Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#include "nfstrace.h"
 42
 43#define NFSDBG_FACILITY		NFSDBG_FILE
 44
 45static const struct vm_operations_struct nfs_file_vm_ops;
 46
 47/* Hack for future NFS swap support */
 48#ifndef IS_SWAPFILE
 49# define IS_SWAPFILE(inode)	(0)
 50#endif
 51
 52int nfs_check_flags(int flags)
 53{
 54	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 55		return -EINVAL;
 56
 57	return 0;
 58}
 59EXPORT_SYMBOL_GPL(nfs_check_flags);
 60
 61/*
 62 * Open file
 63 */
 64static int
 65nfs_file_open(struct inode *inode, struct file *filp)
 66{
 67	int res;
 68
 69	dprintk("NFS: open file(%pD2)\n", filp);
 70
 71	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 72	res = nfs_check_flags(filp->f_flags);
 73	if (res)
 74		return res;
 75
 76	res = nfs_open(inode, filp);
 
 
 77	return res;
 78}
 79
 80int
 81nfs_file_release(struct inode *inode, struct file *filp)
 82{
 83	dprintk("NFS: release(%pD2)\n", filp);
 84
 85	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 86	nfs_file_clear_open_context(filp);
 
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(nfs_file_release);
 90
 91/**
 92 * nfs_revalidate_size - Revalidate the file size
 93 * @inode: pointer to inode struct
 94 * @filp: pointer to struct file
 95 *
 96 * Revalidates the file length. This is basically a wrapper around
 97 * nfs_revalidate_inode() that takes into account the fact that we may
 98 * have cached writes (in which case we don't care about the server's
 99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104	struct nfs_server *server = NFS_SERVER(inode);
105
106	if (filp->f_flags & O_DIRECT)
107		goto force_reval;
108	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
109		goto force_reval;
110	return 0;
111force_reval:
112	return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118			filp, offset, whence);
119
120	/*
121	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122	 * the cached file length
123	 */
124	if (whence != SEEK_SET && whence != SEEK_CUR) {
125		struct inode *inode = filp->f_mapping->host;
126
127		int retval = nfs_revalidate_file_size(inode, filp);
128		if (retval < 0)
129			return (loff_t)retval;
130	}
131
132	return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142	struct inode	*inode = file_inode(file);
143	errseq_t since;
144
145	dprintk("NFS: flush(%pD2)\n", file);
146
147	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148	if ((file->f_mode & FMODE_WRITE) == 0)
149		return 0;
150
151	/* Flush writes to the server and return any errors */
152	since = filemap_sample_wb_err(file->f_mapping);
153	nfs_wb_all(inode);
154	return filemap_check_wb_err(file->f_mapping, since);
155}
156
157ssize_t
158nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
159{
160	struct inode *inode = file_inode(iocb->ki_filp);
161	ssize_t result;
162
163	if (iocb->ki_flags & IOCB_DIRECT)
164		return nfs_file_direct_read(iocb, to);
165
166	dprintk("NFS: read(%pD2, %zu@%lu)\n",
167		iocb->ki_filp,
168		iov_iter_count(to), (unsigned long) iocb->ki_pos);
169
170	nfs_start_io_read(inode);
171	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
172	if (!result) {
173		result = generic_file_read_iter(iocb, to);
174		if (result > 0)
175			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
176	}
177	nfs_end_io_read(inode);
178	return result;
179}
180EXPORT_SYMBOL_GPL(nfs_file_read);
181
182int
183nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
184{
185	struct inode *inode = file_inode(file);
186	int	status;
187
188	dprintk("NFS: mmap(%pD2)\n", file);
189
190	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
191	 *       so we call that before revalidating the mapping
192	 */
193	status = generic_file_mmap(file, vma);
194	if (!status) {
195		vma->vm_ops = &nfs_file_vm_ops;
196		status = nfs_revalidate_mapping(inode, file->f_mapping);
197	}
198	return status;
199}
200EXPORT_SYMBOL_GPL(nfs_file_mmap);
201
202/*
203 * Flush any dirty pages for this process, and check for write errors.
204 * The return status from this call provides a reliable indication of
205 * whether any write errors occurred for this process.
206 */
207static int
208nfs_file_fsync_commit(struct file *file, int datasync)
209{
210	struct inode *inode = file_inode(file);
211	int ret;
212
213	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
214
215	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
216	ret = nfs_commit_inode(inode, FLUSH_SYNC);
217	if (ret < 0)
218		return ret;
219	return file_check_and_advance_wb_err(file);
 
220}
221
222int
223nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
224{
225	struct nfs_open_context *ctx = nfs_file_open_context(file);
226	struct inode *inode = file_inode(file);
 
 
 
227	int ret;
228
229	trace_nfs_fsync_enter(inode);
230
231	for (;;) {
232		ret = file_write_and_wait_range(file, start, end);
233		if (ret != 0)
234			break;
235		ret = nfs_file_fsync_commit(file, datasync);
236		if (ret != 0)
237			break;
238		ret = pnfs_sync_inode(inode, !!datasync);
239		if (ret != 0)
240			break;
241		if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
 
