	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
265
266	return net->ipv4.sysctl_tcp_window_scaling != 0;
267}
268EXPORT_SYMBOL(cookie_timestamp_decode);
269
270bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
271		   const struct net *net, const struct dst_entry *dst)
272{
273	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
274
275	if (!ecn_ok)
276		return false;
277
278	if (net->ipv4.sysctl_tcp_ecn)
279		return true;
280
281	return dst_feature(dst, RTAX_FEATURE_ECN);
282}
283EXPORT_SYMBOL(cookie_ecn_ok);
284
285struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 
286					    struct sock *sk,
287					    struct sk_buff *skb)
288{
289	struct request_sock *req;
290
291#ifdef CONFIG_MPTCP
292	struct tcp_request_sock *treq;
 
293
294	if (sk_is_mptcp(sk))
295		ops = &mptcp_subflow_request_sock_ops;
296#endif
 
297
298	req = inet_reqsk_alloc(ops, sk, false);
299	if (!req)
300		return NULL;
301
302#if IS_ENABLED(CONFIG_MPTCP)
303	treq = tcp_rsk(req);
 
 
 
 
 
 
304	treq->is_mptcp = sk_is_mptcp(sk);
305	if (treq->is_mptcp) {
306		int err = mptcp_subflow_init_cookie_req(req, sk, skb);
307
308		if (err) {
309			reqsk_free(req);
310			return NULL;
311		}
312	}
313#endif
314
315	return req;
316}
317EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
318
319/* On input, sk is a listener.
320 * Output is listener if incoming packet would not create a child
321 *           NULL if memory could not be allocated.
322 */
323struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
324{
325	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
326	struct tcp_options_received tcp_opt;
327	struct inet_request_sock *ireq;
328	struct tcp_request_sock *treq;
329	struct tcp_sock *tp = tcp_sk(sk);
330	const struct tcphdr *th = tcp_hdr(skb);
331	__u32 cookie = ntohl(th->ack_seq) - 1;
332	struct sock *ret = sk;
333	struct request_sock *req;
334	int mss;
335	struct rtable *rt;
336	__u8 rcv_wscale;
337	struct flowi4 fl4;
338	u32 tsoff = 0;
339
340	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
 
341		goto out;
342
343	if (tcp_synq_no_recent_overflow(sk))
344		goto out;
345
346	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
347	if (mss == 0) {
348		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
349		goto out;
350	}
351
352	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
353
354	/* check for timestamp cookie support */
355	memset(&tcp_opt, 0, sizeof(tcp_opt));
356	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
357
358	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
359		tsoff = secure_tcp_ts_off(sock_net(sk),
360					  ip_hdr(skb)->daddr,
361					  ip_hdr(skb)->saddr);
362		tcp_opt.rcv_tsecr -= tsoff;
363	}
364
365	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
366		goto out;
367
368	ret = NULL;
369	req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops, sk, skb);
 
370	if (!req)
371		goto out;
372
373	ireq = inet_rsk(req);
374	treq = tcp_rsk(req);
375	treq->rcv_isn		= ntohl(th->seq) - 1;
376	treq->snt_isn		= cookie;
377	treq->ts_off		= 0;
378	treq->txhash		= net_tx_rndhash();
379	req->mss		= mss;
380	ireq->ir_num		= ntohs(th->dest);
381	ireq->ir_rmt_port	= th->source;
382	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
383	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
384	ireq->ir_mark		= inet_request_mark(sk, skb);
385	ireq->snd_wscale	= tcp_opt.snd_wscale;
386	ireq->sack_ok		= tcp_opt.sack_ok;
387	ireq->wscale_ok		= tcp_opt.wscale_ok;
388	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
389	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
390	treq->snt_synack	= 0;
391	treq->tfo_listener	= false;
392
393	if (IS_ENABLED(CONFIG_SMC))
394		ireq->smc_ok = 0;
395
396	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
397
398	/* We throwed the options of the initial SYN away, so we hope
399	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
400	 */
401	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
402
403	if (security_inet_conn_request(sk, skb, req)) {
404		reqsk_free(req);
405		goto out;
406	}
407
408	req->num_retrans = 0;
409
410	/*
411	 * We need to lookup the route here to get at the correct
412	 * window size. We should better make sure that the window size
413	 * hasn't changed since we received the original syn, but I see
414	 * no easy way to do this.
415	 */
416	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
417			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
418			   inet_sk_flowi_flags(sk),
419			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
420			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
421	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
422	rt = ip_route_output_key(sock_net(sk), &fl4);
423	if (IS_ERR(rt)) {
424		reqsk_free(req);
425		goto out;
426	}
427
428	/* Try to redo what tcp_v4_send_synack did. */
429	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
 
