Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/dax.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
31#include <linux/pagevec.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/uio.h>
35#include <linux/bio.h>
36#include <linux/workqueue.h>
37#include <linux/kernel.h>
38#include <linux/printk.h>
39#include <linux/slab.h>
40#include <linux/bitops.h>
41#include <linux/iomap.h>
42#include <linux/iversion.h>
43
44#include "ext4_jbd2.h"
45#include "xattr.h"
46#include "acl.h"
47#include "truncate.h"
48
49#include <trace/events/ext4.h>
50
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136}
137
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145/*
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148 */
149int ext4_inode_is_fast_symlink(struct inode *inode)
150{
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155 if (ext4_has_inline_data(inode))
156 return 0;
157
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 }
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
162}
163
164/*
165 * Called at the last iput() if i_nlink is zero.
166 */
167void ext4_evict_inode(struct inode *inode)
168{
169 handle_t *handle;
170 int err;
171 /*
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 */
176 int extra_credits = 6;
177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
178
179 trace_ext4_evict_inode(inode);
180
181 if (inode->i_nlink) {
182 /*
183 * When journalling data dirty buffers are tracked only in the
184 * journal. So although mm thinks everything is clean and
185 * ready for reaping the inode might still have some pages to
186 * write in the running transaction or waiting to be
187 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 * (via truncate_inode_pages()) to discard these buffers can
189 * cause data loss. Also even if we did not discard these
190 * buffers, we would have no way to find them after the inode
191 * is reaped and thus user could see stale data if he tries to
192 * read them before the transaction is checkpointed. So be
193 * careful and force everything to disk here... We use
194 * ei->i_datasync_tid to store the newest transaction
195 * containing inode's data.
196 *
197 * Note that directories do not have this problem because they
198 * don't use page cache.
199 */
200 if (inode->i_ino != EXT4_JOURNAL_INO &&
201 ext4_should_journal_data(inode) &&
202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
209 }
210 truncate_inode_pages_final(&inode->i_data);
211
212 goto no_delete;
213 }
214
215 if (is_bad_inode(inode))
216 goto no_delete;
217 dquot_initialize(inode);
218
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
222
223 /*
224 * For inodes with journalled data, transaction commit could have
225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226 * flag but we still need to remove the inode from the writeback lists.
227 */
228 if (!list_empty_careful(&inode->i_io_list)) {
229 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230 inode_io_list_del(inode);
231 }
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
238
239 if (!IS_NOQUOTA(inode))
240 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
241
242 /*
243 * Block bitmap, group descriptor, and inode are accounted in both
244 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
245 */
246 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247 ext4_blocks_for_truncate(inode) + extra_credits - 3);
248 if (IS_ERR(handle)) {
249 ext4_std_error(inode->i_sb, PTR_ERR(handle));
250 /*
251 * If we're going to skip the normal cleanup, we still need to
252 * make sure that the in-core orphan linked list is properly
253 * cleaned up.
254 */
255 ext4_orphan_del(NULL, inode);
256 sb_end_intwrite(inode->i_sb);
257 goto no_delete;
258 }
259
260 if (IS_SYNC(inode))
261 ext4_handle_sync(handle);
262
263 /*
264 * Set inode->i_size to 0 before calling ext4_truncate(). We need
265 * special handling of symlinks here because i_size is used to
266 * determine whether ext4_inode_info->i_data contains symlink data or
267 * block mappings. Setting i_size to 0 will remove its fast symlink
268 * status. Erase i_data so that it becomes a valid empty block map.
269 */
270 if (ext4_inode_is_fast_symlink(inode))
271 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272 inode->i_size = 0;
273 err = ext4_mark_inode_dirty(handle, inode);
274 if (err) {
275 ext4_warning(inode->i_sb,
276 "couldn't mark inode dirty (err %d)", err);
277 goto stop_handle;
278 }
279 if (inode->i_blocks) {
280 err = ext4_truncate(inode);
281 if (err) {
282 ext4_error_err(inode->i_sb, -err,
283 "couldn't truncate inode %lu (err %d)",
284 inode->i_ino, err);
285 goto stop_handle;
286 }
287 }
288
289 /* Remove xattr references. */
290 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291 extra_credits);
292 if (err) {
293 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294stop_handle:
295 ext4_journal_stop(handle);
296 ext4_orphan_del(NULL, inode);
297 sb_end_intwrite(inode->i_sb);
298 ext4_xattr_inode_array_free(ea_inode_array);
299 goto no_delete;
300 }
301
302 /*
303 * Kill off the orphan record which ext4_truncate created.
304 * AKPM: I think this can be inside the above `if'.
305 * Note that ext4_orphan_del() has to be able to cope with the
306 * deletion of a non-existent orphan - this is because we don't
307 * know if ext4_truncate() actually created an orphan record.
308 * (Well, we could do this if we need to, but heck - it works)
309 */
310 ext4_orphan_del(handle, inode);
311 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
312
313 /*
314 * One subtle ordering requirement: if anything has gone wrong
315 * (transaction abort, IO errors, whatever), then we can still
316 * do these next steps (the fs will already have been marked as
317 * having errors), but we can't free the inode if the mark_dirty
318 * fails.
319 */
320 if (ext4_mark_inode_dirty(handle, inode))
321 /* If that failed, just do the required in-core inode clear. */
322 ext4_clear_inode(inode);
323 else
324 ext4_free_inode(handle, inode);
325 ext4_journal_stop(handle);
326 sb_end_intwrite(inode->i_sb);
327 ext4_xattr_inode_array_free(ea_inode_array);
328 return;
329no_delete:
330 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
331}
332
333#ifdef CONFIG_QUOTA
334qsize_t *ext4_get_reserved_space(struct inode *inode)
335{
336 return &EXT4_I(inode)->i_reserved_quota;
337}
338#endif
339
340/*
341 * Called with i_data_sem down, which is important since we can call
342 * ext4_discard_preallocations() from here.
343 */
344void ext4_da_update_reserve_space(struct inode *inode,
345 int used, int quota_claim)
346{
347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
348 struct ext4_inode_info *ei = EXT4_I(inode);
349
350 spin_lock(&ei->i_block_reservation_lock);
351 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
352 if (unlikely(used > ei->i_reserved_data_blocks)) {
353 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
354 "with only %d reserved data blocks",
355 __func__, inode->i_ino, used,
356 ei->i_reserved_data_blocks);
357 WARN_ON(1);
358 used = ei->i_reserved_data_blocks;
359 }
360
361 /* Update per-inode reservations */
362 ei->i_reserved_data_blocks -= used;
363 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
364
365 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
366
367 /* Update quota subsystem for data blocks */
368 if (quota_claim)
369 dquot_claim_block(inode, EXT4_C2B(sbi, used));
370 else {
371 /*
372 * We did fallocate with an offset that is already delayed
373 * allocated. So on delayed allocated writeback we should
374 * not re-claim the quota for fallocated blocks.
375 */
376 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
377 }
378
379 /*
380 * If we have done all the pending block allocations and if
381 * there aren't any writers on the inode, we can discard the
382 * inode's preallocations.
383 */
384 if ((ei->i_reserved_data_blocks == 0) &&
385 !inode_is_open_for_write(inode))
386 ext4_discard_preallocations(inode, 0);
387}
388
389static int __check_block_validity(struct inode *inode, const char *func,
390 unsigned int line,
391 struct ext4_map_blocks *map)
392{
393 if (ext4_has_feature_journal(inode->i_sb) &&
394 (inode->i_ino ==
395 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
396 return 0;
397 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
398 ext4_error_inode(inode, func, line, map->m_pblk,
399 "lblock %lu mapped to illegal pblock %llu "
400 "(length %d)", (unsigned long) map->m_lblk,
401 map->m_pblk, map->m_len);
402 return -EFSCORRUPTED;
403 }
404 return 0;
405}
406
407int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
408 ext4_lblk_t len)
409{
410 int ret;
411
412 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
413 return fscrypt_zeroout_range(inode, lblk, pblk, len);
414
415 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
416 if (ret > 0)
417 ret = 0;
418
419 return ret;
420}
421
422#define check_block_validity(inode, map) \
423 __check_block_validity((inode), __func__, __LINE__, (map))
424
425#ifdef ES_AGGRESSIVE_TEST
426static void ext4_map_blocks_es_recheck(handle_t *handle,
427 struct inode *inode,
428 struct ext4_map_blocks *es_map,
429 struct ext4_map_blocks *map,
430 int flags)
431{
432 int retval;
433
434 map->m_flags = 0;
435 /*
436 * There is a race window that the result is not the same.
437 * e.g. xfstests #223 when dioread_nolock enables. The reason
438 * is that we lookup a block mapping in extent status tree with
439 * out taking i_data_sem. So at the time the unwritten extent
440 * could be converted.
441 */
442 down_read(&EXT4_I(inode)->i_data_sem);
443 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
444 retval = ext4_ext_map_blocks(handle, inode, map, 0);
445 } else {
446 retval = ext4_ind_map_blocks(handle, inode, map, 0);
447 }
448 up_read((&EXT4_I(inode)->i_data_sem));
449
450 /*
451 * We don't check m_len because extent will be collpased in status
452 * tree. So the m_len might not equal.
453 */
454 if (es_map->m_lblk != map->m_lblk ||
455 es_map->m_flags != map->m_flags ||
456 es_map->m_pblk != map->m_pblk) {
457 printk("ES cache assertion failed for inode: %lu "
458 "es_cached ex [%d/%d/%llu/%x] != "
459 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
460 inode->i_ino, es_map->m_lblk, es_map->m_len,
461 es_map->m_pblk, es_map->m_flags, map->m_lblk,
462 map->m_len, map->m_pblk, map->m_flags,
463 retval, flags);
464 }
465}
466#endif /* ES_AGGRESSIVE_TEST */
467
468/*
469 * The ext4_map_blocks() function tries to look up the requested blocks,
470 * and returns if the blocks are already mapped.
471 *
472 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
473 * and store the allocated blocks in the result buffer head and mark it
474 * mapped.
475 *
476 * If file type is extents based, it will call ext4_ext_map_blocks(),
477 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
478 * based files
479 *
480 * On success, it returns the number of blocks being mapped or allocated. if
481 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
482 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
483 *
484 * It returns 0 if plain look up failed (blocks have not been allocated), in
485 * that case, @map is returned as unmapped but we still do fill map->m_len to
486 * indicate the length of a hole starting at map->m_lblk.
487 *
488 * It returns the error in case of allocation failure.
489 */
490int ext4_map_blocks(handle_t *handle, struct inode *inode,
491 struct ext4_map_blocks *map, int flags)
492{
493 struct extent_status es;
494 int retval;
495 int ret = 0;
496#ifdef ES_AGGRESSIVE_TEST
497 struct ext4_map_blocks orig_map;
498
499 memcpy(&orig_map, map, sizeof(*map));
500#endif
501
502 map->m_flags = 0;
503 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
504 flags, map->m_len, (unsigned long) map->m_lblk);
505
506 /*
507 * ext4_map_blocks returns an int, and m_len is an unsigned int
508 */
509 if (unlikely(map->m_len > INT_MAX))
510 map->m_len = INT_MAX;
511
512 /* We can handle the block number less than EXT_MAX_BLOCKS */
513 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
514 return -EFSCORRUPTED;
515
516 /* Lookup extent status tree firstly */
517 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
518 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
519 map->m_pblk = ext4_es_pblock(&es) +
520 map->m_lblk - es.es_lblk;
521 map->m_flags |= ext4_es_is_written(&es) ?
522 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
523 retval = es.es_len - (map->m_lblk - es.es_lblk);
524 if (retval > map->m_len)
525 retval = map->m_len;
526 map->m_len = retval;
527 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
528 map->m_pblk = 0;
529 retval = es.es_len - (map->m_lblk - es.es_lblk);
530 if (retval > map->m_len)
531 retval = map->m_len;
532 map->m_len = retval;
533 retval = 0;
534 } else {
535 BUG();
536 }
537#ifdef ES_AGGRESSIVE_TEST
538 ext4_map_blocks_es_recheck(handle, inode, map,
539 &orig_map, flags);
540#endif
541 goto found;
542 }
543
544 /*
545 * Try to see if we can get the block without requesting a new
546 * file system block.
547 */
548 down_read(&EXT4_I(inode)->i_data_sem);
549 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
550 retval = ext4_ext_map_blocks(handle, inode, map, 0);
551 } else {
552 retval = ext4_ind_map_blocks(handle, inode, map, 0);
553 }
554 if (retval > 0) {
555 unsigned int status;
556
557 if (unlikely(retval != map->m_len)) {
558 ext4_warning(inode->i_sb,
559 "ES len assertion failed for inode "
560 "%lu: retval %d != map->m_len %d",
561 inode->i_ino, retval, map->m_len);
562 WARN_ON(1);
563 }
564
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 !(status & EXTENT_STATUS_WRITTEN) &&
569 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
577 up_read((&EXT4_I(inode)->i_data_sem));
578
579found:
580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 ret = check_block_validity(inode, map);
582 if (ret != 0)
583 return ret;
584 }
585
586 /* If it is only a block(s) look up */
587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588 return retval;
589
590 /*
591 * Returns if the blocks have already allocated
592 *
593 * Note that if blocks have been preallocated
594 * ext4_ext_get_block() returns the create = 0
595 * with buffer head unmapped.
596 */
597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598 /*
599 * If we need to convert extent to unwritten
600 * we continue and do the actual work in
601 * ext4_ext_map_blocks()
602 */
603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604 return retval;
605
606 /*
607 * Here we clear m_flags because after allocating an new extent,
608 * it will be set again.
609 */
610 map->m_flags &= ~EXT4_MAP_FLAGS;
611
612 /*
613 * New blocks allocate and/or writing to unwritten extent
614 * will possibly result in updating i_data, so we take
615 * the write lock of i_data_sem, and call get_block()
616 * with create == 1 flag.
617 */
618 down_write(&EXT4_I(inode)->i_data_sem);
619
620 /*
621 * We need to check for EXT4 here because migrate
622 * could have changed the inode type in between
623 */
624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626 } else {
627 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630 /*
631 * We allocated new blocks which will result in
632 * i_data's format changing. Force the migrate
633 * to fail by clearing migrate flags
634 */
635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636 }
637
638 /*
639 * Update reserved blocks/metadata blocks after successful
640 * block allocation which had been deferred till now. We don't
641 * support fallocate for non extent files. So we can update
642 * reserve space here.
643 */
644 if ((retval > 0) &&
645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 ext4_da_update_reserve_space(inode, retval, 1);
647 }
648
649 if (retval > 0) {
650 unsigned int status;
651
652 if (unlikely(retval != map->m_len)) {
653 ext4_warning(inode->i_sb,
654 "ES len assertion failed for inode "
655 "%lu: retval %d != map->m_len %d",
656 inode->i_ino, retval, map->m_len);
657 WARN_ON(1);
658 }
659
660 /*
661 * We have to zeroout blocks before inserting them into extent
662 * status tree. Otherwise someone could look them up there and
663 * use them before they are really zeroed. We also have to
664 * unmap metadata before zeroing as otherwise writeback can
665 * overwrite zeros with stale data from block device.
666 */
667 if (flags & EXT4_GET_BLOCKS_ZERO &&
668 map->m_flags & EXT4_MAP_MAPPED &&
669 map->m_flags & EXT4_MAP_NEW) {
670 ret = ext4_issue_zeroout(inode, map->m_lblk,
671 map->m_pblk, map->m_len);
672 if (ret) {
673 retval = ret;
674 goto out_sem;
675 }
676 }
677
678 /*
679 * If the extent has been zeroed out, we don't need to update
680 * extent status tree.
681 */
682 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
683 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
684 if (ext4_es_is_written(&es))
685 goto out_sem;
686 }
687 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
688 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
689 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
690 !(status & EXTENT_STATUS_WRITTEN) &&
691 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
692 map->m_lblk + map->m_len - 1))
693 status |= EXTENT_STATUS_DELAYED;
694 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
695 map->m_pblk, status);
696 if (ret < 0) {
697 retval = ret;
698 goto out_sem;
699 }
700 }
701
702out_sem:
703 up_write((&EXT4_I(inode)->i_data_sem));
704 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705 ret = check_block_validity(inode, map);
706 if (ret != 0)
707 return ret;
708
709 /*
710 * Inodes with freshly allocated blocks where contents will be
711 * visible after transaction commit must be on transaction's
712 * ordered data list.
713 */
714 if (map->m_flags & EXT4_MAP_NEW &&
715 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 !ext4_is_quota_file(inode) &&
718 ext4_should_order_data(inode)) {
719 loff_t start_byte =
720 (loff_t)map->m_lblk << inode->i_blkbits;
721 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722
723 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724 ret = ext4_jbd2_inode_add_wait(handle, inode,
725 start_byte, length);
726 else
727 ret = ext4_jbd2_inode_add_write(handle, inode,
728 start_byte, length);
729 if (ret)
730 return ret;
731 }
732 }
733
734 if (retval < 0)
735 ext_debug(inode, "failed with err %d\n", retval);
736 return retval;
737}
738
739/*
740 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
741 * we have to be careful as someone else may be manipulating b_state as well.
742 */
743static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
744{
745 unsigned long old_state;
746 unsigned long new_state;
747
748 flags &= EXT4_MAP_FLAGS;
749
750 /* Dummy buffer_head? Set non-atomically. */
751 if (!bh->b_page) {
752 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
753 return;
754 }
755 /*
756 * Someone else may be modifying b_state. Be careful! This is ugly but
757 * once we get rid of using bh as a container for mapping information
758 * to pass to / from get_block functions, this can go away.
759 */
760 do {
761 old_state = READ_ONCE(bh->b_state);
762 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
763 } while (unlikely(
764 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
765}
766
767static int _ext4_get_block(struct inode *inode, sector_t iblock,
768 struct buffer_head *bh, int flags)
769{
770 struct ext4_map_blocks map;
771 int ret = 0;
772
773 if (ext4_has_inline_data(inode))
774 return -ERANGE;
775
776 map.m_lblk = iblock;
777 map.m_len = bh->b_size >> inode->i_blkbits;
778
779 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
780 flags);
781 if (ret > 0) {
782 map_bh(bh, inode->i_sb, map.m_pblk);
783 ext4_update_bh_state(bh, map.m_flags);
784 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
785 ret = 0;
786 } else if (ret == 0) {
787 /* hole case, need to fill in bh->b_size */
788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 }
790 return ret;
791}
792
793int ext4_get_block(struct inode *inode, sector_t iblock,
794 struct buffer_head *bh, int create)
795{
796 return _ext4_get_block(inode, iblock, bh,
797 create ? EXT4_GET_BLOCKS_CREATE : 0);
798}
799
800/*
801 * Get block function used when preparing for buffered write if we require
802 * creating an unwritten extent if blocks haven't been allocated. The extent
803 * will be converted to written after the IO is complete.
804 */
805int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
806 struct buffer_head *bh_result, int create)
807{
808 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
809 inode->i_ino, create);
810 return _ext4_get_block(inode, iblock, bh_result,
811 EXT4_GET_BLOCKS_IO_CREATE_EXT);
812}
813
814/* Maximum number of blocks we map for direct IO at once. */
815#define DIO_MAX_BLOCKS 4096
816
817/*
818 * `handle' can be NULL if create is zero
819 */
820struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
821 ext4_lblk_t block, int map_flags)
822{
823 struct ext4_map_blocks map;
824 struct buffer_head *bh;
825 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
826 int err;
827
828 J_ASSERT(handle != NULL || create == 0);
829
830 map.m_lblk = block;
831 map.m_len = 1;
832 err = ext4_map_blocks(handle, inode, &map, map_flags);
833
834 if (err == 0)
835 return create ? ERR_PTR(-ENOSPC) : NULL;
836 if (err < 0)
837 return ERR_PTR(err);
838
839 bh = sb_getblk(inode->i_sb, map.m_pblk);
840 if (unlikely(!bh))
841 return ERR_PTR(-ENOMEM);
842 if (map.m_flags & EXT4_MAP_NEW) {
843 J_ASSERT(create != 0);
844 J_ASSERT(handle != NULL);
845
846 /*
847 * Now that we do not always journal data, we should
848 * keep in mind whether this should always journal the
849 * new buffer as metadata. For now, regular file
850 * writes use ext4_get_block instead, so it's not a
851 * problem.
852 */
853 lock_buffer(bh);
854 BUFFER_TRACE(bh, "call get_create_access");
855 err = ext4_journal_get_create_access(handle, bh);
856 if (unlikely(err)) {
857 unlock_buffer(bh);
858 goto errout;
859 }
860 if (!buffer_uptodate(bh)) {
861 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
862 set_buffer_uptodate(bh);
863 }
864 unlock_buffer(bh);
865 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
866 err = ext4_handle_dirty_metadata(handle, inode, bh);
867 if (unlikely(err))
868 goto errout;
869 } else
870 BUFFER_TRACE(bh, "not a new buffer");
871 return bh;
872errout:
873 brelse(bh);
874 return ERR_PTR(err);
875}
876
877struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
878 ext4_lblk_t block, int map_flags)
879{
880 struct buffer_head *bh;
881
882 bh = ext4_getblk(handle, inode, block, map_flags);
883 if (IS_ERR(bh))
884 return bh;
885 if (!bh || ext4_buffer_uptodate(bh))
886 return bh;
887 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
888 wait_on_buffer(bh);
889 if (buffer_uptodate(bh))
890 return bh;
891 put_bh(bh);
892 return ERR_PTR(-EIO);
893}
894
895/* Read a contiguous batch of blocks. */
896int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
897 bool wait, struct buffer_head **bhs)
898{
899 int i, err;
900
901 for (i = 0; i < bh_count; i++) {
902 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
903 if (IS_ERR(bhs[i])) {
904 err = PTR_ERR(bhs[i]);
905 bh_count = i;
906 goto out_brelse;
907 }
908 }
909
910 for (i = 0; i < bh_count; i++)
911 /* Note that NULL bhs[i] is valid because of holes. */
912 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
913 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
914 &bhs[i]);
915
916 if (!wait)
917 return 0;
918
919 for (i = 0; i < bh_count; i++)
920 if (bhs[i])
921 wait_on_buffer(bhs[i]);
922
923 for (i = 0; i < bh_count; i++) {
924 if (bhs[i] && !buffer_uptodate(bhs[i])) {
925 err = -EIO;
926 goto out_brelse;
927 }
928 }
929 return 0;
930
931out_brelse:
932 for (i = 0; i < bh_count; i++) {
933 brelse(bhs[i]);
934 bhs[i] = NULL;
935 }
936 return err;
937}
938
939int ext4_walk_page_buffers(handle_t *handle,
940 struct buffer_head *head,
941 unsigned from,
942 unsigned to,
943 int *partial,
944 int (*fn)(handle_t *handle,
945 struct buffer_head *bh))
946{
947 struct buffer_head *bh;
948 unsigned block_start, block_end;
949 unsigned blocksize = head->b_size;
950 int err, ret = 0;
951 struct buffer_head *next;
952
953 for (bh = head, block_start = 0;
954 ret == 0 && (bh != head || !block_start);
955 block_start = block_end, bh = next) {
956 next = bh->b_this_page;
957 block_end = block_start + blocksize;
958 if (block_end <= from || block_start >= to) {
959 if (partial && !buffer_uptodate(bh))
960 *partial = 1;
961 continue;
962 }
963 err = (*fn)(handle, bh);
964 if (!ret)
965 ret = err;
966 }
967 return ret;
968}
969
970/*
971 * To preserve ordering, it is essential that the hole instantiation and
972 * the data write be encapsulated in a single transaction. We cannot
973 * close off a transaction and start a new one between the ext4_get_block()
974 * and the commit_write(). So doing the jbd2_journal_start at the start of
975 * prepare_write() is the right place.
976 *
977 * Also, this function can nest inside ext4_writepage(). In that case, we
978 * *know* that ext4_writepage() has generated enough buffer credits to do the
979 * whole page. So we won't block on the journal in that case, which is good,
980 * because the caller may be PF_MEMALLOC.
981 *
982 * By accident, ext4 can be reentered when a transaction is open via
983 * quota file writes. If we were to commit the transaction while thus
984 * reentered, there can be a deadlock - we would be holding a quota
985 * lock, and the commit would never complete if another thread had a
986 * transaction open and was blocking on the quota lock - a ranking
987 * violation.
988 *
989 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
990 * will _not_ run commit under these circumstances because handle->h_ref
991 * is elevated. We'll still have enough credits for the tiny quotafile
992 * write.
993 */
994int do_journal_get_write_access(handle_t *handle,
995 struct buffer_head *bh)
996{
997 int dirty = buffer_dirty(bh);
998 int ret;
999
1000 if (!buffer_mapped(bh) || buffer_freed(bh))
1001 return 0;
1002 /*
1003 * __block_write_begin() could have dirtied some buffers. Clean
1004 * the dirty bit as jbd2_journal_get_write_access() could complain
1005 * otherwise about fs integrity issues. Setting of the dirty bit
1006 * by __block_write_begin() isn't a real problem here as we clear
1007 * the bit before releasing a page lock and thus writeback cannot
1008 * ever write the buffer.
1009 */
1010 if (dirty)
1011 clear_buffer_dirty(bh);
1012 BUFFER_TRACE(bh, "get write access");
1013 ret = ext4_journal_get_write_access(handle, bh);
1014 if (!ret && dirty)
1015 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1016 return ret;
1017}
1018
1019#ifdef CONFIG_FS_ENCRYPTION
1020static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1021 get_block_t *get_block)
1022{
1023 unsigned from = pos & (PAGE_SIZE - 1);
1024 unsigned to = from + len;
1025 struct inode *inode = page->mapping->host;
1026 unsigned block_start, block_end;
1027 sector_t block;
1028 int err = 0;
1029 unsigned blocksize = inode->i_sb->s_blocksize;
1030 unsigned bbits;
1031 struct buffer_head *bh, *head, *wait[2];
1032 int nr_wait = 0;
1033 int i;
1034
1035 BUG_ON(!PageLocked(page));
1036 BUG_ON(from > PAGE_SIZE);
1037 BUG_ON(to > PAGE_SIZE);
1038 BUG_ON(from > to);
1039
1040 if (!page_has_buffers(page))
1041 create_empty_buffers(page, blocksize, 0);
1042 head = page_buffers(page);
1043 bbits = ilog2(blocksize);
1044 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1045
1046 for (bh = head, block_start = 0; bh != head || !block_start;
1047 block++, block_start = block_end, bh = bh->b_this_page) {
1048 block_end = block_start + blocksize;
1049 if (block_end <= from || block_start >= to) {
1050 if (PageUptodate(page)) {
1051 if (!buffer_uptodate(bh))
1052 set_buffer_uptodate(bh);
1053 }
1054 continue;
1055 }
1056 if (buffer_new(bh))
1057 clear_buffer_new(bh);
1058 if (!buffer_mapped(bh)) {
1059 WARN_ON(bh->b_size != blocksize);
1060 err = get_block(inode, block, bh, 1);
1061 if (err)
1062 break;
1063 if (buffer_new(bh)) {
1064 if (PageUptodate(page)) {
1065 clear_buffer_new(bh);
1066 set_buffer_uptodate(bh);
1067 mark_buffer_dirty(bh);
1068 continue;
1069 }
1070 if (block_end > to || block_start < from)
1071 zero_user_segments(page, to, block_end,
1072 block_start, from);
1073 continue;
1074 }
1075 }
1076 if (PageUptodate(page)) {
1077 if (!buffer_uptodate(bh))
1078 set_buffer_uptodate(bh);
1079 continue;
1080 }
1081 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1082 !buffer_unwritten(bh) &&
1083 (block_start < from || block_end > to)) {
1084 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1085 wait[nr_wait++] = bh;
1086 }
1087 }
1088 /*
1089 * If we issued read requests, let them complete.
1090 */
1091 for (i = 0; i < nr_wait; i++) {
1092 wait_on_buffer(wait[i]);
1093 if (!buffer_uptodate(wait[i]))
1094 err = -EIO;
1095 }
1096 if (unlikely(err)) {
1097 page_zero_new_buffers(page, from, to);
1098 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1099 for (i = 0; i < nr_wait; i++) {
1100 int err2;
1101
1102 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1103 bh_offset(wait[i]));
1104 if (err2) {
1105 clear_buffer_uptodate(wait[i]);
1106 err = err2;
1107 }
1108 }
1109 }
1110
1111 return err;
1112}
1113#endif
1114
1115static int ext4_write_begin(struct file *file, struct address_space *mapping,
1116 loff_t pos, unsigned len, unsigned flags,
1117 struct page **pagep, void **fsdata)
1118{
1119 struct inode *inode = mapping->host;
1120 int ret, needed_blocks;
1121 handle_t *handle;
1122 int retries = 0;
1123 struct page *page;
1124 pgoff_t index;
1125 unsigned from, to;
1126
1127 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1128 return -EIO;
1129
1130 trace_ext4_write_begin(inode, pos, len, flags);
1131 /*
1132 * Reserve one block more for addition to orphan list in case
1133 * we allocate blocks but write fails for some reason
1134 */
1135 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1136 index = pos >> PAGE_SHIFT;
1137 from = pos & (PAGE_SIZE - 1);
1138 to = from + len;
1139
1140 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1141 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1142 flags, pagep);
1143 if (ret < 0)
1144 return ret;
1145 if (ret == 1)
1146 return 0;
1147 }
1148
1149 /*
1150 * grab_cache_page_write_begin() can take a long time if the
1151 * system is thrashing due to memory pressure, or if the page
1152 * is being written back. So grab it first before we start
1153 * the transaction handle. This also allows us to allocate
1154 * the page (if needed) without using GFP_NOFS.
1155 */
1156retry_grab:
1157 page = grab_cache_page_write_begin(mapping, index, flags);
1158 if (!page)
1159 return -ENOMEM;
1160 unlock_page(page);
1161
1162retry_journal:
1163 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1164 if (IS_ERR(handle)) {
1165 put_page(page);
1166 return PTR_ERR(handle);
1167 }
1168
1169 lock_page(page);
1170 if (page->mapping != mapping) {
1171 /* The page got truncated from under us */
1172 unlock_page(page);
1173 put_page(page);
1174 ext4_journal_stop(handle);
1175 goto retry_grab;
1176 }
1177 /* In case writeback began while the page was unlocked */
1178 wait_for_stable_page(page);
1179
1180#ifdef CONFIG_FS_ENCRYPTION
1181 if (ext4_should_dioread_nolock(inode))
1182 ret = ext4_block_write_begin(page, pos, len,
1183 ext4_get_block_unwritten);
1184 else
1185 ret = ext4_block_write_begin(page, pos, len,
1186 ext4_get_block);
1187#else
1188 if (ext4_should_dioread_nolock(inode))
1189 ret = __block_write_begin(page, pos, len,
1190 ext4_get_block_unwritten);
1191 else
1192 ret = __block_write_begin(page, pos, len, ext4_get_block);
1193#endif
1194 if (!ret && ext4_should_journal_data(inode)) {
1195 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1196 from, to, NULL,
1197 do_journal_get_write_access);
1198 }
1199
1200 if (ret) {
1201 bool extended = (pos + len > inode->i_size) &&
1202 !ext4_verity_in_progress(inode);
1203
1204 unlock_page(page);
1205 /*
1206 * __block_write_begin may have instantiated a few blocks
1207 * outside i_size. Trim these off again. Don't need
1208 * i_size_read because we hold i_mutex.
1209 *
1210 * Add inode to orphan list in case we crash before
1211 * truncate finishes
1212 */
1213 if (extended && ext4_can_truncate(inode))
1214 ext4_orphan_add(handle, inode);
1215
1216 ext4_journal_stop(handle);
1217 if (extended) {
1218 ext4_truncate_failed_write(inode);
1219 /*
1220 * If truncate failed early the inode might
1221 * still be on the orphan list; we need to
1222 * make sure the inode is removed from the
1223 * orphan list in that case.
1224 */
1225 if (inode->i_nlink)
1226 ext4_orphan_del(NULL, inode);
1227 }
1228
1229 if (ret == -ENOSPC &&
1230 ext4_should_retry_alloc(inode->i_sb, &retries))
1231 goto retry_journal;
1232 put_page(page);
1233 return ret;
1234 }
1235 *pagep = page;
1236 return ret;
1237}
1238
1239/* For write_end() in data=journal mode */
1240static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1241{
1242 int ret;
1243 if (!buffer_mapped(bh) || buffer_freed(bh))
1244 return 0;
1245 set_buffer_uptodate(bh);
1246 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1247 clear_buffer_meta(bh);
1248 clear_buffer_prio(bh);
1249 return ret;
1250}
1251
1252/*
1253 * We need to pick up the new inode size which generic_commit_write gave us
1254 * `file' can be NULL - eg, when called from page_symlink().
1255 *
1256 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1257 * buffers are managed internally.
1258 */
1259static int ext4_write_end(struct file *file,
1260 struct address_space *mapping,
1261 loff_t pos, unsigned len, unsigned copied,
1262 struct page *page, void *fsdata)
1263{
1264 handle_t *handle = ext4_journal_current_handle();
1265 struct inode *inode = mapping->host;
1266 loff_t old_size = inode->i_size;
1267 int ret = 0, ret2;
1268 int i_size_changed = 0;
1269 int inline_data = ext4_has_inline_data(inode);
1270 bool verity = ext4_verity_in_progress(inode);
1271
1272 trace_ext4_write_end(inode, pos, len, copied);
1273 if (inline_data) {
1274 ret = ext4_write_inline_data_end(inode, pos, len,
1275 copied, page);
1276 if (ret < 0) {
1277 unlock_page(page);
1278 put_page(page);
1279 goto errout;
1280 }
1281 copied = ret;
1282 } else
1283 copied = block_write_end(file, mapping, pos,
1284 len, copied, page, fsdata);
1285 /*
1286 * it's important to update i_size while still holding page lock:
1287 * page writeout could otherwise come in and zero beyond i_size.
1288 *
1289 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1290 * blocks are being written past EOF, so skip the i_size update.
1291 */
1292 if (!verity)
1293 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1294 unlock_page(page);
1295 put_page(page);
1296
1297 if (old_size < pos && !verity)
1298 pagecache_isize_extended(inode, old_size, pos);
1299 /*
1300 * Don't mark the inode dirty under page lock. First, it unnecessarily
1301 * makes the holding time of page lock longer. Second, it forces lock
1302 * ordering of page lock and transaction start for journaling
1303 * filesystems.
1304 */
1305 if (i_size_changed || inline_data)
1306 ret = ext4_mark_inode_dirty(handle, inode);
1307
1308 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1309 /* if we have allocated more blocks and copied
1310 * less. We will have blocks allocated outside
1311 * inode->i_size. So truncate them
1312 */
1313 ext4_orphan_add(handle, inode);
1314errout:
1315 ret2 = ext4_journal_stop(handle);
1316 if (!ret)
1317 ret = ret2;
1318
1319 if (pos + len > inode->i_size && !verity) {
1320 ext4_truncate_failed_write(inode);
1321 /*
1322 * If truncate failed early the inode might still be
1323 * on the orphan list; we need to make sure the inode
1324 * is removed from the orphan list in that case.
1325 */
1326 if (inode->i_nlink)
1327 ext4_orphan_del(NULL, inode);
1328 }
1329
1330 return ret ? ret : copied;
1331}
1332
1333/*
1334 * This is a private version of page_zero_new_buffers() which doesn't
1335 * set the buffer to be dirty, since in data=journalled mode we need
1336 * to call ext4_handle_dirty_metadata() instead.
1337 */
1338static void ext4_journalled_zero_new_buffers(handle_t *handle,
1339 struct page *page,
1340 unsigned from, unsigned to)
1341{
1342 unsigned int block_start = 0, block_end;
1343 struct buffer_head *head, *bh;
1344
1345 bh = head = page_buffers(page);
1346 do {
1347 block_end = block_start + bh->b_size;
1348 if (buffer_new(bh)) {
1349 if (block_end > from && block_start < to) {
1350 if (!PageUptodate(page)) {
1351 unsigned start, size;
1352
1353 start = max(from, block_start);
1354 size = min(to, block_end) - start;
1355
1356 zero_user(page, start, size);
1357 write_end_fn(handle, bh);
1358 }
1359 clear_buffer_new(bh);
1360 }
1361 }
1362 block_start = block_end;
1363 bh = bh->b_this_page;
1364 } while (bh != head);
1365}
1366
1367static int ext4_journalled_write_end(struct file *file,
1368 struct address_space *mapping,
1369 loff_t pos, unsigned len, unsigned copied,
1370 struct page *page, void *fsdata)
1371{
1372 handle_t *handle = ext4_journal_current_handle();
1373 struct inode *inode = mapping->host;
1374 loff_t old_size = inode->i_size;
1375 int ret = 0, ret2;
1376 int partial = 0;
1377 unsigned from, to;
1378 int size_changed = 0;
1379 int inline_data = ext4_has_inline_data(inode);
1380 bool verity = ext4_verity_in_progress(inode);
1381
1382 trace_ext4_journalled_write_end(inode, pos, len, copied);
1383 from = pos & (PAGE_SIZE - 1);
1384 to = from + len;
1385
1386 BUG_ON(!ext4_handle_valid(handle));
1387
1388 if (inline_data) {
1389 ret = ext4_write_inline_data_end(inode, pos, len,
1390 copied, page);
1391 if (ret < 0) {
1392 unlock_page(page);
1393 put_page(page);
1394 goto errout;
1395 }
1396 copied = ret;
1397 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1398 copied = 0;
1399 ext4_journalled_zero_new_buffers(handle, page, from, to);
1400 } else {
1401 if (unlikely(copied < len))
1402 ext4_journalled_zero_new_buffers(handle, page,
1403 from + copied, to);
1404 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1405 from + copied, &partial,
1406 write_end_fn);
1407 if (!partial)
1408 SetPageUptodate(page);
1409 }
1410 if (!verity)
1411 size_changed = ext4_update_inode_size(inode, pos + copied);
1412 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1413 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1414 unlock_page(page);
1415 put_page(page);
1416
1417 if (old_size < pos && !verity)
1418 pagecache_isize_extended(inode, old_size, pos);
1419
1420 if (size_changed || inline_data) {
1421 ret2 = ext4_mark_inode_dirty(handle, inode);
1422 if (!ret)
1423 ret = ret2;
1424 }
1425
1426 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1427 /* if we have allocated more blocks and copied
1428 * less. We will have blocks allocated outside
1429 * inode->i_size. So truncate them
1430 */
1431 ext4_orphan_add(handle, inode);
1432
1433errout:
1434 ret2 = ext4_journal_stop(handle);
1435 if (!ret)
1436 ret = ret2;
1437 if (pos + len > inode->i_size && !verity) {
1438 ext4_truncate_failed_write(inode);
1439 /*
1440 * If truncate failed early the inode might still be
1441 * on the orphan list; we need to make sure the inode
1442 * is removed from the orphan list in that case.
