Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
 
  31#include <linux/mm.h>
  32#include <linux/random.h>
  33#include <linux/sched/signal.h>
  34#include <linux/export.h>
  35#include <linux/swap.h>
  36#include <linux/uio.h>
  37#include <linux/khugepaged.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frontswap.h>
  40#include <linux/fs_parser.h>
  41
  42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
 
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
  63#include <linux/blkdev.h>
  64#include <linux/pagevec.h>
  65#include <linux/percpu_counter.h>
  66#include <linux/falloc.h>
  67#include <linux/splice.h>
  68#include <linux/security.h>
  69#include <linux/swapops.h>
  70#include <linux/mempolicy.h>
  71#include <linux/namei.h>
  72#include <linux/ctype.h>
  73#include <linux/migrate.h>
  74#include <linux/highmem.h>
  75#include <linux/seq_file.h>
  76#include <linux/magic.h>
  77#include <linux/syscalls.h>
  78#include <linux/fcntl.h>
  79#include <uapi/linux/memfd.h>
  80#include <linux/userfaultfd_k.h>
  81#include <linux/rmap.h>
  82#include <linux/uuid.h>
  83
  84#include <linux/uaccess.h>
  85
  86#include "internal.h"
  87
  88#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  89#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  90
  91/* Pretend that each entry is of this size in directory's i_size */
  92#define BOGO_DIRENT_SIZE 20
  93
  94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  95#define SHORT_SYMLINK_LEN 128
  96
  97/*
  98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  99 * inode->i_private (with i_mutex making sure that it has only one user at
 100 * a time): we would prefer not to enlarge the shmem inode just for that.
 101 */
 102struct shmem_falloc {
 103	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 104	pgoff_t start;		/* start of range currently being fallocated */
 105	pgoff_t next;		/* the next page offset to be fallocated */
 106	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 107	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 108};
 109
 110struct shmem_options {
 111	unsigned long long blocks;
 112	unsigned long long inodes;
 113	struct mempolicy *mpol;
 114	kuid_t uid;
 115	kgid_t gid;
 116	umode_t mode;
 117	bool full_inums;
 118	int huge;
 119	int seen;
 120#define SHMEM_SEEN_BLOCKS 1
 121#define SHMEM_SEEN_INODES 2
 122#define SHMEM_SEEN_HUGE 4
 123#define SHMEM_SEEN_INUMS 8
 124};
 125
 126#ifdef CONFIG_TMPFS
 127static unsigned long shmem_default_max_blocks(void)
 128{
 129	return totalram_pages() / 2;
 130}
 131
 132static unsigned long shmem_default_max_inodes(void)
 133{
 134	unsigned long nr_pages = totalram_pages();
 135
 136	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 137}
 138#endif
 139
 140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 142				struct shmem_inode_info *info, pgoff_t index);
 143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
 144			     struct page **pagep, enum sgp_type sgp,
 145			     gfp_t gfp, struct vm_area_struct *vma,
 146			     vm_fault_t *fault_type);
 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 148		struct page **pagep, enum sgp_type sgp,
 149		gfp_t gfp, struct vm_area_struct *vma,
 150		struct vm_fault *vmf, vm_fault_t *fault_type);
 151
 152int shmem_getpage(struct inode *inode, pgoff_t index,
 153		struct page **pagep, enum sgp_type sgp)
 154{
 155	return shmem_getpage_gfp(inode, index, pagep, sgp,
 156		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 157}
 158
 159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 160{
 161	return sb->s_fs_info;
 162}
 163
 164/*
 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 166 * for shared memory and for shared anonymous (/dev/zero) mappings
 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 168 * consistent with the pre-accounting of private mappings ...
 169 */
 170static inline int shmem_acct_size(unsigned long flags, loff_t size)
 171{
 172	return (flags & VM_NORESERVE) ?
 173		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 174}
 175
 176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 177{
 178	if (!(flags & VM_NORESERVE))
 179		vm_unacct_memory(VM_ACCT(size));
 180}
 181
 182static inline int shmem_reacct_size(unsigned long flags,
 183		loff_t oldsize, loff_t newsize)
 184{
 185	if (!(flags & VM_NORESERVE)) {
 186		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 187			return security_vm_enough_memory_mm(current->mm,
 188					VM_ACCT(newsize) - VM_ACCT(oldsize));
 189		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 190			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 191	}
 192	return 0;
 193}
 194
 195/*
 196 * ... whereas tmpfs objects are accounted incrementally as
 197 * pages are allocated, in order to allow large sparse files.
 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 200 */
 201static inline int shmem_acct_block(unsigned long flags, long pages)
 202{
 203	if (!(flags & VM_NORESERVE))
 204		return 0;
 205
 206	return security_vm_enough_memory_mm(current->mm,
 207			pages * VM_ACCT(PAGE_SIZE));
 208}
 209
 210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 211{
 212	if (flags & VM_NORESERVE)
 213		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 214}
 215
 216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 217{
 218	struct shmem_inode_info *info = SHMEM_I(inode);
 219	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 220
 221	if (shmem_acct_block(info->flags, pages))
 222		return false;
 223
 224	if (sbinfo->max_blocks) {
 225		if (percpu_counter_compare(&sbinfo->used_blocks,
 226					   sbinfo->max_blocks - pages) > 0)
 227			goto unacct;
 228		percpu_counter_add(&sbinfo->used_blocks, pages);
 229	}
 230
 231	return true;
 232
 233unacct:
 234	shmem_unacct_blocks(info->flags, pages);
 235	return false;
 236}
 237
 238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 239{
 240	struct shmem_inode_info *info = SHMEM_I(inode);
 241	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 242
 243	if (sbinfo->max_blocks)
 244		percpu_counter_sub(&sbinfo->used_blocks, pages);
 245	shmem_unacct_blocks(info->flags, pages);
 246}
 247
 248static const struct super_operations shmem_ops;
 249static const struct address_space_operations shmem_aops;
 250static const struct file_operations shmem_file_operations;
 251static const struct inode_operations shmem_inode_operations;
 252static const struct inode_operations shmem_dir_inode_operations;
 253static const struct inode_operations shmem_special_inode_operations;
 254static const struct vm_operations_struct shmem_vm_ops;
 
 255static struct file_system_type shmem_fs_type;
 256
 
 
 
 
 
 257bool vma_is_shmem(struct vm_area_struct *vma)
 258{
 259	return vma->vm_ops == &shmem_vm_ops;
 260}
 261
 262static LIST_HEAD(shmem_swaplist);
 263static DEFINE_MUTEX(shmem_swaplist_mutex);
 264
 265/*
 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 267 * produces a novel ino for the newly allocated inode.
 268 *
 269 * It may also be called when making a hard link to permit the space needed by
 270 * each dentry. However, in that case, no new inode number is needed since that
 271 * internally draws from another pool of inode numbers (currently global
 272 * get_next_ino()). This case is indicated by passing NULL as inop.
 273 */
 274#define SHMEM_INO_BATCH 1024
 275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 276{
 277	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 278	ino_t ino;
 279
 280	if (!(sb->s_flags & SB_KERNMOUNT)) {
 281		spin_lock(&sbinfo->stat_lock);
 282		if (sbinfo->max_inodes) {
 283			if (!sbinfo->free_inodes) {
 284				spin_unlock(&sbinfo->stat_lock);
 285				return -ENOSPC;
 286			}
 287			sbinfo->free_inodes--;
 288		}
 289		if (inop) {
 290			ino = sbinfo->next_ino++;
 291			if (unlikely(is_zero_ino(ino)))
 292				ino = sbinfo->next_ino++;
 293			if (unlikely(!sbinfo->full_inums &&
 294				     ino > UINT_MAX)) {
 295				/*
 296				 * Emulate get_next_ino uint wraparound for
 297				 * compatibility
 298				 */
 299				if (IS_ENABLED(CONFIG_64BIT))
 300					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 301						__func__, MINOR(sb->s_dev));
 302				sbinfo->next_ino = 1;
 303				ino = sbinfo->next_ino++;
 304			}
 305			*inop = ino;
 306		}
 307		spin_unlock(&sbinfo->stat_lock);
 308	} else if (inop) {
 309		/*
 310		 * __shmem_file_setup, one of our callers, is lock-free: it
 311		 * doesn't hold stat_lock in shmem_reserve_inode since
 312		 * max_inodes is always 0, and is called from potentially
 313		 * unknown contexts. As such, use a per-cpu batched allocator
 314		 * which doesn't require the per-sb stat_lock unless we are at
 315		 * the batch boundary.
 316		 *
 317		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 318		 * shmem mounts are not exposed to userspace, so we don't need
 319		 * to worry about things like glibc compatibility.
 320		 */
 321		ino_t *next_ino;
 
 322		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 323		ino = *next_ino;
 324		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 325			spin_lock(&sbinfo->stat_lock);
 326			ino = sbinfo->next_ino;
 327			sbinfo->next_ino += SHMEM_INO_BATCH;
 328			spin_unlock(&sbinfo->stat_lock);
 329			if (unlikely(is_zero_ino(ino)))
 330				ino++;
 331		}
 332		*inop = ino;
 333		*next_ino = ++ino;
 334		put_cpu();
 335	}
 336
 337	return 0;
 338}
 339
 340static void shmem_free_inode(struct super_block *sb)
 341{
 342	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 343	if (sbinfo->max_inodes) {
 344		spin_lock(&sbinfo->stat_lock);
 345		sbinfo->free_inodes++;
 346		spin_unlock(&sbinfo->stat_lock);
 347	}
 348}
 349
 350/**
 351 * shmem_recalc_inode - recalculate the block usage of an inode
 352 * @inode: inode to recalc
 353 *
 354 * We have to calculate the free blocks since the mm can drop
 355 * undirtied hole pages behind our back.
 356 *
 357 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 359 *
 360 * It has to be called with the spinlock held.
 361 */
 362static void shmem_recalc_inode(struct inode *inode)
 363{
 364	struct shmem_inode_info *info = SHMEM_I(inode);
 365	long freed;
 366
 367	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 368	if (freed > 0) {
 369		info->alloced -= freed;
 370		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 371		shmem_inode_unacct_blocks(inode, freed);
 372	}
 373}
 374
 375bool shmem_charge(struct inode *inode, long pages)
 376{
 377	struct shmem_inode_info *info = SHMEM_I(inode);
 378	unsigned long flags;
 379
 380	if (!shmem_inode_acct_block(inode, pages))
 381		return false;
 382
 383	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 384	inode->i_mapping->nrpages += pages;
 385
 386	spin_lock_irqsave(&info->lock, flags);
 387	info->alloced += pages;
 388	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 389	shmem_recalc_inode(inode);
 390	spin_unlock_irqrestore(&info->lock, flags);
 391
 392	return true;
 393}
 394
 395void shmem_uncharge(struct inode *inode, long pages)
 396{
 397	struct shmem_inode_info *info = SHMEM_I(inode);
 398	unsigned long flags;
 399
 400	/* nrpages adjustment done by __delete_from_page_cache() or caller */
 401
 402	spin_lock_irqsave(&info->lock, flags);
 403	info->alloced -= pages;
 404	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 405	shmem_recalc_inode(inode);
 406	spin_unlock_irqrestore(&info->lock, flags);
 407
 408	shmem_inode_unacct_blocks(inode, pages);
 409}
 410
 411/*
 412 * Replace item expected in xarray by a new item, while holding xa_lock.
 413 */
 414static int shmem_replace_entry(struct address_space *mapping,
 415			pgoff_t index, void *expected, void *replacement)
 416{
 417	XA_STATE(xas, &mapping->i_pages, index);
 418	void *item;
 419
 420	VM_BUG_ON(!expected);
 421	VM_BUG_ON(!replacement);
 422	item = xas_load(&xas);
 423	if (item != expected)
 424		return -ENOENT;
 425	xas_store(&xas, replacement);
 426	return 0;
 427}
 428
 429/*
 430 * Sometimes, before we decide whether to proceed or to fail, we must check
 431 * that an entry was not already brought back from swap by a racing thread.
 432 *
 433 * Checking page is not enough: by the time a SwapCache page is locked, it
 434 * might be reused, and again be SwapCache, using the same swap as before.
 435 */
 436static bool shmem_confirm_swap(struct address_space *mapping,
 437			       pgoff_t index, swp_entry_t swap)
 438{
 439	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 440}
 441
 442/*
 443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 444 *
 445 * SHMEM_HUGE_NEVER:
 446 *	disables huge pages for the mount;
 447 * SHMEM_HUGE_ALWAYS:
 448 *	enables huge pages for the mount;
 449 * SHMEM_HUGE_WITHIN_SIZE:
 450 *	only allocate huge pages if the page will be fully within i_size,
 451 *	also respect fadvise()/madvise() hints;
 452 * SHMEM_HUGE_ADVISE:
 453 *	only allocate huge pages if requested with fadvise()/madvise();
 454 */
 455
 456#define SHMEM_HUGE_NEVER	0
 457#define SHMEM_HUGE_ALWAYS	1
 458#define SHMEM_HUGE_WITHIN_SIZE	2
 459#define SHMEM_HUGE_ADVISE	3
 460
 461/*
 462 * Special values.
 463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 464 *
 465 * SHMEM_HUGE_DENY:
 466 *	disables huge on shm_mnt and all mounts, for emergency use;
 467 * SHMEM_HUGE_FORCE:
 468 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 469 *
 470 */
 471#define SHMEM_HUGE_DENY		(-1)
 472#define SHMEM_HUGE_FORCE	(-2)
 473
 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 475/* ifdef here to avoid bloating shmem.o when not necessary */
 476
 477static int shmem_huge __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478
 479#if defined(CONFIG_SYSFS)
 480static int shmem_parse_huge(const char *str)
 481{
 482	if (!strcmp(str, "never"))
 483		return SHMEM_HUGE_NEVER;
 484	if (!strcmp(str, "always"))
 485		return SHMEM_HUGE_ALWAYS;
 486	if (!strcmp(str, "within_size"))
 487		return SHMEM_HUGE_WITHIN_SIZE;
 488	if (!strcmp(str, "advise"))
 489		return SHMEM_HUGE_ADVISE;
 490	if (!strcmp(str, "deny"))
 491		return SHMEM_HUGE_DENY;
 492	if (!strcmp(str, "force"))
 493		return SHMEM_HUGE_FORCE;
 494	return -EINVAL;
 495}
 496#endif
 497
 498#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 499static const char *shmem_format_huge(int huge)
 500{
 501	switch (huge) {
 502	case SHMEM_HUGE_NEVER:
 503		return "never";
 504	case SHMEM_HUGE_ALWAYS:
 505		return "always";
 506	case SHMEM_HUGE_WITHIN_SIZE:
 507		return "within_size";
 508	case SHMEM_HUGE_ADVISE:
 509		return "advise";
 510	case SHMEM_HUGE_DENY:
 511		return "deny";
 512	case SHMEM_HUGE_FORCE:
 513		return "force";
 514	default:
 515		VM_BUG_ON(1);
 516		return "bad_val";
 517	}
 518}
 519#endif
 520
 521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 522		struct shrink_control *sc, unsigned long nr_to_split)
 523{
 524	LIST_HEAD(list), *pos, *next;
 525	LIST_HEAD(to_remove);
 526	struct inode *inode;
 527	struct shmem_inode_info *info;
 528	struct page *page;
 529	unsigned long batch = sc ? sc->nr_to_scan : 128;
 530	int removed = 0, split = 0;
 531
 532	if (list_empty(&sbinfo->shrinklist))
 533		return SHRINK_STOP;
 534
 535	spin_lock(&sbinfo->shrinklist_lock);
 536	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 537		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 538
 539		/* pin the inode */
 540		inode = igrab(&info->vfs_inode);
 541
 542		/* inode is about to be evicted */
 543		if (!inode) {
 544			list_del_init(&info->shrinklist);
 545			removed++;
 546			goto next;
 547		}
 548
 549		/* Check if there's anything to gain */
 550		if (round_up(inode->i_size, PAGE_SIZE) ==
 551				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 552			list_move(&info->shrinklist, &to_remove);
 553			removed++;
 554			goto next;
 555		}
 556
 557		list_move(&info->shrinklist, &list);
 558next:
 
 559		if (!--batch)
 560			break;
 561	}
 562	spin_unlock(&sbinfo->shrinklist_lock);
 563
 564	list_for_each_safe(pos, next, &to_remove) {
 565		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 566		inode = &info->vfs_inode;
 567		list_del_init(&info->shrinklist);
 568		iput(inode);
 569	}
 570
 571	list_for_each_safe(pos, next, &list) {
 572		int ret;
 
 573
 574		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 575		inode = &info->vfs_inode;
 576
 577		if (nr_to_split && split >= nr_to_split)
 578			goto leave;
 579
 580		page = find_get_page(inode->i_mapping,
 581				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 582		if (!page)
 583			goto drop;
 584
 585		/* No huge page at the end of the file: nothing to split */
 586		if (!PageTransHuge(page)) {
 587			put_page(page);
 588			goto drop;
 589		}
 590
 591		/*
 592		 * Leave the inode on the list if we failed to lock
 593		 * the page at this time.
 594		 *
 595		 * Waiting for the lock may lead to deadlock in the
 596		 * reclaim path.
 597		 */
 598		if (!trylock_page(page)) {
 599			put_page(page);
 600			goto leave;
 601		}
 602
 603		ret = split_huge_page(page);
 604		unlock_page(page);
 605		put_page(page);
 606
 607		/* If split failed leave the inode on the list */
 608		if (ret)
 609			goto leave;
 610
 611		split++;
 612drop:
 613		list_del_init(&info->shrinklist);
 614		removed++;
 615leave:
 
 
 
 
 
 
 
 
 
 
 
 616		iput(inode);
 617	}
 618
 619	spin_lock(&sbinfo->shrinklist_lock);
 620	list_splice_tail(&list, &sbinfo->shrinklist);
 621	sbinfo->shrinklist_len -= removed;
 622	spin_unlock(&sbinfo->shrinklist_lock);
 623
 624	return split;
 625}
 626
 627static long shmem_unused_huge_scan(struct super_block *sb,
 628		struct shrink_control *sc)
 629{
 630	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 631
 632	if (!READ_ONCE(sbinfo->shrinklist_len))
 633		return SHRINK_STOP;
 634
 635	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 636}
 637
 638static long shmem_unused_huge_count(struct super_block *sb,
 639		struct shrink_control *sc)
 640{
 641	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 642	return READ_ONCE(sbinfo->shrinklist_len);
 643}
 644#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 645
 646#define shmem_huge SHMEM_HUGE_DENY
 647
 
 
 
 
 
 
 648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 649		struct shrink_control *sc, unsigned long nr_to_split)
 650{
 651	return 0;
 652}
 653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 654
 655static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
 656{
 657	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 658	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
 659	    shmem_huge != SHMEM_HUGE_DENY)
 660		return true;
 661	return false;
 662}
 663
 664/*
 665 * Like add_to_page_cache_locked, but error if expected item has gone.
 666 */
 667static int shmem_add_to_page_cache(struct page *page,
 668				   struct address_space *mapping,
 669				   pgoff_t index, void *expected, gfp_t gfp,
 670				   struct mm_struct *charge_mm)
 671{
 672	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
 673	unsigned long i = 0;
 674	unsigned long nr = compound_nr(page);
 675	int error;
 676
 677	VM_BUG_ON_PAGE(PageTail(page), page);
 678	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 679	VM_BUG_ON_PAGE(!PageLocked(page), page);
 680	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 681	VM_BUG_ON(expected && PageTransHuge(page));
 682
 683	page_ref_add(page, nr);
 684	page->mapping = mapping;
 685	page->index = index;
 686
 687	if (!PageSwapCache(page)) {
 688		error = mem_cgroup_charge(page, charge_mm, gfp);
 689		if (error) {
 690			if (PageTransHuge(page)) {
 691				count_vm_event(THP_FILE_FALLBACK);
 692				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 693			}
 694			goto error;
 695		}
 696	}
 697	cgroup_throttle_swaprate(page, gfp);
 698
 699	do {
 700		void *entry;
 701		xas_lock_irq(&xas);
 702		entry = xas_find_conflict(&xas);
 703		if (entry != expected)
 
 
 
 704			xas_set_err(&xas, -EEXIST);
 705		xas_create_range(&xas);
 706		if (xas_error(&xas))
 707			goto unlock;
 708next:
 709		xas_store(&xas, page);
 710		if (++i < nr) {
 711			xas_next(&xas);
 712			goto next;
 713		}
 714		if (PageTransHuge(page)) {
 
 
 
 715			count_vm_event(THP_FILE_ALLOC);
 716			__inc_node_page_state(page, NR_SHMEM_THPS);
 717		}
 718		mapping->nrpages += nr;
 719		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
 720		__mod_lruvec_page_state(page, NR_SHMEM, nr);
 721unlock:
 722		xas_unlock_irq(&xas);
 723	} while (xas_nomem(&xas, gfp));
 724
 725	if (xas_error(&xas)) {
 726		error = xas_error(&xas);
 727		goto error;
 728	}
 729
 730	return 0;
 731error:
 732	page->mapping = NULL;
 733	page_ref_sub(page, nr);
 734	return error;
 735}
 736
 737/*
 738 * Like delete_from_page_cache, but substitutes swap for page.
 739 */
 740static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 741{
 742	struct address_space *mapping = page->mapping;
 
 743	int error;
 744
 745	VM_BUG_ON_PAGE(PageCompound(page), page);
 746
 747	xa_lock_irq(&mapping->i_pages);
 748	error = shmem_replace_entry(mapping, page->index, page, radswap);
 749	page->mapping = NULL;
 750	mapping->nrpages--;
 751	__dec_lruvec_page_state(page, NR_FILE_PAGES);
 752	__dec_lruvec_page_state(page, NR_SHMEM);
 753	xa_unlock_irq(&mapping->i_pages);
 754	put_page(page);
 755	BUG_ON(error);
 756}
 757
 758/*
 759 * Remove swap entry from page cache, free the swap and its page cache.
 760 */
 761static int shmem_free_swap(struct address_space *mapping,
 762			   pgoff_t index, void *radswap)
 763{
 764	void *old;
 765
 766	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 767	if (old != radswap)
 768		return -ENOENT;
 769	free_swap_and_cache(radix_to_swp_entry(radswap));
 770	return 0;
 771}
 772
 773/*
 774 * Determine (in bytes) how many of the shmem object's pages mapped by the
 775 * given offsets are swapped out.
 776 *
 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 778 * as long as the inode doesn't go away and racy results are not a problem.
 779 */
 780unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 781						pgoff_t start, pgoff_t end)
 782{
 783	XA_STATE(xas, &mapping->i_pages, start);
 784	struct page *page;
 785	unsigned long swapped = 0;
 786
 787	rcu_read_lock();
 788	xas_for_each(&xas, page, end - 1) {
 789		if (xas_retry(&xas, page))
 790			continue;
 791		if (xa_is_value(page))
 792			swapped++;
 793
 794		if (need_resched()) {
 795			xas_pause(&xas);
 796			cond_resched_rcu();
 797		}
 798	}
 799
 800	rcu_read_unlock();
 801
 802	return swapped << PAGE_SHIFT;
 803}
 804
 805/*
 806 * Determine (in bytes) how many of the shmem object's pages mapped by the
 807 * given vma is swapped out.
 808 *
 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 810 * as long as the inode doesn't go away and racy results are not a problem.
 811 */
 812unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 813{
 814	struct inode *inode = file_inode(vma->vm_file);
 815	struct shmem_inode_info *info = SHMEM_I(inode);
 816	struct address_space *mapping = inode->i_mapping;
 817	unsigned long swapped;
 818
 819	/* Be careful as we don't hold info->lock */
 820	swapped = READ_ONCE(info->swapped);
 821
 822	/*
 823	 * The easier cases are when the shmem object has nothing in swap, or
 824	 * the vma maps it whole. Then we can simply use the stats that we
 825	 * already track.
 826	 */
 827	if (!swapped)
 828		return 0;
 829
 830	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 831		return swapped << PAGE_SHIFT;
 832
 833	/* Here comes the more involved part */
 834	return shmem_partial_swap_usage(mapping,
 835			linear_page_index(vma, vma->vm_start),
 836			linear_page_index(vma, vma->vm_end));
 837}
 838
 839/*
 840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 841 */
 842void shmem_unlock_mapping(struct address_space *mapping)
 843{
 844	struct pagevec pvec;
 845	pgoff_t indices[PAGEVEC_SIZE];
 846	pgoff_t index = 0;
 847
 848	pagevec_init(&pvec);
 849	/*
 850	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 851	 */
 852	while (!mapping_unevictable(mapping)) {
 853		/*
 854		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 855		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 856		 */
 857		pvec.nr = find_get_entries(mapping, index,
 858					   PAGEVEC_SIZE, pvec.pages, indices);
 859		if (!pvec.nr)
 860			break;
 861		index = indices[pvec.nr - 1] + 1;
 862		pagevec_remove_exceptionals(&pvec);
 863		check_move_unevictable_pages(&pvec);
 864		pagevec_release(&pvec);
 865		cond_resched();
 866	}
 867}
 868
 869/*
 870 * Check whether a hole-punch or truncation needs to split a huge page,
 871 * returning true if no split was required, or the split has been successful.
 872 *
 873 * Eviction (or truncation to 0 size) should never need to split a huge page;
 874 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
 875 * head, and then succeeded to trylock on tail.
 876 *
 877 * A split can only succeed when there are no additional references on the
 878 * huge page: so the split below relies upon find_get_entries() having stopped
 879 * when it found a subpage of the huge page, without getting further references.
 880 */
 881static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
 882{
 883	if (!PageTransCompound(page))
 884		return true;
 885
 886	/* Just proceed to delete a huge page wholly within the range punched */
 887	if (PageHead(page) &&
 888	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
 889		return true;
 890
 891	/* Try to split huge page, so we can truly punch the hole or truncate */
 892	return split_huge_page(page) >= 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 893}
 894
 895/*
 896 * Remove range of pages and swap entries from page cache, and free them.
 897 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 898 */
 899static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 900								 bool unfalloc)
 901{
 902	struct address_space *mapping = inode->i_mapping;
 903	struct shmem_inode_info *info = SHMEM_I(inode);
 904	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 905	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 906	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 907	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 908	struct pagevec pvec;
 909	pgoff_t indices[PAGEVEC_SIZE];
 
 
 910	long nr_swaps_freed = 0;
 911	pgoff_t index;
 912	int i;
 913
 914	if (lend == -1)
 915		end = -1;	/* unsigned, so actually very big */
 916
 917	pagevec_init(&pvec);
 918	index = start;
 919	while (index < end) {
 920		pvec.nr = find_get_entries(mapping, index,
 921			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 922			pvec.pages, indices);
 923		if (!pvec.nr)
 924			break;
 925		for (i = 0; i < pagevec_count(&pvec); i++) {
 926			struct page *page = pvec.pages[i];
 927
 928			index = indices[i];
 929			if (index >= end)
 930				break;
 
 
 
 931
 932			if (xa_is_value(page)) {
 933				if (unfalloc)
 934					continue;
 935				nr_swaps_freed += !shmem_free_swap(mapping,
 936								index, page);
 937				continue;
 938			}
 939
 940			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 941
 942			if (!trylock_page(page))
 943				continue;
 944
 945			if ((!unfalloc || !PageUptodate(page)) &&
 946			    page_mapping(page) == mapping) {
 947				VM_BUG_ON_PAGE(PageWriteback(page), page);
 948				if (shmem_punch_compound(page, start, end))
 949					truncate_inode_page(mapping, page);
 950			}
 951			unlock_page(page);
 952		}
 953		pagevec_remove_exceptionals(&pvec);
 954		pagevec_release(&pvec);
 955		cond_resched();
 956		index++;
 957	}
 958
 959	if (partial_start) {
 960		struct page *page = NULL;
 961		shmem_getpage(inode, start - 1, &page, SGP_READ);
 962		if (page) {
 963			unsigned int top = PAGE_SIZE;
 964			if (start > end) {
 965				top = partial_end;
 966				partial_end = 0;
 967			}
 968			zero_user_segment(page, partial_start, top);
 969			set_page_dirty(page);
 970			unlock_page(page);
 971			put_page(page);
 972		}
 973	}
 974	if (partial_end) {
 975		struct page *page = NULL;
 976		shmem_getpage(inode, end, &page, SGP_READ);
 977		if (page) {
 978			zero_user_segment(page, 0, partial_end);
 979			set_page_dirty(page);
 980			unlock_page(page);
 981			put_page(page);
 982		}
 
 
 
 
 
 
 
 
 983	}
 984	if (start >= end)
 985		return;
 986
 987	index = start;
 988	while (index < end) {
 989		cond_resched();
 990
 991		pvec.nr = find_get_entries(mapping, index,
 992				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 993				pvec.pages, indices);
 994		if (!pvec.nr) {
 995			/* If all gone or hole-punch or unfalloc, we're done */
 996			if (index == start || end != -1)
 997				break;
 998			/* But if truncating, restart to make sure all gone */
 999			index = start;
1000			continue;
1001		}
1002		for (i = 0; i < pagevec_count(&pvec); i++) {
1003			struct page *page = pvec.pages[i];
1004
1005			index = indices[i];
1006			if (index >= end)
1007				break;
1008
1009			if (xa_is_value(page)) {
1010				if (unfalloc)
1011					continue;
1012				if (shmem_free_swap(mapping, index, page)) {
1013					/* Swap was replaced by page: retry */
1014					index--;
1015					break;
1016				}
1017				nr_swaps_freed++;
1018				continue;
1019			}
1020
1021			lock_page(page);
1022
1023			if (!unfalloc || !PageUptodate(page)) {
1024				if (page_mapping(page) != mapping) {
1025					/* Page was replaced by swap: retry */
1026					unlock_page(page);
1027					index--;
1028					break;
1029				}
1030				VM_BUG_ON_PAGE(PageWriteback(page), page);
1031				if (shmem_punch_compound(page, start, end))
1032					truncate_inode_page(mapping, page);
1033				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034					/* Wipe the page and don't get stuck */
1035					clear_highpage(page);
1036					flush_dcache_page(page);
1037					set_page_dirty(page);
1038					if (index <
1039					    round_up(start, HPAGE_PMD_NR))
1040						start = index + 1;
1041				}
1042			}
1043			unlock_page(page);
1044		}
1045		pagevec_remove_exceptionals(&pvec);
1046		pagevec_release(&pvec);
1047		index++;
1048	}
1049
1050	spin_lock_irq(&info->lock);
1051	info->swapped -= nr_swaps_freed;
1052	shmem_recalc_inode(inode);
1053	spin_unlock_irq(&info->lock);
1054}
1055
1056void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057{
1058	shmem_undo_range(inode, lstart, lend, false);
1059	inode->i_ctime = inode->i_mtime = current_time(inode);
 
1060}
1061EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062
1063static int shmem_getattr(const struct path *path, struct kstat *stat,
 
1064			 u32 request_mask, unsigned int query_flags)
1065{
1066	struct inode *inode = path->dentry->d_inode;
1067	struct shmem_inode_info *info = SHMEM_I(inode);
1068	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1069
1070	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071		spin_lock_irq(&info->lock);
1072		shmem_recalc_inode(inode);
1073		spin_unlock_irq(&info->lock);
1074	}
1075	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
1076
1077	if (is_huge_enabled(sb_info))
1078		stat->blksize = HPAGE_PMD_SIZE;
1079
 
 
 
 
 
 
1080	return 0;
1081}
1082
1083static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 
1084{
1085	struct inode *inode = d_inode(dentry);
1086	struct shmem_inode_info *info = SHMEM_I(inode);
1087	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088	int error;
 
 
1089
1090	error = setattr_prepare(dentry, attr);
1091	if (error)
1092		return error;
1093
1094	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095		loff_t oldsize = inode->i_size;
1096		loff_t newsize = attr->ia_size;
1097
1098		/* protected by i_mutex */
1099		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101			return -EPERM;
1102
1103		if (newsize != oldsize) {
1104			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105					oldsize, newsize);
1106			if (error)
1107				return error;
1108			i_size_write(inode, newsize);
1109			inode->i_ctime = inode->i_mtime = current_time(inode);
 
 
1110		}
1111		if (newsize <= oldsize) {
1112			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113			if (oldsize > holebegin)
1114				unmap_mapping_range(inode->i_mapping,
1115							holebegin, 0, 1);
1116			if (info->alloced)
1117				shmem_truncate_range(inode,
1118							newsize, (loff_t)-1);
1119			/* unmap again to remove racily COWed private pages */
1120			if (oldsize > holebegin)
1121				unmap_mapping_range(inode->i_mapping,
1122							holebegin, 0, 1);
1123
1124			/*
1125			 * Part of the huge page can be beyond i_size: subject
1126			 * to shrink under memory pressure.
1127			 */
1128			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1129				spin_lock(&sbinfo->shrinklist_lock);
1130				/*
1131				 * _careful to defend against unlocked access to
1132				 * ->shrink_list in shmem_unused_huge_shrink()
1133				 */
1134				if (list_empty_careful(&info->shrinklist)) {
1135					list_add_tail(&info->shrinklist,
1136							&sbinfo->shrinklist);
1137					sbinfo->shrinklist_len++;
1138				}
1139				spin_unlock(&sbinfo->shrinklist_lock);
1140			}
1141		}
1142	}
1143
1144	setattr_copy(inode, attr);
1145	if (attr->ia_valid & ATTR_MODE)
1146		error = posix_acl_chmod(inode, inode->i_mode);
 