242			break;
243		/*
244		 * If nfs_file_fsync_commit detected a server reboot, then
245		 * resend all dirty pages that might have been covered by
246		 * the NFS_CONTEXT_RESEND_WRITES flag
247		 */
248		start = 0;
249		end = LLONG_MAX;
250	}
251
252	trace_nfs_fsync_exit(inode, ret);
253	return ret;
254}
255EXPORT_SYMBOL_GPL(nfs_file_fsync);
256
257/*
258 * Decide whether a read/modify/write cycle may be more efficient
259 * then a modify/write/read cycle when writing to a page in the
260 * page cache.
261 *
262 * Some pNFS layout drivers can only read/write at a certain block
263 * granularity like all block devices and therefore we must perform
264 * read/modify/write whenever a page hasn't read yet and the data
265 * to be written there is not aligned to a block boundary and/or
266 * smaller than the block size.
267 *
268 * The modify/write/read cycle may occur if a page is read before
269 * being completely filled by the writer.  In this situation, the
270 * page must be completely written to stable storage on the server
271 * before it can be refilled by reading in the page from the server.
272 * This can lead to expensive, small, FILE_SYNC mode writes being
273 * done.
274 *
275 * It may be more efficient to read the page first if the file is
276 * open for reading in addition to writing, the page is not marked
277 * as Uptodate, it is not dirty or waiting to be committed,
278 * indicating that it was previously allocated and then modified,
279 * that there were valid bytes of data in that range of the file,
280 * and that the new data won't completely replace the old data in
281 * that range of the file.
282 */
283static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
284{
285	unsigned int pglen = nfs_page_length(page);
286	unsigned int offset = pos & (PAGE_SIZE - 1);
287	unsigned int end = offset + len;
288
289	return !pglen || (end >= pglen && !offset);
290}
291
292static bool nfs_want_read_modify_write(struct file *file, struct page *page,
293			loff_t pos, unsigned int len)
294{
295	/*
296	 * Up-to-date pages, those with ongoing or full-page write
297	 * don't need read/modify/write
298	 */
299	if (PageUptodate(page) || PagePrivate(page) ||
300	    nfs_full_page_write(page, pos, len))
301		return false;
302
303	if (pnfs_ld_read_whole_page(file->f_mapping->host))
304		return true;
305	/* Open for reading too? */
306	if (file->f_mode & FMODE_READ)
307		return true;
308	return false;
309}
310
311/*
312 * This does the "real" work of the write. We must allocate and lock the
313 * page to be sent back to the generic routine, which then copies the
314 * data from user space.
315 *
316 * If the writer ends up delaying the write, the writer needs to
317 * increment the page use counts until he is done with the page.
318 */
319static int nfs_write_begin(struct file *file, struct address_space *mapping,
320			loff_t pos, unsigned len, unsigned flags,
321			struct page **pagep, void **fsdata)
322{
323	int ret;
324	pgoff_t index = pos >> PAGE_SHIFT;
325	struct page *page;
326	int once_thru = 0;
327
328	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
329		file, mapping->host->i_ino, len, (long long) pos);
330
331start:
332	page = grab_cache_page_write_begin(mapping, index, flags);
333	if (!page)
334		return -ENOMEM;
335	*pagep = page;
336
337	ret = nfs_flush_incompatible(file, page);
338	if (ret) {
339		unlock_page(page);
340		put_page(page);
341	} else if (!once_thru &&
342		   nfs_want_read_modify_write(file, page, pos, len)) {
343		once_thru = 1;
344		ret = nfs_readpage(file, page);
345		put_page(page);
346		if (!ret)
347			goto start;
348	}
349	return ret;
350}
351
352static int nfs_write_end(struct file *file, struct address_space *mapping,
353			loff_t pos, unsigned len, unsigned copied,
354			struct page *page, void *fsdata)
355{
356	unsigned offset = pos & (PAGE_SIZE - 1);
357	struct nfs_open_context *ctx = nfs_file_open_context(file);
358	int status;
359
360	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
361		file, mapping->host->i_ino, len, (long long) pos);
362
363	/*
364	 * Zero any uninitialised parts of the page, and then mark the page
365	 * as up to date if it turns out that we're extending the file.
366	 */
367	if (!PageUptodate(page)) {
368		unsigned pglen = nfs_page_length(page);
369		unsigned end = offset + copied;
370
371		if (pglen == 0) {
372			zero_user_segments(page, 0, offset,
373					end, PAGE_SIZE);
374			SetPageUptodate(page);
375		} else if (end >= pglen) {
376			zero_user_segment(page, end, PAGE_SIZE);
377			if (offset == 0)
378				SetPageUptodate(page);
379		} else
380			zero_user_segment(page, pglen, PAGE_SIZE);
381	}
382
383	status = nfs_updatepage(file, page, offset, copied);
384
385	unlock_page(page);
386	put_page(page);
387
388	if (status < 0)
389		return status;
390	NFS_I(mapping->host)->write_io += copied;
391
392	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
393		status = nfs_wb_all(mapping->host);
394		if (status < 0)
395			return status;
396	}
397
398	return copied;
399}
400
401/*
402 * Partially or wholly invalidate a page
403 * - Release the private state associated with a page if undergoing complete
404 *   page invalidation
405 * - Called if either PG_private or PG_fscache is set on the page
406 * - Caller holds page lock
407 */
408static void nfs_invalidate_page(struct page *page, unsigned int offset,
409				unsigned int length)
410{
411	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
412		 page, offset, length);
413
414	if (offset != 0 || length < PAGE_SIZE)
415		return;
416	/* Cancel any unstarted writes on this page */
417	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
418
419	nfs_fscache_invalidate_page(page, page->mapping->host);
420}
421
422/*
423 * Attempt to release the private state associated with a page
424 * - Called if either PG_private or PG_fscache is set on the page
425 * - Caller holds page lock
426 * - Return true (may release page) or false (may not)
427 */
428static int nfs_release_page(struct page *page, gfp_t gfp)
429{
430	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
431
432	/* If PagePrivate() is set, then the page is not freeable */
433	if (PagePrivate(page))
434		return 0;
435	return nfs_fscache_release_page(page, gfp);
436}
437
438static void nfs_check_dirty_writeback(struct page *page,
439				bool *dirty, bool *writeback)
440{
441	struct nfs_inode *nfsi;
442	struct address_space *mapping = page_file_mapping(page);
443
444	if (!mapping || PageSwapCache(page))
445		return;
446
447	/*
448	 * Check if an unstable page is currently being committed and
449	 * if so, have the VM treat it as if the page is under writeback
450	 * so it will not block due to pages that will shortly be freeable.
451	 */
452	nfsi = NFS_I(mapping->host);
453	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
454		*writeback = true;
455		return;
456	}
457
458	/*
459	 * If PagePrivate() is set, then the page is not freeable and as the
460	 * inode is not being committed, it's not going to be cleaned in the
461	 * near future so treat it as dirty
462	 */
463	if (PagePrivate(page))
464		*dirty = true;
465}
466
467/*
468 * Attempt to clear the private state associated with a page when an error
469 * occurs that requires the cached contents of an inode to be written back or
470 * destroyed
471 * - Called if either PG_private or fscache is set on the page
472 * - Caller holds page lock
473 * - Return 0 if successful, -error otherwise
474 */
475static int nfs_launder_page(struct page *page)
476{
477	struct inode *inode = page_file_mapping(page)->host;
478	struct nfs_inode *nfsi = NFS_I(inode);
479
480	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
481		inode->i_ino, (long long)page_offset(page));
482
483	nfs_fscache_wait_on_page_write(nfsi, page);
484	return nfs_wb_page(inode, page);
485}
486
487static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
488						sector_t *span)
489{
490	unsigned long blocks;
491	long long isize;
492	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
493	struct inode *inode = file->f_mapping->host;
 