 
 
 
 
430
431	tcp_select_initial_window(sk, tcp_full_space(sk), req->mss,
432				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
433				  ireq->wscale_ok, &rcv_wscale,
434				  dst_metric(&rt->dst, RTAX_INITRWND));
435
436	ireq->rcv_wscale  = rcv_wscale;
437	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
438
439	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
440	/* ip_queue_xmit() depends on our flow being setup
441	 * Normal sockets get it right from inet_csk_route_child_sock()
442	 */
443	if (ret)
444		inet_sk(ret)->cork.fl.u.ip4 = fl4;
445out:	return ret;
446}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Syncookies implementation for the Linux kernel
  4 *
  5 *  Copyright (C) 1997 Andi Kleen
  6 *  Based on ideas by D.J.Bernstein and Eric Schenk.
  7 */
  8
  9#include <linux/tcp.h>
 
 
 10#include <linux/siphash.h>
 11#include <linux/kernel.h>
 12#include <linux/export.h>
 13#include <net/secure_seq.h>
 14#include <net/tcp.h>
 15#include <net/route.h>
 16
 17static siphash_aligned_key_t syncookie_secret[2];
 18
 19#define COOKIEBITS 24	/* Upper bits store count */
 20#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
 21
 22/* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
 23 * stores TCP options:
 24 *
 25 * MSB                               LSB
 26 * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
 27 * |  Timestamp | ECN | SACK | WScale  |
 28 *
 29 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
 30 * any) to figure out which TCP options we should use for the rebuilt
 31 * connection.
 32 *
 33 * A WScale setting of '0xf' (which is an invalid scaling value)
 34 * means that original syn did not include the TCP window scaling option.
 35 */
 36#define TS_OPT_WSCALE_MASK	0xf
 37#define TS_OPT_SACK		BIT(4)
 38#define TS_OPT_ECN		BIT(5)
 39/* There is no TS_OPT_TIMESTAMP:
 40 * if ACK contains timestamp option, we already know it was
 41 * requested/supported by the syn/synack exchange.
 42 */
 43#define TSBITS	6
 44#define TSMASK	(((__u32)1 << TSBITS) - 1)
 45
 46static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
 47		       u32 count, int c)
 48{
 49	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
 50	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
 51			    (__force u32)sport << 16 | (__force u32)dport,
 52			    count, &syncookie_secret[c]);
 53}
 54
 55
 56/*
 57 * when syncookies are in effect and tcp timestamps are enabled we encode
 58 * tcp options in the lower bits of the timestamp value that will be
 59 * sent in the syn-ack.
 60 * Since subsequent timestamps use the normal tcp_time_stamp value, we
 61 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
 62 */
 63u64 cookie_init_timestamp(struct request_sock *req, u64 now)
 64{
 65	struct inet_request_sock *ireq;
 66	u32 ts, ts_now = tcp_ns_to_ts(now);
 67	u32 options = 0;
 68
 69	ireq = inet_rsk(req);
 70
 71	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
 72	if (ireq->sack_ok)
 73		options |= TS_OPT_SACK;
 74	if (ireq->ecn_ok)
 75		options |= TS_OPT_ECN;
 76
 77	ts = ts_now & ~TSMASK;
 78	ts |= options;
 79	if (ts > ts_now) {
 80		ts >>= TSBITS;
 81		ts--;
 82		ts <<= TSBITS;
 83		ts |= options;
 84	}
 85	return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ);
 86}
 87
 88
 89static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
 90				   __be16 dport, __u32 sseq, __u32 data)
 91{
 92	/*
 93	 * Compute the secure sequence number.
 94	 * The output should be:
 95	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
 96	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
 97	 * Where sseq is their sequence number and count increases every
 98	 * minute by 1.
 99	 * As an extra hack, we add a small "data" value that encodes the
100	 * MSS into the second hash value.
101	 */
102	u32 count = tcp_cookie_time();
103	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
104		sseq + (count << COOKIEBITS) +
105		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
106		 & COOKIEMASK));
107}
108
109/*
110 * This retrieves the small "data" value from the syncookie.
111 * If the syncookie is bad, the data returned will be out of
112 * range.  This must be checked by the caller.
113 *
114 * The count value used to generate the cookie must be less than
115 * MAX_SYNCOOKIE_AGE minutes in the past.
116 * The return value (__u32)-1 if this test fails.
117 */
118static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
119				  __be16 sport, __be16 dport, __u32 sseq)
120{
121	u32 diff, count = tcp_cookie_time();
122
123	/* Strip away the layers from the cookie */
124	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
125
126	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
127	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
