Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * inet fragments management
  4 *
  5 * 		Authors:	Pavel Emelyanov <xemul@openvz.org>
  6 *				Started as consolidation of ipv4/ip_fragment.c,
  7 *				ipv6/reassembly. and ipv6 nf conntrack reassembly
  8 */
  9
 10#include <linux/list.h>
 11#include <linux/spinlock.h>
 12#include <linux/module.h>
 13#include <linux/timer.h>
 14#include <linux/mm.h>
 15#include <linux/random.h>
 16#include <linux/skbuff.h>
 17#include <linux/rtnetlink.h>
 18#include <linux/slab.h>
 19#include <linux/rhashtable.h>
 20
 21#include <net/sock.h>
 22#include <net/inet_frag.h>
 23#include <net/inet_ecn.h>
 24#include <net/ip.h>
 25#include <net/ipv6.h>
 26
 27/* Use skb->cb to track consecutive/adjacent fragments coming at
 28 * the end of the queue. Nodes in the rb-tree queue will
 29 * contain "runs" of one or more adjacent fragments.
 30 *
 31 * Invariants:
 32 * - next_frag is NULL at the tail of a "run";
 33 * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
 34 */
 35struct ipfrag_skb_cb {
 36	union {
 37		struct inet_skb_parm	h4;
 38		struct inet6_skb_parm	h6;
 39	};
 40	struct sk_buff		*next_frag;
 41	int			frag_run_len;
 42};
 43
 44#define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb))
 45
 46static void fragcb_clear(struct sk_buff *skb)
 47{
 48	RB_CLEAR_NODE(&skb->rbnode);
 49	FRAG_CB(skb)->next_frag = NULL;
 50	FRAG_CB(skb)->frag_run_len = skb->len;
 51}
 52
 53/* Append skb to the last "run". */
 54static void fragrun_append_to_last(struct inet_frag_queue *q,
 55				   struct sk_buff *skb)
 56{
 57	fragcb_clear(skb);
 58
 59	FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
 60	FRAG_CB(q->fragments_tail)->next_frag = skb;
 61	q->fragments_tail = skb;
 62}
 63
 64/* Create a new "run" with the skb. */
 65static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
 66{
 67	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
 68	fragcb_clear(skb);
 69
 70	if (q->last_run_head)
 71		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
 72			     &q->last_run_head->rbnode.rb_right);
 73	else
 74		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
 75	rb_insert_color(&skb->rbnode, &q->rb_fragments);
 76
 77	q->fragments_tail = skb;
 78	q->last_run_head = skb;
 79}
 80
 81/* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
 82 * Value : 0xff if frame should be dropped.
 83 *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
 84 */
 85const u8 ip_frag_ecn_table[16] = {
 86	/* at least one fragment had CE, and others ECT_0 or ECT_1 */
 87	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE,
 88	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE,
 89	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE,
 90
 91	/* invalid combinations : drop frame */
 92	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
 93	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
 94	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
 95	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
 96	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
 97	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
 98	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
 99};
100EXPORT_SYMBOL(ip_frag_ecn_table);
101
102int inet_frags_init(struct inet_frags *f)
103{
104	f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
105					    NULL);
106	if (!f->frags_cachep)
107		return -ENOMEM;
108
109	refcount_set(&f->refcnt, 1);
110	init_completion(&f->completion);
111	return 0;
112}
113EXPORT_SYMBOL(inet_frags_init);
114
115void inet_frags_fini(struct inet_frags *f)
116{
117	if (refcount_dec_and_test(&f->refcnt))
118		complete(&f->completion);
119
120	wait_for_completion(&f->completion);
121
122	kmem_cache_destroy(f->frags_cachep);
123	f->frags_cachep = NULL;
124}
125EXPORT_SYMBOL(inet_frags_fini);
126
127/* called from rhashtable_free_and_destroy() at netns_frags dismantle */
128static void inet_frags_free_cb(void *ptr, void *arg)
129{
130	struct inet_frag_queue *fq = ptr;
131	int count;
132
133	count = del_timer_sync(&fq->timer) ? 1 : 0;
134
135	spin_lock_bh(&fq->lock);
 
136	if (!(fq->flags & INET_FRAG_COMPLETE)) {
137		fq->flags |= INET_FRAG_COMPLETE;
138		count++;
139	} else if (fq->flags & INET_FRAG_HASH_DEAD) {
140		count++;
141	}
142	spin_unlock_bh(&fq->lock);
143
144	if (refcount_sub_and_test(count, &fq->refcnt))
145		inet_frag_destroy(fq);
146}
147
148static void fqdir_work_fn(struct work_struct *work)
 
