Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/file.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * Changes Copyright (C) 1994 by Florian La Roche
8 * - Do not copy data too often around in the kernel.
9 * - In nfs_file_read the return value of kmalloc wasn't checked.
10 * - Put in a better version of read look-ahead buffering. Original idea
11 * and implementation by Wai S Kok elekokws@ee.nus.sg.
12 *
13 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 *
15 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 *
17 * nfs regular file handling functions
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/kernel.h>
23#include <linux/errno.h>
24#include <linux/fcntl.h>
25#include <linux/stat.h>
26#include <linux/nfs_fs.h>
27#include <linux/nfs_mount.h>
28#include <linux/mm.h>
29#include <linux/pagemap.h>
30#include <linux/gfp.h>
31#include <linux/swap.h>
32
33#include <linux/uaccess.h>
34
35#include "delegation.h"
36#include "internal.h"
37#include "iostat.h"
38#include "fscache.h"
39#include "pnfs.h"
40
41#include "nfstrace.h"
42
43#define NFSDBG_FACILITY NFSDBG_FILE
44
45static const struct vm_operations_struct nfs_file_vm_ops;
46
47/* Hack for future NFS swap support */
48#ifndef IS_SWAPFILE
49# define IS_SWAPFILE(inode) (0)
50#endif
51
52int nfs_check_flags(int flags)
53{
54 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
55 return -EINVAL;
56
57 return 0;
58}
59EXPORT_SYMBOL_GPL(nfs_check_flags);
60
61/*
62 * Open file
63 */
64static int
65nfs_file_open(struct inode *inode, struct file *filp)
66{
67 int res;
68
69 dprintk("NFS: open file(%pD2)\n", filp);
70
71 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
72 res = nfs_check_flags(filp->f_flags);
73 if (res)
74 return res;
75
76 res = nfs_open(inode, filp);
77 return res;
78}
79
80int
81nfs_file_release(struct inode *inode, struct file *filp)
82{
83 dprintk("NFS: release(%pD2)\n", filp);
84
85 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
86 nfs_file_clear_open_context(filp);
87 return 0;
88}
89EXPORT_SYMBOL_GPL(nfs_file_release);
90
91/**
92 * nfs_revalidate_size - Revalidate the file size
93 * @inode: pointer to inode struct
94 * @filp: pointer to struct file
95 *
96 * Revalidates the file length. This is basically a wrapper around
97 * nfs_revalidate_inode() that takes into account the fact that we may
98 * have cached writes (in which case we don't care about the server's
99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104 struct nfs_server *server = NFS_SERVER(inode);
105
106 if (filp->f_flags & O_DIRECT)
107 goto force_reval;
108 if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
109 goto force_reval;
110 return 0;
111force_reval:
112 return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118 filp, offset, whence);
119
120 /*
121 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122 * the cached file length
123 */
124 if (whence != SEEK_SET && whence != SEEK_CUR) {
125 struct inode *inode = filp->f_mapping->host;
126
127 int retval = nfs_revalidate_file_size(inode, filp);
128 if (retval < 0)
129 return (loff_t)retval;
130 }
131
132 return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142 struct inode *inode = file_inode(file);
143 errseq_t since;
144
145 dprintk("NFS: flush(%pD2)\n", file);
146
147 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148 if ((file->f_mode & FMODE_WRITE) == 0)
149 return 0;
150
151 /* Flush writes to the server and return any errors */
152 since = filemap_sample_wb_err(file->f_mapping);
153 nfs_wb_all(inode);
154 return filemap_check_wb_err(file->f_mapping, since);
155}
156
157ssize_t
158nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
159{
160 struct inode *inode = file_inode(iocb->ki_filp);
161 ssize_t result;
162
163 if (iocb->ki_flags & IOCB_DIRECT)
164 return nfs_file_direct_read(iocb, to);
165
166 dprintk("NFS: read(%pD2, %zu@%lu)\n",
167 iocb->ki_filp,
168 iov_iter_count(to), (unsigned long) iocb->ki_pos);
169
170 nfs_start_io_read(inode);
171 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
172 if (!result) {
173 result = generic_file_read_iter(iocb, to);
174 if (result > 0)
175 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
176 }
177 nfs_end_io_read(inode);
178 return result;
179}
180EXPORT_SYMBOL_GPL(nfs_file_read);
181
182int
183nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
184{
185 struct inode *inode = file_inode(file);
186 int status;
187
188 dprintk("NFS: mmap(%pD2)\n", file);
189
190 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
191 * so we call that before revalidating the mapping
192 */
193 status = generic_file_mmap(file, vma);
194 if (!status) {
195 vma->vm_ops = &nfs_file_vm_ops;
196 status = nfs_revalidate_mapping(inode, file->f_mapping);
197 }
198 return status;
199}
200EXPORT_SYMBOL_GPL(nfs_file_mmap);
201
202/*
203 * Flush any dirty pages for this process, and check for write errors.
204 * The return status from this call provides a reliable indication of
205 * whether any write errors occurred for this process.
206 */
207static int
208nfs_file_fsync_commit(struct file *file, int datasync)
209{
210 struct inode *inode = file_inode(file);
211 int ret;
212
213 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
214
215 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
216 ret = nfs_commit_inode(inode, FLUSH_SYNC);
217 if (ret < 0)
218 return ret;
219 return file_check_and_advance_wb_err(file);
220}
221
222int
223nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
224{
225 struct nfs_open_context *ctx = nfs_file_open_context(file);
226 struct inode *inode = file_inode(file);
227 int ret;
228
229 trace_nfs_fsync_enter(inode);
230
231 for (;;) {
232 ret = file_write_and_wait_range(file, start, end);
233 if (ret != 0)
234 break;
235 ret = nfs_file_fsync_commit(file, datasync);
236 if (ret != 0)
237 break;
238 ret = pnfs_sync_inode(inode, !!datasync);
239 if (ret != 0)
240 break;
241 if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
242 break;
243 /*
244 * If nfs_file_fsync_commit detected a server reboot, then
245 * resend all dirty pages that might have been covered by
246 * the NFS_CONTEXT_RESEND_WRITES flag
247 */
248 start = 0;
249 end = LLONG_MAX;
250 }
251
252 trace_nfs_fsync_exit(inode, ret);
253 return ret;
254}
255EXPORT_SYMBOL_GPL(nfs_file_fsync);
256
257/*
258 * Decide whether a read/modify/write cycle may be more efficient
259 * then a modify/write/read cycle when writing to a page in the
260 * page cache.