1443 */
1444 if (inode->i_nlink)
1445 ext4_orphan_del(NULL, inode);
1446 }
1447
1448 return ret ? ret : copied;
1449}
1450
1451/*
1452 * Reserve space for a single cluster
1453 */
1454static int ext4_da_reserve_space(struct inode *inode)
1455{
1456 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1457 struct ext4_inode_info *ei = EXT4_I(inode);
1458 int ret;
1459
1460 /*
1461 * We will charge metadata quota at writeout time; this saves
1462 * us from metadata over-estimation, though we may go over by
1463 * a small amount in the end. Here we just reserve for data.
1464 */
1465 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1466 if (ret)
1467 return ret;
1468
1469 spin_lock(&ei->i_block_reservation_lock);
1470 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1471 spin_unlock(&ei->i_block_reservation_lock);
1472 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1473 return -ENOSPC;
1474 }
1475 ei->i_reserved_data_blocks++;
1476 trace_ext4_da_reserve_space(inode);
1477 spin_unlock(&ei->i_block_reservation_lock);
1478
1479 return 0; /* success */
1480}
1481
1482void ext4_da_release_space(struct inode *inode, int to_free)
1483{
1484 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1485 struct ext4_inode_info *ei = EXT4_I(inode);
1486
1487 if (!to_free)
1488 return; /* Nothing to release, exit */
1489
1490 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1491
1492 trace_ext4_da_release_space(inode, to_free);
1493 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1494 /*
1495 * if there aren't enough reserved blocks, then the
1496 * counter is messed up somewhere. Since this
1497 * function is called from invalidate page, it's
1498 * harmless to return without any action.
1499 */
1500 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1501 "ino %lu, to_free %d with only %d reserved "
1502 "data blocks", inode->i_ino, to_free,
1503 ei->i_reserved_data_blocks);
1504 WARN_ON(1);
1505 to_free = ei->i_reserved_data_blocks;
1506 }
1507 ei->i_reserved_data_blocks -= to_free;
1508
1509 /* update fs dirty data blocks counter */
1510 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1511
1512 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1513
1514 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1515}
1516
1517/*
1518 * Delayed allocation stuff
1519 */
1520
1521struct mpage_da_data {
1522 struct inode *inode;
1523 struct writeback_control *wbc;
1524
1525 pgoff_t first_page; /* The first page to write */
1526 pgoff_t next_page; /* Current page to examine */
1527 pgoff_t last_page; /* Last page to examine */
1528 /*
1529 * Extent to map - this can be after first_page because that can be
1530 * fully mapped. We somewhat abuse m_flags to store whether the extent
1531 * is delalloc or unwritten.
1532 */
1533 struct ext4_map_blocks map;
1534 struct ext4_io_submit io_submit; /* IO submission data */
1535 unsigned int do_map:1;
1536 unsigned int scanned_until_end:1;
1537};
1538
1539static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1540 bool invalidate)
1541{
1542 int nr_pages, i;
1543 pgoff_t index, end;
1544 struct pagevec pvec;
1545 struct inode *inode = mpd->inode;
1546 struct address_space *mapping = inode->i_mapping;
1547
1548 /* This is necessary when next_page == 0. */
1549 if (mpd->first_page >= mpd->next_page)
1550 return;
1551
1552 mpd->scanned_until_end = 0;
1553 index = mpd->first_page;
1554 end = mpd->next_page - 1;
1555 if (invalidate) {
1556 ext4_lblk_t start, last;
1557 start = index << (PAGE_SHIFT - inode->i_blkbits);
1558 last = end << (PAGE_SHIFT - inode->i_blkbits);
1559 ext4_es_remove_extent(inode, start, last - start + 1);
1560 }
1561
1562 pagevec_init(&pvec);
1563 while (index <= end) {
1564 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1565 if (nr_pages == 0)
1566 break;
1567 for (i = 0; i < nr_pages; i++) {
1568 struct page *page = pvec.pages[i];
1569
1570 BUG_ON(!PageLocked(page));
1571 BUG_ON(PageWriteback(page));
1572 if (invalidate) {
1573 if (page_mapped(page))
1574 clear_page_dirty_for_io(page);
1575 block_invalidatepage(page, 0, PAGE_SIZE);
1576 ClearPageUptodate(page);
1577 }
1578 unlock_page(page);
1579 }
1580 pagevec_release(&pvec);
1581 }
1582}
1583
1584static void ext4_print_free_blocks(struct inode *inode)
1585{
1586 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1587 struct super_block *sb = inode->i_sb;
1588 struct ext4_inode_info *ei = EXT4_I(inode);
1589
1590 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1591 EXT4_C2B(EXT4_SB(inode->i_sb),
1592 ext4_count_free_clusters(sb)));
1593 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1594 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1595 (long long) EXT4_C2B(EXT4_SB(sb),
1596 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1597 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1598 (long long) EXT4_C2B(EXT4_SB(sb),
1599 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1600 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1601 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1602 ei->i_reserved_data_blocks);
1603 return;
1604}
1605
1606static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1607{
1608 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1609}
1610
1611/*
1612 * ext4_insert_delayed_block - adds a delayed block to the extents status
1613 * tree, incrementing the reserved cluster/block
1614 * count or making a pending reservation
1615 * where needed
1616 *
1617 * @inode - file containing the newly added block
1618 * @lblk - logical block to be added
1619 *
1620 * Returns 0 on success, negative error code on failure.
1621 */
1622static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1623{
1624 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1625 int ret;
1626 bool allocated = false;
1627
1628 /*
1629 * If the cluster containing lblk is shared with a delayed,
1630 * written, or unwritten extent in a bigalloc file system, it's
1631 * already been accounted for and does not need to be reserved.
1632 * A pending reservation must be made for the cluster if it's
1633 * shared with a written or unwritten extent and doesn't already
1634 * have one. Written and unwritten extents can be purged from the
1635 * extents status tree if the system is under memory pressure, so
1636 * it's necessary to examine the extent tree if a search of the
1637 * extents status tree doesn't get a match.
1638 */
1639 if (sbi->s_cluster_ratio == 1) {
1640 ret = ext4_da_reserve_space(inode);
1641 if (ret != 0) /* ENOSPC */
1642 goto errout;
1643 } else { /* bigalloc */
1644 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1645 if (!ext4_es_scan_clu(inode,
1646 &ext4_es_is_mapped, lblk)) {
1647 ret = ext4_clu_mapped(inode,
1648 EXT4_B2C(sbi, lblk));
1649 if (ret < 0)
1650 goto errout;
1651 if (ret == 0) {
1652 ret = ext4_da_reserve_space(inode);
1653 if (ret != 0) /* ENOSPC */
1654 goto errout;
1655 } else {
1656 allocated = true;
1657 }
1658 } else {
1659 allocated = true;
1660 }
1661 }
1662 }
1663
1664 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1665
1666errout:
1667 return ret;
1668}
1669
1670/*
1671 * This function is grabs code from the very beginning of
1672 * ext4_map_blocks, but assumes that the caller is from delayed write
1673 * time. This function looks up the requested blocks and sets the
1674 * buffer delay bit under the protection of i_data_sem.
1675 */
1676static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1677 struct ext4_map_blocks *map,
1678 struct buffer_head *bh)
1679{
1680 struct extent_status es;
1681 int retval;
1682 sector_t invalid_block = ~((sector_t) 0xffff);
1683#ifdef ES_AGGRESSIVE_TEST
1684 struct ext4_map_blocks orig_map;
1685
1686 memcpy(&orig_map, map, sizeof(*map));
1687#endif
1688
1689 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1690 invalid_block = ~0;
1691
1692 map->m_flags = 0;
1693 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1694 (unsigned long) map->m_lblk);
1695
1696 /* Lookup extent status tree firstly */
1697 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1698 if (ext4_es_is_hole(&es)) {
1699 retval = 0;
1700 down_read(&EXT4_I(inode)->i_data_sem);
1701 goto add_delayed;
1702 }
1703
1704 /*
1705 * Delayed extent could be allocated by fallocate.
1706 * So we need to check it.
1707 */
1708 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1709 map_bh(bh, inode->i_sb, invalid_block);
1710 set_buffer_new(bh);
1711 set_buffer_delay(bh);
1712 return 0;
1713 }
1714
1715 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1716 retval = es.es_len - (iblock - es.es_lblk);
1717 if (retval > map->m_len)
1718 retval = map->m_len;
1719 map->m_len = retval;
1720 if (ext4_es_is_written(&es))
1721 map->m_flags |= EXT4_MAP_MAPPED;
1722 else if (ext4_es_is_unwritten(&es))
1723 map->m_flags |= EXT4_MAP_UNWRITTEN;
1724 else
1725 BUG();
1726
1727#ifdef ES_AGGRESSIVE_TEST
1728 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1729#endif
1730 return retval;
1731 }
1732
1733 /*
1734 * Try to see if we can get the block without requesting a new
1735 * file system block.
1736 */
1737 down_read(&EXT4_I(inode)->i_data_sem);
1738 if (ext4_has_inline_data(inode))
1739 retval = 0;
1740 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1741 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1742 else
1743 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1744
1745add_delayed:
1746 if (retval == 0) {
1747 int ret;
1748
1749 /*
1750 * XXX: __block_prepare_write() unmaps passed block,
1751 * is it OK?
1752 */
1753
1754 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1755 if (ret != 0) {
1756 retval = ret;
1757 goto out_unlock;
1758 }
1759
1760 map_bh(bh, inode->i_sb, invalid_block);
1761 set_buffer_new(bh);
1762 set_buffer_delay(bh);
1763 } else if (retval > 0) {
1764 int ret;
1765 unsigned int status;
1766
1767 if (unlikely(retval != map->m_len)) {
1768 ext4_warning(inode->i_sb,
1769 "ES len assertion failed for inode "
1770 "%lu: retval %d != map->m_len %d",
1771 inode->i_ino, retval, map->m_len);
1772 WARN_ON(1);
1773 }
1774
1775 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1776 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1777 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1778 map->m_pblk, status);
1779 if (ret != 0)
1780 retval = ret;
1781 }
1782
1783out_unlock:
1784 up_read((&EXT4_I(inode)->i_data_sem));
1785
1786 return retval;
1787}
1788
1789/*
1790 * This is a special get_block_t callback which is used by
1791 * ext4_da_write_begin(). It will either return mapped block or
1792 * reserve space for a single block.
1793 *
1794 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1795 * We also have b_blocknr = -1 and b_bdev initialized properly
1796 *
1797 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1798 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1799 * initialized properly.
1800 */
1801int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1802 struct buffer_head *bh, int create)
1803{
1804 struct ext4_map_blocks map;
1805 int ret = 0;
1806
1807 BUG_ON(create == 0);
1808 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1809
1810 map.m_lblk = iblock;
1811 map.m_len = 1;
1812
1813 /*
1814 * first, we need to know whether the block is allocated already
1815 * preallocated blocks are unmapped but should treated
1816 * the same as allocated blocks.
1817 */
1818 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1819 if (ret <= 0)
1820 return ret;
1821
1822 map_bh(bh, inode->i_sb, map.m_pblk);
1823 ext4_update_bh_state(bh, map.m_flags);
1824
1825 if (buffer_unwritten(bh)) {
1826 /* A delayed write to unwritten bh should be marked
1827 * new and mapped. Mapped ensures that we don't do
1828 * get_block multiple times when we write to the same
1829 * offset and new ensures that we do proper zero out
1830 * for partial write.
1831 */
1832 set_buffer_new(bh);
1833 set_buffer_mapped(bh);
1834 }
1835 return 0;
1836}
1837
1838static int bget_one(handle_t *handle, struct buffer_head *bh)
1839{
1840 get_bh(bh);
1841 return 0;
1842}
1843
1844static int bput_one(handle_t *handle, struct buffer_head *bh)
1845{
1846 put_bh(bh);
1847 return 0;
1848}
1849
1850static int __ext4_journalled_writepage(struct page *page,
1851 unsigned int len)
1852{
1853 struct address_space *mapping = page->mapping;
1854 struct inode *inode = mapping->host;
1855 struct buffer_head *page_bufs = NULL;
1856 handle_t *handle = NULL;
1857 int ret = 0, err = 0;
1858 int inline_data = ext4_has_inline_data(inode);
1859 struct buffer_head *inode_bh = NULL;
1860
1861 ClearPageChecked(page);
1862
1863 if (inline_data) {
1864 BUG_ON(page->index != 0);
1865 BUG_ON(len > ext4_get_max_inline_size(inode));
1866 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1867 if (inode_bh == NULL)
1868 goto out;
1869 } else {
1870 page_bufs = page_buffers(page);
1871 if (!page_bufs) {
1872 BUG();
1873 goto out;
1874 }
1875 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1876 NULL, bget_one);
1877 }
1878 /*
1879 * We need to release the page lock before we start the
1880 * journal, so grab a reference so the page won't disappear
1881 * out from under us.
1882 */
1883 get_page(page);
1884 unlock_page(page);
1885
1886 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1887 ext4_writepage_trans_blocks(inode));
1888 if (IS_ERR(handle)) {
1889 ret = PTR_ERR(handle);
1890 put_page(page);
1891 goto out_no_pagelock;
1892 }
1893 BUG_ON(!ext4_handle_valid(handle));
1894
1895 lock_page(page);
1896 put_page(page);
1897 if (page->mapping != mapping) {
1898 /* The page got truncated from under us */
1899 ext4_journal_stop(handle);
1900 ret = 0;
1901 goto out;
1902 }
1903
1904 if (inline_data) {
1905 ret = ext4_mark_inode_dirty(handle, inode);
1906 } else {
1907 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1908 do_journal_get_write_access);
1909
1910 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911 write_end_fn);
1912 }
1913 if (ret == 0)
1914 ret = err;
1915 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1916 err = ext4_journal_stop(handle);
1917 if (!ret)
1918 ret = err;
1919
1920 if (!ext4_has_inline_data(inode))
1921 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1922 NULL, bput_one);
1923 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1924out:
1925 unlock_page(page);
1926out_no_pagelock:
1927 brelse(inode_bh);
1928 return ret;
1929}
1930
1931/*
1932 * Note that we don't need to start a transaction unless we're journaling data
1933 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934 * need to file the inode to the transaction's list in ordered mode because if
1935 * we are writing back data added by write(), the inode is already there and if
1936 * we are writing back data modified via mmap(), no one guarantees in which
1937 * transaction the data will hit the disk. In case we are journaling data, we
1938 * cannot start transaction directly because transaction start ranks above page
1939 * lock so we have to do some magic.
1940 *
1941 * This function can get called via...
1942 * - ext4_writepages after taking page lock (have journal handle)
1943 * - journal_submit_inode_data_buffers (no journal handle)
1944 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1945 * - grab_page_cache when doing write_begin (have journal handle)
1946 *
1947 * We don't do any block allocation in this function. If we have page with
1948 * multiple blocks we need to write those buffer_heads that are mapped. This
1949 * is important for mmaped based write. So if we do with blocksize 1K
1950 * truncate(f, 1024);
1951 * a = mmap(f, 0, 4096);
1952 * a[0] = 'a';
1953 * truncate(f, 4096);
1954 * we have in the page first buffer_head mapped via page_mkwrite call back
1955 * but other buffer_heads would be unmapped but dirty (dirty done via the
1956 * do_wp_page). So writepage should write the first block. If we modify
1957 * the mmap area beyond 1024 we will again get a page_fault and the
1958 * page_mkwrite callback will do the block allocation and mark the
1959 * buffer_heads mapped.
1960 *
1961 * We redirty the page if we have any buffer_heads that is either delay or
1962 * unwritten in the page.
1963 *
1964 * We can get recursively called as show below.
1965 *
1966 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1967 * ext4_writepage()
1968 *
1969 * But since we don't do any block allocation we should not deadlock.
1970 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1971 */
1972static int ext4_writepage(struct page *page,
1973 struct writeback_control *wbc)
1974{
1975 int ret = 0;
1976 loff_t size;
1977 unsigned int len;
1978 struct buffer_head *page_bufs = NULL;
1979 struct inode *inode = page->mapping->host;
1980 struct ext4_io_submit io_submit;
1981 bool keep_towrite = false;
1982
1983 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1984 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1985 unlock_page(page);
1986 return -EIO;
1987 }
1988
1989 trace_ext4_writepage(page);
1990 size = i_size_read(inode);
1991 if (page->index == size >> PAGE_SHIFT &&
1992 !ext4_verity_in_progress(inode))
1993 len = size & ~PAGE_MASK;
1994 else
1995 len = PAGE_SIZE;
1996
1997 page_bufs = page_buffers(page);
1998 /*
1999 * We cannot do block allocation or other extent handling in this
2000 * function. If there are buffers needing that, we have to redirty
2001 * the page. But we may reach here when we do a journal commit via
2002 * journal_submit_inode_data_buffers() and in that case we must write
2003 * allocated buffers to achieve data=ordered mode guarantees.
2004 *
2005 * Also, if there is only one buffer per page (the fs block
2006 * size == the page size), if one buffer needs block
2007 * allocation or needs to modify the extent tree to clear the
2008 * unwritten flag, we know that the page can't be written at
2009 * all, so we might as well refuse the write immediately.
2010 * Unfortunately if the block size != page size, we can't as
2011 * easily detect this case using ext4_walk_page_buffers(), but
2012 * for the extremely common case, this is an optimization that
2013 * skips a useless round trip through ext4_bio_write_page().
2014 */
2015 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2016 ext4_bh_delay_or_unwritten)) {
2017 redirty_page_for_writepage(wbc, page);
2018 if ((current->flags & PF_MEMALLOC) ||
2019 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2020 /*
2021 * For memory cleaning there's no point in writing only
2022 * some buffers. So just bail out. Warn if we came here
2023 * from direct reclaim.
2024 */
2025 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2026 == PF_MEMALLOC);
2027 unlock_page(page);
2028 return 0;
2029 }
2030 keep_towrite = true;
2031 }
2032
2033 if (PageChecked(page) && ext4_should_journal_data(inode))
2034 /*
2035 * It's mmapped pagecache. Add buffers and journal it. There
2036 * doesn't seem much point in redirtying the page here.
2037 */
2038 return __ext4_journalled_writepage(page, len);
2039
2040 ext4_io_submit_init(&io_submit, wbc);
2041 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2042 if (!io_submit.io_end) {
2043 redirty_page_for_writepage(wbc, page);
2044 unlock_page(page);
2045 return -ENOMEM;
2046 }
2047 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2048 ext4_io_submit(&io_submit);
2049 /* Drop io_end reference we got from init */
2050 ext4_put_io_end_defer(io_submit.io_end);
2051 return ret;
2052}
2053
2054static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2055{
2056 int len;
2057 loff_t size;
2058 int err;
2059
2060 BUG_ON(page->index != mpd->first_page);
2061 clear_page_dirty_for_io(page);
2062 /*
2063 * We have to be very careful here! Nothing protects writeback path
2064 * against i_size changes and the page can be writeably mapped into
2065 * page tables. So an application can be growing i_size and writing
2066 * data through mmap while writeback runs. clear_page_dirty_for_io()
2067 * write-protects our page in page tables and the page cannot get
2068 * written to again until we release page lock. So only after
2069 * clear_page_dirty_for_io() we are safe to sample i_size for
2070 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2071 * on the barrier provided by TestClearPageDirty in
2072 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2073 * after page tables are updated.
2074 */
2075 size = i_size_read(mpd->inode);
2076 if (page->index == size >> PAGE_SHIFT &&
2077 !ext4_verity_in_progress(mpd->inode))
2078 len = size & ~PAGE_MASK;
2079 else
2080 len = PAGE_SIZE;
2081 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2082 if (!err)
2083 mpd->wbc->nr_to_write--;
2084 mpd->first_page++;
2085
2086 return err;
2087}
2088
2089#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2090
2091/*
2092 * mballoc gives us at most this number of blocks...
2093 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2094 * The rest of mballoc seems to handle chunks up to full group size.
2095 */
2096#define MAX_WRITEPAGES_EXTENT_LEN 2048
2097
2098/*
2099 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2100 *
2101 * @mpd - extent of blocks
2102 * @lblk - logical number of the block in the file
2103 * @bh - buffer head we want to add to the extent
2104 *
2105 * The function is used to collect contig. blocks in the same state. If the
2106 * buffer doesn't require mapping for writeback and we haven't started the
2107 * extent of buffers to map yet, the function returns 'true' immediately - the
2108 * caller can write the buffer right away. Otherwise the function returns true
2109 * if the block has been added to the extent, false if the block couldn't be
2110 * added.
2111 */
2112static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2113 struct buffer_head *bh)
2114{
2115 struct ext4_map_blocks *map = &mpd->map;
2116
2117 /* Buffer that doesn't need mapping for writeback? */
2118 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2119 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2120 /* So far no extent to map => we write the buffer right away */
2121 if (map->m_len == 0)
2122 return true;
2123 return false;
2124 }
2125
2126 /* First block in the extent? */
2127 if (map->m_len == 0) {
2128 /* We cannot map unless handle is started... */
2129 if (!mpd->do_map)
2130 return false;
2131 map->m_lblk = lblk;
2132 map->m_len = 1;
2133 map->m_flags = bh->b_state & BH_FLAGS;
2134 return true;
2135 }
2136
2137 /* Don't go larger than mballoc is willing to allocate */
2138 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139 return false;
2140
2141 /* Can we merge the block to our big extent? */
2142 if (lblk == map->m_lblk + map->m_len &&
2143 (bh->b_state & BH_FLAGS) == map->m_flags) {
2144 map->m_len++;
2145 return true;
2146 }
2147 return false;
2148}
2149
2150/*
2151 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152 *
2153 * @mpd - extent of blocks for mapping
2154 * @head - the first buffer in the page
2155 * @bh - buffer we should start processing from
2156 * @lblk - logical number of the block in the file corresponding to @bh
2157 *
2158 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159 * the page for IO if all buffers in this page were mapped and there's no
2160 * accumulated extent of buffers to map or add buffers in the page to the
2161 * extent of buffers to map. The function returns 1 if the caller can continue
2162 * by processing the next page, 0 if it should stop adding buffers to the
2163 * extent to map because we cannot extend it anymore. It can also return value
2164 * < 0 in case of error during IO submission.
2165 */
2166static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167 struct buffer_head *head,
2168 struct buffer_head *bh,
2169 ext4_lblk_t lblk)
2170{
2171 struct inode *inode = mpd->inode;
2172 int err;
2173 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2174 >> inode->i_blkbits;
2175
2176 if (ext4_verity_in_progress(inode))
2177 blocks = EXT_MAX_BLOCKS;
2178
2179 do {
2180 BUG_ON(buffer_locked(bh));
2181
2182 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2183 /* Found extent to map? */
2184 if (mpd->map.m_len)
2185 return 0;
2186 /* Buffer needs mapping and handle is not started? */
2187 if (!mpd->do_map)
2188 return 0;
2189 /* Everything mapped so far and we hit EOF */
2190 break;
2191 }
2192 } while (lblk++, (bh = bh->b_this_page) != head);
2193 /* So far everything mapped? Submit the page for IO. */
2194 if (mpd->map.m_len == 0) {
2195 err = mpage_submit_page(mpd, head->b_page);
2196 if (err < 0)
2197 return err;
2198 }
2199 if (lblk >= blocks) {
2200 mpd->scanned_until_end = 1;
2201 return 0;
2202 }
2203 return 1;
2204}
2205
2206/*
2207 * mpage_process_page - update page buffers corresponding to changed extent and
2208 * may submit fully mapped page for IO
2209 *
2210 * @mpd - description of extent to map, on return next extent to map
2211 * @m_lblk - logical block mapping.
2212 * @m_pblk - corresponding physical mapping.
2213 * @map_bh - determines on return whether this page requires any further
2214 * mapping or not.
2215 * Scan given page buffers corresponding to changed extent and update buffer
2216 * state according to new extent state.
2217 * We map delalloc buffers to their physical location, clear unwritten bits.
2218 * If the given page is not fully mapped, we update @map to the next extent in
2219 * the given page that needs mapping & return @map_bh as true.
2220 */
2221static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2222 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2223 bool *map_bh)
2224{
2225 struct buffer_head *head, *bh;
2226 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2227 ext4_lblk_t lblk = *m_lblk;
2228 ext4_fsblk_t pblock = *m_pblk;
2229 int err = 0;
2230 int blkbits = mpd->inode->i_blkbits;
2231 ssize_t io_end_size = 0;
2232 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2233
2234 bh = head = page_buffers(page);
2235 do {
2236 if (lblk < mpd->map.m_lblk)
2237 continue;
2238 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2239 /*
2240 * Buffer after end of mapped extent.
2241 * Find next buffer in the page to map.
2242 */
2243 mpd->map.m_len = 0;
2244 mpd->map.m_flags = 0;
2245 io_end_vec->size += io_end_size;
2246 io_end_size = 0;
2247
2248 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2249 if (err > 0)
2250 err = 0;
2251 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2252 io_end_vec = ext4_alloc_io_end_vec(io_end);
2253 if (IS_ERR(io_end_vec)) {
2254 err = PTR_ERR(io_end_vec);
2255 goto out;
2256 }
2257 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2258 }
2259 *map_bh = true;
2260 goto out;
2261 }
2262 if (buffer_delay(bh)) {
2263 clear_buffer_delay(bh);
2264 bh->b_blocknr = pblock++;
2265 }
2266 clear_buffer_unwritten(bh);
2267 io_end_size += (1 << blkbits);
2268 } while (lblk++, (bh = bh->b_this_page) != head);
2269
2270 io_end_vec->size += io_end_size;
2271 io_end_size = 0;
2272 *map_bh = false;
2273out:
2274 *m_lblk = lblk;
2275 *m_pblk = pblock;
2276 return err;
2277}
2278
2279/*
2280 * mpage_map_buffers - update buffers corresponding to changed extent and
2281 * submit fully mapped pages for IO
2282 *
2283 * @mpd - description of extent to map, on return next extent to map
2284 *
2285 * Scan buffers corresponding to changed extent (we expect corresponding pages
2286 * to be already locked) and update buffer state according to new extent state.
2287 * We map delalloc buffers to their physical location, clear unwritten bits,
2288 * and mark buffers as uninit when we perform writes to unwritten extents
2289 * and do extent conversion after IO is finished. If the last page is not fully
2290 * mapped, we update @map to the next extent in the last page that needs
2291 * mapping. Otherwise we submit the page for IO.
2292 */
2293static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2294{
2295 struct pagevec pvec;
2296 int nr_pages, i;
2297 struct inode *inode = mpd->inode;
2298 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2299 pgoff_t start, end;
2300 ext4_lblk_t lblk;
2301 ext4_fsblk_t pblock;
2302 int err;
2303 bool map_bh = false;
2304
2305 start = mpd->map.m_lblk >> bpp_bits;
2306 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2307 lblk = start << bpp_bits;
2308 pblock = mpd->map.m_pblk;
2309
2310 pagevec_init(&pvec);
2311 while (start <= end) {
2312 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2313 &start, end);
2314 if (nr_pages == 0)
2315 break;
2316 for (i = 0; i < nr_pages; i++) {
2317 struct page *page = pvec.pages[i];
2318
2319 err = mpage_process_page(mpd, page, &lblk, &pblock,
2320 &map_bh);
2321 /*
2322 * If map_bh is true, means page may require further bh
2323 * mapping, or maybe the page was submitted for IO.
2324 * So we return to call further extent mapping.
2325 */
2326 if (err < 0 || map_bh)
2327 goto out;
2328 /* Page fully mapped - let IO run! */
2329 err = mpage_submit_page(mpd, page);
2330 if (err < 0)
2331 goto out;
2332 }
2333 pagevec_release(&pvec);
2334 }
2335 /* Extent fully mapped and matches with page boundary. We are done. */
2336 mpd->map.m_len = 0;
2337 mpd->map.m_flags = 0;
2338 return 0;
2339out:
2340 pagevec_release(&pvec);
2341 return err;
2342}
2343
2344static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2345{
2346 struct inode *inode = mpd->inode;
2347 struct ext4_map_blocks *map = &mpd->map;
2348 int get_blocks_flags;
2349 int err, dioread_nolock;
2350
2351 trace_ext4_da_write_pages_extent(inode, map);
2352 /*
2353 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2354 * to convert an unwritten extent to be initialized (in the case
2355 * where we have written into one or more preallocated blocks). It is
2356 * possible that we're going to need more metadata blocks than
2357 * previously reserved. However we must not fail because we're in
2358 * writeback and there is nothing we can do about it so it might result
2359 * in data loss. So use reserved blocks to allocate metadata if
2360 * possible.
2361 *
2362 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2363 * the blocks in question are delalloc blocks. This indicates
2364 * that the blocks and quotas has already been checked when
2365 * the data was copied into the page cache.
2366 */
2367 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2368 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2369 EXT4_GET_BLOCKS_IO_SUBMIT;
2370 dioread_nolock = ext4_should_dioread_nolock(inode);
2371 if (dioread_nolock)
2372 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2373 if (map->m_flags & BIT(BH_Delay))
2374 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2375
2376 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2377 if (err < 0)
2378 return err;
2379 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2380 if (!mpd->io_submit.io_end->handle &&
2381 ext4_handle_valid(handle)) {
2382 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2383 handle->h_rsv_handle = NULL;
2384 }
2385 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2386 }
2387
2388 BUG_ON(map->m_len == 0);
2389 return 0;
2390}
2391
2392/*
2393 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2394 * mpd->len and submit pages underlying it for IO
2395 *
2396 * @handle - handle for journal operations
2397 * @mpd - extent to map
2398 * @give_up_on_write - we set this to true iff there is a fatal error and there
2399 * is no hope of writing the data. The caller should discard
2400 * dirty pages to avoid infinite loops.
2401 *
2402 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2403 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2404 * them to initialized or split the described range from larger unwritten
2405 * extent. Note that we need not map all the described range since allocation
2406 * can return less blocks or the range is covered by more unwritten extents. We
2407 * cannot map more because we are limited by reserved transaction credits. On
2408 * the other hand we always make sure that the last touched page is fully
2409 * mapped so that it can be written out (and thus forward progress is
2410 * guaranteed). After mapping we submit all mapped pages for IO.
2411 */
2412static int mpage_map_and_submit_extent(handle_t *handle,
2413 struct mpage_da_data *mpd,
2414 bool *give_up_on_write)
2415{
2416 struct inode *inode = mpd->inode;
2417 struct ext4_map_blocks *map = &mpd->map;
2418 int err;
2419 loff_t disksize;
2420 int progress = 0;
2421 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2422 struct ext4_io_end_vec *io_end_vec;
2423
2424 io_end_vec = ext4_alloc_io_end_vec(io_end);
2425 if (IS_ERR(io_end_vec))
2426 return PTR_ERR(io_end_vec);
2427 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2428 do {
2429 err = mpage_map_one_extent(handle, mpd);
2430 if (err < 0) {
2431 struct super_block *sb = inode->i_sb;
2432
2433 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2434 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2435 goto invalidate_dirty_pages;
2436 /*
2437 * Let the uper layers retry transient errors.
2438 * In the case of ENOSPC, if ext4_count_free_blocks()
2439 * is non-zero, a commit should free up blocks.
2440 */
2441 if ((err == -ENOMEM) ||
2442 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2443 if (progress)
2444 goto update_disksize;
2445 return err;
2446 }
2447 ext4_msg(sb, KERN_CRIT,
2448 "Delayed block allocation failed for "
2449 "inode %lu at logical offset %llu with"
2450 " max blocks %u with error %d",
2451 inode->i_ino,
2452 (unsigned long long)map->m_lblk,
2453 (unsigned)map->m_len, -err);
2454 ext4_msg(sb, KERN_CRIT,
2455 "This should not happen!! Data will "
2456 "be lost\n");
2457 if (err == -ENOSPC)
2458 ext4_print_free_blocks(inode);
2459 invalidate_dirty_pages:
2460 *give_up_on_write = true;
2461 return err;
2462 }
2463 progress = 1;
2464 /*
2465 * Update buffer state, submit mapped pages, and get us new
2466 * extent to map
2467 */
2468 err = mpage_map_and_submit_buffers(mpd);
2469 if (err < 0)
2470 goto update_disksize;
2471 } while (map->m_len);
2472
2473update_disksize:
2474 /*
2475 * Update on-disk size after IO is submitted. Races with
2476 * truncate are avoided by checking i_size under i_data_sem.
2477 */
2478 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2479 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2480 int err2;
2481 loff_t i_size;
2482
2483 down_write(&EXT4_I(inode)->i_data_sem);
2484 i_size = i_size_read(inode);
2485 if (disksize > i_size)
2486 disksize = i_size;
2487 if (disksize > EXT4_I(inode)->i_disksize)
2488 EXT4_I(inode)->i_disksize = disksize;
2489 up_write(&EXT4_I(inode)->i_data_sem);
2490 err2 = ext4_mark_inode_dirty(handle, inode);
2491 if (err2) {
2492 ext4_error_err(inode->i_sb, -err2,
2493 "Failed to mark inode %lu dirty",
2494 inode->i_ino);
2495 }
2496 if (!err)
2497 err = err2;
2498 }
2499 return err;
2500}
2501
2502/*
2503 * Calculate the total number of credits to reserve for one writepages
2504 * iteration. This is called from ext4_writepages(). We map an extent of
2505 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2506 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2507 * bpp - 1 blocks in bpp different extents.
2508 */
2509static int ext4_da_writepages_trans_blocks(struct inode *inode)
2510{
2511 int bpp = ext4_journal_blocks_per_page(inode);
2512
2513 return ext4_meta_trans_blocks(inode,
2514 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2515}
2516
2517/*
2518 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2519 * and underlying extent to map
2520 *
2521 * @mpd - where to look for pages
2522 *
2523 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2524 * IO immediately. When we find a page which isn't mapped we start accumulating
2525 * extent of buffers underlying these pages that needs mapping (formed by
2526 * either delayed or unwritten buffers). We also lock the pages containing
2527 * these buffers. The extent found is returned in @mpd structure (starting at
2528 * mpd->lblk with length mpd->len blocks).
2529 *
2530 * Note that this function can attach bios to one io_end structure which are
2531 * neither logically nor physically contiguous. Although it may seem as an
2532 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2533 * case as we need to track IO to all buffers underlying a page in one io_end.
2534 */
2535static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2536{
2537 struct address_space *mapping = mpd->inode->i_mapping;
2538 struct pagevec pvec;
2539 unsigned int nr_pages;
2540 long left = mpd->wbc->nr_to_write;
2541 pgoff_t index = mpd->first_page;
2542 pgoff_t end = mpd->last_page;
2543 xa_mark_t tag;
2544 int i, err = 0;
2545 int blkbits = mpd->inode->i_blkbits;
2546 ext4_lblk_t lblk;
2547 struct buffer_head *head;
2548
2549 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2550 tag = PAGECACHE_TAG_TOWRITE;
2551 else
2552 tag = PAGECACHE_TAG_DIRTY;
2553
2554 pagevec_init(&pvec);
2555 mpd->map.m_len = 0;
2556 mpd->next_page = index;
2557 while (index <= end) {
2558 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2559 tag);
2560 if (nr_pages == 0)
2561 break;
2562
2563 for (i = 0; i < nr_pages; i++) {
2564 struct page *page = pvec.pages[i];
2565
2566 /*
2567 * Accumulated enough dirty pages? This doesn't apply
2568 * to WB_SYNC_ALL mode. For integrity sync we have to
2569 * keep going because someone may be concurrently
2570 * dirtying pages, and we might have synced a lot of
2571 * newly appeared dirty pages, but have not synced all
2572 * of the old dirty pages.