 
 
 
 
 
1147	return error;
1148}
1149
1150static void shmem_evict_inode(struct inode *inode)
1151{
1152	struct shmem_inode_info *info = SHMEM_I(inode);
1153	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1154
1155	if (inode->i_mapping->a_ops == &shmem_aops) {
1156		shmem_unacct_size(info->flags, inode->i_size);
1157		inode->i_size = 0;
 
1158		shmem_truncate_range(inode, 0, (loff_t)-1);
1159		if (!list_empty(&info->shrinklist)) {
1160			spin_lock(&sbinfo->shrinklist_lock);
1161			if (!list_empty(&info->shrinklist)) {
1162				list_del_init(&info->shrinklist);
1163				sbinfo->shrinklist_len--;
1164			}
1165			spin_unlock(&sbinfo->shrinklist_lock);
1166		}
1167		while (!list_empty(&info->swaplist)) {
1168			/* Wait while shmem_unuse() is scanning this inode... */
1169			wait_var_event(&info->stop_eviction,
1170				       !atomic_read(&info->stop_eviction));
1171			mutex_lock(&shmem_swaplist_mutex);
1172			/* ...but beware of the race if we peeked too early */
1173			if (!atomic_read(&info->stop_eviction))
1174				list_del_init(&info->swaplist);
1175			mutex_unlock(&shmem_swaplist_mutex);
1176		}
1177	}
1178
1179	simple_xattrs_free(&info->xattrs);
1180	WARN_ON(inode->i_blocks);
1181	shmem_free_inode(inode->i_sb);
1182	clear_inode(inode);
1183}
1184
1185extern struct swap_info_struct *swap_info[];
1186
1187static int shmem_find_swap_entries(struct address_space *mapping,
1188				   pgoff_t start, unsigned int nr_entries,
1189				   struct page **entries, pgoff_t *indices,
1190				   unsigned int type, bool frontswap)
1191{
1192	XA_STATE(xas, &mapping->i_pages, start);
1193	struct page *page;
1194	swp_entry_t entry;
1195	unsigned int ret = 0;
1196
1197	if (!nr_entries)
1198		return 0;
1199
1200	rcu_read_lock();
1201	xas_for_each(&xas, page, ULONG_MAX) {
1202		if (xas_retry(&xas, page))
1203			continue;
1204
1205		if (!xa_is_value(page))
1206			continue;
1207
1208		entry = radix_to_swp_entry(page);
 
 
 
 
1209		if (swp_type(entry) != type)
1210			continue;
1211		if (frontswap &&
1212		    !frontswap_test(swap_info[type], swp_offset(entry)))
1213			continue;
1214
1215		indices[ret] = xas.xa_index;
1216		entries[ret] = page;
 
1217
1218		if (need_resched()) {
1219			xas_pause(&xas);
1220			cond_resched_rcu();
1221		}
1222		if (++ret == nr_entries)
1223			break;
1224	}
1225	rcu_read_unlock();
1226
1227	return ret;
1228}
1229
1230/*
1231 * Move the swapped pages for an inode to page cache. Returns the count
1232 * of pages swapped in, or the error in case of failure.
1233 */
1234static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1235				    pgoff_t *indices)
1236{
1237	int i = 0;
1238	int ret = 0;
1239	int error = 0;
1240	struct address_space *mapping = inode->i_mapping;
1241
1242	for (i = 0; i < pvec.nr; i++) {
1243		struct page *page = pvec.pages[i];
1244
1245		if (!xa_is_value(page))
1246			continue;
1247		error = shmem_swapin_page(inode, indices[i],
1248					  &page, SGP_CACHE,
1249					  mapping_gfp_mask(mapping),
1250					  NULL, NULL);
1251		if (error == 0) {
1252			unlock_page(page);
1253			put_page(page);
1254			ret++;
1255		}
1256		if (error == -ENOMEM)
1257			break;
1258		error = 0;
1259	}
1260	return error ? error : ret;
1261}
1262
1263/*
1264 * If swap found in inode, free it and move page from swapcache to filecache.
1265 */
1266static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1267			     bool frontswap, unsigned long *fs_pages_to_unuse)
1268{
1269	struct address_space *mapping = inode->i_mapping;
1270	pgoff_t start = 0;
1271	struct pagevec pvec;
1272	pgoff_t indices[PAGEVEC_SIZE];
1273	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1274	int ret = 0;
1275
1276	pagevec_init(&pvec);
1277	do {
1278		unsigned int nr_entries = PAGEVEC_SIZE;
1279
1280		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1281			nr_entries = *fs_pages_to_unuse;
1282
1283		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1284						  pvec.pages, indices,
1285						  type, frontswap);
1286		if (pvec.nr == 0) {
1287			ret = 0;
1288			break;
1289		}
1290
1291		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1292		if (ret < 0)
1293			break;
1294
1295		if (frontswap_partial) {
1296			*fs_pages_to_unuse -= ret;
1297			if (*fs_pages_to_unuse == 0) {
1298				ret = FRONTSWAP_PAGES_UNUSED;
1299				break;
1300			}
1301		}
1302
1303		start = indices[pvec.nr - 1];
1304	} while (true);
1305
1306	return ret;
1307}
1308
1309/*
1310 * Read all the shared memory data that resides in the swap
1311 * device 'type' back into memory, so the swap device can be
1312 * unused.
1313 */
1314int shmem_unuse(unsigned int type, bool frontswap,
1315		unsigned long *fs_pages_to_unuse)
1316{
1317	struct shmem_inode_info *info, *next;
1318	int error = 0;
1319
1320	if (list_empty(&shmem_swaplist))
1321		return 0;
1322
1323	mutex_lock(&shmem_swaplist_mutex);
1324	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1325		if (!info->swapped) {
1326			list_del_init(&info->swaplist);
1327			continue;
1328		}
1329		/*
1330		 * Drop the swaplist mutex while searching the inode for swap;
1331		 * but before doing so, make sure shmem_evict_inode() will not
1332		 * remove placeholder inode from swaplist, nor let it be freed
1333		 * (igrab() would protect from unlink, but not from unmount).
1334		 */
1335		atomic_inc(&info->stop_eviction);
1336		mutex_unlock(&shmem_swaplist_mutex);
1337
1338		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1339					  fs_pages_to_unuse);
1340		cond_resched();
1341
1342		mutex_lock(&shmem_swaplist_mutex);
1343		next = list_next_entry(info, swaplist);
1344		if (!info->swapped)
1345			list_del_init(&info->swaplist);
1346		if (atomic_dec_and_test(&info->stop_eviction))
1347			wake_up_var(&info->stop_eviction);
1348		if (error)
1349			break;
1350	}
1351	mutex_unlock(&shmem_swaplist_mutex);
1352
1353	return error;
1354}
1355
1356/*
1357 * Move the page from the page cache to the swap cache.
1358 */
1359static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1360{
 
1361	struct shmem_inode_info *info;
1362	struct address_space *mapping;
1363	struct inode *inode;
1364	swp_entry_t swap;
1365	pgoff_t index;
1366
1367	VM_BUG_ON_PAGE(PageCompound(page), page);
1368	BUG_ON(!PageLocked(page));
1369	mapping = page->mapping;
1370	index = page->index;
 
 
 
 
 
 
 
 
 
 
 
 
 
1371	inode = mapping->host;
1372	info = SHMEM_I(inode);
1373	if (info->flags & VM_LOCKED)
1374		goto redirty;
1375	if (!total_swap_pages)
1376		goto redirty;
1377
1378	/*
1379	 * Our capabilities prevent regular writeback or sync from ever calling
1380	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1381	 * its underlying filesystem, in which case tmpfs should write out to
1382	 * swap only in response to memory pressure, and not for the writeback
1383	 * threads or sync.
1384	 */
1385	if (!wbc->for_reclaim) {
1386		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1387		goto redirty;
1388	}
1389
1390	/*
1391	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1392	 * value into swapfile.c, the only way we can correctly account for a
1393	 * fallocated page arriving here is now to initialize it and write it.
1394	 *
1395	 * That's okay for a page already fallocated earlier, but if we have
1396	 * not yet completed the fallocation, then (a) we want to keep track
1397	 * of this page in case we have to undo it, and (b) it may not be a
1398	 * good idea to continue anyway, once we're pushing into swap.  So
1399	 * reactivate the page, and let shmem_fallocate() quit when too many.
1400	 */
1401	if (!PageUptodate(page)) {
1402		if (inode->i_private) {
1403			struct shmem_falloc *shmem_falloc;
1404			spin_lock(&inode->i_lock);
1405			shmem_falloc = inode->i_private;
1406			if (shmem_falloc &&
1407			    !shmem_falloc->waitq &&
1408			    index >= shmem_falloc->start &&
1409			    index < shmem_falloc->next)
1410				shmem_falloc->nr_unswapped++;
1411			else
1412				shmem_falloc = NULL;
1413			spin_unlock(&inode->i_lock);
1414			if (shmem_falloc)
1415				goto redirty;
1416		}
1417		clear_highpage(page);
1418		flush_dcache_page(page);
1419		SetPageUptodate(page);
1420	}
1421
1422	swap = get_swap_page(page);
1423	if (!swap.val)
1424		goto redirty;
1425
1426	/*
1427	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1428	 * if it's not already there.  Do it now before the page is
1429	 * moved to swap cache, when its pagelock no longer protects
1430	 * the inode from eviction.  But don't unlock the mutex until
1431	 * we've incremented swapped, because shmem_unuse_inode() will
1432	 * prune a !swapped inode from the swaplist under this mutex.
1433	 */
1434	mutex_lock(&shmem_swaplist_mutex);
1435	if (list_empty(&info->swaplist))
1436		list_add(&info->swaplist, &shmem_swaplist);
1437
1438	if (add_to_swap_cache(page, swap,
1439			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1440			NULL) == 0) {
1441		spin_lock_irq(&info->lock);
1442		shmem_recalc_inode(inode);
1443		info->swapped++;
1444		spin_unlock_irq(&info->lock);
1445
1446		swap_shmem_alloc(swap);
1447		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1448
1449		mutex_unlock(&shmem_swaplist_mutex);
1450		BUG_ON(page_mapped(page));
1451		swap_writepage(page, wbc);
1452		return 0;
1453	}
1454
1455	mutex_unlock(&shmem_swaplist_mutex);
1456	put_swap_page(page, swap);
1457redirty:
1458	set_page_dirty(page);
1459	if (wbc->for_reclaim)
1460		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1461	unlock_page(page);
1462	return 0;
1463}
1464
1465#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1466static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1467{
1468	char buffer[64];
1469
1470	if (!mpol || mpol->mode == MPOL_DEFAULT)
1471		return;		/* show nothing */
1472
1473	mpol_to_str(buffer, sizeof(buffer), mpol);
1474
1475	seq_printf(seq, ",mpol=%s", buffer);
1476}
1477
1478static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1479{
1480	struct mempolicy *mpol = NULL;
1481	if (sbinfo->mpol) {
1482		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1483		mpol = sbinfo->mpol;
1484		mpol_get(mpol);
1485		spin_unlock(&sbinfo->stat_lock);
1486	}
1487	return mpol;
1488}
1489#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1490static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1491{
1492}
1493static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1494{
1495	return NULL;
1496}
1497#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1498#ifndef CONFIG_NUMA
1499#define vm_policy vm_private_data
1500#endif
1501
1502static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1503		struct shmem_inode_info *info, pgoff_t index)
1504{
1505	/* Create a pseudo vma that just contains the policy */
1506	vma_init(vma, NULL);
1507	/* Bias interleave by inode number to distribute better across nodes */
1508	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1509	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1510}
1511
1512static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1513{
1514	/* Drop reference taken by mpol_shared_policy_lookup() */
1515	mpol_cond_put(vma->vm_policy);
1516}
1517
1518static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1519			struct shmem_inode_info *info, pgoff_t index)
1520{
1521	struct vm_area_struct pvma;
1522	struct page *page;
1523	struct vm_fault vmf;
 
 
1524
1525	shmem_pseudo_vma_init(&pvma, info, index);
1526	vmf.vma = &pvma;
1527	vmf.address = 0;
1528	page = swap_cluster_readahead(swap, gfp, &vmf);
1529	shmem_pseudo_vma_destroy(&pvma);
1530
1531	return page;
 
 
1532}
1533
1534static struct page *shmem_alloc_hugepage(gfp_t gfp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535		struct shmem_inode_info *info, pgoff_t index)
1536{
1537	struct vm_area_struct pvma;
1538	struct address_space *mapping = info->vfs_inode.i_mapping;
1539	pgoff_t hindex;
1540	struct page *page;
1541
1542	hindex = round_down(index, HPAGE_PMD_NR);
1543	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1544								XA_PRESENT))
1545		return NULL;
1546
1547	shmem_pseudo_vma_init(&pvma, info, hindex);
1548	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1549			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1550	shmem_pseudo_vma_destroy(&pvma);
1551	if (page)
1552		prep_transhuge_page(page);
1553	else
1554		count_vm_event(THP_FILE_FALLBACK);
1555	return page;
1556}
1557
1558static struct page *shmem_alloc_page(gfp_t gfp,
1559			struct shmem_inode_info *info, pgoff_t index)
1560{
1561	struct vm_area_struct pvma;
1562	struct page *page;
1563
1564	shmem_pseudo_vma_init(&pvma, info, index);
1565	page = alloc_page_vma(gfp, &pvma, 0);
1566	shmem_pseudo_vma_destroy(&pvma);
1567
1568	return page;
1569}
1570
1571static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572		struct inode *inode,
1573		pgoff_t index, bool huge)
1574{
1575	struct shmem_inode_info *info = SHMEM_I(inode);
1576	struct page *page;
1577	int nr;
1578	int err = -ENOSPC;
1579
1580	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1581		huge = false;
1582	nr = huge ? HPAGE_PMD_NR : 1;
1583
1584	if (!shmem_inode_acct_block(inode, nr))
1585		goto failed;
1586
1587	if (huge)
1588		page = shmem_alloc_hugepage(gfp, info, index);
1589	else
1590		page = shmem_alloc_page(gfp, info, index);
1591	if (page) {
1592		__SetPageLocked(page);
1593		__SetPageSwapBacked(page);
1594		return page;
1595	}
1596
1597	err = -ENOMEM;
1598	shmem_inode_unacct_blocks(inode, nr);
1599failed:
1600	return ERR_PTR(err);
1601}
1602
1603/*
1604 * When a page is moved from swapcache to shmem filecache (either by the
1605 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607 * ignorance of the mapping it belongs to.  If that mapping has special
1608 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609 * we may need to copy to a suitable page before moving to filecache.
1610 *
1611 * In a future release, this may well be extended to respect cpuset and
1612 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613 * but for now it is a simple matter of zone.
1614 */
1615static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616{
1617	return page_zonenum(page) > gfp_zone(gfp);
1618}
1619
1620static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621				struct shmem_inode_info *info, pgoff_t index)
1622{
1623	struct page *oldpage, *newpage;
1624	struct address_space *swap_mapping;
1625	swp_entry_t entry;
1626	pgoff_t swap_index;
1627	int error;
1628
1629	oldpage = *pagep;
1630	entry.val = page_private(oldpage);
1631	swap_index = swp_offset(entry);
1632	swap_mapping = page_mapping(oldpage);
1633
1634	/*
1635	 * We have arrived here because our zones are constrained, so don't
1636	 * limit chance of success by further cpuset and node constraints.
1637	 */
1638	gfp &= ~GFP_CONSTRAINT_MASK;
1639	newpage = shmem_alloc_page(gfp, info, index);
1640	if (!newpage)
 
1641		return -ENOMEM;
1642
1643	get_page(newpage);
1644	copy_highpage(newpage, oldpage);
1645	flush_dcache_page(newpage);
1646
1647	__SetPageLocked(newpage);
1648	__SetPageSwapBacked(newpage);
1649	SetPageUptodate(newpage);
1650	set_page_private(newpage, entry.val);
1651	SetPageSwapCache(newpage);
1652
1653	/*
1654	 * Our caller will very soon move newpage out of swapcache, but it's
1655	 * a nice clean interface for us to replace oldpage by newpage there.
1656	 */
1657	xa_lock_irq(&swap_mapping->i_pages);
1658	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1659	if (!error) {
1660		mem_cgroup_migrate(oldpage, newpage);
1661		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
 
 
1663	}
1664	xa_unlock_irq(&swap_mapping->i_pages);
1665
1666	if (unlikely(error)) {
1667		/*
1668		 * Is this possible?  I think not, now that our callers check
1669		 * both PageSwapCache and page_private after getting page lock;
1670		 * but be defensive.  Reverse old to newpage for clear and free.
1671		 */
1672		oldpage = newpage;
1673	} else {
1674		lru_cache_add(newpage);
1675		*pagep = newpage;
1676	}
1677
1678	ClearPageSwapCache(oldpage);
1679	set_page_private(oldpage, 0);
1680
1681	unlock_page(oldpage);
1682	put_page(oldpage);
1683	put_page(oldpage);
1684	return error;
1685}
1686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687/*
1688 * Swap in the page pointed to by *pagep.
1689 * Caller has to make sure that *pagep contains a valid swapped page.
1690 * Returns 0 and the page in pagep if success. On failure, returns the
1691 * error code and NULL in *pagep.
1692 */
1693static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1694			     struct page **pagep, enum sgp_type sgp,
1695			     gfp_t gfp, struct vm_area_struct *vma,
1696			     vm_fault_t *fault_type)
1697{
1698	struct address_space *mapping = inode->i_mapping;
1699	struct shmem_inode_info *info = SHMEM_I(inode);
1700	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1701	struct page *page;
1702	swp_entry_t swap;
1703	int error;
1704
1705	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1706	swap = radix_to_swp_entry(*pagep);
1707	*pagep = NULL;
 
 
 
1708
1709	/* Look it up and read it in.. */
1710	page = lookup_swap_cache(swap, NULL, 0);
1711	if (!page) {
1712		/* Or update major stats only when swapin succeeds?? */
1713		if (fault_type) {
1714			*fault_type |= VM_FAULT_MAJOR;
1715			count_vm_event(PGMAJFAULT);
1716			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1717		}
1718		/* Here we actually start the io */
1719		page = shmem_swapin(swap, gfp, info, index);
1720		if (!page) {
1721			error = -ENOMEM;
1722			goto failed;
1723		}
1724	}
1725
1726	/* We have to do this with page locked to prevent races */
1727	lock_page(page);
1728	if (!PageSwapCache(page) || page_private(page) != swap.val ||
 
1729	    !shmem_confirm_swap(mapping, index, swap)) {
1730		error = -EEXIST;
1731		goto unlock;
1732	}
1733	if (!PageUptodate(page)) {
1734		error = -EIO;
1735		goto failed;
1736	}
1737	wait_on_page_writeback(page);
1738
1739	if (shmem_should_replace_page(page, gfp)) {
1740		error = shmem_replace_page(&page, gfp, info, index);
 
 
 
 
 
 
1741		if (error)
1742			goto failed;
1743	}
1744
1745	error = shmem_add_to_page_cache(page, mapping, index,
1746					swp_to_radix_entry(swap), gfp,
1747					charge_mm);
1748	if (error)
1749		goto failed;
1750
1751	spin_lock_irq(&info->lock);
1752	info->swapped--;
1753	shmem_recalc_inode(inode);
1754	spin_unlock_irq(&info->lock);
1755
1756	if (sgp == SGP_WRITE)
1757		mark_page_accessed(page);
1758
1759	delete_from_swap_cache(page);
1760	set_page_dirty(page);
1761	swap_free(swap);
1762
1763	*pagep = page;
1764	return 0;
1765failed:
1766	if (!shmem_confirm_swap(mapping, index, swap))
1767		error = -EEXIST;
 
 
1768unlock:
1769	if (page) {
1770		unlock_page(page);
1771		put_page(page);
1772	}
1773
1774	return error;
1775}
1776
1777/*
1778 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1779 *
1780 * If we allocate a new one we do not mark it dirty. That's up to the
1781 * vm. If we swap it in we mark it dirty since we also free the swap
1782 * entry since a page cannot live in both the swap and page cache.
1783 *
1784 * vmf and fault_type are only supplied by shmem_fault:
1785 * otherwise they are NULL.
1786 */
1787static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1788	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1789	struct vm_area_struct *vma, struct vm_fault *vmf,
1790			vm_fault_t *fault_type)
1791{
1792	struct address_space *mapping = inode->i_mapping;
1793	struct shmem_inode_info *info = SHMEM_I(inode);
1794	struct shmem_sb_info *sbinfo;
1795	struct mm_struct *charge_mm;
1796	struct page *page;
1797	enum sgp_type sgp_huge = sgp;
1798	pgoff_t hindex = index;
1799	int error;
1800	int once = 0;
1801	int alloced = 0;
1802
1803	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1804		return -EFBIG;
1805	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1806		sgp = SGP_CACHE;
1807repeat:
1808	if (sgp <= SGP_CACHE &&
1809	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1810		return -EINVAL;
1811	}
1812
1813	sbinfo = SHMEM_SB(inode->i_sb);
1814	charge_mm = vma ? vma->vm_mm : current->mm;
1815
1816	page = find_lock_entry(mapping, index);
1817	if (xa_is_value(page)) {
1818		error = shmem_swapin_page(inode, index, &page,
 
 
 
 
 
 
 
 
 
1819					  sgp, gfp, vma, fault_type);
1820		if (error == -EEXIST)
1821			goto repeat;
1822
1823		*pagep = page;
1824		return error;
1825	}
1826
1827	if (page && sgp == SGP_WRITE)
1828		mark_page_accessed(page);
1829
1830	/* fallocated page? */
1831	if (page && !PageUptodate(page)) {
 
1832		if (sgp != SGP_READ)
1833			goto clear;
1834		unlock_page(page);
1835		put_page(page);
1836		page = NULL;
1837	}
1838	if (page || sgp == SGP_READ) {
1839		*pagep = page;
 
 
 
 
 
1840		return 0;
1841	}
 
1842
1843	/*
1844	 * Fast cache lookup did not find it:
1845	 * bring it back from swap or allocate.
1846	 */
1847
1848	if (vma && userfaultfd_missing(vma)) {
1849		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1850		return 0;
1851	}
1852
1853	/* shmem_symlink() */
1854	if (mapping->a_ops != &shmem_aops)
1855		goto alloc_nohuge;
1856	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1857		goto alloc_nohuge;
1858	if (shmem_huge == SHMEM_HUGE_FORCE)
1859		goto alloc_huge;
1860	switch (sbinfo->huge) {
1861	case SHMEM_HUGE_NEVER:
1862		goto alloc_nohuge;
1863	case SHMEM_HUGE_WITHIN_SIZE: {
1864		loff_t i_size;
1865		pgoff_t off;
1866
1867		off = round_up(index, HPAGE_PMD_NR);
1868		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1869		if (i_size >= HPAGE_PMD_SIZE &&
1870		    i_size >> PAGE_SHIFT >= off)
1871			goto alloc_huge;
1872
1873		fallthrough;
1874	}
1875	case SHMEM_HUGE_ADVISE:
1876		if (sgp_huge == SGP_HUGE)
1877			goto alloc_huge;
1878		/* TODO: implement fadvise() hints */
1879		goto alloc_nohuge;
1880	}
1881
1882alloc_huge:
1883	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1884	if (IS_ERR(page)) {
 
1885alloc_nohuge:
1886		page = shmem_alloc_and_acct_page(gfp, inode,
1887						 index, false);
1888	}
1889	if (IS_ERR(page)) {
1890		int retry = 5;
1891
1892		error = PTR_ERR(page);
1893		page = NULL;
1894		if (error != -ENOSPC)
1895			goto unlock;
1896		/*
1897		 * Try to reclaim some space by splitting a huge page
1898		 * beyond i_size on the filesystem.
1899		 */
1900		while (retry--) {
1901			int ret;
1902
1903			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1904			if (ret == SHRINK_STOP)
1905				break;
1906			if (ret)
1907				goto alloc_nohuge;
1908		}
1909		goto unlock;
1910	}
1911
1912	if (PageTransHuge(page))
1913		hindex = round_down(index, HPAGE_PMD_NR);
1914	else
1915		hindex = index;
1916
1917	if (sgp == SGP_WRITE)
1918		__SetPageReferenced(page);
1919
1920	error = shmem_add_to_page_cache(page, mapping, hindex,
1921					NULL, gfp & GFP_RECLAIM_MASK,
1922					charge_mm);
1923	if (error)
1924		goto unacct;
1925	lru_cache_add(page);
1926
1927	spin_lock_irq(&info->lock);
1928	info->alloced += compound_nr(page);
1929	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1930	shmem_recalc_inode(inode);
1931	spin_unlock_irq(&info->lock);
1932	alloced = true;
1933
1934	if (PageTransHuge(page) &&
1935	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1936			hindex + HPAGE_PMD_NR - 1) {
1937		/*
1938		 * Part of the huge page is beyond i_size: subject
1939		 * to shrink under memory pressure.
1940		 */
1941		spin_lock(&sbinfo->shrinklist_lock);
1942		/*
1943		 * _careful to defend against unlocked access to
1944		 * ->shrink_list in shmem_unused_huge_shrink()
1945		 */
1946		if (list_empty_careful(&info->shrinklist)) {
1947			list_add_tail(&info->shrinklist,
1948				      &sbinfo->shrinklist);
1949			sbinfo->shrinklist_len++;
1950		}
1951		spin_unlock(&sbinfo->shrinklist_lock);
1952	}
1953
1954	/*
1955	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1956	 */
1957	if (sgp == SGP_FALLOC)
1958		sgp = SGP_WRITE;
1959clear:
1960	/*
1961	 * Let SGP_WRITE caller clear ends if write does not fill page;
1962	 * but SGP_FALLOC on a page fallocated earlier must initialize
1963	 * it now, lest undo on failure cancel our earlier guarantee.
1964	 */
1965	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1966		struct page *head = compound_head(page);
1967		int i;
1968
1969		for (i = 0; i < compound_nr(head); i++) {
1970			clear_highpage(head + i);
1971			flush_dcache_page(head + i);
1972		}
1973		SetPageUptodate(head);
1974	}
1975
1976	/* Perhaps the file has been truncated since we checked */
1977	if (sgp <= SGP_CACHE &&
1978	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1979		if (alloced) {
1980			ClearPageDirty(page);
1981			delete_from_page_cache(page);
1982			spin_lock_irq(&info->lock);
1983			shmem_recalc_inode(inode);
1984			spin_unlock_irq(&info->lock);
1985		}
1986		error = -EINVAL;
1987		goto unlock;
1988	}
1989	*pagep = page + index - hindex;
 
1990	return 0;
1991
1992	/*
1993	 * Error recovery.
1994	 */
1995unacct:
1996	shmem_inode_unacct_blocks(inode, compound_nr(page));
1997
1998	if (PageTransHuge(page)) {
1999		unlock_page(page);
2000		put_page(page);
2001		goto alloc_nohuge;
2002	}
2003unlock:
2004	if (page) {
2005		unlock_page(page);
2006		put_page(page);
2007	}
2008	if (error == -ENOSPC && !once++) {
2009		spin_lock_irq(&info->lock);
2010		shmem_recalc_inode(inode);
2011		spin_unlock_irq(&info->lock);
2012		goto repeat;
2013	}
2014	if (error == -EEXIST)
2015		goto repeat;
2016	return error;
2017}
2018
 
 
 
 
 
 
 
2019/*
2020 * This is like autoremove_wake_function, but it removes the wait queue
2021 * entry unconditionally - even if something else had already woken the
2022 * target.
2023 */
2024static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2025{
2026	int ret = default_wake_function(wait, mode, sync, key);
2027	list_del_init(&wait->entry);
2028	return ret;
2029}
2030
2031static vm_fault_t shmem_fault(struct vm_fault *vmf)
2032{
2033	struct vm_area_struct *vma = vmf->vma;
2034	struct inode *inode = file_inode(vma->vm_file);
2035	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2036	enum sgp_type sgp;
2037	int err;
2038	vm_fault_t ret = VM_FAULT_LOCKED;
2039
2040	/*
2041	 * Trinity finds that probing a hole which tmpfs is punching can
2042	 * prevent the hole-punch from ever completing: which in turn
2043	 * locks writers out with its hold on i_mutex.  So refrain from
2044	 * faulting pages into the hole while it's being punched.  Although
2045	 * shmem_undo_range() does remove the additions, it may be unable to
2046	 * keep up, as each new page needs its own unmap_mapping_range() call,
2047	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2048	 *
2049	 * It does not matter if we sometimes reach this check just before the
2050	 * hole-punch begins, so that one fault then races with the punch:
2051	 * we just need to make racing faults a rare case.
2052	 *
2053	 * The implementation below would be much simpler if we just used a
2054	 * standard mutex or completion: but we cannot take i_mutex in fault,
2055	 * and bloating every shmem inode for this unlikely case would be sad.
2056	 */
2057	if (unlikely(inode->i_private)) {
2058		struct shmem_falloc *shmem_falloc;
2059
2060		spin_lock(&inode->i_lock);
2061		shmem_falloc = inode->i_private;
2062		if (shmem_falloc &&
2063		    shmem_falloc->waitq &&
2064		    vmf->pgoff >= shmem_falloc->start &&
2065		    vmf->pgoff < shmem_falloc->next) {
2066			struct file *fpin;
2067			wait_queue_head_t *shmem_falloc_waitq;
2068			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2069
2070			ret = VM_FAULT_NOPAGE;
2071			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2072			if (fpin)
2073				ret = VM_FAULT_RETRY;
2074
2075			shmem_falloc_waitq = shmem_falloc->waitq;
2076			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2077					TASK_UNINTERRUPTIBLE);
2078			spin_unlock(&inode->i_lock);
2079			schedule();
2080
2081			/*
2082			 * shmem_falloc_waitq points into the shmem_fallocate()
2083			 * stack of the hole-punching task: shmem_falloc_waitq
2084			 * is usually invalid by the time we reach here, but
2085			 * finish_wait() does not dereference it in that case;
2086			 * though i_lock needed lest racing with wake_up_all().
2087			 */
2088			spin_lock(&inode->i_lock);
2089			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2090			spin_unlock(&inode->i_lock);
2091
2092			if (fpin)
2093				fput(fpin);
2094			return ret;
2095		}
2096		spin_unlock(&inode->i_lock);
2097	}
2098
2099	sgp = SGP_CACHE;
2100
2101	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2102	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2103		sgp = SGP_NOHUGE;
2104	else if (vma->vm_flags & VM_HUGEPAGE)
2105		sgp = SGP_HUGE;
2106
2107	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2108				  gfp, vma, vmf, &ret);
2109	if (err)
2110		return vmf_error(err);
 
 
2111	return ret;
2112}
2113
2114unsigned long shmem_get_unmapped_area(struct file *file,
2115				      unsigned long uaddr, unsigned long len,
2116				      unsigned long pgoff, unsigned long flags)
2117{
2118	unsigned long (*get_area)(struct file *,
2119		unsigned long, unsigned long, unsigned long, unsigned long);
2120	unsigned long addr;
2121	unsigned long offset;
2122	unsigned long inflated_len;
2123	unsigned long inflated_addr;
2124	unsigned long inflated_offset;
2125
2126	if (len > TASK_SIZE)
2127		return -ENOMEM;
2128
2129	get_area = current->mm->get_unmapped_area;
2130	addr = get_area(file, uaddr, len, pgoff, flags);
2131
2132	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2133		return addr;
2134	if (IS_ERR_VALUE(addr))
2135		return addr;
2136	if (addr & ~PAGE_MASK)
2137		return addr;
2138	if (addr > TASK_SIZE - len)
2139		return addr;
2140
2141	if (shmem_huge == SHMEM_HUGE_DENY)
2142		return addr;
2143	if (len < HPAGE_PMD_SIZE)
2144		return addr;
2145	if (flags & MAP_FIXED)
2146		return addr;
2147	/*
2148	 * Our priority is to support MAP_SHARED mapped hugely;
2149	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2150	 * But if caller specified an address hint and we allocated area there
2151	 * successfully, respect that as before.
2152	 */
2153	if (uaddr == addr)
2154		return addr;
2155
2156	if (shmem_huge != SHMEM_HUGE_FORCE) {
2157		struct super_block *sb;
2158
2159		if (file) {
2160			VM_BUG_ON(file->f_op != &shmem_file_operations);
2161			sb = file_inode(file)->i_sb;
2162		} else {
2163			/*
2164			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2165			 * for "/dev/zero", to create a shared anonymous object.
2166			 */
2167			if (IS_ERR(shm_mnt))
2168				return addr;
2169			sb = shm_mnt->mnt_sb;
2170		}
2171		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2172			return addr;
2173	}
2174
2175	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2176	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2177		return addr;
2178	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2179		return addr;
2180
2181	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2182	if (inflated_len > TASK_SIZE)
2183		return addr;
2184	if (inflated_len < len)
2185		return addr;
2186
2187	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2188	if (IS_ERR_VALUE(inflated_addr))
2189		return addr;
2190	if (inflated_addr & ~PAGE_MASK)
2191		return addr;
2192
2193	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2194	inflated_addr += offset - inflated_offset;
2195	if (inflated_offset > offset)
2196		inflated_addr += HPAGE_PMD_SIZE;
2197
2198	if (inflated_addr > TASK_SIZE - len)
2199		return addr;
2200	return inflated_addr;
2201}
2202
2203#ifdef CONFIG_NUMA
2204static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2205{
2206	struct inode *inode = file_inode(vma->vm_file);
2207	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2208}
2209
2210static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2211					  unsigned long addr)
2212{
2213	struct inode *inode = file_inode(vma->vm_file);
2214	pgoff_t index;
2215
2216	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2217	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2218}
2219#endif
2220
2221int shmem_lock(struct file *file, int lock, struct user_struct *user)
2222{
2223	struct inode *inode = file_inode(file);
2224	struct shmem_inode_info *info = SHMEM_I(inode);
2225	int retval = -ENOMEM;
2226
2227	/*
2228	 * What serializes the accesses to info->flags?
2229	 * ipc_lock_object() when called from shmctl_do_lock(),
2230	 * no serialization needed when called from shm_destroy().
2231	 */
2232	if (lock && !(info->flags & VM_LOCKED)) {
2233		if (!user_shm_lock(inode->i_size, user))
2234			goto out_nomem;
2235		info->flags |= VM_LOCKED;
2236		mapping_set_unevictable(file->f_mapping);
2237	}
2238	if (!lock && (info->flags & VM_LOCKED) && user) {
2239		user_shm_unlock(inode->i_size, user);
2240		info->flags &= ~VM_LOCKED;
2241		mapping_clear_unevictable(file->f_mapping);
2242	}
2243	retval = 0;
2244
2245out_nomem:
2246	return retval;
2247}
2248
2249static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2250{
2251	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
 