261 *
262 * Some pNFS layout drivers can only read/write at a certain block
263 * granularity like all block devices and therefore we must perform
264 * read/modify/write whenever a page hasn't read yet and the data
265 * to be written there is not aligned to a block boundary and/or
266 * smaller than the block size.
267 *
268 * The modify/write/read cycle may occur if a page is read before
269 * being completely filled by the writer. In this situation, the
270 * page must be completely written to stable storage on the server
271 * before it can be refilled by reading in the page from the server.
272 * This can lead to expensive, small, FILE_SYNC mode writes being
273 * done.
274 *
275 * It may be more efficient to read the page first if the file is
276 * open for reading in addition to writing, the page is not marked
277 * as Uptodate, it is not dirty or waiting to be committed,
278 * indicating that it was previously allocated and then modified,
279 * that there were valid bytes of data in that range of the file,
280 * and that the new data won't completely replace the old data in
281 * that range of the file.
282 */
283static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
284{
285 unsigned int pglen = nfs_page_length(page);
286 unsigned int offset = pos & (PAGE_SIZE - 1);
287 unsigned int end = offset + len;
288
289 return !pglen || (end >= pglen && !offset);
290}
291
292static bool nfs_want_read_modify_write(struct file *file, struct page *page,
293 loff_t pos, unsigned int len)
294{
295 /*
296 * Up-to-date pages, those with ongoing or full-page write
297 * don't need read/modify/write
298 */
299 if (PageUptodate(page) || PagePrivate(page) ||
300 nfs_full_page_write(page, pos, len))
301 return false;
302
303 if (pnfs_ld_read_whole_page(file->f_mapping->host))
304 return true;
305 /* Open for reading too? */
306 if (file->f_mode & FMODE_READ)
307 return true;
308 return false;
309}
310
311/*
312 * This does the "real" work of the write. We must allocate and lock the
313 * page to be sent back to the generic routine, which then copies the
314 * data from user space.
315 *
316 * If the writer ends up delaying the write, the writer needs to
317 * increment the page use counts until he is done with the page.
318 */
319static int nfs_write_begin(struct file *file, struct address_space *mapping,
320 loff_t pos, unsigned len, unsigned flags,
321 struct page **pagep, void **fsdata)
322{
323 int ret;
324 pgoff_t index = pos >> PAGE_SHIFT;
325 struct page *page;
326 int once_thru = 0;
327
328 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
329 file, mapping->host->i_ino, len, (long long) pos);
330
331start:
332 page = grab_cache_page_write_begin(mapping, index, flags);
333 if (!page)
334 return -ENOMEM;
335 *pagep = page;
336
337 ret = nfs_flush_incompatible(file, page);
338 if (ret) {
339 unlock_page(page);
340 put_page(page);
341 } else if (!once_thru &&
342 nfs_want_read_modify_write(file, page, pos, len)) {
343 once_thru = 1;
344 ret = nfs_readpage(file, page);
345 put_page(page);
346 if (!ret)
347 goto start;
348 }
349 return ret;
350}
351
352static int nfs_write_end(struct file *file, struct address_space *mapping,
353 loff_t pos, unsigned len, unsigned copied,
354 struct page *page, void *fsdata)
355{
356 unsigned offset = pos & (PAGE_SIZE - 1);
357 struct nfs_open_context *ctx = nfs_file_open_context(file);
358 int status;
359
360 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
361 file, mapping->host->i_ino, len, (long long) pos);
362
363 /*
364 * Zero any uninitialised parts of the page, and then mark the page
365 * as up to date if it turns out that we're extending the file.
366 */
367 if (!PageUptodate(page)) {
368 unsigned pglen = nfs_page_length(page);
369 unsigned end = offset + copied;
370
371 if (pglen == 0) {
372 zero_user_segments(page, 0, offset,
373 end, PAGE_SIZE);
374 SetPageUptodate(page);
375 } else if (end >= pglen) {
376 zero_user_segment(page, end, PAGE_SIZE);
377 if (offset == 0)
378 SetPageUptodate(page);
379 } else
380 zero_user_segment(page, pglen, PAGE_SIZE);
381 }
382
383 status = nfs_updatepage(file, page, offset, copied);
384
385 unlock_page(page);
386 put_page(page);
387
388 if (status < 0)
389 return status;
390 NFS_I(mapping->host)->write_io += copied;
391
392 if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
393 status = nfs_wb_all(mapping->host);
394 if (status < 0)
395 return status;
396 }
397
398 return copied;
399}
400
401/*
402 * Partially or wholly invalidate a page
403 * - Release the private state associated with a page if undergoing complete
404 * page invalidation
405 * - Called if either PG_private or PG_fscache is set on the page
406 * - Caller holds page lock
407 */
408static void nfs_invalidate_page(struct page *page, unsigned int offset,
409 unsigned int length)
410{
411 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
412 page, offset, length);
413
414 if (offset != 0 || length < PAGE_SIZE)
415 return;
416 /* Cancel any unstarted writes on this page */
417 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
418
419 nfs_fscache_invalidate_page(page, page->mapping->host);
420}
421
422/*
423 * Attempt to release the private state associated with a page
424 * - Called if either PG_private or PG_fscache is set on the page
425 * - Caller holds page lock
426 * - Return true (may release page) or false (may not)
427 */
428static int nfs_release_page(struct page *page, gfp_t gfp)
429{
430 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
431
432 /* If PagePrivate() is set, then the page is not freeable */
433 if (PagePrivate(page))
434 return 0;
435 return nfs_fscache_release_page(page, gfp);
436}
437
438static void nfs_check_dirty_writeback(struct page *page,
439 bool *dirty, bool *writeback)
440{
441 struct nfs_inode *nfsi;
442 struct address_space *mapping = page_file_mapping(page);
443
444 if (!mapping || PageSwapCache(page))
445 return;
446
447 /*
448 * Check if an unstable page is currently being committed and
449 * if so, have the VM treat it as if the page is under writeback
450 * so it will not block due to pages that will shortly be freeable.