2573 */
2574 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2575 goto out;
2576
2577 /* If we can't merge this page, we are done. */
2578 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2579 goto out;
2580
2581 lock_page(page);
2582 /*
2583 * If the page is no longer dirty, or its mapping no
2584 * longer corresponds to inode we are writing (which
2585 * means it has been truncated or invalidated), or the
2586 * page is already under writeback and we are not doing
2587 * a data integrity writeback, skip the page
2588 */
2589 if (!PageDirty(page) ||
2590 (PageWriteback(page) &&
2591 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2592 unlikely(page->mapping != mapping)) {
2593 unlock_page(page);
2594 continue;
2595 }
2596
2597 wait_on_page_writeback(page);
2598 BUG_ON(PageWriteback(page));
2599
2600 if (mpd->map.m_len == 0)
2601 mpd->first_page = page->index;
2602 mpd->next_page = page->index + 1;
2603 /* Add all dirty buffers to mpd */
2604 lblk = ((ext4_lblk_t)page->index) <<
2605 (PAGE_SHIFT - blkbits);
2606 head = page_buffers(page);
2607 err = mpage_process_page_bufs(mpd, head, head, lblk);
2608 if (err <= 0)
2609 goto out;
2610 err = 0;
2611 left--;
2612 }
2613 pagevec_release(&pvec);
2614 cond_resched();
2615 }
2616 mpd->scanned_until_end = 1;
2617 return 0;
2618out:
2619 pagevec_release(&pvec);
2620 return err;
2621}
2622
2623static int ext4_writepages(struct address_space *mapping,
2624 struct writeback_control *wbc)
2625{
2626 pgoff_t writeback_index = 0;
2627 long nr_to_write = wbc->nr_to_write;
2628 int range_whole = 0;
2629 int cycled = 1;
2630 handle_t *handle = NULL;
2631 struct mpage_da_data mpd;
2632 struct inode *inode = mapping->host;
2633 int needed_blocks, rsv_blocks = 0, ret = 0;
2634 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2635 struct blk_plug plug;
2636 bool give_up_on_write = false;
2637
2638 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2639 return -EIO;
2640
2641 percpu_down_read(&sbi->s_writepages_rwsem);
2642 trace_ext4_writepages(inode, wbc);
2643
2644 /*
2645 * No pages to write? This is mainly a kludge to avoid starting
2646 * a transaction for special inodes like journal inode on last iput()
2647 * because that could violate lock ordering on umount
2648 */
2649 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2650 goto out_writepages;
2651
2652 if (ext4_should_journal_data(inode)) {
2653 ret = generic_writepages(mapping, wbc);
2654 goto out_writepages;
2655 }
2656
2657 /*
2658 * If the filesystem has aborted, it is read-only, so return
2659 * right away instead of dumping stack traces later on that
2660 * will obscure the real source of the problem. We test
2661 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2662 * the latter could be true if the filesystem is mounted
2663 * read-only, and in that case, ext4_writepages should
2664 * *never* be called, so if that ever happens, we would want
2665 * the stack trace.
2666 */
2667 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2668 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2669 ret = -EROFS;
2670 goto out_writepages;
2671 }
2672
2673 /*
2674 * If we have inline data and arrive here, it means that
2675 * we will soon create the block for the 1st page, so
2676 * we'd better clear the inline data here.
2677 */
2678 if (ext4_has_inline_data(inode)) {
2679 /* Just inode will be modified... */
2680 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2681 if (IS_ERR(handle)) {
2682 ret = PTR_ERR(handle);
2683 goto out_writepages;
2684 }
2685 BUG_ON(ext4_test_inode_state(inode,
2686 EXT4_STATE_MAY_INLINE_DATA));
2687 ext4_destroy_inline_data(handle, inode);
2688 ext4_journal_stop(handle);
2689 }
2690
2691 if (ext4_should_dioread_nolock(inode)) {
2692 /*
2693 * We may need to convert up to one extent per block in
2694 * the page and we may dirty the inode.
2695 */
2696 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2697 PAGE_SIZE >> inode->i_blkbits);
2698 }
2699
2700 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2701 range_whole = 1;
2702
2703 if (wbc->range_cyclic) {
2704 writeback_index = mapping->writeback_index;
2705 if (writeback_index)
2706 cycled = 0;
2707 mpd.first_page = writeback_index;
2708 mpd.last_page = -1;
2709 } else {
2710 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2711 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2712 }
2713
2714 mpd.inode = inode;
2715 mpd.wbc = wbc;
2716 ext4_io_submit_init(&mpd.io_submit, wbc);
2717retry:
2718 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2719 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2720 blk_start_plug(&plug);
2721
2722 /*
2723 * First writeback pages that don't need mapping - we can avoid
2724 * starting a transaction unnecessarily and also avoid being blocked
2725 * in the block layer on device congestion while having transaction
2726 * started.
2727 */
2728 mpd.do_map = 0;
2729 mpd.scanned_until_end = 0;
2730 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2731 if (!mpd.io_submit.io_end) {
2732 ret = -ENOMEM;
2733 goto unplug;
2734 }
2735 ret = mpage_prepare_extent_to_map(&mpd);
2736 /* Unlock pages we didn't use */
2737 mpage_release_unused_pages(&mpd, false);
2738 /* Submit prepared bio */
2739 ext4_io_submit(&mpd.io_submit);
2740 ext4_put_io_end_defer(mpd.io_submit.io_end);
2741 mpd.io_submit.io_end = NULL;
2742 if (ret < 0)
2743 goto unplug;
2744
2745 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2746 /* For each extent of pages we use new io_end */
2747 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2748 if (!mpd.io_submit.io_end) {
2749 ret = -ENOMEM;
2750 break;
2751 }
2752
2753 /*
2754 * We have two constraints: We find one extent to map and we
2755 * must always write out whole page (makes a difference when
2756 * blocksize < pagesize) so that we don't block on IO when we
2757 * try to write out the rest of the page. Journalled mode is
2758 * not supported by delalloc.
2759 */
2760 BUG_ON(ext4_should_journal_data(inode));
2761 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2762
2763 /* start a new transaction */
2764 handle = ext4_journal_start_with_reserve(inode,
2765 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2766 if (IS_ERR(handle)) {
2767 ret = PTR_ERR(handle);
2768 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2769 "%ld pages, ino %lu; err %d", __func__,
2770 wbc->nr_to_write, inode->i_ino, ret);
2771 /* Release allocated io_end */
2772 ext4_put_io_end(mpd.io_submit.io_end);
2773 mpd.io_submit.io_end = NULL;
2774 break;
2775 }
2776 mpd.do_map = 1;
2777
2778 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2779 ret = mpage_prepare_extent_to_map(&mpd);
2780 if (!ret && mpd.map.m_len)
2781 ret = mpage_map_and_submit_extent(handle, &mpd,
2782 &give_up_on_write);
2783 /*
2784 * Caution: If the handle is synchronous,
2785 * ext4_journal_stop() can wait for transaction commit
2786 * to finish which may depend on writeback of pages to
2787 * complete or on page lock to be released. In that
2788 * case, we have to wait until after after we have
2789 * submitted all the IO, released page locks we hold,
2790 * and dropped io_end reference (for extent conversion
2791 * to be able to complete) before stopping the handle.
2792 */
2793 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794 ext4_journal_stop(handle);
2795 handle = NULL;
2796 mpd.do_map = 0;
2797 }
2798 /* Unlock pages we didn't use */
2799 mpage_release_unused_pages(&mpd, give_up_on_write);
2800 /* Submit prepared bio */
2801 ext4_io_submit(&mpd.io_submit);
2802
2803 /*
2804 * Drop our io_end reference we got from init. We have
2805 * to be careful and use deferred io_end finishing if
2806 * we are still holding the transaction as we can
2807 * release the last reference to io_end which may end
2808 * up doing unwritten extent conversion.
2809 */
2810 if (handle) {
2811 ext4_put_io_end_defer(mpd.io_submit.io_end);
2812 ext4_journal_stop(handle);
2813 } else
2814 ext4_put_io_end(mpd.io_submit.io_end);
2815 mpd.io_submit.io_end = NULL;
2816
2817 if (ret == -ENOSPC && sbi->s_journal) {
2818 /*
2819 * Commit the transaction which would
2820 * free blocks released in the transaction
2821 * and try again
2822 */
2823 jbd2_journal_force_commit_nested(sbi->s_journal);
2824 ret = 0;
2825 continue;
2826 }
2827 /* Fatal error - ENOMEM, EIO... */
2828 if (ret)
2829 break;
2830 }
2831unplug:
2832 blk_finish_plug(&plug);
2833 if (!ret && !cycled && wbc->nr_to_write > 0) {
2834 cycled = 1;
2835 mpd.last_page = writeback_index - 1;
2836 mpd.first_page = 0;
2837 goto retry;
2838 }
2839
2840 /* Update index */
2841 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2842 /*
2843 * Set the writeback_index so that range_cyclic
2844 * mode will write it back later
2845 */
2846 mapping->writeback_index = mpd.first_page;
2847
2848out_writepages:
2849 trace_ext4_writepages_result(inode, wbc, ret,
2850 nr_to_write - wbc->nr_to_write);
2851 percpu_up_read(&sbi->s_writepages_rwsem);
2852 return ret;
2853}
2854
2855static int ext4_dax_writepages(struct address_space *mapping,
2856 struct writeback_control *wbc)
2857{
2858 int ret;
2859 long nr_to_write = wbc->nr_to_write;
2860 struct inode *inode = mapping->host;
2861 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2862
2863 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2864 return -EIO;
2865
2866 percpu_down_read(&sbi->s_writepages_rwsem);
2867 trace_ext4_writepages(inode, wbc);
2868
2869 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2870 trace_ext4_writepages_result(inode, wbc, ret,
2871 nr_to_write - wbc->nr_to_write);
2872 percpu_up_read(&sbi->s_writepages_rwsem);
2873 return ret;
2874}
2875
2876static int ext4_nonda_switch(struct super_block *sb)
2877{
2878 s64 free_clusters, dirty_clusters;
2879 struct ext4_sb_info *sbi = EXT4_SB(sb);
2880
2881 /*
2882 * switch to non delalloc mode if we are running low
2883 * on free block. The free block accounting via percpu
2884 * counters can get slightly wrong with percpu_counter_batch getting
2885 * accumulated on each CPU without updating global counters
2886 * Delalloc need an accurate free block accounting. So switch
2887 * to non delalloc when we are near to error range.
2888 */
2889 free_clusters =
2890 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2891 dirty_clusters =
2892 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2893 /*
2894 * Start pushing delalloc when 1/2 of free blocks are dirty.
2895 */
2896 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2897 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2898
2899 if (2 * free_clusters < 3 * dirty_clusters ||
2900 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2901 /*
2902 * free block count is less than 150% of dirty blocks
2903 * or free blocks is less than watermark
2904 */
2905 return 1;
2906 }
2907 return 0;
2908}
2909
2910/* We always reserve for an inode update; the superblock could be there too */
2911static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2912{
2913 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2914 return 1;
2915
2916 if (pos + len <= 0x7fffffffULL)
2917 return 1;
2918
2919 /* We might need to update the superblock to set LARGE_FILE */
2920 return 2;
2921}
2922
2923static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2924 loff_t pos, unsigned len, unsigned flags,
2925 struct page **pagep, void **fsdata)
2926{
2927 int ret, retries = 0;
2928 struct page *page;
2929 pgoff_t index;
2930 struct inode *inode = mapping->host;
2931 handle_t *handle;
2932
2933 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2934 return -EIO;
2935
2936 index = pos >> PAGE_SHIFT;
2937
2938 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939 ext4_verity_in_progress(inode)) {
2940 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941 return ext4_write_begin(file, mapping, pos,
2942 len, flags, pagep, fsdata);
2943 }
2944 *fsdata = (void *)0;
2945 trace_ext4_da_write_begin(inode, pos, len, flags);
2946
2947 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948 ret = ext4_da_write_inline_data_begin(mapping, inode,
2949 pos, len, flags,
2950 pagep, fsdata);
2951 if (ret < 0)
2952 return ret;
2953 if (ret == 1)
2954 return 0;
2955 }
2956
2957 /*
2958 * grab_cache_page_write_begin() can take a long time if the
2959 * system is thrashing due to memory pressure, or if the page
2960 * is being written back. So grab it first before we start
2961 * the transaction handle. This also allows us to allocate
2962 * the page (if needed) without using GFP_NOFS.
2963 */
2964retry_grab:
2965 page = grab_cache_page_write_begin(mapping, index, flags);
2966 if (!page)
2967 return -ENOMEM;
2968 unlock_page(page);
2969
2970 /*
2971 * With delayed allocation, we don't log the i_disksize update
2972 * if there is delayed block allocation. But we still need
2973 * to journalling the i_disksize update if writes to the end
2974 * of file which has an already mapped buffer.
2975 */
2976retry_journal:
2977 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2978 ext4_da_write_credits(inode, pos, len));
2979 if (IS_ERR(handle)) {
2980 put_page(page);
2981 return PTR_ERR(handle);
2982 }
2983
2984 lock_page(page);
2985 if (page->mapping != mapping) {
2986 /* The page got truncated from under us */
2987 unlock_page(page);
2988 put_page(page);
2989 ext4_journal_stop(handle);
2990 goto retry_grab;
2991 }
2992 /* In case writeback began while the page was unlocked */
2993 wait_for_stable_page(page);
2994
2995#ifdef CONFIG_FS_ENCRYPTION
2996 ret = ext4_block_write_begin(page, pos, len,
2997 ext4_da_get_block_prep);
2998#else
2999 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3000#endif
3001 if (ret < 0) {
3002 unlock_page(page);
3003 ext4_journal_stop(handle);
3004 /*
3005 * block_write_begin may have instantiated a few blocks
3006 * outside i_size. Trim these off again. Don't need
3007 * i_size_read because we hold i_mutex.
3008 */
3009 if (pos + len > inode->i_size)
3010 ext4_truncate_failed_write(inode);
3011
3012 if (ret == -ENOSPC &&
3013 ext4_should_retry_alloc(inode->i_sb, &retries))
3014 goto retry_journal;
3015
3016 put_page(page);
3017 return ret;
3018 }
3019
3020 *pagep = page;
3021 return ret;
3022}
3023
3024/*
3025 * Check if we should update i_disksize
3026 * when write to the end of file but not require block allocation
3027 */
3028static int ext4_da_should_update_i_disksize(struct page *page,
3029 unsigned long offset)
3030{
3031 struct buffer_head *bh;
3032 struct inode *inode = page->mapping->host;
3033 unsigned int idx;
3034 int i;
3035
3036 bh = page_buffers(page);
3037 idx = offset >> inode->i_blkbits;
3038
3039 for (i = 0; i < idx; i++)
3040 bh = bh->b_this_page;
3041
3042 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3043 return 0;
3044 return 1;
3045}
3046
3047static int ext4_da_write_end(struct file *file,
3048 struct address_space *mapping,
3049 loff_t pos, unsigned len, unsigned copied,
3050 struct page *page, void *fsdata)
3051{
3052 struct inode *inode = mapping->host;
3053 int ret = 0, ret2;
3054 handle_t *handle = ext4_journal_current_handle();
3055 loff_t new_i_size;
3056 unsigned long start, end;
3057 int write_mode = (int)(unsigned long)fsdata;
3058
3059 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3060 return ext4_write_end(file, mapping, pos,
3061 len, copied, page, fsdata);
3062
3063 trace_ext4_da_write_end(inode, pos, len, copied);
3064 start = pos & (PAGE_SIZE - 1);
3065 end = start + copied - 1;
3066
3067 /*
3068 * generic_write_end() will run mark_inode_dirty() if i_size
3069 * changes. So let's piggyback the i_disksize mark_inode_dirty
3070 * into that.
3071 */
3072 new_i_size = pos + copied;
3073 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3074 if (ext4_has_inline_data(inode) ||
3075 ext4_da_should_update_i_disksize(page, end)) {
3076 ext4_update_i_disksize(inode, new_i_size);
3077 /* We need to mark inode dirty even if
3078 * new_i_size is less that inode->i_size
3079 * bu greater than i_disksize.(hint delalloc)
3080 */
3081 ret = ext4_mark_inode_dirty(handle, inode);
3082 }
3083 }
3084
3085 if (write_mode != CONVERT_INLINE_DATA &&
3086 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3087 ext4_has_inline_data(inode))
3088 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3089 page);
3090 else
3091 ret2 = generic_write_end(file, mapping, pos, len, copied,
3092 page, fsdata);
3093
3094 copied = ret2;
3095 if (ret2 < 0)
3096 ret = ret2;
3097 ret2 = ext4_journal_stop(handle);
3098 if (unlikely(ret2 && !ret))
3099 ret = ret2;
3100
3101 return ret ? ret : copied;
3102}
3103
3104/*
3105 * Force all delayed allocation blocks to be allocated for a given inode.
3106 */
3107int ext4_alloc_da_blocks(struct inode *inode)
3108{
3109 trace_ext4_alloc_da_blocks(inode);
3110
3111 if (!EXT4_I(inode)->i_reserved_data_blocks)
3112 return 0;
3113
3114 /*
3115 * We do something simple for now. The filemap_flush() will
3116 * also start triggering a write of the data blocks, which is
3117 * not strictly speaking necessary (and for users of
3118 * laptop_mode, not even desirable). However, to do otherwise
3119 * would require replicating code paths in:
3120 *
3121 * ext4_writepages() ->
3122 * write_cache_pages() ---> (via passed in callback function)
3123 * __mpage_da_writepage() -->
3124 * mpage_add_bh_to_extent()
3125 * mpage_da_map_blocks()
3126 *
3127 * The problem is that write_cache_pages(), located in
3128 * mm/page-writeback.c, marks pages clean in preparation for
3129 * doing I/O, which is not desirable if we're not planning on
3130 * doing I/O at all.
3131 *
3132 * We could call write_cache_pages(), and then redirty all of
3133 * the pages by calling redirty_page_for_writepage() but that
3134 * would be ugly in the extreme. So instead we would need to
3135 * replicate parts of the code in the above functions,
3136 * simplifying them because we wouldn't actually intend to
3137 * write out the pages, but rather only collect contiguous
3138 * logical block extents, call the multi-block allocator, and
3139 * then update the buffer heads with the block allocations.
3140 *
3141 * For now, though, we'll cheat by calling filemap_flush(),
3142 * which will map the blocks, and start the I/O, but not
3143 * actually wait for the I/O to complete.
3144 */
3145 return filemap_flush(inode->i_mapping);
3146}
3147
3148/*
3149 * bmap() is special. It gets used by applications such as lilo and by
3150 * the swapper to find the on-disk block of a specific piece of data.
3151 *
3152 * Naturally, this is dangerous if the block concerned is still in the
3153 * journal. If somebody makes a swapfile on an ext4 data-journaling
3154 * filesystem and enables swap, then they may get a nasty shock when the
3155 * data getting swapped to that swapfile suddenly gets overwritten by
3156 * the original zero's written out previously to the journal and
3157 * awaiting writeback in the kernel's buffer cache.
3158 *
3159 * So, if we see any bmap calls here on a modified, data-journaled file,
3160 * take extra steps to flush any blocks which might be in the cache.
3161 */
3162static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3163{
3164 struct inode *inode = mapping->host;
3165 journal_t *journal;
3166 int err;
3167
3168 /*
3169 * We can get here for an inline file via the FIBMAP ioctl
3170 */
3171 if (ext4_has_inline_data(inode))
3172 return 0;
3173
3174 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3175 test_opt(inode->i_sb, DELALLOC)) {
3176 /*
3177 * With delalloc we want to sync the file
3178 * so that we can make sure we allocate
3179 * blocks for file
3180 */
3181 filemap_write_and_wait(mapping);
3182 }
3183
3184 if (EXT4_JOURNAL(inode) &&
3185 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3186 /*
3187 * This is a REALLY heavyweight approach, but the use of
3188 * bmap on dirty files is expected to be extremely rare:
3189 * only if we run lilo or swapon on a freshly made file
3190 * do we expect this to happen.
3191 *
3192 * (bmap requires CAP_SYS_RAWIO so this does not
3193 * represent an unprivileged user DOS attack --- we'd be
3194 * in trouble if mortal users could trigger this path at
3195 * will.)
3196 *
3197 * NB. EXT4_STATE_JDATA is not set on files other than
3198 * regular files. If somebody wants to bmap a directory
3199 * or symlink and gets confused because the buffer
3200 * hasn't yet been flushed to disk, they deserve
3201 * everything they get.
3202 */
3203
3204 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3205 journal = EXT4_JOURNAL(inode);
3206 jbd2_journal_lock_updates(journal);
3207 err = jbd2_journal_flush(journal);
3208 jbd2_journal_unlock_updates(journal);
3209
3210 if (err)
3211 return 0;
3212 }
3213
3214 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3215}
3216
3217static int ext4_readpage(struct file *file, struct page *page)
3218{
3219 int ret = -EAGAIN;
3220 struct inode *inode = page->mapping->host;
3221
3222 trace_ext4_readpage(page);
3223
3224 if (ext4_has_inline_data(inode))
3225 ret = ext4_readpage_inline(inode, page);
3226
3227 if (ret == -EAGAIN)
3228 return ext4_mpage_readpages(inode, NULL, page);
3229
3230 return ret;
3231}
3232
3233static void ext4_readahead(struct readahead_control *rac)
3234{
3235 struct inode *inode = rac->mapping->host;
3236
3237 /* If the file has inline data, no need to do readahead. */
3238 if (ext4_has_inline_data(inode))
3239 return;
3240
3241 ext4_mpage_readpages(inode, rac, NULL);
3242}
3243
3244static void ext4_invalidatepage(struct page *page, unsigned int offset,
3245 unsigned int length)
3246{
3247 trace_ext4_invalidatepage(page, offset, length);
3248
3249 /* No journalling happens on data buffers when this function is used */
3250 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3251
3252 block_invalidatepage(page, offset, length);
3253}
3254
3255static int __ext4_journalled_invalidatepage(struct page *page,
3256 unsigned int offset,
3257 unsigned int length)
3258{
3259 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3260
3261 trace_ext4_journalled_invalidatepage(page, offset, length);
3262
3263 /*
3264 * If it's a full truncate we just forget about the pending dirtying
3265 */
3266 if (offset == 0 && length == PAGE_SIZE)
3267 ClearPageChecked(page);
3268
3269 return jbd2_journal_invalidatepage(journal, page, offset, length);
3270}
3271
3272/* Wrapper for aops... */
3273static void ext4_journalled_invalidatepage(struct page *page,
3274 unsigned int offset,
3275 unsigned int length)
3276{
3277 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3278}
3279
3280static int ext4_releasepage(struct page *page, gfp_t wait)
3281{
3282 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3283
3284 trace_ext4_releasepage(page);
3285
3286 /* Page has dirty journalled data -> cannot release */
3287 if (PageChecked(page))
3288 return 0;
3289 if (journal)
3290 return jbd2_journal_try_to_free_buffers(journal, page);
3291 else
3292 return try_to_free_buffers(page);
3293}
3294
3295static bool ext4_inode_datasync_dirty(struct inode *inode)
3296{
3297 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3298
3299 if (journal)
3300 return !jbd2_transaction_committed(journal,
3301 EXT4_I(inode)->i_datasync_tid);
3302 /* Any metadata buffers to write? */
3303 if (!list_empty(&inode->i_mapping->private_list))
3304 return true;
3305 return inode->i_state & I_DIRTY_DATASYNC;
3306}
3307
3308static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3309 struct ext4_map_blocks *map, loff_t offset,
3310 loff_t length)
3311{
3312 u8 blkbits = inode->i_blkbits;
3313
3314 /*
3315 * Writes that span EOF might trigger an I/O size update on completion,
3316 * so consider them to be dirty for the purpose of O_DSYNC, even if
3317 * there is no other metadata changes being made or are pending.
3318 */
3319 iomap->flags = 0;
3320 if (ext4_inode_datasync_dirty(inode) ||
3321 offset + length > i_size_read(inode))
3322 iomap->flags |= IOMAP_F_DIRTY;
3323
3324 if (map->m_flags & EXT4_MAP_NEW)
3325 iomap->flags |= IOMAP_F_NEW;
3326
3327 iomap->bdev = inode->i_sb->s_bdev;
3328 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3329 iomap->offset = (u64) map->m_lblk << blkbits;
3330 iomap->length = (u64) map->m_len << blkbits;
3331
3332 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3333 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3334 iomap->flags |= IOMAP_F_MERGED;
3335
3336 /*
3337 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3338 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3339 * set. In order for any allocated unwritten extents to be converted
3340 * into written extents correctly within the ->end_io() handler, we
3341 * need to ensure that the iomap->type is set appropriately. Hence, the
3342 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3343 * been set first.
3344 */
3345 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3346 iomap->type = IOMAP_UNWRITTEN;
3347 iomap->addr = (u64) map->m_pblk << blkbits;
3348 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3349 iomap->type = IOMAP_MAPPED;
3350 iomap->addr = (u64) map->m_pblk << blkbits;
3351 } else {
3352 iomap->type = IOMAP_HOLE;
3353 iomap->addr = IOMAP_NULL_ADDR;
3354 }
3355}
3356
3357static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3358 unsigned int flags)
3359{
3360 handle_t *handle;
3361 u8 blkbits = inode->i_blkbits;
3362 int ret, dio_credits, m_flags = 0, retries = 0;
3363
3364 /*
3365 * Trim the mapping request to the maximum value that we can map at
3366 * once for direct I/O.
3367 */
3368 if (map->m_len > DIO_MAX_BLOCKS)
3369 map->m_len = DIO_MAX_BLOCKS;
3370 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3371
3372retry:
3373 /*
3374 * Either we allocate blocks and then don't get an unwritten extent, so
3375 * in that case we have reserved enough credits. Or, the blocks are
3376 * already allocated and unwritten. In that case, the extent conversion
3377 * fits into the credits as well.
3378 */
3379 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3380 if (IS_ERR(handle))
3381 return PTR_ERR(handle);
3382
3383 /*
3384 * DAX and direct I/O are the only two operations that are currently
3385 * supported with IOMAP_WRITE.
3386 */
3387 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3388 if (IS_DAX(inode))
3389 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3390 /*
3391 * We use i_size instead of i_disksize here because delalloc writeback
3392 * can complete at any point during the I/O and subsequently push the
3393 * i_disksize out to i_size. This could be beyond where direct I/O is
3394 * happening and thus expose allocated blocks to direct I/O reads.
3395 */
3396 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3397 m_flags = EXT4_GET_BLOCKS_CREATE;
3398 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3399 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3400
3401 ret = ext4_map_blocks(handle, inode, map, m_flags);
3402
3403 /*
3404 * We cannot fill holes in indirect tree based inodes as that could
3405 * expose stale data in the case of a crash. Use the magic error code
3406 * to fallback to buffered I/O.
3407 */
3408 if (!m_flags && !ret)
3409 ret = -ENOTBLK;
3410
3411 ext4_journal_stop(handle);
3412 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3413 goto retry;
3414
3415 return ret;
3416}
3417
3418
3419static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3420 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3421{
3422 int ret;
3423 struct ext4_map_blocks map;
3424 u8 blkbits = inode->i_blkbits;
3425
3426 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3427 return -EINVAL;
3428
3429 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3430 return -ERANGE;
3431
3432 /*
3433 * Calculate the first and last logical blocks respectively.
3434 */
3435 map.m_lblk = offset >> blkbits;
3436 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3437 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3438
3439 if (flags & IOMAP_WRITE)
3440 ret = ext4_iomap_alloc(inode, &map, flags);
3441 else
3442 ret = ext4_map_blocks(NULL, inode, &map, 0);
3443
3444 if (ret < 0)
3445 return ret;
3446
3447 ext4_set_iomap(inode, iomap, &map, offset, length);
3448
3449 return 0;
3450}
3451
3452static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3453 loff_t length, unsigned flags, struct iomap *iomap,
3454 struct iomap *srcmap)
3455{
3456 int ret;
3457
3458 /*
3459 * Even for writes we don't need to allocate blocks, so just pretend
3460 * we are reading to save overhead of starting a transaction.
3461 */
3462 flags &= ~IOMAP_WRITE;
3463 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3464 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3465 return ret;
3466}
3467
3468static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3469 ssize_t written, unsigned flags, struct iomap *iomap)
3470{
3471 /*
3472 * Check to see whether an error occurred while writing out the data to
3473 * the allocated blocks. If so, return the magic error code so that we
3474 * fallback to buffered I/O and attempt to complete the remainder of
3475 * the I/O. Any blocks that may have been allocated in preparation for
3476 * the direct I/O will be reused during buffered I/O.
3477 */
3478 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3479 return -ENOTBLK;
3480
3481 return 0;
3482}
3483
3484const struct iomap_ops ext4_iomap_ops = {
3485 .iomap_begin = ext4_iomap_begin,
3486 .iomap_end = ext4_iomap_end,
3487};
3488
3489const struct iomap_ops ext4_iomap_overwrite_ops = {
3490 .iomap_begin = ext4_iomap_overwrite_begin,
3491 .iomap_end = ext4_iomap_end,
3492};
3493
3494static bool ext4_iomap_is_delalloc(struct inode *inode,
3495 struct ext4_map_blocks *map)
3496{
3497 struct extent_status es;
3498 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3499
3500 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3501 map->m_lblk, end, &es);
3502
3503 if (!es.es_len || es.es_lblk > end)
3504 return false;
3505
3506 if (es.es_lblk > map->m_lblk) {
3507 map->m_len = es.es_lblk - map->m_lblk;
3508 return false;
3509 }
3510
3511 offset = map->m_lblk - es.es_lblk;
3512 map->m_len = es.es_len - offset;
3513
3514 return true;
3515}
3516
3517static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3518 loff_t length, unsigned int flags,
3519 struct iomap *iomap, struct iomap *srcmap)
3520{
3521 int ret;
3522 bool delalloc = false;
3523 struct ext4_map_blocks map;
3524 u8 blkbits = inode->i_blkbits;
3525
3526 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3527 return -EINVAL;
3528
3529 if (ext4_has_inline_data(inode)) {
3530 ret = ext4_inline_data_iomap(inode, iomap);
3531 if (ret != -EAGAIN) {
3532 if (ret == 0 && offset >= iomap->length)
3533 ret = -ENOENT;
3534 return ret;
3535 }
3536 }
3537
3538 /*
3539 * Calculate the first and last logical block respectively.
3540 */
3541 map.m_lblk = offset >> blkbits;
3542 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3543 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3544
3545 /*
3546 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3547 * So handle it here itself instead of querying ext4_map_blocks().
3548 * Since ext4_map_blocks() will warn about it and will return
3549 * -EIO error.
3550 */
3551 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3552 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3553
3554 if (offset >= sbi->s_bitmap_maxbytes) {
3555 map.m_flags = 0;
3556 goto set_iomap;
3557 }
3558 }
3559
3560 ret = ext4_map_blocks(NULL, inode, &map, 0);
3561 if (ret < 0)
3562 return ret;
3563 if (ret == 0)
3564 delalloc = ext4_iomap_is_delalloc(inode, &map);
3565
3566set_iomap:
3567 ext4_set_iomap(inode, iomap, &map, offset, length);
3568 if (delalloc && iomap->type == IOMAP_HOLE)
3569 iomap->type = IOMAP_DELALLOC;
3570
3571 return 0;
3572}
3573
3574const struct iomap_ops ext4_iomap_report_ops = {
3575 .iomap_begin = ext4_iomap_begin_report,
3576};
3577
3578/*
3579 * Pages can be marked dirty completely asynchronously from ext4's journalling
3580 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3581 * much here because ->set_page_dirty is called under VFS locks. The page is
3582 * not necessarily locked.
3583 *
3584 * We cannot just dirty the page and leave attached buffers clean, because the
3585 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3586 * or jbddirty because all the journalling code will explode.
3587 *
3588 * So what we do is to mark the page "pending dirty" and next time writepage
3589 * is called, propagate that into the buffers appropriately.
3590 */
3591static int ext4_journalled_set_page_dirty(struct page *page)
3592{
3593 SetPageChecked(page);
3594 return __set_page_dirty_nobuffers(page);
3595}
3596
3597static int ext4_set_page_dirty(struct page *page)
3598{
3599 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3600 WARN_ON_ONCE(!page_has_buffers(page));
3601 return __set_page_dirty_buffers(page);
3602}
3603
3604static const struct address_space_operations ext4_aops = {
3605 .readpage = ext4_readpage,
3606 .readahead = ext4_readahead,
3607 .writepage = ext4_writepage,
3608 .writepages = ext4_writepages,
3609 .write_begin = ext4_write_begin,
3610 .write_end = ext4_write_end,
3611 .set_page_dirty = ext4_set_page_dirty,
3612 .bmap = ext4_bmap,
3613 .invalidatepage = ext4_invalidatepage,
3614 .releasepage = ext4_releasepage,
3615 .direct_IO = noop_direct_IO,
3616 .migratepage = buffer_migrate_page,
3617 .is_partially_uptodate = block_is_partially_uptodate,
3618 .error_remove_page = generic_error_remove_page,
3619};
3620
3621static const struct address_space_operations ext4_journalled_aops = {
3622 .readpage = ext4_readpage,
3623 .readahead = ext4_readahead,
3624 .writepage = ext4_writepage,
3625 .writepages = ext4_writepages,
3626 .write_begin = ext4_write_begin,
3627 .write_end = ext4_journalled_write_end,
3628 .set_page_dirty = ext4_journalled_set_page_dirty,
3629 .bmap = ext4_bmap,
3630 .invalidatepage = ext4_journalled_invalidatepage,
3631 .releasepage = ext4_releasepage,
3632 .direct_IO = noop_direct_IO,
3633 .is_partially_uptodate = block_is_partially_uptodate,
3634 .error_remove_page = generic_error_remove_page,
3635};
3636
3637static const struct address_space_operations ext4_da_aops = {
3638 .readpage = ext4_readpage,
3639 .readahead = ext4_readahead,
3640 .writepage = ext4_writepage,
3641 .writepages = ext4_writepages,
3642 .write_begin = ext4_da_write_begin,
3643 .write_end = ext4_da_write_end,
3644 .set_page_dirty = ext4_set_page_dirty,
3645 .bmap = ext4_bmap,
3646 .invalidatepage = ext4_invalidatepage,
3647 .releasepage = ext4_releasepage,
3648 .direct_IO = noop_direct_IO,
3649 .migratepage = buffer_migrate_page,
3650 .is_partially_uptodate = block_is_partially_uptodate,
3651 .error_remove_page = generic_error_remove_page,
3652};
3653
3654static const struct address_space_operations ext4_dax_aops = {
3655 .writepages = ext4_dax_writepages,
3656 .direct_IO = noop_direct_IO,
3657 .set_page_dirty = noop_set_page_dirty,
3658 .bmap = ext4_bmap,
3659 .invalidatepage = noop_invalidatepage,
3660};
3661
3662void ext4_set_aops(struct inode *inode)
3663{
3664 switch (ext4_inode_journal_mode(inode)) {
3665 case EXT4_INODE_ORDERED_DATA_MODE:
3666 case EXT4_INODE_WRITEBACK_DATA_MODE:
3667 break;
3668 case EXT4_INODE_JOURNAL_DATA_MODE:
3669 inode->i_mapping->a_ops = &ext4_journalled_aops;
3670 return;
3671 default:
3672 BUG();
3673 }
3674 if (IS_DAX(inode))
3675 inode->i_mapping->a_ops = &ext4_dax_aops;
3676 else if (test_opt(inode->i_sb, DELALLOC))
3677 inode->i_mapping->a_ops = &ext4_da_aops;
3678 else
3679 inode->i_mapping->a_ops = &ext4_aops;
3680}
3681
3682static int __ext4_block_zero_page_range(handle_t *handle,
3683 struct address_space *mapping, loff_t from, loff_t length)
3684{
3685 ext4_fsblk_t index = from >> PAGE_SHIFT;
3686 unsigned offset = from & (PAGE_SIZE-1);
3687 unsigned blocksize, pos;
3688 ext4_lblk_t iblock;
3689 struct inode *inode = mapping->host;
3690 struct buffer_head *bh;
3691 struct page *page;
3692 int err = 0;
3693
3694 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3695 mapping_gfp_constraint(mapping, ~__GFP_FS));
3696 if (!page)
3697 return -ENOMEM;
3698
3699 blocksize = inode->i_sb->s_blocksize;
3700
3701 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3702
3703 if (!page_has_buffers(page))
3704 create_empty_buffers(page, blocksize, 0);
3705
3706 /* Find the buffer that contains "offset" */
3707 bh = page_buffers(page);
3708 pos = blocksize;
3709 while (offset >= pos) {
3710 bh = bh->b_this_page;
3711 iblock++;
3712 pos += blocksize;
3713 }
3714 if (buffer_freed(bh)) {
3715 BUFFER_TRACE(bh, "freed: skip");
3716 goto unlock;
3717 }
3718 if (!buffer_mapped(bh)) {
3719 BUFFER_TRACE(bh, "unmapped");
3720 ext4_get_block(inode, iblock, bh, 0);
3721 /* unmapped? It's a hole - nothing to do */
3722 if (!buffer_mapped(bh)) {
3723 BUFFER_TRACE(bh, "still unmapped");
3724 goto unlock;
3725 }
3726 }
3727
3728 /* Ok, it's mapped. Make sure it's up-to-date */
3729 if (PageUptodate(page))
3730 set_buffer_uptodate(bh);
3731
3732 if (!buffer_uptodate(bh)) {
3733 err = -EIO;
3734 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3735 wait_on_buffer(bh);
3736 /* Uhhuh. Read error. Complain and punt. */
3737 if (!buffer_uptodate(bh))
3738 goto unlock;
3739 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3740 /* We expect the key to be set. */
3741 BUG_ON(!fscrypt_has_encryption_key(inode));
3742 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3743 bh_offset(bh));
3744 if (err) {
3745 clear_buffer_uptodate(bh);
3746 goto unlock;
3747 }
3748 }
3749 }
3750 if (ext4_should_journal_data(inode)) {
3751 BUFFER_TRACE(bh, "get write access");
3752 err = ext4_journal_get_write_access(handle, bh);
3753 if (err)
3754 goto unlock;
3755 }
3756 zero_user(page, offset, length);
3757 BUFFER_TRACE(bh, "zeroed end of block");
3758
3759 if (ext4_should_journal_data(inode)) {
3760 err = ext4_handle_dirty_metadata(handle, inode, bh);
3761 } else {
3762 err = 0;
3763 mark_buffer_dirty(bh);
3764 if (ext4_should_order_data(inode))
3765 err = ext4_jbd2_inode_add_write(handle, inode, from,
3766 length);
3767 }
3768
3769unlock:
3770 unlock_page(page);
3771 put_page(page);
3772 return err;
3773}
3774
3775/*
3776 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3777 * starting from file offset 'from'. The range to be zero'd must
3778 * be contained with in one block. If the specified range exceeds
3779 * the end of the block it will be shortened to end of the block
3780 * that cooresponds to 'from'
3781 */
3782static int ext4_block_zero_page_range(handle_t *handle,
3783 struct address_space *mapping, loff_t from, loff_t length)
3784{
3785 struct inode *inode = mapping->host;
3786 unsigned offset = from & (PAGE_SIZE-1);
3787 unsigned blocksize = inode->i_sb->s_blocksize;
3788 unsigned max = blocksize - (offset & (blocksize - 1));
3789
3790 /*
3791 * correct length if it does not fall between
3792 * 'from' and the end of the block
3793 */
3794 if (length > max || length < 0)
3795 length = max;
3796
3797 if (IS_DAX(inode)) {
3798 return iomap_zero_range(inode, from, length, NULL,
3799 &ext4_iomap_ops);
3800 }
3801 return __ext4_block_zero_page_range(handle, mapping, from, length);
3802}
3803
3804/*
3805 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3806 * up to the end of the block which corresponds to `from'.