 
2252
2253	if (info->seals & F_SEAL_FUTURE_WRITE) {
2254		/*
2255		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2256		 * "future write" seal active.
2257		 */
2258		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2259			return -EPERM;
2260
2261		/*
2262		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2263		 * MAP_SHARED and read-only, take care to not allow mprotect to
2264		 * revert protections on such mappings. Do this only for shared
2265		 * mappings. For private mappings, don't need to mask
2266		 * VM_MAYWRITE as we still want them to be COW-writable.
2267		 */
2268		if (vma->vm_flags & VM_SHARED)
2269			vma->vm_flags &= ~(VM_MAYWRITE);
2270	}
2271
2272	file_accessed(file);
2273	vma->vm_ops = &shmem_vm_ops;
2274	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2275			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2276			(vma->vm_end & HPAGE_PMD_MASK)) {
2277		khugepaged_enter(vma, vma->vm_flags);
2278	}
2279	return 0;
2280}
2281
2282static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2283				     umode_t mode, dev_t dev, unsigned long flags)
2284{
2285	struct inode *inode;
2286	struct shmem_inode_info *info;
2287	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2288	ino_t ino;
2289
2290	if (shmem_reserve_inode(sb, &ino))
2291		return NULL;
2292
2293	inode = new_inode(sb);
2294	if (inode) {
2295		inode->i_ino = ino;
2296		inode_init_owner(inode, dir, mode);
2297		inode->i_blocks = 0;
2298		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2299		inode->i_generation = prandom_u32();
2300		info = SHMEM_I(inode);
2301		memset(info, 0, (char *)inode - (char *)info);
2302		spin_lock_init(&info->lock);
2303		atomic_set(&info->stop_eviction, 0);
2304		info->seals = F_SEAL_SEAL;
2305		info->flags = flags & VM_NORESERVE;
 
 
 
 
 
2306		INIT_LIST_HEAD(&info->shrinklist);
2307		INIT_LIST_HEAD(&info->swaplist);
2308		simple_xattrs_init(&info->xattrs);
2309		cache_no_acl(inode);
 
2310
2311		switch (mode & S_IFMT) {
2312		default:
2313			inode->i_op = &shmem_special_inode_operations;
2314			init_special_inode(inode, mode, dev);
2315			break;
2316		case S_IFREG:
2317			inode->i_mapping->a_ops = &shmem_aops;
2318			inode->i_op = &shmem_inode_operations;
2319			inode->i_fop = &shmem_file_operations;
2320			mpol_shared_policy_init(&info->policy,
2321						 shmem_get_sbmpol(sbinfo));
2322			break;
2323		case S_IFDIR:
2324			inc_nlink(inode);
2325			/* Some things misbehave if size == 0 on a directory */
2326			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2327			inode->i_op = &shmem_dir_inode_operations;
2328			inode->i_fop = &simple_dir_operations;
2329			break;
2330		case S_IFLNK:
2331			/*
2332			 * Must not load anything in the rbtree,
2333			 * mpol_free_shared_policy will not be called.
2334			 */
2335			mpol_shared_policy_init(&info->policy, NULL);
2336			break;
2337		}
2338
2339		lockdep_annotate_inode_mutex_key(inode);
2340	} else
2341		shmem_free_inode(sb);
2342	return inode;
2343}
2344
2345bool shmem_mapping(struct address_space *mapping)
2346{
2347	return mapping->a_ops == &shmem_aops;
2348}
2349
2350static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2351				  pmd_t *dst_pmd,
2352				  struct vm_area_struct *dst_vma,
2353				  unsigned long dst_addr,
2354				  unsigned long src_addr,
2355				  bool zeropage,
2356				  struct page **pagep)
2357{
2358	struct inode *inode = file_inode(dst_vma->vm_file);
2359	struct shmem_inode_info *info = SHMEM_I(inode);
2360	struct address_space *mapping = inode->i_mapping;
2361	gfp_t gfp = mapping_gfp_mask(mapping);
2362	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2363	spinlock_t *ptl;
2364	void *page_kaddr;
2365	struct page *page;
2366	pte_t _dst_pte, *dst_pte;
2367	int ret;
2368	pgoff_t offset, max_off;
2369
2370	ret = -ENOMEM;
2371	if (!shmem_inode_acct_block(inode, 1))
2372		goto out;
 
 
 
 
 
 
 
 
 
2373
2374	if (!*pagep) {
2375		page = shmem_alloc_page(gfp, info, pgoff);
2376		if (!page)
 
2377			goto out_unacct_blocks;
2378
2379		if (!zeropage) {	/* mcopy_atomic */
2380			page_kaddr = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2381			ret = copy_from_user(page_kaddr,
2382					     (const void __user *)src_addr,
2383					     PAGE_SIZE);
2384			kunmap_atomic(page_kaddr);
 
2385
2386			/* fallback to copy_from_user outside mmap_lock */
2387			if (unlikely(ret)) {
2388				*pagep = page;
2389				shmem_inode_unacct_blocks(inode, 1);
2390				/* don't free the page */
2391				return -ENOENT;
2392			}
2393		} else {		/* mfill_zeropage_atomic */
2394			clear_highpage(page);
 
 
2395		}
2396	} else {
2397		page = *pagep;
 
2398		*pagep = NULL;
2399	}
2400
2401	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2402	__SetPageLocked(page);
2403	__SetPageSwapBacked(page);
2404	__SetPageUptodate(page);
 
2405
2406	ret = -EFAULT;
2407	offset = linear_page_index(dst_vma, dst_addr);
2408	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2409	if (unlikely(offset >= max_off))
2410		goto out_release;
2411
2412	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2413				      gfp & GFP_RECLAIM_MASK, dst_mm);
2414	if (ret)
2415		goto out_release;
2416
2417	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2418	if (dst_vma->vm_flags & VM_WRITE)
2419		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2420	else {
2421		/*
2422		 * We don't set the pte dirty if the vma has no
2423		 * VM_WRITE permission, so mark the page dirty or it
2424		 * could be freed from under us. We could do it
2425		 * unconditionally before unlock_page(), but doing it
2426		 * only if VM_WRITE is not set is faster.
2427		 */
2428		set_page_dirty(page);
2429	}
2430
2431	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2432
2433	ret = -EFAULT;
2434	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2435	if (unlikely(offset >= max_off))
2436		goto out_release_unlock;
2437
2438	ret = -EEXIST;
2439	if (!pte_none(*dst_pte))
2440		goto out_release_unlock;
2441
2442	lru_cache_add(page);
2443
2444	spin_lock_irq(&info->lock);
2445	info->alloced++;
2446	inode->i_blocks += BLOCKS_PER_PAGE;
2447	shmem_recalc_inode(inode);
2448	spin_unlock_irq(&info->lock);
2449
2450	inc_mm_counter(dst_mm, mm_counter_file(page));
2451	page_add_file_rmap(page, false);
2452	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2453
2454	/* No need to invalidate - it was non-present before */
2455	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2456	pte_unmap_unlock(dst_pte, ptl);
2457	unlock_page(page);
2458	ret = 0;
2459out:
2460	return ret;
2461out_release_unlock:
2462	pte_unmap_unlock(dst_pte, ptl);
2463	ClearPageDirty(page);
2464	delete_from_page_cache(page);
2465out_release:
2466	unlock_page(page);
2467	put_page(page);
2468out_unacct_blocks:
2469	shmem_inode_unacct_blocks(inode, 1);
2470	goto out;
2471}
2472
2473int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2474			   pmd_t *dst_pmd,
2475			   struct vm_area_struct *dst_vma,
2476			   unsigned long dst_addr,
2477			   unsigned long src_addr,
2478			   struct page **pagep)
2479{
2480	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2481				      dst_addr, src_addr, false, pagep);
2482}
2483
2484int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2485			     pmd_t *dst_pmd,
2486			     struct vm_area_struct *dst_vma,
2487			     unsigned long dst_addr)
2488{
2489	struct page *page = NULL;
2490
2491	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2492				      dst_addr, 0, true, &page);
2493}
 
2494
2495#ifdef CONFIG_TMPFS
2496static const struct inode_operations shmem_symlink_inode_operations;
2497static const struct inode_operations shmem_short_symlink_operations;
2498
2499#ifdef CONFIG_TMPFS_XATTR
2500static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2501#else
2502#define shmem_initxattrs NULL
2503#endif
2504
2505static int
2506shmem_write_begin(struct file *file, struct address_space *mapping,
2507			loff_t pos, unsigned len, unsigned flags,
2508			struct page **pagep, void **fsdata)
2509{
2510	struct inode *inode = mapping->host;
2511	struct shmem_inode_info *info = SHMEM_I(inode);
2512	pgoff_t index = pos >> PAGE_SHIFT;
 
 
2513
2514	/* i_mutex is held by caller */
2515	if (unlikely(info->seals & (F_SEAL_GROW |
2516				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2517		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2518			return -EPERM;
2519		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2520			return -EPERM;
2521	}
2522
2523	return shmem_getpage(inode, index, pagep, SGP_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
2524}
2525
2526static int
2527shmem_write_end(struct file *file, struct address_space *mapping,
2528			loff_t pos, unsigned len, unsigned copied,
2529			struct page *page, void *fsdata)
2530{
2531	struct inode *inode = mapping->host;
2532
2533	if (pos + copied > inode->i_size)
2534		i_size_write(inode, pos + copied);
2535
2536	if (!PageUptodate(page)) {
2537		struct page *head = compound_head(page);
2538		if (PageTransCompound(page)) {
2539			int i;
2540
2541			for (i = 0; i < HPAGE_PMD_NR; i++) {
2542				if (head + i == page)
2543					continue;
2544				clear_highpage(head + i);
2545				flush_dcache_page(head + i);
2546			}
2547		}
2548		if (copied < PAGE_SIZE) {
2549			unsigned from = pos & (PAGE_SIZE - 1);
2550			zero_user_segments(page, 0, from,
2551					from + copied, PAGE_SIZE);
2552		}
2553		SetPageUptodate(head);
2554	}
2555	set_page_dirty(page);
2556	unlock_page(page);
2557	put_page(page);
2558
2559	return copied;
2560}
2561
2562static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2563{
2564	struct file *file = iocb->ki_filp;
2565	struct inode *inode = file_inode(file);
2566	struct address_space *mapping = inode->i_mapping;
2567	pgoff_t index;
2568	unsigned long offset;
2569	enum sgp_type sgp = SGP_READ;
2570	int error = 0;
2571	ssize_t retval = 0;
2572	loff_t *ppos = &iocb->ki_pos;
2573
2574	/*
2575	 * Might this read be for a stacking filesystem?  Then when reading
2576	 * holes of a sparse file, we actually need to allocate those pages,
2577	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2578	 */
2579	if (!iter_is_iovec(to))
2580		sgp = SGP_CACHE;
2581
2582	index = *ppos >> PAGE_SHIFT;
2583	offset = *ppos & ~PAGE_MASK;
2584
2585	for (;;) {
 
2586		struct page *page = NULL;
2587		pgoff_t end_index;
2588		unsigned long nr, ret;
2589		loff_t i_size = i_size_read(inode);
2590
2591		end_index = i_size >> PAGE_SHIFT;
2592		if (index > end_index)
2593			break;
2594		if (index == end_index) {
2595			nr = i_size & ~PAGE_MASK;
2596			if (nr <= offset)
2597				break;
2598		}
2599
2600		error = shmem_getpage(inode, index, &page, sgp);
2601		if (error) {
2602			if (error == -EINVAL)
2603				error = 0;
2604			break;
2605		}
2606		if (page) {
2607			if (sgp == SGP_CACHE)
2608				set_page_dirty(page);
2609			unlock_page(page);
 
 
 
 
 
2610		}
2611
2612		/*
2613		 * We must evaluate after, since reads (unlike writes)
2614		 * are called without i_mutex protection against truncate
2615		 */
2616		nr = PAGE_SIZE;
2617		i_size = i_size_read(inode);
2618		end_index = i_size >> PAGE_SHIFT;
2619		if (index == end_index) {
2620			nr = i_size & ~PAGE_MASK;
2621			if (nr <= offset) {
2622				if (page)
2623					put_page(page);
2624				break;
2625			}
2626		}
2627		nr -= offset;
2628
2629		if (page) {
2630			/*
2631			 * If users can be writing to this page using arbitrary
2632			 * virtual addresses, take care about potential aliasing
2633			 * before reading the page on the kernel side.
2634			 */
2635			if (mapping_writably_mapped(mapping))
2636				flush_dcache_page(page);
2637			/*
2638			 * Mark the page accessed if we read the beginning.
2639			 */
2640			if (!offset)
2641				mark_page_accessed(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642		} else {
2643			page = ZERO_PAGE(0);
2644			get_page(page);
 
 
 
 
2645		}
2646
2647		/*
2648		 * Ok, we have the page, and it's up-to-date, so
2649		 * now we can copy it to user space...
2650		 */
2651		ret = copy_page_to_iter(page, offset, nr, to);
2652		retval += ret;
2653		offset += ret;
2654		index += offset >> PAGE_SHIFT;
2655		offset &= ~PAGE_MASK;
2656
2657		put_page(page);
2658		if (!iov_iter_count(to))
2659			break;
2660		if (ret < nr) {
2661			error = -EFAULT;
2662			break;
2663		}
2664		cond_resched();
2665	}
2666
2667	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2668	file_accessed(file);
2669	return retval ? retval : error;
2670}
2671
2672/*
2673 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2674 */
2675static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2676				    pgoff_t index, pgoff_t end, int whence)
2677{
2678	struct page *page;
2679	struct pagevec pvec;
2680	pgoff_t indices[PAGEVEC_SIZE];
2681	bool done = false;
2682	int i;
2683
2684	pagevec_init(&pvec);
2685	pvec.nr = 1;		/* start small: we may be there already */
2686	while (!done) {
2687		pvec.nr = find_get_entries(mapping, index,
2688					pvec.nr, pvec.pages, indices);
2689		if (!pvec.nr) {
2690			if (whence == SEEK_DATA)
2691				index = end;
2692			break;
2693		}
2694		for (i = 0; i < pvec.nr; i++, index++) {
2695			if (index < indices[i]) {
2696				if (whence == SEEK_HOLE) {
2697					done = true;
2698					break;
2699				}
2700				index = indices[i];
2701			}
2702			page = pvec.pages[i];
2703			if (page && !xa_is_value(page)) {
2704				if (!PageUptodate(page))
2705					page = NULL;
2706			}
2707			if (index >= end ||
2708			    (page && whence == SEEK_DATA) ||
2709			    (!page && whence == SEEK_HOLE)) {
2710				done = true;
2711				break;
2712			}
2713		}
2714		pagevec_remove_exceptionals(&pvec);
2715		pagevec_release(&pvec);
2716		pvec.nr = PAGEVEC_SIZE;
2717		cond_resched();
2718	}
2719	return index;
2720}
2721
2722static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2723{
2724	struct address_space *mapping = file->f_mapping;
2725	struct inode *inode = mapping->host;
2726	pgoff_t start, end;
2727	loff_t new_offset;
2728
2729	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2730		return generic_file_llseek_size(file, offset, whence,
2731					MAX_LFS_FILESIZE, i_size_read(inode));
2732	inode_lock(inode);
2733	/* We're holding i_mutex so we can access i_size directly */
2734
2735	if (offset < 0 || offset >= inode->i_size)
2736		offset = -ENXIO;
2737	else {
2738		start = offset >> PAGE_SHIFT;
2739		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2740		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2741		new_offset <<= PAGE_SHIFT;
2742		if (new_offset > offset) {
2743			if (new_offset < inode->i_size)
2744				offset = new_offset;
2745			else if (whence == SEEK_DATA)
2746				offset = -ENXIO;
2747			else
2748				offset = inode->i_size;
2749		}
2750	}
2751
 
 
 
2752	if (offset >= 0)
2753		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2754	inode_unlock(inode);
2755	return offset;
2756}
2757
2758static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2759							 loff_t len)
2760{
2761	struct inode *inode = file_inode(file);
2762	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2763	struct shmem_inode_info *info = SHMEM_I(inode);
2764	struct shmem_falloc shmem_falloc;
2765	pgoff_t start, index, end;
2766	int error;
2767
2768	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2769		return -EOPNOTSUPP;
2770
2771	inode_lock(inode);
2772
2773	if (mode & FALLOC_FL_PUNCH_HOLE) {
2774		struct address_space *mapping = file->f_mapping;
2775		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2776		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2777		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2778
2779		/* protected by i_mutex */
2780		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2781			error = -EPERM;
2782			goto out;
2783		}
2784
2785		shmem_falloc.waitq = &shmem_falloc_waitq;
2786		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2787		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2788		spin_lock(&inode->i_lock);
2789		inode->i_private = &shmem_falloc;
2790		spin_unlock(&inode->i_lock);
2791
2792		if ((u64)unmap_end > (u64)unmap_start)
2793			unmap_mapping_range(mapping, unmap_start,
2794					    1 + unmap_end - unmap_start, 0);
2795		shmem_truncate_range(inode, offset, offset + len - 1);
2796		/* No need to unmap again: hole-punching leaves COWed pages */
2797
2798		spin_lock(&inode->i_lock);
2799		inode->i_private = NULL;
2800		wake_up_all(&shmem_falloc_waitq);
2801		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2802		spin_unlock(&inode->i_lock);
2803		error = 0;
2804		goto out;
2805	}
2806
2807	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2808	error = inode_newsize_ok(inode, offset + len);
2809	if (error)
2810		goto out;
2811
2812	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2813		error = -EPERM;
2814		goto out;
2815	}
2816
2817	start = offset >> PAGE_SHIFT;
2818	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2819	/* Try to avoid a swapstorm if len is impossible to satisfy */
2820	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2821		error = -ENOSPC;
2822		goto out;
2823	}
2824
2825	shmem_falloc.waitq = NULL;
2826	shmem_falloc.start = start;
2827	shmem_falloc.next  = start;
2828	shmem_falloc.nr_falloced = 0;
2829	shmem_falloc.nr_unswapped = 0;
2830	spin_lock(&inode->i_lock);
2831	inode->i_private = &shmem_falloc;
2832	spin_unlock(&inode->i_lock);
2833
2834	for (index = start; index < end; index++) {
2835		struct page *page;
 
 
 
 
 
 
 
 
 
2836
2837		/*
2838		 * Good, the fallocate(2) manpage permits EINTR: we may have
2839		 * been interrupted because we are using up too much memory.
2840		 */
2841		if (signal_pending(current))
2842			error = -EINTR;
2843		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2844			error = -ENOMEM;
2845		else
2846			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
 
2847		if (error) {
2848			/* Remove the !PageUptodate pages we added */
 
2849			if (index > start) {
2850				shmem_undo_range(inode,
2851				    (loff_t)start << PAGE_SHIFT,
2852				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2853			}
2854			goto undone;
2855		}
2856
2857		/*
 
 
 
 
 
 
 
 
 
 
2858		 * Inform shmem_writepage() how far we have reached.
2859		 * No need for lock or barrier: we have the page lock.
2860		 */
2861		shmem_falloc.next++;
2862		if (!PageUptodate(page))
2863			shmem_falloc.nr_falloced++;
2864
2865		/*
2866		 * If !PageUptodate, leave it that way so that freeable pages
2867		 * can be recognized if we need to rollback on error later.
2868		 * But set_page_dirty so that memory pressure will swap rather
2869		 * than free the pages we are allocating (and SGP_CACHE pages
2870		 * might still be clean: we now need to mark those dirty too).
2871		 */
2872		set_page_dirty(page);
2873		unlock_page(page);
2874		put_page(page);
2875		cond_resched();
2876	}
2877
2878	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2879		i_size_write(inode, offset + len);
2880	inode->i_ctime = current_time(inode);
2881undone:
2882	spin_lock(&inode->i_lock);
2883	inode->i_private = NULL;
2884	spin_unlock(&inode->i_lock);
2885out:
 
 
2886	inode_unlock(inode);
2887	return error;
2888}
2889
2890static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2891{
2892	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2893
2894	buf->f_type = TMPFS_MAGIC;
2895	buf->f_bsize = PAGE_SIZE;
2896	buf->f_namelen = NAME_MAX;
2897	if (sbinfo->max_blocks) {
2898		buf->f_blocks = sbinfo->max_blocks;
2899		buf->f_bavail =
2900		buf->f_bfree  = sbinfo->max_blocks -
2901				percpu_counter_sum(&sbinfo->used_blocks);
2902	}
2903	if (sbinfo->max_inodes) {
2904		buf->f_files = sbinfo->max_inodes;
2905		buf->f_ffree = sbinfo->free_inodes;
2906	}
2907	/* else leave those fields 0 like simple_statfs */
 
 
 
2908	return 0;
2909}
2910
2911/*
2912 * File creation. Allocate an inode, and we're done..
2913 */
2914static int
2915shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 
2916{
2917	struct inode *inode;
2918	int error = -ENOSPC;
2919
2920	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2921	if (inode) {
2922		error = simple_acl_create(dir, inode);
2923		if (error)
2924			goto out_iput;
2925		error = security_inode_init_security(inode, dir,
2926						     &dentry->d_name,
2927						     shmem_initxattrs, NULL);
2928		if (error && error != -EOPNOTSUPP)
2929			goto out_iput;
2930
2931		error = 0;
2932		dir->i_size += BOGO_DIRENT_SIZE;
2933		dir->i_ctime = dir->i_mtime = current_time(dir);
 
2934		d_instantiate(dentry, inode);
2935		dget(dentry); /* Extra count - pin the dentry in core */
2936	}
2937	return error;
2938out_iput:
2939	iput(inode);
2940	return error;
2941}
2942
2943static int
2944shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
 
2945{
2946	struct inode *inode;
2947	int error = -ENOSPC;
2948
2949	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2950	if (inode) {
2951		error = security_inode_init_security(inode, dir,
2952						     NULL,
2953						     shmem_initxattrs, NULL);
2954		if (error && error != -EOPNOTSUPP)
2955			goto out_iput;
2956		error = simple_acl_create(dir, inode);
2957		if (error)
2958			goto out_iput;
2959		d_tmpfile(dentry, inode);
2960	}
2961	return error;
2962out_iput:
2963	iput(inode);
2964	return error;
2965}
2966
2967static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
2968{
2969	int error;
2970
2971	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
 
2972		return error;
2973	inc_nlink(dir);
2974	return 0;
2975}
2976
2977static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2978		bool excl)
2979{
2980	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2981}
2982
2983/*
2984 * Link a file..
2985 */
2986static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2987{
2988	struct inode *inode = d_inode(old_dentry);
2989	int ret = 0;
2990
2991	/*
2992	 * No ordinary (disk based) filesystem counts links as inodes;
2993	 * but each new link needs a new dentry, pinning lowmem, and
2994	 * tmpfs dentries cannot be pruned until they are unlinked.
2995	 * But if an O_TMPFILE file is linked into the tmpfs, the
2996	 * first link must skip that, to get the accounting right.
2997	 */
2998	if (inode->i_nlink) {
2999		ret = shmem_reserve_inode(inode->i_sb, NULL);
3000		if (ret)
3001			goto out;
3002	}
3003
3004	dir->i_size += BOGO_DIRENT_SIZE;
3005	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 
3006	inc_nlink(inode);
3007	ihold(inode);	/* New dentry reference */
3008	dget(dentry);		/* Extra pinning count for the created dentry */
3009	d_instantiate(dentry, inode);
3010out:
3011	return ret;
3012}
3013
3014static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3015{
3016	struct inode *inode = d_inode(dentry);
3017
3018	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3019		shmem_free_inode(inode->i_sb);
3020
3021	dir->i_size -= BOGO_DIRENT_SIZE;
3022	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 
3023	drop_nlink(inode);
3024	dput(dentry);	/* Undo the count from "create" - this does all the work */
3025	return 0;
3026}
3027
3028static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3029{
3030	if (!simple_empty(dentry))
3031		return -ENOTEMPTY;
3032
3033	drop_nlink(d_inode(dentry));
3034	drop_nlink(dir);
3035	return shmem_unlink(dir, dentry);
3036}
3037
3038static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3039{
3040	bool old_is_dir = d_is_dir(old_dentry);
3041	bool new_is_dir = d_is_dir(new_dentry);
3042
3043	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3044		if (old_is_dir) {
3045			drop_nlink(old_dir);
3046			inc_nlink(new_dir);
3047		} else {
3048			drop_nlink(new_dir);
3049			inc_nlink(old_dir);
3050		}
3051	}
3052	old_dir->i_ctime = old_dir->i_mtime =
3053	new_dir->i_ctime = new_dir->i_mtime =
3054	d_inode(old_dentry)->i_ctime =
3055	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3056
3057	return 0;
3058}
3059
3060static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3061{
3062	struct dentry *whiteout;
3063	int error;
3064
3065	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3066	if (!whiteout)
3067		return -ENOMEM;
3068
3069	error = shmem_mknod(old_dir, whiteout,
3070			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3071	dput(whiteout);
3072	if (error)
3073		return error;
3074
3075	/*
3076	 * Cheat and hash the whiteout while the old dentry is still in
3077	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3078	 *
3079	 * d_lookup() will consistently find one of them at this point,
3080	 * not sure which one, but that isn't even important.
3081	 */
3082	d_rehash(whiteout);
3083	return 0;
3084}
3085
3086/*
3087 * The VFS layer already does all the dentry stuff for rename,
3088 * we just have to decrement the usage count for the target if
3089 * it exists so that the VFS layer correctly free's it when it
3090 * gets overwritten.
3091 */
3092static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
 
 
 
3093{
3094	struct inode *inode = d_inode(old_dentry);
3095	int they_are_dirs = S_ISDIR(inode->i_mode);
3096
3097	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3098		return -EINVAL;
3099
3100	if (flags & RENAME_EXCHANGE)
3101		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3102
3103	if (!simple_empty(new_dentry))
3104		return -ENOTEMPTY;
3105
3106	if (flags & RENAME_WHITEOUT) {
3107		int error;
3108
3109		error = shmem_whiteout(old_dir, old_dentry);
3110		if (error)
3111			return error;
3112	}
3113
3114	if (d_really_is_positive(new_dentry)) {
3115		(void) shmem_unlink(new_dir, new_dentry);
3116		if (they_are_dirs) {
3117			drop_nlink(d_inode(new_dentry));
3118			drop_nlink(old_dir);
3119		}
3120	} else if (they_are_dirs) {
3121		drop_nlink(old_dir);
3122		inc_nlink(new_dir);
3123	}
3124
3125	old_dir->i_size -= BOGO_DIRENT_SIZE;
3126	new_dir->i_size += BOGO_DIRENT_SIZE;
3127	old_dir->i_ctime = old_dir->i_mtime =
3128	new_dir->i_ctime = new_dir->i_mtime =
3129	inode->i_ctime = current_time(old_dir);
 
 
3130	return 0;
3131}
3132
3133static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
3134{
3135	int error;
3136	int len;
3137	struct inode *inode;
3138	struct page *page;
3139
3140	len = strlen(symname) + 1;
3141	if (len > PAGE_SIZE)
3142		return -ENAMETOOLONG;
3143
3144	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3145				VM_NORESERVE);
3146	if (!inode)
3147		return -ENOSPC;
3148
3149	error = security_inode_init_security(inode, dir, &dentry->d_name,
3150					     shmem_initxattrs, NULL);
3151	if (error && error != -EOPNOTSUPP) {
3152		iput(inode);
3153		return error;
3154	}
3155
3156	inode->i_size = len-1;
3157	if (len <= SHORT_SYMLINK_LEN) {
3158		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3159		if (!inode->i_link) {
3160			iput(inode);
3161			return -ENOMEM;
3162		}
3163		inode->i_op = &shmem_short_symlink_operations;
3164	} else {
3165		inode_nohighmem(inode);
3166		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3167		if (error) {
3168			iput(inode);
3169			return error;
3170		}
3171		inode->i_mapping->a_ops = &shmem_aops;
3172		inode->i_op = &shmem_symlink_inode_operations;
3173		memcpy(page_address(page), symname, len);
3174		SetPageUptodate(page);
3175		set_page_dirty(page);
3176		unlock_page(page);
3177		put_page(page);
3178	}
3179	dir->i_size += BOGO_DIRENT_SIZE;
3180	dir->i_ctime = dir->i_mtime = current_time(dir);
 
3181	d_instantiate(dentry, inode);
3182	dget(dentry);
3183	return 0;
3184}
3185
3186static void shmem_put_link(void *arg)
3187{
3188	mark_page_accessed(arg);
3189	put_page(arg);
3190}
3191
3192static const char *shmem_get_link(struct dentry *dentry,
3193				  struct inode *inode,
3194				  struct delayed_call *done)
3195{
3196	struct page *page = NULL;
3197	int error;
 
3198	if (!dentry) {
3199		page = find_get_page(inode->i_mapping, 0);
3200		if (!page)
3201			return ERR_PTR(-ECHILD);
3202		if (!PageUptodate(page)) {
3203			put_page(page);
 
3204			return ERR_PTR(-ECHILD);
3205		}
3206	} else {
3207		error = shmem_getpage(inode, 0, &page, SGP_READ);
3208		if (error)
3209			return ERR_PTR(error);
3210		unlock_page(page);
 
 
 
 
 
 
 
3211	}
3212	set_delayed_call(done, shmem_put_link, page);
3213	return page_address(page);
3214}
3215
3216#ifdef CONFIG_TMPFS_XATTR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3217/*
3218 * Superblocks without xattr inode operations may get some security.* xattr
3219 * support from the LSM "for free". As soon as we have any other xattrs
3220 * like ACLs, we also need to implement the security.* handlers at
3221 * filesystem level, though.
3222 */
3223
3224/*
3225 * Callback for security_inode_init_security() for acquiring xattrs.
3226 */
3227static int shmem_initxattrs(struct inode *inode,
3228			    const struct xattr *xattr_array,
3229			    void *fs_info)
3230{
3231	struct shmem_inode_info *info = SHMEM_I(inode);
3232	const struct xattr *xattr;
3233	struct simple_xattr *new_xattr;
3234	size_t len;
3235
3236	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3237		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3238		if (!new_xattr)
3239			return -ENOMEM;
3240
3241		len = strlen(xattr->name) + 1;
3242		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3243					  GFP_KERNEL);
3244		if (!new_xattr->name) {
3245			kvfree(new_xattr);
3246			return -ENOMEM;
3247		}
3248
3249		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3250		       XATTR_SECURITY_PREFIX_LEN);
3251		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3252		       xattr->name, len);
3253
3254		simple_xattr_list_add(&info->xattrs, new_xattr);
3255	}
3256
3257	return 0;
3258}
3259
3260static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3261				   struct dentry *unused, struct inode *inode,
3262				   const char *name, void *buffer, size_t size)
3263{
3264	struct shmem_inode_info *info = SHMEM_I(inode);
3265
3266	name = xattr_full_name(handler, name);
3267	return simple_xattr_get(&info->xattrs, name, buffer, size);
3268}
3269
3270static int shmem_xattr_handler_set(const struct xattr_handler *handler,
 
3271				   struct dentry *unused, struct inode *inode,
3272				   const char *name, const void *value,
3273				   size_t size, int flags)
3274{
3275	struct shmem_inode_info *info = SHMEM_I(inode);
 
3276
3277	name = xattr_full_name(handler, name);
3278	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
 
 
 
 
 