 
149{
150	struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
151	struct inet_frags *f = fqdir->f;
 
152
153	rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
 
154
155	/* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
156	 * have completed, since they need to dereference fqdir.
157	 * Would it not be nice to have kfree_rcu_barrier() ? :)
158	 */
159	rcu_barrier();
160
161	if (refcount_dec_and_test(&f->refcnt))
162		complete(&f->completion);
 
 
163
164	kfree(fqdir);
 
 
 
 
 
 
 
 
 
 
 
 
 
165}
166
167int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
168{
169	struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
170	int res;
171
172	if (!fqdir)
173		return -ENOMEM;
174	fqdir->f = f;
175	fqdir->net = net;
176	res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
177	if (res < 0) {
178		kfree(fqdir);
179		return res;
180	}
181	refcount_inc(&f->refcnt);
182	*fqdirp = fqdir;
183	return 0;
184}
185EXPORT_SYMBOL(fqdir_init);
186
 
 
 
 
 
 
 
 
 
 
 
 
187void fqdir_exit(struct fqdir *fqdir)
188{
189	INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
190	queue_work(system_wq, &fqdir->destroy_work);
191}
192EXPORT_SYMBOL(fqdir_exit);
193
194void inet_frag_kill(struct inet_frag_queue *fq)
195{
196	if (del_timer(&fq->timer))
197		refcount_dec(&fq->refcnt);
198
199	if (!(fq->flags & INET_FRAG_COMPLETE)) {
200		struct fqdir *fqdir = fq->fqdir;
201
202		fq->flags |= INET_FRAG_COMPLETE;
203		rcu_read_lock();
204		/* The RCU read lock provides a memory barrier
205		 * guaranteeing that if fqdir->dead is false then
206		 * the hash table destruction will not start until
207		 * after we unlock.  Paired with inet_frags_exit_net().
208		 */
209		if (!fqdir->dead) {
210			rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
211					       fqdir->f->rhash_params);
212			refcount_dec(&fq->refcnt);
213		} else {
214			fq->flags |= INET_FRAG_HASH_DEAD;
215		}
216		rcu_read_unlock();
217	}
218}
219EXPORT_SYMBOL(inet_frag_kill);
220
221static void inet_frag_destroy_rcu(struct rcu_head *head)
222{
223	struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
224						 rcu);
225	struct inet_frags *f = q->fqdir->f;
226
227	if (f->destructor)
228		f->destructor(q);
229	kmem_cache_free(f->frags_cachep, q);
230}
231
232unsigned int inet_frag_rbtree_purge(struct rb_root *root)
 
233{
234	struct rb_node *p = rb_first(root);
235	unsigned int sum = 0;
236
237	while (p) {
238		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
239
240		p = rb_next(p);
241		rb_erase(&skb->rbnode, root);
242		while (skb) {
243			struct sk_buff *next = FRAG_CB(skb)->next_frag;
244
245			sum += skb->truesize;
246			kfree_skb(skb);
247			skb = next;
248		}
249	}
250	return sum;
251}
252EXPORT_SYMBOL(inet_frag_rbtree_purge);
253
254void inet_frag_destroy(struct inet_frag_queue *q)
255{
256	struct fqdir *fqdir;
257	unsigned int sum, sum_truesize = 0;
 
258	struct inet_frags *f;
 
259
260	WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
 
 
 
261	WARN_ON(del_timer(&q->timer) != 0);
262
263	/* Release all fragment data. */
264	fqdir = q->fqdir;
265	f = fqdir->f;
266	sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
267	sum = sum_truesize + f->qsize;
268
269	call_rcu(&q->rcu, inet_frag_destroy_rcu);
270
271	sub_frag_mem_limit(fqdir, sum);
272}
273EXPORT_SYMBOL(inet_frag_destroy);
274
275static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
276					       struct inet_frags *f,
277					       void *arg)
278{
279	struct inet_frag_queue *q;
280
281	q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
282	if (!q)
283		return NULL;
284
285	q->fqdir = fqdir;
286	f->constructor(q, arg);
287	add_frag_mem_limit(fqdir, f->qsize);
288
289	timer_setup(&q->timer, f->frag_expire, 0);
290	spin_lock_init(&q->lock);
291	refcount_set(&q->refcnt, 3);
292
293	return q;
294}
295
296static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
297						void *arg,
298						struct inet_frag_queue **prev)
299{
300	struct inet_frags *f = fqdir->f;
301	struct inet_frag_queue *q;
302
303	q = inet_frag_alloc(fqdir, f, arg);
304	if (!q) {
305		*prev = ERR_PTR(-ENOMEM);
306		return NULL;
307	}
308	mod_timer(&q->timer, jiffies + fqdir->timeout);
309
310	*prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
311						 &q->node, f->rhash_params);
312	if (*prev) {
313		q->flags |= INET_FRAG_COMPLETE;
314		inet_frag_kill(q);
315		inet_frag_destroy(q);
316		return NULL;
317	}
318	return q;
319}
320
321/* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
322struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
323{
 