3807 * This required during truncate. We need to physically zero the tail end
3808 * of that block so it doesn't yield old data if the file is later grown.
3809 */
3810static int ext4_block_truncate_page(handle_t *handle,
3811 struct address_space *mapping, loff_t from)
3812{
3813 unsigned offset = from & (PAGE_SIZE-1);
3814 unsigned length;
3815 unsigned blocksize;
3816 struct inode *inode = mapping->host;
3817
3818 /* If we are processing an encrypted inode during orphan list handling */
3819 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3820 return 0;
3821
3822 blocksize = inode->i_sb->s_blocksize;
3823 length = blocksize - (offset & (blocksize - 1));
3824
3825 return ext4_block_zero_page_range(handle, mapping, from, length);
3826}
3827
3828int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3829 loff_t lstart, loff_t length)
3830{
3831 struct super_block *sb = inode->i_sb;
3832 struct address_space *mapping = inode->i_mapping;
3833 unsigned partial_start, partial_end;
3834 ext4_fsblk_t start, end;
3835 loff_t byte_end = (lstart + length - 1);
3836 int err = 0;
3837
3838 partial_start = lstart & (sb->s_blocksize - 1);
3839 partial_end = byte_end & (sb->s_blocksize - 1);
3840
3841 start = lstart >> sb->s_blocksize_bits;
3842 end = byte_end >> sb->s_blocksize_bits;
3843
3844 /* Handle partial zero within the single block */
3845 if (start == end &&
3846 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3847 err = ext4_block_zero_page_range(handle, mapping,
3848 lstart, length);
3849 return err;
3850 }
3851 /* Handle partial zero out on the start of the range */
3852 if (partial_start) {
3853 err = ext4_block_zero_page_range(handle, mapping,
3854 lstart, sb->s_blocksize);
3855 if (err)
3856 return err;
3857 }
3858 /* Handle partial zero out on the end of the range */
3859 if (partial_end != sb->s_blocksize - 1)
3860 err = ext4_block_zero_page_range(handle, mapping,
3861 byte_end - partial_end,
3862 partial_end + 1);
3863 return err;
3864}
3865
3866int ext4_can_truncate(struct inode *inode)
3867{
3868 if (S_ISREG(inode->i_mode))
3869 return 1;
3870 if (S_ISDIR(inode->i_mode))
3871 return 1;
3872 if (S_ISLNK(inode->i_mode))
3873 return !ext4_inode_is_fast_symlink(inode);
3874 return 0;
3875}
3876
3877/*
3878 * We have to make sure i_disksize gets properly updated before we truncate
3879 * page cache due to hole punching or zero range. Otherwise i_disksize update
3880 * can get lost as it may have been postponed to submission of writeback but
3881 * that will never happen after we truncate page cache.
3882 */
3883int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3884 loff_t len)
3885{
3886 handle_t *handle;
3887 int ret;
3888
3889 loff_t size = i_size_read(inode);
3890
3891 WARN_ON(!inode_is_locked(inode));
3892 if (offset > size || offset + len < size)
3893 return 0;
3894
3895 if (EXT4_I(inode)->i_disksize >= size)
3896 return 0;
3897
3898 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3899 if (IS_ERR(handle))
3900 return PTR_ERR(handle);
3901 ext4_update_i_disksize(inode, size);
3902 ret = ext4_mark_inode_dirty(handle, inode);
3903 ext4_journal_stop(handle);
3904
3905 return ret;
3906}
3907
3908static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3909{
3910 up_write(&ei->i_mmap_sem);
3911 schedule();
3912 down_write(&ei->i_mmap_sem);
3913}
3914
3915int ext4_break_layouts(struct inode *inode)
3916{
3917 struct ext4_inode_info *ei = EXT4_I(inode);
3918 struct page *page;
3919 int error;
3920
3921 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3922 return -EINVAL;
3923
3924 do {
3925 page = dax_layout_busy_page(inode->i_mapping);
3926 if (!page)
3927 return 0;
3928
3929 error = ___wait_var_event(&page->_refcount,
3930 atomic_read(&page->_refcount) == 1,
3931 TASK_INTERRUPTIBLE, 0, 0,
3932 ext4_wait_dax_page(ei));
3933 } while (error == 0);
3934
3935 return error;
3936}
3937
3938/*
3939 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940 * associated with the given offset and length
3941 *
3942 * @inode: File inode
3943 * @offset: The offset where the hole will begin
3944 * @len: The length of the hole
3945 *
3946 * Returns: 0 on success or negative on failure
3947 */
3948
3949int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3950{
3951 struct super_block *sb = inode->i_sb;
3952 ext4_lblk_t first_block, stop_block;
3953 struct address_space *mapping = inode->i_mapping;
3954 loff_t first_block_offset, last_block_offset;
3955 handle_t *handle;
3956 unsigned int credits;
3957 int ret = 0, ret2 = 0;
3958
3959 trace_ext4_punch_hole(inode, offset, length, 0);
3960
3961 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3962 if (ext4_has_inline_data(inode)) {
3963 down_write(&EXT4_I(inode)->i_mmap_sem);
3964 ret = ext4_convert_inline_data(inode);
3965 up_write(&EXT4_I(inode)->i_mmap_sem);
3966 if (ret)
3967 return ret;
3968 }
3969
3970 /*
3971 * Write out all dirty pages to avoid race conditions
3972 * Then release them.
3973 */
3974 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3975 ret = filemap_write_and_wait_range(mapping, offset,
3976 offset + length - 1);
3977 if (ret)
3978 return ret;
3979 }
3980
3981 inode_lock(inode);
3982
3983 /* No need to punch hole beyond i_size */
3984 if (offset >= inode->i_size)
3985 goto out_mutex;
3986
3987 /*
3988 * If the hole extends beyond i_size, set the hole
3989 * to end after the page that contains i_size
3990 */
3991 if (offset + length > inode->i_size) {
3992 length = inode->i_size +
3993 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3994 offset;
3995 }
3996
3997 if (offset & (sb->s_blocksize - 1) ||
3998 (offset + length) & (sb->s_blocksize - 1)) {
3999 /*
4000 * Attach jinode to inode for jbd2 if we do any zeroing of
4001 * partial block
4002 */
4003 ret = ext4_inode_attach_jinode(inode);
4004 if (ret < 0)
4005 goto out_mutex;
4006
4007 }
4008
4009 /* Wait all existing dio workers, newcomers will block on i_mutex */
4010 inode_dio_wait(inode);
4011
4012 /*
4013 * Prevent page faults from reinstantiating pages we have released from
4014 * page cache.
4015 */
4016 down_write(&EXT4_I(inode)->i_mmap_sem);
4017
4018 ret = ext4_break_layouts(inode);
4019 if (ret)
4020 goto out_dio;
4021
4022 first_block_offset = round_up(offset, sb->s_blocksize);
4023 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4024
4025 /* Now release the pages and zero block aligned part of pages*/
4026 if (last_block_offset > first_block_offset) {
4027 ret = ext4_update_disksize_before_punch(inode, offset, length);
4028 if (ret)
4029 goto out_dio;
4030 truncate_pagecache_range(inode, first_block_offset,
4031 last_block_offset);
4032 }
4033
4034 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035 credits = ext4_writepage_trans_blocks(inode);
4036 else
4037 credits = ext4_blocks_for_truncate(inode);
4038 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4039 if (IS_ERR(handle)) {
4040 ret = PTR_ERR(handle);
4041 ext4_std_error(sb, ret);
4042 goto out_dio;
4043 }
4044
4045 ret = ext4_zero_partial_blocks(handle, inode, offset,
4046 length);
4047 if (ret)
4048 goto out_stop;
4049
4050 first_block = (offset + sb->s_blocksize - 1) >>
4051 EXT4_BLOCK_SIZE_BITS(sb);
4052 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4053
4054 /* If there are blocks to remove, do it */
4055 if (stop_block > first_block) {
4056
4057 down_write(&EXT4_I(inode)->i_data_sem);
4058 ext4_discard_preallocations(inode, 0);
4059
4060 ret = ext4_es_remove_extent(inode, first_block,
4061 stop_block - first_block);
4062 if (ret) {
4063 up_write(&EXT4_I(inode)->i_data_sem);
4064 goto out_stop;
4065 }
4066
4067 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4068 ret = ext4_ext_remove_space(inode, first_block,
4069 stop_block - 1);
4070 else
4071 ret = ext4_ind_remove_space(handle, inode, first_block,
4072 stop_block);
4073
4074 up_write(&EXT4_I(inode)->i_data_sem);
4075 }
4076 if (IS_SYNC(inode))
4077 ext4_handle_sync(handle);
4078
4079 inode->i_mtime = inode->i_ctime = current_time(inode);
4080 ret2 = ext4_mark_inode_dirty(handle, inode);
4081 if (unlikely(ret2))
4082 ret = ret2;
4083 if (ret >= 0)
4084 ext4_update_inode_fsync_trans(handle, inode, 1);
4085out_stop:
4086 ext4_journal_stop(handle);
4087out_dio:
4088 up_write(&EXT4_I(inode)->i_mmap_sem);
4089out_mutex:
4090 inode_unlock(inode);
4091 return ret;
4092}
4093
4094int ext4_inode_attach_jinode(struct inode *inode)
4095{
4096 struct ext4_inode_info *ei = EXT4_I(inode);
4097 struct jbd2_inode *jinode;
4098
4099 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100 return 0;
4101
4102 jinode = jbd2_alloc_inode(GFP_KERNEL);
4103 spin_lock(&inode->i_lock);
4104 if (!ei->jinode) {
4105 if (!jinode) {
4106 spin_unlock(&inode->i_lock);
4107 return -ENOMEM;
4108 }
4109 ei->jinode = jinode;
4110 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111 jinode = NULL;
4112 }
4113 spin_unlock(&inode->i_lock);
4114 if (unlikely(jinode != NULL))
4115 jbd2_free_inode(jinode);
4116 return 0;
4117}
4118
4119/*
4120 * ext4_truncate()
4121 *
4122 * We block out ext4_get_block() block instantiations across the entire
4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124 * simultaneously on behalf of the same inode.
4125 *
4126 * As we work through the truncate and commit bits of it to the journal there
4127 * is one core, guiding principle: the file's tree must always be consistent on
4128 * disk. We must be able to restart the truncate after a crash.
4129 *
4130 * The file's tree may be transiently inconsistent in memory (although it
4131 * probably isn't), but whenever we close off and commit a journal transaction,
4132 * the contents of (the filesystem + the journal) must be consistent and
4133 * restartable. It's pretty simple, really: bottom up, right to left (although
4134 * left-to-right works OK too).
4135 *
4136 * Note that at recovery time, journal replay occurs *before* the restart of
4137 * truncate against the orphan inode list.
4138 *
4139 * The committed inode has the new, desired i_size (which is the same as
4140 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4141 * that this inode's truncate did not complete and it will again call
4142 * ext4_truncate() to have another go. So there will be instantiated blocks
4143 * to the right of the truncation point in a crashed ext4 filesystem. But
4144 * that's fine - as long as they are linked from the inode, the post-crash
4145 * ext4_truncate() run will find them and release them.
4146 */
4147int ext4_truncate(struct inode *inode)
4148{
4149 struct ext4_inode_info *ei = EXT4_I(inode);
4150 unsigned int credits;
4151 int err = 0, err2;
4152 handle_t *handle;
4153 struct address_space *mapping = inode->i_mapping;
4154
4155 /*
4156 * There is a possibility that we're either freeing the inode
4157 * or it's a completely new inode. In those cases we might not
4158 * have i_mutex locked because it's not necessary.
4159 */
4160 if (!(inode->i_state & (I_NEW|I_FREEING)))
4161 WARN_ON(!inode_is_locked(inode));
4162 trace_ext4_truncate_enter(inode);
4163
4164 if (!ext4_can_truncate(inode))
4165 goto out_trace;
4166
4167 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170 if (ext4_has_inline_data(inode)) {
4171 int has_inline = 1;
4172
4173 err = ext4_inline_data_truncate(inode, &has_inline);
4174 if (err || has_inline)
4175 goto out_trace;
4176 }
4177
4178 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180 if (ext4_inode_attach_jinode(inode) < 0)
4181 goto out_trace;
4182 }
4183
4184 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185 credits = ext4_writepage_trans_blocks(inode);
4186 else
4187 credits = ext4_blocks_for_truncate(inode);
4188
4189 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4190 if (IS_ERR(handle)) {
4191 err = PTR_ERR(handle);
4192 goto out_trace;
4193 }
4194
4195 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4196 ext4_block_truncate_page(handle, mapping, inode->i_size);
4197
4198 /*
4199 * We add the inode to the orphan list, so that if this
4200 * truncate spans multiple transactions, and we crash, we will
4201 * resume the truncate when the filesystem recovers. It also
4202 * marks the inode dirty, to catch the new size.
4203 *
4204 * Implication: the file must always be in a sane, consistent
4205 * truncatable state while each transaction commits.
4206 */
4207 err = ext4_orphan_add(handle, inode);
4208 if (err)
4209 goto out_stop;
4210
4211 down_write(&EXT4_I(inode)->i_data_sem);
4212
4213 ext4_discard_preallocations(inode, 0);
4214
4215 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4216 err = ext4_ext_truncate(handle, inode);
4217 else
4218 ext4_ind_truncate(handle, inode);
4219
4220 up_write(&ei->i_data_sem);
4221 if (err)
4222 goto out_stop;
4223
4224 if (IS_SYNC(inode))
4225 ext4_handle_sync(handle);
4226
4227out_stop:
4228 /*
4229 * If this was a simple ftruncate() and the file will remain alive,
4230 * then we need to clear up the orphan record which we created above.
4231 * However, if this was a real unlink then we were called by
4232 * ext4_evict_inode(), and we allow that function to clean up the
4233 * orphan info for us.
4234 */
4235 if (inode->i_nlink)
4236 ext4_orphan_del(handle, inode);
4237
4238 inode->i_mtime = inode->i_ctime = current_time(inode);
4239 err2 = ext4_mark_inode_dirty(handle, inode);
4240 if (unlikely(err2 && !err))
4241 err = err2;
4242 ext4_journal_stop(handle);
4243
4244out_trace:
4245 trace_ext4_truncate_exit(inode);
4246 return err;
4247}
4248
4249/*
4250 * ext4_get_inode_loc returns with an extra refcount against the inode's
4251 * underlying buffer_head on success. If 'in_mem' is true, we have all
4252 * data in memory that is needed to recreate the on-disk version of this
4253 * inode.
4254 */
4255static int __ext4_get_inode_loc(struct inode *inode,
4256 struct ext4_iloc *iloc, int in_mem)
4257{
4258 struct ext4_group_desc *gdp;
4259 struct buffer_head *bh;
4260 struct super_block *sb = inode->i_sb;
4261 ext4_fsblk_t block;
4262 struct blk_plug plug;
4263 int inodes_per_block, inode_offset;
4264
4265 iloc->bh = NULL;
4266 if (inode->i_ino < EXT4_ROOT_INO ||
4267 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4268 return -EFSCORRUPTED;
4269
4270 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4271 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4272 if (!gdp)
4273 return -EIO;
4274
4275 /*
4276 * Figure out the offset within the block group inode table
4277 */
4278 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4279 inode_offset = ((inode->i_ino - 1) %
4280 EXT4_INODES_PER_GROUP(sb));
4281 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4282 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4283
4284 bh = sb_getblk(sb, block);
4285 if (unlikely(!bh))
4286 return -ENOMEM;
4287 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4288 goto simulate_eio;
4289 if (!buffer_uptodate(bh)) {
4290 lock_buffer(bh);
4291
4292 /*
4293 * If the buffer has the write error flag, we have failed
4294 * to write out another inode in the same block. In this
4295 * case, we don't have to read the block because we may
4296 * read the old inode data successfully.
4297 */
4298 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4299 set_buffer_uptodate(bh);
4300
4301 if (buffer_uptodate(bh)) {
4302 /* someone brought it uptodate while we waited */
4303 unlock_buffer(bh);
4304 goto has_buffer;
4305 }
4306
4307 /*
4308 * If we have all information of the inode in memory and this
4309 * is the only valid inode in the block, we need not read the
4310 * block.
4311 */
4312 if (in_mem) {
4313 struct buffer_head *bitmap_bh;
4314 int i, start;
4315
4316 start = inode_offset & ~(inodes_per_block - 1);
4317
4318 /* Is the inode bitmap in cache? */
4319 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4320 if (unlikely(!bitmap_bh))
4321 goto make_io;
4322
4323 /*
4324 * If the inode bitmap isn't in cache then the
4325 * optimisation may end up performing two reads instead
4326 * of one, so skip it.
4327 */
4328 if (!buffer_uptodate(bitmap_bh)) {
4329 brelse(bitmap_bh);
4330 goto make_io;
4331 }
4332 for (i = start; i < start + inodes_per_block; i++) {
4333 if (i == inode_offset)
4334 continue;
4335 if (ext4_test_bit(i, bitmap_bh->b_data))
4336 break;
4337 }
4338 brelse(bitmap_bh);
4339 if (i == start + inodes_per_block) {
4340 /* all other inodes are free, so skip I/O */
4341 memset(bh->b_data, 0, bh->b_size);
4342 set_buffer_uptodate(bh);
4343 unlock_buffer(bh);
4344 goto has_buffer;
4345 }
4346 }
4347
4348make_io:
4349 /*
4350 * If we need to do any I/O, try to pre-readahead extra
4351 * blocks from the inode table.
4352 */
4353 blk_start_plug(&plug);
4354 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4355 ext4_fsblk_t b, end, table;
4356 unsigned num;
4357 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4358
4359 table = ext4_inode_table(sb, gdp);
4360 /* s_inode_readahead_blks is always a power of 2 */
4361 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4362 if (table > b)
4363 b = table;
4364 end = b + ra_blks;
4365 num = EXT4_INODES_PER_GROUP(sb);
4366 if (ext4_has_group_desc_csum(sb))
4367 num -= ext4_itable_unused_count(sb, gdp);
4368 table += num / inodes_per_block;
4369 if (end > table)
4370 end = table;
4371 while (b <= end)
4372 sb_breadahead_unmovable(sb, b++);
4373 }
4374
4375 /*
4376 * There are other valid inodes in the buffer, this inode
4377 * has in-inode xattrs, or we don't have this inode in memory.
4378 * Read the block from disk.
4379 */
4380 trace_ext4_load_inode(inode);
4381 get_bh(bh);
4382 bh->b_end_io = end_buffer_read_sync;
4383 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4384 blk_finish_plug(&plug);
4385 wait_on_buffer(bh);
4386 if (!buffer_uptodate(bh)) {
4387 simulate_eio:
4388 ext4_error_inode_block(inode, block, EIO,
4389 "unable to read itable block");
4390 brelse(bh);
4391 return -EIO;
4392 }
4393 }
4394has_buffer:
4395 iloc->bh = bh;
4396 return 0;
4397}
4398
4399int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4400{
4401 /* We have all inode data except xattrs in memory here. */
4402 return __ext4_get_inode_loc(inode, iloc,
4403 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4404}
4405
4406static bool ext4_should_enable_dax(struct inode *inode)
4407{
4408 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4409
4410 if (test_opt2(inode->i_sb, DAX_NEVER))
4411 return false;
4412 if (!S_ISREG(inode->i_mode))
4413 return false;
4414 if (ext4_should_journal_data(inode))
4415 return false;
4416 if (ext4_has_inline_data(inode))
4417 return false;
4418 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4419 return false;
4420 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4421 return false;
4422 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4423 return false;
4424 if (test_opt(inode->i_sb, DAX_ALWAYS))
4425 return true;
4426
4427 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4428}
4429
4430void ext4_set_inode_flags(struct inode *inode, bool init)
4431{
4432 unsigned int flags = EXT4_I(inode)->i_flags;
4433 unsigned int new_fl = 0;
4434
4435 WARN_ON_ONCE(IS_DAX(inode) && init);
4436
4437 if (flags & EXT4_SYNC_FL)
4438 new_fl |= S_SYNC;
4439 if (flags & EXT4_APPEND_FL)
4440 new_fl |= S_APPEND;
4441 if (flags & EXT4_IMMUTABLE_FL)
4442 new_fl |= S_IMMUTABLE;
4443 if (flags & EXT4_NOATIME_FL)
4444 new_fl |= S_NOATIME;
4445 if (flags & EXT4_DIRSYNC_FL)
4446 new_fl |= S_DIRSYNC;
4447
4448 /* Because of the way inode_set_flags() works we must preserve S_DAX
4449 * here if already set. */
4450 new_fl |= (inode->i_flags & S_DAX);
4451 if (init && ext4_should_enable_dax(inode))
4452 new_fl |= S_DAX;
4453
4454 if (flags & EXT4_ENCRYPT_FL)
4455 new_fl |= S_ENCRYPTED;
4456 if (flags & EXT4_CASEFOLD_FL)
4457 new_fl |= S_CASEFOLD;
4458 if (flags & EXT4_VERITY_FL)
4459 new_fl |= S_VERITY;
4460 inode_set_flags(inode, new_fl,
4461 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4462 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4463}
4464
4465static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4466 struct ext4_inode_info *ei)
4467{
4468 blkcnt_t i_blocks ;
4469 struct inode *inode = &(ei->vfs_inode);
4470 struct super_block *sb = inode->i_sb;
4471
4472 if (ext4_has_feature_huge_file(sb)) {
4473 /* we are using combined 48 bit field */
4474 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4475 le32_to_cpu(raw_inode->i_blocks_lo);
4476 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4477 /* i_blocks represent file system block size */
4478 return i_blocks << (inode->i_blkbits - 9);
4479 } else {
4480 return i_blocks;
4481 }
4482 } else {
4483 return le32_to_cpu(raw_inode->i_blocks_lo);
4484 }
4485}
4486
4487static inline int ext4_iget_extra_inode(struct inode *inode,
4488 struct ext4_inode *raw_inode,
4489 struct ext4_inode_info *ei)
4490{
4491 __le32 *magic = (void *)raw_inode +
4492 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4493
4494 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4495 EXT4_INODE_SIZE(inode->i_sb) &&
4496 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4497 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4498 return ext4_find_inline_data_nolock(inode);
4499 } else
4500 EXT4_I(inode)->i_inline_off = 0;
4501 return 0;
4502}
4503
4504int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4505{
4506 if (!ext4_has_feature_project(inode->i_sb))
4507 return -EOPNOTSUPP;
4508 *projid = EXT4_I(inode)->i_projid;
4509 return 0;
4510}
4511
4512/*
4513 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4514 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4515 * set.
4516 */
4517static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4518{
4519 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4520 inode_set_iversion_raw(inode, val);
4521 else
4522 inode_set_iversion_queried(inode, val);
4523}
4524static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4525{
4526 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4527 return inode_peek_iversion_raw(inode);
4528 else
4529 return inode_peek_iversion(inode);
4530}
4531
4532struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4533 ext4_iget_flags flags, const char *function,
4534 unsigned int line)
4535{
4536 struct ext4_iloc iloc;
4537 struct ext4_inode *raw_inode;
4538 struct ext4_inode_info *ei;
4539 struct inode *inode;
4540 journal_t *journal = EXT4_SB(sb)->s_journal;
4541 long ret;
4542 loff_t size;
4543 int block;
4544 uid_t i_uid;
4545 gid_t i_gid;
4546 projid_t i_projid;
4547
4548 if ((!(flags & EXT4_IGET_SPECIAL) &&
4549 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4550 (ino < EXT4_ROOT_INO) ||
4551 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4552 if (flags & EXT4_IGET_HANDLE)
4553 return ERR_PTR(-ESTALE);
4554 __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4555 "inode #%lu: comm %s: iget: illegal inode #",
4556 ino, current->comm);
4557 return ERR_PTR(-EFSCORRUPTED);
4558 }
4559
4560 inode = iget_locked(sb, ino);
4561 if (!inode)
4562 return ERR_PTR(-ENOMEM);
4563 if (!(inode->i_state & I_NEW))
4564 return inode;
4565
4566 ei = EXT4_I(inode);
4567 iloc.bh = NULL;
4568
4569 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4570 if (ret < 0)
4571 goto bad_inode;
4572 raw_inode = ext4_raw_inode(&iloc);
4573
4574 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4575 ext4_error_inode(inode, function, line, 0,
4576 "iget: root inode unallocated");
4577 ret = -EFSCORRUPTED;
4578 goto bad_inode;
4579 }
4580
4581 if ((flags & EXT4_IGET_HANDLE) &&
4582 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4583 ret = -ESTALE;
4584 goto bad_inode;
4585 }
4586
4587 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4588 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4589 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4590 EXT4_INODE_SIZE(inode->i_sb) ||
4591 (ei->i_extra_isize & 3)) {
4592 ext4_error_inode(inode, function, line, 0,
4593 "iget: bad extra_isize %u "
4594 "(inode size %u)",
4595 ei->i_extra_isize,
4596 EXT4_INODE_SIZE(inode->i_sb));
4597 ret = -EFSCORRUPTED;
4598 goto bad_inode;
4599 }
4600 } else
4601 ei->i_extra_isize = 0;
4602
4603 /* Precompute checksum seed for inode metadata */
4604 if (ext4_has_metadata_csum(sb)) {
4605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4606 __u32 csum;
4607 __le32 inum = cpu_to_le32(inode->i_ino);
4608 __le32 gen = raw_inode->i_generation;
4609 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4610 sizeof(inum));
4611 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4612 sizeof(gen));
4613 }
4614
4615 if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4616 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4617 ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4618 "iget: checksum invalid");
4619 ret = -EFSBADCRC;
4620 goto bad_inode;
4621 }
4622
4623 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4624 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4625 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4626 if (ext4_has_feature_project(sb) &&
4627 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4628 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4629 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4630 else
4631 i_projid = EXT4_DEF_PROJID;
4632
4633 if (!(test_opt(inode->i_sb, NO_UID32))) {
4634 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4635 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4636 }
4637 i_uid_write(inode, i_uid);
4638 i_gid_write(inode, i_gid);
4639 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4640 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4641
4642 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4643 ei->i_inline_off = 0;
4644 ei->i_dir_start_lookup = 0;
4645 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4646 /* We now have enough fields to check if the inode was active or not.
4647 * This is needed because nfsd might try to access dead inodes
4648 * the test is that same one that e2fsck uses
4649 * NeilBrown 1999oct15
4650 */
4651 if (inode->i_nlink == 0) {
4652 if ((inode->i_mode == 0 ||
4653 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4654 ino != EXT4_BOOT_LOADER_INO) {
4655 /* this inode is deleted */
4656 ret = -ESTALE;
4657 goto bad_inode;
4658 }
4659 /* The only unlinked inodes we let through here have
4660 * valid i_mode and are being read by the orphan
4661 * recovery code: that's fine, we're about to complete
4662 * the process of deleting those.
4663 * OR it is the EXT4_BOOT_LOADER_INO which is
4664 * not initialized on a new filesystem. */
4665 }
4666 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4667 ext4_set_inode_flags(inode, true);
4668 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4669 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4670 if (ext4_has_feature_64bit(sb))
4671 ei->i_file_acl |=
4672 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4673 inode->i_size = ext4_isize(sb, raw_inode);
4674 if ((size = i_size_read(inode)) < 0) {
4675 ext4_error_inode(inode, function, line, 0,
4676 "iget: bad i_size value: %lld", size);
4677 ret = -EFSCORRUPTED;
4678 goto bad_inode;
4679 }
4680 /*
4681 * If dir_index is not enabled but there's dir with INDEX flag set,
4682 * we'd normally treat htree data as empty space. But with metadata
4683 * checksumming that corrupts checksums so forbid that.
4684 */
4685 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4686 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4687 ext4_error_inode(inode, function, line, 0,
4688 "iget: Dir with htree data on filesystem without dir_index feature.");
4689 ret = -EFSCORRUPTED;
4690 goto bad_inode;
4691 }
4692 ei->i_disksize = inode->i_size;
4693#ifdef CONFIG_QUOTA
4694 ei->i_reserved_quota = 0;
4695#endif
4696 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4697 ei->i_block_group = iloc.block_group;
4698 ei->i_last_alloc_group = ~0;
4699 /*
4700 * NOTE! The in-memory inode i_data array is in little-endian order
4701 * even on big-endian machines: we do NOT byteswap the block numbers!
4702 */
4703 for (block = 0; block < EXT4_N_BLOCKS; block++)
4704 ei->i_data[block] = raw_inode->i_block[block];
4705 INIT_LIST_HEAD(&ei->i_orphan);
4706
4707 /*
4708 * Set transaction id's of transactions that have to be committed
4709 * to finish f[data]sync. We set them to currently running transaction
4710 * as we cannot be sure that the inode or some of its metadata isn't
4711 * part of the transaction - the inode could have been reclaimed and
4712 * now it is reread from disk.
4713 */
4714 if (journal) {
4715 transaction_t *transaction;
4716 tid_t tid;
4717
4718 read_lock(&journal->j_state_lock);
4719 if (journal->j_running_transaction)
4720 transaction = journal->j_running_transaction;
4721 else
4722 transaction = journal->j_committing_transaction;
4723 if (transaction)
4724 tid = transaction->t_tid;
4725 else
4726 tid = journal->j_commit_sequence;
4727 read_unlock(&journal->j_state_lock);
4728 ei->i_sync_tid = tid;
4729 ei->i_datasync_tid = tid;
4730 }
4731
4732 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4733 if (ei->i_extra_isize == 0) {
4734 /* The extra space is currently unused. Use it. */
4735 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4736 ei->i_extra_isize = sizeof(struct ext4_inode) -
4737 EXT4_GOOD_OLD_INODE_SIZE;
4738 } else {
4739 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4740 if (ret)
4741 goto bad_inode;
4742 }
4743 }
4744
4745 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4746 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4747 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4748 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4749
4750 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4751 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4752
4753 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4754 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4755 ivers |=
4756 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4757 }
4758 ext4_inode_set_iversion_queried(inode, ivers);
4759 }
4760
4761 ret = 0;
4762 if (ei->i_file_acl &&
4763 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4764 ext4_error_inode(inode, function, line, 0,
4765 "iget: bad extended attribute block %llu",
4766 ei->i_file_acl);
4767 ret = -EFSCORRUPTED;
4768 goto bad_inode;
4769 } else if (!ext4_has_inline_data(inode)) {
4770 /* validate the block references in the inode */
4771 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4772 (S_ISLNK(inode->i_mode) &&
4773 !ext4_inode_is_fast_symlink(inode))) {
4774 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4775 ret = ext4_ext_check_inode(inode);
4776 else
4777 ret = ext4_ind_check_inode(inode);
4778 }
4779 }
4780 if (ret)
4781 goto bad_inode;
4782
4783 if (S_ISREG(inode->i_mode)) {
4784 inode->i_op = &ext4_file_inode_operations;
4785 inode->i_fop = &ext4_file_operations;
4786 ext4_set_aops(inode);
4787 } else if (S_ISDIR(inode->i_mode)) {
4788 inode->i_op = &ext4_dir_inode_operations;
4789 inode->i_fop = &ext4_dir_operations;
4790 } else if (S_ISLNK(inode->i_mode)) {
4791 /* VFS does not allow setting these so must be corruption */
4792 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4793 ext4_error_inode(inode, function, line, 0,
4794 "iget: immutable or append flags "
4795 "not allowed on symlinks");
4796 ret = -EFSCORRUPTED;
4797 goto bad_inode;
4798 }
4799 if (IS_ENCRYPTED(inode)) {
4800 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4801 ext4_set_aops(inode);
4802 } else if (ext4_inode_is_fast_symlink(inode)) {
4803 inode->i_link = (char *)ei->i_data;
4804 inode->i_op = &ext4_fast_symlink_inode_operations;
4805 nd_terminate_link(ei->i_data, inode->i_size,
4806 sizeof(ei->i_data) - 1);
4807 } else {
4808 inode->i_op = &ext4_symlink_inode_operations;
4809 ext4_set_aops(inode);
4810 }
4811 inode_nohighmem(inode);
4812 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4813 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4814 inode->i_op = &ext4_special_inode_operations;
4815 if (raw_inode->i_block[0])
4816 init_special_inode(inode, inode->i_mode,
4817 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4818 else
4819 init_special_inode(inode, inode->i_mode,
4820 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4821 } else if (ino == EXT4_BOOT_LOADER_INO) {
4822 make_bad_inode(inode);
4823 } else {
4824 ret = -EFSCORRUPTED;
4825 ext4_error_inode(inode, function, line, 0,
4826 "iget: bogus i_mode (%o)", inode->i_mode);
4827 goto bad_inode;
4828 }
4829 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4830 ext4_error_inode(inode, function, line, 0,
4831 "casefold flag without casefold feature");
4832 brelse(iloc.bh);
4833
4834 unlock_new_inode(inode);
4835 return inode;
4836
4837bad_inode:
4838 brelse(iloc.bh);
4839 iget_failed(inode);
4840 return ERR_PTR(ret);
4841}
4842
4843static int ext4_inode_blocks_set(handle_t *handle,
4844 struct ext4_inode *raw_inode,
4845 struct ext4_inode_info *ei)
4846{
4847 struct inode *inode = &(ei->vfs_inode);
4848 u64 i_blocks = READ_ONCE(inode->i_blocks);
4849 struct super_block *sb = inode->i_sb;
4850
4851 if (i_blocks <= ~0U) {
4852 /*
4853 * i_blocks can be represented in a 32 bit variable
4854 * as multiple of 512 bytes
4855 */
4856 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4857 raw_inode->i_blocks_high = 0;
4858 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4859 return 0;
4860 }
4861 if (!ext4_has_feature_huge_file(sb))
4862 return -EFBIG;
4863
4864 if (i_blocks <= 0xffffffffffffULL) {
4865 /*
4866 * i_blocks can be represented in a 48 bit variable
4867 * as multiple of 512 bytes
4868 */
4869 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4870 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4871 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4872 } else {
4873 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4874 /* i_block is stored in file system block size */
4875 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4876 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4877 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4878 }
4879 return 0;
4880}
4881
4882static void __ext4_update_other_inode_time(struct super_block *sb,
4883 unsigned long orig_ino,
4884 unsigned long ino,
4885 struct ext4_inode *raw_inode)
4886{
4887 struct inode *inode;
4888
4889 inode = find_inode_by_ino_rcu(sb, ino);
4890 if (!inode)
4891 return;
4892
4893 if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4894 I_DIRTY_INODE)) ||
4895 ((inode->i_state & I_DIRTY_TIME) == 0))
4896 return;
4897
4898 spin_lock(&inode->i_lock);
4899 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4900 I_DIRTY_INODE)) == 0) &&
4901 (inode->i_state & I_DIRTY_TIME)) {
4902 struct ext4_inode_info *ei = EXT4_I(inode);
4903
4904 inode->i_state &= ~I_DIRTY_TIME;
4905 spin_unlock(&inode->i_lock);
4906
4907 spin_lock(&ei->i_raw_lock);
4908 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4909 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4910 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4911 ext4_inode_csum_set(inode, raw_inode, ei);
4912 spin_unlock(&ei->i_raw_lock);
4913 trace_ext4_other_inode_update_time(inode, orig_ino);
4914 return;
4915 }
4916 spin_unlock(&inode->i_lock);
4917}
4918
4919/*
4920 * Opportunistically update the other time fields for other inodes in
4921 * the same inode table block.
4922 */
4923static void ext4_update_other_inodes_time(struct super_block *sb,
4924 unsigned long orig_ino, char *buf)
4925{
4926 unsigned long ino;
4927 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4928 int inode_size = EXT4_INODE_SIZE(sb);
4929
4930 /*
4931 * Calculate the first inode in the inode table block. Inode
4932 * numbers are one-based. That is, the first inode in a block
4933 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4934 */
4935 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4936 rcu_read_lock();
4937 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4938 if (ino == orig_ino)
4939 continue;
4940 __ext4_update_other_inode_time(sb, orig_ino, ino,
4941 (struct ext4_inode *)buf);
4942 }
4943 rcu_read_unlock();
4944}
4945
4946/*
4947 * Post the struct inode info into an on-disk inode location in the
4948 * buffer-cache. This gobbles the caller's reference to the
4949 * buffer_head in the inode location struct.
4950 *
4951 * The caller must have write access to iloc->bh.