3279}
3280
3281static const struct xattr_handler shmem_security_xattr_handler = {
3282	.prefix = XATTR_SECURITY_PREFIX,
3283	.get = shmem_xattr_handler_get,
3284	.set = shmem_xattr_handler_set,
3285};
3286
3287static const struct xattr_handler shmem_trusted_xattr_handler = {
3288	.prefix = XATTR_TRUSTED_PREFIX,
3289	.get = shmem_xattr_handler_get,
3290	.set = shmem_xattr_handler_set,
3291};
3292
3293static const struct xattr_handler *shmem_xattr_handlers[] = {
3294#ifdef CONFIG_TMPFS_POSIX_ACL
3295	&posix_acl_access_xattr_handler,
3296	&posix_acl_default_xattr_handler,
3297#endif
3298	&shmem_security_xattr_handler,
3299	&shmem_trusted_xattr_handler,
3300	NULL
3301};
3302
3303static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3304{
3305	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3306	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3307}
3308#endif /* CONFIG_TMPFS_XATTR */
3309
3310static const struct inode_operations shmem_short_symlink_operations = {
 
3311	.get_link	= simple_get_link,
3312#ifdef CONFIG_TMPFS_XATTR
3313	.listxattr	= shmem_listxattr,
3314#endif
3315};
3316
3317static const struct inode_operations shmem_symlink_inode_operations = {
 
3318	.get_link	= shmem_get_link,
3319#ifdef CONFIG_TMPFS_XATTR
3320	.listxattr	= shmem_listxattr,
3321#endif
3322};
3323
3324static struct dentry *shmem_get_parent(struct dentry *child)
3325{
3326	return ERR_PTR(-ESTALE);
3327}
3328
3329static int shmem_match(struct inode *ino, void *vfh)
3330{
3331	__u32 *fh = vfh;
3332	__u64 inum = fh[2];
3333	inum = (inum << 32) | fh[1];
3334	return ino->i_ino == inum && fh[0] == ino->i_generation;
3335}
3336
3337/* Find any alias of inode, but prefer a hashed alias */
3338static struct dentry *shmem_find_alias(struct inode *inode)
3339{
3340	struct dentry *alias = d_find_alias(inode);
3341
3342	return alias ?: d_find_any_alias(inode);
3343}
3344
3345
3346static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3347		struct fid *fid, int fh_len, int fh_type)
3348{
3349	struct inode *inode;
3350	struct dentry *dentry = NULL;
3351	u64 inum;
3352
3353	if (fh_len < 3)
3354		return NULL;
3355
3356	inum = fid->raw[2];
3357	inum = (inum << 32) | fid->raw[1];
3358
3359	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3360			shmem_match, fid->raw);
3361	if (inode) {
3362		dentry = shmem_find_alias(inode);
3363		iput(inode);
3364	}
3365
3366	return dentry;
3367}
3368
3369static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3370				struct inode *parent)
3371{
3372	if (*len < 3) {
3373		*len = 3;
3374		return FILEID_INVALID;
3375	}
3376
3377	if (inode_unhashed(inode)) {
3378		/* Unfortunately insert_inode_hash is not idempotent,
3379		 * so as we hash inodes here rather than at creation
3380		 * time, we need a lock to ensure we only try
3381		 * to do it once
3382		 */
3383		static DEFINE_SPINLOCK(lock);
3384		spin_lock(&lock);
3385		if (inode_unhashed(inode))
3386			__insert_inode_hash(inode,
3387					    inode->i_ino + inode->i_generation);
3388		spin_unlock(&lock);
3389	}
3390
3391	fh[0] = inode->i_generation;
3392	fh[1] = inode->i_ino;
3393	fh[2] = ((__u64)inode->i_ino) >> 32;
3394
3395	*len = 3;
3396	return 1;
3397}
3398
3399static const struct export_operations shmem_export_ops = {
3400	.get_parent     = shmem_get_parent,
3401	.encode_fh      = shmem_encode_fh,
3402	.fh_to_dentry	= shmem_fh_to_dentry,
3403};
3404
3405enum shmem_param {
3406	Opt_gid,
3407	Opt_huge,
3408	Opt_mode,
3409	Opt_mpol,
3410	Opt_nr_blocks,
3411	Opt_nr_inodes,
3412	Opt_size,
3413	Opt_uid,
3414	Opt_inode32,
3415	Opt_inode64,
3416};
3417
3418static const struct constant_table shmem_param_enums_huge[] = {
3419	{"never",	SHMEM_HUGE_NEVER },
3420	{"always",	SHMEM_HUGE_ALWAYS },
3421	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3422	{"advise",	SHMEM_HUGE_ADVISE },
3423	{}
3424};
3425
3426const struct fs_parameter_spec shmem_fs_parameters[] = {
3427	fsparam_u32   ("gid",		Opt_gid),
3428	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3429	fsparam_u32oct("mode",		Opt_mode),
3430	fsparam_string("mpol",		Opt_mpol),
3431	fsparam_string("nr_blocks",	Opt_nr_blocks),
3432	fsparam_string("nr_inodes",	Opt_nr_inodes),
3433	fsparam_string("size",		Opt_size),
3434	fsparam_u32   ("uid",		Opt_uid),
3435	fsparam_flag  ("inode32",	Opt_inode32),
3436	fsparam_flag  ("inode64",	Opt_inode64),
3437	{}
3438};
3439
3440static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3441{
3442	struct shmem_options *ctx = fc->fs_private;
3443	struct fs_parse_result result;
3444	unsigned long long size;
3445	char *rest;
3446	int opt;
3447
3448	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3449	if (opt < 0)
3450		return opt;
3451
3452	switch (opt) {
3453	case Opt_size:
3454		size = memparse(param->string, &rest);
3455		if (*rest == '%') {
3456			size <<= PAGE_SHIFT;
3457			size *= totalram_pages();
3458			do_div(size, 100);
3459			rest++;
3460		}
3461		if (*rest)
3462			goto bad_value;
3463		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3464		ctx->seen |= SHMEM_SEEN_BLOCKS;
3465		break;
3466	case Opt_nr_blocks:
3467		ctx->blocks = memparse(param->string, &rest);
3468		if (*rest)
3469			goto bad_value;
3470		ctx->seen |= SHMEM_SEEN_BLOCKS;
3471		break;
3472	case Opt_nr_inodes:
3473		ctx->inodes = memparse(param->string, &rest);
3474		if (*rest)
3475			goto bad_value;
3476		ctx->seen |= SHMEM_SEEN_INODES;
3477		break;
3478	case Opt_mode:
3479		ctx->mode = result.uint_32 & 07777;
3480		break;
3481	case Opt_uid:
3482		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3483		if (!uid_valid(ctx->uid))
3484			goto bad_value;
3485		break;
3486	case Opt_gid:
3487		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3488		if (!gid_valid(ctx->gid))
3489			goto bad_value;
3490		break;
3491	case Opt_huge:
3492		ctx->huge = result.uint_32;
3493		if (ctx->huge != SHMEM_HUGE_NEVER &&
3494		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3495		      has_transparent_hugepage()))
3496			goto unsupported_parameter;
3497		ctx->seen |= SHMEM_SEEN_HUGE;
3498		break;
3499	case Opt_mpol:
3500		if (IS_ENABLED(CONFIG_NUMA)) {
3501			mpol_put(ctx->mpol);
3502			ctx->mpol = NULL;
3503			if (mpol_parse_str(param->string, &ctx->mpol))
3504				goto bad_value;
3505			break;
3506		}
3507		goto unsupported_parameter;
3508	case Opt_inode32:
3509		ctx->full_inums = false;
3510		ctx->seen |= SHMEM_SEEN_INUMS;
3511		break;
3512	case Opt_inode64:
3513		if (sizeof(ino_t) < 8) {
3514			return invalfc(fc,
3515				       "Cannot use inode64 with <64bit inums in kernel\n");
3516		}
3517		ctx->full_inums = true;
3518		ctx->seen |= SHMEM_SEEN_INUMS;
3519		break;
3520	}
3521	return 0;
3522
3523unsupported_parameter:
3524	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3525bad_value:
3526	return invalfc(fc, "Bad value for '%s'", param->key);
3527}
3528
3529static int shmem_parse_options(struct fs_context *fc, void *data)
3530{
3531	char *options = data;
3532
3533	if (options) {
3534		int err = security_sb_eat_lsm_opts(options, &fc->security);
3535		if (err)
3536			return err;
3537	}
3538
3539	while (options != NULL) {
3540		char *this_char = options;
3541		for (;;) {
3542			/*
3543			 * NUL-terminate this option: unfortunately,
3544			 * mount options form a comma-separated list,
3545			 * but mpol's nodelist may also contain commas.
3546			 */
3547			options = strchr(options, ',');
3548			if (options == NULL)
3549				break;
3550			options++;
3551			if (!isdigit(*options)) {
3552				options[-1] = '\0';
3553				break;
3554			}
3555		}
3556		if (*this_char) {
3557			char *value = strchr(this_char,'=');
3558			size_t len = 0;
3559			int err;
3560
3561			if (value) {
3562				*value++ = '\0';
3563				len = strlen(value);
3564			}
3565			err = vfs_parse_fs_string(fc, this_char, value, len);
3566			if (err < 0)
3567				return err;
3568		}
3569	}
3570	return 0;
3571}
3572
3573/*
3574 * Reconfigure a shmem filesystem.
3575 *
3576 * Note that we disallow change from limited->unlimited blocks/inodes while any
3577 * are in use; but we must separately disallow unlimited->limited, because in
3578 * that case we have no record of how much is already in use.
3579 */
3580static int shmem_reconfigure(struct fs_context *fc)
3581{
3582	struct shmem_options *ctx = fc->fs_private;
3583	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3584	unsigned long inodes;
 
3585	const char *err;
3586
3587	spin_lock(&sbinfo->stat_lock);
3588	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
 
3589	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3590		if (!sbinfo->max_blocks) {
3591			err = "Cannot retroactively limit size";
3592			goto out;
3593		}
3594		if (percpu_counter_compare(&sbinfo->used_blocks,
3595					   ctx->blocks) > 0) {
3596			err = "Too small a size for current use";
3597			goto out;
3598		}
3599	}
3600	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3601		if (!sbinfo->max_inodes) {
3602			err = "Cannot retroactively limit inodes";
3603			goto out;
3604		}
3605		if (ctx->inodes < inodes) {
3606			err = "Too few inodes for current use";
3607			goto out;
3608		}
3609	}
3610
3611	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3612	    sbinfo->next_ino > UINT_MAX) {
3613		err = "Current inum too high to switch to 32-bit inums";
3614		goto out;
3615	}
3616
3617	if (ctx->seen & SHMEM_SEEN_HUGE)
3618		sbinfo->huge = ctx->huge;
3619	if (ctx->seen & SHMEM_SEEN_INUMS)
3620		sbinfo->full_inums = ctx->full_inums;
3621	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3622		sbinfo->max_blocks  = ctx->blocks;
3623	if (ctx->seen & SHMEM_SEEN_INODES) {
3624		sbinfo->max_inodes  = ctx->inodes;
3625		sbinfo->free_inodes = ctx->inodes - inodes;
3626	}
3627
3628	/*
3629	 * Preserve previous mempolicy unless mpol remount option was specified.
3630	 */
3631	if (ctx->mpol) {
3632		mpol_put(sbinfo->mpol);
3633		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3634		ctx->mpol = NULL;
3635	}
3636	spin_unlock(&sbinfo->stat_lock);
 
3637	return 0;
3638out:
3639	spin_unlock(&sbinfo->stat_lock);
3640	return invalfc(fc, "%s", err);
3641}
3642
3643static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3644{
3645	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3646
3647	if (sbinfo->max_blocks != shmem_default_max_blocks())
3648		seq_printf(seq, ",size=%luk",
3649			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3650	if (sbinfo->max_inodes != shmem_default_max_inodes())
3651		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3652	if (sbinfo->mode != (0777 | S_ISVTX))
3653		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3654	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3655		seq_printf(seq, ",uid=%u",
3656				from_kuid_munged(&init_user_ns, sbinfo->uid));
3657	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3658		seq_printf(seq, ",gid=%u",
3659				from_kgid_munged(&init_user_ns, sbinfo->gid));
3660
3661	/*
3662	 * Showing inode{64,32} might be useful even if it's the system default,
3663	 * since then people don't have to resort to checking both here and
3664	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3665	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3666	 *
3667	 * We hide it when inode64 isn't the default and we are using 32-bit
3668	 * inodes, since that probably just means the feature isn't even under
3669	 * consideration.
3670	 *
3671	 * As such:
3672	 *
3673	 *                     +-----------------+-----------------+
3674	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3675	 *  +------------------+-----------------+-----------------+
3676	 *  | full_inums=true  | show            | show            |
3677	 *  | full_inums=false | show            | hide            |
3678	 *  +------------------+-----------------+-----------------+
3679	 *
3680	 */
3681	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3682		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3683#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3684	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3685	if (sbinfo->huge)
3686		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3687#endif
3688	shmem_show_mpol(seq, sbinfo->mpol);
3689	return 0;
3690}
3691
3692#endif /* CONFIG_TMPFS */
3693
3694static void shmem_put_super(struct super_block *sb)
3695{
3696	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3697
3698	free_percpu(sbinfo->ino_batch);
3699	percpu_counter_destroy(&sbinfo->used_blocks);
3700	mpol_put(sbinfo->mpol);
3701	kfree(sbinfo);
3702	sb->s_fs_info = NULL;
3703}
3704
3705static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3706{
3707	struct shmem_options *ctx = fc->fs_private;
3708	struct inode *inode;
3709	struct shmem_sb_info *sbinfo;
3710	int err = -ENOMEM;
3711
3712	/* Round up to L1_CACHE_BYTES to resist false sharing */
3713	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3714				L1_CACHE_BYTES), GFP_KERNEL);
3715	if (!sbinfo)
3716		return -ENOMEM;
3717
3718	sb->s_fs_info = sbinfo;
3719
3720#ifdef CONFIG_TMPFS
3721	/*
3722	 * Per default we only allow half of the physical ram per
3723	 * tmpfs instance, limiting inodes to one per page of lowmem;
3724	 * but the internal instance is left unlimited.
3725	 */
3726	if (!(sb->s_flags & SB_KERNMOUNT)) {
3727		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3728			ctx->blocks = shmem_default_max_blocks();
3729		if (!(ctx->seen & SHMEM_SEEN_INODES))
3730			ctx->inodes = shmem_default_max_inodes();
3731		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3732			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3733	} else {
3734		sb->s_flags |= SB_NOUSER;
3735	}
3736	sb->s_export_op = &shmem_export_ops;
3737	sb->s_flags |= SB_NOSEC;
3738#else
3739	sb->s_flags |= SB_NOUSER;
3740#endif
3741	sbinfo->max_blocks = ctx->blocks;
3742	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3743	if (sb->s_flags & SB_KERNMOUNT) {
3744		sbinfo->ino_batch = alloc_percpu(ino_t);
3745		if (!sbinfo->ino_batch)
3746			goto failed;
3747	}
3748	sbinfo->uid = ctx->uid;
3749	sbinfo->gid = ctx->gid;
3750	sbinfo->full_inums = ctx->full_inums;
3751	sbinfo->mode = ctx->mode;
3752	sbinfo->huge = ctx->huge;
3753	sbinfo->mpol = ctx->mpol;
3754	ctx->mpol = NULL;
3755
3756	spin_lock_init(&sbinfo->stat_lock);
3757	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3758		goto failed;
3759	spin_lock_init(&sbinfo->shrinklist_lock);
3760	INIT_LIST_HEAD(&sbinfo->shrinklist);
3761
3762	sb->s_maxbytes = MAX_LFS_FILESIZE;
3763	sb->s_blocksize = PAGE_SIZE;
3764	sb->s_blocksize_bits = PAGE_SHIFT;
3765	sb->s_magic = TMPFS_MAGIC;
3766	sb->s_op = &shmem_ops;
3767	sb->s_time_gran = 1;
3768#ifdef CONFIG_TMPFS_XATTR
3769	sb->s_xattr = shmem_xattr_handlers;
3770#endif
3771#ifdef CONFIG_TMPFS_POSIX_ACL
3772	sb->s_flags |= SB_POSIXACL;
3773#endif
3774	uuid_gen(&sb->s_uuid);
3775
3776	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3777	if (!inode)
3778		goto failed;
3779	inode->i_uid = sbinfo->uid;
3780	inode->i_gid = sbinfo->gid;
3781	sb->s_root = d_make_root(inode);
3782	if (!sb->s_root)
3783		goto failed;
3784	return 0;
3785
3786failed:
3787	shmem_put_super(sb);
3788	return err;
3789}
3790
3791static int shmem_get_tree(struct fs_context *fc)
3792{
3793	return get_tree_nodev(fc, shmem_fill_super);
3794}
3795
3796static void shmem_free_fc(struct fs_context *fc)
3797{
3798	struct shmem_options *ctx = fc->fs_private;
3799
3800	if (ctx) {
3801		mpol_put(ctx->mpol);
3802		kfree(ctx);
3803	}
3804}
3805
3806static const struct fs_context_operations shmem_fs_context_ops = {
3807	.free			= shmem_free_fc,
3808	.get_tree		= shmem_get_tree,
3809#ifdef CONFIG_TMPFS
3810	.parse_monolithic	= shmem_parse_options,
3811	.parse_param		= shmem_parse_one,
3812	.reconfigure		= shmem_reconfigure,
3813#endif
3814};
3815
3816static struct kmem_cache *shmem_inode_cachep;
3817
3818static struct inode *shmem_alloc_inode(struct super_block *sb)
3819{
3820	struct shmem_inode_info *info;
3821	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3822	if (!info)
3823		return NULL;
3824	return &info->vfs_inode;
3825}
3826
3827static void shmem_free_in_core_inode(struct inode *inode)
3828{
3829	if (S_ISLNK(inode->i_mode))
3830		kfree(inode->i_link);
3831	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3832}
3833
3834static void shmem_destroy_inode(struct inode *inode)
3835{
3836	if (S_ISREG(inode->i_mode))
3837		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3838}
3839
3840static void shmem_init_inode(void *foo)
3841{
3842	struct shmem_inode_info *info = foo;
3843	inode_init_once(&info->vfs_inode);
3844}
3845
3846static void shmem_init_inodecache(void)
3847{
3848	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3849				sizeof(struct shmem_inode_info),
3850				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3851}
3852
3853static void shmem_destroy_inodecache(void)
3854{
3855	kmem_cache_destroy(shmem_inode_cachep);
3856}
3857
3858static const struct address_space_operations shmem_aops = {
 
 
 
 
 
 
 
3859	.writepage	= shmem_writepage,
3860	.set_page_dirty	= __set_page_dirty_no_writeback,
3861#ifdef CONFIG_TMPFS
3862	.write_begin	= shmem_write_begin,
3863	.write_end	= shmem_write_end,
3864#endif
3865#ifdef CONFIG_MIGRATION
3866	.migratepage	= migrate_page,
3867#endif
3868	.error_remove_page = generic_error_remove_page,
3869};
 
3870
3871static const struct file_operations shmem_file_operations = {
3872	.mmap		= shmem_mmap,
 
3873	.get_unmapped_area = shmem_get_unmapped_area,
3874#ifdef CONFIG_TMPFS
3875	.llseek		= shmem_file_llseek,
3876	.read_iter	= shmem_file_read_iter,
3877	.write_iter	= generic_file_write_iter,
3878	.fsync		= noop_fsync,
3879	.splice_read	= generic_file_splice_read,
3880	.splice_write	= iter_file_splice_write,
3881	.fallocate	= shmem_fallocate,
3882#endif
3883};
3884
3885static const struct inode_operations shmem_inode_operations = {
3886	.getattr	= shmem_getattr,
3887	.setattr	= shmem_setattr,
3888#ifdef CONFIG_TMPFS_XATTR
3889	.listxattr	= shmem_listxattr,
3890	.set_acl	= simple_set_acl,
 
 
3891#endif
3892};
3893
3894static const struct inode_operations shmem_dir_inode_operations = {
3895#ifdef CONFIG_TMPFS
 
3896	.create		= shmem_create,
3897	.lookup		= simple_lookup,
3898	.link		= shmem_link,
3899	.unlink		= shmem_unlink,
3900	.symlink	= shmem_symlink,
3901	.mkdir		= shmem_mkdir,
3902	.rmdir		= shmem_rmdir,
3903	.mknod		= shmem_mknod,
3904	.rename		= shmem_rename2,
3905	.tmpfile	= shmem_tmpfile,
3906#endif
3907#ifdef CONFIG_TMPFS_XATTR
3908	.listxattr	= shmem_listxattr,
 
 
3909#endif
3910#ifdef CONFIG_TMPFS_POSIX_ACL
3911	.setattr	= shmem_setattr,
3912	.set_acl	= simple_set_acl,
3913#endif
3914};
3915
3916static const struct inode_operations shmem_special_inode_operations = {
 
3917#ifdef CONFIG_TMPFS_XATTR
3918	.listxattr	= shmem_listxattr,
3919#endif
3920#ifdef CONFIG_TMPFS_POSIX_ACL
3921	.setattr	= shmem_setattr,
3922	.set_acl	= simple_set_acl,
3923#endif
3924};
3925
3926static const struct super_operations shmem_ops = {
3927	.alloc_inode	= shmem_alloc_inode,
3928	.free_inode	= shmem_free_in_core_inode,
3929	.destroy_inode	= shmem_destroy_inode,
3930#ifdef CONFIG_TMPFS
3931	.statfs		= shmem_statfs,
3932	.show_options	= shmem_show_options,
3933#endif
3934	.evict_inode	= shmem_evict_inode,
3935	.drop_inode	= generic_delete_inode,
3936	.put_super	= shmem_put_super,
3937#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3938	.nr_cached_objects	= shmem_unused_huge_count,
3939	.free_cached_objects	= shmem_unused_huge_scan,
3940#endif
3941};
3942
3943static const struct vm_operations_struct shmem_vm_ops = {
3944	.fault		= shmem_fault,
3945	.map_pages	= filemap_map_pages,
3946#ifdef CONFIG_NUMA
3947	.set_policy     = shmem_set_policy,
3948	.get_policy     = shmem_get_policy,
3949#endif
3950};
3951
 
 
 
 
 
 
 
 
 
3952int shmem_init_fs_context(struct fs_context *fc)
3953{
3954	struct shmem_options *ctx;
3955
3956	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3957	if (!ctx)
3958		return -ENOMEM;
3959
3960	ctx->mode = 0777 | S_ISVTX;
3961	ctx->uid = current_fsuid();
3962	ctx->gid = current_fsgid();
3963
3964	fc->fs_private = ctx;
3965	fc->ops = &shmem_fs_context_ops;
3966	return 0;
3967}
3968
3969static struct file_system_type shmem_fs_type = {
3970	.owner		= THIS_MODULE,
3971	.name		= "tmpfs",
3972	.init_fs_context = shmem_init_fs_context,
3973#ifdef CONFIG_TMPFS
3974	.parameters	= shmem_fs_parameters,
3975#endif
3976	.kill_sb	= kill_litter_super,
3977	.fs_flags	= FS_USERNS_MOUNT,
3978};
3979
3980int __init shmem_init(void)
3981{
3982	int error;
3983
3984	shmem_init_inodecache();
3985
3986	error = register_filesystem(&shmem_fs_type);
3987	if (error) {
3988		pr_err("Could not register tmpfs\n");
3989		goto out2;
3990	}
3991
3992	shm_mnt = kern_mount(&shmem_fs_type);
3993	if (IS_ERR(shm_mnt)) {
3994		error = PTR_ERR(shm_mnt);
3995		pr_err("Could not kern_mount tmpfs\n");
3996		goto out1;
3997	}
3998
3999#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4000	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4001		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4002	else
4003		shmem_huge = 0; /* just in case it was patched */
4004#endif
4005	return 0;
4006
4007out1:
4008	unregister_filesystem(&shmem_fs_type);
4009out2:
4010	shmem_destroy_inodecache();
4011	shm_mnt = ERR_PTR(error);
4012	return error;
4013}
4014
4015#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4016static ssize_t shmem_enabled_show(struct kobject *kobj,
4017		struct kobj_attribute *attr, char *buf)
4018{
4019	static const int values[] = {
4020		SHMEM_HUGE_ALWAYS,
4021		SHMEM_HUGE_WITHIN_SIZE,
4022		SHMEM_HUGE_ADVISE,
4023		SHMEM_HUGE_NEVER,
4024		SHMEM_HUGE_DENY,
4025		SHMEM_HUGE_FORCE,
4026	};
4027	int i, count;
4028
4029	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4030		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4031
4032		count += sprintf(buf + count, fmt,
4033				shmem_format_huge(values[i]));
 
 
 
4034	}
4035	buf[count - 1] = '\n';
4036	return count;
 
 
4037}
4038
4039static ssize_t shmem_enabled_store(struct kobject *kobj,
4040		struct kobj_attribute *attr, const char *buf, size_t count)
4041{
4042	char tmp[16];
4043	int huge;
4044
4045	if (count + 1 > sizeof(tmp))
4046		return -EINVAL;
4047	memcpy(tmp, buf, count);
4048	tmp[count] = '\0';
4049	if (count && tmp[count - 1] == '\n')
4050		tmp[count - 1] = '\0';
4051
4052	huge = shmem_parse_huge(tmp);
4053	if (huge == -EINVAL)
4054		return -EINVAL;
4055	if (!has_transparent_hugepage() &&
4056			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4057		return -EINVAL;
4058
4059	shmem_huge = huge;
4060	if (shmem_huge > SHMEM_HUGE_DENY)
4061		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4062	return count;
4063}
4064
4065struct kobj_attribute shmem_enabled_attr =
4066	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4067#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4068
4069#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4070bool shmem_huge_enabled(struct vm_area_struct *vma)
4071{
4072	struct inode *inode = file_inode(vma->vm_file);
4073	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4074	loff_t i_size;
4075	pgoff_t off;
4076
4077	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4078	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4079		return false;
4080	if (shmem_huge == SHMEM_HUGE_FORCE)
4081		return true;
4082	if (shmem_huge == SHMEM_HUGE_DENY)
4083		return false;
4084	switch (sbinfo->huge) {
4085		case SHMEM_HUGE_NEVER:
4086			return false;
4087		case SHMEM_HUGE_ALWAYS:
4088			return true;
4089		case SHMEM_HUGE_WITHIN_SIZE:
4090			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4091			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4092			if (i_size >= HPAGE_PMD_SIZE &&
4093					i_size >> PAGE_SHIFT >= off)
4094				return true;
4095			fallthrough;
4096		case SHMEM_HUGE_ADVISE:
4097			/* TODO: implement fadvise() hints */
4098			return (vma->vm_flags & VM_HUGEPAGE);
4099		default:
4100			VM_BUG_ON(1);
4101			return false;
4102	}
4103}
4104#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4105
4106#else /* !CONFIG_SHMEM */
4107
4108/*
4109 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4110 *
4111 * This is intended for small system where the benefits of the full
4112 * shmem code (swap-backed and resource-limited) are outweighed by
4113 * their complexity. On systems without swap this code should be
4114 * effectively equivalent, but much lighter weight.
4115 */
4116
4117static struct file_system_type shmem_fs_type = {
4118	.name		= "tmpfs",
4119	.init_fs_context = ramfs_init_fs_context,
4120	.parameters	= ramfs_fs_parameters,
4121	.kill_sb	= kill_litter_super,
4122	.fs_flags	= FS_USERNS_MOUNT,
4123};
4124
4125int __init shmem_init(void)
4126{
4127	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4128
4129	shm_mnt = kern_mount(&shmem_fs_type);
4130	BUG_ON(IS_ERR(shm_mnt));
4131
4132	return 0;
4133}
4134
4135int shmem_unuse(unsigned int type, bool frontswap,
4136		unsigned long *fs_pages_to_unuse)
4137{
4138	return 0;
4139}
4140
4141int shmem_lock(struct file *file, int lock, struct user_struct *user)
4142{
4143	return 0;
4144}
4145
4146void shmem_unlock_mapping(struct address_space *mapping)
4147{
4148}
4149
4150#ifdef CONFIG_MMU
4151unsigned long shmem_get_unmapped_area(struct file *file,
4152				      unsigned long addr, unsigned long len,
4153				      unsigned long pgoff, unsigned long flags)
4154{
4155	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4156}
4157#endif
4158
4159void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4160{
4161	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4162}
4163EXPORT_SYMBOL_GPL(shmem_truncate_range);
4164
4165#define shmem_vm_ops				generic_file_vm_ops
 
4166#define shmem_file_operations			ramfs_file_operations
4167#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4168#define shmem_acct_size(flags, size)		0
4169#define shmem_unacct_size(flags, size)		do {} while (0)
4170
4171#endif /* CONFIG_SHMEM */
4172
4173/* common code */
4174
4175static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4176				       unsigned long flags, unsigned int i_flags)
4177{
4178	struct inode *inode;
4179	struct file *res;
4180
4181	if (IS_ERR(mnt))
4182		return ERR_CAST(mnt);
4183
4184	if (size < 0 || size > MAX_LFS_FILESIZE)
4185		return ERR_PTR(-EINVAL);
4186
4187	if (shmem_acct_size(flags, size))
4188		return ERR_PTR(-ENOMEM);
4189
4190	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4191				flags);
4192	if (unlikely(!inode)) {
4193		shmem_unacct_size(flags, size);
4194		return ERR_PTR(-ENOSPC);
4195	}
4196	inode->i_flags |= i_flags;
4197	inode->i_size = size;
4198	clear_nlink(inode);	/* It is unlinked */
4199	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4200	if (!IS_ERR(res))
4201		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4202				&shmem_file_operations);
4203	if (IS_ERR(res))
4204		iput(inode);
4205	return res;
4206}
4207
4208/**
4209 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4210 * 	kernel internal.  There will be NO LSM permission checks against the
4211 * 	underlying inode.  So users of this interface must do LSM checks at a
4212 *	higher layer.  The users are the big_key and shm implementations.  LSM
4213 *	checks are provided at the key or shm level rather than the inode.
4214 * @name: name for dentry (to be seen in /proc/<pid>/maps
4215 * @size: size to be set for the file
4216 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4217 */
4218struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4219{
4220	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4221}
4222
4223/**
4224 * shmem_file_setup - get an unlinked file living in tmpfs
4225 * @name: name for dentry (to be seen in /proc/<pid>/maps
4226 * @size: size to be set for the file
4227 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4228 */
4229struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4230{
4231	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4232}
4233EXPORT_SYMBOL_GPL(shmem_file_setup);
4234
4235/**
4236 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4237 * @mnt: the tmpfs mount where the file will be created
4238 * @name: name for dentry (to be seen in /proc/<pid>/maps
4239 * @size: size to be set for the file
4240 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4241 */
4242struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4243				       loff_t size, unsigned long flags)
4244{
4245	return __shmem_file_setup(mnt, name, size, flags, 0);
4246}
4247EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4248
4249/**
4250 * shmem_zero_setup - setup a shared anonymous mapping
4251 * @vma: the vma to be mmapped is prepared by do_mmap
4252 */
4253int shmem_zero_setup(struct vm_area_struct *vma)
4254{
4255	struct file *file;
4256	loff_t size = vma->vm_end - vma->vm_start;
4257
4258	/*
4259	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4260	 * between XFS directory reading and selinux: since this file is only
4261	 * accessible to the user through its mapping, use S_PRIVATE flag to
4262	 * bypass file security, in the same way as shmem_kernel_file_setup().
4263	 */
4264	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4265	if (IS_ERR(file))
4266		return PTR_ERR(file);
4267
4268	if (vma->vm_file)
4269		fput(vma->vm_file);
4270	vma->vm_file = file;
4271	vma->vm_ops = &shmem_vm_ops;
4272
4273	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4274			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4275			(vma->vm_end & HPAGE_PMD_MASK)) {
4276		khugepaged_enter(vma, vma->vm_flags);
4277	}
4278
4279	return 0;
4280}
4281
4282/**
4283 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4284 * @mapping:	the page's address_space
4285 * @index:	the page index
4286 * @gfp:	the page allocator flags to use if allocating
4287 *
4288 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4289 * with any new page allocations done using the specified allocation flags.
4290 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4291 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4292 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4293 *
4294 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4295 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4296 */
4297struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4298					 pgoff_t index, gfp_t gfp)
4299{
4300#ifdef CONFIG_SHMEM
4301	struct inode *inode = mapping->host;
 
4302	struct page *page;
4303	int error;
4304
4305	BUG_ON(mapping->a_ops != &shmem_aops);
4306	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4307				  gfp, NULL, NULL, NULL);
4308	if (error)
4309		page = ERR_PTR(error);
4310	else
4311		unlock_page(page);
 
 
 
 
 
 
4312	return page;
4313#else
4314	/*
4315	 * The tiny !SHMEM case uses ramfs without swap
4316	 */
4317	return read_cache_page_gfp(mapping, index, gfp);
4318#endif
4319}
4320EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v6.2
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/fileattr.h>
  32#include <linux/mm.h>
  33#include <linux/random.h>
  34#include <linux/sched/signal.h>
  35#include <linux/export.h>
  36#include <linux/swap.h>
  37#include <linux/uio.h>
 
  38#include <linux/hugetlb.h>
 
  39#include <linux/fs_parser.h>
  40#include <linux/swapfile.h>
  41#include <linux/iversion.h>
  42#include "swap.h"
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
 