 
494
495	spin_lock(&inode->i_lock);
496	blocks = inode->i_blocks;
497	isize = inode->i_size;
498	spin_unlock(&inode->i_lock);
499	if (blocks*512 < isize) {
500		pr_warn("swap activate: swapfile has holes\n");
501		return -EINVAL;
502	}
503
 
 
 
 
 
 
 
 
 
504	*span = sis->pages;
505
506	return rpc_clnt_swap_activate(clnt);
 
 
 
 
507}
508
509static void nfs_swap_deactivate(struct file *file)
510{
511	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
512
513	rpc_clnt_swap_deactivate(clnt);
 
 
514}
515
516const struct address_space_operations nfs_file_aops = {
517	.readpage = nfs_readpage,
518	.readpages = nfs_readpages,
519	.set_page_dirty = __set_page_dirty_nobuffers,
520	.writepage = nfs_writepage,
521	.writepages = nfs_writepages,
522	.write_begin = nfs_write_begin,
523	.write_end = nfs_write_end,
524	.invalidatepage = nfs_invalidate_page,
525	.releasepage = nfs_release_page,
526	.direct_IO = nfs_direct_IO,
527#ifdef CONFIG_MIGRATION
528	.migratepage = nfs_migrate_page,
529#endif
530	.launder_page = nfs_launder_page,
531	.is_dirty_writeback = nfs_check_dirty_writeback,
532	.error_remove_page = generic_error_remove_page,
533	.swap_activate = nfs_swap_activate,
534	.swap_deactivate = nfs_swap_deactivate,
 
535};
536
537/*
538 * Notification that a PTE pointing to an NFS page is about to be made
539 * writable, implying that someone is about to modify the page through a
540 * shared-writable mapping
541 */
542static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
543{
544	struct page *page = vmf->page;
545	struct file *filp = vmf->vma->vm_file;
546	struct inode *inode = file_inode(filp);
547	unsigned pagelen;
548	vm_fault_t ret = VM_FAULT_NOPAGE;
549	struct address_space *mapping;
550
551	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
552		filp, filp->f_mapping->host->i_ino,
553		(long long)page_offset(page));
554
555	sb_start_pagefault(inode->i_sb);
556
557	/* make sure the cache has finished storing the page */
558	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
 
 
 
 
559
560	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
561			nfs_wait_bit_killable, TASK_KILLABLE);
 
562
563	lock_page(page);
564	mapping = page_file_mapping(page);
565	if (mapping != inode->i_mapping)
566		goto out_unlock;
567
568	wait_on_page_writeback(page);
569
570	pagelen = nfs_page_length(page);
571	if (pagelen == 0)
572		goto out_unlock;
573
574	ret = VM_FAULT_LOCKED;
575	if (nfs_flush_incompatible(filp, page) == 0 &&
576	    nfs_updatepage(filp, page, 0, pagelen) == 0)
577		goto out;
578
579	ret = VM_FAULT_SIGBUS;
580out_unlock:
581	unlock_page(page);
582out:
583	sb_end_pagefault(inode->i_sb);
584	return ret;
585}
586
587static const struct vm_operations_struct nfs_file_vm_ops = {
588	.fault = filemap_fault,
589	.map_pages = filemap_map_pages,
590	.page_mkwrite = nfs_vm_page_mkwrite,
591};
592
593static int nfs_need_check_write(struct file *filp, struct inode *inode,
594				int error)
595{
596	struct nfs_open_context *ctx;
597
598	ctx = nfs_file_open_context(filp);
599	if (nfs_error_is_fatal_on_server(error) ||
600	    nfs_ctx_key_to_expire(ctx, inode))
601		return 1;
602	return 0;
603}
604
605ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
606{
607	struct file *file = iocb->ki_filp;
608	struct inode *inode = file_inode(file);
609	unsigned long written = 0;
610	ssize_t result;
611	errseq_t since;
612	int error;
613
614	result = nfs_key_timeout_notify(file, inode);
615	if (result)
616		return result;
617
618	if (iocb->ki_flags & IOCB_DIRECT)
619		return nfs_file_direct_write(iocb, from);
620
621	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
622		file, iov_iter_count(from), (long long) iocb->ki_pos);
623
624	if (IS_SWAPFILE(inode))
625		goto out_swapfile;
626	/*
627	 * O_APPEND implies that we must revalidate the file length.
628	 */
629	if (iocb->ki_flags & IOCB_APPEND) {
630		result = nfs_revalidate_file_size(inode, file);
631		if (result)
632			goto out;
633	}
634	if (iocb->ki_pos > i_size_read(inode))
635		nfs_revalidate_mapping(inode, file->f_mapping);
636
637	since = filemap_sample_wb_err(file->f_mapping);
638	nfs_start_io_write(inode);
639	result = generic_write_checks(iocb, from);
640	if (result > 0) {
641		current->backing_dev_info = inode_to_bdi(inode);
642		result = generic_perform_write(file, from, iocb->ki_pos);
643		current->backing_dev_info = NULL;
644	}
645	nfs_end_io_write(inode);
646	if (result <= 0)
647		goto out;
648
649	written = result;
650	iocb->ki_pos += written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651	result = generic_write_sync(iocb, written);
652	if (result < 0)
653		goto out;
654
 
655	/* Return error values */
656	error = filemap_check_wb_err(file->f_mapping, since);
657	if (nfs_need_check_write(file, inode, error)) {
658		int err = nfs_wb_all(inode);
659		if (err < 0)
660			result = err;
 