 
324	struct inet_frag_queue *fq = NULL, *prev;
325
326	if (!fqdir->high_thresh || frag_mem_limit(fqdir) > fqdir->high_thresh)
327		return NULL;
328
329	rcu_read_lock();
330
331	prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
332	if (!prev)
333		fq = inet_frag_create(fqdir, key, &prev);
334	if (!IS_ERR_OR_NULL(prev)) {
335		fq = prev;
336		if (!refcount_inc_not_zero(&fq->refcnt))
337			fq = NULL;
338	}
339	rcu_read_unlock();
340	return fq;
341}
342EXPORT_SYMBOL(inet_frag_find);
343
344int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
345			   int offset, int end)
346{
347	struct sk_buff *last = q->fragments_tail;
348
349	/* RFC5722, Section 4, amended by Errata ID : 3089
350	 *                          When reassembling an IPv6 datagram, if
351	 *   one or more its constituent fragments is determined to be an
352	 *   overlapping fragment, the entire datagram (and any constituent
353	 *   fragments) MUST be silently discarded.
354	 *
355	 * Duplicates, however, should be ignored (i.e. skb dropped, but the
356	 * queue/fragments kept for later reassembly).
357	 */
358	if (!last)
359		fragrun_create(q, skb);  /* First fragment. */
360	else if (last->ip_defrag_offset + last->len < end) {
361		/* This is the common case: skb goes to the end. */
362		/* Detect and discard overlaps. */
363		if (offset < last->ip_defrag_offset + last->len)
364			return IPFRAG_OVERLAP;
365		if (offset == last->ip_defrag_offset + last->len)
366			fragrun_append_to_last(q, skb);
367		else
368			fragrun_create(q, skb);
369	} else {
370		/* Binary search. Note that skb can become the first fragment,
371		 * but not the last (covered above).
372		 */
373		struct rb_node **rbn, *parent;
374
375		rbn = &q->rb_fragments.rb_node;
376		do {
377			struct sk_buff *curr;
378			int curr_run_end;
379
380			parent = *rbn;
381			curr = rb_to_skb(parent);
382			curr_run_end = curr->ip_defrag_offset +
383					FRAG_CB(curr)->frag_run_len;
384			if (end <= curr->ip_defrag_offset)
385				rbn = &parent->rb_left;
386			else if (offset >= curr_run_end)
387				rbn = &parent->rb_right;
388			else if (offset >= curr->ip_defrag_offset &&
389				 end <= curr_run_end)
390				return IPFRAG_DUP;
391			else
392				return IPFRAG_OVERLAP;
393		} while (*rbn);
394		/* Here we have parent properly set, and rbn pointing to
395		 * one of its NULL left/right children. Insert skb.
396		 */
397		fragcb_clear(skb);
398		rb_link_node(&skb->rbnode, parent, rbn);
399		rb_insert_color(&skb->rbnode, &q->rb_fragments);
400	}
401
402	skb->ip_defrag_offset = offset;
403
404	return IPFRAG_OK;
405}
406EXPORT_SYMBOL(inet_frag_queue_insert);
407
408void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
409			      struct sk_buff *parent)
410{
411	struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
412	struct sk_buff **nextp;
413	int delta;
414
415	if (head != skb) {
416		fp = skb_clone(skb, GFP_ATOMIC);
417		if (!fp)
418			return NULL;
419		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
420		if (RB_EMPTY_NODE(&skb->rbnode))
421			FRAG_CB(parent)->next_frag = fp;
422		else
423			rb_replace_node(&skb->rbnode, &fp->rbnode,
424					&q->rb_fragments);
425		if (q->fragments_tail == skb)
426			q->fragments_tail = fp;
427		skb_morph(skb, head);