128	if (diff >= MAX_SYNCOOKIE_AGE)
129		return (__u32)-1;
130
131	return (cookie -
132		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
133		& COOKIEMASK;	/* Leaving the data behind */
134}
135
136/*
137 * MSS Values are chosen based on the 2011 paper
138 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
139 * Values ..
140 *  .. lower than 536 are rare (< 0.2%)
141 *  .. between 537 and 1299 account for less than < 1.5% of observed values
142 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
143 *  .. exceeding 1460 are very rare (< 0.04%)
144 *
145 *  1460 is the single most frequently announced mss value (30 to 46% depending
146 *  on monitor location).  Table must be sorted.
147 */
148static __u16 const msstab[] = {
149	536,
150	1300,
151	1440,	/* 1440, 1452: PPPoE */
152	1460,
153};
154
155/*
156 * Generate a syncookie.  mssp points to the mss, which is returned
157 * rounded down to the value encoded in the cookie.
158 */
159u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
160			      u16 *mssp)
161{
162	int mssind;
163	const __u16 mss = *mssp;
164
165	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
166		if (mss >= msstab[mssind])
167			break;
168	*mssp = msstab[mssind];
169
170	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
171				     th->source, th->dest, ntohl(th->seq),
172				     mssind);
173}
174EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
175
176__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
177{
178	const struct iphdr *iph = ip_hdr(skb);
179	const struct tcphdr *th = tcp_hdr(skb);
180
181	return __cookie_v4_init_sequence(iph, th, mssp);
182}
183
184/*
185 * Check if a ack sequence number is a valid syncookie.
186 * Return the decoded mss if it is, or 0 if not.
187 */
188int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
189		      u32 cookie)
190{
191	__u32 seq = ntohl(th->seq) - 1;
192	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
193					    th->source, th->dest, seq);
194
195	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
196}
197EXPORT_SYMBOL_GPL(__cookie_v4_check);
198
199struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
200				 struct request_sock *req,
201				 struct dst_entry *dst, u32 tsoff)
202{
203	struct inet_connection_sock *icsk = inet_csk(sk);
204	struct sock *child;
205	bool own_req;
206
207	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
208						 NULL, &own_req);
209	if (child) {
210		refcount_set(&req->rsk_refcnt, 1);
211		tcp_sk(child)->tsoffset = tsoff;
212		sock_rps_save_rxhash(child, skb);
213
214		if (rsk_drop_req(req)) {
215			reqsk_put(req);
216			return child;
217		}
218
219		if (inet_csk_reqsk_queue_add(sk, req, child))
220			return child;
221
222		bh_unlock_sock(child);
223		sock_put(child);
224	}
225	__reqsk_free(req);
226
227	return NULL;
228}
229EXPORT_SYMBOL(tcp_get_cookie_sock);
230
231/*
232 * when syncookies are in effect and tcp timestamps are enabled we stored
233 * additional tcp options in the timestamp.
234 * This extracts these options from the timestamp echo.
235 *
236 * return false if we decode a tcp option that is disabled
237 * on the host.
238 */
239bool cookie_timestamp_decode(const struct net *net,
240			     struct tcp_options_received *tcp_opt)
241{
242	/* echoed timestamp, lowest bits contain options */
243	u32 options = tcp_opt->rcv_tsecr;
244
245	if (!tcp_opt->saw_tstamp)  {
246		tcp_clear_options(tcp_opt);
247		return true;
248	}
249
250	if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
251		return false;
252
253	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
254
255	if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
256		return false;
257
258	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
259		return true; /* no window scaling */
260
261	tcp_opt->wscale_ok = 1;
262	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
263
264	return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
265}
266EXPORT_SYMBOL(cookie_timestamp_decode);
267
268bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
269		   const struct net *net, const struct dst_entry *dst)
270{
271	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
272
273	if (!ecn_ok)
274		return false;
275
276	if (READ_ONCE(net->ipv4.sysctl_tcp_ecn))
277		return true;
278
279	return dst_feature(dst, RTAX_FEATURE_ECN);
280}
281EXPORT_SYMBOL(cookie_ecn_ok);
282
283struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
284					    const struct tcp_request_sock_ops *af_ops,
285					    struct sock *sk,
286					    struct sk_buff *skb)
287{
 
 
 
288	struct tcp_request_sock *treq;
289	struct request_sock *req;
290
291	if (sk_is_mptcp(sk))
292		req = mptcp_subflow_reqsk_alloc(ops, sk, false);
293	else
294		req = inet_reqsk_alloc(ops, sk, false);
295
 