  63#include <linux/pagevec.h>
  64#include <linux/percpu_counter.h>
  65#include <linux/falloc.h>
  66#include <linux/splice.h>
  67#include <linux/security.h>
  68#include <linux/swapops.h>
  69#include <linux/mempolicy.h>
  70#include <linux/namei.h>
  71#include <linux/ctype.h>
  72#include <linux/migrate.h>
  73#include <linux/highmem.h>
  74#include <linux/seq_file.h>
  75#include <linux/magic.h>
  76#include <linux/syscalls.h>
  77#include <linux/fcntl.h>
  78#include <uapi/linux/memfd.h>
  79#include <linux/userfaultfd_k.h>
  80#include <linux/rmap.h>
  81#include <linux/uuid.h>
  82
  83#include <linux/uaccess.h>
  84
  85#include "internal.h"
  86
  87#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  88#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  89
  90/* Pretend that each entry is of this size in directory's i_size */
  91#define BOGO_DIRENT_SIZE 20
  92
  93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  94#define SHORT_SYMLINK_LEN 128
  95
  96/*
  97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  98 * inode->i_private (with i_rwsem making sure that it has only one user at
  99 * a time): we would prefer not to enlarge the shmem inode just for that.
 100 */
 101struct shmem_falloc {
 102	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 103	pgoff_t start;		/* start of range currently being fallocated */
 104	pgoff_t next;		/* the next page offset to be fallocated */
 105	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 106	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 107};
 108
 109struct shmem_options {
 110	unsigned long long blocks;
 111	unsigned long long inodes;
 112	struct mempolicy *mpol;
 113	kuid_t uid;
 114	kgid_t gid;
 115	umode_t mode;
 116	bool full_inums;
 117	int huge;
 118	int seen;
 119#define SHMEM_SEEN_BLOCKS 1
 120#define SHMEM_SEEN_INODES 2
 121#define SHMEM_SEEN_HUGE 4
 122#define SHMEM_SEEN_INUMS 8
 123};
 124
 125#ifdef CONFIG_TMPFS
 126static unsigned long shmem_default_max_blocks(void)
 127{
 128	return totalram_pages() / 2;
 129}
 130
 131static unsigned long shmem_default_max_inodes(void)
 132{
 133	unsigned long nr_pages = totalram_pages();
 134
 135	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 136}
 137#endif
 138
 139static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
 140			     struct folio **foliop, enum sgp_type sgp,
 
 
 
 141			     gfp_t gfp, struct vm_area_struct *vma,
 142			     vm_fault_t *fault_type);
 
 
 
 
 
 
 
 
 
 
 
 143
 144static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 145{
 146	return sb->s_fs_info;
 147}
 148
 149/*
 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 151 * for shared memory and for shared anonymous (/dev/zero) mappings
 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 153 * consistent with the pre-accounting of private mappings ...
 154 */
 155static inline int shmem_acct_size(unsigned long flags, loff_t size)
 156{
 157	return (flags & VM_NORESERVE) ?
 158		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 159}
 160
 161static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 162{
 163	if (!(flags & VM_NORESERVE))
 164		vm_unacct_memory(VM_ACCT(size));
 165}
 166
 167static inline int shmem_reacct_size(unsigned long flags,
 168		loff_t oldsize, loff_t newsize)
 169{
 170	if (!(flags & VM_NORESERVE)) {
 171		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 172			return security_vm_enough_memory_mm(current->mm,
 173					VM_ACCT(newsize) - VM_ACCT(oldsize));
 174		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 175			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 176	}
 177	return 0;
 178}
 179
 180/*
 181 * ... whereas tmpfs objects are accounted incrementally as
 182 * pages are allocated, in order to allow large sparse files.
 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 185 */
 186static inline int shmem_acct_block(unsigned long flags, long pages)
 187{
 188	if (!(flags & VM_NORESERVE))
 189		return 0;
 190
 191	return security_vm_enough_memory_mm(current->mm,
 192			pages * VM_ACCT(PAGE_SIZE));
 193}
 194
 195static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 196{
 197	if (flags & VM_NORESERVE)
 198		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 199}
 200
 201static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 202{
 203	struct shmem_inode_info *info = SHMEM_I(inode);
 204	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 205
 206	if (shmem_acct_block(info->flags, pages))
 207		return false;
 208
 209	if (sbinfo->max_blocks) {
 210		if (percpu_counter_compare(&sbinfo->used_blocks,
 211					   sbinfo->max_blocks - pages) > 0)
 212			goto unacct;
 213		percpu_counter_add(&sbinfo->used_blocks, pages);
 214	}
 215
 216	return true;
 217
 218unacct:
 219	shmem_unacct_blocks(info->flags, pages);
 220	return false;
 221}
 222
 223static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 224{
 225	struct shmem_inode_info *info = SHMEM_I(inode);
 226	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 227
 228	if (sbinfo->max_blocks)
 229		percpu_counter_sub(&sbinfo->used_blocks, pages);
 230	shmem_unacct_blocks(info->flags, pages);
 231}
 232
 233static const struct super_operations shmem_ops;
 234const struct address_space_operations shmem_aops;
 235static const struct file_operations shmem_file_operations;
 236static const struct inode_operations shmem_inode_operations;
 237static const struct inode_operations shmem_dir_inode_operations;
 238static const struct inode_operations shmem_special_inode_operations;
 239static const struct vm_operations_struct shmem_vm_ops;
 240static const struct vm_operations_struct shmem_anon_vm_ops;
 241static struct file_system_type shmem_fs_type;
 242
 243bool vma_is_anon_shmem(struct vm_area_struct *vma)
 244{
 245	return vma->vm_ops == &shmem_anon_vm_ops;
 246}
 247
 248bool vma_is_shmem(struct vm_area_struct *vma)
 249{
 250	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
 251}
 252
 253static LIST_HEAD(shmem_swaplist);
 254static DEFINE_MUTEX(shmem_swaplist_mutex);
 255
 256/*
 257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 258 * produces a novel ino for the newly allocated inode.
 259 *
 260 * It may also be called when making a hard link to permit the space needed by
 261 * each dentry. However, in that case, no new inode number is needed since that
 262 * internally draws from another pool of inode numbers (currently global
 263 * get_next_ino()). This case is indicated by passing NULL as inop.
 264 */
 265#define SHMEM_INO_BATCH 1024
 266static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 267{
 268	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 269	ino_t ino;
 270
 271	if (!(sb->s_flags & SB_KERNMOUNT)) {
 272		raw_spin_lock(&sbinfo->stat_lock);
 273		if (sbinfo->max_inodes) {
 274			if (!sbinfo->free_inodes) {
 275				raw_spin_unlock(&sbinfo->stat_lock);
 276				return -ENOSPC;
 277			}
 278			sbinfo->free_inodes--;
 279		}
 280		if (inop) {
 281			ino = sbinfo->next_ino++;
 282			if (unlikely(is_zero_ino(ino)))
 283				ino = sbinfo->next_ino++;
 284			if (unlikely(!sbinfo->full_inums &&
 285				     ino > UINT_MAX)) {
 286				/*
 287				 * Emulate get_next_ino uint wraparound for
 288				 * compatibility
 289				 */
 290				if (IS_ENABLED(CONFIG_64BIT))
 291					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 292						__func__, MINOR(sb->s_dev));
 293				sbinfo->next_ino = 1;
 294				ino = sbinfo->next_ino++;
 295			}
 296			*inop = ino;
 297		}
 298		raw_spin_unlock(&sbinfo->stat_lock);
 299	} else if (inop) {
 300		/*
 301		 * __shmem_file_setup, one of our callers, is lock-free: it
 302		 * doesn't hold stat_lock in shmem_reserve_inode since
 303		 * max_inodes is always 0, and is called from potentially
 304		 * unknown contexts. As such, use a per-cpu batched allocator
 305		 * which doesn't require the per-sb stat_lock unless we are at
 306		 * the batch boundary.
 307		 *
 308		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 309		 * shmem mounts are not exposed to userspace, so we don't need
 310		 * to worry about things like glibc compatibility.
 311		 */
 312		ino_t *next_ino;
 313
 314		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 315		ino = *next_ino;
 316		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 317			raw_spin_lock(&sbinfo->stat_lock);
 318			ino = sbinfo->next_ino;
 319			sbinfo->next_ino += SHMEM_INO_BATCH;
 320			raw_spin_unlock(&sbinfo->stat_lock);
 321			if (unlikely(is_zero_ino(ino)))
 322				ino++;
 323		}
 324		*inop = ino;
 325		*next_ino = ++ino;
 326		put_cpu();
 327	}
 328
 329	return 0;
 330}
 331
 332static void shmem_free_inode(struct super_block *sb)
 333{
 334	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 335	if (sbinfo->max_inodes) {
 336		raw_spin_lock(&sbinfo->stat_lock);
 337		sbinfo->free_inodes++;
 338		raw_spin_unlock(&sbinfo->stat_lock);
 339	}
 340}
 341
 342/**
 343 * shmem_recalc_inode - recalculate the block usage of an inode
 344 * @inode: inode to recalc
 345 *
 346 * We have to calculate the free blocks since the mm can drop
 347 * undirtied hole pages behind our back.
 348 *
 349 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 351 *
 352 * It has to be called with the spinlock held.
 353 */
 354static void shmem_recalc_inode(struct inode *inode)
 355{
 356	struct shmem_inode_info *info = SHMEM_I(inode);
 357	long freed;
 358
 359	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 360	if (freed > 0) {
 361		info->alloced -= freed;
 362		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 363		shmem_inode_unacct_blocks(inode, freed);
 364	}
 365}
 366
 367bool shmem_charge(struct inode *inode, long pages)
 368{
 369	struct shmem_inode_info *info = SHMEM_I(inode);
 370	unsigned long flags;
 371
 372	if (!shmem_inode_acct_block(inode, pages))
 373		return false;
 374
 375	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 376	inode->i_mapping->nrpages += pages;
 377
 378	spin_lock_irqsave(&info->lock, flags);
 379	info->alloced += pages;
 380	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 381	shmem_recalc_inode(inode);
 382	spin_unlock_irqrestore(&info->lock, flags);
 383
 384	return true;
 385}
 386
 387void shmem_uncharge(struct inode *inode, long pages)
 388{
 389	struct shmem_inode_info *info = SHMEM_I(inode);
 390	unsigned long flags;
 391
 392	/* nrpages adjustment done by __filemap_remove_folio() or caller */
 393
 394	spin_lock_irqsave(&info->lock, flags);
 395	info->alloced -= pages;
 396	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 397	shmem_recalc_inode(inode);
 398	spin_unlock_irqrestore(&info->lock, flags);
 399
 400	shmem_inode_unacct_blocks(inode, pages);
 401}
 402
 403/*
 404 * Replace item expected in xarray by a new item, while holding xa_lock.
 405 */
 406static int shmem_replace_entry(struct address_space *mapping,
 407			pgoff_t index, void *expected, void *replacement)
 408{
 409	XA_STATE(xas, &mapping->i_pages, index);
 410	void *item;
 411
 412	VM_BUG_ON(!expected);
 413	VM_BUG_ON(!replacement);
 414	item = xas_load(&xas);
 415	if (item != expected)
 416		return -ENOENT;
 417	xas_store(&xas, replacement);
 418	return 0;
 419}
 420
 421/*
 422 * Sometimes, before we decide whether to proceed or to fail, we must check
 423 * that an entry was not already brought back from swap by a racing thread.
 424 *
 425 * Checking page is not enough: by the time a SwapCache page is locked, it
 426 * might be reused, and again be SwapCache, using the same swap as before.
 427 */
 428static bool shmem_confirm_swap(struct address_space *mapping,
 429			       pgoff_t index, swp_entry_t swap)
 430{
 431	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 432}
 433
 434/*
 435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 436 *
 437 * SHMEM_HUGE_NEVER:
 438 *	disables huge pages for the mount;
 439 * SHMEM_HUGE_ALWAYS:
 440 *	enables huge pages for the mount;
 441 * SHMEM_HUGE_WITHIN_SIZE:
 442 *	only allocate huge pages if the page will be fully within i_size,
 443 *	also respect fadvise()/madvise() hints;
 444 * SHMEM_HUGE_ADVISE:
 445 *	only allocate huge pages if requested with fadvise()/madvise();
 446 */
 447
 448#define SHMEM_HUGE_NEVER	0
 449#define SHMEM_HUGE_ALWAYS	1
 450#define SHMEM_HUGE_WITHIN_SIZE	2
 451#define SHMEM_HUGE_ADVISE	3
 452
 453/*
 454 * Special values.
 455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 456 *
 457 * SHMEM_HUGE_DENY:
 458 *	disables huge on shm_mnt and all mounts, for emergency use;
 459 * SHMEM_HUGE_FORCE:
 460 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 461 *
 462 */
 463#define SHMEM_HUGE_DENY		(-1)
 464#define SHMEM_HUGE_FORCE	(-2)
 465
 466#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 467/* ifdef here to avoid bloating shmem.o when not necessary */
 468
 469static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
 470
 471bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 472		   pgoff_t index, bool shmem_huge_force)
 473{
 474	loff_t i_size;
 475
 476	if (!S_ISREG(inode->i_mode))
 477		return false;
 478	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
 479	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
 480		return false;
 481	if (shmem_huge == SHMEM_HUGE_DENY)
 482		return false;
 483	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
 484		return true;
 485
 486	switch (SHMEM_SB(inode->i_sb)->huge) {
 487	case SHMEM_HUGE_ALWAYS:
 488		return true;
 489	case SHMEM_HUGE_WITHIN_SIZE:
 490		index = round_up(index + 1, HPAGE_PMD_NR);
 491		i_size = round_up(i_size_read(inode), PAGE_SIZE);
 492		if (i_size >> PAGE_SHIFT >= index)
 493			return true;
 494		fallthrough;
 495	case SHMEM_HUGE_ADVISE:
 496		if (vma && (vma->vm_flags & VM_HUGEPAGE))
 497			return true;
 498		fallthrough;
 499	default:
 500		return false;
 501	}
 502}
 503
 504#if defined(CONFIG_SYSFS)
 505static int shmem_parse_huge(const char *str)
 506{
 507	if (!strcmp(str, "never"))
 508		return SHMEM_HUGE_NEVER;
 509	if (!strcmp(str, "always"))
 510		return SHMEM_HUGE_ALWAYS;
 511	if (!strcmp(str, "within_size"))
 512		return SHMEM_HUGE_WITHIN_SIZE;
 513	if (!strcmp(str, "advise"))
 514		return SHMEM_HUGE_ADVISE;
 515	if (!strcmp(str, "deny"))
 516		return SHMEM_HUGE_DENY;
 517	if (!strcmp(str, "force"))
 518		return SHMEM_HUGE_FORCE;
 519	return -EINVAL;
 520}
 521#endif
 522
 523#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 524static const char *shmem_format_huge(int huge)
 525{
 526	switch (huge) {
 527	case SHMEM_HUGE_NEVER:
 528		return "never";
 529	case SHMEM_HUGE_ALWAYS:
 530		return "always";
 531	case SHMEM_HUGE_WITHIN_SIZE:
 532		return "within_size";
 533	case SHMEM_HUGE_ADVISE:
 534		return "advise";
 535	case SHMEM_HUGE_DENY:
 536		return "deny";
 537	case SHMEM_HUGE_FORCE:
 538		return "force";
 539	default:
 540		VM_BUG_ON(1);
 541		return "bad_val";
 542	}
 543}
 544#endif
 545
 546static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 547		struct shrink_control *sc, unsigned long nr_to_split)
 548{
 549	LIST_HEAD(list), *pos, *next;
 550	LIST_HEAD(to_remove);
 551	struct inode *inode;
 552	struct shmem_inode_info *info;
 553	struct folio *folio;
 554	unsigned long batch = sc ? sc->nr_to_scan : 128;
 555	int split = 0;
 556
 557	if (list_empty(&sbinfo->shrinklist))
 558		return SHRINK_STOP;
 559
 560	spin_lock(&sbinfo->shrinklist_lock);
 561	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 562		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 563
 564		/* pin the inode */
 565		inode = igrab(&info->vfs_inode);
 566
 567		/* inode is about to be evicted */
 568		if (!inode) {
 569			list_del_init(&info->shrinklist);
 
 570			goto next;
 571		}
 572
 573		/* Check if there's anything to gain */
 574		if (round_up(inode->i_size, PAGE_SIZE) ==
 575				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 576			list_move(&info->shrinklist, &to_remove);
 
 577			goto next;
 578		}
 579
 580		list_move(&info->shrinklist, &list);
 581next:
 582		sbinfo->shrinklist_len--;
 583		if (!--batch)
 584			break;
 585	}
 586	spin_unlock(&sbinfo->shrinklist_lock);
 587
 588	list_for_each_safe(pos, next, &to_remove) {
 589		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 590		inode = &info->vfs_inode;
 591		list_del_init(&info->shrinklist);
 592		iput(inode);
 593	}
 594
 595	list_for_each_safe(pos, next, &list) {
 596		int ret;
 597		pgoff_t index;
 598
 599		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 600		inode = &info->vfs_inode;
 601
 602		if (nr_to_split && split >= nr_to_split)
 603			goto move_back;
 604
 605		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
 606		folio = filemap_get_folio(inode->i_mapping, index);
 607		if (!folio)
 608			goto drop;
 609
 610		/* No huge page at the end of the file: nothing to split */
 611		if (!folio_test_large(folio)) {
 612			folio_put(folio);
 613			goto drop;
 614		}
 615
 616		/*
 617		 * Move the inode on the list back to shrinklist if we failed
 618		 * to lock the page at this time.
 619		 *
 620		 * Waiting for the lock may lead to deadlock in the
 621		 * reclaim path.
 622		 */
 623		if (!folio_trylock(folio)) {
 624			folio_put(folio);
 625			goto move_back;
 626		}
 627
 628		ret = split_folio(folio);
 629		folio_unlock(folio);
 630		folio_put(folio);
 631
 632		/* If split failed move the inode on the list back to shrinklist */
 633		if (ret)
 634			goto move_back;
 635
 636		split++;
 637drop:
 638		list_del_init(&info->shrinklist);
 639		goto put;
 640move_back:
 641		/*
 642		 * Make sure the inode is either on the global list or deleted
 643		 * from any local list before iput() since it could be deleted
 644		 * in another thread once we put the inode (then the local list
 645		 * is corrupted).
 646		 */
 647		spin_lock(&sbinfo->shrinklist_lock);
 648		list_move(&info->shrinklist, &sbinfo->shrinklist);
 649		sbinfo->shrinklist_len++;
 650		spin_unlock(&sbinfo->shrinklist_lock);
 651put:
 652		iput(inode);
 653	}
 654
 
 
 
 
 
 655	return split;
 656}
 657
 658static long shmem_unused_huge_scan(struct super_block *sb,
 659		struct shrink_control *sc)
 660{
 661	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 662
 663	if (!READ_ONCE(sbinfo->shrinklist_len))
 664		return SHRINK_STOP;
 665
 666	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 667}
 668
 669static long shmem_unused_huge_count(struct super_block *sb,
 670		struct shrink_control *sc)
 671{
 672	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 673	return READ_ONCE(sbinfo->shrinklist_len);
 674}
 675#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 676
 677#define shmem_huge SHMEM_HUGE_DENY
 678
 679bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 680		   pgoff_t index, bool shmem_huge_force)
 681{
 682	return false;
 683}
 684
 685static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 686		struct shrink_control *sc, unsigned long nr_to_split)
 687{
 688	return 0;
 689}
 690#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 691
 
 
 
 
 
 
 
 
 
 692/*
 693 * Like filemap_add_folio, but error if expected item has gone.
 694 */
 695static int shmem_add_to_page_cache(struct folio *folio,
 696				   struct address_space *mapping,
 697				   pgoff_t index, void *expected, gfp_t gfp,
 698				   struct mm_struct *charge_mm)
 699{
 700	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
 701	long nr = folio_nr_pages(folio);
 
 702	int error;
 703
 704	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
 705	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 706	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
 707	VM_BUG_ON(expected && folio_test_large(folio));
 708
 709	folio_ref_add(folio, nr);
 710	folio->mapping = mapping;
 711	folio->index = index;
 
 712
 713	if (!folio_test_swapcache(folio)) {
 714		error = mem_cgroup_charge(folio, charge_mm, gfp);
 715		if (error) {
 716			if (folio_test_pmd_mappable(folio)) {
 717				count_vm_event(THP_FILE_FALLBACK);
 718				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 719			}
 720			goto error;
 721		}
 722	}
 723	folio_throttle_swaprate(folio, gfp);
 724
 725	do {
 
 726		xas_lock_irq(&xas);
 727		if (expected != xas_find_conflict(&xas)) {
 728			xas_set_err(&xas, -EEXIST);
 729			goto unlock;
 730		}
 731		if (expected && xas_find_conflict(&xas)) {
 732			xas_set_err(&xas, -EEXIST);
 
 
 733			goto unlock;
 
 
 
 
 
 734		}
 735		xas_store(&xas, folio);
 736		if (xas_error(&xas))
 737			goto unlock;
 738		if (folio_test_pmd_mappable(folio)) {
 739			count_vm_event(THP_FILE_ALLOC);
 740			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
 741		}
 742		mapping->nrpages += nr;
 743		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 744		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
 745unlock:
 746		xas_unlock_irq(&xas);
 747	} while (xas_nomem(&xas, gfp));
 748
 749	if (xas_error(&xas)) {
 750		error = xas_error(&xas);
 751		goto error;
 752	}
 753
 754	return 0;
 755error:
 756	folio->mapping = NULL;
 757	folio_ref_sub(folio, nr);
 758	return error;
 759}
 760
 761/*
 762 * Like delete_from_page_cache, but substitutes swap for @folio.
 763 */
 764static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
 765{
 766	struct address_space *mapping = folio->mapping;
 767	long nr = folio_nr_pages(folio);
 768	int error;
 769
 
 
 770	xa_lock_irq(&mapping->i_pages);
 771	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
 772	folio->mapping = NULL;
 773	mapping->nrpages -= nr;
 774	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 775	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 776	xa_unlock_irq(&mapping->i_pages);
 777	folio_put(folio);
 778	BUG_ON(error);
 779}
 780
 781/*
 782 * Remove swap entry from page cache, free the swap and its page cache.
 783 */
 784static int shmem_free_swap(struct address_space *mapping,
 785			   pgoff_t index, void *radswap)
 786{
 787	void *old;
 788
 789	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 790	if (old != radswap)
 791		return -ENOENT;
 792	free_swap_and_cache(radix_to_swp_entry(radswap));
 793	return 0;
 794}
 795
 796/*
 797 * Determine (in bytes) how many of the shmem object's pages mapped by the
 798 * given offsets are swapped out.
 799 *
 800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 801 * as long as the inode doesn't go away and racy results are not a problem.
 802 */
 803unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 804						pgoff_t start, pgoff_t end)
 805{
 806	XA_STATE(xas, &mapping->i_pages, start);
 807	struct page *page;
 808	unsigned long swapped = 0;
 809
 810	rcu_read_lock();
 811	xas_for_each(&xas, page, end - 1) {
 812		if (xas_retry(&xas, page))
 813			continue;
 814		if (xa_is_value(page))
 815			swapped++;
 816
 817		if (need_resched()) {
 818			xas_pause(&xas);
 819			cond_resched_rcu();
 820		}
 821	}
 822
 823	rcu_read_unlock();
 824
 825	return swapped << PAGE_SHIFT;
 826}
 827
 828/*
 829 * Determine (in bytes) how many of the shmem object's pages mapped by the
 830 * given vma is swapped out.
 831 *
 832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 833 * as long as the inode doesn't go away and racy results are not a problem.
 834 */
 835unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 836{
 837	struct inode *inode = file_inode(vma->vm_file);
 838	struct shmem_inode_info *info = SHMEM_I(inode);
 839	struct address_space *mapping = inode->i_mapping;
 840	unsigned long swapped;
 841
 842	/* Be careful as we don't hold info->lock */
 843	swapped = READ_ONCE(info->swapped);
 844
 845	/*
 846	 * The easier cases are when the shmem object has nothing in swap, or
 847	 * the vma maps it whole. Then we can simply use the stats that we
 848	 * already track.
 849	 */
 850	if (!swapped)
 851		return 0;
 852
 853	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 854		return swapped << PAGE_SHIFT;
 855
 856	/* Here comes the more involved part */
 857	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
 858					vma->vm_pgoff + vma_pages(vma));
 
 859}
 860
 861/*
 862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 863 */
 864void shmem_unlock_mapping(struct address_space *mapping)
 865{
 866	struct folio_batch fbatch;
 
 867	pgoff_t index = 0;
 868
 869	folio_batch_init(&fbatch);
 870	/*
 871	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 872	 */
 873	while (!mapping_unevictable(mapping) &&
 874	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
 875		check_move_unevictable_folios(&fbatch);
 876		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 877		cond_resched();
 878	}
 879}
 880
 881static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
 
 
 
 
 
 
 
 
 
 
 
 
 882{
 883	struct folio *folio;
 
 
 
 
 
 
 884
 885	/*
 886	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
 887	 * beyond i_size, and reports fallocated pages as holes.
 888	 */
 889	folio = __filemap_get_folio(inode->i_mapping, index,
 890					FGP_ENTRY | FGP_LOCK, 0);
 891	if (!xa_is_value(folio))
 892		return folio;
 893	/*
 894	 * But read a page back from swap if any of it is within i_size
 895	 * (although in some cases this is just a waste of time).
 896	 */
 897	folio = NULL;
 898	shmem_get_folio(inode, index, &folio, SGP_READ);
 899	return folio;
 900}
 901
 902/*
 903 * Remove range of pages and swap entries from page cache, and free them.
 904 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 905 */
 906static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 907								 bool unfalloc)
 908{
 909	struct address_space *mapping = inode->i_mapping;
 910	struct shmem_inode_info *info = SHMEM_I(inode);
 911	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 912	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 913	struct folio_batch fbatch;
 
 
 914	pgoff_t indices[PAGEVEC_SIZE];
 915	struct folio *folio;
 916	bool same_folio;
 917	long nr_swaps_freed = 0;
 918	pgoff_t index;
 919	int i;
 920
 921	if (lend == -1)
 922		end = -1;	/* unsigned, so actually very big */
 923
 924	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
 925		info->fallocend = start;
 
 
 
 
 
 
 
 
 926
 927	folio_batch_init(&fbatch);
 928	index = start;
 929	while (index < end && find_lock_entries(mapping, &index, end - 1,
 930			&fbatch, indices)) {
 931		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 932			folio = fbatch.folios[i];
 933
 934			if (xa_is_value(folio)) {
 935				if (unfalloc)
 936					continue;
 937				nr_swaps_freed += !shmem_free_swap(mapping,
 938							indices[i], folio);
 939				continue;
 940			}
 941
 942			if (!unfalloc || !folio_test_uptodate(folio))
 943				truncate_inode_folio(mapping, folio);
 944			folio_unlock(folio);
 
 
 
 
 
 
 
 
 
 945		}
 946		folio_batch_remove_exceptionals(&fbatch);
 947		folio_batch_release(&fbatch);
 948		cond_resched();
 
 949	}
 950
 951	/*
 952	 * When undoing a failed fallocate, we want none of the partial folio
 953	 * zeroing and splitting below, but shall want to truncate the whole
 954	 * folio when !uptodate indicates that it was added by this fallocate,
 955	 * even when [lstart, lend] covers only a part of the folio.
 956	 */
 957	if (unfalloc)
 958		goto whole_folios;
 959
 960	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
 961	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
 962	if (folio) {
 963		same_folio = lend < folio_pos(folio) + folio_size(folio);
 964		folio_mark_dirty(folio);
 965		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
 966			start = folio->index + folio_nr_pages(folio);
 967			if (same_folio)
 968				end = folio->index;
 969		}
 970		folio_unlock(folio);
 971		folio_put(folio);
 972		folio = NULL;
 973	}
 974
 975	if (!same_folio)
 976		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
 977	if (folio) {
 978		folio_mark_dirty(folio);
 979		if (!truncate_inode_partial_folio(folio, lstart, lend))
 980			end = folio->index;
 981		folio_unlock(folio);
 982		folio_put(folio);
 983	}
 984
 985whole_folios:
 986
 987	index = start;
 988	while (index < end) {
 989		cond_resched();
 990
 991		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
 992				indices)) {
 
 
 993			/* If all gone or hole-punch or unfalloc, we're done */
 994			if (index == start || end != -1)
 995				break;
 996			/* But if truncating, restart to make sure all gone */
 997			index = start;
 998			continue;
 999		}
1000		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001			folio = fbatch.folios[i];
1002
1003			if (xa_is_value(folio)) {
 
 
 
 
1004				if (unfalloc)
1005					continue;
1006				if (shmem_free_swap(mapping, indices[i], folio)) {
1007					/* Swap was replaced by page: retry */
1008					index = indices[i];
1009					break;
1010				}
1011				nr_swaps_freed++;
1012				continue;
1013			}
1014
1015			folio_lock(folio);
1016
1017			if (!unfalloc || !folio_test_uptodate(folio)) {
1018				if (folio_mapping(folio) != mapping) {
1019					/* Page was replaced by swap: retry */
1020					folio_unlock(folio);
1021					index = indices[i];
1022					break;
1023				}
1024				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025						folio);
1026				truncate_inode_folio(mapping, folio);
 
 
 
 
 
 
 
 
 
1027			}
1028			folio_unlock(folio);
1029		}
1030		folio_batch_remove_exceptionals(&fbatch);
1031		folio_batch_release(&fbatch);
 
1032	}
1033
1034	spin_lock_irq(&info->lock);
1035	info->swapped -= nr_swaps_freed;
1036	shmem_recalc_inode(inode);
1037	spin_unlock_irq(&info->lock);
1038}
1039
1040void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1041{
1042	shmem_undo_range(inode, lstart, lend, false);
1043	inode->i_ctime = inode->i_mtime = current_time(inode);
1044	inode_inc_iversion(inode);
1045}
1046EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047
1048static int shmem_getattr(struct user_namespace *mnt_userns,
1049			 const struct path *path, struct kstat *stat,
1050			 u32 request_mask, unsigned int query_flags)
1051{
1052	struct inode *inode = path->dentry->d_inode;
1053	struct shmem_inode_info *info = SHMEM_I(inode);
 
1054
1055	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056		spin_lock_irq(&info->lock);
1057		shmem_recalc_inode(inode);
1058		spin_unlock_irq(&info->lock);
1059	}
1060	if (info->fsflags & FS_APPEND_FL)
1061		stat->attributes |= STATX_ATTR_APPEND;
1062	if (info->fsflags & FS_IMMUTABLE_FL)
1063		stat->attributes |= STATX_ATTR_IMMUTABLE;
1064	if (info->fsflags & FS_NODUMP_FL)
1065		stat->attributes |= STATX_ATTR_NODUMP;
1066	stat->attributes_mask |= (STATX_ATTR_APPEND |
1067			STATX_ATTR_IMMUTABLE |
1068			STATX_ATTR_NODUMP);
1069	generic_fillattr(&init_user_ns, inode, stat);
1070
1071	if (shmem_is_huge(NULL, inode, 0, false))
1072		stat->blksize = HPAGE_PMD_SIZE;
1073
1074	if (request_mask & STATX_BTIME) {
1075		stat->result_mask |= STATX_BTIME;
1076		stat->btime.tv_sec = info->i_crtime.tv_sec;
1077		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1078	}
1079
1080	return 0;
1081}
1082
1083static int shmem_setattr(struct user_namespace *mnt_userns,
1084			 struct dentry *dentry, struct iattr *attr)
1085{
1086	struct inode *inode = d_inode(dentry);
1087	struct shmem_inode_info *info = SHMEM_I(inode);
 
1088	int error;
1089	bool update_mtime = false;
1090	bool update_ctime = true;
1091
1092	error = setattr_prepare(&init_user_ns, dentry, attr);
1093	if (error)
1094		return error;
1095
1096	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1097		loff_t oldsize = inode->i_size;
1098		loff_t newsize = attr->ia_size;
1099
1100		/* protected by i_rwsem */
1101		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1102		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1103			return -EPERM;
1104
1105		if (newsize != oldsize) {
1106			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1107					oldsize, newsize);
1108			if (error)
1109				return error;
1110			i_size_write(inode, newsize);
1111			update_mtime = true;
1112		} else {
1113			update_ctime = false;
1114		}
1115		if (newsize <= oldsize) {
1116			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1117			if (oldsize > holebegin)
1118				unmap_mapping_range(inode->i_mapping,
1119							holebegin, 0, 1);
1120			if (info->alloced)
1121				shmem_truncate_range(inode,
1122							newsize, (loff_t)-1);
1123			/* unmap again to remove racily COWed private pages */
1124			if (oldsize > holebegin)
1125				unmap_mapping_range(inode->i_mapping,
1126							holebegin, 0, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127		}
1128	}
1129
1130	setattr_copy(&init_user_ns, inode, attr);
1131	if (attr->ia_valid & ATTR_MODE)
1132		error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1133	if (!error && update_ctime) {
1134		inode->i_ctime = current_time(inode);
1135		if (update_mtime)
1136			inode->i_mtime = inode->i_ctime;
1137		inode_inc_iversion(inode);
1138	}
1139	return error;
1140}
1141
1142static void shmem_evict_inode(struct inode *inode)
1143{
1144	struct shmem_inode_info *info = SHMEM_I(inode);
1145	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1146
1147	if (shmem_mapping(inode->i_mapping)) {
1148		shmem_unacct_size(info->flags, inode->i_size);
1149		inode->i_size = 0;
1150		mapping_set_exiting(inode->i_mapping);
1151		shmem_truncate_range(inode, 0, (loff_t)-1);
1152		if (!list_empty(&info->shrinklist)) {
1153			spin_lock(&sbinfo->shrinklist_lock);
1154			if (!list_empty(&info->shrinklist)) {
1155				list_del_init(&info->shrinklist);
1156				sbinfo->shrinklist_len--;
1157			}
1158			spin_unlock(&sbinfo->shrinklist_lock);
1159		}
1160		while (!list_empty(&info->swaplist)) {
1161			/* Wait while shmem_unuse() is scanning this inode... */
1162			wait_var_event(&info->stop_eviction,
1163				       !atomic_read(&info->stop_eviction));
1164			mutex_lock(&shmem_swaplist_mutex);
1165			/* ...but beware of the race if we peeked too early */
1166			if (!atomic_read(&info->stop_eviction))
1167				list_del_init(&info->swaplist);
1168			mutex_unlock(&shmem_swaplist_mutex);
1169		}
1170	}
1171
1172	simple_xattrs_free(&info->xattrs);
1173	WARN_ON(inode->i_blocks);
1174	shmem_free_inode(inode->i_sb);
1175	clear_inode(inode);
1176}
1177
 