428		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
429		rb_replace_node(&head->rbnode, &skb->rbnode,
430				&q->rb_fragments);
431		consume_skb(head);
432		head = skb;
433	}
434	WARN_ON(head->ip_defrag_offset != 0);
435
436	delta = -head->truesize;
437
438	/* Head of list must not be cloned. */
439	if (skb_unclone(head, GFP_ATOMIC))
440		return NULL;
441
442	delta += head->truesize;
443	if (delta)
444		add_frag_mem_limit(q->fqdir, delta);
445
446	/* If the first fragment is fragmented itself, we split
447	 * it to two chunks: the first with data and paged part
448	 * and the second, holding only fragments.
449	 */
450	if (skb_has_frag_list(head)) {
451		struct sk_buff *clone;
452		int i, plen = 0;
453
454		clone = alloc_skb(0, GFP_ATOMIC);
455		if (!clone)
456			return NULL;
457		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
458		skb_frag_list_init(head);
459		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
460			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
461		clone->data_len = head->data_len - plen;
462		clone->len = clone->data_len;
463		head->truesize += clone->truesize;
464		clone->csum = 0;
465		clone->ip_summed = head->ip_summed;
466		add_frag_mem_limit(q->fqdir, clone->truesize);
467		skb_shinfo(head)->frag_list = clone;
468		nextp = &clone->next;
469	} else {
470		nextp = &skb_shinfo(head)->frag_list;
471	}
472
473	return nextp;
474}
475EXPORT_SYMBOL(inet_frag_reasm_prepare);
476
477void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
478			    void *reasm_data, bool try_coalesce)
479{
480	struct sk_buff **nextp = (struct sk_buff **)reasm_data;
481	struct rb_node *rbn;
482	struct sk_buff *fp;
483	int sum_truesize;
484
485	skb_push(head, head->data - skb_network_header(head));
486
487	/* Traverse the tree in order, to build frag_list. */
488	fp = FRAG_CB(head)->next_frag;
489	rbn = rb_next(&head->rbnode);
490	rb_erase(&head->rbnode, &q->rb_fragments);
491
492	sum_truesize = head->truesize;
493	while (rbn || fp) {
494		/* fp points to the next sk_buff in the current run;
495		 * rbn points to the next run.
496		 */
497		/* Go through the current run. */
498		while (fp) {
499			struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
500			bool stolen;
501			int delta;
502
503			sum_truesize += fp->truesize;
504			if (head->ip_summed != fp->ip_summed)
505				head->ip_summed = CHECKSUM_NONE;
506			else if (head->ip_summed == CHECKSUM_COMPLETE)
507				head->csum = csum_add(head->csum, fp->csum);
508
509			if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
510							     &delta)) {
511				kfree_skb_partial(fp, stolen);
512			} else {
513				fp->prev = NULL;
514				memset(&fp->rbnode, 0, sizeof(fp->rbnode));
515				fp->sk = NULL;
516
517				head->data_len += fp->len;
518				head->len += fp->len;
519				head->truesize += fp->truesize;
520
521				*nextp = fp;
522				nextp = &fp->next;
523			}
524
525			fp = next_frag;
526		}
527		/* Move to the next run. */
528		if (rbn) {
529			struct rb_node *rbnext = rb_next(rbn);
530
531			fp = rb_to_skb(rbn);
532			rb_erase(rbn, &q->rb_fragments);
533			rbn = rbnext;
534		}
535	}
536	sub_frag_mem_limit(q->fqdir, sum_truesize);
537
538	*nextp = NULL;
539	skb_mark_not_on_list(head);
540	head->prev = NULL;
541	head->tstamp = q->stamp;
 