4952 */
4953static int ext4_do_update_inode(handle_t *handle,
4954 struct inode *inode,
4955 struct ext4_iloc *iloc)
4956{
4957 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4958 struct ext4_inode_info *ei = EXT4_I(inode);
4959 struct buffer_head *bh = iloc->bh;
4960 struct super_block *sb = inode->i_sb;
4961 int err = 0, rc, block;
4962 int need_datasync = 0, set_large_file = 0;
4963 uid_t i_uid;
4964 gid_t i_gid;
4965 projid_t i_projid;
4966
4967 spin_lock(&ei->i_raw_lock);
4968
4969 /* For fields not tracked in the in-memory inode,
4970 * initialise them to zero for new inodes. */
4971 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4972 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4973
4974 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4975 i_uid = i_uid_read(inode);
4976 i_gid = i_gid_read(inode);
4977 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4978 if (!(test_opt(inode->i_sb, NO_UID32))) {
4979 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4980 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4981/*
4982 * Fix up interoperability with old kernels. Otherwise, old inodes get
4983 * re-used with the upper 16 bits of the uid/gid intact
4984 */
4985 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4986 raw_inode->i_uid_high = 0;
4987 raw_inode->i_gid_high = 0;
4988 } else {
4989 raw_inode->i_uid_high =
4990 cpu_to_le16(high_16_bits(i_uid));
4991 raw_inode->i_gid_high =
4992 cpu_to_le16(high_16_bits(i_gid));
4993 }
4994 } else {
4995 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4996 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4997 raw_inode->i_uid_high = 0;
4998 raw_inode->i_gid_high = 0;
4999 }
5000 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5001
5002 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5003 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5004 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5005 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5006
5007 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5008 if (err) {
5009 spin_unlock(&ei->i_raw_lock);
5010 goto out_brelse;
5011 }
5012 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5013 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5014 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5015 raw_inode->i_file_acl_high =
5016 cpu_to_le16(ei->i_file_acl >> 32);
5017 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5018 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5019 ext4_isize_set(raw_inode, ei->i_disksize);
5020 need_datasync = 1;
5021 }
5022 if (ei->i_disksize > 0x7fffffffULL) {
5023 if (!ext4_has_feature_large_file(sb) ||
5024 EXT4_SB(sb)->s_es->s_rev_level ==
5025 cpu_to_le32(EXT4_GOOD_OLD_REV))
5026 set_large_file = 1;
5027 }
5028 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5029 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5030 if (old_valid_dev(inode->i_rdev)) {
5031 raw_inode->i_block[0] =
5032 cpu_to_le32(old_encode_dev(inode->i_rdev));
5033 raw_inode->i_block[1] = 0;
5034 } else {
5035 raw_inode->i_block[0] = 0;
5036 raw_inode->i_block[1] =
5037 cpu_to_le32(new_encode_dev(inode->i_rdev));
5038 raw_inode->i_block[2] = 0;
5039 }
5040 } else if (!ext4_has_inline_data(inode)) {
5041 for (block = 0; block < EXT4_N_BLOCKS; block++)
5042 raw_inode->i_block[block] = ei->i_data[block];
5043 }
5044
5045 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5046 u64 ivers = ext4_inode_peek_iversion(inode);
5047
5048 raw_inode->i_disk_version = cpu_to_le32(ivers);
5049 if (ei->i_extra_isize) {
5050 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5051 raw_inode->i_version_hi =
5052 cpu_to_le32(ivers >> 32);
5053 raw_inode->i_extra_isize =
5054 cpu_to_le16(ei->i_extra_isize);
5055 }
5056 }
5057
5058 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5059 i_projid != EXT4_DEF_PROJID);
5060
5061 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5062 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5063 raw_inode->i_projid = cpu_to_le32(i_projid);
5064
5065 ext4_inode_csum_set(inode, raw_inode, ei);
5066 spin_unlock(&ei->i_raw_lock);
5067 if (inode->i_sb->s_flags & SB_LAZYTIME)
5068 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5069 bh->b_data);
5070
5071 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5072 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5073 if (!err)
5074 err = rc;
5075 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5076 if (set_large_file) {
5077 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5078 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5079 if (err)
5080 goto out_brelse;
5081 ext4_set_feature_large_file(sb);
5082 ext4_handle_sync(handle);
5083 err = ext4_handle_dirty_super(handle, sb);
5084 }
5085 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5086out_brelse:
5087 brelse(bh);
5088 ext4_std_error(inode->i_sb, err);
5089 return err;
5090}
5091
5092/*
5093 * ext4_write_inode()
5094 *
5095 * We are called from a few places:
5096 *
5097 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5098 * Here, there will be no transaction running. We wait for any running
5099 * transaction to commit.
5100 *
5101 * - Within flush work (sys_sync(), kupdate and such).
5102 * We wait on commit, if told to.
5103 *
5104 * - Within iput_final() -> write_inode_now()
5105 * We wait on commit, if told to.
5106 *
5107 * In all cases it is actually safe for us to return without doing anything,
5108 * because the inode has been copied into a raw inode buffer in
5109 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5110 * writeback.
5111 *
5112 * Note that we are absolutely dependent upon all inode dirtiers doing the
5113 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5114 * which we are interested.
5115 *
5116 * It would be a bug for them to not do this. The code:
5117 *
5118 * mark_inode_dirty(inode)
5119 * stuff();
5120 * inode->i_size = expr;
5121 *
5122 * is in error because write_inode() could occur while `stuff()' is running,
5123 * and the new i_size will be lost. Plus the inode will no longer be on the
5124 * superblock's dirty inode list.
5125 */
5126int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5127{
5128 int err;
5129
5130 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5131 sb_rdonly(inode->i_sb))
5132 return 0;
5133
5134 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5135 return -EIO;
5136
5137 if (EXT4_SB(inode->i_sb)->s_journal) {
5138 if (ext4_journal_current_handle()) {
5139 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5140 dump_stack();
5141 return -EIO;
5142 }
5143
5144 /*
5145 * No need to force transaction in WB_SYNC_NONE mode. Also
5146 * ext4_sync_fs() will force the commit after everything is
5147 * written.
5148 */
5149 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5150 return 0;
5151
5152 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5153 EXT4_I(inode)->i_sync_tid);
5154 } else {
5155 struct ext4_iloc iloc;
5156
5157 err = __ext4_get_inode_loc(inode, &iloc, 0);
5158 if (err)
5159 return err;
5160 /*
5161 * sync(2) will flush the whole buffer cache. No need to do
5162 * it here separately for each inode.
5163 */
5164 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5165 sync_dirty_buffer(iloc.bh);
5166 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5167 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5168 "IO error syncing inode");
5169 err = -EIO;
5170 }
5171 brelse(iloc.bh);
5172 }
5173 return err;
5174}
5175
5176/*
5177 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5178 * buffers that are attached to a page stradding i_size and are undergoing
5179 * commit. In that case we have to wait for commit to finish and try again.
5180 */
5181static void ext4_wait_for_tail_page_commit(struct inode *inode)
5182{
5183 struct page *page;
5184 unsigned offset;
5185 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5186 tid_t commit_tid = 0;
5187 int ret;
5188
5189 offset = inode->i_size & (PAGE_SIZE - 1);
5190 /*
5191 * If the page is fully truncated, we don't need to wait for any commit
5192 * (and we even should not as __ext4_journalled_invalidatepage() may
5193 * strip all buffers from the page but keep the page dirty which can then
5194 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5195 * buffers). Also we don't need to wait for any commit if all buffers in
5196 * the page remain valid. This is most beneficial for the common case of
5197 * blocksize == PAGESIZE.
5198 */
5199 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5200 return;
5201 while (1) {
5202 page = find_lock_page(inode->i_mapping,
5203 inode->i_size >> PAGE_SHIFT);
5204 if (!page)
5205 return;
5206 ret = __ext4_journalled_invalidatepage(page, offset,
5207 PAGE_SIZE - offset);
5208 unlock_page(page);
5209 put_page(page);
5210 if (ret != -EBUSY)
5211 return;
5212 commit_tid = 0;
5213 read_lock(&journal->j_state_lock);
5214 if (journal->j_committing_transaction)
5215 commit_tid = journal->j_committing_transaction->t_tid;
5216 read_unlock(&journal->j_state_lock);
5217 if (commit_tid)
5218 jbd2_log_wait_commit(journal, commit_tid);
5219 }
5220}
5221
5222/*
5223 * ext4_setattr()
5224 *
5225 * Called from notify_change.
5226 *
5227 * We want to trap VFS attempts to truncate the file as soon as
5228 * possible. In particular, we want to make sure that when the VFS
5229 * shrinks i_size, we put the inode on the orphan list and modify
5230 * i_disksize immediately, so that during the subsequent flushing of
5231 * dirty pages and freeing of disk blocks, we can guarantee that any
5232 * commit will leave the blocks being flushed in an unused state on
5233 * disk. (On recovery, the inode will get truncated and the blocks will
5234 * be freed, so we have a strong guarantee that no future commit will
5235 * leave these blocks visible to the user.)
5236 *
5237 * Another thing we have to assure is that if we are in ordered mode
5238 * and inode is still attached to the committing transaction, we must
5239 * we start writeout of all the dirty pages which are being truncated.
5240 * This way we are sure that all the data written in the previous
5241 * transaction are already on disk (truncate waits for pages under
5242 * writeback).
5243 *
5244 * Called with inode->i_mutex down.
5245 */
5246int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5247{
5248 struct inode *inode = d_inode(dentry);
5249 int error, rc = 0;
5250 int orphan = 0;
5251 const unsigned int ia_valid = attr->ia_valid;
5252
5253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5254 return -EIO;
5255
5256 if (unlikely(IS_IMMUTABLE(inode)))
5257 return -EPERM;
5258
5259 if (unlikely(IS_APPEND(inode) &&
5260 (ia_valid & (ATTR_MODE | ATTR_UID |
5261 ATTR_GID | ATTR_TIMES_SET))))
5262 return -EPERM;
5263
5264 error = setattr_prepare(dentry, attr);
5265 if (error)
5266 return error;
5267
5268 error = fscrypt_prepare_setattr(dentry, attr);
5269 if (error)
5270 return error;
5271
5272 error = fsverity_prepare_setattr(dentry, attr);
5273 if (error)
5274 return error;
5275
5276 if (is_quota_modification(inode, attr)) {
5277 error = dquot_initialize(inode);
5278 if (error)
5279 return error;
5280 }
5281 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5282 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5283 handle_t *handle;
5284
5285 /* (user+group)*(old+new) structure, inode write (sb,
5286 * inode block, ? - but truncate inode update has it) */
5287 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5288 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5289 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5290 if (IS_ERR(handle)) {
5291 error = PTR_ERR(handle);
5292 goto err_out;
5293 }
5294
5295 /* dquot_transfer() calls back ext4_get_inode_usage() which
5296 * counts xattr inode references.
5297 */
5298 down_read(&EXT4_I(inode)->xattr_sem);
5299 error = dquot_transfer(inode, attr);
5300 up_read(&EXT4_I(inode)->xattr_sem);
5301
5302 if (error) {
5303 ext4_journal_stop(handle);
5304 return error;
5305 }
5306 /* Update corresponding info in inode so that everything is in
5307 * one transaction */
5308 if (attr->ia_valid & ATTR_UID)
5309 inode->i_uid = attr->ia_uid;
5310 if (attr->ia_valid & ATTR_GID)
5311 inode->i_gid = attr->ia_gid;
5312 error = ext4_mark_inode_dirty(handle, inode);
5313 ext4_journal_stop(handle);
5314 if (unlikely(error))
5315 return error;
5316 }
5317
5318 if (attr->ia_valid & ATTR_SIZE) {
5319 handle_t *handle;
5320 loff_t oldsize = inode->i_size;
5321 int shrink = (attr->ia_size < inode->i_size);
5322
5323 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5324 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5325
5326 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5327 return -EFBIG;
5328 }
5329 if (!S_ISREG(inode->i_mode))
5330 return -EINVAL;
5331
5332 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5333 inode_inc_iversion(inode);
5334
5335 if (shrink) {
5336 if (ext4_should_order_data(inode)) {
5337 error = ext4_begin_ordered_truncate(inode,
5338 attr->ia_size);
5339 if (error)
5340 goto err_out;
5341 }
5342 /*
5343 * Blocks are going to be removed from the inode. Wait
5344 * for dio in flight.
5345 */
5346 inode_dio_wait(inode);
5347 }
5348
5349 down_write(&EXT4_I(inode)->i_mmap_sem);
5350
5351 rc = ext4_break_layouts(inode);
5352 if (rc) {
5353 up_write(&EXT4_I(inode)->i_mmap_sem);
5354 return rc;
5355 }
5356
5357 if (attr->ia_size != inode->i_size) {
5358 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5359 if (IS_ERR(handle)) {
5360 error = PTR_ERR(handle);
5361 goto out_mmap_sem;
5362 }
5363 if (ext4_handle_valid(handle) && shrink) {
5364 error = ext4_orphan_add(handle, inode);
5365 orphan = 1;
5366 }
5367 /*
5368 * Update c/mtime on truncate up, ext4_truncate() will
5369 * update c/mtime in shrink case below
5370 */
5371 if (!shrink) {
5372 inode->i_mtime = current_time(inode);
5373 inode->i_ctime = inode->i_mtime;
5374 }
5375 down_write(&EXT4_I(inode)->i_data_sem);
5376 EXT4_I(inode)->i_disksize = attr->ia_size;
5377 rc = ext4_mark_inode_dirty(handle, inode);
5378 if (!error)
5379 error = rc;
5380 /*
5381 * We have to update i_size under i_data_sem together
5382 * with i_disksize to avoid races with writeback code
5383 * running ext4_wb_update_i_disksize().
5384 */
5385 if (!error)
5386 i_size_write(inode, attr->ia_size);
5387 up_write(&EXT4_I(inode)->i_data_sem);
5388 ext4_journal_stop(handle);
5389 if (error)
5390 goto out_mmap_sem;
5391 if (!shrink) {
5392 pagecache_isize_extended(inode, oldsize,
5393 inode->i_size);
5394 } else if (ext4_should_journal_data(inode)) {
5395 ext4_wait_for_tail_page_commit(inode);
5396 }
5397 }
5398
5399 /*
5400 * Truncate pagecache after we've waited for commit
5401 * in data=journal mode to make pages freeable.
5402 */
5403 truncate_pagecache(inode, inode->i_size);
5404 /*
5405 * Call ext4_truncate() even if i_size didn't change to
5406 * truncate possible preallocated blocks.
5407 */
5408 if (attr->ia_size <= oldsize) {
5409 rc = ext4_truncate(inode);
5410 if (rc)
5411 error = rc;
5412 }
5413out_mmap_sem:
5414 up_write(&EXT4_I(inode)->i_mmap_sem);
5415 }
5416
5417 if (!error) {
5418 setattr_copy(inode, attr);
5419 mark_inode_dirty(inode);
5420 }
5421
5422 /*
5423 * If the call to ext4_truncate failed to get a transaction handle at
5424 * all, we need to clean up the in-core orphan list manually.
5425 */
5426 if (orphan && inode->i_nlink)
5427 ext4_orphan_del(NULL, inode);
5428
5429 if (!error && (ia_valid & ATTR_MODE))
5430 rc = posix_acl_chmod(inode, inode->i_mode);
5431
5432err_out:
5433 ext4_std_error(inode->i_sb, error);
5434 if (!error)
5435 error = rc;
5436 return error;
5437}
5438
5439int ext4_getattr(const struct path *path, struct kstat *stat,
5440 u32 request_mask, unsigned int query_flags)
5441{
5442 struct inode *inode = d_inode(path->dentry);
5443 struct ext4_inode *raw_inode;
5444 struct ext4_inode_info *ei = EXT4_I(inode);
5445 unsigned int flags;
5446
5447 if ((request_mask & STATX_BTIME) &&
5448 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5449 stat->result_mask |= STATX_BTIME;
5450 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5451 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5452 }
5453
5454 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5455 if (flags & EXT4_APPEND_FL)
5456 stat->attributes |= STATX_ATTR_APPEND;
5457 if (flags & EXT4_COMPR_FL)
5458 stat->attributes |= STATX_ATTR_COMPRESSED;
5459 if (flags & EXT4_ENCRYPT_FL)
5460 stat->attributes |= STATX_ATTR_ENCRYPTED;
5461 if (flags & EXT4_IMMUTABLE_FL)
5462 stat->attributes |= STATX_ATTR_IMMUTABLE;
5463 if (flags & EXT4_NODUMP_FL)
5464 stat->attributes |= STATX_ATTR_NODUMP;
5465 if (flags & EXT4_VERITY_FL)
5466 stat->attributes |= STATX_ATTR_VERITY;
5467
5468 stat->attributes_mask |= (STATX_ATTR_APPEND |
5469 STATX_ATTR_COMPRESSED |
5470 STATX_ATTR_ENCRYPTED |
5471 STATX_ATTR_IMMUTABLE |
5472 STATX_ATTR_NODUMP |
5473 STATX_ATTR_VERITY);
5474
5475 generic_fillattr(inode, stat);
5476 return 0;
5477}
5478
5479int ext4_file_getattr(const struct path *path, struct kstat *stat,
5480 u32 request_mask, unsigned int query_flags)
5481{
5482 struct inode *inode = d_inode(path->dentry);
5483 u64 delalloc_blocks;
5484
5485 ext4_getattr(path, stat, request_mask, query_flags);
5486
5487 /*
5488 * If there is inline data in the inode, the inode will normally not
5489 * have data blocks allocated (it may have an external xattr block).
5490 * Report at least one sector for such files, so tools like tar, rsync,
5491 * others don't incorrectly think the file is completely sparse.
5492 */
5493 if (unlikely(ext4_has_inline_data(inode)))
5494 stat->blocks += (stat->size + 511) >> 9;
5495
5496 /*
5497 * We can't update i_blocks if the block allocation is delayed
5498 * otherwise in the case of system crash before the real block
5499 * allocation is done, we will have i_blocks inconsistent with
5500 * on-disk file blocks.
5501 * We always keep i_blocks updated together with real
5502 * allocation. But to not confuse with user, stat
5503 * will return the blocks that include the delayed allocation
5504 * blocks for this file.
5505 */
5506 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5507 EXT4_I(inode)->i_reserved_data_blocks);
5508 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5509 return 0;
5510}
5511
5512static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5513 int pextents)
5514{
5515 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5516 return ext4_ind_trans_blocks(inode, lblocks);
5517 return ext4_ext_index_trans_blocks(inode, pextents);
5518}
5519
5520/*
5521 * Account for index blocks, block groups bitmaps and block group
5522 * descriptor blocks if modify datablocks and index blocks
5523 * worse case, the indexs blocks spread over different block groups
5524 *
5525 * If datablocks are discontiguous, they are possible to spread over
5526 * different block groups too. If they are contiguous, with flexbg,
5527 * they could still across block group boundary.
5528 *
5529 * Also account for superblock, inode, quota and xattr blocks
5530 */
5531static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5532 int pextents)
5533{
5534 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5535 int gdpblocks;
5536 int idxblocks;
5537 int ret = 0;
5538
5539 /*
5540 * How many index blocks need to touch to map @lblocks logical blocks
5541 * to @pextents physical extents?
5542 */
5543 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5544
5545 ret = idxblocks;
5546
5547 /*
5548 * Now let's see how many group bitmaps and group descriptors need
5549 * to account
5550 */
5551 groups = idxblocks + pextents;
5552 gdpblocks = groups;
5553 if (groups > ngroups)
5554 groups = ngroups;
5555 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5556 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5557
5558 /* bitmaps and block group descriptor blocks */
5559 ret += groups + gdpblocks;
5560
5561 /* Blocks for super block, inode, quota and xattr blocks */
5562 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5563
5564 return ret;
5565}
5566
5567/*
5568 * Calculate the total number of credits to reserve to fit
5569 * the modification of a single pages into a single transaction,
5570 * which may include multiple chunks of block allocations.
5571 *
5572 * This could be called via ext4_write_begin()
5573 *
5574 * We need to consider the worse case, when
5575 * one new block per extent.
5576 */
5577int ext4_writepage_trans_blocks(struct inode *inode)
5578{
5579 int bpp = ext4_journal_blocks_per_page(inode);
5580 int ret;
5581
5582 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5583
5584 /* Account for data blocks for journalled mode */
5585 if (ext4_should_journal_data(inode))
5586 ret += bpp;
5587 return ret;
5588}
5589
5590/*
5591 * Calculate the journal credits for a chunk of data modification.
5592 *
5593 * This is called from DIO, fallocate or whoever calling
5594 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5595 *
5596 * journal buffers for data blocks are not included here, as DIO
5597 * and fallocate do no need to journal data buffers.
5598 */
5599int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5600{
5601 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5602}
5603
5604/*
5605 * The caller must have previously called ext4_reserve_inode_write().
5606 * Give this, we know that the caller already has write access to iloc->bh.
5607 */
5608int ext4_mark_iloc_dirty(handle_t *handle,
5609 struct inode *inode, struct ext4_iloc *iloc)
5610{
5611 int err = 0;
5612
5613 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5614 put_bh(iloc->bh);
5615 return -EIO;
5616 }
5617 if (IS_I_VERSION(inode))
5618 inode_inc_iversion(inode);
5619
5620 /* the do_update_inode consumes one bh->b_count */
5621 get_bh(iloc->bh);
5622
5623 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5624 err = ext4_do_update_inode(handle, inode, iloc);
5625 put_bh(iloc->bh);
5626 return err;
5627}
5628
5629/*
5630 * On success, We end up with an outstanding reference count against
5631 * iloc->bh. This _must_ be cleaned up later.
5632 */
5633
5634int
5635ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5636 struct ext4_iloc *iloc)
5637{
5638 int err;
5639
5640 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5641 return -EIO;
5642
5643 err = ext4_get_inode_loc(inode, iloc);
5644 if (!err) {
5645 BUFFER_TRACE(iloc->bh, "get_write_access");
5646 err = ext4_journal_get_write_access(handle, iloc->bh);
5647 if (err) {
5648 brelse(iloc->bh);
5649 iloc->bh = NULL;
5650 }
5651 }
5652 ext4_std_error(inode->i_sb, err);
5653 return err;
5654}
5655
5656static int __ext4_expand_extra_isize(struct inode *inode,
5657 unsigned int new_extra_isize,
5658 struct ext4_iloc *iloc,
5659 handle_t *handle, int *no_expand)
5660{
5661 struct ext4_inode *raw_inode;
5662 struct ext4_xattr_ibody_header *header;
5663 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5664 struct ext4_inode_info *ei = EXT4_I(inode);
5665 int error;
5666
5667 /* this was checked at iget time, but double check for good measure */
5668 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5669 (ei->i_extra_isize & 3)) {
5670 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5671 ei->i_extra_isize,
5672 EXT4_INODE_SIZE(inode->i_sb));
5673 return -EFSCORRUPTED;
5674 }
5675 if ((new_extra_isize < ei->i_extra_isize) ||
5676 (new_extra_isize < 4) ||
5677 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5678 return -EINVAL; /* Should never happen */
5679
5680 raw_inode = ext4_raw_inode(iloc);
5681
5682 header = IHDR(inode, raw_inode);
5683
5684 /* No extended attributes present */
5685 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5686 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5687 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5688 EXT4_I(inode)->i_extra_isize, 0,
5689 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5690 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5691 return 0;
5692 }
5693
5694 /* try to expand with EAs present */
5695 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5696 raw_inode, handle);
5697 if (error) {
5698 /*
5699 * Inode size expansion failed; don't try again
5700 */
5701 *no_expand = 1;
5702 }
5703
5704 return error;
5705}
5706
5707/*
5708 * Expand an inode by new_extra_isize bytes.
5709 * Returns 0 on success or negative error number on failure.
5710 */
5711static int ext4_try_to_expand_extra_isize(struct inode *inode,
5712 unsigned int new_extra_isize,
5713 struct ext4_iloc iloc,
5714 handle_t *handle)
5715{
5716 int no_expand;
5717 int error;
5718
5719 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5720 return -EOVERFLOW;
5721
5722 /*
5723 * In nojournal mode, we can immediately attempt to expand
5724 * the inode. When journaled, we first need to obtain extra
5725 * buffer credits since we may write into the EA block
5726 * with this same handle. If journal_extend fails, then it will
5727 * only result in a minor loss of functionality for that inode.
5728 * If this is felt to be critical, then e2fsck should be run to
5729 * force a large enough s_min_extra_isize.
5730 */
5731 if (ext4_journal_extend(handle,
5732 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5733 return -ENOSPC;
5734
5735 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5736 return -EBUSY;
5737
5738 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5739 handle, &no_expand);
5740 ext4_write_unlock_xattr(inode, &no_expand);
5741
5742 return error;
5743}
5744
5745int ext4_expand_extra_isize(struct inode *inode,
5746 unsigned int new_extra_isize,
5747 struct ext4_iloc *iloc)
5748{
5749 handle_t *handle;
5750 int no_expand;
5751 int error, rc;
5752
5753 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5754 brelse(iloc->bh);
5755 return -EOVERFLOW;
5756 }
5757
5758 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5759 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5760 if (IS_ERR(handle)) {
5761 error = PTR_ERR(handle);
5762 brelse(iloc->bh);
5763 return error;
5764 }
5765
5766 ext4_write_lock_xattr(inode, &no_expand);
5767
5768 BUFFER_TRACE(iloc->bh, "get_write_access");
5769 error = ext4_journal_get_write_access(handle, iloc->bh);
5770 if (error) {
5771 brelse(iloc->bh);
5772 goto out_unlock;
5773 }
5774
5775 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5776 handle, &no_expand);
5777
5778 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5779 if (!error)
5780 error = rc;
5781
5782out_unlock:
5783 ext4_write_unlock_xattr(inode, &no_expand);
5784 ext4_journal_stop(handle);
5785 return error;
5786}
5787
5788/*
5789 * What we do here is to mark the in-core inode as clean with respect to inode
5790 * dirtiness (it may still be data-dirty).
5791 * This means that the in-core inode may be reaped by prune_icache
5792 * without having to perform any I/O. This is a very good thing,
5793 * because *any* task may call prune_icache - even ones which
5794 * have a transaction open against a different journal.
5795 *
5796 * Is this cheating? Not really. Sure, we haven't written the
5797 * inode out, but prune_icache isn't a user-visible syncing function.
5798 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5799 * we start and wait on commits.
5800 */
5801int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5802 const char *func, unsigned int line)
5803{
5804 struct ext4_iloc iloc;
5805 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5806 int err;
5807
5808 might_sleep();
5809 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5810 err = ext4_reserve_inode_write(handle, inode, &iloc);
5811 if (err)
5812 goto out;
5813
5814 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5815 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5816 iloc, handle);
5817
5818 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5819out:
5820 if (unlikely(err))
5821 ext4_error_inode_err(inode, func, line, 0, err,
5822 "mark_inode_dirty error");
5823 return err;
5824}
5825
5826/*
5827 * ext4_dirty_inode() is called from __mark_inode_dirty()
5828 *
5829 * We're really interested in the case where a file is being extended.
5830 * i_size has been changed by generic_commit_write() and we thus need
5831 * to include the updated inode in the current transaction.
5832 *
5833 * Also, dquot_alloc_block() will always dirty the inode when blocks
5834 * are allocated to the file.
5835 *
5836 * If the inode is marked synchronous, we don't honour that here - doing
5837 * so would cause a commit on atime updates, which we don't bother doing.
5838 * We handle synchronous inodes at the highest possible level.
5839 *
5840 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5841 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5842 * to copy into the on-disk inode structure are the timestamp files.
5843 */
5844void ext4_dirty_inode(struct inode *inode, int flags)
5845{
5846 handle_t *handle;
5847
5848 if (flags == I_DIRTY_TIME)
5849 return;
5850 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5851 if (IS_ERR(handle))
5852 goto out;
5853
5854 ext4_mark_inode_dirty(handle, inode);
5855
5856 ext4_journal_stop(handle);
5857out:
5858 return;
5859}
5860
5861int ext4_change_inode_journal_flag(struct inode *inode, int val)
5862{
5863 journal_t *journal;
5864 handle_t *handle;
5865 int err;
5866 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5867
5868 /*
5869 * We have to be very careful here: changing a data block's
5870 * journaling status dynamically is dangerous. If we write a
5871 * data block to the journal, change the status and then delete
5872 * that block, we risk forgetting to revoke the old log record
5873 * from the journal and so a subsequent replay can corrupt data.
5874 * So, first we make sure that the journal is empty and that
5875 * nobody is changing anything.
5876 */
5877
5878 journal = EXT4_JOURNAL(inode);
5879 if (!journal)
5880 return 0;
5881 if (is_journal_aborted(journal))
5882 return -EROFS;
5883
5884 /* Wait for all existing dio workers */
5885 inode_dio_wait(inode);
5886
5887 /*
5888 * Before flushing the journal and switching inode's aops, we have
5889 * to flush all dirty data the inode has. There can be outstanding
5890 * delayed allocations, there can be unwritten extents created by
5891 * fallocate or buffered writes in dioread_nolock mode covered by
5892 * dirty data which can be converted only after flushing the dirty
5893 * data (and journalled aops don't know how to handle these cases).
5894 */
5895 if (val) {
5896 down_write(&EXT4_I(inode)->i_mmap_sem);
5897 err = filemap_write_and_wait(inode->i_mapping);
5898 if (err < 0) {
5899 up_write(&EXT4_I(inode)->i_mmap_sem);
5900 return err;
5901 }
5902 }
5903
5904 percpu_down_write(&sbi->s_writepages_rwsem);
5905 jbd2_journal_lock_updates(journal);
5906
5907 /*
5908 * OK, there are no updates running now, and all cached data is
5909 * synced to disk. We are now in a completely consistent state
5910 * which doesn't have anything in the journal, and we know that
5911 * no filesystem updates are running, so it is safe to modify
5912 * the inode's in-core data-journaling state flag now.
5913 */
5914
5915 if (val)
5916 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5917 else {
5918 err = jbd2_journal_flush(journal);
5919 if (err < 0) {
5920 jbd2_journal_unlock_updates(journal);
5921 percpu_up_write(&sbi->s_writepages_rwsem);
5922 return err;
5923 }
5924 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5925 }
5926 ext4_set_aops(inode);
5927
5928 jbd2_journal_unlock_updates(journal);
5929 percpu_up_write(&sbi->s_writepages_rwsem);
5930
5931 if (val)
5932 up_write(&EXT4_I(inode)->i_mmap_sem);
5933
5934 /* Finally we can mark the inode as dirty. */
5935
5936 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5937 if (IS_ERR(handle))
5938 return PTR_ERR(handle);
5939
5940 err = ext4_mark_inode_dirty(handle, inode);
5941 ext4_handle_sync(handle);
5942 ext4_journal_stop(handle);
5943 ext4_std_error(inode->i_sb, err);
5944
5945 return err;
5946}
5947
5948static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5949{
5950 return !buffer_mapped(bh);
5951}
5952
5953vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5954{
5955 struct vm_area_struct *vma = vmf->vma;
5956 struct page *page = vmf->page;
5957 loff_t size;
5958 unsigned long len;
5959 int err;
5960 vm_fault_t ret;
5961 struct file *file = vma->vm_file;
5962 struct inode *inode = file_inode(file);
5963 struct address_space *mapping = inode->i_mapping;
5964 handle_t *handle;
5965 get_block_t *get_block;
5966 int retries = 0;
5967
5968 if (unlikely(IS_IMMUTABLE(inode)))
5969 return VM_FAULT_SIGBUS;
5970
5971 sb_start_pagefault(inode->i_sb);
5972 file_update_time(vma->vm_file);
5973
5974 down_read(&EXT4_I(inode)->i_mmap_sem);
5975
5976 err = ext4_convert_inline_data(inode);
5977 if (err)
5978 goto out_ret;
5979
5980 /* Delalloc case is easy... */
5981 if (test_opt(inode->i_sb, DELALLOC) &&
5982 !ext4_should_journal_data(inode) &&
5983 !ext4_nonda_switch(inode->i_sb)) {
5984 do {
5985 err = block_page_mkwrite(vma, vmf,
5986 ext4_da_get_block_prep);
5987 } while (err == -ENOSPC &&
5988 ext4_should_retry_alloc(inode->i_sb, &retries));
5989 goto out_ret;
5990 }
5991
5992 lock_page(page);
5993 size = i_size_read(inode);
5994 /* Page got truncated from under us? */
5995 if (page->mapping != mapping || page_offset(page) > size) {
5996 unlock_page(page);
5997 ret = VM_FAULT_NOPAGE;
5998 goto out;
5999 }
6000
6001 if (page->index == size >> PAGE_SHIFT)
6002 len = size & ~PAGE_MASK;
6003 else
6004 len = PAGE_SIZE;
6005 /*
6006 * Return if we have all the buffers mapped. This avoids the need to do
6007 * journal_start/journal_stop which can block and take a long time
6008 */
6009 if (page_has_buffers(page)) {
6010 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6011 0, len, NULL,
6012 ext4_bh_unmapped)) {
6013 /* Wait so that we don't change page under IO */
6014 wait_for_stable_page(page);
6015 ret = VM_FAULT_LOCKED;
6016 goto out;
6017 }
6018 }
6019 unlock_page(page);
6020 /* OK, we need to fill the hole... */
6021 if (ext4_should_dioread_nolock(inode))
6022 get_block = ext4_get_block_unwritten;
6023 else
6024 get_block = ext4_get_block;
6025retry_alloc:
6026 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6027 ext4_writepage_trans_blocks(inode));
6028 if (IS_ERR(handle)) {
6029 ret = VM_FAULT_SIGBUS;
6030 goto out;
6031 }
6032 err = block_page_mkwrite(vma, vmf, get_block);
6033 if (!err && ext4_should_journal_data(inode)) {
6034 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6035 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6036 unlock_page(page);
6037 ret = VM_FAULT_SIGBUS;
6038 ext4_journal_stop(handle);
6039 goto out;
6040 }
6041 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6042 }
6043 ext4_journal_stop(handle);
6044 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6045 goto retry_alloc;
6046out_ret:
6047 ret = block_page_mkwrite_return(err);
6048out:
6049 up_read(&EXT4_I(inode)->i_mmap_sem);
6050 sb_end_pagefault(inode->i_sb);
6051 return ret;
6052}
6053
6054vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6055{
6056 struct inode *inode = file_inode(vmf->vma->vm_file);
6057 vm_fault_t ret;
6058
6059 down_read(&EXT4_I(inode)->i_mmap_sem);
6060 ret = filemap_fault(vmf);
6061 up_read(&EXT4_I(inode)->i_mmap_sem);
6062
6063 return ret;
6064}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137}
138
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
142
143/*
144 * Test whether an inode is a fast symlink.
145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146 */
147int ext4_inode_is_fast_symlink(struct inode *inode)
148{
149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 return S_ISLNK(inode->i_mode) && inode->i_size &&
159 (inode->i_size < EXT4_N_BLOCKS * 4);
160}
161
162/*
163 * Called at the last iput() if i_nlink is zero.
164 */
165void ext4_evict_inode(struct inode *inode)
166{
167 handle_t *handle;
168 int err;
169 /*
170 * Credits for final inode cleanup and freeing:
171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 */
174 int extra_credits = 6;
175 struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 bool freeze_protected = false;
177
178 trace_ext4_evict_inode(inode);
179
180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 ext4_evict_ea_inode(inode);
182 if (inode->i_nlink) {
183 /*
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
197 *
198 * Note that directories do not have this problem because they
199 * don't use page cache.
200 */
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
209 }
210 truncate_inode_pages_final(&inode->i_data);
211
212 goto no_delete;
213 }
214
215 if (is_bad_inode(inode))
216 goto no_delete;
217 dquot_initialize(inode);
218
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
222
223 /*
224 * For inodes with journalled data, transaction commit could have
225 * dirtied the inode. And for inodes with dioread_nolock, unwritten
226 * extents converting worker could merge extents and also have dirtied
227 * the inode. Flush worker is ignoring it because of I_FREEING flag but
228 * we still need to remove the inode from the writeback lists.
229 */
230 if (!list_empty_careful(&inode->i_io_list))
231 inode_io_list_del(inode);
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it. When we are in a running transaction though,
236 * we are already protected against freezing and we cannot grab further
237 * protection due to lock ordering constraints.
238 */
239 if (!ext4_journal_current_handle()) {
240 sb_start_intwrite(inode->i_sb);
241 freeze_protected = true;
242 }
243
244 if (!IS_NOQUOTA(inode))
245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247 /*
248 * Block bitmap, group descriptor, and inode are accounted in both
249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 */
251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 if (IS_ERR(handle)) {
254 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255 /*
256 * If we're going to skip the normal cleanup, we still need to
257 * make sure that the in-core orphan linked list is properly
258 * cleaned up.
259 */
260 ext4_orphan_del(NULL, inode);
261 if (freeze_protected)
262 sb_end_intwrite(inode->i_sb);
263 goto no_delete;
264 }
265
266 if (IS_SYNC(inode))
267 ext4_handle_sync(handle);
268
269 /*
270 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 * special handling of symlinks here because i_size is used to
272 * determine whether ext4_inode_info->i_data contains symlink data or
273 * block mappings. Setting i_size to 0 will remove its fast symlink
274 * status. Erase i_data so that it becomes a valid empty block map.
275 */
276 if (ext4_inode_is_fast_symlink(inode))
277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278 inode->i_size = 0;
279 err = ext4_mark_inode_dirty(handle, inode);
280 if (err) {
281 ext4_warning(inode->i_sb,
282 "couldn't mark inode dirty (err %d)", err);
283 goto stop_handle;
284 }
285 if (inode->i_blocks) {
286 err = ext4_truncate(inode);
287 if (err) {
288 ext4_error_err(inode->i_sb, -err,
289 "couldn't truncate inode %lu (err %d)",
290 inode->i_ino, err);
291 goto stop_handle;
292 }
293 }
294
295 /* Remove xattr references. */
296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 extra_credits);
298 if (err) {
299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300stop_handle:
301 ext4_journal_stop(handle);
302 ext4_orphan_del(NULL, inode);
303 if (freeze_protected)
304 sb_end_intwrite(inode->i_sb);
305 ext4_xattr_inode_array_free(ea_inode_array);
306 goto no_delete;
307 }
308
309 /*
310 * Kill off the orphan record which ext4_truncate created.