296	if (!req)
297		return NULL;
298
 
299	treq = tcp_rsk(req);
300
301	/* treq->af_specific might be used to perform TCP_MD5 lookup */
302	treq->af_specific = af_ops;
303
304	treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
305#if IS_ENABLED(CONFIG_MPTCP)
306	treq->is_mptcp = sk_is_mptcp(sk);
307	if (treq->is_mptcp) {
308		int err = mptcp_subflow_init_cookie_req(req, sk, skb);
309
310		if (err) {
311			reqsk_free(req);
312			return NULL;
313		}
314	}
315#endif
316
317	return req;
318}
319EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
320
321/* On input, sk is a listener.
322 * Output is listener if incoming packet would not create a child
323 *           NULL if memory could not be allocated.
324 */
325struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
326{
327	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
328	struct tcp_options_received tcp_opt;
329	struct inet_request_sock *ireq;
330	struct tcp_request_sock *treq;
331	struct tcp_sock *tp = tcp_sk(sk);
332	const struct tcphdr *th = tcp_hdr(skb);
333	__u32 cookie = ntohl(th->ack_seq) - 1;
334	struct sock *ret = sk;
335	struct request_sock *req;
336	int full_space, mss;
337	struct rtable *rt;
338	__u8 rcv_wscale;
339	struct flowi4 fl4;
340	u32 tsoff = 0;
341
342	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) ||
343	    !th->ack || th->rst)
344		goto out;
345
346	if (tcp_synq_no_recent_overflow(sk))
347		goto out;
348
349	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
350	if (mss == 0) {
351		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
352		goto out;
353	}
354
355	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
356
357	/* check for timestamp cookie support */
358	memset(&tcp_opt, 0, sizeof(tcp_opt));
359	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
360
361	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
362		tsoff = secure_tcp_ts_off(sock_net(sk),
363					  ip_hdr(skb)->daddr,
364					  ip_hdr(skb)->saddr);
365		tcp_opt.rcv_tsecr -= tsoff;
366	}
367
368	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
369		goto out;
370
371	ret = NULL;
372	req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops,
373				     &tcp_request_sock_ipv4_ops, sk, skb);
374	if (!req)
375		goto out;
376
377	ireq = inet_rsk(req);
378	treq = tcp_rsk(req);
379	treq->rcv_isn		= ntohl(th->seq) - 1;
380	treq->snt_isn		= cookie;
381	treq->ts_off		= 0;
382	treq->txhash		= net_tx_rndhash();
383	req->mss		= mss;
384	ireq->ir_num		= ntohs(th->dest);
385	ireq->ir_rmt_port	= th->source;
386	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
387	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
388	ireq->ir_mark		= inet_request_mark(sk, skb);
389	ireq->snd_wscale	= tcp_opt.snd_wscale;
390	ireq->sack_ok		= tcp_opt.sack_ok;
391	ireq->wscale_ok		= tcp_opt.wscale_ok;
392	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
393	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
394	treq->snt_synack	= 0;
395	treq->tfo_listener	= false;
396
397	if (IS_ENABLED(CONFIG_SMC))
398		ireq->smc_ok = 0;
399
400	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
401
402	/* We throwed the options of the initial SYN away, so we hope
403	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
404	 */
405	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
406
407	if (security_inet_conn_request(sk, skb, req)) {
408		reqsk_free(req);
409		goto out;
410	}
411
412	req->num_retrans = 0;
413
414	/*
415	 * We need to lookup the route here to get at the correct
416	 * window size. We should better make sure that the window size
417	 * hasn't changed since we received the original syn, but I see
418	 * no easy way to do this.
419	 */
420	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
421			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
422			   inet_sk_flowi_flags(sk),
423			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
424			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
425	security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
426	rt = ip_route_output_key(sock_net(sk), &fl4);
427	if (IS_ERR(rt)) {
428		reqsk_free(req);
429		goto out;
430	}
431
432	/* Try to redo what tcp_v4_send_synack did. */
433	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
434	/* limit the window selection if the user enforce a smaller rx buffer */
435	full_space = tcp_full_space(sk);
436	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
437	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
438		req->rsk_window_clamp = full_space;
439
440	tcp_select_initial_window(sk, full_space, req->mss,
441				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
442				  ireq->wscale_ok, &rcv_wscale,
443				  dst_metric(&rt->dst, RTAX_INITRWND));
444
445	ireq->rcv_wscale  = rcv_wscale;
446	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
447
448	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
449	/* ip_queue_xmit() depends on our flow being setup
450	 * Normal sockets get it right from inet_csk_route_child_sock()
451	 */
452	if (ret)
453		inet_sk(ret)->cork.fl.u.ip4 = fl4;
454out:	return ret;
455}