451 */
452 nfsi = NFS_I(mapping->host);
453 if (atomic_read(&nfsi->commit_info.rpcs_out)) {
454 *writeback = true;
455 return;
456 }
457
458 /*
459 * If PagePrivate() is set, then the page is not freeable and as the
460 * inode is not being committed, it's not going to be cleaned in the
461 * near future so treat it as dirty
462 */
463 if (PagePrivate(page))
464 *dirty = true;
465}
466
467/*
468 * Attempt to clear the private state associated with a page when an error
469 * occurs that requires the cached contents of an inode to be written back or
470 * destroyed
471 * - Called if either PG_private or fscache is set on the page
472 * - Caller holds page lock
473 * - Return 0 if successful, -error otherwise
474 */
475static int nfs_launder_page(struct page *page)
476{
477 struct inode *inode = page_file_mapping(page)->host;
478 struct nfs_inode *nfsi = NFS_I(inode);
479
480 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
481 inode->i_ino, (long long)page_offset(page));
482
483 nfs_fscache_wait_on_page_write(nfsi, page);
484 return nfs_wb_page(inode, page);
485}
486
487static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
488 sector_t *span)
489{
490 unsigned long blocks;
491 long long isize;
492 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
493 struct inode *inode = file->f_mapping->host;
494
495 spin_lock(&inode->i_lock);
496 blocks = inode->i_blocks;
497 isize = inode->i_size;
498 spin_unlock(&inode->i_lock);
499 if (blocks*512 < isize) {
500 pr_warn("swap activate: swapfile has holes\n");
501 return -EINVAL;
502 }
503
504 *span = sis->pages;
505
506 return rpc_clnt_swap_activate(clnt);
507}
508
509static void nfs_swap_deactivate(struct file *file)
510{
511 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
512
513 rpc_clnt_swap_deactivate(clnt);
514}
515
516const struct address_space_operations nfs_file_aops = {
517 .readpage = nfs_readpage,
518 .readpages = nfs_readpages,
519 .set_page_dirty = __set_page_dirty_nobuffers,
520 .writepage = nfs_writepage,
521 .writepages = nfs_writepages,
522 .write_begin = nfs_write_begin,
523 .write_end = nfs_write_end,
524 .invalidatepage = nfs_invalidate_page,
525 .releasepage = nfs_release_page,
526 .direct_IO = nfs_direct_IO,
527#ifdef CONFIG_MIGRATION
528 .migratepage = nfs_migrate_page,
529#endif
530 .launder_page = nfs_launder_page,
531 .is_dirty_writeback = nfs_check_dirty_writeback,
532 .error_remove_page = generic_error_remove_page,
533 .swap_activate = nfs_swap_activate,
534 .swap_deactivate = nfs_swap_deactivate,
535};
536
537/*
538 * Notification that a PTE pointing to an NFS page is about to be made
539 * writable, implying that someone is about to modify the page through a
540 * shared-writable mapping
541 */
542static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
543{
544 struct page *page = vmf->page;
545 struct file *filp = vmf->vma->vm_file;
546 struct inode *inode = file_inode(filp);
547 unsigned pagelen;
548 vm_fault_t ret = VM_FAULT_NOPAGE;
549 struct address_space *mapping;
550
551 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
552 filp, filp->f_mapping->host->i_ino,
553 (long long)page_offset(page));
554
555 sb_start_pagefault(inode->i_sb);
556
557 /* make sure the cache has finished storing the page */
558 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
559
560 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
561 nfs_wait_bit_killable, TASK_KILLABLE);
562
563 lock_page(page);
564 mapping = page_file_mapping(page);
565 if (mapping != inode->i_mapping)
566 goto out_unlock;
567
568 wait_on_page_writeback(page);
569
570 pagelen = nfs_page_length(page);
571 if (pagelen == 0)
572 goto out_unlock;
573
574 ret = VM_FAULT_LOCKED;
575 if (nfs_flush_incompatible(filp, page) == 0 &&
576 nfs_updatepage(filp, page, 0, pagelen) == 0)
577 goto out;
578
579 ret = VM_FAULT_SIGBUS;
580out_unlock:
581 unlock_page(page);
582out:
583 sb_end_pagefault(inode->i_sb);
584 return ret;
585}
586
587static const struct vm_operations_struct nfs_file_vm_ops = {
588 .fault = filemap_fault,
589 .map_pages = filemap_map_pages,
590 .page_mkwrite = nfs_vm_page_mkwrite,
591};
592
593static int nfs_need_check_write(struct file *filp, struct inode *inode,
594 int error)
595{
596 struct nfs_open_context *ctx;
597
598 ctx = nfs_file_open_context(filp);
599 if (nfs_error_is_fatal_on_server(error) ||
600 nfs_ctx_key_to_expire(ctx, inode))
601 return 1;
602 return 0;
603}
604
605ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
606{
607 struct file *file = iocb->ki_filp;
608 struct inode *inode = file_inode(file);
609 unsigned long written = 0;
610 ssize_t result;
611 errseq_t since;
612 int error;
613
614 result = nfs_key_timeout_notify(file, inode);
615 if (result)
616 return result;
617
618 if (iocb->ki_flags & IOCB_DIRECT)
619 return nfs_file_direct_write(iocb, from);
620
621 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
622 file, iov_iter_count(from), (long long) iocb->ki_pos);
623
624 if (IS_SWAPFILE(inode))
625 goto out_swapfile;
626 /*
627 * O_APPEND implies that we must revalidate the file length.