542}
543EXPORT_SYMBOL(inet_frag_reasm_finish);
544
545struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
546{
547	struct sk_buff *head, *skb;
548
549	head = skb_rb_first(&q->rb_fragments);
550	if (!head)
551		return NULL;
552	skb = FRAG_CB(head)->next_frag;
553	if (skb)
554		rb_replace_node(&head->rbnode, &skb->rbnode,
555				&q->rb_fragments);
556	else
557		rb_erase(&head->rbnode, &q->rb_fragments);
558	memset(&head->rbnode, 0, sizeof(head->rbnode));
559	barrier();
560
561	if (head == q->fragments_tail)
562		q->fragments_tail = NULL;
563
564	sub_frag_mem_limit(q->fqdir, head->truesize);
565
566	return head;
567}
568EXPORT_SYMBOL(inet_frag_pull_head);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * inet fragments management
  4 *
  5 * 		Authors:	Pavel Emelyanov <xemul@openvz.org>
  6 *				Started as consolidation of ipv4/ip_fragment.c,
  7 *				ipv6/reassembly. and ipv6 nf conntrack reassembly
  8 */
  9
 10#include <linux/list.h>
 11#include <linux/spinlock.h>
 12#include <linux/module.h>
 13#include <linux/timer.h>
 14#include <linux/mm.h>
 15#include <linux/random.h>
 16#include <linux/skbuff.h>
 17#include <linux/rtnetlink.h>
 18#include <linux/slab.h>
 19#include <linux/rhashtable.h>
 20
 21#include <net/sock.h>
 22#include <net/inet_frag.h>
 23#include <net/inet_ecn.h>
 24#include <net/ip.h>
 25#include <net/ipv6.h>
 26
 27/* Use skb->cb to track consecutive/adjacent fragments coming at
 28 * the end of the queue. Nodes in the rb-tree queue will
 29 * contain "runs" of one or more adjacent fragments.
 30 *
 31 * Invariants:
 32 * - next_frag is NULL at the tail of a "run";
 33 * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
 34 */
 35struct ipfrag_skb_cb {
 36	union {
 37		struct inet_skb_parm	h4;
 38		struct inet6_skb_parm	h6;
 39	};
 40	struct sk_buff		*next_frag;
 41	int			frag_run_len;
 42};
 43
 44#define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb))
 45
 46static void fragcb_clear(struct sk_buff *skb)
 47{
 48	RB_CLEAR_NODE(&skb->rbnode);
 49	FRAG_CB(skb)->next_frag = NULL;
 50	FRAG_CB(skb)->frag_run_len = skb->len;
 51}
 52
 53/* Append skb to the last "run". */
 54static void fragrun_append_to_last(struct inet_frag_queue *q,
 55				   struct sk_buff *skb)
 56{
 57	fragcb_clear(skb);
 58
 59	FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
 60	FRAG_CB(q->fragments_tail)->next_frag = skb;
 61	q->fragments_tail = skb;
 62}
 63
 64/* Create a new "run" with the skb. */
 65static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
 66{
 67	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
 68	fragcb_clear(skb);
 69
 70	if (q->last_run_head)
 71		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
 72			     &q->last_run_head->rbnode.rb_right);
 73	else
 74		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
 75	rb_insert_color(&skb->rbnode, &q->rb_fragments);
 76
 77	q->fragments_tail = skb;
 78	q->last_run_head = skb;
 79}
 80
 81/* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
 82 * Value : 0xff if frame should be dropped.
 83 *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
 84 */
 85const u8 ip_frag_ecn_table[16] = {
 86	/* at least one fragment had CE, and others ECT_0 or ECT_1 */
 87	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE,
 88	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE,
 89	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE,
 90
 91	/* invalid combinations : drop frame */
 92	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
 93	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
 94	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
 95	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
 96	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
 97	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
 98	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
 99};
100EXPORT_SYMBOL(ip_frag_ecn_table);
101
102int inet_frags_init(struct inet_frags *f)
103{
104	f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
105					    NULL);
106	if (!f->frags_cachep)
107		return -ENOMEM;
108
109	refcount_set(&f->refcnt, 1);
110	init_completion(&f->completion);
111	return 0;
112}
113EXPORT_SYMBOL(inet_frags_init);
114
115void inet_frags_fini(struct inet_frags *f)
116{
117	if (refcount_dec_and_test(&f->refcnt))
118		complete(&f->completion);
119
120	wait_for_completion(&f->completion);
121
122	kmem_cache_destroy(f->frags_cachep);