 
1178static int shmem_find_swap_entries(struct address_space *mapping,
1179				   pgoff_t start, struct folio_batch *fbatch,
1180				   pgoff_t *indices, unsigned int type)
 
1181{
1182	XA_STATE(xas, &mapping->i_pages, start);
1183	struct folio *folio;
1184	swp_entry_t entry;
 
 
 
 
1185
1186	rcu_read_lock();
1187	xas_for_each(&xas, folio, ULONG_MAX) {
1188		if (xas_retry(&xas, folio))
1189			continue;
1190
1191		if (!xa_is_value(folio))
1192			continue;
1193
1194		entry = radix_to_swp_entry(folio);
1195		/*
1196		 * swapin error entries can be found in the mapping. But they're
1197		 * deliberately ignored here as we've done everything we can do.
1198		 */
1199		if (swp_type(entry) != type)
1200			continue;
 
 
 
1201
1202		indices[folio_batch_count(fbatch)] = xas.xa_index;
1203		if (!folio_batch_add(fbatch, folio))
1204			break;
1205
1206		if (need_resched()) {
1207			xas_pause(&xas);
1208			cond_resched_rcu();
1209		}
 
 
1210	}
1211	rcu_read_unlock();
1212
1213	return xas.xa_index;
1214}
1215
1216/*
1217 * Move the swapped pages for an inode to page cache. Returns the count
1218 * of pages swapped in, or the error in case of failure.
1219 */
1220static int shmem_unuse_swap_entries(struct inode *inode,
1221		struct folio_batch *fbatch, pgoff_t *indices)
1222{
1223	int i = 0;
1224	int ret = 0;
1225	int error = 0;
1226	struct address_space *mapping = inode->i_mapping;
1227
1228	for (i = 0; i < folio_batch_count(fbatch); i++) {
1229		struct folio *folio = fbatch->folios[i];
1230
1231		if (!xa_is_value(folio))
1232			continue;
1233		error = shmem_swapin_folio(inode, indices[i],
1234					  &folio, SGP_CACHE,
1235					  mapping_gfp_mask(mapping),
1236					  NULL, NULL);
1237		if (error == 0) {
1238			folio_unlock(folio);
1239			folio_put(folio);
1240			ret++;
1241		}
1242		if (error == -ENOMEM)
1243			break;
1244		error = 0;
1245	}
1246	return error ? error : ret;
1247}
1248
1249/*
1250 * If swap found in inode, free it and move page from swapcache to filecache.
1251 */
1252static int shmem_unuse_inode(struct inode *inode, unsigned int type)
 
1253{
1254	struct address_space *mapping = inode->i_mapping;
1255	pgoff_t start = 0;
1256	struct folio_batch fbatch;
1257	pgoff_t indices[PAGEVEC_SIZE];
 
1258	int ret = 0;
1259
 
1260	do {
1261		folio_batch_init(&fbatch);
1262		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1263		if (folio_batch_count(&fbatch) == 0) {
 
 
 
 
 
 
1264			ret = 0;
1265			break;
1266		}
1267
1268		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1269		if (ret < 0)
1270			break;
1271
1272		start = indices[folio_batch_count(&fbatch) - 1];
 
 
 
 
 
 
 
 
1273	} while (true);
1274
1275	return ret;
1276}
1277
1278/*
1279 * Read all the shared memory data that resides in the swap
1280 * device 'type' back into memory, so the swap device can be
1281 * unused.
1282 */
1283int shmem_unuse(unsigned int type)
 
1284{
1285	struct shmem_inode_info *info, *next;
1286	int error = 0;
1287
1288	if (list_empty(&shmem_swaplist))
1289		return 0;
1290
1291	mutex_lock(&shmem_swaplist_mutex);
1292	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1293		if (!info->swapped) {
1294			list_del_init(&info->swaplist);
1295			continue;
1296		}
1297		/*
1298		 * Drop the swaplist mutex while searching the inode for swap;
1299		 * but before doing so, make sure shmem_evict_inode() will not
1300		 * remove placeholder inode from swaplist, nor let it be freed
1301		 * (igrab() would protect from unlink, but not from unmount).
1302		 */
1303		atomic_inc(&info->stop_eviction);
1304		mutex_unlock(&shmem_swaplist_mutex);
1305
1306		error = shmem_unuse_inode(&info->vfs_inode, type);
 
1307		cond_resched();
1308
1309		mutex_lock(&shmem_swaplist_mutex);
1310		next = list_next_entry(info, swaplist);
1311		if (!info->swapped)
1312			list_del_init(&info->swaplist);
1313		if (atomic_dec_and_test(&info->stop_eviction))
1314			wake_up_var(&info->stop_eviction);
1315		if (error)
1316			break;
1317	}
1318	mutex_unlock(&shmem_swaplist_mutex);
1319
1320	return error;
1321}
1322
1323/*
1324 * Move the page from the page cache to the swap cache.
1325 */
1326static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1327{
1328	struct folio *folio = page_folio(page);
1329	struct shmem_inode_info *info;
1330	struct address_space *mapping;
1331	struct inode *inode;
1332	swp_entry_t swap;
1333	pgoff_t index;
1334
1335	/*
1336	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1337	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1338	 * and its shmem_writeback() needs them to be split when swapping.
1339	 */
1340	if (folio_test_large(folio)) {
1341		/* Ensure the subpages are still dirty */
1342		folio_test_set_dirty(folio);
1343		if (split_huge_page(page) < 0)
1344			goto redirty;
1345		folio = page_folio(page);
1346		folio_clear_dirty(folio);
1347	}
1348
1349	BUG_ON(!folio_test_locked(folio));
1350	mapping = folio->mapping;
1351	index = folio->index;
1352	inode = mapping->host;
1353	info = SHMEM_I(inode);
1354	if (info->flags & VM_LOCKED)
1355		goto redirty;
1356	if (!total_swap_pages)
1357		goto redirty;
1358
1359	/*
1360	 * Our capabilities prevent regular writeback or sync from ever calling
1361	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1362	 * its underlying filesystem, in which case tmpfs should write out to
1363	 * swap only in response to memory pressure, and not for the writeback
1364	 * threads or sync.
1365	 */
1366	if (!wbc->for_reclaim) {
1367		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1368		goto redirty;
1369	}
1370
1371	/*
1372	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1373	 * value into swapfile.c, the only way we can correctly account for a
1374	 * fallocated folio arriving here is now to initialize it and write it.
1375	 *
1376	 * That's okay for a folio already fallocated earlier, but if we have
1377	 * not yet completed the fallocation, then (a) we want to keep track
1378	 * of this folio in case we have to undo it, and (b) it may not be a
1379	 * good idea to continue anyway, once we're pushing into swap.  So
1380	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1381	 */
1382	if (!folio_test_uptodate(folio)) {
1383		if (inode->i_private) {
1384			struct shmem_falloc *shmem_falloc;
1385			spin_lock(&inode->i_lock);
1386			shmem_falloc = inode->i_private;
1387			if (shmem_falloc &&
1388			    !shmem_falloc->waitq &&
1389			    index >= shmem_falloc->start &&
1390			    index < shmem_falloc->next)
1391				shmem_falloc->nr_unswapped++;
1392			else
1393				shmem_falloc = NULL;
1394			spin_unlock(&inode->i_lock);
1395			if (shmem_falloc)
1396				goto redirty;
1397		}
1398		folio_zero_range(folio, 0, folio_size(folio));
1399		flush_dcache_folio(folio);
1400		folio_mark_uptodate(folio);
1401	}
1402
1403	swap = folio_alloc_swap(folio);
1404	if (!swap.val)
1405		goto redirty;
1406
1407	/*
1408	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1409	 * if it's not already there.  Do it now before the folio is
1410	 * moved to swap cache, when its pagelock no longer protects
1411	 * the inode from eviction.  But don't unlock the mutex until
1412	 * we've incremented swapped, because shmem_unuse_inode() will
1413	 * prune a !swapped inode from the swaplist under this mutex.
1414	 */
1415	mutex_lock(&shmem_swaplist_mutex);
1416	if (list_empty(&info->swaplist))
1417		list_add(&info->swaplist, &shmem_swaplist);
1418
1419	if (add_to_swap_cache(folio, swap,
1420			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1421			NULL) == 0) {
1422		spin_lock_irq(&info->lock);
1423		shmem_recalc_inode(inode);
1424		info->swapped++;
1425		spin_unlock_irq(&info->lock);
1426
1427		swap_shmem_alloc(swap);
1428		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1429
1430		mutex_unlock(&shmem_swaplist_mutex);
1431		BUG_ON(folio_mapped(folio));
1432		swap_writepage(&folio->page, wbc);
1433		return 0;
1434	}
1435
1436	mutex_unlock(&shmem_swaplist_mutex);
1437	put_swap_folio(folio, swap);
1438redirty:
1439	folio_mark_dirty(folio);
1440	if (wbc->for_reclaim)
1441		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1442	folio_unlock(folio);
1443	return 0;
1444}
1445
1446#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1447static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1448{
1449	char buffer[64];
1450
1451	if (!mpol || mpol->mode == MPOL_DEFAULT)
1452		return;		/* show nothing */
1453
1454	mpol_to_str(buffer, sizeof(buffer), mpol);
1455
1456	seq_printf(seq, ",mpol=%s", buffer);
1457}
1458
1459static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460{
1461	struct mempolicy *mpol = NULL;
1462	if (sbinfo->mpol) {
1463		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1464		mpol = sbinfo->mpol;
1465		mpol_get(mpol);
1466		raw_spin_unlock(&sbinfo->stat_lock);
1467	}
1468	return mpol;
1469}
1470#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1471static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1472{
1473}
1474static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1475{
1476	return NULL;
1477}
1478#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1479#ifndef CONFIG_NUMA
1480#define vm_policy vm_private_data
1481#endif
1482
1483static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1484		struct shmem_inode_info *info, pgoff_t index)
1485{
1486	/* Create a pseudo vma that just contains the policy */
1487	vma_init(vma, NULL);
1488	/* Bias interleave by inode number to distribute better across nodes */
1489	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1490	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1491}
1492
1493static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1494{
1495	/* Drop reference taken by mpol_shared_policy_lookup() */
1496	mpol_cond_put(vma->vm_policy);
1497}
1498
1499static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1500			struct shmem_inode_info *info, pgoff_t index)
1501{
1502	struct vm_area_struct pvma;
1503	struct page *page;
1504	struct vm_fault vmf = {
1505		.vma = &pvma,
1506	};
1507
1508	shmem_pseudo_vma_init(&pvma, info, index);
 
 
1509	page = swap_cluster_readahead(swap, gfp, &vmf);
1510	shmem_pseudo_vma_destroy(&pvma);
1511
1512	if (!page)
1513		return NULL;
1514	return page_folio(page);
1515}
1516
1517/*
1518 * Make sure huge_gfp is always more limited than limit_gfp.
1519 * Some of the flags set permissions, while others set limitations.
1520 */
1521static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1522{
1523	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1524	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1525	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1526	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1527
1528	/* Allow allocations only from the originally specified zones. */
1529	result |= zoneflags;
1530
1531	/*
1532	 * Minimize the result gfp by taking the union with the deny flags,
1533	 * and the intersection of the allow flags.
1534	 */
1535	result |= (limit_gfp & denyflags);
1536	result |= (huge_gfp & limit_gfp) & allowflags;
1537
1538	return result;
1539}
1540
1541static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1542		struct shmem_inode_info *info, pgoff_t index)
1543{
1544	struct vm_area_struct pvma;
1545	struct address_space *mapping = info->vfs_inode.i_mapping;
1546	pgoff_t hindex;
1547	struct folio *folio;
1548
1549	hindex = round_down(index, HPAGE_PMD_NR);
1550	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1551								XA_PRESENT))
1552		return NULL;
1553
1554	shmem_pseudo_vma_init(&pvma, info, hindex);
1555	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
 
1556	shmem_pseudo_vma_destroy(&pvma);
1557	if (!folio)
 
 
1558		count_vm_event(THP_FILE_FALLBACK);
1559	return folio;
1560}
1561
1562static struct folio *shmem_alloc_folio(gfp_t gfp,
1563			struct shmem_inode_info *info, pgoff_t index)
1564{
1565	struct vm_area_struct pvma;
1566	struct folio *folio;
1567
1568	shmem_pseudo_vma_init(&pvma, info, index);
1569	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1570	shmem_pseudo_vma_destroy(&pvma);
1571
1572	return folio;
1573}
1574
1575static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
 
1576		pgoff_t index, bool huge)
1577{
1578	struct shmem_inode_info *info = SHMEM_I(inode);
1579	struct folio *folio;
1580	int nr;
1581	int err = -ENOSPC;
1582
1583	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1584		huge = false;
1585	nr = huge ? HPAGE_PMD_NR : 1;
1586
1587	if (!shmem_inode_acct_block(inode, nr))
1588		goto failed;
1589
1590	if (huge)
1591		folio = shmem_alloc_hugefolio(gfp, info, index);
1592	else
1593		folio = shmem_alloc_folio(gfp, info, index);
1594	if (folio) {
1595		__folio_set_locked(folio);
1596		__folio_set_swapbacked(folio);
1597		return folio;
1598	}
1599
1600	err = -ENOMEM;
1601	shmem_inode_unacct_blocks(inode, nr);
1602failed:
1603	return ERR_PTR(err);
1604}
1605
1606/*
1607 * When a page is moved from swapcache to shmem filecache (either by the
1608 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1609 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1610 * ignorance of the mapping it belongs to.  If that mapping has special
1611 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1612 * we may need to copy to a suitable page before moving to filecache.
1613 *
1614 * In a future release, this may well be extended to respect cpuset and
1615 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1616 * but for now it is a simple matter of zone.
1617 */
1618static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1619{
1620	return folio_zonenum(folio) > gfp_zone(gfp);
1621}
1622
1623static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1624				struct shmem_inode_info *info, pgoff_t index)
1625{
1626	struct folio *old, *new;
1627	struct address_space *swap_mapping;
1628	swp_entry_t entry;
1629	pgoff_t swap_index;
1630	int error;
1631
1632	old = *foliop;
1633	entry = folio_swap_entry(old);
1634	swap_index = swp_offset(entry);
1635	swap_mapping = swap_address_space(entry);
1636
1637	/*
1638	 * We have arrived here because our zones are constrained, so don't
1639	 * limit chance of success by further cpuset and node constraints.
1640	 */
1641	gfp &= ~GFP_CONSTRAINT_MASK;
1642	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1643	new = shmem_alloc_folio(gfp, info, index);
1644	if (!new)
1645		return -ENOMEM;
1646
1647	folio_get(new);
1648	folio_copy(new, old);
1649	flush_dcache_folio(new);
1650
1651	__folio_set_locked(new);
1652	__folio_set_swapbacked(new);
1653	folio_mark_uptodate(new);
1654	folio_set_swap_entry(new, entry);
1655	folio_set_swapcache(new);
1656
1657	/*
1658	 * Our caller will very soon move newpage out of swapcache, but it's
1659	 * a nice clean interface for us to replace oldpage by newpage there.
1660	 */
1661	xa_lock_irq(&swap_mapping->i_pages);
1662	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1663	if (!error) {
1664		mem_cgroup_migrate(old, new);
1665		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1666		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1667		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1668		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1669	}
1670	xa_unlock_irq(&swap_mapping->i_pages);
1671
1672	if (unlikely(error)) {
1673		/*
1674		 * Is this possible?  I think not, now that our callers check
1675		 * both PageSwapCache and page_private after getting page lock;
1676		 * but be defensive.  Reverse old to newpage for clear and free.
1677		 */
1678		old = new;
1679	} else {
1680		folio_add_lru(new);
1681		*foliop = new;
1682	}
1683
1684	folio_clear_swapcache(old);
1685	old->private = NULL;
1686
1687	folio_unlock(old);
1688	folio_put_refs(old, 2);
 
1689	return error;
1690}
1691
1692static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1693					 struct folio *folio, swp_entry_t swap)
1694{
1695	struct address_space *mapping = inode->i_mapping;
1696	struct shmem_inode_info *info = SHMEM_I(inode);
1697	swp_entry_t swapin_error;
1698	void *old;
1699
1700	swapin_error = make_swapin_error_entry();
1701	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1702			     swp_to_radix_entry(swap),
1703			     swp_to_radix_entry(swapin_error), 0);
1704	if (old != swp_to_radix_entry(swap))
1705		return;
1706
1707	folio_wait_writeback(folio);
1708	delete_from_swap_cache(folio);
1709	spin_lock_irq(&info->lock);
1710	/*
1711	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1712	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1713	 * shmem_evict_inode.
1714	 */
1715	info->alloced--;
1716	info->swapped--;
1717	shmem_recalc_inode(inode);
1718	spin_unlock_irq(&info->lock);
1719	swap_free(swap);
1720}
1721
1722/*
1723 * Swap in the folio pointed to by *foliop.
1724 * Caller has to make sure that *foliop contains a valid swapped folio.
1725 * Returns 0 and the folio in foliop if success. On failure, returns the
1726 * error code and NULL in *foliop.
1727 */
1728static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1729			     struct folio **foliop, enum sgp_type sgp,
1730			     gfp_t gfp, struct vm_area_struct *vma,
1731			     vm_fault_t *fault_type)
1732{
1733	struct address_space *mapping = inode->i_mapping;
1734	struct shmem_inode_info *info = SHMEM_I(inode);
1735	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1736	struct folio *folio = NULL;
1737	swp_entry_t swap;
1738	int error;
1739
1740	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1741	swap = radix_to_swp_entry(*foliop);
1742	*foliop = NULL;
1743
1744	if (is_swapin_error_entry(swap))
1745		return -EIO;
1746
1747	/* Look it up and read it in.. */
1748	folio = swap_cache_get_folio(swap, NULL, 0);
1749	if (!folio) {
1750		/* Or update major stats only when swapin succeeds?? */
1751		if (fault_type) {
1752			*fault_type |= VM_FAULT_MAJOR;
1753			count_vm_event(PGMAJFAULT);
1754			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1755		}
1756		/* Here we actually start the io */
1757		folio = shmem_swapin(swap, gfp, info, index);
1758		if (!folio) {
1759			error = -ENOMEM;
1760			goto failed;
1761		}
1762	}
1763
1764	/* We have to do this with folio locked to prevent races */
1765	folio_lock(folio);
1766	if (!folio_test_swapcache(folio) ||
1767	    folio_swap_entry(folio).val != swap.val ||
1768	    !shmem_confirm_swap(mapping, index, swap)) {
1769		error = -EEXIST;
1770		goto unlock;
1771	}
1772	if (!folio_test_uptodate(folio)) {
1773		error = -EIO;
1774		goto failed;
1775	}
1776	folio_wait_writeback(folio);
1777
1778	/*
1779	 * Some architectures may have to restore extra metadata to the
1780	 * folio after reading from swap.
1781	 */
1782	arch_swap_restore(swap, folio);
1783
1784	if (shmem_should_replace_folio(folio, gfp)) {
1785		error = shmem_replace_folio(&folio, gfp, info, index);
1786		if (error)
1787			goto failed;
1788	}
1789
1790	error = shmem_add_to_page_cache(folio, mapping, index,
1791					swp_to_radix_entry(swap), gfp,
1792					charge_mm);
1793	if (error)
1794		goto failed;
1795
1796	spin_lock_irq(&info->lock);
1797	info->swapped--;
1798	shmem_recalc_inode(inode);
1799	spin_unlock_irq(&info->lock);
1800
1801	if (sgp == SGP_WRITE)
1802		folio_mark_accessed(folio);
1803
1804	delete_from_swap_cache(folio);
1805	folio_mark_dirty(folio);
1806	swap_free(swap);
1807
1808	*foliop = folio;
1809	return 0;
1810failed:
1811	if (!shmem_confirm_swap(mapping, index, swap))
1812		error = -EEXIST;
1813	if (error == -EIO)
1814		shmem_set_folio_swapin_error(inode, index, folio, swap);
1815unlock:
1816	if (folio) {
1817		folio_unlock(folio);
1818		folio_put(folio);
1819	}
1820
1821	return error;
1822}
1823
1824/*
1825 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1826 *
1827 * If we allocate a new one we do not mark it dirty. That's up to the
1828 * vm. If we swap it in we mark it dirty since we also free the swap
1829 * entry since a page cannot live in both the swap and page cache.
1830 *
1831 * vma, vmf, and fault_type are only supplied by shmem_fault:
1832 * otherwise they are NULL.
1833 */
1834static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1835		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1836		struct vm_area_struct *vma, struct vm_fault *vmf,
1837		vm_fault_t *fault_type)
1838{
1839	struct address_space *mapping = inode->i_mapping;
1840	struct shmem_inode_info *info = SHMEM_I(inode);
1841	struct shmem_sb_info *sbinfo;
1842	struct mm_struct *charge_mm;
1843	struct folio *folio;
1844	pgoff_t hindex;
1845	gfp_t huge_gfp;
1846	int error;
1847	int once = 0;
1848	int alloced = 0;
1849
1850	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1851		return -EFBIG;
 
 
1852repeat:
1853	if (sgp <= SGP_CACHE &&
1854	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1855		return -EINVAL;
1856	}
1857
1858	sbinfo = SHMEM_SB(inode->i_sb);
1859	charge_mm = vma ? vma->vm_mm : NULL;
1860
1861	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1862	if (folio && vma && userfaultfd_minor(vma)) {
1863		if (!xa_is_value(folio)) {
1864			folio_unlock(folio);
1865			folio_put(folio);
1866		}
1867		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1868		return 0;
1869	}
1870
1871	if (xa_is_value(folio)) {
1872		error = shmem_swapin_folio(inode, index, &folio,
1873					  sgp, gfp, vma, fault_type);
1874		if (error == -EEXIST)
1875			goto repeat;
1876
1877		*foliop = folio;
1878		return error;
1879	}
1880
1881	if (folio) {
1882		if (sgp == SGP_WRITE)
1883			folio_mark_accessed(folio);
1884		if (folio_test_uptodate(folio))
1885			goto out;
1886		/* fallocated folio */
1887		if (sgp != SGP_READ)
1888			goto clear;
1889		folio_unlock(folio);
1890		folio_put(folio);
 
1891	}
1892
1893	/*
1894	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1895	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1896	 */
1897	*foliop = NULL;
1898	if (sgp == SGP_READ)
1899		return 0;
1900	if (sgp == SGP_NOALLOC)
1901		return -ENOENT;
1902
1903	/*
1904	 * Fast cache lookup and swap lookup did not find it: allocate.
 
1905	 */
1906
1907	if (vma && userfaultfd_missing(vma)) {
1908		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1909		return 0;
1910	}
1911
1912	if (!shmem_is_huge(vma, inode, index, false))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913		goto alloc_nohuge;
 
1914
1915	huge_gfp = vma_thp_gfp_mask(vma);
1916	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1917	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1918	if (IS_ERR(folio)) {
1919alloc_nohuge:
1920		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
 
1921	}
1922	if (IS_ERR(folio)) {
1923		int retry = 5;
1924
1925		error = PTR_ERR(folio);
1926		folio = NULL;
1927		if (error != -ENOSPC)
1928			goto unlock;
1929		/*
1930		 * Try to reclaim some space by splitting a large folio
1931		 * beyond i_size on the filesystem.
1932		 */
1933		while (retry--) {
1934			int ret;
1935
1936			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1937			if (ret == SHRINK_STOP)
1938				break;
1939			if (ret)
1940				goto alloc_nohuge;
1941		}
1942		goto unlock;
1943	}
1944
1945	hindex = round_down(index, folio_nr_pages(folio));
 
 
 
1946
1947	if (sgp == SGP_WRITE)
1948		__folio_set_referenced(folio);
1949
1950	error = shmem_add_to_page_cache(folio, mapping, hindex,
1951					NULL, gfp & GFP_RECLAIM_MASK,
1952					charge_mm);
1953	if (error)
1954		goto unacct;
1955	folio_add_lru(folio);
1956
1957	spin_lock_irq(&info->lock);
1958	info->alloced += folio_nr_pages(folio);
1959	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1960	shmem_recalc_inode(inode);
1961	spin_unlock_irq(&info->lock);
1962	alloced = true;
1963
1964	if (folio_test_pmd_mappable(folio) &&
1965	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1966					folio_next_index(folio) - 1) {
1967		/*
1968		 * Part of the large folio is beyond i_size: subject
1969		 * to shrink under memory pressure.
1970		 */
1971		spin_lock(&sbinfo->shrinklist_lock);
1972		/*
1973		 * _careful to defend against unlocked access to
1974		 * ->shrink_list in shmem_unused_huge_shrink()
1975		 */
1976		if (list_empty_careful(&info->shrinklist)) {
1977			list_add_tail(&info->shrinklist,
1978				      &sbinfo->shrinklist);
1979			sbinfo->shrinklist_len++;
1980		}
1981		spin_unlock(&sbinfo->shrinklist_lock);
1982	}
1983
1984	/*
1985	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1986	 */
1987	if (sgp == SGP_FALLOC)
1988		sgp = SGP_WRITE;
1989clear:
1990	/*
1991	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1992	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1993	 * it now, lest undo on failure cancel our earlier guarantee.
1994	 */
1995	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1996		long i, n = folio_nr_pages(folio);
 
1997
1998		for (i = 0; i < n; i++)
1999			clear_highpage(folio_page(folio, i));
2000		flush_dcache_folio(folio);
2001		folio_mark_uptodate(folio);
 
2002	}
2003
2004	/* Perhaps the file has been truncated since we checked */
2005	if (sgp <= SGP_CACHE &&
2006	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2007		if (alloced) {
2008			folio_clear_dirty(folio);
2009			filemap_remove_folio(folio);
2010			spin_lock_irq(&info->lock);
2011			shmem_recalc_inode(inode);
2012			spin_unlock_irq(&info->lock);
2013		}
2014		error = -EINVAL;
2015		goto unlock;
2016	}
2017out:
2018	*foliop = folio;
2019	return 0;
2020
2021	/*
2022	 * Error recovery.
2023	 */
2024unacct:
2025	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2026
2027	if (folio_test_large(folio)) {
2028		folio_unlock(folio);
2029		folio_put(folio);
2030		goto alloc_nohuge;
2031	}
2032unlock:
2033	if (folio) {
2034		folio_unlock(folio);
2035		folio_put(folio);
2036	}
2037	if (error == -ENOSPC && !once++) {
2038		spin_lock_irq(&info->lock);
2039		shmem_recalc_inode(inode);
2040		spin_unlock_irq(&info->lock);
2041		goto repeat;
2042	}
2043	if (error == -EEXIST)
2044		goto repeat;
2045	return error;
2046}
2047
2048int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2049		enum sgp_type sgp)
2050{
2051	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2052			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2053}
2054
2055/*
2056 * This is like autoremove_wake_function, but it removes the wait queue
2057 * entry unconditionally - even if something else had already woken the
2058 * target.
2059 */
2060static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2061{
2062	int ret = default_wake_function(wait, mode, sync, key);
2063	list_del_init(&wait->entry);
2064	return ret;
2065}
2066
2067static vm_fault_t shmem_fault(struct vm_fault *vmf)
2068{
2069	struct vm_area_struct *vma = vmf->vma;
2070	struct inode *inode = file_inode(vma->vm_file);
2071	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2072	struct folio *folio = NULL;
2073	int err;
2074	vm_fault_t ret = VM_FAULT_LOCKED;
2075
2076	/*
2077	 * Trinity finds that probing a hole which tmpfs is punching can
2078	 * prevent the hole-punch from ever completing: which in turn
2079	 * locks writers out with its hold on i_rwsem.  So refrain from
2080	 * faulting pages into the hole while it's being punched.  Although
2081	 * shmem_undo_range() does remove the additions, it may be unable to
2082	 * keep up, as each new page needs its own unmap_mapping_range() call,
2083	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2084	 *
2085	 * It does not matter if we sometimes reach this check just before the
2086	 * hole-punch begins, so that one fault then races with the punch:
2087	 * we just need to make racing faults a rare case.
2088	 *
2089	 * The implementation below would be much simpler if we just used a
2090	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2091	 * and bloating every shmem inode for this unlikely case would be sad.
2092	 */
2093	if (unlikely(inode->i_private)) {
2094		struct shmem_falloc *shmem_falloc;
2095
2096		spin_lock(&inode->i_lock);
2097		shmem_falloc = inode->i_private;
2098		if (shmem_falloc &&
2099		    shmem_falloc->waitq &&
2100		    vmf->pgoff >= shmem_falloc->start &&
2101		    vmf->pgoff < shmem_falloc->next) {
2102			struct file *fpin;
2103			wait_queue_head_t *shmem_falloc_waitq;
2104			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2105
2106			ret = VM_FAULT_NOPAGE;
2107			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2108			if (fpin)
2109				ret = VM_FAULT_RETRY;
2110
2111			shmem_falloc_waitq = shmem_falloc->waitq;
2112			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2113					TASK_UNINTERRUPTIBLE);
2114			spin_unlock(&inode->i_lock);
2115			schedule();
2116
2117			/*
2118			 * shmem_falloc_waitq points into the shmem_fallocate()
2119			 * stack of the hole-punching task: shmem_falloc_waitq
2120			 * is usually invalid by the time we reach here, but
2121			 * finish_wait() does not dereference it in that case;
2122			 * though i_lock needed lest racing with wake_up_all().
2123			 */
2124			spin_lock(&inode->i_lock);
2125			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2126			spin_unlock(&inode->i_lock);
2127
2128			if (fpin)
2129				fput(fpin);
2130			return ret;
2131		}
2132		spin_unlock(&inode->i_lock);
2133	}
2134
2135	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
 
 
 
 
 
 
 
 
2136				  gfp, vma, vmf, &ret);
2137	if (err)
2138		return vmf_error(err);
2139	if (folio)
2140		vmf->page = folio_file_page(folio, vmf->pgoff);
2141	return ret;
2142}
2143
2144unsigned long shmem_get_unmapped_area(struct file *file,
2145				      unsigned long uaddr, unsigned long len,
2146				      unsigned long pgoff, unsigned long flags)
2147{
2148	unsigned long (*get_area)(struct file *,
2149		unsigned long, unsigned long, unsigned long, unsigned long);
2150	unsigned long addr;
2151	unsigned long offset;
2152	unsigned long inflated_len;
2153	unsigned long inflated_addr;
2154	unsigned long inflated_offset;
2155
2156	if (len > TASK_SIZE)
2157		return -ENOMEM;
2158
2159	get_area = current->mm->get_unmapped_area;
2160	addr = get_area(file, uaddr, len, pgoff, flags);
2161
2162	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2163		return addr;
2164	if (IS_ERR_VALUE(addr))
2165		return addr;
2166	if (addr & ~PAGE_MASK)
2167		return addr;
2168	if (addr > TASK_SIZE - len)
2169		return addr;
2170
2171	if (shmem_huge == SHMEM_HUGE_DENY)
2172		return addr;
2173	if (len < HPAGE_PMD_SIZE)
2174		return addr;
2175	if (flags & MAP_FIXED)
2176		return addr;
2177	/*
2178	 * Our priority is to support MAP_SHARED mapped hugely;
2179	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2180	 * But if caller specified an address hint and we allocated area there
2181	 * successfully, respect that as before.
2182	 */
2183	if (uaddr == addr)
2184		return addr;
2185
2186	if (shmem_huge != SHMEM_HUGE_FORCE) {
2187		struct super_block *sb;
2188
2189		if (file) {
2190			VM_BUG_ON(file->f_op != &shmem_file_operations);
2191			sb = file_inode(file)->i_sb;
2192		} else {
2193			/*
2194			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2195			 * for "/dev/zero", to create a shared anonymous object.
2196			 */
2197			if (IS_ERR(shm_mnt))
2198				return addr;
2199			sb = shm_mnt->mnt_sb;
2200		}
2201		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2202			return addr;
2203	}
2204
2205	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2206	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2207		return addr;
2208	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2209		return addr;
2210
2211	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2212	if (inflated_len > TASK_SIZE)
2213		return addr;
2214	if (inflated_len < len)
2215		return addr;
2216
2217	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2218	if (IS_ERR_VALUE(inflated_addr))
2219		return addr;
2220	if (inflated_addr & ~PAGE_MASK)
2221		return addr;
2222
2223	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2224	inflated_addr += offset - inflated_offset;
2225	if (inflated_offset > offset)
2226		inflated_addr += HPAGE_PMD_SIZE;
2227
2228	if (inflated_addr > TASK_SIZE - len)
2229		return addr;
2230	return inflated_addr;
2231}
2232
2233#ifdef CONFIG_NUMA
2234static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2235{
2236	struct inode *inode = file_inode(vma->vm_file);
2237	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2238}
2239
2240static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2241					  unsigned long addr)
2242{
2243	struct inode *inode = file_inode(vma->vm_file);
2244	pgoff_t index;
2245
2246	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2247	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2248}
2249#endif
2250
2251int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2252{
2253	struct inode *inode = file_inode(file);
2254	struct shmem_inode_info *info = SHMEM_I(inode);
2255	int retval = -ENOMEM;
2256
2257	/*
2258	 * What serializes the accesses to info->flags?
2259	 * ipc_lock_object() when called from shmctl_do_lock(),
2260	 * no serialization needed when called from shm_destroy().
2261	 */
2262	if (lock && !(info->flags & VM_LOCKED)) {
2263		if (!user_shm_lock(inode->i_size, ucounts))
2264			goto out_nomem;
2265		info->flags |= VM_LOCKED;
2266		mapping_set_unevictable(file->f_mapping);
2267	}
2268	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2269		user_shm_unlock(inode->i_size, ucounts);
2270		info->flags &= ~VM_LOCKED;
2271		mapping_clear_unevictable(file->f_mapping);
2272	}
2273	retval = 0;
2274
2275out_nomem:
2276	return retval;
2277}
2278
2279static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2280{
2281	struct inode *inode = file_inode(file);
2282	struct shmem_inode_info *info = SHMEM_I(inode);
2283	int ret;
2284
2285	ret = seal_check_future_write(info->seals, vma);
2286	if (ret)
2287		return ret;
 