 
 
 
 
 
661	}
662	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
663out:
664	return result;
665
666out_swapfile:
667	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
668	return -ETXTBSY;
669}
670EXPORT_SYMBOL_GPL(nfs_file_write);
671
672static int
673do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
674{
675	struct inode *inode = filp->f_mapping->host;
676	int status = 0;
677	unsigned int saved_type = fl->fl_type;
678
679	/* Try local locking first */
680	posix_test_lock(filp, fl);
681	if (fl->fl_type != F_UNLCK) {
682		/* found a conflict */
683		goto out;
684	}
685	fl->fl_type = saved_type;
686
687	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
688		goto out_noconflict;
689
690	if (is_local)
691		goto out_noconflict;
692
693	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
694out:
695	return status;
696out_noconflict:
697	fl->fl_type = F_UNLCK;
698	goto out;
699}
700
701static int
702do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
703{
704	struct inode *inode = filp->f_mapping->host;
705	struct nfs_lock_context *l_ctx;
706	int status;
707
708	/*
709	 * Flush all pending writes before doing anything
710	 * with locks..
711	 */
712	nfs_wb_all(inode);
713
714	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
715	if (!IS_ERR(l_ctx)) {
716		status = nfs_iocounter_wait(l_ctx);
717		nfs_put_lock_context(l_ctx);
718		/*  NOTE: special case
719		 * 	If we're signalled while cleaning up locks on process exit, we
720		 * 	still need to complete the unlock.
721		 */
722		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
723			return status;
724	}
725
726	/*
727	 * Use local locking if mounted with "-onolock" or with appropriate
728	 * "-olocal_lock="
729	 */
730	if (!is_local)
731		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
732	else
733		status = locks_lock_file_wait(filp, fl);
734	return status;
735}
736
737static int
738do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
739{
740	struct inode *inode = filp->f_mapping->host;
741	int status;
742
743	/*
744	 * Flush all pending writes before doing anything
745	 * with locks..
746	 */
747	status = nfs_sync_mapping(filp->f_mapping);
748	if (status != 0)
749		goto out;
750
751	/*
752	 * Use local locking if mounted with "-onolock" or with appropriate
753	 * "-olocal_lock="
754	 */
755	if (!is_local)
756		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
757	else
758		status = locks_lock_file_wait(filp, fl);
759	if (status < 0)
760		goto out;
761
762	/*
763	 * Invalidate cache to prevent missing any changes.  If
764	 * the file is mapped, clear the page cache as well so
765	 * those mappings will be loaded.
766	 *
767	 * This makes locking act as a cache coherency point.
768	 */
769	nfs_sync_mapping(filp->f_mapping);
770	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
771		nfs_zap_caches(inode);
772		if (mapping_mapped(filp->f_mapping))
773			nfs_revalidate_mapping(inode, filp->f_mapping);
774	}
775out:
776	return status;
777}
778
779/*
780 * Lock a (portion of) a file
781 */
782int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
783{
784	struct inode *inode = filp->f_mapping->host;
785	int ret = -ENOLCK;
786	int is_local = 0;
787
788	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
789			filp, fl->fl_type, fl->fl_flags,
790			(long long)fl->fl_start, (long long)fl->fl_end);
791
792	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
793
794	/* No mandatory locks over NFS */
795	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
796		goto out_err;
797
798	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
799		is_local = 1;
800
801	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
802		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
803		if (ret < 0)
804			goto out_err;
805	}
806
807	if (IS_GETLK(cmd))
808		ret = do_getlk(filp, cmd, fl, is_local);
809	else if (fl->fl_type == F_UNLCK)
810		ret = do_unlk(filp, cmd, fl, is_local);
811	else
812		ret = do_setlk(filp, cmd, fl, is_local);
813out_err:
814	return ret;
815}
816EXPORT_SYMBOL_GPL(nfs_lock);
817
818/*
819 * Lock a (portion of) a file
820 */
821int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
822{
823	struct inode *inode = filp->f_mapping->host;
824	int is_local = 0;
825
826	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
827			filp, fl->fl_type, fl->fl_flags);
828
829	if (!(fl->fl_flags & FL_FLOCK))
830		return -ENOLCK;
831
832	/*
833	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
834	 * any standard. In principle we might be able to support LOCK_MAND
835	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
836	 * NFS code is not set up for it.
837	 */
838	if (fl->fl_type & LOCK_MAND)
839		return -EINVAL;
840
841	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
842		is_local = 1;
843
844	/* We're simulating flock() locks using posix locks on the server */
845	if (fl->fl_type == F_UNLCK)
846		return do_unlk(filp, cmd, fl, is_local);
847	return do_setlk(filp, cmd, fl, is_local);
848}
849EXPORT_SYMBOL_GPL(nfs_flock);
850
851const struct file_operations nfs_file_operations = {
852	.llseek		= nfs_file_llseek,
853	.read_iter	= nfs_file_read,
854	.write_iter	= nfs_file_write,
855	.mmap		= nfs_file_mmap,
856	.open		= nfs_file_open,
857	.flush		= nfs_file_flush,
858	.release	= nfs_file_release,
859	.fsync		= nfs_file_fsync,
860	.lock		= nfs_lock,
861	.flock		= nfs_flock,
862	.splice_read	= generic_file_splice_read,
863	.splice_write	= iter_file_splice_write,
864	.check_flags	= nfs_check_flags,
865	.setlease	= simple_nosetlease,
866};
867EXPORT_SYMBOL_GPL(nfs_file_operations);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#include "nfstrace.h"
 42
 43#define NFSDBG_FACILITY		NFSDBG_FILE
 44
 45static const struct vm_operations_struct nfs_file_vm_ops;
 46
 
 
 
 
 