123	f->frags_cachep = NULL;
124}
125EXPORT_SYMBOL(inet_frags_fini);
126
127/* called from rhashtable_free_and_destroy() at netns_frags dismantle */
128static void inet_frags_free_cb(void *ptr, void *arg)
129{
130	struct inet_frag_queue *fq = ptr;
131	int count;
132
133	count = del_timer_sync(&fq->timer) ? 1 : 0;
134
135	spin_lock_bh(&fq->lock);
136	fq->flags |= INET_FRAG_DROP;
137	if (!(fq->flags & INET_FRAG_COMPLETE)) {
138		fq->flags |= INET_FRAG_COMPLETE;
139		count++;
140	} else if (fq->flags & INET_FRAG_HASH_DEAD) {
141		count++;
142	}
143	spin_unlock_bh(&fq->lock);
144
145	if (refcount_sub_and_test(count, &fq->refcnt))
146		inet_frag_destroy(fq);
147}
148
149static LLIST_HEAD(fqdir_free_list);
150
151static void fqdir_free_fn(struct work_struct *work)
152{
153	struct llist_node *kill_list;
154	struct fqdir *fqdir, *tmp;
155	struct inet_frags *f;
156
157	/* Atomically snapshot the list of fqdirs to free */
158	kill_list = llist_del_all(&fqdir_free_list);
159
160	/* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
161	 * have completed, since they need to dereference fqdir.
162	 * Would it not be nice to have kfree_rcu_barrier() ? :)
163	 */
164	rcu_barrier();
165
166	llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) {
167		f = fqdir->f;
168		if (refcount_dec_and_test(&f->refcnt))
169			complete(&f->completion);
170
171		kfree(fqdir);
172	}
173}
174
175static DECLARE_WORK(fqdir_free_work, fqdir_free_fn);
176
177static void fqdir_work_fn(struct work_struct *work)
178{
179	struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
180
181	rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
182
183	if (llist_add(&fqdir->free_list, &fqdir_free_list))
184		queue_work(system_wq, &fqdir_free_work);
185}
186
187int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
188{
189	struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
190	int res;
191
192	if (!fqdir)
193		return -ENOMEM;
194	fqdir->f = f;
195	fqdir->net = net;
196	res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
197	if (res < 0) {
198		kfree(fqdir);
199		return res;
200	}
201	refcount_inc(&f->refcnt);
202	*fqdirp = fqdir;
203	return 0;
204}
205EXPORT_SYMBOL(fqdir_init);
206
207static struct workqueue_struct *inet_frag_wq;
208
209static int __init inet_frag_wq_init(void)
210{
211	inet_frag_wq = create_workqueue("inet_frag_wq");
212	if (!inet_frag_wq)
213		panic("Could not create inet frag workq");
214	return 0;
215}
216
217pure_initcall(inet_frag_wq_init);
218
219void fqdir_exit(struct fqdir *fqdir)
220{
221	INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
222	queue_work(inet_frag_wq, &fqdir->destroy_work);
223}
224EXPORT_SYMBOL(fqdir_exit);
225
226void inet_frag_kill(struct inet_frag_queue *fq)
227{
228	if (del_timer(&fq->timer))
229		refcount_dec(&fq->refcnt);
230
231	if (!(fq->flags & INET_FRAG_COMPLETE)) {
232		struct fqdir *fqdir = fq->fqdir;
233
234		fq->flags |= INET_FRAG_COMPLETE;
235		rcu_read_lock();
236		/* The RCU read lock provides a memory barrier
237		 * guaranteeing that if fqdir->dead is false then
238		 * the hash table destruction will not start until
239		 * after we unlock.  Paired with fqdir_pre_exit().
240		 */
241		if (!READ_ONCE(fqdir->dead)) {
242			rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
243					       fqdir->f->rhash_params);
244			refcount_dec(&fq->refcnt);
245		} else {
246			fq->flags |= INET_FRAG_HASH_DEAD;
247		}
248		rcu_read_unlock();
249	}
250}
251EXPORT_SYMBOL(inet_frag_kill);
252
253static void inet_frag_destroy_rcu(struct rcu_head *head)
254{
255	struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
256						 rcu);
257	struct inet_frags *f = q->fqdir->f;
258
259	if (f->destructor)
260		f->destructor(q);
261	kmem_cache_free(f->frags_cachep, q);
262}
263
264unsigned int inet_frag_rbtree_purge(struct rb_root *root,
265				    enum skb_drop_reason reason)
266{
267	struct rb_node *p = rb_first(root);
268	unsigned int sum = 0;
269
270	while (p) {
271		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
272
273		p = rb_next(p);
274		rb_erase(&skb->rbnode, root);
275		while (skb) {
276			struct sk_buff *next = FRAG_CB(skb)->next_frag;
277
278			sum += skb->truesize;
279			kfree_skb_reason(skb, reason);
280			skb = next;
281		}
282	}
283	return sum;
284}
285EXPORT_SYMBOL(inet_frag_rbtree_purge);
286
287void inet_frag_destroy(struct inet_frag_queue *q)
288{
 