628 */
629 if (iocb->ki_flags & IOCB_APPEND) {
630 result = nfs_revalidate_file_size(inode, file);
631 if (result)
632 goto out;
633 }
634 if (iocb->ki_pos > i_size_read(inode))
635 nfs_revalidate_mapping(inode, file->f_mapping);
636
637 since = filemap_sample_wb_err(file->f_mapping);
638 nfs_start_io_write(inode);
639 result = generic_write_checks(iocb, from);
640 if (result > 0) {
641 current->backing_dev_info = inode_to_bdi(inode);
642 result = generic_perform_write(file, from, iocb->ki_pos);
643 current->backing_dev_info = NULL;
644 }
645 nfs_end_io_write(inode);
646 if (result <= 0)
647 goto out;
648
649 written = result;
650 iocb->ki_pos += written;
651 result = generic_write_sync(iocb, written);
652 if (result < 0)
653 goto out;
654
655 /* Return error values */
656 error = filemap_check_wb_err(file->f_mapping, since);
657 if (nfs_need_check_write(file, inode, error)) {
658 int err = nfs_wb_all(inode);
659 if (err < 0)
660 result = err;
661 }
662 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
663out:
664 return result;
665
666out_swapfile:
667 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
668 return -ETXTBSY;
669}
670EXPORT_SYMBOL_GPL(nfs_file_write);
671
672static int
673do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
674{
675 struct inode *inode = filp->f_mapping->host;
676 int status = 0;
677 unsigned int saved_type = fl->fl_type;
678
679 /* Try local locking first */
680 posix_test_lock(filp, fl);
681 if (fl->fl_type != F_UNLCK) {
682 /* found a conflict */
683 goto out;
684 }
685 fl->fl_type = saved_type;
686
687 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
688 goto out_noconflict;
689
690 if (is_local)
691 goto out_noconflict;
692
693 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
694out:
695 return status;
696out_noconflict:
697 fl->fl_type = F_UNLCK;
698 goto out;
699}
700
701static int
702do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
703{
704 struct inode *inode = filp->f_mapping->host;
705 struct nfs_lock_context *l_ctx;
706 int status;
707
708 /*
709 * Flush all pending writes before doing anything
710 * with locks..
711 */
712 nfs_wb_all(inode);
713
714 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
715 if (!IS_ERR(l_ctx)) {
716 status = nfs_iocounter_wait(l_ctx);
717 nfs_put_lock_context(l_ctx);
718 /* NOTE: special case
719 * If we're signalled while cleaning up locks on process exit, we
720 * still need to complete the unlock.
721 */
722 if (status < 0 && !(fl->fl_flags & FL_CLOSE))
723 return status;
724 }
725
726 /*
727 * Use local locking if mounted with "-onolock" or with appropriate
728 * "-olocal_lock="
729 */
730 if (!is_local)
731 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
732 else
733 status = locks_lock_file_wait(filp, fl);
734 return status;
735}
736
737static int
738do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
739{
740 struct inode *inode = filp->f_mapping->host;
741 int status;
742
743 /*
744 * Flush all pending writes before doing anything
745 * with locks..
746 */
747 status = nfs_sync_mapping(filp->f_mapping);
748 if (status != 0)
749 goto out;
750
751 /*
752 * Use local locking if mounted with "-onolock" or with appropriate
753 * "-olocal_lock="
754 */
755 if (!is_local)
756 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
757 else
758 status = locks_lock_file_wait(filp, fl);
759 if (status < 0)
760 goto out;
761
762 /*
763 * Invalidate cache to prevent missing any changes. If
764 * the file is mapped, clear the page cache as well so
765 * those mappings will be loaded.
766 *
767 * This makes locking act as a cache coherency point.
768 */
769 nfs_sync_mapping(filp->f_mapping);
770 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
771 nfs_zap_caches(inode);
772 if (mapping_mapped(filp->f_mapping))
773 nfs_revalidate_mapping(inode, filp->f_mapping);
774 }
775out:
776 return status;
777}
778
779/*
780 * Lock a (portion of) a file
781 */
782int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
783{
784 struct inode *inode = filp->f_mapping->host;
785 int ret = -ENOLCK;
786 int is_local = 0;
787
788 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
789 filp, fl->fl_type, fl->fl_flags,
790 (long long)fl->fl_start, (long long)fl->fl_end);
791
792 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
793
794 /* No mandatory locks over NFS */
795 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
796 goto out_err;
797
798 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
799 is_local = 1;
800
801 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
802 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
803 if (ret < 0)
804 goto out_err;
805 }
806
807 if (IS_GETLK(cmd))
808 ret = do_getlk(filp, cmd, fl, is_local);
809 else if (fl->fl_type == F_UNLCK)
810 ret = do_unlk(filp, cmd, fl, is_local);
811 else
812 ret = do_setlk(filp, cmd, fl, is_local);
813out_err:
814 return ret;
815}
816EXPORT_SYMBOL_GPL(nfs_lock);
817
818/*
819 * Lock a (portion of) a file
820 */
821int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
822{
823 struct inode *inode = filp->f_mapping->host;
824 int is_local = 0;
825
826 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
827 filp, fl->fl_type, fl->fl_flags);
828
829 if (!(fl->fl_flags & FL_FLOCK))
830 return -ENOLCK;
831
832 /*
833 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
834 * any standard. In principle we might be able to support LOCK_MAND
835 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
836 * NFS code is not set up for it.
837 */
838 if (fl->fl_type & LOCK_MAND)
839 return -EINVAL;
840
841 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
842 is_local = 1;
843
844 /* We're simulating flock() locks using posix locks on the server */
845 if (fl->fl_type == F_UNLCK)
846 return do_unlk(filp, cmd, fl, is_local);
847 return do_setlk(filp, cmd, fl, is_local);
848}
849EXPORT_SYMBOL_GPL(nfs_flock);
850
851const struct file_operations nfs_file_operations = {
852 .llseek = nfs_file_llseek,
853 .read_iter = nfs_file_read,
854 .write_iter = nfs_file_write,
855 .mmap = nfs_file_mmap,
856 .open = nfs_file_open,
857 .flush = nfs_file_flush,
858 .release = nfs_file_release,
859 .fsync = nfs_file_fsync,
860 .lock = nfs_lock,
861 .flock = nfs_flock,
862 .splice_read = generic_file_splice_read,
863 .splice_write = iter_file_splice_write,
864 .check_flags = nfs_check_flags,
865 .setlease = simple_nosetlease,
866};
867EXPORT_SYMBOL_GPL(nfs_file_operations);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/file.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * Changes Copyright (C) 1994 by Florian La Roche
8 * - Do not copy data too often around in the kernel.
9 * - In nfs_file_read the return value of kmalloc wasn't checked.
10 * - Put in a better version of read look-ahead buffering. Original idea
11 * and implementation by Wai S Kok elekokws@ee.nus.sg.