311 * AKPM: I think this can be inside the above `if'.
312 * Note that ext4_orphan_del() has to be able to cope with the
313 * deletion of a non-existent orphan - this is because we don't
314 * know if ext4_truncate() actually created an orphan record.
315 * (Well, we could do this if we need to, but heck - it works)
316 */
317 ext4_orphan_del(handle, inode);
318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
319
320 /*
321 * One subtle ordering requirement: if anything has gone wrong
322 * (transaction abort, IO errors, whatever), then we can still
323 * do these next steps (the fs will already have been marked as
324 * having errors), but we can't free the inode if the mark_dirty
325 * fails.
326 */
327 if (ext4_mark_inode_dirty(handle, inode))
328 /* If that failed, just do the required in-core inode clear. */
329 ext4_clear_inode(inode);
330 else
331 ext4_free_inode(handle, inode);
332 ext4_journal_stop(handle);
333 if (freeze_protected)
334 sb_end_intwrite(inode->i_sb);
335 ext4_xattr_inode_array_free(ea_inode_array);
336 return;
337no_delete:
338 /*
339 * Check out some where else accidentally dirty the evicting inode,
340 * which may probably cause inode use-after-free issues later.
341 */
342 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343
344 if (!list_empty(&EXT4_I(inode)->i_fc_list))
345 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
347}
348
349#ifdef CONFIG_QUOTA
350qsize_t *ext4_get_reserved_space(struct inode *inode)
351{
352 return &EXT4_I(inode)->i_reserved_quota;
353}
354#endif
355
356/*
357 * Called with i_data_sem down, which is important since we can call
358 * ext4_discard_preallocations() from here.
359 */
360void ext4_da_update_reserve_space(struct inode *inode,
361 int used, int quota_claim)
362{
363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364 struct ext4_inode_info *ei = EXT4_I(inode);
365
366 spin_lock(&ei->i_block_reservation_lock);
367 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368 if (unlikely(used > ei->i_reserved_data_blocks)) {
369 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370 "with only %d reserved data blocks",
371 __func__, inode->i_ino, used,
372 ei->i_reserved_data_blocks);
373 WARN_ON(1);
374 used = ei->i_reserved_data_blocks;
375 }
376
377 /* Update per-inode reservations */
378 ei->i_reserved_data_blocks -= used;
379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380
381 spin_unlock(&ei->i_block_reservation_lock);
382
383 /* Update quota subsystem for data blocks */
384 if (quota_claim)
385 dquot_claim_block(inode, EXT4_C2B(sbi, used));
386 else {
387 /*
388 * We did fallocate with an offset that is already delayed
389 * allocated. So on delayed allocated writeback we should
390 * not re-claim the quota for fallocated blocks.
391 */
392 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393 }
394
395 /*
396 * If we have done all the pending block allocations and if
397 * there aren't any writers on the inode, we can discard the
398 * inode's preallocations.
399 */
400 if ((ei->i_reserved_data_blocks == 0) &&
401 !inode_is_open_for_write(inode))
402 ext4_discard_preallocations(inode, 0);
403}
404
405static int __check_block_validity(struct inode *inode, const char *func,
406 unsigned int line,
407 struct ext4_map_blocks *map)
408{
409 if (ext4_has_feature_journal(inode->i_sb) &&
410 (inode->i_ino ==
411 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412 return 0;
413 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock %llu "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_pblk, map->m_len);
418 return -EFSCORRUPTED;
419 }
420 return 0;
421}
422
423int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424 ext4_lblk_t len)
425{
426 int ret;
427
428 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429 return fscrypt_zeroout_range(inode, lblk, pblk, len);
430
431 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432 if (ret > 0)
433 ret = 0;
434
435 return ret;
436}
437
438#define check_block_validity(inode, map) \
439 __check_block_validity((inode), __func__, __LINE__, (map))
440
441#ifdef ES_AGGRESSIVE_TEST
442static void ext4_map_blocks_es_recheck(handle_t *handle,
443 struct inode *inode,
444 struct ext4_map_blocks *es_map,
445 struct ext4_map_blocks *map,
446 int flags)
447{
448 int retval;
449
450 map->m_flags = 0;
451 /*
452 * There is a race window that the result is not the same.
453 * e.g. xfstests #223 when dioread_nolock enables. The reason
454 * is that we lookup a block mapping in extent status tree with
455 * out taking i_data_sem. So at the time the unwritten extent
456 * could be converted.
457 */
458 down_read(&EXT4_I(inode)->i_data_sem);
459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460 retval = ext4_ext_map_blocks(handle, inode, map, 0);
461 } else {
462 retval = ext4_ind_map_blocks(handle, inode, map, 0);
463 }
464 up_read((&EXT4_I(inode)->i_data_sem));
465
466 /*
467 * We don't check m_len because extent will be collpased in status
468 * tree. So the m_len might not equal.
469 */
470 if (es_map->m_lblk != map->m_lblk ||
471 es_map->m_flags != map->m_flags ||
472 es_map->m_pblk != map->m_pblk) {
473 printk("ES cache assertion failed for inode: %lu "
474 "es_cached ex [%d/%d/%llu/%x] != "
475 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476 inode->i_ino, es_map->m_lblk, es_map->m_len,
477 es_map->m_pblk, es_map->m_flags, map->m_lblk,
478 map->m_len, map->m_pblk, map->m_flags,
479 retval, flags);
480 }
481}
482#endif /* ES_AGGRESSIVE_TEST */
483
484/*
485 * The ext4_map_blocks() function tries to look up the requested blocks,
486 * and returns if the blocks are already mapped.
487 *
488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489 * and store the allocated blocks in the result buffer head and mark it
490 * mapped.
491 *
492 * If file type is extents based, it will call ext4_ext_map_blocks(),
493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494 * based files
495 *
496 * On success, it returns the number of blocks being mapped or allocated. if
497 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499 *
500 * It returns 0 if plain look up failed (blocks have not been allocated), in
501 * that case, @map is returned as unmapped but we still do fill map->m_len to
502 * indicate the length of a hole starting at map->m_lblk.
503 *
504 * It returns the error in case of allocation failure.
505 */
506int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 struct ext4_map_blocks *map, int flags)
508{
509 struct extent_status es;
510 int retval;
511 int ret = 0;
512#ifdef ES_AGGRESSIVE_TEST
513 struct ext4_map_blocks orig_map;
514
515 memcpy(&orig_map, map, sizeof(*map));
516#endif
517
518 map->m_flags = 0;
519 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520 flags, map->m_len, (unsigned long) map->m_lblk);
521
522 /*
523 * ext4_map_blocks returns an int, and m_len is an unsigned int
524 */
525 if (unlikely(map->m_len > INT_MAX))
526 map->m_len = INT_MAX;
527
528 /* We can handle the block number less than EXT_MAX_BLOCKS */
529 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530 return -EFSCORRUPTED;
531
532 /* Lookup extent status tree firstly */
533 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 map->m_pblk = ext4_es_pblock(&es) +
537 map->m_lblk - es.es_lblk;
538 map->m_flags |= ext4_es_is_written(&es) ?
539 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 retval = es.es_len - (map->m_lblk - es.es_lblk);
541 if (retval > map->m_len)
542 retval = map->m_len;
543 map->m_len = retval;
544 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545 map->m_pblk = 0;
546 retval = es.es_len - (map->m_lblk - es.es_lblk);
547 if (retval > map->m_len)
548 retval = map->m_len;
549 map->m_len = retval;
550 retval = 0;
551 } else {
552 BUG();
553 }
554
555 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556 return retval;
557#ifdef ES_AGGRESSIVE_TEST
558 ext4_map_blocks_es_recheck(handle, inode, map,
559 &orig_map, flags);
560#endif
561 goto found;
562 }
563 /*
564 * In the query cache no-wait mode, nothing we can do more if we
565 * cannot find extent in the cache.
566 */
567 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568 return 0;
569
570 /*
571 * Try to see if we can get the block without requesting a new
572 * file system block.
573 */
574 down_read(&EXT4_I(inode)->i_data_sem);
575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576 retval = ext4_ext_map_blocks(handle, inode, map, 0);
577 } else {
578 retval = ext4_ind_map_blocks(handle, inode, map, 0);
579 }
580 if (retval > 0) {
581 unsigned int status;
582
583 if (unlikely(retval != map->m_len)) {
584 ext4_warning(inode->i_sb,
585 "ES len assertion failed for inode "
586 "%lu: retval %d != map->m_len %d",
587 inode->i_ino, retval, map->m_len);
588 WARN_ON(1);
589 }
590
591 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594 !(status & EXTENT_STATUS_WRITTEN) &&
595 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596 map->m_lblk + map->m_len - 1))
597 status |= EXTENT_STATUS_DELAYED;
598 ret = ext4_es_insert_extent(inode, map->m_lblk,
599 map->m_len, map->m_pblk, status);
600 if (ret < 0)
601 retval = ret;
602 }
603 up_read((&EXT4_I(inode)->i_data_sem));
604
605found:
606 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607 ret = check_block_validity(inode, map);
608 if (ret != 0)
609 return ret;
610 }
611
612 /* If it is only a block(s) look up */
613 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614 return retval;
615
616 /*
617 * Returns if the blocks have already allocated
618 *
619 * Note that if blocks have been preallocated
620 * ext4_ext_get_block() returns the create = 0
621 * with buffer head unmapped.
622 */
623 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624 /*
625 * If we need to convert extent to unwritten
626 * we continue and do the actual work in
627 * ext4_ext_map_blocks()
628 */
629 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630 return retval;
631
632 /*
633 * Here we clear m_flags because after allocating an new extent,
634 * it will be set again.
635 */
636 map->m_flags &= ~EXT4_MAP_FLAGS;
637
638 /*
639 * New blocks allocate and/or writing to unwritten extent
640 * will possibly result in updating i_data, so we take
641 * the write lock of i_data_sem, and call get_block()
642 * with create == 1 flag.
643 */
644 down_write(&EXT4_I(inode)->i_data_sem);
645
646 /*
647 * We need to check for EXT4 here because migrate
648 * could have changed the inode type in between
649 */
650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651 retval = ext4_ext_map_blocks(handle, inode, map, flags);
652 } else {
653 retval = ext4_ind_map_blocks(handle, inode, map, flags);
654
655 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656 /*
657 * We allocated new blocks which will result in
658 * i_data's format changing. Force the migrate
659 * to fail by clearing migrate flags
660 */
661 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662 }
663
664 /*
665 * Update reserved blocks/metadata blocks after successful
666 * block allocation which had been deferred till now. We don't
667 * support fallocate for non extent files. So we can update
668 * reserve space here.
669 */
670 if ((retval > 0) &&
671 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
672 ext4_da_update_reserve_space(inode, retval, 1);
673 }
674
675 if (retval > 0) {
676 unsigned int status;
677
678 if (unlikely(retval != map->m_len)) {
679 ext4_warning(inode->i_sb,
680 "ES len assertion failed for inode "
681 "%lu: retval %d != map->m_len %d",
682 inode->i_ino, retval, map->m_len);
683 WARN_ON(1);
684 }
685
686 /*
687 * We have to zeroout blocks before inserting them into extent
688 * status tree. Otherwise someone could look them up there and
689 * use them before they are really zeroed. We also have to
690 * unmap metadata before zeroing as otherwise writeback can
691 * overwrite zeros with stale data from block device.
692 */
693 if (flags & EXT4_GET_BLOCKS_ZERO &&
694 map->m_flags & EXT4_MAP_MAPPED &&
695 map->m_flags & EXT4_MAP_NEW) {
696 ret = ext4_issue_zeroout(inode, map->m_lblk,
697 map->m_pblk, map->m_len);
698 if (ret) {
699 retval = ret;
700 goto out_sem;
701 }
702 }
703
704 /*
705 * If the extent has been zeroed out, we don't need to update
706 * extent status tree.
707 */
708 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
710 if (ext4_es_is_written(&es))
711 goto out_sem;
712 }
713 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716 !(status & EXTENT_STATUS_WRITTEN) &&
717 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718 map->m_lblk + map->m_len - 1))
719 status |= EXTENT_STATUS_DELAYED;
720 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721 map->m_pblk, status);
722 if (ret < 0) {
723 retval = ret;
724 goto out_sem;
725 }
726 }
727
728out_sem:
729 up_write((&EXT4_I(inode)->i_data_sem));
730 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731 ret = check_block_validity(inode, map);
732 if (ret != 0)
733 return ret;
734
735 /*
736 * Inodes with freshly allocated blocks where contents will be
737 * visible after transaction commit must be on transaction's
738 * ordered data list.
739 */
740 if (map->m_flags & EXT4_MAP_NEW &&
741 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742 !(flags & EXT4_GET_BLOCKS_ZERO) &&
743 !ext4_is_quota_file(inode) &&
744 ext4_should_order_data(inode)) {
745 loff_t start_byte =
746 (loff_t)map->m_lblk << inode->i_blkbits;
747 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748
749 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750 ret = ext4_jbd2_inode_add_wait(handle, inode,
751 start_byte, length);
752 else
753 ret = ext4_jbd2_inode_add_write(handle, inode,
754 start_byte, length);
755 if (ret)
756 return ret;
757 }
758 }
759 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
760 map->m_flags & EXT4_MAP_MAPPED))
761 ext4_fc_track_range(handle, inode, map->m_lblk,
762 map->m_lblk + map->m_len - 1);
763 if (retval < 0)
764 ext_debug(inode, "failed with err %d\n", retval);
765 return retval;
766}
767
768/*
769 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
770 * we have to be careful as someone else may be manipulating b_state as well.
771 */
772static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
773{
774 unsigned long old_state;
775 unsigned long new_state;
776
777 flags &= EXT4_MAP_FLAGS;
778
779 /* Dummy buffer_head? Set non-atomically. */
780 if (!bh->b_page) {
781 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
782 return;
783 }
784 /*
785 * Someone else may be modifying b_state. Be careful! This is ugly but
786 * once we get rid of using bh as a container for mapping information
787 * to pass to / from get_block functions, this can go away.
788 */
789 do {
790 old_state = READ_ONCE(bh->b_state);
791 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
792 } while (unlikely(
793 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
794}
795
796static int _ext4_get_block(struct inode *inode, sector_t iblock,
797 struct buffer_head *bh, int flags)
798{
799 struct ext4_map_blocks map;
800 int ret = 0;
801
802 if (ext4_has_inline_data(inode))
803 return -ERANGE;
804
805 map.m_lblk = iblock;
806 map.m_len = bh->b_size >> inode->i_blkbits;
807
808 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
809 flags);
810 if (ret > 0) {
811 map_bh(bh, inode->i_sb, map.m_pblk);
812 ext4_update_bh_state(bh, map.m_flags);
813 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
814 ret = 0;
815 } else if (ret == 0) {
816 /* hole case, need to fill in bh->b_size */
817 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
818 }
819 return ret;
820}
821
822int ext4_get_block(struct inode *inode, sector_t iblock,
823 struct buffer_head *bh, int create)
824{
825 return _ext4_get_block(inode, iblock, bh,
826 create ? EXT4_GET_BLOCKS_CREATE : 0);
827}
828
829/*
830 * Get block function used when preparing for buffered write if we require
831 * creating an unwritten extent if blocks haven't been allocated. The extent
832 * will be converted to written after the IO is complete.
833 */
834int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
835 struct buffer_head *bh_result, int create)
836{
837 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
838 inode->i_ino, create);
839 return _ext4_get_block(inode, iblock, bh_result,
840 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
841}
842
843/* Maximum number of blocks we map for direct IO at once. */
844#define DIO_MAX_BLOCKS 4096
845
846/*
847 * `handle' can be NULL if create is zero
848 */
849struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
850 ext4_lblk_t block, int map_flags)
851{
852 struct ext4_map_blocks map;
853 struct buffer_head *bh;
854 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
855 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
856 int err;
857
858 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859 || handle != NULL || create == 0);
860 ASSERT(create == 0 || !nowait);
861
862 map.m_lblk = block;
863 map.m_len = 1;
864 err = ext4_map_blocks(handle, inode, &map, map_flags);
865
866 if (err == 0)
867 return create ? ERR_PTR(-ENOSPC) : NULL;
868 if (err < 0)
869 return ERR_PTR(err);
870
871 if (nowait)
872 return sb_find_get_block(inode->i_sb, map.m_pblk);
873
874 bh = sb_getblk(inode->i_sb, map.m_pblk);
875 if (unlikely(!bh))
876 return ERR_PTR(-ENOMEM);
877 if (map.m_flags & EXT4_MAP_NEW) {
878 ASSERT(create != 0);
879 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
880 || (handle != NULL));
881
882 /*
883 * Now that we do not always journal data, we should
884 * keep in mind whether this should always journal the
885 * new buffer as metadata. For now, regular file
886 * writes use ext4_get_block instead, so it's not a
887 * problem.
888 */
889 lock_buffer(bh);
890 BUFFER_TRACE(bh, "call get_create_access");
891 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
892 EXT4_JTR_NONE);
893 if (unlikely(err)) {
894 unlock_buffer(bh);
895 goto errout;
896 }
897 if (!buffer_uptodate(bh)) {
898 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
899 set_buffer_uptodate(bh);
900 }
901 unlock_buffer(bh);
902 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
903 err = ext4_handle_dirty_metadata(handle, inode, bh);
904 if (unlikely(err))
905 goto errout;
906 } else
907 BUFFER_TRACE(bh, "not a new buffer");
908 return bh;
909errout:
910 brelse(bh);
911 return ERR_PTR(err);
912}
913
914struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
915 ext4_lblk_t block, int map_flags)
916{
917 struct buffer_head *bh;
918 int ret;
919
920 bh = ext4_getblk(handle, inode, block, map_flags);
921 if (IS_ERR(bh))
922 return bh;
923 if (!bh || ext4_buffer_uptodate(bh))
924 return bh;
925
926 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
927 if (ret) {
928 put_bh(bh);
929 return ERR_PTR(ret);
930 }
931 return bh;
932}
933
934/* Read a contiguous batch of blocks. */
935int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
936 bool wait, struct buffer_head **bhs)
937{
938 int i, err;
939
940 for (i = 0; i < bh_count; i++) {
941 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
942 if (IS_ERR(bhs[i])) {
943 err = PTR_ERR(bhs[i]);
944 bh_count = i;
945 goto out_brelse;
946 }
947 }
948
949 for (i = 0; i < bh_count; i++)
950 /* Note that NULL bhs[i] is valid because of holes. */
951 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
952 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
953
954 if (!wait)
955 return 0;
956
957 for (i = 0; i < bh_count; i++)
958 if (bhs[i])
959 wait_on_buffer(bhs[i]);
960
961 for (i = 0; i < bh_count; i++) {
962 if (bhs[i] && !buffer_uptodate(bhs[i])) {
963 err = -EIO;
964 goto out_brelse;
965 }
966 }
967 return 0;
968
969out_brelse:
970 for (i = 0; i < bh_count; i++) {
971 brelse(bhs[i]);
972 bhs[i] = NULL;
973 }
974 return err;
975}
976
977int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
978 struct buffer_head *head,
979 unsigned from,
980 unsigned to,
981 int *partial,
982 int (*fn)(handle_t *handle, struct inode *inode,
983 struct buffer_head *bh))
984{
985 struct buffer_head *bh;
986 unsigned block_start, block_end;
987 unsigned blocksize = head->b_size;
988 int err, ret = 0;
989 struct buffer_head *next;
990
991 for (bh = head, block_start = 0;
992 ret == 0 && (bh != head || !block_start);
993 block_start = block_end, bh = next) {
994 next = bh->b_this_page;
995 block_end = block_start + blocksize;
996 if (block_end <= from || block_start >= to) {
997 if (partial && !buffer_uptodate(bh))
998 *partial = 1;
999 continue;
1000 }
1001 err = (*fn)(handle, inode, bh);
1002 if (!ret)
1003 ret = err;
1004 }
1005 return ret;
1006}
1007
1008/*
1009 * To preserve ordering, it is essential that the hole instantiation and
1010 * the data write be encapsulated in a single transaction. We cannot
1011 * close off a transaction and start a new one between the ext4_get_block()
1012 * and the commit_write(). So doing the jbd2_journal_start at the start of
1013 * prepare_write() is the right place.
1014 *
1015 * Also, this function can nest inside ext4_writepage(). In that case, we
1016 * *know* that ext4_writepage() has generated enough buffer credits to do the
1017 * whole page. So we won't block on the journal in that case, which is good,
1018 * because the caller may be PF_MEMALLOC.
1019 *
1020 * By accident, ext4 can be reentered when a transaction is open via
1021 * quota file writes. If we were to commit the transaction while thus
1022 * reentered, there can be a deadlock - we would be holding a quota
1023 * lock, and the commit would never complete if another thread had a
1024 * transaction open and was blocking on the quota lock - a ranking
1025 * violation.
1026 *
1027 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1028 * will _not_ run commit under these circumstances because handle->h_ref
1029 * is elevated. We'll still have enough credits for the tiny quotafile
1030 * write.
1031 */
1032int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1033 struct buffer_head *bh)
1034{
1035 int dirty = buffer_dirty(bh);
1036 int ret;
1037
1038 if (!buffer_mapped(bh) || buffer_freed(bh))
1039 return 0;
1040 /*
1041 * __block_write_begin() could have dirtied some buffers. Clean
1042 * the dirty bit as jbd2_journal_get_write_access() could complain
1043 * otherwise about fs integrity issues. Setting of the dirty bit
1044 * by __block_write_begin() isn't a real problem here as we clear
1045 * the bit before releasing a page lock and thus writeback cannot
1046 * ever write the buffer.
1047 */
1048 if (dirty)
1049 clear_buffer_dirty(bh);
1050 BUFFER_TRACE(bh, "get write access");
1051 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1052 EXT4_JTR_NONE);
1053 if (!ret && dirty)
1054 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1055 return ret;
1056}
1057
1058#ifdef CONFIG_FS_ENCRYPTION
1059static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1060 get_block_t *get_block)
1061{
1062 unsigned from = pos & (PAGE_SIZE - 1);
1063 unsigned to = from + len;
1064 struct inode *inode = page->mapping->host;
1065 unsigned block_start, block_end;
1066 sector_t block;
1067 int err = 0;
1068 unsigned blocksize = inode->i_sb->s_blocksize;
1069 unsigned bbits;
1070 struct buffer_head *bh, *head, *wait[2];
1071 int nr_wait = 0;
1072 int i;
1073
1074 BUG_ON(!PageLocked(page));
1075 BUG_ON(from > PAGE_SIZE);
1076 BUG_ON(to > PAGE_SIZE);
1077 BUG_ON(from > to);
1078
1079 if (!page_has_buffers(page))
1080 create_empty_buffers(page, blocksize, 0);
1081 head = page_buffers(page);
1082 bbits = ilog2(blocksize);
1083 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1084
1085 for (bh = head, block_start = 0; bh != head || !block_start;
1086 block++, block_start = block_end, bh = bh->b_this_page) {
1087 block_end = block_start + blocksize;
1088 if (block_end <= from || block_start >= to) {
1089 if (PageUptodate(page)) {
1090 set_buffer_uptodate(bh);
1091 }
1092 continue;
1093 }
1094 if (buffer_new(bh))
1095 clear_buffer_new(bh);
1096 if (!buffer_mapped(bh)) {
1097 WARN_ON(bh->b_size != blocksize);
1098 err = get_block(inode, block, bh, 1);
1099 if (err)
1100 break;
1101 if (buffer_new(bh)) {
1102 if (PageUptodate(page)) {
1103 clear_buffer_new(bh);
1104 set_buffer_uptodate(bh);
1105 mark_buffer_dirty(bh);
1106 continue;
1107 }
1108 if (block_end > to || block_start < from)
1109 zero_user_segments(page, to, block_end,
1110 block_start, from);
1111 continue;
1112 }
1113 }
1114 if (PageUptodate(page)) {
1115 set_buffer_uptodate(bh);
1116 continue;
1117 }
1118 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119 !buffer_unwritten(bh) &&
1120 (block_start < from || block_end > to)) {
1121 ext4_read_bh_lock(bh, 0, false);
1122 wait[nr_wait++] = bh;
1123 }
1124 }
1125 /*
1126 * If we issued read requests, let them complete.
1127 */
1128 for (i = 0; i < nr_wait; i++) {
1129 wait_on_buffer(wait[i]);
1130 if (!buffer_uptodate(wait[i]))
1131 err = -EIO;
1132 }
1133 if (unlikely(err)) {
1134 page_zero_new_buffers(page, from, to);
1135 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1136 for (i = 0; i < nr_wait; i++) {
1137 int err2;
1138
1139 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1140 bh_offset(wait[i]));
1141 if (err2) {
1142 clear_buffer_uptodate(wait[i]);
1143 err = err2;
1144 }
1145 }
1146 }
1147
1148 return err;
1149}
1150#endif
1151
1152static int ext4_write_begin(struct file *file, struct address_space *mapping,
1153 loff_t pos, unsigned len,
1154 struct page **pagep, void **fsdata)
1155{
1156 struct inode *inode = mapping->host;
1157 int ret, needed_blocks;
1158 handle_t *handle;
1159 int retries = 0;
1160 struct page *page;
1161 pgoff_t index;
1162 unsigned from, to;
1163
1164 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1165 return -EIO;
1166
1167 trace_ext4_write_begin(inode, pos, len);
1168 /*
1169 * Reserve one block more for addition to orphan list in case
1170 * we allocate blocks but write fails for some reason
1171 */
1172 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1173 index = pos >> PAGE_SHIFT;
1174 from = pos & (PAGE_SIZE - 1);
1175 to = from + len;
1176
1177 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1178 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1179 pagep);
1180 if (ret < 0)
1181 return ret;
1182 if (ret == 1)
1183 return 0;
1184 }
1185
1186 /*
1187 * grab_cache_page_write_begin() can take a long time if the
1188 * system is thrashing due to memory pressure, or if the page
1189 * is being written back. So grab it first before we start
1190 * the transaction handle. This also allows us to allocate
1191 * the page (if needed) without using GFP_NOFS.
1192 */
1193retry_grab:
1194 page = grab_cache_page_write_begin(mapping, index);
1195 if (!page)
1196 return -ENOMEM;
1197 /*
1198 * The same as page allocation, we prealloc buffer heads before
1199 * starting the handle.
1200 */
1201 if (!page_has_buffers(page))
1202 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1203
1204 unlock_page(page);
1205
1206retry_journal:
1207 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1208 if (IS_ERR(handle)) {
1209 put_page(page);
1210 return PTR_ERR(handle);
1211 }
1212
1213 lock_page(page);
1214 if (page->mapping != mapping) {
1215 /* The page got truncated from under us */
1216 unlock_page(page);
1217 put_page(page);
1218 ext4_journal_stop(handle);
1219 goto retry_grab;
1220 }
1221 /* In case writeback began while the page was unlocked */
1222 wait_for_stable_page(page);
1223
1224#ifdef CONFIG_FS_ENCRYPTION
1225 if (ext4_should_dioread_nolock(inode))
1226 ret = ext4_block_write_begin(page, pos, len,
1227 ext4_get_block_unwritten);
1228 else
1229 ret = ext4_block_write_begin(page, pos, len,
1230 ext4_get_block);
1231#else
1232 if (ext4_should_dioread_nolock(inode))
1233 ret = __block_write_begin(page, pos, len,
1234 ext4_get_block_unwritten);
1235 else
1236 ret = __block_write_begin(page, pos, len, ext4_get_block);
1237#endif
1238 if (!ret && ext4_should_journal_data(inode)) {
1239 ret = ext4_walk_page_buffers(handle, inode,
1240 page_buffers(page), from, to, NULL,
1241 do_journal_get_write_access);
1242 }
1243
1244 if (ret) {
1245 bool extended = (pos + len > inode->i_size) &&
1246 !ext4_verity_in_progress(inode);
1247
1248 unlock_page(page);
1249 /*
1250 * __block_write_begin may have instantiated a few blocks
1251 * outside i_size. Trim these off again. Don't need
1252 * i_size_read because we hold i_rwsem.
1253 *
1254 * Add inode to orphan list in case we crash before
1255 * truncate finishes
1256 */
1257 if (extended && ext4_can_truncate(inode))
1258 ext4_orphan_add(handle, inode);
1259
1260 ext4_journal_stop(handle);
1261 if (extended) {
1262 ext4_truncate_failed_write(inode);
1263 /*
1264 * If truncate failed early the inode might
1265 * still be on the orphan list; we need to
1266 * make sure the inode is removed from the
1267 * orphan list in that case.
1268 */
1269 if (inode->i_nlink)
1270 ext4_orphan_del(NULL, inode);
1271 }
1272
1273 if (ret == -ENOSPC &&
1274 ext4_should_retry_alloc(inode->i_sb, &retries))
1275 goto retry_journal;
1276 put_page(page);
1277 return ret;
1278 }
1279 *pagep = page;
1280 return ret;
1281}
1282
1283/* For write_end() in data=journal mode */
1284static int write_end_fn(handle_t *handle, struct inode *inode,
1285 struct buffer_head *bh)
1286{
1287 int ret;
1288 if (!buffer_mapped(bh) || buffer_freed(bh))
1289 return 0;
1290 set_buffer_uptodate(bh);
1291 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292 clear_buffer_meta(bh);
1293 clear_buffer_prio(bh);
1294 return ret;
1295}
1296
1297/*
1298 * We need to pick up the new inode size which generic_commit_write gave us
1299 * `file' can be NULL - eg, when called from page_symlink().
1300 *
1301 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1302 * buffers are managed internally.
1303 */
1304static int ext4_write_end(struct file *file,
1305 struct address_space *mapping,
1306 loff_t pos, unsigned len, unsigned copied,
1307 struct page *page, void *fsdata)
1308{
1309 handle_t *handle = ext4_journal_current_handle();
1310 struct inode *inode = mapping->host;
1311 loff_t old_size = inode->i_size;
1312 int ret = 0, ret2;
1313 int i_size_changed = 0;
1314 bool verity = ext4_verity_in_progress(inode);
1315
1316 trace_ext4_write_end(inode, pos, len, copied);
1317
1318 if (ext4_has_inline_data(inode) &&
1319 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1320 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1321
1322 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1323 /*
1324 * it's important to update i_size while still holding page lock:
1325 * page writeout could otherwise come in and zero beyond i_size.
1326 *
1327 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1328 * blocks are being written past EOF, so skip the i_size update.
1329 */
1330 if (!verity)
1331 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1332 unlock_page(page);
1333 put_page(page);
1334
1335 if (old_size < pos && !verity)
1336 pagecache_isize_extended(inode, old_size, pos);
1337 /*
1338 * Don't mark the inode dirty under page lock. First, it unnecessarily
1339 * makes the holding time of page lock longer. Second, it forces lock
1340 * ordering of page lock and transaction start for journaling
1341 * filesystems.
1342 */
1343 if (i_size_changed)
1344 ret = ext4_mark_inode_dirty(handle, inode);
1345
1346 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1347 /* if we have allocated more blocks and copied
1348 * less. We will have blocks allocated outside
1349 * inode->i_size. So truncate them
1350 */
1351 ext4_orphan_add(handle, inode);
1352
1353 ret2 = ext4_journal_stop(handle);
1354 if (!ret)
1355 ret = ret2;
1356
1357 if (pos + len > inode->i_size && !verity) {
1358 ext4_truncate_failed_write(inode);
1359 /*
1360 * If truncate failed early the inode might still be
1361 * on the orphan list; we need to make sure the inode
1362 * is removed from the orphan list in that case.
1363 */
1364 if (inode->i_nlink)
1365 ext4_orphan_del(NULL, inode);
1366 }
1367
1368 return ret ? ret : copied;
1369}
1370
1371/*
1372 * This is a private version of page_zero_new_buffers() which doesn't
1373 * set the buffer to be dirty, since in data=journalled mode we need
1374 * to call ext4_handle_dirty_metadata() instead.
1375 */
1376static void ext4_journalled_zero_new_buffers(handle_t *handle,
1377 struct inode *inode,
1378 struct page *page,
1379 unsigned from, unsigned to)
1380{
1381 unsigned int block_start = 0, block_end;
1382 struct buffer_head *head, *bh;
1383
1384 bh = head = page_buffers(page);
1385 do {
1386 block_end = block_start + bh->b_size;
1387 if (buffer_new(bh)) {
1388 if (block_end > from && block_start < to) {
1389 if (!PageUptodate(page)) {
1390 unsigned start, size;
1391
1392 start = max(from, block_start);
1393 size = min(to, block_end) - start;
1394
1395 zero_user(page, start, size);
1396 write_end_fn(handle, inode, bh);
1397 }
1398 clear_buffer_new(bh);
1399 }
1400 }
1401 block_start = block_end;
1402 bh = bh->b_this_page;
1403 } while (bh != head);
1404}
1405
1406static int ext4_journalled_write_end(struct file *file,
1407 struct address_space *mapping,
1408 loff_t pos, unsigned len, unsigned copied,
1409 struct page *page, void *fsdata)
1410{
1411 handle_t *handle = ext4_journal_current_handle();
1412 struct inode *inode = mapping->host;
1413 loff_t old_size = inode->i_size;
1414 int ret = 0, ret2;
1415 int partial = 0;
1416 unsigned from, to;
1417 int size_changed = 0;
1418 bool verity = ext4_verity_in_progress(inode);
1419
1420 trace_ext4_journalled_write_end(inode, pos, len, copied);
1421 from = pos & (PAGE_SIZE - 1);
1422 to = from + len;
1423
1424 BUG_ON(!ext4_handle_valid(handle));
1425
1426 if (ext4_has_inline_data(inode))
1427 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1428
1429 if (unlikely(copied < len) && !PageUptodate(page)) {
1430 copied = 0;
1431 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1432 } else {
1433 if (unlikely(copied < len))
1434 ext4_journalled_zero_new_buffers(handle, inode, page,
1435 from + copied, to);
1436 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1437 from, from + copied, &partial,
1438 write_end_fn);
1439 if (!partial)
1440 SetPageUptodate(page);
1441 }
1442 if (!verity)
1443 size_changed = ext4_update_inode_size(inode, pos + copied);
1444 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446 unlock_page(page);
1447 put_page(page);
1448
1449 if (old_size < pos && !verity)
1450 pagecache_isize_extended(inode, old_size, pos);
1451
1452 if (size_changed) {
1453 ret2 = ext4_mark_inode_dirty(handle, inode);
1454 if (!ret)
1455 ret = ret2;
1456 }
1457
1458 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1459 /* if we have allocated more blocks and copied
1460 * less. We will have blocks allocated outside
1461 * inode->i_size. So truncate them
1462 */
1463 ext4_orphan_add(handle, inode);
1464
1465 ret2 = ext4_journal_stop(handle);
1466 if (!ret)
1467 ret = ret2;
1468 if (pos + len > inode->i_size && !verity) {
1469 ext4_truncate_failed_write(inode);
1470 /*
1471 * If truncate failed early the inode might still be
1472 * on the orphan list; we need to make sure the inode
1473 * is removed from the orphan list in that case.
1474 */
1475 if (inode->i_nlink)
1476 ext4_orphan_del(NULL, inode);
1477 }
1478
1479 return ret ? ret : copied;
1480}
1481
1482/*
1483 * Reserve space for a single cluster
1484 */
1485static int ext4_da_reserve_space(struct inode *inode)
1486{
1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 struct ext4_inode_info *ei = EXT4_I(inode);
1489 int ret;
1490
1491 /*
1492 * We will charge metadata quota at writeout time; this saves
1493 * us from metadata over-estimation, though we may go over by
1494 * a small amount in the end. Here we just reserve for data.
1495 */
1496 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497 if (ret)
1498 return ret;
1499
1500 spin_lock(&ei->i_block_reservation_lock);
1501 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502 spin_unlock(&ei->i_block_reservation_lock);
1503 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504 return -ENOSPC;
1505 }
1506 ei->i_reserved_data_blocks++;
1507 trace_ext4_da_reserve_space(inode);
1508 spin_unlock(&ei->i_block_reservation_lock);
1509
1510 return 0; /* success */
1511}
1512
1513void ext4_da_release_space(struct inode *inode, int to_free)
1514{
1515 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516 struct ext4_inode_info *ei = EXT4_I(inode);
1517
1518 if (!to_free)
1519 return; /* Nothing to release, exit */
1520
1521 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522
1523 trace_ext4_da_release_space(inode, to_free);
1524 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525 /*
1526 * if there aren't enough reserved blocks, then the
1527 * counter is messed up somewhere. Since this
1528 * function is called from invalidate page, it's
1529 * harmless to return without any action.
1530 */
1531 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532 "ino %lu, to_free %d with only %d reserved "
1533 "data blocks", inode->i_ino, to_free,
1534 ei->i_reserved_data_blocks);
1535 WARN_ON(1);
1536 to_free = ei->i_reserved_data_blocks;
1537 }
1538 ei->i_reserved_data_blocks -= to_free;
1539
1540 /* update fs dirty data blocks counter */
1541 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542
1543 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546}
1547
1548/*
1549 * Delayed allocation stuff
1550 */
1551
1552struct mpage_da_data {
1553 /* These are input fields for ext4_do_writepages() */
1554 struct inode *inode;
1555 struct writeback_control *wbc;
1556 unsigned int can_map:1; /* Can writepages call map blocks? */
1557
1558 /* These are internal state of ext4_do_writepages() */
1559 pgoff_t first_page; /* The first page to write */
1560 pgoff_t next_page; /* Current page to examine */
1561 pgoff_t last_page; /* Last page to examine */
1562 /*
1563 * Extent to map - this can be after first_page because that can be
1564 * fully mapped. We somewhat abuse m_flags to store whether the extent
1565 * is delalloc or unwritten.