289	unsigned int sum, sum_truesize = 0;
290	enum skb_drop_reason reason;
291	struct inet_frags *f;
292	struct fqdir *fqdir;
293
294	WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
295	reason = (q->flags & INET_FRAG_DROP) ?
296			SKB_DROP_REASON_FRAG_REASM_TIMEOUT :
297			SKB_CONSUMED;
298	WARN_ON(del_timer(&q->timer) != 0);
299
300	/* Release all fragment data. */
301	fqdir = q->fqdir;
302	f = fqdir->f;
303	sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments, reason);
304	sum = sum_truesize + f->qsize;
305
306	call_rcu(&q->rcu, inet_frag_destroy_rcu);
307
308	sub_frag_mem_limit(fqdir, sum);
309}
310EXPORT_SYMBOL(inet_frag_destroy);
311
312static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
313					       struct inet_frags *f,
314					       void *arg)
315{
316	struct inet_frag_queue *q;
317
318	q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
319	if (!q)
320		return NULL;
321
322	q->fqdir = fqdir;
323	f->constructor(q, arg);
324	add_frag_mem_limit(fqdir, f->qsize);
325
326	timer_setup(&q->timer, f->frag_expire, 0);
327	spin_lock_init(&q->lock);
328	refcount_set(&q->refcnt, 3);
329
330	return q;
331}
332
333static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
334						void *arg,
335						struct inet_frag_queue **prev)
336{
337	struct inet_frags *f = fqdir->f;
338	struct inet_frag_queue *q;
339
340	q = inet_frag_alloc(fqdir, f, arg);
341	if (!q) {
342		*prev = ERR_PTR(-ENOMEM);
343		return NULL;
344	}
345	mod_timer(&q->timer, jiffies + fqdir->timeout);
346
347	*prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
348						 &q->node, f->rhash_params);
349	if (*prev) {
350		q->flags |= INET_FRAG_COMPLETE;
351		inet_frag_kill(q);
352		inet_frag_destroy(q);
353		return NULL;
354	}
355	return q;
356}
357
358/* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
359struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
360{
361	/* This pairs with WRITE_ONCE() in fqdir_pre_exit(). */
362	long high_thresh = READ_ONCE(fqdir->high_thresh);
363	struct inet_frag_queue *fq = NULL, *prev;
364
365	if (!high_thresh || frag_mem_limit(fqdir) > high_thresh)
366		return NULL;
367
368	rcu_read_lock();
369
370	prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
371	if (!prev)
372		fq = inet_frag_create(fqdir, key, &prev);
373	if (!IS_ERR_OR_NULL(prev)) {
374		fq = prev;
375		if (!refcount_inc_not_zero(&fq->refcnt))
376			fq = NULL;
377	}
378	rcu_read_unlock();
379	return fq;
380}
381EXPORT_SYMBOL(inet_frag_find);
382
383int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
384			   int offset, int end)
385{
386	struct sk_buff *last = q->fragments_tail;
387
388	/* RFC5722, Section 4, amended by Errata ID : 3089
389	 *                          When reassembling an IPv6 datagram, if
390	 *   one or more its constituent fragments is determined to be an
391	 *   overlapping fragment, the entire datagram (and any constituent
392	 *   fragments) MUST be silently discarded.
393	 *
394	 * Duplicates, however, should be ignored (i.e. skb dropped, but the
395	 * queue/fragments kept for later reassembly).
396	 */
397	if (!last)
398		fragrun_create(q, skb);  /* First fragment. */
399	else if (last->ip_defrag_offset + last->len < end) {
400		/* This is the common case: skb goes to the end. */
401		/* Detect and discard overlaps. */
402		if (offset < last->ip_defrag_offset + last->len)
403			return IPFRAG_OVERLAP;
404		if (offset == last->ip_defrag_offset + last->len)
405			fragrun_append_to_last(q, skb);
406		else
407			fragrun_create(q, skb);
408	} else {
409		/* Binary search. Note that skb can become the first fragment,
410		 * but not the last (covered above).
411		 */
412		struct rb_node **rbn, *parent;
413
414		rbn = &q->rb_fragments.rb_node;
415		do {
416			struct sk_buff *curr;
417			int curr_run_end;
418
419			parent = *rbn;
420			curr = rb_to_skb(parent);
421			curr_run_end = curr->ip_defrag_offset +
422					FRAG_CB(curr)->frag_run_len;
423			if (end <= curr->ip_defrag_offset)
424				rbn = &parent->rb_left;
425			else if (offset >= curr_run_end)
426				rbn = &parent->rb_right;
427			else if (offset >= curr->ip_defrag_offset &&
428				 end <= curr_run_end)
429				return IPFRAG_DUP;
430			else
431				return IPFRAG_OVERLAP;
432		} while (*rbn);
433		/* Here we have parent properly set, and rbn pointing to
434		 * one of its NULL left/right children. Insert skb.
435		 */
436		fragcb_clear(skb);
437		rb_link_node(&skb->rbnode, parent, rbn);
438		rb_insert_color(&skb->rbnode, &q->rb_fragments);
439	}
440
441	skb->ip_defrag_offset = offset;
442
443	return IPFRAG_OK;
444}
445EXPORT_SYMBOL(inet_frag_queue_insert);