12 *
13 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 *
15 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 *
17 * nfs regular file handling functions
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/kernel.h>
23#include <linux/errno.h>
24#include <linux/fcntl.h>
25#include <linux/stat.h>
26#include <linux/nfs_fs.h>
27#include <linux/nfs_mount.h>
28#include <linux/mm.h>
29#include <linux/pagemap.h>
30#include <linux/gfp.h>
31#include <linux/swap.h>
32
33#include <linux/uaccess.h>
34
35#include "delegation.h"
36#include "internal.h"
37#include "iostat.h"
38#include "fscache.h"
39#include "pnfs.h"
40
41#include "nfstrace.h"
42
43#define NFSDBG_FACILITY NFSDBG_FILE
44
45static const struct vm_operations_struct nfs_file_vm_ops;
46
47int nfs_check_flags(int flags)
48{
49 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
50 return -EINVAL;
51
52 return 0;
53}
54EXPORT_SYMBOL_GPL(nfs_check_flags);
55
56/*
57 * Open file
58 */
59static int
60nfs_file_open(struct inode *inode, struct file *filp)
61{
62 int res;
63
64 dprintk("NFS: open file(%pD2)\n", filp);
65
66 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
67 res = nfs_check_flags(filp->f_flags);
68 if (res)
69 return res;
70
71 res = nfs_open(inode, filp);
72 if (res == 0)
73 filp->f_mode |= FMODE_CAN_ODIRECT;
74 return res;
75}
76
77int
78nfs_file_release(struct inode *inode, struct file *filp)
79{
80 dprintk("NFS: release(%pD2)\n", filp);
81
82 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
83 nfs_file_clear_open_context(filp);
84 nfs_fscache_release_file(inode, filp);
85 return 0;
86}
87EXPORT_SYMBOL_GPL(nfs_file_release);
88
89/**
90 * nfs_revalidate_file_size - Revalidate the file size
91 * @inode: pointer to inode struct
92 * @filp: pointer to struct file
93 *
94 * Revalidates the file length. This is basically a wrapper around
95 * nfs_revalidate_inode() that takes into account the fact that we may
96 * have cached writes (in which case we don't care about the server's
97 * idea of what the file length is), or O_DIRECT (in which case we
98 * shouldn't trust the cache).
99 */
100static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101{
102 struct nfs_server *server = NFS_SERVER(inode);
103
104 if (filp->f_flags & O_DIRECT)
105 goto force_reval;
106 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
107 goto force_reval;
108 return 0;
109force_reval:
110 return __nfs_revalidate_inode(server, inode);
111}
112
113loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
114{
115 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
116 filp, offset, whence);
117
118 /*
119 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
120 * the cached file length
121 */
122 if (whence != SEEK_SET && whence != SEEK_CUR) {
123 struct inode *inode = filp->f_mapping->host;
124
125 int retval = nfs_revalidate_file_size(inode, filp);
126 if (retval < 0)
127 return (loff_t)retval;
128 }
129
130 return generic_file_llseek(filp, offset, whence);
131}
132EXPORT_SYMBOL_GPL(nfs_file_llseek);
133
134/*
135 * Flush all dirty pages, and check for write errors.
136 */
137static int
138nfs_file_flush(struct file *file, fl_owner_t id)
139{
140 struct inode *inode = file_inode(file);
141 errseq_t since;
142
143 dprintk("NFS: flush(%pD2)\n", file);
144
145 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146 if ((file->f_mode & FMODE_WRITE) == 0)
147 return 0;
148
149 /* Flush writes to the server and return any errors */
150 since = filemap_sample_wb_err(file->f_mapping);
151 nfs_wb_all(inode);
152 return filemap_check_wb_err(file->f_mapping, since);
153}
154
155ssize_t
156nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
157{
158 struct inode *inode = file_inode(iocb->ki_filp);
159 ssize_t result;
160
161 if (iocb->ki_flags & IOCB_DIRECT)
162 return nfs_file_direct_read(iocb, to, false);
163
164 dprintk("NFS: read(%pD2, %zu@%lu)\n",
165 iocb->ki_filp,
166 iov_iter_count(to), (unsigned long) iocb->ki_pos);
167
168 nfs_start_io_read(inode);
169 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
170 if (!result) {
171 result = generic_file_read_iter(iocb, to);
172 if (result > 0)
173 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
174 }
175 nfs_end_io_read(inode);
176 return result;
177}
178EXPORT_SYMBOL_GPL(nfs_file_read);
179
180int
181nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
182{
183 struct inode *inode = file_inode(file);
184 int status;
185
186 dprintk("NFS: mmap(%pD2)\n", file);
187
188 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
189 * so we call that before revalidating the mapping
190 */
191 status = generic_file_mmap(file, vma);
192 if (!status) {
193 vma->vm_ops = &nfs_file_vm_ops;
194 status = nfs_revalidate_mapping(inode, file->f_mapping);
195 }
196 return status;
197}
198EXPORT_SYMBOL_GPL(nfs_file_mmap);
199
200/*
201 * Flush any dirty pages for this process, and check for write errors.
202 * The return status from this call provides a reliable indication of
203 * whether any write errors occurred for this process.
204 */
205static int
206nfs_file_fsync_commit(struct file *file, int datasync)
207{
208 struct inode *inode = file_inode(file);
209 int ret, ret2;
210
211 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
212
213 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
214 ret = nfs_commit_inode(inode, FLUSH_SYNC);
215 ret2 = file_check_and_advance_wb_err(file);
216 if (ret2 < 0)
217 return ret2;
218 return ret;
219}
220
221int
222nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
223{
224 struct inode *inode = file_inode(file);
225 struct nfs_inode *nfsi = NFS_I(inode);
226 long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
227 long nredirtied;
228 int ret;
229
230 trace_nfs_fsync_enter(inode);
231
232 for (;;) {
233 ret = file_write_and_wait_range(file, start, end);
234 if (ret != 0)
235 break;
236 ret = nfs_file_fsync_commit(file, datasync);
237 if (ret != 0)
238 break;
239 ret = pnfs_sync_inode(inode, !!datasync);
240 if (ret != 0)
241 break;
242 nredirtied = atomic_long_read(&nfsi->redirtied_pages);
243 if (nredirtied == save_nredirtied)
244 break;
245 save_nredirtied = nredirtied;
246 }
247
248 trace_nfs_fsync_exit(inode, ret);
249 return ret;
250}
251EXPORT_SYMBOL_GPL(nfs_file_fsync);
252
253/*
254 * Decide whether a read/modify/write cycle may be more efficient
255 * then a modify/write/read cycle when writing to a page in the
256 * page cache.