 
 
 
2288
2289	/* arm64 - allow memory tagging on RAM-based files */
2290	vma->vm_flags |= VM_MTE_ALLOWED;
 
 
 
 
 
 
 
 
2291
2292	file_accessed(file);
2293	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2294	if (inode->i_nlink)
2295		vma->vm_ops = &shmem_vm_ops;
2296	else
2297		vma->vm_ops = &shmem_anon_vm_ops;
 
2298	return 0;
2299}
2300
2301#ifdef CONFIG_TMPFS_XATTR
2302static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2303
2304/*
2305 * chattr's fsflags are unrelated to extended attributes,
2306 * but tmpfs has chosen to enable them under the same config option.
2307 */
2308static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2309{
2310	unsigned int i_flags = 0;
2311
2312	if (fsflags & FS_NOATIME_FL)
2313		i_flags |= S_NOATIME;
2314	if (fsflags & FS_APPEND_FL)
2315		i_flags |= S_APPEND;
2316	if (fsflags & FS_IMMUTABLE_FL)
2317		i_flags |= S_IMMUTABLE;
2318	/*
2319	 * But FS_NODUMP_FL does not require any action in i_flags.
2320	 */
2321	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2322}
2323#else
2324static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2325{
2326}
2327#define shmem_initxattrs NULL
2328#endif
2329
2330static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2331				     umode_t mode, dev_t dev, unsigned long flags)
2332{
2333	struct inode *inode;
2334	struct shmem_inode_info *info;
2335	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2336	ino_t ino;
2337
2338	if (shmem_reserve_inode(sb, &ino))
2339		return NULL;
2340
2341	inode = new_inode(sb);
2342	if (inode) {
2343		inode->i_ino = ino;
2344		inode_init_owner(&init_user_ns, inode, dir, mode);
2345		inode->i_blocks = 0;
2346		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2347		inode->i_generation = get_random_u32();
2348		info = SHMEM_I(inode);
2349		memset(info, 0, (char *)inode - (char *)info);
2350		spin_lock_init(&info->lock);
2351		atomic_set(&info->stop_eviction, 0);
2352		info->seals = F_SEAL_SEAL;
2353		info->flags = flags & VM_NORESERVE;
2354		info->i_crtime = inode->i_mtime;
2355		info->fsflags = (dir == NULL) ? 0 :
2356			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2357		if (info->fsflags)
2358			shmem_set_inode_flags(inode, info->fsflags);
2359		INIT_LIST_HEAD(&info->shrinklist);
2360		INIT_LIST_HEAD(&info->swaplist);
2361		simple_xattrs_init(&info->xattrs);
2362		cache_no_acl(inode);
2363		mapping_set_large_folios(inode->i_mapping);
2364
2365		switch (mode & S_IFMT) {
2366		default:
2367			inode->i_op = &shmem_special_inode_operations;
2368			init_special_inode(inode, mode, dev);
2369			break;
2370		case S_IFREG:
2371			inode->i_mapping->a_ops = &shmem_aops;
2372			inode->i_op = &shmem_inode_operations;
2373			inode->i_fop = &shmem_file_operations;
2374			mpol_shared_policy_init(&info->policy,
2375						 shmem_get_sbmpol(sbinfo));
2376			break;
2377		case S_IFDIR:
2378			inc_nlink(inode);
2379			/* Some things misbehave if size == 0 on a directory */
2380			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2381			inode->i_op = &shmem_dir_inode_operations;
2382			inode->i_fop = &simple_dir_operations;
2383			break;
2384		case S_IFLNK:
2385			/*
2386			 * Must not load anything in the rbtree,
2387			 * mpol_free_shared_policy will not be called.
2388			 */
2389			mpol_shared_policy_init(&info->policy, NULL);
2390			break;
2391		}
2392
2393		lockdep_annotate_inode_mutex_key(inode);
2394	} else
2395		shmem_free_inode(sb);
2396	return inode;
2397}
2398
2399#ifdef CONFIG_USERFAULTFD
2400int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2401			   pmd_t *dst_pmd,
2402			   struct vm_area_struct *dst_vma,
2403			   unsigned long dst_addr,
2404			   unsigned long src_addr,
2405			   bool zeropage, bool wp_copy,
2406			   struct page **pagep)
 
 
 
 
2407{
2408	struct inode *inode = file_inode(dst_vma->vm_file);
2409	struct shmem_inode_info *info = SHMEM_I(inode);
2410	struct address_space *mapping = inode->i_mapping;
2411	gfp_t gfp = mapping_gfp_mask(mapping);
2412	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
 
2413	void *page_kaddr;
2414	struct folio *folio;
 
2415	int ret;
2416	pgoff_t max_off;
2417
2418	if (!shmem_inode_acct_block(inode, 1)) {
2419		/*
2420		 * We may have got a page, returned -ENOENT triggering a retry,
2421		 * and now we find ourselves with -ENOMEM. Release the page, to
2422		 * avoid a BUG_ON in our caller.
2423		 */
2424		if (unlikely(*pagep)) {
2425			put_page(*pagep);
2426			*pagep = NULL;
2427		}
2428		return -ENOMEM;
2429	}
2430
2431	if (!*pagep) {
2432		ret = -ENOMEM;
2433		folio = shmem_alloc_folio(gfp, info, pgoff);
2434		if (!folio)
2435			goto out_unacct_blocks;
2436
2437		if (!zeropage) {	/* COPY */
2438			page_kaddr = kmap_local_folio(folio, 0);
2439			/*
2440			 * The read mmap_lock is held here.  Despite the
2441			 * mmap_lock being read recursive a deadlock is still
2442			 * possible if a writer has taken a lock.  For example:
2443			 *
2444			 * process A thread 1 takes read lock on own mmap_lock
2445			 * process A thread 2 calls mmap, blocks taking write lock
2446			 * process B thread 1 takes page fault, read lock on own mmap lock
2447			 * process B thread 2 calls mmap, blocks taking write lock
2448			 * process A thread 1 blocks taking read lock on process B
2449			 * process B thread 1 blocks taking read lock on process A
2450			 *
2451			 * Disable page faults to prevent potential deadlock
2452			 * and retry the copy outside the mmap_lock.
2453			 */
2454			pagefault_disable();
2455			ret = copy_from_user(page_kaddr,
2456					     (const void __user *)src_addr,
2457					     PAGE_SIZE);
2458			pagefault_enable();
2459			kunmap_local(page_kaddr);
2460
2461			/* fallback to copy_from_user outside mmap_lock */
2462			if (unlikely(ret)) {
2463				*pagep = &folio->page;
2464				ret = -ENOENT;
2465				/* don't free the page */
2466				goto out_unacct_blocks;
2467			}
2468
2469			flush_dcache_folio(folio);
2470		} else {		/* ZEROPAGE */
2471			clear_user_highpage(&folio->page, dst_addr);
2472		}
2473	} else {
2474		folio = page_folio(*pagep);
2475		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2476		*pagep = NULL;
2477	}
2478
2479	VM_BUG_ON(folio_test_locked(folio));
2480	VM_BUG_ON(folio_test_swapbacked(folio));
2481	__folio_set_locked(folio);
2482	__folio_set_swapbacked(folio);
2483	__folio_mark_uptodate(folio);
2484
2485	ret = -EFAULT;
 
2486	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2487	if (unlikely(pgoff >= max_off))
2488		goto out_release;
2489
2490	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2491				      gfp & GFP_RECLAIM_MASK, dst_mm);
2492	if (ret)
2493		goto out_release;
2494
2495	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2496				       &folio->page, true, wp_copy);
2497	if (ret)
2498		goto out_delete_from_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2499
2500	spin_lock_irq(&info->lock);
2501	info->alloced++;
2502	inode->i_blocks += BLOCKS_PER_PAGE;
2503	shmem_recalc_inode(inode);
2504	spin_unlock_irq(&info->lock);
2505
2506	folio_unlock(folio);
2507	return 0;
2508out_delete_from_cache:
2509	filemap_remove_folio(folio);
 
 
 
 
 
 
 
 
 
 
 
2510out_release:
2511	folio_unlock(folio);
2512	folio_put(folio);
2513out_unacct_blocks:
2514	shmem_inode_unacct_blocks(inode, 1);
2515	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516}
2517#endif /* CONFIG_USERFAULTFD */
2518
2519#ifdef CONFIG_TMPFS
2520static const struct inode_operations shmem_symlink_inode_operations;
2521static const struct inode_operations shmem_short_symlink_operations;
2522
 
 
 
 
 
 
2523static int
2524shmem_write_begin(struct file *file, struct address_space *mapping,
2525			loff_t pos, unsigned len,
2526			struct page **pagep, void **fsdata)
2527{
2528	struct inode *inode = mapping->host;
2529	struct shmem_inode_info *info = SHMEM_I(inode);
2530	pgoff_t index = pos >> PAGE_SHIFT;
2531	struct folio *folio;
2532	int ret = 0;
2533
2534	/* i_rwsem is held by caller */
2535	if (unlikely(info->seals & (F_SEAL_GROW |
2536				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2537		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2538			return -EPERM;
2539		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2540			return -EPERM;
2541	}
2542
2543	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2544
2545	if (ret)
2546		return ret;
2547
2548	*pagep = folio_file_page(folio, index);
2549	if (PageHWPoison(*pagep)) {
2550		folio_unlock(folio);
2551		folio_put(folio);
2552		*pagep = NULL;
2553		return -EIO;
2554	}
2555
2556	return 0;
2557}
2558
2559static int
2560shmem_write_end(struct file *file, struct address_space *mapping,
2561			loff_t pos, unsigned len, unsigned copied,
2562			struct page *page, void *fsdata)
2563{
2564	struct inode *inode = mapping->host;
2565
2566	if (pos + copied > inode->i_size)
2567		i_size_write(inode, pos + copied);
2568
2569	if (!PageUptodate(page)) {
2570		struct page *head = compound_head(page);
2571		if (PageTransCompound(page)) {
2572			int i;
2573
2574			for (i = 0; i < HPAGE_PMD_NR; i++) {
2575				if (head + i == page)
2576					continue;
2577				clear_highpage(head + i);
2578				flush_dcache_page(head + i);
2579			}
2580		}
2581		if (copied < PAGE_SIZE) {
2582			unsigned from = pos & (PAGE_SIZE - 1);
2583			zero_user_segments(page, 0, from,
2584					from + copied, PAGE_SIZE);
2585		}
2586		SetPageUptodate(head);
2587	}
2588	set_page_dirty(page);
2589	unlock_page(page);
2590	put_page(page);
2591
2592	return copied;
2593}
2594
2595static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2596{
2597	struct file *file = iocb->ki_filp;
2598	struct inode *inode = file_inode(file);
2599	struct address_space *mapping = inode->i_mapping;
2600	pgoff_t index;
2601	unsigned long offset;
 
2602	int error = 0;
2603	ssize_t retval = 0;
2604	loff_t *ppos = &iocb->ki_pos;
2605
 
 
 
 
 
 
 
 
2606	index = *ppos >> PAGE_SHIFT;
2607	offset = *ppos & ~PAGE_MASK;
2608
2609	for (;;) {
2610		struct folio *folio = NULL;
2611		struct page *page = NULL;
2612		pgoff_t end_index;
2613		unsigned long nr, ret;
2614		loff_t i_size = i_size_read(inode);
2615
2616		end_index = i_size >> PAGE_SHIFT;
2617		if (index > end_index)
2618			break;
2619		if (index == end_index) {
2620			nr = i_size & ~PAGE_MASK;
2621			if (nr <= offset)
2622				break;
2623		}
2624
2625		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2626		if (error) {
2627			if (error == -EINVAL)
2628				error = 0;
2629			break;
2630		}
2631		if (folio) {
2632			folio_unlock(folio);
2633
2634			page = folio_file_page(folio, index);
2635			if (PageHWPoison(page)) {
2636				folio_put(folio);
2637				error = -EIO;
2638				break;
2639			}
2640		}
2641
2642		/*
2643		 * We must evaluate after, since reads (unlike writes)
2644		 * are called without i_rwsem protection against truncate
2645		 */
2646		nr = PAGE_SIZE;
2647		i_size = i_size_read(inode);
2648		end_index = i_size >> PAGE_SHIFT;
2649		if (index == end_index) {
2650			nr = i_size & ~PAGE_MASK;
2651			if (nr <= offset) {
2652				if (folio)
2653					folio_put(folio);
2654				break;
2655			}
2656		}
2657		nr -= offset;
2658
2659		if (folio) {
2660			/*
2661			 * If users can be writing to this page using arbitrary
2662			 * virtual addresses, take care about potential aliasing
2663			 * before reading the page on the kernel side.
2664			 */
2665			if (mapping_writably_mapped(mapping))
2666				flush_dcache_page(page);
2667			/*
2668			 * Mark the page accessed if we read the beginning.
2669			 */
2670			if (!offset)
2671				folio_mark_accessed(folio);
2672			/*
2673			 * Ok, we have the page, and it's up-to-date, so
2674			 * now we can copy it to user space...
2675			 */
2676			ret = copy_page_to_iter(page, offset, nr, to);
2677			folio_put(folio);
2678
2679		} else if (user_backed_iter(to)) {
2680			/*
2681			 * Copy to user tends to be so well optimized, but
2682			 * clear_user() not so much, that it is noticeably
2683			 * faster to copy the zero page instead of clearing.
2684			 */
2685			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2686		} else {
2687			/*
2688			 * But submitting the same page twice in a row to
2689			 * splice() - or others? - can result in confusion:
2690			 * so don't attempt that optimization on pipes etc.
2691			 */
2692			ret = iov_iter_zero(nr, to);
2693		}
2694
 
 
 
 
 
2695		retval += ret;
2696		offset += ret;
2697		index += offset >> PAGE_SHIFT;
2698		offset &= ~PAGE_MASK;
2699
 
2700		if (!iov_iter_count(to))
2701			break;
2702		if (ret < nr) {
2703			error = -EFAULT;
2704			break;
2705		}
2706		cond_resched();
2707	}
2708
2709	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2710	file_accessed(file);
2711	return retval ? retval : error;
2712}
2713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2715{
2716	struct address_space *mapping = file->f_mapping;
2717	struct inode *inode = mapping->host;
 
 
2718
2719	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2720		return generic_file_llseek_size(file, offset, whence,
2721					MAX_LFS_FILESIZE, i_size_read(inode));
2722	if (offset < 0)
2723		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724
2725	inode_lock(inode);
2726	/* We're holding i_rwsem so we can access i_size directly */
2727	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2728	if (offset >= 0)
2729		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2730	inode_unlock(inode);
2731	return offset;
2732}
2733
2734static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2735							 loff_t len)
2736{
2737	struct inode *inode = file_inode(file);
2738	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2739	struct shmem_inode_info *info = SHMEM_I(inode);
2740	struct shmem_falloc shmem_falloc;
2741	pgoff_t start, index, end, undo_fallocend;
2742	int error;
2743
2744	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2745		return -EOPNOTSUPP;
2746
2747	inode_lock(inode);
2748
2749	if (mode & FALLOC_FL_PUNCH_HOLE) {
2750		struct address_space *mapping = file->f_mapping;
2751		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2752		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2753		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2754
2755		/* protected by i_rwsem */
2756		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2757			error = -EPERM;
2758			goto out;
2759		}
2760
2761		shmem_falloc.waitq = &shmem_falloc_waitq;
2762		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2763		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2764		spin_lock(&inode->i_lock);
2765		inode->i_private = &shmem_falloc;
2766		spin_unlock(&inode->i_lock);
2767
2768		if ((u64)unmap_end > (u64)unmap_start)
2769			unmap_mapping_range(mapping, unmap_start,
2770					    1 + unmap_end - unmap_start, 0);
2771		shmem_truncate_range(inode, offset, offset + len - 1);
2772		/* No need to unmap again: hole-punching leaves COWed pages */
2773
2774		spin_lock(&inode->i_lock);
2775		inode->i_private = NULL;
2776		wake_up_all(&shmem_falloc_waitq);
2777		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2778		spin_unlock(&inode->i_lock);
2779		error = 0;
2780		goto out;
2781	}
2782
2783	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2784	error = inode_newsize_ok(inode, offset + len);
2785	if (error)
2786		goto out;
2787
2788	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2789		error = -EPERM;
2790		goto out;
2791	}
2792
2793	start = offset >> PAGE_SHIFT;
2794	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2795	/* Try to avoid a swapstorm if len is impossible to satisfy */
2796	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2797		error = -ENOSPC;
2798		goto out;
2799	}
2800
2801	shmem_falloc.waitq = NULL;
2802	shmem_falloc.start = start;
2803	shmem_falloc.next  = start;
2804	shmem_falloc.nr_falloced = 0;
2805	shmem_falloc.nr_unswapped = 0;
2806	spin_lock(&inode->i_lock);
2807	inode->i_private = &shmem_falloc;
2808	spin_unlock(&inode->i_lock);
2809
2810	/*
2811	 * info->fallocend is only relevant when huge pages might be
2812	 * involved: to prevent split_huge_page() freeing fallocated
2813	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2814	 */
2815	undo_fallocend = info->fallocend;
2816	if (info->fallocend < end)
2817		info->fallocend = end;
2818
2819	for (index = start; index < end; ) {
2820		struct folio *folio;
2821
2822		/*
2823		 * Good, the fallocate(2) manpage permits EINTR: we may have
2824		 * been interrupted because we are using up too much memory.
2825		 */
2826		if (signal_pending(current))
2827			error = -EINTR;
2828		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2829			error = -ENOMEM;
2830		else
2831			error = shmem_get_folio(inode, index, &folio,
2832						SGP_FALLOC);
2833		if (error) {
2834			info->fallocend = undo_fallocend;
2835			/* Remove the !uptodate folios we added */
2836			if (index > start) {
2837				shmem_undo_range(inode,
2838				    (loff_t)start << PAGE_SHIFT,
2839				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2840			}
2841			goto undone;
2842		}
2843
2844		/*
2845		 * Here is a more important optimization than it appears:
2846		 * a second SGP_FALLOC on the same large folio will clear it,
2847		 * making it uptodate and un-undoable if we fail later.
2848		 */
2849		index = folio_next_index(folio);
2850		/* Beware 32-bit wraparound */
2851		if (!index)
2852			index--;
2853
2854		/*
2855		 * Inform shmem_writepage() how far we have reached.
2856		 * No need for lock or barrier: we have the page lock.
2857		 */
2858		if (!folio_test_uptodate(folio))
2859			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2860		shmem_falloc.next = index;
2861
2862		/*
2863		 * If !uptodate, leave it that way so that freeable folios
2864		 * can be recognized if we need to rollback on error later.
2865		 * But mark it dirty so that memory pressure will swap rather
2866		 * than free the folios we are allocating (and SGP_CACHE folios
2867		 * might still be clean: we now need to mark those dirty too).
2868		 */
2869		folio_mark_dirty(folio);
2870		folio_unlock(folio);
2871		folio_put(folio);
2872		cond_resched();
2873	}
2874
2875	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2876		i_size_write(inode, offset + len);
 