446
447void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
448			      struct sk_buff *parent)
449{
450	struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
451	struct sk_buff **nextp;
452	int delta;
453
454	if (head != skb) {
455		fp = skb_clone(skb, GFP_ATOMIC);
456		if (!fp)
457			return NULL;
458		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
459		if (RB_EMPTY_NODE(&skb->rbnode))
460			FRAG_CB(parent)->next_frag = fp;
461		else
462			rb_replace_node(&skb->rbnode, &fp->rbnode,
463					&q->rb_fragments);
464		if (q->fragments_tail == skb)
465			q->fragments_tail = fp;
466		skb_morph(skb, head);
467		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
468		rb_replace_node(&head->rbnode, &skb->rbnode,
469				&q->rb_fragments);
470		consume_skb(head);
471		head = skb;
472	}
473	WARN_ON(head->ip_defrag_offset != 0);
474
475	delta = -head->truesize;
476
477	/* Head of list must not be cloned. */
478	if (skb_unclone(head, GFP_ATOMIC))
479		return NULL;
480
481	delta += head->truesize;
482	if (delta)
483		add_frag_mem_limit(q->fqdir, delta);
484
485	/* If the first fragment is fragmented itself, we split
486	 * it to two chunks: the first with data and paged part
487	 * and the second, holding only fragments.
488	 */
489	if (skb_has_frag_list(head)) {
490		struct sk_buff *clone;
491		int i, plen = 0;
492
493		clone = alloc_skb(0, GFP_ATOMIC);
494		if (!clone)
495			return NULL;
496		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
497		skb_frag_list_init(head);
498		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
499			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
500		clone->data_len = head->data_len - plen;
501		clone->len = clone->data_len;
502		head->truesize += clone->truesize;
503		clone->csum = 0;
504		clone->ip_summed = head->ip_summed;
505		add_frag_mem_limit(q->fqdir, clone->truesize);
506		skb_shinfo(head)->frag_list = clone;
507		nextp = &clone->next;
508	} else {
509		nextp = &skb_shinfo(head)->frag_list;
510	}
511
512	return nextp;
513}
514EXPORT_SYMBOL(inet_frag_reasm_prepare);
515
516void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
517			    void *reasm_data, bool try_coalesce)
518{
519	struct sk_buff **nextp = reasm_data;
520	struct rb_node *rbn;
521	struct sk_buff *fp;
522	int sum_truesize;
523
524	skb_push(head, head->data - skb_network_header(head));
525
526	/* Traverse the tree in order, to build frag_list. */
527	fp = FRAG_CB(head)->next_frag;
528	rbn = rb_next(&head->rbnode);
529	rb_erase(&head->rbnode, &q->rb_fragments);
530
531	sum_truesize = head->truesize;
532	while (rbn || fp) {
533		/* fp points to the next sk_buff in the current run;
534		 * rbn points to the next run.
535		 */
536		/* Go through the current run. */
537		while (fp) {
538			struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
539			bool stolen;
540			int delta;
541
542			sum_truesize += fp->truesize;
543			if (head->ip_summed != fp->ip_summed)
544				head->ip_summed = CHECKSUM_NONE;
545			else if (head->ip_summed == CHECKSUM_COMPLETE)
546				head->csum = csum_add(head->csum, fp->csum);
547
548			if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
549							     &delta)) {
550				kfree_skb_partial(fp, stolen);
551			} else {
552				fp->prev = NULL;
553				memset(&fp->rbnode, 0, sizeof(fp->rbnode));
554				fp->sk = NULL;
555
556				head->data_len += fp->len;
557				head->len += fp->len;
558				head->truesize += fp->truesize;
559
560				*nextp = fp;
561				nextp = &fp->next;
562			}
563
564			fp = next_frag;
565		}
566		/* Move to the next run. */
567		if (rbn) {
568			struct rb_node *rbnext = rb_next(rbn);
569
570			fp = rb_to_skb(rbn);
571			rb_erase(rbn, &q->rb_fragments);
572			rbn = rbnext;
573		}
574	}
575	sub_frag_mem_limit(q->fqdir, sum_truesize);
576
577	*nextp = NULL;
578	skb_mark_not_on_list(head);
579	head->prev = NULL;
580	head->tstamp = q->stamp;
581	head->mono_delivery_time = q->mono_delivery_time;
582}
583EXPORT_SYMBOL(inet_frag_reasm_finish);
584
585struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
586{
587	struct sk_buff *head, *skb;
588
589	head = skb_rb_first(&q->rb_fragments);
590	if (!head)
591		return NULL;
592	skb = FRAG_CB(head)->next_frag;
593	if (skb)
594		rb_replace_node(&head->rbnode, &skb->rbnode,
595				&q->rb_fragments);
596	else
597		rb_erase(&head->rbnode, &q->rb_fragments);
598	memset(&head->rbnode, 0, sizeof(head->rbnode));
599	barrier();
600
601	if (head == q->fragments_tail)
602		q->fragments_tail = NULL;
603
604	sub_frag_mem_limit(q->fqdir, head->truesize);
605
606	return head;
607}
608EXPORT_SYMBOL(inet_frag_pull_head);