257 *
258 * Some pNFS layout drivers can only read/write at a certain block
259 * granularity like all block devices and therefore we must perform
260 * read/modify/write whenever a page hasn't read yet and the data
261 * to be written there is not aligned to a block boundary and/or
262 * smaller than the block size.
263 *
264 * The modify/write/read cycle may occur if a page is read before
265 * being completely filled by the writer. In this situation, the
266 * page must be completely written to stable storage on the server
267 * before it can be refilled by reading in the page from the server.
268 * This can lead to expensive, small, FILE_SYNC mode writes being
269 * done.
270 *
271 * It may be more efficient to read the page first if the file is
272 * open for reading in addition to writing, the page is not marked
273 * as Uptodate, it is not dirty or waiting to be committed,
274 * indicating that it was previously allocated and then modified,
275 * that there were valid bytes of data in that range of the file,
276 * and that the new data won't completely replace the old data in
277 * that range of the file.
278 */
279static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
280{
281 unsigned int pglen = nfs_page_length(page);
282 unsigned int offset = pos & (PAGE_SIZE - 1);
283 unsigned int end = offset + len;
284
285 return !pglen || (end >= pglen && !offset);
286}
287
288static bool nfs_want_read_modify_write(struct file *file, struct page *page,
289 loff_t pos, unsigned int len)
290{
291 /*
292 * Up-to-date pages, those with ongoing or full-page write
293 * don't need read/modify/write
294 */
295 if (PageUptodate(page) || PagePrivate(page) ||
296 nfs_full_page_write(page, pos, len))
297 return false;
298
299 if (pnfs_ld_read_whole_page(file->f_mapping->host))
300 return true;
301 /* Open for reading too? */
302 if (file->f_mode & FMODE_READ)
303 return true;
304 return false;
305}
306
307/*
308 * This does the "real" work of the write. We must allocate and lock the
309 * page to be sent back to the generic routine, which then copies the
310 * data from user space.
311 *
312 * If the writer ends up delaying the write, the writer needs to
313 * increment the page use counts until he is done with the page.
314 */
315static int nfs_write_begin(struct file *file, struct address_space *mapping,
316 loff_t pos, unsigned len,
317 struct page **pagep, void **fsdata)
318{
319 int ret;
320 pgoff_t index = pos >> PAGE_SHIFT;
321 struct page *page;
322 int once_thru = 0;
323
324 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
325 file, mapping->host->i_ino, len, (long long) pos);
326
327start:
328 page = grab_cache_page_write_begin(mapping, index);
329 if (!page)
330 return -ENOMEM;
331 *pagep = page;
332
333 ret = nfs_flush_incompatible(file, page);
334 if (ret) {
335 unlock_page(page);
336 put_page(page);
337 } else if (!once_thru &&
338 nfs_want_read_modify_write(file, page, pos, len)) {
339 once_thru = 1;
340 ret = nfs_read_folio(file, page_folio(page));
341 put_page(page);
342 if (!ret)
343 goto start;
344 }
345 return ret;
346}
347
348static int nfs_write_end(struct file *file, struct address_space *mapping,
349 loff_t pos, unsigned len, unsigned copied,
350 struct page *page, void *fsdata)
351{
352 unsigned offset = pos & (PAGE_SIZE - 1);
353 struct nfs_open_context *ctx = nfs_file_open_context(file);
354 int status;
355
356 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
357 file, mapping->host->i_ino, len, (long long) pos);
358
359 /*
360 * Zero any uninitialised parts of the page, and then mark the page
361 * as up to date if it turns out that we're extending the file.
362 */
363 if (!PageUptodate(page)) {
364 unsigned pglen = nfs_page_length(page);
365 unsigned end = offset + copied;
366
367 if (pglen == 0) {
368 zero_user_segments(page, 0, offset,
369 end, PAGE_SIZE);
370 SetPageUptodate(page);
371 } else if (end >= pglen) {
372 zero_user_segment(page, end, PAGE_SIZE);
373 if (offset == 0)
374 SetPageUptodate(page);
375 } else
376 zero_user_segment(page, pglen, PAGE_SIZE);
377 }
378
379 status = nfs_updatepage(file, page, offset, copied);
380
381 unlock_page(page);
382 put_page(page);
383
384 if (status < 0)
385 return status;
386 NFS_I(mapping->host)->write_io += copied;
387
388 if (nfs_ctx_key_to_expire(ctx, mapping->host))
389 nfs_wb_all(mapping->host);
390
391 return copied;
392}
393
394/*
395 * Partially or wholly invalidate a page
396 * - Release the private state associated with a page if undergoing complete
397 * page invalidation
398 * - Called if either PG_private or PG_fscache is set on the page
399 * - Caller holds page lock
400 */
401static void nfs_invalidate_folio(struct folio *folio, size_t offset,
402 size_t length)
403{
404 dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
405 folio->index, offset, length);
406
407 if (offset != 0 || length < folio_size(folio))
408 return;
409 /* Cancel any unstarted writes on this page */
410 nfs_wb_folio_cancel(folio->mapping->host, folio);
411 folio_wait_fscache(folio);
412}
413
414/*
415 * Attempt to release the private state associated with a folio
416 * - Called if either private or fscache flags are set on the folio
417 * - Caller holds folio lock
418 * - Return true (may release folio) or false (may not)
419 */
420static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
421{
422 dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
423
424 /* If the private flag is set, then the folio is not freeable */
425 if (folio_test_private(folio))
426 return false;
427 return nfs_fscache_release_folio(folio, gfp);
428}
429
430static void nfs_check_dirty_writeback(struct folio *folio,
431 bool *dirty, bool *writeback)
432{
433 struct nfs_inode *nfsi;
434 struct address_space *mapping = folio->mapping;
435
436 /*
437 * Check if an unstable folio is currently being committed and
438 * if so, have the VM treat it as if the folio is under writeback
439 * so it will not block due to folios that will shortly be freeable.