 47int nfs_check_flags(int flags)
 48{
 49	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 50		return -EINVAL;
 51
 52	return 0;
 53}
 54EXPORT_SYMBOL_GPL(nfs_check_flags);
 55
 56/*
 57 * Open file
 58 */
 59static int
 60nfs_file_open(struct inode *inode, struct file *filp)
 61{
 62	int res;
 63
 64	dprintk("NFS: open file(%pD2)\n", filp);
 65
 66	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 67	res = nfs_check_flags(filp->f_flags);
 68	if (res)
 69		return res;
 70
 71	res = nfs_open(inode, filp);
 72	if (res == 0)
 73		filp->f_mode |= FMODE_CAN_ODIRECT;
 74	return res;
 75}
 76
 77int
 78nfs_file_release(struct inode *inode, struct file *filp)
 79{
 80	dprintk("NFS: release(%pD2)\n", filp);
 81
 82	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 83	nfs_file_clear_open_context(filp);
 84	nfs_fscache_release_file(inode, filp);
 85	return 0;
 86}
 87EXPORT_SYMBOL_GPL(nfs_file_release);
 88
 89/**
 90 * nfs_revalidate_file_size - Revalidate the file size
 91 * @inode: pointer to inode struct
 92 * @filp: pointer to struct file
 93 *
 94 * Revalidates the file length. This is basically a wrapper around
 95 * nfs_revalidate_inode() that takes into account the fact that we may
 96 * have cached writes (in which case we don't care about the server's
 97 * idea of what the file length is), or O_DIRECT (in which case we
 98 * shouldn't trust the cache).
 99 */
100static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101{
102	struct nfs_server *server = NFS_SERVER(inode);
103
104	if (filp->f_flags & O_DIRECT)
105		goto force_reval;
106	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
107		goto force_reval;
108	return 0;
109force_reval:
110	return __nfs_revalidate_inode(server, inode);
111}
112
113loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
114{
115	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
116			filp, offset, whence);
117
118	/*
119	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
120	 * the cached file length
121	 */
122	if (whence != SEEK_SET && whence != SEEK_CUR) {
123		struct inode *inode = filp->f_mapping->host;
124
125		int retval = nfs_revalidate_file_size(inode, filp);
126		if (retval < 0)
127			return (loff_t)retval;
128	}
129
130	return generic_file_llseek(filp, offset, whence);
131}
132EXPORT_SYMBOL_GPL(nfs_file_llseek);
133
134/*
135 * Flush all dirty pages, and check for write errors.
136 */
137static int
138nfs_file_flush(struct file *file, fl_owner_t id)
139{
140	struct inode	*inode = file_inode(file);
141	errseq_t since;
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
149	/* Flush writes to the server and return any errors */
150	since = filemap_sample_wb_err(file->f_mapping);
151	nfs_wb_all(inode);
152	return filemap_check_wb_err(file->f_mapping, since);
153}
154
155ssize_t
156nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
157{
158	struct inode *inode = file_inode(iocb->ki_filp);
159	ssize_t result;
160
161	if (iocb->ki_flags & IOCB_DIRECT)
162		return nfs_file_direct_read(iocb, to, false);
163
164	dprintk("NFS: read(%pD2, %zu@%lu)\n",
165		iocb->ki_filp,
166		iov_iter_count(to), (unsigned long) iocb->ki_pos);
167
168	nfs_start_io_read(inode);
169	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
170	if (!result) {
171		result = generic_file_read_iter(iocb, to);
172		if (result > 0)
173			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
174	}
175	nfs_end_io_read(inode);
176	return result;
177}
178EXPORT_SYMBOL_GPL(nfs_file_read);
179
180int
181nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
182{
183	struct inode *inode = file_inode(file);
184	int	status;
185
186	dprintk("NFS: mmap(%pD2)\n", file);
187
188	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
189	 *       so we call that before revalidating the mapping
190	 */
191	status = generic_file_mmap(file, vma);
192	if (!status) {
193		vma->vm_ops = &nfs_file_vm_ops;
194		status = nfs_revalidate_mapping(inode, file->f_mapping);
195	}
196	return status;
197}
198EXPORT_SYMBOL_GPL(nfs_file_mmap);
199
200/*
201 * Flush any dirty pages for this process, and check for write errors.
202 * The return status from this call provides a reliable indication of
203 * whether any write errors occurred for this process.
204 */
205static int
206nfs_file_fsync_commit(struct file *file, int datasync)
207{
208	struct inode *inode = file_inode(file);
209	int ret, ret2;
210
211	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
212
213	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
214	ret = nfs_commit_inode(inode, FLUSH_SYNC);
215	ret2 = file_check_and_advance_wb_err(file);
216	if (ret2 < 0)
217		return ret2;
218	return ret;
219}
220
221int
222nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
223{
 
224	struct inode *inode = file_inode(file);
225	struct nfs_inode *nfsi = NFS_I(inode);
226	long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
227	long nredirtied;
228	int ret;
229
230	trace_nfs_fsync_enter(inode);
231
232	for (;;) {
233		ret = file_write_and_wait_range(file, start, end);
234		if (ret != 0)
235			break;
236		ret = nfs_file_fsync_commit(file, datasync);
237		if (ret != 0)
238			break;
239		ret = pnfs_sync_inode(inode, !!datasync);
240		if (ret != 0)
241			break;
242		nredirtied = atomic_long_read(&nfsi->redirtied_pages);
243		if (nredirtied == save_nredirtied)
244			break;
245		save_nredirtied = nredirtied;
 
 
 
 
 