1566 */
1567 struct ext4_map_blocks map;
1568 struct ext4_io_submit io_submit; /* IO submission data */
1569 unsigned int do_map:1;
1570 unsigned int scanned_until_end:1;
1571};
1572
1573static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1574 bool invalidate)
1575{
1576 unsigned nr, i;
1577 pgoff_t index, end;
1578 struct folio_batch fbatch;
1579 struct inode *inode = mpd->inode;
1580 struct address_space *mapping = inode->i_mapping;
1581
1582 /* This is necessary when next_page == 0. */
1583 if (mpd->first_page >= mpd->next_page)
1584 return;
1585
1586 mpd->scanned_until_end = 0;
1587 index = mpd->first_page;
1588 end = mpd->next_page - 1;
1589 if (invalidate) {
1590 ext4_lblk_t start, last;
1591 start = index << (PAGE_SHIFT - inode->i_blkbits);
1592 last = end << (PAGE_SHIFT - inode->i_blkbits);
1593
1594 /*
1595 * avoid racing with extent status tree scans made by
1596 * ext4_insert_delayed_block()
1597 */
1598 down_write(&EXT4_I(inode)->i_data_sem);
1599 ext4_es_remove_extent(inode, start, last - start + 1);
1600 up_write(&EXT4_I(inode)->i_data_sem);
1601 }
1602
1603 folio_batch_init(&fbatch);
1604 while (index <= end) {
1605 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1606 if (nr == 0)
1607 break;
1608 for (i = 0; i < nr; i++) {
1609 struct folio *folio = fbatch.folios[i];
1610
1611 if (folio->index < mpd->first_page)
1612 continue;
1613 if (folio->index + folio_nr_pages(folio) - 1 > end)
1614 continue;
1615 BUG_ON(!folio_test_locked(folio));
1616 BUG_ON(folio_test_writeback(folio));
1617 if (invalidate) {
1618 if (folio_mapped(folio))
1619 folio_clear_dirty_for_io(folio);
1620 block_invalidate_folio(folio, 0,
1621 folio_size(folio));
1622 folio_clear_uptodate(folio);
1623 }
1624 folio_unlock(folio);
1625 }
1626 folio_batch_release(&fbatch);
1627 }
1628}
1629
1630static void ext4_print_free_blocks(struct inode *inode)
1631{
1632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633 struct super_block *sb = inode->i_sb;
1634 struct ext4_inode_info *ei = EXT4_I(inode);
1635
1636 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1637 EXT4_C2B(EXT4_SB(inode->i_sb),
1638 ext4_count_free_clusters(sb)));
1639 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1640 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1641 (long long) EXT4_C2B(EXT4_SB(sb),
1642 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1643 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1644 (long long) EXT4_C2B(EXT4_SB(sb),
1645 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1646 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1647 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1648 ei->i_reserved_data_blocks);
1649 return;
1650}
1651
1652static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1653 struct buffer_head *bh)
1654{
1655 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1656}
1657
1658/*
1659 * ext4_insert_delayed_block - adds a delayed block to the extents status
1660 * tree, incrementing the reserved cluster/block
1661 * count or making a pending reservation
1662 * where needed
1663 *
1664 * @inode - file containing the newly added block
1665 * @lblk - logical block to be added
1666 *
1667 * Returns 0 on success, negative error code on failure.
1668 */
1669static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1670{
1671 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672 int ret;
1673 bool allocated = false;
1674 bool reserved = false;
1675
1676 /*
1677 * If the cluster containing lblk is shared with a delayed,
1678 * written, or unwritten extent in a bigalloc file system, it's
1679 * already been accounted for and does not need to be reserved.
1680 * A pending reservation must be made for the cluster if it's
1681 * shared with a written or unwritten extent and doesn't already
1682 * have one. Written and unwritten extents can be purged from the
1683 * extents status tree if the system is under memory pressure, so
1684 * it's necessary to examine the extent tree if a search of the
1685 * extents status tree doesn't get a match.
1686 */
1687 if (sbi->s_cluster_ratio == 1) {
1688 ret = ext4_da_reserve_space(inode);
1689 if (ret != 0) /* ENOSPC */
1690 goto errout;
1691 reserved = true;
1692 } else { /* bigalloc */
1693 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1694 if (!ext4_es_scan_clu(inode,
1695 &ext4_es_is_mapped, lblk)) {
1696 ret = ext4_clu_mapped(inode,
1697 EXT4_B2C(sbi, lblk));
1698 if (ret < 0)
1699 goto errout;
1700 if (ret == 0) {
1701 ret = ext4_da_reserve_space(inode);
1702 if (ret != 0) /* ENOSPC */
1703 goto errout;
1704 reserved = true;
1705 } else {
1706 allocated = true;
1707 }
1708 } else {
1709 allocated = true;
1710 }
1711 }
1712 }
1713
1714 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1715 if (ret && reserved)
1716 ext4_da_release_space(inode, 1);
1717
1718errout:
1719 return ret;
1720}
1721
1722/*
1723 * This function is grabs code from the very beginning of
1724 * ext4_map_blocks, but assumes that the caller is from delayed write
1725 * time. This function looks up the requested blocks and sets the
1726 * buffer delay bit under the protection of i_data_sem.
1727 */
1728static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 struct ext4_map_blocks *map,
1730 struct buffer_head *bh)
1731{
1732 struct extent_status es;
1733 int retval;
1734 sector_t invalid_block = ~((sector_t) 0xffff);
1735#ifdef ES_AGGRESSIVE_TEST
1736 struct ext4_map_blocks orig_map;
1737
1738 memcpy(&orig_map, map, sizeof(*map));
1739#endif
1740
1741 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 invalid_block = ~0;
1743
1744 map->m_flags = 0;
1745 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1746 (unsigned long) map->m_lblk);
1747
1748 /* Lookup extent status tree firstly */
1749 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1750 if (ext4_es_is_hole(&es)) {
1751 retval = 0;
1752 down_read(&EXT4_I(inode)->i_data_sem);
1753 goto add_delayed;
1754 }
1755
1756 /*
1757 * Delayed extent could be allocated by fallocate.
1758 * So we need to check it.
1759 */
1760 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 map_bh(bh, inode->i_sb, invalid_block);
1762 set_buffer_new(bh);
1763 set_buffer_delay(bh);
1764 return 0;
1765 }
1766
1767 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 retval = es.es_len - (iblock - es.es_lblk);
1769 if (retval > map->m_len)
1770 retval = map->m_len;
1771 map->m_len = retval;
1772 if (ext4_es_is_written(&es))
1773 map->m_flags |= EXT4_MAP_MAPPED;
1774 else if (ext4_es_is_unwritten(&es))
1775 map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 else
1777 BUG();
1778
1779#ifdef ES_AGGRESSIVE_TEST
1780 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781#endif
1782 return retval;
1783 }
1784
1785 /*
1786 * Try to see if we can get the block without requesting a new
1787 * file system block.
1788 */
1789 down_read(&EXT4_I(inode)->i_data_sem);
1790 if (ext4_has_inline_data(inode))
1791 retval = 0;
1792 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 else
1795 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796
1797add_delayed:
1798 if (retval == 0) {
1799 int ret;
1800
1801 /*
1802 * XXX: __block_prepare_write() unmaps passed block,
1803 * is it OK?
1804 */
1805
1806 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1807 if (ret != 0) {
1808 retval = ret;
1809 goto out_unlock;
1810 }
1811
1812 map_bh(bh, inode->i_sb, invalid_block);
1813 set_buffer_new(bh);
1814 set_buffer_delay(bh);
1815 } else if (retval > 0) {
1816 int ret;
1817 unsigned int status;
1818
1819 if (unlikely(retval != map->m_len)) {
1820 ext4_warning(inode->i_sb,
1821 "ES len assertion failed for inode "
1822 "%lu: retval %d != map->m_len %d",
1823 inode->i_ino, retval, map->m_len);
1824 WARN_ON(1);
1825 }
1826
1827 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1828 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1829 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1830 map->m_pblk, status);
1831 if (ret != 0)
1832 retval = ret;
1833 }
1834
1835out_unlock:
1836 up_read((&EXT4_I(inode)->i_data_sem));
1837
1838 return retval;
1839}
1840
1841/*
1842 * This is a special get_block_t callback which is used by
1843 * ext4_da_write_begin(). It will either return mapped block or
1844 * reserve space for a single block.
1845 *
1846 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1847 * We also have b_blocknr = -1 and b_bdev initialized properly
1848 *
1849 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1850 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1851 * initialized properly.
1852 */
1853int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1854 struct buffer_head *bh, int create)
1855{
1856 struct ext4_map_blocks map;
1857 int ret = 0;
1858
1859 BUG_ON(create == 0);
1860 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862 map.m_lblk = iblock;
1863 map.m_len = 1;
1864
1865 /*
1866 * first, we need to know whether the block is allocated already
1867 * preallocated blocks are unmapped but should treated
1868 * the same as allocated blocks.
1869 */
1870 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1871 if (ret <= 0)
1872 return ret;
1873
1874 map_bh(bh, inode->i_sb, map.m_pblk);
1875 ext4_update_bh_state(bh, map.m_flags);
1876
1877 if (buffer_unwritten(bh)) {
1878 /* A delayed write to unwritten bh should be marked
1879 * new and mapped. Mapped ensures that we don't do
1880 * get_block multiple times when we write to the same
1881 * offset and new ensures that we do proper zero out
1882 * for partial write.
1883 */
1884 set_buffer_new(bh);
1885 set_buffer_mapped(bh);
1886 }
1887 return 0;
1888}
1889
1890static int __ext4_journalled_writepage(struct page *page,
1891 unsigned int len)
1892{
1893 struct address_space *mapping = page->mapping;
1894 struct inode *inode = mapping->host;
1895 handle_t *handle = NULL;
1896 int ret = 0, err = 0;
1897 int inline_data = ext4_has_inline_data(inode);
1898 struct buffer_head *inode_bh = NULL;
1899 loff_t size;
1900
1901 ClearPageChecked(page);
1902
1903 if (inline_data) {
1904 BUG_ON(page->index != 0);
1905 BUG_ON(len > ext4_get_max_inline_size(inode));
1906 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1907 if (inode_bh == NULL)
1908 goto out;
1909 }
1910 /*
1911 * We need to release the page lock before we start the
1912 * journal, so grab a reference so the page won't disappear
1913 * out from under us.
1914 */
1915 get_page(page);
1916 unlock_page(page);
1917
1918 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1919 ext4_writepage_trans_blocks(inode));
1920 if (IS_ERR(handle)) {
1921 ret = PTR_ERR(handle);
1922 put_page(page);
1923 goto out_no_pagelock;
1924 }
1925 BUG_ON(!ext4_handle_valid(handle));
1926
1927 lock_page(page);
1928 put_page(page);
1929 size = i_size_read(inode);
1930 if (page->mapping != mapping || page_offset(page) > size) {
1931 /* The page got truncated from under us */
1932 ext4_journal_stop(handle);
1933 ret = 0;
1934 goto out;
1935 }
1936
1937 if (inline_data) {
1938 ret = ext4_mark_inode_dirty(handle, inode);
1939 } else {
1940 struct buffer_head *page_bufs = page_buffers(page);
1941
1942 if (page->index == size >> PAGE_SHIFT)
1943 len = size & ~PAGE_MASK;
1944 else
1945 len = PAGE_SIZE;
1946
1947 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1948 NULL, do_journal_get_write_access);
1949
1950 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1951 NULL, write_end_fn);
1952 }
1953 if (ret == 0)
1954 ret = err;
1955 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1956 if (ret == 0)
1957 ret = err;
1958 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1959 err = ext4_journal_stop(handle);
1960 if (!ret)
1961 ret = err;
1962
1963 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1964out:
1965 unlock_page(page);
1966out_no_pagelock:
1967 brelse(inode_bh);
1968 return ret;
1969}
1970
1971/*
1972 * Note that we don't need to start a transaction unless we're journaling data
1973 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1974 * need to file the inode to the transaction's list in ordered mode because if
1975 * we are writing back data added by write(), the inode is already there and if
1976 * we are writing back data modified via mmap(), no one guarantees in which
1977 * transaction the data will hit the disk. In case we are journaling data, we
1978 * cannot start transaction directly because transaction start ranks above page
1979 * lock so we have to do some magic.
1980 *
1981 * This function can get called via...
1982 * - ext4_writepages after taking page lock (have journal handle)
1983 * - journal_submit_inode_data_buffers (no journal handle)
1984 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1985 * - grab_page_cache when doing write_begin (have journal handle)
1986 *
1987 * We don't do any block allocation in this function. If we have page with
1988 * multiple blocks we need to write those buffer_heads that are mapped. This
1989 * is important for mmaped based write. So if we do with blocksize 1K
1990 * truncate(f, 1024);
1991 * a = mmap(f, 0, 4096);
1992 * a[0] = 'a';
1993 * truncate(f, 4096);
1994 * we have in the page first buffer_head mapped via page_mkwrite call back
1995 * but other buffer_heads would be unmapped but dirty (dirty done via the
1996 * do_wp_page). So writepage should write the first block. If we modify
1997 * the mmap area beyond 1024 we will again get a page_fault and the
1998 * page_mkwrite callback will do the block allocation and mark the
1999 * buffer_heads mapped.
2000 *
2001 * We redirty the page if we have any buffer_heads that is either delay or
2002 * unwritten in the page.
2003 *
2004 * We can get recursively called as show below.
2005 *
2006 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2007 * ext4_writepage()
2008 *
2009 * But since we don't do any block allocation we should not deadlock.
2010 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2011 */
2012static int ext4_writepage(struct page *page,
2013 struct writeback_control *wbc)
2014{
2015 struct folio *folio = page_folio(page);
2016 int ret = 0;
2017 loff_t size;
2018 unsigned int len;
2019 struct buffer_head *page_bufs = NULL;
2020 struct inode *inode = page->mapping->host;
2021 struct ext4_io_submit io_submit;
2022
2023 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2024 folio_invalidate(folio, 0, folio_size(folio));
2025 folio_unlock(folio);
2026 return -EIO;
2027 }
2028
2029 trace_ext4_writepage(page);
2030 size = i_size_read(inode);
2031 if (page->index == size >> PAGE_SHIFT &&
2032 !ext4_verity_in_progress(inode))
2033 len = size & ~PAGE_MASK;
2034 else
2035 len = PAGE_SIZE;
2036
2037 /* Should never happen but for bugs in other kernel subsystems */
2038 if (!page_has_buffers(page)) {
2039 ext4_warning_inode(inode,
2040 "page %lu does not have buffers attached", page->index);
2041 ClearPageDirty(page);
2042 unlock_page(page);
2043 return 0;
2044 }
2045
2046 page_bufs = page_buffers(page);
2047 /*
2048 * We cannot do block allocation or other extent handling in this
2049 * function. If there are buffers needing that, we have to redirty
2050 * the page. But we may reach here when we do a journal commit via
2051 * journal_submit_inode_data_buffers() and in that case we must write
2052 * allocated buffers to achieve data=ordered mode guarantees.
2053 *
2054 * Also, if there is only one buffer per page (the fs block
2055 * size == the page size), if one buffer needs block
2056 * allocation or needs to modify the extent tree to clear the
2057 * unwritten flag, we know that the page can't be written at
2058 * all, so we might as well refuse the write immediately.
2059 * Unfortunately if the block size != page size, we can't as
2060 * easily detect this case using ext4_walk_page_buffers(), but
2061 * for the extremely common case, this is an optimization that
2062 * skips a useless round trip through ext4_bio_write_page().
2063 */
2064 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2065 ext4_bh_delay_or_unwritten)) {
2066 redirty_page_for_writepage(wbc, page);
2067 if ((current->flags & PF_MEMALLOC) ||
2068 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2069 /*
2070 * For memory cleaning there's no point in writing only
2071 * some buffers. So just bail out. Warn if we came here
2072 * from direct reclaim.
2073 */
2074 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2075 == PF_MEMALLOC);
2076 unlock_page(page);
2077 return 0;
2078 }
2079 }
2080
2081 if (PageChecked(page) && ext4_should_journal_data(inode))
2082 /*
2083 * It's mmapped pagecache. Add buffers and journal it. There
2084 * doesn't seem much point in redirtying the page here.
2085 */
2086 return __ext4_journalled_writepage(page, len);
2087
2088 ext4_io_submit_init(&io_submit, wbc);
2089 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2090 if (!io_submit.io_end) {
2091 redirty_page_for_writepage(wbc, page);
2092 unlock_page(page);
2093 return -ENOMEM;
2094 }
2095 ret = ext4_bio_write_page(&io_submit, page, len);
2096 ext4_io_submit(&io_submit);
2097 /* Drop io_end reference we got from init */
2098 ext4_put_io_end_defer(io_submit.io_end);
2099 return ret;
2100}
2101
2102static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2103{
2104 int len;
2105 loff_t size;
2106 int err;
2107
2108 BUG_ON(page->index != mpd->first_page);
2109 clear_page_dirty_for_io(page);
2110 /*
2111 * We have to be very careful here! Nothing protects writeback path
2112 * against i_size changes and the page can be writeably mapped into
2113 * page tables. So an application can be growing i_size and writing
2114 * data through mmap while writeback runs. clear_page_dirty_for_io()
2115 * write-protects our page in page tables and the page cannot get
2116 * written to again until we release page lock. So only after
2117 * clear_page_dirty_for_io() we are safe to sample i_size for
2118 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2119 * on the barrier provided by TestClearPageDirty in
2120 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2121 * after page tables are updated.
2122 */
2123 size = i_size_read(mpd->inode);
2124 if (page->index == size >> PAGE_SHIFT &&
2125 !ext4_verity_in_progress(mpd->inode))
2126 len = size & ~PAGE_MASK;
2127 else
2128 len = PAGE_SIZE;
2129 err = ext4_bio_write_page(&mpd->io_submit, page, len);
2130 if (!err)
2131 mpd->wbc->nr_to_write--;
2132 mpd->first_page++;
2133
2134 return err;
2135}
2136
2137#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2138
2139/*
2140 * mballoc gives us at most this number of blocks...
2141 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2142 * The rest of mballoc seems to handle chunks up to full group size.
2143 */
2144#define MAX_WRITEPAGES_EXTENT_LEN 2048
2145
2146/*
2147 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2148 *
2149 * @mpd - extent of blocks
2150 * @lblk - logical number of the block in the file
2151 * @bh - buffer head we want to add to the extent
2152 *
2153 * The function is used to collect contig. blocks in the same state. If the
2154 * buffer doesn't require mapping for writeback and we haven't started the
2155 * extent of buffers to map yet, the function returns 'true' immediately - the
2156 * caller can write the buffer right away. Otherwise the function returns true
2157 * if the block has been added to the extent, false if the block couldn't be
2158 * added.
2159 */
2160static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2161 struct buffer_head *bh)
2162{
2163 struct ext4_map_blocks *map = &mpd->map;
2164
2165 /* Buffer that doesn't need mapping for writeback? */
2166 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2167 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2168 /* So far no extent to map => we write the buffer right away */
2169 if (map->m_len == 0)
2170 return true;
2171 return false;
2172 }
2173
2174 /* First block in the extent? */
2175 if (map->m_len == 0) {
2176 /* We cannot map unless handle is started... */
2177 if (!mpd->do_map)
2178 return false;
2179 map->m_lblk = lblk;
2180 map->m_len = 1;
2181 map->m_flags = bh->b_state & BH_FLAGS;
2182 return true;
2183 }
2184
2185 /* Don't go larger than mballoc is willing to allocate */
2186 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2187 return false;
2188
2189 /* Can we merge the block to our big extent? */
2190 if (lblk == map->m_lblk + map->m_len &&
2191 (bh->b_state & BH_FLAGS) == map->m_flags) {
2192 map->m_len++;
2193 return true;
2194 }
2195 return false;
2196}
2197
2198/*
2199 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2200 *
2201 * @mpd - extent of blocks for mapping
2202 * @head - the first buffer in the page
2203 * @bh - buffer we should start processing from
2204 * @lblk - logical number of the block in the file corresponding to @bh
2205 *
2206 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2207 * the page for IO if all buffers in this page were mapped and there's no
2208 * accumulated extent of buffers to map or add buffers in the page to the
2209 * extent of buffers to map. The function returns 1 if the caller can continue
2210 * by processing the next page, 0 if it should stop adding buffers to the
2211 * extent to map because we cannot extend it anymore. It can also return value
2212 * < 0 in case of error during IO submission.
2213 */
2214static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2215 struct buffer_head *head,
2216 struct buffer_head *bh,
2217 ext4_lblk_t lblk)
2218{
2219 struct inode *inode = mpd->inode;
2220 int err;
2221 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2222 >> inode->i_blkbits;
2223
2224 if (ext4_verity_in_progress(inode))
2225 blocks = EXT_MAX_BLOCKS;
2226
2227 do {
2228 BUG_ON(buffer_locked(bh));
2229
2230 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2231 /* Found extent to map? */
2232 if (mpd->map.m_len)
2233 return 0;
2234 /* Buffer needs mapping and handle is not started? */
2235 if (!mpd->do_map)
2236 return 0;
2237 /* Everything mapped so far and we hit EOF */
2238 break;
2239 }
2240 } while (lblk++, (bh = bh->b_this_page) != head);
2241 /* So far everything mapped? Submit the page for IO. */
2242 if (mpd->map.m_len == 0) {
2243 err = mpage_submit_page(mpd, head->b_page);
2244 if (err < 0)
2245 return err;
2246 }
2247 if (lblk >= blocks) {
2248 mpd->scanned_until_end = 1;
2249 return 0;
2250 }
2251 return 1;
2252}
2253
2254/*
2255 * mpage_process_page - update page buffers corresponding to changed extent and
2256 * may submit fully mapped page for IO
2257 *
2258 * @mpd - description of extent to map, on return next extent to map
2259 * @m_lblk - logical block mapping.
2260 * @m_pblk - corresponding physical mapping.
2261 * @map_bh - determines on return whether this page requires any further
2262 * mapping or not.
2263 * Scan given page buffers corresponding to changed extent and update buffer
2264 * state according to new extent state.
2265 * We map delalloc buffers to their physical location, clear unwritten bits.
2266 * If the given page is not fully mapped, we update @map to the next extent in
2267 * the given page that needs mapping & return @map_bh as true.
2268 */
2269static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2270 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2271 bool *map_bh)
2272{
2273 struct buffer_head *head, *bh;
2274 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2275 ext4_lblk_t lblk = *m_lblk;
2276 ext4_fsblk_t pblock = *m_pblk;
2277 int err = 0;
2278 int blkbits = mpd->inode->i_blkbits;
2279 ssize_t io_end_size = 0;
2280 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2281
2282 bh = head = page_buffers(page);
2283 do {
2284 if (lblk < mpd->map.m_lblk)
2285 continue;
2286 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287 /*
2288 * Buffer after end of mapped extent.
2289 * Find next buffer in the page to map.
2290 */
2291 mpd->map.m_len = 0;
2292 mpd->map.m_flags = 0;
2293 io_end_vec->size += io_end_size;
2294
2295 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2296 if (err > 0)
2297 err = 0;
2298 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2299 io_end_vec = ext4_alloc_io_end_vec(io_end);
2300 if (IS_ERR(io_end_vec)) {
2301 err = PTR_ERR(io_end_vec);
2302 goto out;
2303 }
2304 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2305 }
2306 *map_bh = true;
2307 goto out;
2308 }
2309 if (buffer_delay(bh)) {
2310 clear_buffer_delay(bh);
2311 bh->b_blocknr = pblock++;
2312 }
2313 clear_buffer_unwritten(bh);
2314 io_end_size += (1 << blkbits);
2315 } while (lblk++, (bh = bh->b_this_page) != head);
2316
2317 io_end_vec->size += io_end_size;
2318 *map_bh = false;
2319out:
2320 *m_lblk = lblk;
2321 *m_pblk = pblock;
2322 return err;
2323}
2324
2325/*
2326 * mpage_map_buffers - update buffers corresponding to changed extent and
2327 * submit fully mapped pages for IO
2328 *
2329 * @mpd - description of extent to map, on return next extent to map
2330 *
2331 * Scan buffers corresponding to changed extent (we expect corresponding pages
2332 * to be already locked) and update buffer state according to new extent state.
2333 * We map delalloc buffers to their physical location, clear unwritten bits,
2334 * and mark buffers as uninit when we perform writes to unwritten extents
2335 * and do extent conversion after IO is finished. If the last page is not fully
2336 * mapped, we update @map to the next extent in the last page that needs
2337 * mapping. Otherwise we submit the page for IO.
2338 */
2339static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2340{
2341 struct folio_batch fbatch;
2342 unsigned nr, i;
2343 struct inode *inode = mpd->inode;
2344 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2345 pgoff_t start, end;
2346 ext4_lblk_t lblk;
2347 ext4_fsblk_t pblock;
2348 int err;
2349 bool map_bh = false;
2350
2351 start = mpd->map.m_lblk >> bpp_bits;
2352 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2353 lblk = start << bpp_bits;
2354 pblock = mpd->map.m_pblk;
2355
2356 folio_batch_init(&fbatch);
2357 while (start <= end) {
2358 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2359 if (nr == 0)
2360 break;
2361 for (i = 0; i < nr; i++) {
2362 struct page *page = &fbatch.folios[i]->page;
2363
2364 err = mpage_process_page(mpd, page, &lblk, &pblock,
2365 &map_bh);
2366 /*
2367 * If map_bh is true, means page may require further bh
2368 * mapping, or maybe the page was submitted for IO.
2369 * So we return to call further extent mapping.
2370 */
2371 if (err < 0 || map_bh)
2372 goto out;
2373 /* Page fully mapped - let IO run! */
2374 err = mpage_submit_page(mpd, page);
2375 if (err < 0)
2376 goto out;
2377 }
2378 folio_batch_release(&fbatch);
2379 }
2380 /* Extent fully mapped and matches with page boundary. We are done. */
2381 mpd->map.m_len = 0;
2382 mpd->map.m_flags = 0;
2383 return 0;
2384out:
2385 folio_batch_release(&fbatch);
2386 return err;
2387}
2388
2389static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2390{
2391 struct inode *inode = mpd->inode;
2392 struct ext4_map_blocks *map = &mpd->map;
2393 int get_blocks_flags;
2394 int err, dioread_nolock;
2395
2396 trace_ext4_da_write_pages_extent(inode, map);
2397 /*
2398 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2399 * to convert an unwritten extent to be initialized (in the case
2400 * where we have written into one or more preallocated blocks). It is
2401 * possible that we're going to need more metadata blocks than
2402 * previously reserved. However we must not fail because we're in
2403 * writeback and there is nothing we can do about it so it might result
2404 * in data loss. So use reserved blocks to allocate metadata if
2405 * possible.
2406 *
2407 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2408 * the blocks in question are delalloc blocks. This indicates
2409 * that the blocks and quotas has already been checked when
2410 * the data was copied into the page cache.
2411 */
2412 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2413 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2414 EXT4_GET_BLOCKS_IO_SUBMIT;
2415 dioread_nolock = ext4_should_dioread_nolock(inode);
2416 if (dioread_nolock)
2417 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2418 if (map->m_flags & BIT(BH_Delay))
2419 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2420
2421 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2422 if (err < 0)
2423 return err;
2424 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2425 if (!mpd->io_submit.io_end->handle &&
2426 ext4_handle_valid(handle)) {
2427 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2428 handle->h_rsv_handle = NULL;
2429 }
2430 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2431 }
2432
2433 BUG_ON(map->m_len == 0);
2434 return 0;
2435}
2436
2437/*
2438 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2439 * mpd->len and submit pages underlying it for IO
2440 *
2441 * @handle - handle for journal operations
2442 * @mpd - extent to map
2443 * @give_up_on_write - we set this to true iff there is a fatal error and there
2444 * is no hope of writing the data. The caller should discard
2445 * dirty pages to avoid infinite loops.
2446 *
2447 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2448 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2449 * them to initialized or split the described range from larger unwritten
2450 * extent. Note that we need not map all the described range since allocation
2451 * can return less blocks or the range is covered by more unwritten extents. We
2452 * cannot map more because we are limited by reserved transaction credits. On
2453 * the other hand we always make sure that the last touched page is fully
2454 * mapped so that it can be written out (and thus forward progress is
2455 * guaranteed). After mapping we submit all mapped pages for IO.
2456 */
2457static int mpage_map_and_submit_extent(handle_t *handle,
2458 struct mpage_da_data *mpd,
2459 bool *give_up_on_write)
2460{
2461 struct inode *inode = mpd->inode;
2462 struct ext4_map_blocks *map = &mpd->map;
2463 int err;
2464 loff_t disksize;
2465 int progress = 0;
2466 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2467 struct ext4_io_end_vec *io_end_vec;
2468
2469 io_end_vec = ext4_alloc_io_end_vec(io_end);
2470 if (IS_ERR(io_end_vec))
2471 return PTR_ERR(io_end_vec);
2472 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2473 do {
2474 err = mpage_map_one_extent(handle, mpd);
2475 if (err < 0) {
2476 struct super_block *sb = inode->i_sb;
2477
2478 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2479 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2480 goto invalidate_dirty_pages;
2481 /*
2482 * Let the uper layers retry transient errors.
2483 * In the case of ENOSPC, if ext4_count_free_blocks()
2484 * is non-zero, a commit should free up blocks.
2485 */
2486 if ((err == -ENOMEM) ||
2487 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2488 if (progress)
2489 goto update_disksize;
2490 return err;
2491 }
2492 ext4_msg(sb, KERN_CRIT,
2493 "Delayed block allocation failed for "
2494 "inode %lu at logical offset %llu with"
2495 " max blocks %u with error %d",
2496 inode->i_ino,
2497 (unsigned long long)map->m_lblk,
2498 (unsigned)map->m_len, -err);
2499 ext4_msg(sb, KERN_CRIT,
2500 "This should not happen!! Data will "
2501 "be lost\n");
2502 if (err == -ENOSPC)
2503 ext4_print_free_blocks(inode);
2504 invalidate_dirty_pages:
2505 *give_up_on_write = true;
2506 return err;
2507 }
2508 progress = 1;
2509 /*
2510 * Update buffer state, submit mapped pages, and get us new
2511 * extent to map
2512 */
2513 err = mpage_map_and_submit_buffers(mpd);
2514 if (err < 0)
2515 goto update_disksize;
2516 } while (map->m_len);
2517
2518update_disksize:
2519 /*
2520 * Update on-disk size after IO is submitted. Races with
2521 * truncate are avoided by checking i_size under i_data_sem.
2522 */
2523 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2524 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2525 int err2;
2526 loff_t i_size;
2527
2528 down_write(&EXT4_I(inode)->i_data_sem);
2529 i_size = i_size_read(inode);
2530 if (disksize > i_size)
2531 disksize = i_size;
2532 if (disksize > EXT4_I(inode)->i_disksize)
2533 EXT4_I(inode)->i_disksize = disksize;
2534 up_write(&EXT4_I(inode)->i_data_sem);
2535 err2 = ext4_mark_inode_dirty(handle, inode);
2536 if (err2) {
2537 ext4_error_err(inode->i_sb, -err2,
2538 "Failed to mark inode %lu dirty",
2539 inode->i_ino);
2540 }
2541 if (!err)
2542 err = err2;
2543 }
2544 return err;
2545}
2546
2547/*
2548 * Calculate the total number of credits to reserve for one writepages
2549 * iteration. This is called from ext4_writepages(). We map an extent of
2550 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2551 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2552 * bpp - 1 blocks in bpp different extents.
2553 */
2554static int ext4_da_writepages_trans_blocks(struct inode *inode)
2555{
2556 int bpp = ext4_journal_blocks_per_page(inode);
2557
2558 return ext4_meta_trans_blocks(inode,
2559 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2560}
2561
2562/* Return true if the page needs to be written as part of transaction commit */
2563static bool ext4_page_nomap_can_writeout(struct page *page)
2564{
2565 struct buffer_head *bh, *head;
2566
2567 bh = head = page_buffers(page);
2568 do {
2569 if (buffer_dirty(bh) && buffer_mapped(bh) && !buffer_delay(bh))
2570 return true;
2571 } while ((bh = bh->b_this_page) != head);
2572 return false;
2573}
2574
2575/*
2576 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2577 * needing mapping, submit mapped pages
2578 *
2579 * @mpd - where to look for pages
2580 *
2581 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2582 * IO immediately. If we cannot map blocks, we submit just already mapped
2583 * buffers in the page for IO and keep page dirty. When we can map blocks and
2584 * we find a page which isn't mapped we start accumulating extent of buffers
2585 * underlying these pages that needs mapping (formed by either delayed or
2586 * unwritten buffers). We also lock the pages containing these buffers. The
2587 * extent found is returned in @mpd structure (starting at mpd->lblk with
2588 * length mpd->len blocks).
2589 *
2590 * Note that this function can attach bios to one io_end structure which are
2591 * neither logically nor physically contiguous. Although it may seem as an
2592 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2593 * case as we need to track IO to all buffers underlying a page in one io_end.
2594 */
2595static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2596{
2597 struct address_space *mapping = mpd->inode->i_mapping;
2598 struct pagevec pvec;
2599 unsigned int nr_pages;
2600 long left = mpd->wbc->nr_to_write;
2601 pgoff_t index = mpd->first_page;
2602 pgoff_t end = mpd->last_page;
2603 xa_mark_t tag;
2604 int i, err = 0;
2605 int blkbits = mpd->inode->i_blkbits;
2606 ext4_lblk_t lblk;
2607 struct buffer_head *head;
2608
2609 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2610 tag = PAGECACHE_TAG_TOWRITE;
2611 else
2612 tag = PAGECACHE_TAG_DIRTY;
2613
2614 pagevec_init(&pvec);
2615 mpd->map.m_len = 0;
2616 mpd->next_page = index;
2617 while (index <= end) {
2618 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2619 tag);
2620 if (nr_pages == 0)
2621 break;
2622
2623 for (i = 0; i < nr_pages; i++) {
2624 struct page *page = pvec.pages[i];
2625
2626 /*
2627 * Accumulated enough dirty pages? This doesn't apply
2628 * to WB_SYNC_ALL mode. For integrity sync we have to
2629 * keep going because someone may be concurrently
2630 * dirtying pages, and we might have synced a lot of
2631 * newly appeared dirty pages, but have not synced all
2632 * of the old dirty pages.
2633 */
2634 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2635 goto out;
2636
2637 /* If we can't merge this page, we are done. */
2638 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2639 goto out;
2640
2641 lock_page(page);
2642 /*
2643 * If the page is no longer dirty, or its mapping no
2644 * longer corresponds to inode we are writing (which
2645 * means it has been truncated or invalidated), or the
2646 * page is already under writeback and we are not doing
2647 * a data integrity writeback, skip the page
2648 */
2649 if (!PageDirty(page) ||
2650 (PageWriteback(page) &&
2651 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2652 unlikely(page->mapping != mapping)) {
2653 unlock_page(page);
2654 continue;
2655 }
2656
2657 wait_on_page_writeback(page);
2658 BUG_ON(PageWriteback(page));
2659
2660 /*
2661 * Should never happen but for buggy code in
2662 * other subsystems that call
2663 * set_page_dirty() without properly warning
2664 * the file system first. See [1] for more
2665 * information.
2666 *
2667 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2668 */
2669 if (!page_has_buffers(page)) {
2670 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2671 ClearPageDirty(page);
2672 unlock_page(page);
2673 continue;
2674 }
2675
2676 if (mpd->map.m_len == 0)
2677 mpd->first_page = page->index;
2678 mpd->next_page = page->index + 1;
2679 /*
2680 * Writeout for transaction commit where we cannot
2681 * modify metadata is simple. Just submit the page.
2682 */
2683 if (!mpd->can_map) {
2684 if (ext4_page_nomap_can_writeout(page)) {
2685 err = mpage_submit_page(mpd, page);
2686 if (err < 0)
2687 goto out;
2688 } else {
2689 unlock_page(page);
2690 mpd->first_page++;
2691 }
2692 } else {
2693 /* Add all dirty buffers to mpd */
2694 lblk = ((ext4_lblk_t)page->index) <<
2695 (PAGE_SHIFT - blkbits);
2696 head = page_buffers(page);
2697 err = mpage_process_page_bufs(mpd, head, head,
2698 lblk);
2699 if (err <= 0)
2700 goto out;
2701 err = 0;
2702 }
2703 left--;
2704 }
2705 pagevec_release(&pvec);
2706 cond_resched();
2707 }
2708 mpd->scanned_until_end = 1;
2709 return 0;
2710out:
2711 pagevec_release(&pvec);
2712 return err;
2713}
2714
2715static int ext4_writepage_cb(struct page *page, struct writeback_control *wbc,
2716 void *data)
2717{
2718 return ext4_writepage(page, wbc);
2719}
2720
2721static int ext4_do_writepages(struct mpage_da_data *mpd)
2722{
2723 struct writeback_control *wbc = mpd->wbc;
2724 pgoff_t writeback_index = 0;
2725 long nr_to_write = wbc->nr_to_write;
2726 int range_whole = 0;
2727 int cycled = 1;
2728 handle_t *handle = NULL;
2729 struct inode *inode = mpd->inode;
2730 struct address_space *mapping = inode->i_mapping;
2731 int needed_blocks, rsv_blocks = 0, ret = 0;
2732 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2733 struct blk_plug plug;
2734 bool give_up_on_write = false;
2735
2736 trace_ext4_writepages(inode, wbc);
2737
2738 /*
2739 * No pages to write? This is mainly a kludge to avoid starting
2740 * a transaction for special inodes like journal inode on last iput()
2741 * because that could violate lock ordering on umount
2742 */
2743 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2744 goto out_writepages;
2745
2746 if (ext4_should_journal_data(inode)) {
2747 blk_start_plug(&plug);
2748 ret = write_cache_pages(mapping, wbc, ext4_writepage_cb, NULL);
2749 blk_finish_plug(&plug);
2750 goto out_writepages;
2751 }
2752
2753 /*
2754 * If the filesystem has aborted, it is read-only, so return
2755 * right away instead of dumping stack traces later on that
2756 * will obscure the real source of the problem. We test
2757 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2758 * the latter could be true if the filesystem is mounted
2759 * read-only, and in that case, ext4_writepages should
2760 * *never* be called, so if that ever happens, we would want
2761 * the stack trace.