440 */
441 nfsi = NFS_I(mapping->host);
442 if (atomic_read(&nfsi->commit_info.rpcs_out)) {
443 *writeback = true;
444 return;
445 }
446
447 /*
448 * If the private flag is set, then the folio is not freeable
449 * and as the inode is not being committed, it's not going to
450 * be cleaned in the near future so treat it as dirty
451 */
452 if (folio_test_private(folio))
453 *dirty = true;
454}
455
456/*
457 * Attempt to clear the private state associated with a page when an error
458 * occurs that requires the cached contents of an inode to be written back or
459 * destroyed
460 * - Called if either PG_private or fscache is set on the page
461 * - Caller holds page lock
462 * - Return 0 if successful, -error otherwise
463 */
464static int nfs_launder_folio(struct folio *folio)
465{
466 struct inode *inode = folio->mapping->host;
467
468 dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
469 inode->i_ino, folio_pos(folio));
470
471 folio_wait_fscache(folio);
472 return nfs_wb_page(inode, &folio->page);
473}
474
475static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
476 sector_t *span)
477{
478 unsigned long blocks;
479 long long isize;
480 int ret;
481 struct inode *inode = file_inode(file);
482 struct rpc_clnt *clnt = NFS_CLIENT(inode);
483 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
484
485 spin_lock(&inode->i_lock);
486 blocks = inode->i_blocks;
487 isize = inode->i_size;
488 spin_unlock(&inode->i_lock);
489 if (blocks*512 < isize) {
490 pr_warn("swap activate: swapfile has holes\n");
491 return -EINVAL;
492 }
493
494 ret = rpc_clnt_swap_activate(clnt);
495 if (ret)
496 return ret;
497 ret = add_swap_extent(sis, 0, sis->max, 0);
498 if (ret < 0) {
499 rpc_clnt_swap_deactivate(clnt);
500 return ret;
501 }
502
503 *span = sis->pages;
504
505 if (cl->rpc_ops->enable_swap)
506 cl->rpc_ops->enable_swap(inode);
507
508 sis->flags |= SWP_FS_OPS;
509 return ret;
510}
511
512static void nfs_swap_deactivate(struct file *file)
513{
514 struct inode *inode = file_inode(file);
515 struct rpc_clnt *clnt = NFS_CLIENT(inode);
516 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
517
518 rpc_clnt_swap_deactivate(clnt);
519 if (cl->rpc_ops->disable_swap)
520 cl->rpc_ops->disable_swap(file_inode(file));
521}
522
523const struct address_space_operations nfs_file_aops = {
524 .read_folio = nfs_read_folio,
525 .readahead = nfs_readahead,
526 .dirty_folio = filemap_dirty_folio,
527 .writepage = nfs_writepage,
528 .writepages = nfs_writepages,
529 .write_begin = nfs_write_begin,
530 .write_end = nfs_write_end,
531 .invalidate_folio = nfs_invalidate_folio,
532 .release_folio = nfs_release_folio,
533 .migrate_folio = nfs_migrate_folio,
534 .launder_folio = nfs_launder_folio,
535 .is_dirty_writeback = nfs_check_dirty_writeback,
536 .error_remove_page = generic_error_remove_page,
537 .swap_activate = nfs_swap_activate,
538 .swap_deactivate = nfs_swap_deactivate,
539 .swap_rw = nfs_swap_rw,
540};
541
542/*
543 * Notification that a PTE pointing to an NFS page is about to be made
544 * writable, implying that someone is about to modify the page through a
545 * shared-writable mapping
546 */
547static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
548{
549 struct page *page = vmf->page;
550 struct file *filp = vmf->vma->vm_file;
551 struct inode *inode = file_inode(filp);
552 unsigned pagelen;
553 vm_fault_t ret = VM_FAULT_NOPAGE;
554 struct address_space *mapping;
555
556 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
557 filp, filp->f_mapping->host->i_ino,
558 (long long)page_offset(page));
559
560 sb_start_pagefault(inode->i_sb);
561
562 /* make sure the cache has finished storing the page */
563 if (PageFsCache(page) &&
564 wait_on_page_fscache_killable(vmf->page) < 0) {
565 ret = VM_FAULT_RETRY;
566 goto out;
567 }
568
569 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
570 nfs_wait_bit_killable,
571 TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
572
573 lock_page(page);
574 mapping = page_file_mapping(page);
575 if (mapping != inode->i_mapping)
576 goto out_unlock;
577
578 wait_on_page_writeback(page);
579
580 pagelen = nfs_page_length(page);
581 if (pagelen == 0)
582 goto out_unlock;
583
584 ret = VM_FAULT_LOCKED;
585 if (nfs_flush_incompatible(filp, page) == 0 &&
586 nfs_updatepage(filp, page, 0, pagelen) == 0)
587 goto out;
588
589 ret = VM_FAULT_SIGBUS;
590out_unlock:
591 unlock_page(page);
592out:
593 sb_end_pagefault(inode->i_sb);
594 return ret;
595}
596
597static const struct vm_operations_struct nfs_file_vm_ops = {
598 .fault = filemap_fault,
599 .map_pages = filemap_map_pages,
600 .page_mkwrite = nfs_vm_page_mkwrite,
601};
602
603ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
604{
605 struct file *file = iocb->ki_filp;
606 struct inode *inode = file_inode(file);
607 unsigned int mntflags = NFS_SERVER(inode)->flags;
608 ssize_t result, written;
609 errseq_t since;
610 int error;
611
612 result = nfs_key_timeout_notify(file, inode);
613 if (result)
614 return result;
615
616 if (iocb->ki_flags & IOCB_DIRECT)
617 return nfs_file_direct_write(iocb, from, false);
618
619 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
620 file, iov_iter_count(from), (long long) iocb->ki_pos);
621
622 if (IS_SWAPFILE(inode))
623 goto out_swapfile;
624 /*
625 * O_APPEND implies that we must revalidate the file length.