 
246	}
247
248	trace_nfs_fsync_exit(inode, ret);
249	return ret;
250}
251EXPORT_SYMBOL_GPL(nfs_file_fsync);
252
253/*
254 * Decide whether a read/modify/write cycle may be more efficient
255 * then a modify/write/read cycle when writing to a page in the
256 * page cache.
257 *
258 * Some pNFS layout drivers can only read/write at a certain block
259 * granularity like all block devices and therefore we must perform
260 * read/modify/write whenever a page hasn't read yet and the data
261 * to be written there is not aligned to a block boundary and/or
262 * smaller than the block size.
263 *
264 * The modify/write/read cycle may occur if a page is read before
265 * being completely filled by the writer.  In this situation, the
266 * page must be completely written to stable storage on the server
267 * before it can be refilled by reading in the page from the server.
268 * This can lead to expensive, small, FILE_SYNC mode writes being
269 * done.
270 *
271 * It may be more efficient to read the page first if the file is
272 * open for reading in addition to writing, the page is not marked
273 * as Uptodate, it is not dirty or waiting to be committed,
274 * indicating that it was previously allocated and then modified,
275 * that there were valid bytes of data in that range of the file,
276 * and that the new data won't completely replace the old data in
277 * that range of the file.
278 */
279static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
280{
281	unsigned int pglen = nfs_page_length(page);
282	unsigned int offset = pos & (PAGE_SIZE - 1);
283	unsigned int end = offset + len;
284
285	return !pglen || (end >= pglen && !offset);
286}
287
288static bool nfs_want_read_modify_write(struct file *file, struct page *page,
289			loff_t pos, unsigned int len)
290{
291	/*
292	 * Up-to-date pages, those with ongoing or full-page write
293	 * don't need read/modify/write
294	 */
295	if (PageUptodate(page) || PagePrivate(page) ||
296	    nfs_full_page_write(page, pos, len))
297		return false;
298
299	if (pnfs_ld_read_whole_page(file->f_mapping->host))
300		return true;
301	/* Open for reading too? */
302	if (file->f_mode & FMODE_READ)
303		return true;
304	return false;
305}
306
307/*
308 * This does the "real" work of the write. We must allocate and lock the
309 * page to be sent back to the generic routine, which then copies the
310 * data from user space.
311 *
312 * If the writer ends up delaying the write, the writer needs to
313 * increment the page use counts until he is done with the page.
314 */
315static int nfs_write_begin(struct file *file, struct address_space *mapping,
316			loff_t pos, unsigned len,
317			struct page **pagep, void **fsdata)
318{
319	int ret;
320	pgoff_t index = pos >> PAGE_SHIFT;
321	struct page *page;
322	int once_thru = 0;
323
324	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
325		file, mapping->host->i_ino, len, (long long) pos);
326
327start:
328	page = grab_cache_page_write_begin(mapping, index);
329	if (!page)
330		return -ENOMEM;
331	*pagep = page;
332
333	ret = nfs_flush_incompatible(file, page);
334	if (ret) {
335		unlock_page(page);
336		put_page(page);
337	} else if (!once_thru &&
338		   nfs_want_read_modify_write(file, page, pos, len)) {
339		once_thru = 1;
340		ret = nfs_read_folio(file, page_folio(page));
341		put_page(page);
342		if (!ret)
343			goto start;
344	}
345	return ret;
346}
347
348static int nfs_write_end(struct file *file, struct address_space *mapping,
349			loff_t pos, unsigned len, unsigned copied,
350			struct page *page, void *fsdata)
351{
352	unsigned offset = pos & (PAGE_SIZE - 1);
353	struct nfs_open_context *ctx = nfs_file_open_context(file);
354	int status;
355
356	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
357		file, mapping->host->i_ino, len, (long long) pos);
358
359	/*
360	 * Zero any uninitialised parts of the page, and then mark the page
361	 * as up to date if it turns out that we're extending the file.
362	 */
363	if (!PageUptodate(page)) {
364		unsigned pglen = nfs_page_length(page);
365		unsigned end = offset + copied;
366
367		if (pglen == 0) {
368			zero_user_segments(page, 0, offset,
369					end, PAGE_SIZE);
370			SetPageUptodate(page);
371		} else if (end >= pglen) {
372			zero_user_segment(page, end, PAGE_SIZE);
373			if (offset == 0)
374				SetPageUptodate(page);
375		} else
376			zero_user_segment(page, pglen, PAGE_SIZE);
377	}
378
379	status = nfs_updatepage(file, page, offset, copied);
380
381	unlock_page(page);
382	put_page(page);
383
384	if (status < 0)
385		return status;
386	NFS_I(mapping->host)->write_io += copied;
387
388	if (nfs_ctx_key_to_expire(ctx, mapping->host))
389		nfs_wb_all(mapping->host);
 
 
 
390
391	return copied;
392}
393
394/*
395 * Partially or wholly invalidate a page
396 * - Release the private state associated with a page if undergoing complete
397 *   page invalidation
398 * - Called if either PG_private or PG_fscache is set on the page
399 * - Caller holds page lock
400 */
401static void nfs_invalidate_folio(struct folio *folio, size_t offset,
402				size_t length)
403{
404	dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
405		 folio->index, offset, length);
406
407	if (offset != 0 || length < folio_size(folio))
408		return;
409	/* Cancel any unstarted writes on this page */
410	nfs_wb_folio_cancel(folio->mapping->host, folio);
411	folio_wait_fscache(folio);
 
412}
413
414/*
415 * Attempt to release the private state associated with a folio
416 * - Called if either private or fscache flags are set on the folio
417 * - Caller holds folio lock
418 * - Return true (may release folio) or false (may not)
419 */
420static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
421{
422	dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
423
424	/* If the private flag is set, then the folio is not freeable */
425	if (folio_test_private(folio))
426		return false;
427	return nfs_fscache_release_folio(folio, gfp);
428}
429
430static void nfs_check_dirty_writeback(struct folio *folio,
431				bool *dirty, bool *writeback)
432{
433	struct nfs_inode *nfsi;
434	struct address_space *mapping = folio->mapping;
 
 
 
435
436	/*
437	 * Check if an unstable folio is currently being committed and
438	 * if so, have the VM treat it as if the folio is under writeback
439	 * so it will not block due to folios that will shortly be freeable.
440	 */
441	nfsi = NFS_I(mapping->host);
442	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
443		*writeback = true;
444		return;
445	}
446
447	/*
448	 * If the private flag is set, then the folio is not freeable
449	 * and as the inode is not being committed, it's not going to
450	 * be cleaned in the near future so treat it as dirty
451	 */
452	if (folio_test_private(folio))
453		*dirty = true;
454}
455
456/*
457 * Attempt to clear the private state associated with a page when an error
458 * occurs that requires the cached contents of an inode to be written back or
459 * destroyed
460 * - Called if either PG_private or fscache is set on the page
461 * - Caller holds page lock
462 * - Return 0 if successful, -error otherwise
463 */
464static int nfs_launder_folio(struct folio *folio)
465{
466	struct inode *inode = folio->mapping->host;
 