2877undone:
2878	spin_lock(&inode->i_lock);
2879	inode->i_private = NULL;
2880	spin_unlock(&inode->i_lock);
2881out:
2882	if (!error)
2883		file_modified(file);
2884	inode_unlock(inode);
2885	return error;
2886}
2887
2888static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2889{
2890	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2891
2892	buf->f_type = TMPFS_MAGIC;
2893	buf->f_bsize = PAGE_SIZE;
2894	buf->f_namelen = NAME_MAX;
2895	if (sbinfo->max_blocks) {
2896		buf->f_blocks = sbinfo->max_blocks;
2897		buf->f_bavail =
2898		buf->f_bfree  = sbinfo->max_blocks -
2899				percpu_counter_sum(&sbinfo->used_blocks);
2900	}
2901	if (sbinfo->max_inodes) {
2902		buf->f_files = sbinfo->max_inodes;
2903		buf->f_ffree = sbinfo->free_inodes;
2904	}
2905	/* else leave those fields 0 like simple_statfs */
2906
2907	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2908
2909	return 0;
2910}
2911
2912/*
2913 * File creation. Allocate an inode, and we're done..
2914 */
2915static int
2916shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2917	    struct dentry *dentry, umode_t mode, dev_t dev)
2918{
2919	struct inode *inode;
2920	int error = -ENOSPC;
2921
2922	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2923	if (inode) {
2924		error = simple_acl_create(dir, inode);
2925		if (error)
2926			goto out_iput;
2927		error = security_inode_init_security(inode, dir,
2928						     &dentry->d_name,
2929						     shmem_initxattrs, NULL);
2930		if (error && error != -EOPNOTSUPP)
2931			goto out_iput;
2932
2933		error = 0;
2934		dir->i_size += BOGO_DIRENT_SIZE;
2935		dir->i_ctime = dir->i_mtime = current_time(dir);
2936		inode_inc_iversion(dir);
2937		d_instantiate(dentry, inode);
2938		dget(dentry); /* Extra count - pin the dentry in core */
2939	}
2940	return error;
2941out_iput:
2942	iput(inode);
2943	return error;
2944}
2945
2946static int
2947shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2948	      struct file *file, umode_t mode)
2949{
2950	struct inode *inode;
2951	int error = -ENOSPC;
2952
2953	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2954	if (inode) {
2955		error = security_inode_init_security(inode, dir,
2956						     NULL,
2957						     shmem_initxattrs, NULL);
2958		if (error && error != -EOPNOTSUPP)
2959			goto out_iput;
2960		error = simple_acl_create(dir, inode);
2961		if (error)
2962			goto out_iput;
2963		d_tmpfile(file, inode);
2964	}
2965	return finish_open_simple(file, error);
2966out_iput:
2967	iput(inode);
2968	return error;
2969}
2970
2971static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2972		       struct dentry *dentry, umode_t mode)
2973{
2974	int error;
2975
2976	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2977				 mode | S_IFDIR, 0)))
2978		return error;
2979	inc_nlink(dir);
2980	return 0;
2981}
2982
2983static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2984			struct dentry *dentry, umode_t mode, bool excl)
2985{
2986	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2987}
2988
2989/*
2990 * Link a file..
2991 */
2992static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2993{
2994	struct inode *inode = d_inode(old_dentry);
2995	int ret = 0;
2996
2997	/*
2998	 * No ordinary (disk based) filesystem counts links as inodes;
2999	 * but each new link needs a new dentry, pinning lowmem, and
3000	 * tmpfs dentries cannot be pruned until they are unlinked.
3001	 * But if an O_TMPFILE file is linked into the tmpfs, the
3002	 * first link must skip that, to get the accounting right.
3003	 */
3004	if (inode->i_nlink) {
3005		ret = shmem_reserve_inode(inode->i_sb, NULL);
3006		if (ret)
3007			goto out;
3008	}
3009
3010	dir->i_size += BOGO_DIRENT_SIZE;
3011	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3012	inode_inc_iversion(dir);
3013	inc_nlink(inode);
3014	ihold(inode);	/* New dentry reference */
3015	dget(dentry);		/* Extra pinning count for the created dentry */
3016	d_instantiate(dentry, inode);
3017out:
3018	return ret;
3019}
3020
3021static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3022{
3023	struct inode *inode = d_inode(dentry);
3024
3025	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3026		shmem_free_inode(inode->i_sb);
3027
3028	dir->i_size -= BOGO_DIRENT_SIZE;
3029	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3030	inode_inc_iversion(dir);
3031	drop_nlink(inode);
3032	dput(dentry);	/* Undo the count from "create" - this does all the work */
3033	return 0;
3034}
3035
3036static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3037{
3038	if (!simple_empty(dentry))
3039		return -ENOTEMPTY;
3040
3041	drop_nlink(d_inode(dentry));
3042	drop_nlink(dir);
3043	return shmem_unlink(dir, dentry);
3044}
3045
3046static int shmem_whiteout(struct user_namespace *mnt_userns,
3047			  struct inode *old_dir, struct dentry *old_dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048{
3049	struct dentry *whiteout;
3050	int error;
3051
3052	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3053	if (!whiteout)
3054		return -ENOMEM;
3055
3056	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3057			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3058	dput(whiteout);
3059	if (error)
3060		return error;
3061
3062	/*
3063	 * Cheat and hash the whiteout while the old dentry is still in
3064	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3065	 *
3066	 * d_lookup() will consistently find one of them at this point,
3067	 * not sure which one, but that isn't even important.
3068	 */
3069	d_rehash(whiteout);
3070	return 0;
3071}
3072
3073/*
3074 * The VFS layer already does all the dentry stuff for rename,
3075 * we just have to decrement the usage count for the target if
3076 * it exists so that the VFS layer correctly free's it when it
3077 * gets overwritten.
3078 */
3079static int shmem_rename2(struct user_namespace *mnt_userns,
3080			 struct inode *old_dir, struct dentry *old_dentry,
3081			 struct inode *new_dir, struct dentry *new_dentry,
3082			 unsigned int flags)
3083{
3084	struct inode *inode = d_inode(old_dentry);
3085	int they_are_dirs = S_ISDIR(inode->i_mode);
3086
3087	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3088		return -EINVAL;
3089
3090	if (flags & RENAME_EXCHANGE)
3091		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3092
3093	if (!simple_empty(new_dentry))
3094		return -ENOTEMPTY;
3095
3096	if (flags & RENAME_WHITEOUT) {
3097		int error;
3098
3099		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3100		if (error)
3101			return error;
3102	}
3103
3104	if (d_really_is_positive(new_dentry)) {
3105		(void) shmem_unlink(new_dir, new_dentry);
3106		if (they_are_dirs) {
3107			drop_nlink(d_inode(new_dentry));
3108			drop_nlink(old_dir);
3109		}
3110	} else if (they_are_dirs) {
3111		drop_nlink(old_dir);
3112		inc_nlink(new_dir);
3113	}
3114
3115	old_dir->i_size -= BOGO_DIRENT_SIZE;
3116	new_dir->i_size += BOGO_DIRENT_SIZE;
3117	old_dir->i_ctime = old_dir->i_mtime =
3118	new_dir->i_ctime = new_dir->i_mtime =
3119	inode->i_ctime = current_time(old_dir);
3120	inode_inc_iversion(old_dir);
3121	inode_inc_iversion(new_dir);
3122	return 0;
3123}
3124
3125static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3126			 struct dentry *dentry, const char *symname)
3127{
3128	int error;
3129	int len;
3130	struct inode *inode;
3131	struct folio *folio;
3132
3133	len = strlen(symname) + 1;
3134	if (len > PAGE_SIZE)
3135		return -ENAMETOOLONG;
3136
3137	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3138				VM_NORESERVE);
3139	if (!inode)
3140		return -ENOSPC;
3141
3142	error = security_inode_init_security(inode, dir, &dentry->d_name,
3143					     shmem_initxattrs, NULL);
3144	if (error && error != -EOPNOTSUPP) {
3145		iput(inode);
3146		return error;
3147	}
3148
3149	inode->i_size = len-1;
3150	if (len <= SHORT_SYMLINK_LEN) {
3151		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3152		if (!inode->i_link) {
3153			iput(inode);
3154			return -ENOMEM;
3155		}
3156		inode->i_op = &shmem_short_symlink_operations;
3157	} else {
3158		inode_nohighmem(inode);
3159		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3160		if (error) {
3161			iput(inode);
3162			return error;
3163		}
3164		inode->i_mapping->a_ops = &shmem_aops;
3165		inode->i_op = &shmem_symlink_inode_operations;
3166		memcpy(folio_address(folio), symname, len);
3167		folio_mark_uptodate(folio);
3168		folio_mark_dirty(folio);
3169		folio_unlock(folio);
3170		folio_put(folio);
3171	}
3172	dir->i_size += BOGO_DIRENT_SIZE;
3173	dir->i_ctime = dir->i_mtime = current_time(dir);
3174	inode_inc_iversion(dir);
3175	d_instantiate(dentry, inode);
3176	dget(dentry);
3177	return 0;
3178}
3179
3180static void shmem_put_link(void *arg)
3181{
3182	folio_mark_accessed(arg);
3183	folio_put(arg);
3184}
3185
3186static const char *shmem_get_link(struct dentry *dentry,
3187				  struct inode *inode,
3188				  struct delayed_call *done)
3189{
3190	struct folio *folio = NULL;
3191	int error;
3192
3193	if (!dentry) {
3194		folio = filemap_get_folio(inode->i_mapping, 0);
3195		if (!folio)
3196			return ERR_PTR(-ECHILD);
3197		if (PageHWPoison(folio_page(folio, 0)) ||
3198		    !folio_test_uptodate(folio)) {
3199			folio_put(folio);
3200			return ERR_PTR(-ECHILD);
3201		}
3202	} else {
3203		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3204		if (error)
3205			return ERR_PTR(error);
3206		if (!folio)
3207			return ERR_PTR(-ECHILD);
3208		if (PageHWPoison(folio_page(folio, 0))) {
3209			folio_unlock(folio);
3210			folio_put(folio);
3211			return ERR_PTR(-ECHILD);
3212		}
3213		folio_unlock(folio);
3214	}
3215	set_delayed_call(done, shmem_put_link, folio);
3216	return folio_address(folio);
3217}
3218
3219#ifdef CONFIG_TMPFS_XATTR
3220
3221static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3222{
3223	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224
3225	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3226
3227	return 0;
3228}
3229
3230static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3231			      struct dentry *dentry, struct fileattr *fa)
3232{
3233	struct inode *inode = d_inode(dentry);
3234	struct shmem_inode_info *info = SHMEM_I(inode);
3235
3236	if (fileattr_has_fsx(fa))
3237		return -EOPNOTSUPP;
3238	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3239		return -EOPNOTSUPP;
3240
3241	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3242		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3243
3244	shmem_set_inode_flags(inode, info->fsflags);
3245	inode->i_ctime = current_time(inode);
3246	inode_inc_iversion(inode);
3247	return 0;
3248}
3249
3250/*
3251 * Superblocks without xattr inode operations may get some security.* xattr
3252 * support from the LSM "for free". As soon as we have any other xattrs
3253 * like ACLs, we also need to implement the security.* handlers at
3254 * filesystem level, though.
3255 */
3256
3257/*
3258 * Callback for security_inode_init_security() for acquiring xattrs.
3259 */
3260static int shmem_initxattrs(struct inode *inode,
3261			    const struct xattr *xattr_array,
3262			    void *fs_info)
3263{
3264	struct shmem_inode_info *info = SHMEM_I(inode);
3265	const struct xattr *xattr;
3266	struct simple_xattr *new_xattr;
3267	size_t len;
3268
3269	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3270		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3271		if (!new_xattr)
3272			return -ENOMEM;
3273
3274		len = strlen(xattr->name) + 1;
3275		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3276					  GFP_KERNEL);
3277		if (!new_xattr->name) {
3278			kvfree(new_xattr);
3279			return -ENOMEM;
3280		}
3281
3282		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3283		       XATTR_SECURITY_PREFIX_LEN);
3284		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3285		       xattr->name, len);
3286
3287		simple_xattr_add(&info->xattrs, new_xattr);
3288	}
3289
3290	return 0;
3291}
3292
3293static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3294				   struct dentry *unused, struct inode *inode,
3295				   const char *name, void *buffer, size_t size)
3296{
3297	struct shmem_inode_info *info = SHMEM_I(inode);
3298
3299	name = xattr_full_name(handler, name);
3300	return simple_xattr_get(&info->xattrs, name, buffer, size);
3301}
3302
3303static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3304				   struct user_namespace *mnt_userns,
3305				   struct dentry *unused, struct inode *inode,
3306				   const char *name, const void *value,
3307				   size_t size, int flags)
3308{
3309	struct shmem_inode_info *info = SHMEM_I(inode);
3310	int err;
3311
3312	name = xattr_full_name(handler, name);
3313	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3314	if (!err) {
3315		inode->i_ctime = current_time(inode);
3316		inode_inc_iversion(inode);
3317	}
3318	return err;
3319}
3320
3321static const struct xattr_handler shmem_security_xattr_handler = {
3322	.prefix = XATTR_SECURITY_PREFIX,
3323	.get = shmem_xattr_handler_get,
3324	.set = shmem_xattr_handler_set,
3325};
3326
3327static const struct xattr_handler shmem_trusted_xattr_handler = {
3328	.prefix = XATTR_TRUSTED_PREFIX,
3329	.get = shmem_xattr_handler_get,
3330	.set = shmem_xattr_handler_set,
3331};
3332
3333static const struct xattr_handler *shmem_xattr_handlers[] = {
3334#ifdef CONFIG_TMPFS_POSIX_ACL
3335	&posix_acl_access_xattr_handler,
3336	&posix_acl_default_xattr_handler,
3337#endif
3338	&shmem_security_xattr_handler,
3339	&shmem_trusted_xattr_handler,
3340	NULL
3341};
3342
3343static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3344{
3345	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3346	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3347}
3348#endif /* CONFIG_TMPFS_XATTR */
3349
3350static const struct inode_operations shmem_short_symlink_operations = {
3351	.getattr	= shmem_getattr,
3352	.get_link	= simple_get_link,
3353#ifdef CONFIG_TMPFS_XATTR
3354	.listxattr	= shmem_listxattr,
3355#endif
3356};
3357
3358static const struct inode_operations shmem_symlink_inode_operations = {
3359	.getattr	= shmem_getattr,
3360	.get_link	= shmem_get_link,
3361#ifdef CONFIG_TMPFS_XATTR
3362	.listxattr	= shmem_listxattr,
3363#endif
3364};
3365
3366static struct dentry *shmem_get_parent(struct dentry *child)
3367{
3368	return ERR_PTR(-ESTALE);
3369}
3370
3371static int shmem_match(struct inode *ino, void *vfh)
3372{
3373	__u32 *fh = vfh;
3374	__u64 inum = fh[2];
3375	inum = (inum << 32) | fh[1];
3376	return ino->i_ino == inum && fh[0] == ino->i_generation;
3377}
3378
3379/* Find any alias of inode, but prefer a hashed alias */
3380static struct dentry *shmem_find_alias(struct inode *inode)
3381{
3382	struct dentry *alias = d_find_alias(inode);
3383
3384	return alias ?: d_find_any_alias(inode);
3385}
3386
3387
3388static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3389		struct fid *fid, int fh_len, int fh_type)
3390{
3391	struct inode *inode;
3392	struct dentry *dentry = NULL;
3393	u64 inum;
3394
3395	if (fh_len < 3)
3396		return NULL;
3397
3398	inum = fid->raw[2];
3399	inum = (inum << 32) | fid->raw[1];
3400
3401	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3402			shmem_match, fid->raw);
3403	if (inode) {
3404		dentry = shmem_find_alias(inode);
3405		iput(inode);
3406	}
3407
3408	return dentry;
3409}
3410
3411static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3412				struct inode *parent)
3413{
3414	if (*len < 3) {
3415		*len = 3;
3416		return FILEID_INVALID;
3417	}
3418
3419	if (inode_unhashed(inode)) {
3420		/* Unfortunately insert_inode_hash is not idempotent,
3421		 * so as we hash inodes here rather than at creation
3422		 * time, we need a lock to ensure we only try
3423		 * to do it once
3424		 */
3425		static DEFINE_SPINLOCK(lock);
3426		spin_lock(&lock);
3427		if (inode_unhashed(inode))
3428			__insert_inode_hash(inode,
3429					    inode->i_ino + inode->i_generation);
3430		spin_unlock(&lock);
3431	}
3432
3433	fh[0] = inode->i_generation;
3434	fh[1] = inode->i_ino;
3435	fh[2] = ((__u64)inode->i_ino) >> 32;
3436
3437	*len = 3;
3438	return 1;
3439}
3440
3441static const struct export_operations shmem_export_ops = {
3442	.get_parent     = shmem_get_parent,
3443	.encode_fh      = shmem_encode_fh,
3444	.fh_to_dentry	= shmem_fh_to_dentry,
3445};
3446
3447enum shmem_param {
3448	Opt_gid,
3449	Opt_huge,
3450	Opt_mode,
3451	Opt_mpol,
3452	Opt_nr_blocks,
3453	Opt_nr_inodes,
3454	Opt_size,
3455	Opt_uid,
3456	Opt_inode32,
3457	Opt_inode64,
3458};
3459
3460static const struct constant_table shmem_param_enums_huge[] = {
3461	{"never",	SHMEM_HUGE_NEVER },
3462	{"always",	SHMEM_HUGE_ALWAYS },
3463	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3464	{"advise",	SHMEM_HUGE_ADVISE },
3465	{}
3466};
3467
3468const struct fs_parameter_spec shmem_fs_parameters[] = {
3469	fsparam_u32   ("gid",		Opt_gid),
3470	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3471	fsparam_u32oct("mode",		Opt_mode),
3472	fsparam_string("mpol",		Opt_mpol),
3473	fsparam_string("nr_blocks",	Opt_nr_blocks),
3474	fsparam_string("nr_inodes",	Opt_nr_inodes),
3475	fsparam_string("size",		Opt_size),
3476	fsparam_u32   ("uid",		Opt_uid),
3477	fsparam_flag  ("inode32",	Opt_inode32),
3478	fsparam_flag  ("inode64",	Opt_inode64),
3479	{}
3480};
3481
3482static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3483{
3484	struct shmem_options *ctx = fc->fs_private;
3485	struct fs_parse_result result;
3486	unsigned long long size;
3487	char *rest;
3488	int opt;
3489
3490	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3491	if (opt < 0)
3492		return opt;
3493
3494	switch (opt) {
3495	case Opt_size:
3496		size = memparse(param->string, &rest);
3497		if (*rest == '%') {
3498			size <<= PAGE_SHIFT;
3499			size *= totalram_pages();
3500			do_div(size, 100);
3501			rest++;
3502		}
3503		if (*rest)
3504			goto bad_value;
3505		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3506		ctx->seen |= SHMEM_SEEN_BLOCKS;
3507		break;
3508	case Opt_nr_blocks:
3509		ctx->blocks = memparse(param->string, &rest);
3510		if (*rest || ctx->blocks > S64_MAX)
3511			goto bad_value;
3512		ctx->seen |= SHMEM_SEEN_BLOCKS;
3513		break;
3514	case Opt_nr_inodes:
3515		ctx->inodes = memparse(param->string, &rest);
3516		if (*rest)
3517			goto bad_value;
3518		ctx->seen |= SHMEM_SEEN_INODES;
3519		break;
3520	case Opt_mode:
3521		ctx->mode = result.uint_32 & 07777;
3522		break;
3523	case Opt_uid:
3524		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3525		if (!uid_valid(ctx->uid))
3526			goto bad_value;
3527		break;
3528	case Opt_gid:
3529		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3530		if (!gid_valid(ctx->gid))
3531			goto bad_value;
3532		break;
3533	case Opt_huge:
3534		ctx->huge = result.uint_32;
3535		if (ctx->huge != SHMEM_HUGE_NEVER &&
3536		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3537		      has_transparent_hugepage()))
3538			goto unsupported_parameter;
3539		ctx->seen |= SHMEM_SEEN_HUGE;
3540		break;
3541	case Opt_mpol:
3542		if (IS_ENABLED(CONFIG_NUMA)) {
3543			mpol_put(ctx->mpol);
3544			ctx->mpol = NULL;
3545			if (mpol_parse_str(param->string, &ctx->mpol))
3546				goto bad_value;
3547			break;
3548		}
3549		goto unsupported_parameter;
3550	case Opt_inode32:
3551		ctx->full_inums = false;
3552		ctx->seen |= SHMEM_SEEN_INUMS;
3553		break;
3554	case Opt_inode64:
3555		if (sizeof(ino_t) < 8) {
3556			return invalfc(fc,
3557				       "Cannot use inode64 with <64bit inums in kernel\n");
3558		}
3559		ctx->full_inums = true;
3560		ctx->seen |= SHMEM_SEEN_INUMS;
3561		break;
3562	}
3563	return 0;
3564
3565unsupported_parameter:
3566	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3567bad_value:
3568	return invalfc(fc, "Bad value for '%s'", param->key);
3569}
3570
3571static int shmem_parse_options(struct fs_context *fc, void *data)
3572{
3573	char *options = data;
3574
3575	if (options) {
3576		int err = security_sb_eat_lsm_opts(options, &fc->security);
3577		if (err)
3578			return err;
3579	}
3580
3581	while (options != NULL) {
3582		char *this_char = options;
3583		for (;;) {
3584			/*
3585			 * NUL-terminate this option: unfortunately,
3586			 * mount options form a comma-separated list,
3587			 * but mpol's nodelist may also contain commas.
3588			 */
3589			options = strchr(options, ',');
3590			if (options == NULL)
3591				break;
3592			options++;
3593			if (!isdigit(*options)) {
3594				options[-1] = '\0';
3595				break;
3596			}
3597		}
3598		if (*this_char) {
3599			char *value = strchr(this_char, '=');
3600			size_t len = 0;
3601			int err;
3602
3603			if (value) {
3604				*value++ = '\0';
3605				len = strlen(value);
3606			}
3607			err = vfs_parse_fs_string(fc, this_char, value, len);
3608			if (err < 0)
3609				return err;
3610		}
3611	}
3612	return 0;
3613}
3614
3615/*
3616 * Reconfigure a shmem filesystem.
3617 *
3618 * Note that we disallow change from limited->unlimited blocks/inodes while any
3619 * are in use; but we must separately disallow unlimited->limited, because in
3620 * that case we have no record of how much is already in use.
3621 */
3622static int shmem_reconfigure(struct fs_context *fc)
3623{
3624	struct shmem_options *ctx = fc->fs_private;
3625	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3626	unsigned long inodes;
3627	struct mempolicy *mpol = NULL;
3628	const char *err;
3629
3630	raw_spin_lock(&sbinfo->stat_lock);
3631	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3632
3633	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3634		if (!sbinfo->max_blocks) {
3635			err = "Cannot retroactively limit size";
3636			goto out;
3637		}
3638		if (percpu_counter_compare(&sbinfo->used_blocks,
3639					   ctx->blocks) > 0) {
3640			err = "Too small a size for current use";
3641			goto out;
3642		}
3643	}
3644	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3645		if (!sbinfo->max_inodes) {
3646			err = "Cannot retroactively limit inodes";
3647			goto out;
3648		}
3649		if (ctx->inodes < inodes) {
3650			err = "Too few inodes for current use";
3651			goto out;
3652		}
3653	}
3654
3655	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3656	    sbinfo->next_ino > UINT_MAX) {
3657		err = "Current inum too high to switch to 32-bit inums";
3658		goto out;
3659	}
3660
3661	if (ctx->seen & SHMEM_SEEN_HUGE)
3662		sbinfo->huge = ctx->huge;
3663	if (ctx->seen & SHMEM_SEEN_INUMS)
3664		sbinfo->full_inums = ctx->full_inums;
3665	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3666		sbinfo->max_blocks  = ctx->blocks;
3667	if (ctx->seen & SHMEM_SEEN_INODES) {
3668		sbinfo->max_inodes  = ctx->inodes;
3669		sbinfo->free_inodes = ctx->inodes - inodes;
3670	}
3671
3672	/*
3673	 * Preserve previous mempolicy unless mpol remount option was specified.
3674	 */
3675	if (ctx->mpol) {
3676		mpol = sbinfo->mpol;
3677		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3678		ctx->mpol = NULL;
3679	}
3680	raw_spin_unlock(&sbinfo->stat_lock);
3681	mpol_put(mpol);
3682	return 0;
3683out:
3684	raw_spin_unlock(&sbinfo->stat_lock);
3685	return invalfc(fc, "%s", err);
3686}
3687
3688static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3689{
3690	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3691
3692	if (sbinfo->max_blocks != shmem_default_max_blocks())
3693		seq_printf(seq, ",size=%luk",
3694			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3695	if (sbinfo->max_inodes != shmem_default_max_inodes())
3696		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3697	if (sbinfo->mode != (0777 | S_ISVTX))
3698		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3699	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3700		seq_printf(seq, ",uid=%u",
3701				from_kuid_munged(&init_user_ns, sbinfo->uid));
3702	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3703		seq_printf(seq, ",gid=%u",
3704				from_kgid_munged(&init_user_ns, sbinfo->gid));
3705
3706	/*
3707	 * Showing inode{64,32} might be useful even if it's the system default,
3708	 * since then people don't have to resort to checking both here and
3709	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3710	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3711	 *
3712	 * We hide it when inode64 isn't the default and we are using 32-bit
3713	 * inodes, since that probably just means the feature isn't even under
3714	 * consideration.
3715	 *
3716	 * As such:
3717	 *
3718	 *                     +-----------------+-----------------+
3719	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3720	 *  +------------------+-----------------+-----------------+
3721	 *  | full_inums=true  | show            | show            |
3722	 *  | full_inums=false | show            | hide            |
3723	 *  +------------------+-----------------+-----------------+
3724	 *
3725	 */
3726	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3727		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3729	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3730	if (sbinfo->huge)
3731		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3732#endif
3733	shmem_show_mpol(seq, sbinfo->mpol);
3734	return 0;
3735}
3736
3737#endif /* CONFIG_TMPFS */
3738
3739static void shmem_put_super(struct super_block *sb)
3740{
3741	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3742
3743	free_percpu(sbinfo->ino_batch);
3744	percpu_counter_destroy(&sbinfo->used_blocks);
3745	mpol_put(sbinfo->mpol);
3746	kfree(sbinfo);
3747	sb->s_fs_info = NULL;
3748}
3749
3750static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3751{
3752	struct shmem_options *ctx = fc->fs_private;
3753	struct inode *inode;
3754	struct shmem_sb_info *sbinfo;
 
3755
3756	/* Round up to L1_CACHE_BYTES to resist false sharing */
3757	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3758				L1_CACHE_BYTES), GFP_KERNEL);
3759	if (!sbinfo)
3760		return -ENOMEM;
3761
3762	sb->s_fs_info = sbinfo;
3763
3764#ifdef CONFIG_TMPFS
3765	/*
3766	 * Per default we only allow half of the physical ram per
3767	 * tmpfs instance, limiting inodes to one per page of lowmem;
3768	 * but the internal instance is left unlimited.
3769	 */
3770	if (!(sb->s_flags & SB_KERNMOUNT)) {
3771		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3772			ctx->blocks = shmem_default_max_blocks();
3773		if (!(ctx->seen & SHMEM_SEEN_INODES))
3774			ctx->inodes = shmem_default_max_inodes();
3775		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3776			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3777	} else {
3778		sb->s_flags |= SB_NOUSER;
3779	}
3780	sb->s_export_op = &shmem_export_ops;
3781	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3782#else
3783	sb->s_flags |= SB_NOUSER;
3784#endif
3785	sbinfo->max_blocks = ctx->blocks;
3786	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3787	if (sb->s_flags & SB_KERNMOUNT) {
3788		sbinfo->ino_batch = alloc_percpu(ino_t);
3789		if (!sbinfo->ino_batch)
3790			goto failed;
3791	}
3792	sbinfo->uid = ctx->uid;
3793	sbinfo->gid = ctx->gid;
3794	sbinfo->full_inums = ctx->full_inums;
3795	sbinfo->mode = ctx->mode;
3796	sbinfo->huge = ctx->huge;
3797	sbinfo->mpol = ctx->mpol;
3798	ctx->mpol = NULL;
3799
3800	raw_spin_lock_init(&sbinfo->stat_lock);
3801	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3802		goto failed;
3803	spin_lock_init(&sbinfo->shrinklist_lock);
3804	INIT_LIST_HEAD(&sbinfo->shrinklist);
3805
3806	sb->s_maxbytes = MAX_LFS_FILESIZE;
3807	sb->s_blocksize = PAGE_SIZE;
3808	sb->s_blocksize_bits = PAGE_SHIFT;
3809	sb->s_magic = TMPFS_MAGIC;
3810	sb->s_op = &shmem_ops;
3811	sb->s_time_gran = 1;
3812#ifdef CONFIG_TMPFS_XATTR
3813	sb->s_xattr = shmem_xattr_handlers;
3814#endif
3815#ifdef CONFIG_TMPFS_POSIX_ACL
3816	sb->s_flags |= SB_POSIXACL;
3817#endif
3818	uuid_gen(&sb->s_uuid);
3819
3820	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3821	if (!inode)
3822		goto failed;
3823	inode->i_uid = sbinfo->uid;
3824	inode->i_gid = sbinfo->gid;
3825	sb->s_root = d_make_root(inode);
3826	if (!sb->s_root)
3827		goto failed;
3828	return 0;
3829
3830failed:
3831	shmem_put_super(sb);
3832	return -ENOMEM;
3833}
3834
3835static int shmem_get_tree(struct fs_context *fc)
3836{
3837	return get_tree_nodev(fc, shmem_fill_super);
3838}
3839
3840static void shmem_free_fc(struct fs_context *fc)
3841{
3842	struct shmem_options *ctx = fc->fs_private;
3843
3844	if (ctx) {
3845		mpol_put(ctx->mpol);
3846		kfree(ctx);
3847	}
3848}
3849
3850static const struct fs_context_operations shmem_fs_context_ops = {
3851	.free			= shmem_free_fc,
3852	.get_tree		= shmem_get_tree,
3853#ifdef CONFIG_TMPFS
3854	.parse_monolithic	= shmem_parse_options,
3855	.parse_param		= shmem_parse_one,
3856	.reconfigure		= shmem_reconfigure,
3857#endif
3858};
3859
3860static struct kmem_cache *shmem_inode_cachep;
3861
3862static struct inode *shmem_alloc_inode(struct super_block *sb)
3863{
3864	struct shmem_inode_info *info;
3865	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3866	if (!info)
3867		return NULL;
3868	return &info->vfs_inode;
3869}
3870
3871static void shmem_free_in_core_inode(struct inode *inode)
3872{
3873	if (S_ISLNK(inode->i_mode))
3874		kfree(inode->i_link);
3875	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3876}
3877
3878static void shmem_destroy_inode(struct inode *inode)
3879{
3880	if (S_ISREG(inode->i_mode))
3881		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3882}
3883
3884static void shmem_init_inode(void *foo)
3885{
3886	struct shmem_inode_info *info = foo;
3887	inode_init_once(&info->vfs_inode);
3888}
3889
3890static void shmem_init_inodecache(void)
3891{
3892	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3893				sizeof(struct shmem_inode_info),
3894				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3895}
3896
3897static void shmem_destroy_inodecache(void)
3898{
3899	kmem_cache_destroy(shmem_inode_cachep);
3900}
3901
3902/* Keep the page in page cache instead of truncating it */
3903static int shmem_error_remove_page(struct address_space *mapping,
3904				   struct page *page)
3905{
3906	return 0;
3907}
3908
3909const struct address_space_operations shmem_aops = {
3910	.writepage	= shmem_writepage,
3911	.dirty_folio	= noop_dirty_folio,
3912#ifdef CONFIG_TMPFS
3913	.write_begin	= shmem_write_begin,
3914	.write_end	= shmem_write_end,
3915#endif
3916#ifdef CONFIG_MIGRATION
3917	.migrate_folio	= migrate_folio,
3918#endif
3919	.error_remove_page = shmem_error_remove_page,
3920};
3921EXPORT_SYMBOL(shmem_aops);
3922
3923static const struct file_operations shmem_file_operations = {
3924	.mmap		= shmem_mmap,
3925	.open		= generic_file_open,
3926	.get_unmapped_area = shmem_get_unmapped_area,
3927#ifdef CONFIG_TMPFS
3928	.llseek		= shmem_file_llseek,
3929	.read_iter	= shmem_file_read_iter,
3930	.write_iter	= generic_file_write_iter,
3931	.fsync		= noop_fsync,
3932	.splice_read	= generic_file_splice_read,
3933	.splice_write	= iter_file_splice_write,
3934	.fallocate	= shmem_fallocate,
3935#endif
3936};
3937
3938static const struct inode_operations shmem_inode_operations = {
3939	.getattr	= shmem_getattr,
3940	.setattr	= shmem_setattr,
3941#ifdef CONFIG_TMPFS_XATTR
3942	.listxattr	= shmem_listxattr,
3943	.set_acl	= simple_set_acl,
3944	.fileattr_get	= shmem_fileattr_get,
3945	.fileattr_set	= shmem_fileattr_set,
3946#endif
3947};
3948
3949static const struct inode_operations shmem_dir_inode_operations = {
3950#ifdef CONFIG_TMPFS
3951	.getattr	= shmem_getattr,
3952	.create		= shmem_create,
3953	.lookup		= simple_lookup,
3954	.link		= shmem_link,
3955	.unlink		= shmem_unlink,
3956	.symlink	= shmem_symlink,
3957	.mkdir		= shmem_mkdir,
3958	.rmdir		= shmem_rmdir,
3959	.mknod		= shmem_mknod,
3960	.rename		= shmem_rename2,
3961	.tmpfile	= shmem_tmpfile,
3962#endif
3963#ifdef CONFIG_TMPFS_XATTR
3964	.listxattr	= shmem_listxattr,
3965	.fileattr_get	= shmem_fileattr_get,
3966	.fileattr_set	= shmem_fileattr_set,
3967#endif
3968#ifdef CONFIG_TMPFS_POSIX_ACL
3969	.setattr	= shmem_setattr,
3970	.set_acl	= simple_set_acl,
3971#endif
3972};
3973
3974static const struct inode_operations shmem_special_inode_operations = {
3975	.getattr	= shmem_getattr,
3976#ifdef CONFIG_TMPFS_XATTR
3977	.listxattr	= shmem_listxattr,
3978#endif
3979#ifdef CONFIG_TMPFS_POSIX_ACL
3980	.setattr	= shmem_setattr,
3981	.set_acl	= simple_set_acl,
3982#endif
3983};
3984
3985static const struct super_operations shmem_ops = {
3986	.alloc_inode	= shmem_alloc_inode,
3987	.free_inode	= shmem_free_in_core_inode,
3988	.destroy_inode	= shmem_destroy_inode,
3989#ifdef CONFIG_TMPFS
3990	.statfs		= shmem_statfs,
3991	.show_options	= shmem_show_options,
3992#endif
3993	.evict_inode	= shmem_evict_inode,
3994	.drop_inode	= generic_delete_inode,
3995	.put_super	= shmem_put_super,
3996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3997	.nr_cached_objects	= shmem_unused_huge_count,
3998	.free_cached_objects	= shmem_unused_huge_scan,
3999#endif
4000};
4001
4002static const struct vm_operations_struct shmem_vm_ops = {
4003	.fault		= shmem_fault,
4004	.map_pages	= filemap_map_pages,
4005#ifdef CONFIG_NUMA
4006	.set_policy     = shmem_set_policy,
4007	.get_policy     = shmem_get_policy,
4008#endif
4009};
4010
4011static const struct vm_operations_struct shmem_anon_vm_ops = {
4012	.fault		= shmem_fault,
4013	.map_pages	= filemap_map_pages,
4014#ifdef CONFIG_NUMA
4015	.set_policy     = shmem_set_policy,
4016	.get_policy     = shmem_get_policy,
4017#endif
4018};
4019
4020int shmem_init_fs_context(struct fs_context *fc)
4021{
4022	struct shmem_options *ctx;
4023
4024	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4025	if (!ctx)
4026		return -ENOMEM;
4027
4028	ctx->mode = 0777 | S_ISVTX;
4029	ctx->uid = current_fsuid();
4030	ctx->gid = current_fsgid();
4031
4032	fc->fs_private = ctx;
4033	fc->ops = &shmem_fs_context_ops;
4034	return 0;
4035}
4036
4037static struct file_system_type shmem_fs_type = {
4038	.owner		= THIS_MODULE,
4039	.name		= "tmpfs",
4040	.init_fs_context = shmem_init_fs_context,
4041#ifdef CONFIG_TMPFS
4042	.parameters	= shmem_fs_parameters,
4043#endif
4044	.kill_sb	= kill_litter_super,
4045	.fs_flags	= FS_USERNS_MOUNT,
4046};
4047
4048void __init shmem_init(void)
4049{
4050	int error;
4051
4052	shmem_init_inodecache();
4053
4054	error = register_filesystem(&shmem_fs_type);
4055	if (error) {
4056		pr_err("Could not register tmpfs\n");
4057		goto out2;
4058	}
4059
4060	shm_mnt = kern_mount(&shmem_fs_type);
4061	if (IS_ERR(shm_mnt)) {
4062		error = PTR_ERR(shm_mnt);
4063		pr_err("Could not kern_mount tmpfs\n");
4064		goto out1;
4065	}
4066
4067#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4068	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4069		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4070	else
4071		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4072#endif
4073	return;
4074
4075out1:
4076	unregister_filesystem(&shmem_fs_type);
4077out2:
4078	shmem_destroy_inodecache();
4079	shm_mnt = ERR_PTR(error);
 
4080}
4081
4082#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4083static ssize_t shmem_enabled_show(struct kobject *kobj,
4084				  struct kobj_attribute *attr, char *buf)
4085{
4086	static const int values[] = {
4087		SHMEM_HUGE_ALWAYS,
4088		SHMEM_HUGE_WITHIN_SIZE,
4089		SHMEM_HUGE_ADVISE,
4090		SHMEM_HUGE_NEVER,
4091		SHMEM_HUGE_DENY,
4092		SHMEM_HUGE_FORCE,
4093	};
4094	int len = 0;
4095	int i;
 
 
4096
4097	for (i = 0; i < ARRAY_SIZE(values); i++) {
4098		len += sysfs_emit_at(buf, len,
4099				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4100				     i ? " " : "",
4101				     shmem_format_huge(values[i]));
4102	}
4103
4104	len += sysfs_emit_at(buf, len, "\n");
4105
4106	return len;
4107}
4108
4109static ssize_t shmem_enabled_store(struct kobject *kobj,
4110		struct kobj_attribute *attr, const char *buf, size_t count)
4111{
4112	char tmp[16];
4113	int huge;
4114
4115	if (count + 1 > sizeof(tmp))
4116		return -EINVAL;
4117	memcpy(tmp, buf, count);
4118	tmp[count] = '\0';
4119	if (count && tmp[count - 1] == '\n')
4120		tmp[count - 1] = '\0';
4121
4122	huge = shmem_parse_huge(tmp);
4123	if (huge == -EINVAL)
4124		return -EINVAL;
4125	if (!has_transparent_hugepage() &&
4126			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4127		return -EINVAL;
4128
4129	shmem_huge = huge;
4130	if (shmem_huge > SHMEM_HUGE_DENY)
4131		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4132	return count;
4133}
4134
4135struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
 
4136#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4138#else /* !CONFIG_SHMEM */
4139
4140/*
4141 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4142 *
4143 * This is intended for small system where the benefits of the full
4144 * shmem code (swap-backed and resource-limited) are outweighed by
4145 * their complexity. On systems without swap this code should be
4146 * effectively equivalent, but much lighter weight.
4147 */
4148
4149static struct file_system_type shmem_fs_type = {
4150	.name		= "tmpfs",
4151	.init_fs_context = ramfs_init_fs_context,
4152	.parameters	= ramfs_fs_parameters,
4153	.kill_sb	= kill_litter_super,
4154	.fs_flags	= FS_USERNS_MOUNT,
4155};
4156
4157void __init shmem_init(void)
4158{
4159	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4160
4161	shm_mnt = kern_mount(&shmem_fs_type);
4162	BUG_ON(IS_ERR(shm_mnt));
 
 
4163}
4164
4165int shmem_unuse(unsigned int type)
 
4166{
4167	return 0;
4168}
4169
4170int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4171{
4172	return 0;
4173}
4174
4175void shmem_unlock_mapping(struct address_space *mapping)
4176{
4177}
4178
4179#ifdef CONFIG_MMU
4180unsigned long shmem_get_unmapped_area(struct file *file,
4181				      unsigned long addr, unsigned long len,
4182				      unsigned long pgoff, unsigned long flags)
4183{
4184	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4185}
4186#endif
4187
4188void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4189{
4190	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4191}
4192EXPORT_SYMBOL_GPL(shmem_truncate_range);
4193
4194#define shmem_vm_ops				generic_file_vm_ops
4195#define shmem_anon_vm_ops			generic_file_vm_ops
4196#define shmem_file_operations			ramfs_file_operations
4197#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4198#define shmem_acct_size(flags, size)		0
4199#define shmem_unacct_size(flags, size)		do {} while (0)
4200
4201#endif /* CONFIG_SHMEM */
4202
4203/* common code */
4204
4205static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4206				       unsigned long flags, unsigned int i_flags)
4207{
4208	struct inode *inode;
4209	struct file *res;
4210
4211	if (IS_ERR(mnt))
4212		return ERR_CAST(mnt);
4213
4214	if (size < 0 || size > MAX_LFS_FILESIZE)
4215		return ERR_PTR(-EINVAL);
4216
4217	if (shmem_acct_size(flags, size))
4218		return ERR_PTR(-ENOMEM);
4219
4220	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4221				flags);
4222	if (unlikely(!inode)) {
4223		shmem_unacct_size(flags, size);
4224		return ERR_PTR(-ENOSPC);
4225	}
4226	inode->i_flags |= i_flags;
4227	inode->i_size = size;
4228	clear_nlink(inode);	/* It is unlinked */
4229	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4230	if (!IS_ERR(res))
4231		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4232				&shmem_file_operations);
4233	if (IS_ERR(res))
4234		iput(inode);
4235	return res;
4236}
4237
4238/**
4239 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4240 * 	kernel internal.  There will be NO LSM permission checks against the
4241 * 	underlying inode.  So users of this interface must do LSM checks at a
4242 *	higher layer.  The users are the big_key and shm implementations.  LSM
4243 *	checks are provided at the key or shm level rather than the inode.
4244 * @name: name for dentry (to be seen in /proc/<pid>/maps
4245 * @size: size to be set for the file
4246 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4247 */
4248struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4249{
4250	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4251}
4252
4253/**
4254 * shmem_file_setup - get an unlinked file living in tmpfs
4255 * @name: name for dentry (to be seen in /proc/<pid>/maps
4256 * @size: size to be set for the file
4257 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4258 */
4259struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4260{
4261	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4262}
4263EXPORT_SYMBOL_GPL(shmem_file_setup);
4264
4265/**
4266 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4267 * @mnt: the tmpfs mount where the file will be created
4268 * @name: name for dentry (to be seen in /proc/<pid>/maps
4269 * @size: size to be set for the file
4270 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4271 */
4272struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4273				       loff_t size, unsigned long flags)
4274{
4275	return __shmem_file_setup(mnt, name, size, flags, 0);
4276}
4277EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4278
4279/**
4280 * shmem_zero_setup - setup a shared anonymous mapping
4281 * @vma: the vma to be mmapped is prepared by do_mmap
4282 */
4283int shmem_zero_setup(struct vm_area_struct *vma)
4284{
4285	struct file *file;
4286	loff_t size = vma->vm_end - vma->vm_start;
4287
4288	/*
4289	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4290	 * between XFS directory reading and selinux: since this file is only
4291	 * accessible to the user through its mapping, use S_PRIVATE flag to
4292	 * bypass file security, in the same way as shmem_kernel_file_setup().
4293	 */
4294	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4295	if (IS_ERR(file))
4296		return PTR_ERR(file);
4297
4298	if (vma->vm_file)
4299		fput(vma->vm_file);
4300	vma->vm_file = file;
4301	vma->vm_ops = &shmem_anon_vm_ops;
 
 
 
 
 
 
4302
4303	return 0;
4304}
4305
4306/**
4307 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4308 * @mapping:	the page's address_space
4309 * @index:	the page index
4310 * @gfp:	the page allocator flags to use if allocating
4311 *
4312 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4313 * with any new page allocations done using the specified allocation flags.
4314 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4315 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4316 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4317 *
4318 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4319 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4320 */
4321struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4322					 pgoff_t index, gfp_t gfp)
4323{
4324#ifdef CONFIG_SHMEM
4325	struct inode *inode = mapping->host;
4326	struct folio *folio;
4327	struct page *page;
4328	int error;
4329
4330	BUG_ON(!shmem_mapping(mapping));
4331	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4332				  gfp, NULL, NULL, NULL);
4333	if (error)
4334		return ERR_PTR(error);
4335
4336	folio_unlock(folio);
4337	page = folio_file_page(folio, index);
4338	if (PageHWPoison(page)) {
4339		folio_put(folio);
4340		return ERR_PTR(-EIO);
4341	}
4342
4343	return page;
4344#else
4345	/*
4346	 * The tiny !SHMEM case uses ramfs without swap
4347	 */
4348	return read_cache_page_gfp(mapping, index, gfp);
4349#endif
4350}
4351EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);