626 */
627 if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
628 result = nfs_revalidate_file_size(inode, file);
629 if (result)
630 return result;
631 }
632
633 nfs_clear_invalid_mapping(file->f_mapping);
634
635 since = filemap_sample_wb_err(file->f_mapping);
636 nfs_start_io_write(inode);
637 result = generic_write_checks(iocb, from);
638 if (result > 0) {
639 current->backing_dev_info = inode_to_bdi(inode);
640 result = generic_perform_write(iocb, from);
641 current->backing_dev_info = NULL;
642 }
643 nfs_end_io_write(inode);
644 if (result <= 0)
645 goto out;
646
647 written = result;
648 iocb->ki_pos += written;
649 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
650
651 if (mntflags & NFS_MOUNT_WRITE_EAGER) {
652 result = filemap_fdatawrite_range(file->f_mapping,
653 iocb->ki_pos - written,
654 iocb->ki_pos - 1);
655 if (result < 0)
656 goto out;
657 }
658 if (mntflags & NFS_MOUNT_WRITE_WAIT) {
659 filemap_fdatawait_range(file->f_mapping,
660 iocb->ki_pos - written,
661 iocb->ki_pos - 1);
662 }
663 result = generic_write_sync(iocb, written);
664 if (result < 0)
665 return result;
666
667out:
668 /* Return error values */
669 error = filemap_check_wb_err(file->f_mapping, since);
670 switch (error) {
671 default:
672 break;
673 case -EDQUOT:
674 case -EFBIG:
675 case -ENOSPC:
676 nfs_wb_all(inode);
677 error = file_check_and_advance_wb_err(file);
678 if (error < 0)
679 result = error;
680 }
681 return result;
682
683out_swapfile:
684 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
685 return -ETXTBSY;
686}
687EXPORT_SYMBOL_GPL(nfs_file_write);
688
689static int
690do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692 struct inode *inode = filp->f_mapping->host;
693 int status = 0;
694 unsigned int saved_type = fl->fl_type;
695
696 /* Try local locking first */
697 posix_test_lock(filp, fl);
698 if (fl->fl_type != F_UNLCK) {
699 /* found a conflict */
700 goto out;
701 }
702 fl->fl_type = saved_type;
703
704 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
705 goto out_noconflict;
706
707 if (is_local)
708 goto out_noconflict;
709
710 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
711out:
712 return status;
713out_noconflict:
714 fl->fl_type = F_UNLCK;
715 goto out;
716}
717
718static int
719do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
720{
721 struct inode *inode = filp->f_mapping->host;
722 struct nfs_lock_context *l_ctx;
723 int status;
724
725 /*
726 * Flush all pending writes before doing anything
727 * with locks..
728 */
729 nfs_wb_all(inode);
730
731 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
732 if (!IS_ERR(l_ctx)) {
733 status = nfs_iocounter_wait(l_ctx);
734 nfs_put_lock_context(l_ctx);
735 /* NOTE: special case
736 * If we're signalled while cleaning up locks on process exit, we
737 * still need to complete the unlock.
738 */
739 if (status < 0 && !(fl->fl_flags & FL_CLOSE))
740 return status;
741 }
742
743 /*
744 * Use local locking if mounted with "-onolock" or with appropriate
745 * "-olocal_lock="
746 */
747 if (!is_local)
748 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
749 else
750 status = locks_lock_file_wait(filp, fl);
751 return status;
752}
753
754static int
755do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
756{
757 struct inode *inode = filp->f_mapping->host;
758 int status;
759
760 /*
761 * Flush all pending writes before doing anything
762 * with locks..
763 */
764 status = nfs_sync_mapping(filp->f_mapping);
765 if (status != 0)
766 goto out;
767
768 /*
769 * Use local locking if mounted with "-onolock" or with appropriate
770 * "-olocal_lock="
771 */
772 if (!is_local)
773 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
774 else
775 status = locks_lock_file_wait(filp, fl);
776 if (status < 0)
777 goto out;
778
779 /*
780 * Invalidate cache to prevent missing any changes. If
781 * the file is mapped, clear the page cache as well so
782 * those mappings will be loaded.
783 *
784 * This makes locking act as a cache coherency point.
785 */
786 nfs_sync_mapping(filp->f_mapping);
787 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
788 nfs_zap_caches(inode);
789 if (mapping_mapped(filp->f_mapping))
790 nfs_revalidate_mapping(inode, filp->f_mapping);
791 }
792out:
793 return status;
794}
795
796/*
797 * Lock a (portion of) a file
798 */
799int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
800{
801 struct inode *inode = filp->f_mapping->host;
802 int ret = -ENOLCK;
803 int is_local = 0;
804
805 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
806 filp, fl->fl_type, fl->fl_flags,
807 (long long)fl->fl_start, (long long)fl->fl_end);
808
809 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
810
811 if (fl->fl_flags & FL_RECLAIM)
812 return -ENOGRACE;
813
814 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
815 is_local = 1;
816
817 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
818 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
819 if (ret < 0)
820 goto out_err;
821 }
822
823 if (IS_GETLK(cmd))
824 ret = do_getlk(filp, cmd, fl, is_local);
825 else if (fl->fl_type == F_UNLCK)
826 ret = do_unlk(filp, cmd, fl, is_local);
827 else
828 ret = do_setlk(filp, cmd, fl, is_local);
829out_err:
830 return ret;
831}
832EXPORT_SYMBOL_GPL(nfs_lock);
833
834/*
835 * Lock a (portion of) a file
836 */
837int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
838{
839 struct inode *inode = filp->f_mapping->host;
840 int is_local = 0;
841
842 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
843 filp, fl->fl_type, fl->fl_flags);
844
845 if (!(fl->fl_flags & FL_FLOCK))
846 return -ENOLCK;
847
848 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
849 is_local = 1;
850
851 /* We're simulating flock() locks using posix locks on the server */
852 if (fl->fl_type == F_UNLCK)
853 return do_unlk(filp, cmd, fl, is_local);
854 return do_setlk(filp, cmd, fl, is_local);
855}
856EXPORT_SYMBOL_GPL(nfs_flock);
857
858const struct file_operations nfs_file_operations = {
859 .llseek = nfs_file_llseek,
860 .read_iter = nfs_file_read,
861 .write_iter = nfs_file_write,
862 .mmap = nfs_file_mmap,
863 .open = nfs_file_open,
864 .flush = nfs_file_flush,
865 .release = nfs_file_release,
866 .fsync = nfs_file_fsync,
867 .lock = nfs_lock,
868 .flock = nfs_flock,
869 .splice_read = generic_file_splice_read,
870 .splice_write = iter_file_splice_write,
871 .check_flags = nfs_check_flags,
872 .setlease = simple_nosetlease,
873};
874EXPORT_SYMBOL_GPL(nfs_file_operations);