467
468	dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
469		inode->i_ino, folio_pos(folio));
470
471	folio_wait_fscache(folio);
472	return nfs_wb_page(inode, &folio->page);
473}
474
475static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
476						sector_t *span)
477{
478	unsigned long blocks;
479	long long isize;
480	int ret;
481	struct inode *inode = file_inode(file);
482	struct rpc_clnt *clnt = NFS_CLIENT(inode);
483	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
484
485	spin_lock(&inode->i_lock);
486	blocks = inode->i_blocks;
487	isize = inode->i_size;
488	spin_unlock(&inode->i_lock);
489	if (blocks*512 < isize) {
490		pr_warn("swap activate: swapfile has holes\n");
491		return -EINVAL;
492	}
493
494	ret = rpc_clnt_swap_activate(clnt);
495	if (ret)
496		return ret;
497	ret = add_swap_extent(sis, 0, sis->max, 0);
498	if (ret < 0) {
499		rpc_clnt_swap_deactivate(clnt);
500		return ret;
501	}
502
503	*span = sis->pages;
504
505	if (cl->rpc_ops->enable_swap)
506		cl->rpc_ops->enable_swap(inode);
507
508	sis->flags |= SWP_FS_OPS;
509	return ret;
510}
511
512static void nfs_swap_deactivate(struct file *file)
513{
514	struct inode *inode = file_inode(file);
515	struct rpc_clnt *clnt = NFS_CLIENT(inode);
516	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
517
518	rpc_clnt_swap_deactivate(clnt);
519	if (cl->rpc_ops->disable_swap)
520		cl->rpc_ops->disable_swap(file_inode(file));
521}
522
523const struct address_space_operations nfs_file_aops = {
524	.read_folio = nfs_read_folio,
525	.readahead = nfs_readahead,
526	.dirty_folio = filemap_dirty_folio,
527	.writepage = nfs_writepage,
528	.writepages = nfs_writepages,
529	.write_begin = nfs_write_begin,
530	.write_end = nfs_write_end,
531	.invalidate_folio = nfs_invalidate_folio,
532	.release_folio = nfs_release_folio,
533	.migrate_folio = nfs_migrate_folio,
534	.launder_folio = nfs_launder_folio,
 
 
 
535	.is_dirty_writeback = nfs_check_dirty_writeback,
536	.error_remove_page = generic_error_remove_page,
537	.swap_activate = nfs_swap_activate,
538	.swap_deactivate = nfs_swap_deactivate,
539	.swap_rw = nfs_swap_rw,
540};
541
542/*
543 * Notification that a PTE pointing to an NFS page is about to be made
544 * writable, implying that someone is about to modify the page through a
545 * shared-writable mapping
546 */
547static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
548{
549	struct page *page = vmf->page;
550	struct file *filp = vmf->vma->vm_file;
551	struct inode *inode = file_inode(filp);
552	unsigned pagelen;
553	vm_fault_t ret = VM_FAULT_NOPAGE;
554	struct address_space *mapping;
555
556	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
557		filp, filp->f_mapping->host->i_ino,
558		(long long)page_offset(page));
559
560	sb_start_pagefault(inode->i_sb);
561
562	/* make sure the cache has finished storing the page */
563	if (PageFsCache(page) &&
564	    wait_on_page_fscache_killable(vmf->page) < 0) {
565		ret = VM_FAULT_RETRY;
566		goto out;
567	}
568
569	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
570			   nfs_wait_bit_killable,
571			   TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
572
573	lock_page(page);
574	mapping = page_file_mapping(page);
575	if (mapping != inode->i_mapping)
576		goto out_unlock;
577
578	wait_on_page_writeback(page);
579
580	pagelen = nfs_page_length(page);
581	if (pagelen == 0)
582		goto out_unlock;
583
584	ret = VM_FAULT_LOCKED;
585	if (nfs_flush_incompatible(filp, page) == 0 &&
586	    nfs_updatepage(filp, page, 0, pagelen) == 0)
587		goto out;
588
589	ret = VM_FAULT_SIGBUS;
590out_unlock:
591	unlock_page(page);
592out:
593	sb_end_pagefault(inode->i_sb);
594	return ret;
595}
596
597static const struct vm_operations_struct nfs_file_vm_ops = {
598	.fault = filemap_fault,
599	.map_pages = filemap_map_pages,
600	.page_mkwrite = nfs_vm_page_mkwrite,
601};
602
 
 
 
 
 
 
 
 
 
 
 
 
603ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
604{
605	struct file *file = iocb->ki_filp;
606	struct inode *inode = file_inode(file);
607	unsigned int mntflags = NFS_SERVER(inode)->flags;
608	ssize_t result, written;
609	errseq_t since;
610	int error;
611
612	result = nfs_key_timeout_notify(file, inode);
613	if (result)
614		return result;
615
616	if (iocb->ki_flags & IOCB_DIRECT)
617		return nfs_file_direct_write(iocb, from, false);
618
619	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
620		file, iov_iter_count(from), (long long) iocb->ki_pos);
621
622	if (IS_SWAPFILE(inode))
623		goto out_swapfile;
624	/*
625	 * O_APPEND implies that we must revalidate the file length.
626	 */
627	if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
628		result = nfs_revalidate_file_size(inode, file);
629		if (result)
630			return result;
631	}
632
633	nfs_clear_invalid_mapping(file->f_mapping);
634
635	since = filemap_sample_wb_err(file->f_mapping);
636	nfs_start_io_write(inode);
637	result = generic_write_checks(iocb, from);
638	if (result > 0) {
639		current->backing_dev_info = inode_to_bdi(inode);
640		result = generic_perform_write(iocb, from);
641		current->backing_dev_info = NULL;
642	}
643	nfs_end_io_write(inode);
644	if (result <= 0)
645		goto out;
646
647	written = result;
648	iocb->ki_pos += written;
649	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
650
651	if (mntflags & NFS_MOUNT_WRITE_EAGER) {
652		result = filemap_fdatawrite_range(file->f_mapping,
653						  iocb->ki_pos - written,
654						  iocb->ki_pos - 1);
655		if (result < 0)
656			goto out;
657	}
658	if (mntflags & NFS_MOUNT_WRITE_WAIT) {
659		filemap_fdatawait_range(file->f_mapping,
660					iocb->ki_pos - written,
661					iocb->ki_pos - 1);
662	}
663	result = generic_write_sync(iocb, written);
664	if (result < 0)
665		return result;
666
667out:
668	/* Return error values */
669	error = filemap_check_wb_err(file->f_mapping, since);
670	switch (error) {
671	default:
672		break;
673	case -EDQUOT:
674	case -EFBIG:
675	case -ENOSPC:
676		nfs_wb_all(inode);
677		error = file_check_and_advance_wb_err(file);
678		if (error < 0)
679			result = error;
680	}
 
 
681	return result;
682
683out_swapfile:
684	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
685	return -ETXTBSY;
686}
687EXPORT_SYMBOL_GPL(nfs_file_write);
688
689static int
690do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692	struct inode *inode = filp->f_mapping->host;
693	int status = 0;
694	unsigned int saved_type = fl->fl_type;
695
696	/* Try local locking first */
697	posix_test_lock(filp, fl);
698	if (fl->fl_type != F_UNLCK) {
699		/* found a conflict */
700		goto out;
701	}
702	fl->fl_type = saved_type;
703
704	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
705		goto out_noconflict;
706
707	if (is_local)
708		goto out_noconflict;
709
710	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
711out:
712	return status;
713out_noconflict:
714	fl->fl_type = F_UNLCK;
715	goto out;
716}
717
718static int
719do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
720{
721	struct inode *inode = filp->f_mapping->host;
722	struct nfs_lock_context *l_ctx;
723	int status;
724
725	/*
726	 * Flush all pending writes before doing anything
727	 * with locks..
728	 */
729	nfs_wb_all(inode);
730
731	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
732	if (!IS_ERR(l_ctx)) {
733		status = nfs_iocounter_wait(l_ctx);
734		nfs_put_lock_context(l_ctx);
735		/*  NOTE: special case
736		 * 	If we're signalled while cleaning up locks on process exit, we
737		 * 	still need to complete the unlock.
738		 */
739		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
740			return status;
741	}
742
743	/*
744	 * Use local locking if mounted with "-onolock" or with appropriate
745	 * "-olocal_lock="
746	 */
747	if (!is_local)
748		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
749	else
750		status = locks_lock_file_wait(filp, fl);
751	return status;
752}
753
754static int
755do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
756{
757	struct inode *inode = filp->f_mapping->host;
758	int status;
759
760	/*
761	 * Flush all pending writes before doing anything
762	 * with locks..
763	 */
764	status = nfs_sync_mapping(filp->f_mapping);
765	if (status != 0)
766		goto out;
767
768	/*
769	 * Use local locking if mounted with "-onolock" or with appropriate
770	 * "-olocal_lock="
771	 */
772	if (!is_local)
773		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
774	else
775		status = locks_lock_file_wait(filp, fl);
776	if (status < 0)
777		goto out;
778
779	/*
780	 * Invalidate cache to prevent missing any changes.  If
781	 * the file is mapped, clear the page cache as well so
782	 * those mappings will be loaded.
783	 *
784	 * This makes locking act as a cache coherency point.
785	 */
786	nfs_sync_mapping(filp->f_mapping);
787	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
788		nfs_zap_caches(inode);
789		if (mapping_mapped(filp->f_mapping))
790			nfs_revalidate_mapping(inode, filp->f_mapping);
791	}
792out:
793	return status;
794}
795
796/*
797 * Lock a (portion of) a file
798 */
799int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
800{
801	struct inode *inode = filp->f_mapping->host;
802	int ret = -ENOLCK;
803	int is_local = 0;
804
805	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
806			filp, fl->fl_type, fl->fl_flags,
807			(long long)fl->fl_start, (long long)fl->fl_end);
808
809	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
810
811	if (fl->fl_flags & FL_RECLAIM)
812		return -ENOGRACE;
 
813
814	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
815		is_local = 1;
816
817	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
818		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
819		if (ret < 0)
820			goto out_err;
821	}
822
823	if (IS_GETLK(cmd))
824		ret = do_getlk(filp, cmd, fl, is_local);
825	else if (fl->fl_type == F_UNLCK)
826		ret = do_unlk(filp, cmd, fl, is_local);
827	else
828		ret = do_setlk(filp, cmd, fl, is_local);
829out_err:
830	return ret;
831}
832EXPORT_SYMBOL_GPL(nfs_lock);
833
834/*
835 * Lock a (portion of) a file
836 */
837int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
838{
839	struct inode *inode = filp->f_mapping->host;
840	int is_local = 0;
841
842	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
843			filp, fl->fl_type, fl->fl_flags);
844
845	if (!(fl->fl_flags & FL_FLOCK))
846		return -ENOLCK;
 
 
 
 
 
 
 
 
 
847
848	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
849		is_local = 1;
850
851	/* We're simulating flock() locks using posix locks on the server */
852	if (fl->fl_type == F_UNLCK)
853		return do_unlk(filp, cmd, fl, is_local);
854	return do_setlk(filp, cmd, fl, is_local);
855}
856EXPORT_SYMBOL_GPL(nfs_flock);
857
858const struct file_operations nfs_file_operations = {
859	.llseek		= nfs_file_llseek,
860	.read_iter	= nfs_file_read,
861	.write_iter	= nfs_file_write,
862	.mmap		= nfs_file_mmap,
863	.open		= nfs_file_open,
864	.flush		= nfs_file_flush,
865	.release	= nfs_file_release,
866	.fsync		= nfs_file_fsync,
867	.lock		= nfs_lock,
868	.flock		= nfs_flock,
869	.splice_read	= generic_file_splice_read,
870	.splice_write	= iter_file_splice_write,
871	.check_flags	= nfs_check_flags,
872	.setlease	= simple_nosetlease,
873};
874EXPORT_SYMBOL_GPL(nfs_file_operations);