2762 */
2763 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2764 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2765 ret = -EROFS;
2766 goto out_writepages;
2767 }
2768
2769 /*
2770 * If we have inline data and arrive here, it means that
2771 * we will soon create the block for the 1st page, so
2772 * we'd better clear the inline data here.
2773 */
2774 if (ext4_has_inline_data(inode)) {
2775 /* Just inode will be modified... */
2776 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2777 if (IS_ERR(handle)) {
2778 ret = PTR_ERR(handle);
2779 goto out_writepages;
2780 }
2781 BUG_ON(ext4_test_inode_state(inode,
2782 EXT4_STATE_MAY_INLINE_DATA));
2783 ext4_destroy_inline_data(handle, inode);
2784 ext4_journal_stop(handle);
2785 }
2786
2787 if (ext4_should_dioread_nolock(inode)) {
2788 /*
2789 * We may need to convert up to one extent per block in
2790 * the page and we may dirty the inode.
2791 */
2792 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2793 PAGE_SIZE >> inode->i_blkbits);
2794 }
2795
2796 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2797 range_whole = 1;
2798
2799 if (wbc->range_cyclic) {
2800 writeback_index = mapping->writeback_index;
2801 if (writeback_index)
2802 cycled = 0;
2803 mpd->first_page = writeback_index;
2804 mpd->last_page = -1;
2805 } else {
2806 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2807 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2808 }
2809
2810 ext4_io_submit_init(&mpd->io_submit, wbc);
2811retry:
2812 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2813 tag_pages_for_writeback(mapping, mpd->first_page,
2814 mpd->last_page);
2815 blk_start_plug(&plug);
2816
2817 /*
2818 * First writeback pages that don't need mapping - we can avoid
2819 * starting a transaction unnecessarily and also avoid being blocked
2820 * in the block layer on device congestion while having transaction
2821 * started.
2822 */
2823 mpd->do_map = 0;
2824 mpd->scanned_until_end = 0;
2825 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826 if (!mpd->io_submit.io_end) {
2827 ret = -ENOMEM;
2828 goto unplug;
2829 }
2830 ret = mpage_prepare_extent_to_map(mpd);
2831 /* Unlock pages we didn't use */
2832 mpage_release_unused_pages(mpd, false);
2833 /* Submit prepared bio */
2834 ext4_io_submit(&mpd->io_submit);
2835 ext4_put_io_end_defer(mpd->io_submit.io_end);
2836 mpd->io_submit.io_end = NULL;
2837 if (ret < 0)
2838 goto unplug;
2839
2840 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2841 /* For each extent of pages we use new io_end */
2842 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2843 if (!mpd->io_submit.io_end) {
2844 ret = -ENOMEM;
2845 break;
2846 }
2847
2848 WARN_ON_ONCE(!mpd->can_map);
2849 /*
2850 * We have two constraints: We find one extent to map and we
2851 * must always write out whole page (makes a difference when
2852 * blocksize < pagesize) so that we don't block on IO when we
2853 * try to write out the rest of the page. Journalled mode is
2854 * not supported by delalloc.
2855 */
2856 BUG_ON(ext4_should_journal_data(inode));
2857 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2858
2859 /* start a new transaction */
2860 handle = ext4_journal_start_with_reserve(inode,
2861 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2862 if (IS_ERR(handle)) {
2863 ret = PTR_ERR(handle);
2864 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2865 "%ld pages, ino %lu; err %d", __func__,
2866 wbc->nr_to_write, inode->i_ino, ret);
2867 /* Release allocated io_end */
2868 ext4_put_io_end(mpd->io_submit.io_end);
2869 mpd->io_submit.io_end = NULL;
2870 break;
2871 }
2872 mpd->do_map = 1;
2873
2874 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2875 ret = mpage_prepare_extent_to_map(mpd);
2876 if (!ret && mpd->map.m_len)
2877 ret = mpage_map_and_submit_extent(handle, mpd,
2878 &give_up_on_write);
2879 /*
2880 * Caution: If the handle is synchronous,
2881 * ext4_journal_stop() can wait for transaction commit
2882 * to finish which may depend on writeback of pages to
2883 * complete or on page lock to be released. In that
2884 * case, we have to wait until after we have
2885 * submitted all the IO, released page locks we hold,
2886 * and dropped io_end reference (for extent conversion
2887 * to be able to complete) before stopping the handle.
2888 */
2889 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2890 ext4_journal_stop(handle);
2891 handle = NULL;
2892 mpd->do_map = 0;
2893 }
2894 /* Unlock pages we didn't use */
2895 mpage_release_unused_pages(mpd, give_up_on_write);
2896 /* Submit prepared bio */
2897 ext4_io_submit(&mpd->io_submit);
2898
2899 /*
2900 * Drop our io_end reference we got from init. We have
2901 * to be careful and use deferred io_end finishing if
2902 * we are still holding the transaction as we can
2903 * release the last reference to io_end which may end
2904 * up doing unwritten extent conversion.
2905 */
2906 if (handle) {
2907 ext4_put_io_end_defer(mpd->io_submit.io_end);
2908 ext4_journal_stop(handle);
2909 } else
2910 ext4_put_io_end(mpd->io_submit.io_end);
2911 mpd->io_submit.io_end = NULL;
2912
2913 if (ret == -ENOSPC && sbi->s_journal) {
2914 /*
2915 * Commit the transaction which would
2916 * free blocks released in the transaction
2917 * and try again
2918 */
2919 jbd2_journal_force_commit_nested(sbi->s_journal);
2920 ret = 0;
2921 continue;
2922 }
2923 /* Fatal error - ENOMEM, EIO... */
2924 if (ret)
2925 break;
2926 }
2927unplug:
2928 blk_finish_plug(&plug);
2929 if (!ret && !cycled && wbc->nr_to_write > 0) {
2930 cycled = 1;
2931 mpd->last_page = writeback_index - 1;
2932 mpd->first_page = 0;
2933 goto retry;
2934 }
2935
2936 /* Update index */
2937 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2938 /*
2939 * Set the writeback_index so that range_cyclic
2940 * mode will write it back later
2941 */
2942 mapping->writeback_index = mpd->first_page;
2943
2944out_writepages:
2945 trace_ext4_writepages_result(inode, wbc, ret,
2946 nr_to_write - wbc->nr_to_write);
2947 return ret;
2948}
2949
2950static int ext4_writepages(struct address_space *mapping,
2951 struct writeback_control *wbc)
2952{
2953 struct super_block *sb = mapping->host->i_sb;
2954 struct mpage_da_data mpd = {
2955 .inode = mapping->host,
2956 .wbc = wbc,
2957 .can_map = 1,
2958 };
2959 int ret;
2960
2961 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
2962 return -EIO;
2963
2964 percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem);
2965 ret = ext4_do_writepages(&mpd);
2966 percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem);
2967
2968 return ret;
2969}
2970
2971int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2972{
2973 struct writeback_control wbc = {
2974 .sync_mode = WB_SYNC_ALL,
2975 .nr_to_write = LONG_MAX,
2976 .range_start = jinode->i_dirty_start,
2977 .range_end = jinode->i_dirty_end,
2978 };
2979 struct mpage_da_data mpd = {
2980 .inode = jinode->i_vfs_inode,
2981 .wbc = &wbc,
2982 .can_map = 0,
2983 };
2984 return ext4_do_writepages(&mpd);
2985}
2986
2987static int ext4_dax_writepages(struct address_space *mapping,
2988 struct writeback_control *wbc)
2989{
2990 int ret;
2991 long nr_to_write = wbc->nr_to_write;
2992 struct inode *inode = mapping->host;
2993 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2994
2995 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2996 return -EIO;
2997
2998 percpu_down_read(&sbi->s_writepages_rwsem);
2999 trace_ext4_writepages(inode, wbc);
3000
3001 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
3002 trace_ext4_writepages_result(inode, wbc, ret,
3003 nr_to_write - wbc->nr_to_write);
3004 percpu_up_read(&sbi->s_writepages_rwsem);
3005 return ret;
3006}
3007
3008static int ext4_nonda_switch(struct super_block *sb)
3009{
3010 s64 free_clusters, dirty_clusters;
3011 struct ext4_sb_info *sbi = EXT4_SB(sb);
3012
3013 /*
3014 * switch to non delalloc mode if we are running low
3015 * on free block. The free block accounting via percpu
3016 * counters can get slightly wrong with percpu_counter_batch getting
3017 * accumulated on each CPU without updating global counters
3018 * Delalloc need an accurate free block accounting. So switch
3019 * to non delalloc when we are near to error range.
3020 */
3021 free_clusters =
3022 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3023 dirty_clusters =
3024 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3025 /*
3026 * Start pushing delalloc when 1/2 of free blocks are dirty.
3027 */
3028 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3029 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3030
3031 if (2 * free_clusters < 3 * dirty_clusters ||
3032 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3033 /*
3034 * free block count is less than 150% of dirty blocks
3035 * or free blocks is less than watermark
3036 */
3037 return 1;
3038 }
3039 return 0;
3040}
3041
3042static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3043 loff_t pos, unsigned len,
3044 struct page **pagep, void **fsdata)
3045{
3046 int ret, retries = 0;
3047 struct page *page;
3048 pgoff_t index;
3049 struct inode *inode = mapping->host;
3050
3051 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3052 return -EIO;
3053
3054 index = pos >> PAGE_SHIFT;
3055
3056 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3057 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3058 return ext4_write_begin(file, mapping, pos,
3059 len, pagep, fsdata);
3060 }
3061 *fsdata = (void *)0;
3062 trace_ext4_da_write_begin(inode, pos, len);
3063
3064 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3065 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
3066 pagep, fsdata);
3067 if (ret < 0)
3068 return ret;
3069 if (ret == 1)
3070 return 0;
3071 }
3072
3073retry:
3074 page = grab_cache_page_write_begin(mapping, index);
3075 if (!page)
3076 return -ENOMEM;
3077
3078 /* In case writeback began while the page was unlocked */
3079 wait_for_stable_page(page);
3080
3081#ifdef CONFIG_FS_ENCRYPTION
3082 ret = ext4_block_write_begin(page, pos, len,
3083 ext4_da_get_block_prep);
3084#else
3085 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3086#endif
3087 if (ret < 0) {
3088 unlock_page(page);
3089 put_page(page);
3090 /*
3091 * block_write_begin may have instantiated a few blocks
3092 * outside i_size. Trim these off again. Don't need
3093 * i_size_read because we hold inode lock.
3094 */
3095 if (pos + len > inode->i_size)
3096 ext4_truncate_failed_write(inode);
3097
3098 if (ret == -ENOSPC &&
3099 ext4_should_retry_alloc(inode->i_sb, &retries))
3100 goto retry;
3101 return ret;
3102 }
3103
3104 *pagep = page;
3105 return ret;
3106}
3107
3108/*
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3111 */
3112static int ext4_da_should_update_i_disksize(struct page *page,
3113 unsigned long offset)
3114{
3115 struct buffer_head *bh;
3116 struct inode *inode = page->mapping->host;
3117 unsigned int idx;
3118 int i;
3119
3120 bh = page_buffers(page);
3121 idx = offset >> inode->i_blkbits;
3122
3123 for (i = 0; i < idx; i++)
3124 bh = bh->b_this_page;
3125
3126 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127 return 0;
3128 return 1;
3129}
3130
3131static int ext4_da_write_end(struct file *file,
3132 struct address_space *mapping,
3133 loff_t pos, unsigned len, unsigned copied,
3134 struct page *page, void *fsdata)
3135{
3136 struct inode *inode = mapping->host;
3137 loff_t new_i_size;
3138 unsigned long start, end;
3139 int write_mode = (int)(unsigned long)fsdata;
3140
3141 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142 return ext4_write_end(file, mapping, pos,
3143 len, copied, page, fsdata);
3144
3145 trace_ext4_da_write_end(inode, pos, len, copied);
3146
3147 if (write_mode != CONVERT_INLINE_DATA &&
3148 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3149 ext4_has_inline_data(inode))
3150 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3151
3152 start = pos & (PAGE_SIZE - 1);
3153 end = start + copied - 1;
3154
3155 /*
3156 * Since we are holding inode lock, we are sure i_disksize <=
3157 * i_size. We also know that if i_disksize < i_size, there are
3158 * delalloc writes pending in the range upto i_size. If the end of
3159 * the current write is <= i_size, there's no need to touch
3160 * i_disksize since writeback will push i_disksize upto i_size
3161 * eventually. If the end of the current write is > i_size and
3162 * inside an allocated block (ext4_da_should_update_i_disksize()
3163 * check), we need to update i_disksize here as neither
3164 * ext4_writepage() nor certain ext4_writepages() paths not
3165 * allocating blocks update i_disksize.
3166 *
3167 * Note that we defer inode dirtying to generic_write_end() /
3168 * ext4_da_write_inline_data_end().
3169 */
3170 new_i_size = pos + copied;
3171 if (copied && new_i_size > inode->i_size &&
3172 ext4_da_should_update_i_disksize(page, end))
3173 ext4_update_i_disksize(inode, new_i_size);
3174
3175 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3176}
3177
3178/*
3179 * Force all delayed allocation blocks to be allocated for a given inode.
3180 */
3181int ext4_alloc_da_blocks(struct inode *inode)
3182{
3183 trace_ext4_alloc_da_blocks(inode);
3184
3185 if (!EXT4_I(inode)->i_reserved_data_blocks)
3186 return 0;
3187
3188 /*
3189 * We do something simple for now. The filemap_flush() will
3190 * also start triggering a write of the data blocks, which is
3191 * not strictly speaking necessary (and for users of
3192 * laptop_mode, not even desirable). However, to do otherwise
3193 * would require replicating code paths in:
3194 *
3195 * ext4_writepages() ->
3196 * write_cache_pages() ---> (via passed in callback function)
3197 * __mpage_da_writepage() -->
3198 * mpage_add_bh_to_extent()
3199 * mpage_da_map_blocks()
3200 *
3201 * The problem is that write_cache_pages(), located in
3202 * mm/page-writeback.c, marks pages clean in preparation for
3203 * doing I/O, which is not desirable if we're not planning on
3204 * doing I/O at all.
3205 *
3206 * We could call write_cache_pages(), and then redirty all of
3207 * the pages by calling redirty_page_for_writepage() but that
3208 * would be ugly in the extreme. So instead we would need to
3209 * replicate parts of the code in the above functions,
3210 * simplifying them because we wouldn't actually intend to
3211 * write out the pages, but rather only collect contiguous
3212 * logical block extents, call the multi-block allocator, and
3213 * then update the buffer heads with the block allocations.
3214 *
3215 * For now, though, we'll cheat by calling filemap_flush(),
3216 * which will map the blocks, and start the I/O, but not
3217 * actually wait for the I/O to complete.
3218 */
3219 return filemap_flush(inode->i_mapping);
3220}
3221
3222/*
3223 * bmap() is special. It gets used by applications such as lilo and by
3224 * the swapper to find the on-disk block of a specific piece of data.
3225 *
3226 * Naturally, this is dangerous if the block concerned is still in the
3227 * journal. If somebody makes a swapfile on an ext4 data-journaling
3228 * filesystem and enables swap, then they may get a nasty shock when the
3229 * data getting swapped to that swapfile suddenly gets overwritten by
3230 * the original zero's written out previously to the journal and
3231 * awaiting writeback in the kernel's buffer cache.
3232 *
3233 * So, if we see any bmap calls here on a modified, data-journaled file,
3234 * take extra steps to flush any blocks which might be in the cache.
3235 */
3236static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3237{
3238 struct inode *inode = mapping->host;
3239 journal_t *journal;
3240 sector_t ret = 0;
3241 int err;
3242
3243 inode_lock_shared(inode);
3244 /*
3245 * We can get here for an inline file via the FIBMAP ioctl
3246 */
3247 if (ext4_has_inline_data(inode))
3248 goto out;
3249
3250 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3251 test_opt(inode->i_sb, DELALLOC)) {
3252 /*
3253 * With delalloc we want to sync the file
3254 * so that we can make sure we allocate
3255 * blocks for file
3256 */
3257 filemap_write_and_wait(mapping);
3258 }
3259
3260 if (EXT4_JOURNAL(inode) &&
3261 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3262 /*
3263 * This is a REALLY heavyweight approach, but the use of
3264 * bmap on dirty files is expected to be extremely rare:
3265 * only if we run lilo or swapon on a freshly made file
3266 * do we expect this to happen.
3267 *
3268 * (bmap requires CAP_SYS_RAWIO so this does not
3269 * represent an unprivileged user DOS attack --- we'd be
3270 * in trouble if mortal users could trigger this path at
3271 * will.)
3272 *
3273 * NB. EXT4_STATE_JDATA is not set on files other than
3274 * regular files. If somebody wants to bmap a directory
3275 * or symlink and gets confused because the buffer
3276 * hasn't yet been flushed to disk, they deserve
3277 * everything they get.
3278 */
3279
3280 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3281 journal = EXT4_JOURNAL(inode);
3282 jbd2_journal_lock_updates(journal);
3283 err = jbd2_journal_flush(journal, 0);
3284 jbd2_journal_unlock_updates(journal);
3285
3286 if (err)
3287 goto out;
3288 }
3289
3290 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3291
3292out:
3293 inode_unlock_shared(inode);
3294 return ret;
3295}
3296
3297static int ext4_read_folio(struct file *file, struct folio *folio)
3298{
3299 struct page *page = &folio->page;
3300 int ret = -EAGAIN;
3301 struct inode *inode = page->mapping->host;
3302
3303 trace_ext4_readpage(page);
3304
3305 if (ext4_has_inline_data(inode))
3306 ret = ext4_readpage_inline(inode, page);
3307
3308 if (ret == -EAGAIN)
3309 return ext4_mpage_readpages(inode, NULL, page);
3310
3311 return ret;
3312}
3313
3314static void ext4_readahead(struct readahead_control *rac)
3315{
3316 struct inode *inode = rac->mapping->host;
3317
3318 /* If the file has inline data, no need to do readahead. */
3319 if (ext4_has_inline_data(inode))
3320 return;
3321
3322 ext4_mpage_readpages(inode, rac, NULL);
3323}
3324
3325static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3326 size_t length)
3327{
3328 trace_ext4_invalidate_folio(folio, offset, length);
3329
3330 /* No journalling happens on data buffers when this function is used */
3331 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3332
3333 block_invalidate_folio(folio, offset, length);
3334}
3335
3336static int __ext4_journalled_invalidate_folio(struct folio *folio,
3337 size_t offset, size_t length)
3338{
3339 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3340
3341 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3342
3343 /*
3344 * If it's a full truncate we just forget about the pending dirtying
3345 */
3346 if (offset == 0 && length == folio_size(folio))
3347 folio_clear_checked(folio);
3348
3349 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3350}
3351
3352/* Wrapper for aops... */
3353static void ext4_journalled_invalidate_folio(struct folio *folio,
3354 size_t offset,
3355 size_t length)
3356{
3357 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3358}
3359
3360static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3361{
3362 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3363
3364 trace_ext4_releasepage(&folio->page);
3365
3366 /* Page has dirty journalled data -> cannot release */
3367 if (folio_test_checked(folio))
3368 return false;
3369 if (journal)
3370 return jbd2_journal_try_to_free_buffers(journal, folio);
3371 else
3372 return try_to_free_buffers(folio);
3373}
3374
3375static bool ext4_inode_datasync_dirty(struct inode *inode)
3376{
3377 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3378
3379 if (journal) {
3380 if (jbd2_transaction_committed(journal,
3381 EXT4_I(inode)->i_datasync_tid))
3382 return false;
3383 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3384 return !list_empty(&EXT4_I(inode)->i_fc_list);
3385 return true;
3386 }
3387
3388 /* Any metadata buffers to write? */
3389 if (!list_empty(&inode->i_mapping->private_list))
3390 return true;
3391 return inode->i_state & I_DIRTY_DATASYNC;
3392}
3393
3394static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3395 struct ext4_map_blocks *map, loff_t offset,
3396 loff_t length, unsigned int flags)
3397{
3398 u8 blkbits = inode->i_blkbits;
3399
3400 /*
3401 * Writes that span EOF might trigger an I/O size update on completion,
3402 * so consider them to be dirty for the purpose of O_DSYNC, even if
3403 * there is no other metadata changes being made or are pending.
3404 */
3405 iomap->flags = 0;
3406 if (ext4_inode_datasync_dirty(inode) ||
3407 offset + length > i_size_read(inode))
3408 iomap->flags |= IOMAP_F_DIRTY;
3409
3410 if (map->m_flags & EXT4_MAP_NEW)
3411 iomap->flags |= IOMAP_F_NEW;
3412
3413 if (flags & IOMAP_DAX)
3414 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3415 else
3416 iomap->bdev = inode->i_sb->s_bdev;
3417 iomap->offset = (u64) map->m_lblk << blkbits;
3418 iomap->length = (u64) map->m_len << blkbits;
3419
3420 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3421 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3422 iomap->flags |= IOMAP_F_MERGED;
3423
3424 /*
3425 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3426 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3427 * set. In order for any allocated unwritten extents to be converted
3428 * into written extents correctly within the ->end_io() handler, we
3429 * need to ensure that the iomap->type is set appropriately. Hence, the
3430 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3431 * been set first.
3432 */
3433 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3434 iomap->type = IOMAP_UNWRITTEN;
3435 iomap->addr = (u64) map->m_pblk << blkbits;
3436 if (flags & IOMAP_DAX)
3437 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3438 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3439 iomap->type = IOMAP_MAPPED;
3440 iomap->addr = (u64) map->m_pblk << blkbits;
3441 if (flags & IOMAP_DAX)
3442 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3443 } else {
3444 iomap->type = IOMAP_HOLE;
3445 iomap->addr = IOMAP_NULL_ADDR;
3446 }
3447}
3448
3449static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3450 unsigned int flags)
3451{
3452 handle_t *handle;
3453 u8 blkbits = inode->i_blkbits;
3454 int ret, dio_credits, m_flags = 0, retries = 0;
3455
3456 /*
3457 * Trim the mapping request to the maximum value that we can map at
3458 * once for direct I/O.
3459 */
3460 if (map->m_len > DIO_MAX_BLOCKS)
3461 map->m_len = DIO_MAX_BLOCKS;
3462 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3463
3464retry:
3465 /*
3466 * Either we allocate blocks and then don't get an unwritten extent, so
3467 * in that case we have reserved enough credits. Or, the blocks are
3468 * already allocated and unwritten. In that case, the extent conversion
3469 * fits into the credits as well.
3470 */
3471 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3472 if (IS_ERR(handle))
3473 return PTR_ERR(handle);
3474
3475 /*
3476 * DAX and direct I/O are the only two operations that are currently
3477 * supported with IOMAP_WRITE.
3478 */
3479 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3480 if (flags & IOMAP_DAX)
3481 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3482 /*
3483 * We use i_size instead of i_disksize here because delalloc writeback
3484 * can complete at any point during the I/O and subsequently push the
3485 * i_disksize out to i_size. This could be beyond where direct I/O is
3486 * happening and thus expose allocated blocks to direct I/O reads.
3487 */
3488 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3489 m_flags = EXT4_GET_BLOCKS_CREATE;
3490 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3491 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3492
3493 ret = ext4_map_blocks(handle, inode, map, m_flags);
3494
3495 /*
3496 * We cannot fill holes in indirect tree based inodes as that could
3497 * expose stale data in the case of a crash. Use the magic error code
3498 * to fallback to buffered I/O.
3499 */
3500 if (!m_flags && !ret)
3501 ret = -ENOTBLK;
3502
3503 ext4_journal_stop(handle);
3504 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3505 goto retry;
3506
3507 return ret;
3508}
3509
3510
3511static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3512 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3513{
3514 int ret;
3515 struct ext4_map_blocks map;
3516 u8 blkbits = inode->i_blkbits;
3517
3518 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3519 return -EINVAL;
3520
3521 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3522 return -ERANGE;
3523
3524 /*
3525 * Calculate the first and last logical blocks respectively.
3526 */
3527 map.m_lblk = offset >> blkbits;
3528 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3529 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3530
3531 if (flags & IOMAP_WRITE) {
3532 /*
3533 * We check here if the blocks are already allocated, then we
3534 * don't need to start a journal txn and we can directly return
3535 * the mapping information. This could boost performance
3536 * especially in multi-threaded overwrite requests.
3537 */
3538 if (offset + length <= i_size_read(inode)) {
3539 ret = ext4_map_blocks(NULL, inode, &map, 0);
3540 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3541 goto out;
3542 }
3543 ret = ext4_iomap_alloc(inode, &map, flags);
3544 } else {
3545 ret = ext4_map_blocks(NULL, inode, &map, 0);
3546 }
3547
3548 if (ret < 0)
3549 return ret;
3550out:
3551 /*
3552 * When inline encryption is enabled, sometimes I/O to an encrypted file
3553 * has to be broken up to guarantee DUN contiguity. Handle this by
3554 * limiting the length of the mapping returned.
3555 */
3556 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3557
3558 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3559
3560 return 0;
3561}
3562
3563static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3564 loff_t length, unsigned flags, struct iomap *iomap,
3565 struct iomap *srcmap)
3566{
3567 int ret;
3568
3569 /*
3570 * Even for writes we don't need to allocate blocks, so just pretend
3571 * we are reading to save overhead of starting a transaction.
3572 */
3573 flags &= ~IOMAP_WRITE;
3574 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3575 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3576 return ret;
3577}
3578
3579static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3580 ssize_t written, unsigned flags, struct iomap *iomap)
3581{
3582 /*
3583 * Check to see whether an error occurred while writing out the data to
3584 * the allocated blocks. If so, return the magic error code so that we
3585 * fallback to buffered I/O and attempt to complete the remainder of
3586 * the I/O. Any blocks that may have been allocated in preparation for
3587 * the direct I/O will be reused during buffered I/O.
3588 */
3589 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3590 return -ENOTBLK;
3591
3592 return 0;
3593}
3594
3595const struct iomap_ops ext4_iomap_ops = {
3596 .iomap_begin = ext4_iomap_begin,
3597 .iomap_end = ext4_iomap_end,
3598};
3599
3600const struct iomap_ops ext4_iomap_overwrite_ops = {
3601 .iomap_begin = ext4_iomap_overwrite_begin,
3602 .iomap_end = ext4_iomap_end,
3603};
3604
3605static bool ext4_iomap_is_delalloc(struct inode *inode,
3606 struct ext4_map_blocks *map)
3607{
3608 struct extent_status es;
3609 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3610
3611 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3612 map->m_lblk, end, &es);
3613
3614 if (!es.es_len || es.es_lblk > end)
3615 return false;
3616
3617 if (es.es_lblk > map->m_lblk) {
3618 map->m_len = es.es_lblk - map->m_lblk;
3619 return false;
3620 }
3621
3622 offset = map->m_lblk - es.es_lblk;
3623 map->m_len = es.es_len - offset;
3624
3625 return true;
3626}
3627
3628static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3629 loff_t length, unsigned int flags,
3630 struct iomap *iomap, struct iomap *srcmap)
3631{
3632 int ret;
3633 bool delalloc = false;
3634 struct ext4_map_blocks map;
3635 u8 blkbits = inode->i_blkbits;
3636
3637 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3638 return -EINVAL;
3639
3640 if (ext4_has_inline_data(inode)) {
3641 ret = ext4_inline_data_iomap(inode, iomap);
3642 if (ret != -EAGAIN) {
3643 if (ret == 0 && offset >= iomap->length)
3644 ret = -ENOENT;
3645 return ret;
3646 }
3647 }
3648
3649 /*
3650 * Calculate the first and last logical block respectively.
3651 */
3652 map.m_lblk = offset >> blkbits;
3653 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3654 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3655
3656 /*
3657 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3658 * So handle it here itself instead of querying ext4_map_blocks().
3659 * Since ext4_map_blocks() will warn about it and will return
3660 * -EIO error.
3661 */
3662 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3663 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3664
3665 if (offset >= sbi->s_bitmap_maxbytes) {
3666 map.m_flags = 0;
3667 goto set_iomap;
3668 }
3669 }
3670
3671 ret = ext4_map_blocks(NULL, inode, &map, 0);
3672 if (ret < 0)
3673 return ret;
3674 if (ret == 0)
3675 delalloc = ext4_iomap_is_delalloc(inode, &map);
3676
3677set_iomap:
3678 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3679 if (delalloc && iomap->type == IOMAP_HOLE)
3680 iomap->type = IOMAP_DELALLOC;
3681
3682 return 0;
3683}
3684
3685const struct iomap_ops ext4_iomap_report_ops = {
3686 .iomap_begin = ext4_iomap_begin_report,
3687};
3688
3689/*
3690 * Whenever the folio is being dirtied, corresponding buffers should already
3691 * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3692 * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3693 * lists here because ->dirty_folio is called under VFS locks and the folio
3694 * is not necessarily locked.
3695 *
3696 * We cannot just dirty the folio and leave attached buffers clean, because the
3697 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3698 * or jbddirty because all the journalling code will explode.
3699 *
3700 * So what we do is to mark the folio "pending dirty" and next time writepage
3701 * is called, propagate that into the buffers appropriately.
3702 */
3703static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3704 struct folio *folio)
3705{
3706 WARN_ON_ONCE(!folio_buffers(folio));
3707 folio_set_checked(folio);
3708 return filemap_dirty_folio(mapping, folio);
3709}
3710
3711static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3712{
3713 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3714 WARN_ON_ONCE(!folio_buffers(folio));
3715 return block_dirty_folio(mapping, folio);
3716}
3717
3718static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3719 struct file *file, sector_t *span)
3720{
3721 return iomap_swapfile_activate(sis, file, span,
3722 &ext4_iomap_report_ops);
3723}
3724
3725static const struct address_space_operations ext4_aops = {
3726 .read_folio = ext4_read_folio,
3727 .readahead = ext4_readahead,
3728 .writepages = ext4_writepages,
3729 .write_begin = ext4_write_begin,
3730 .write_end = ext4_write_end,
3731 .dirty_folio = ext4_dirty_folio,
3732 .bmap = ext4_bmap,
3733 .invalidate_folio = ext4_invalidate_folio,
3734 .release_folio = ext4_release_folio,
3735 .direct_IO = noop_direct_IO,
3736 .migrate_folio = buffer_migrate_folio,
3737 .is_partially_uptodate = block_is_partially_uptodate,
3738 .error_remove_page = generic_error_remove_page,
3739 .swap_activate = ext4_iomap_swap_activate,
3740};
3741
3742static const struct address_space_operations ext4_journalled_aops = {
3743 .read_folio = ext4_read_folio,
3744 .readahead = ext4_readahead,
3745 .writepages = ext4_writepages,
3746 .write_begin = ext4_write_begin,
3747 .write_end = ext4_journalled_write_end,
3748 .dirty_folio = ext4_journalled_dirty_folio,
3749 .bmap = ext4_bmap,
3750 .invalidate_folio = ext4_journalled_invalidate_folio,
3751 .release_folio = ext4_release_folio,
3752 .direct_IO = noop_direct_IO,
3753 .migrate_folio = buffer_migrate_folio_norefs,
3754 .is_partially_uptodate = block_is_partially_uptodate,
3755 .error_remove_page = generic_error_remove_page,
3756 .swap_activate = ext4_iomap_swap_activate,
3757};
3758
3759static const struct address_space_operations ext4_da_aops = {
3760 .read_folio = ext4_read_folio,
3761 .readahead = ext4_readahead,
3762 .writepages = ext4_writepages,
3763 .write_begin = ext4_da_write_begin,
3764 .write_end = ext4_da_write_end,
3765 .dirty_folio = ext4_dirty_folio,
3766 .bmap = ext4_bmap,
3767 .invalidate_folio = ext4_invalidate_folio,
3768 .release_folio = ext4_release_folio,
3769 .direct_IO = noop_direct_IO,
3770 .migrate_folio = buffer_migrate_folio,
3771 .is_partially_uptodate = block_is_partially_uptodate,
3772 .error_remove_page = generic_error_remove_page,
3773 .swap_activate = ext4_iomap_swap_activate,
3774};
3775
3776static const struct address_space_operations ext4_dax_aops = {
3777 .writepages = ext4_dax_writepages,
3778 .direct_IO = noop_direct_IO,
3779 .dirty_folio = noop_dirty_folio,
3780 .bmap = ext4_bmap,
3781 .swap_activate = ext4_iomap_swap_activate,
3782};
3783
3784void ext4_set_aops(struct inode *inode)
3785{
3786 switch (ext4_inode_journal_mode(inode)) {
3787 case EXT4_INODE_ORDERED_DATA_MODE:
3788 case EXT4_INODE_WRITEBACK_DATA_MODE:
3789 break;
3790 case EXT4_INODE_JOURNAL_DATA_MODE:
3791 inode->i_mapping->a_ops = &ext4_journalled_aops;
3792 return;
3793 default:
3794 BUG();
3795 }
3796 if (IS_DAX(inode))
3797 inode->i_mapping->a_ops = &ext4_dax_aops;
3798 else if (test_opt(inode->i_sb, DELALLOC))
3799 inode->i_mapping->a_ops = &ext4_da_aops;
3800 else
3801 inode->i_mapping->a_ops = &ext4_aops;
3802}
3803
3804static int __ext4_block_zero_page_range(handle_t *handle,
3805 struct address_space *mapping, loff_t from, loff_t length)
3806{
3807 ext4_fsblk_t index = from >> PAGE_SHIFT;
3808 unsigned offset = from & (PAGE_SIZE-1);
3809 unsigned blocksize, pos;
3810 ext4_lblk_t iblock;
3811 struct inode *inode = mapping->host;
3812 struct buffer_head *bh;
3813 struct page *page;
3814 int err = 0;
3815
3816 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3817 mapping_gfp_constraint(mapping, ~__GFP_FS));
3818 if (!page)
3819 return -ENOMEM;
3820
3821 blocksize = inode->i_sb->s_blocksize;
3822
3823 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3824
3825 if (!page_has_buffers(page))
3826 create_empty_buffers(page, blocksize, 0);
3827
3828 /* Find the buffer that contains "offset" */
3829 bh = page_buffers(page);
3830 pos = blocksize;
3831 while (offset >= pos) {
3832 bh = bh->b_this_page;
3833 iblock++;
3834 pos += blocksize;
3835 }
3836 if (buffer_freed(bh)) {
3837 BUFFER_TRACE(bh, "freed: skip");
3838 goto unlock;
3839 }
3840 if (!buffer_mapped(bh)) {
3841 BUFFER_TRACE(bh, "unmapped");
3842 ext4_get_block(inode, iblock, bh, 0);
3843 /* unmapped? It's a hole - nothing to do */
3844 if (!buffer_mapped(bh)) {
3845 BUFFER_TRACE(bh, "still unmapped");
3846 goto unlock;
3847 }
3848 }
3849
3850 /* Ok, it's mapped. Make sure it's up-to-date */
3851 if (PageUptodate(page))
3852 set_buffer_uptodate(bh);
3853
3854 if (!buffer_uptodate(bh)) {
3855 err = ext4_read_bh_lock(bh, 0, true);
3856 if (err)
3857 goto unlock;
3858 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3859 /* We expect the key to be set. */
3860 BUG_ON(!fscrypt_has_encryption_key(inode));
3861 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3862 bh_offset(bh));
3863 if (err) {
3864 clear_buffer_uptodate(bh);
3865 goto unlock;
3866 }
3867 }
3868 }
3869 if (ext4_should_journal_data(inode)) {
3870 BUFFER_TRACE(bh, "get write access");
3871 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3872 EXT4_JTR_NONE);
3873 if (err)
3874 goto unlock;
3875 }
3876 zero_user(page, offset, length);
3877 BUFFER_TRACE(bh, "zeroed end of block");
3878
3879 if (ext4_should_journal_data(inode)) {
3880 err = ext4_handle_dirty_metadata(handle, inode, bh);
3881 } else {
3882 err = 0;
3883 mark_buffer_dirty(bh);
3884 if (ext4_should_order_data(inode))
3885 err = ext4_jbd2_inode_add_write(handle, inode, from,
3886 length);
3887 }
3888
3889unlock:
3890 unlock_page(page);
3891 put_page(page);
3892 return err;
3893}
3894
3895/*
3896 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3897 * starting from file offset 'from'. The range to be zero'd must
3898 * be contained with in one block. If the specified range exceeds
3899 * the end of the block it will be shortened to end of the block
3900 * that corresponds to 'from'
3901 */
3902static int ext4_block_zero_page_range(handle_t *handle,
3903 struct address_space *mapping, loff_t from, loff_t length)
3904{
3905 struct inode *inode = mapping->host;
3906 unsigned offset = from & (PAGE_SIZE-1);
3907 unsigned blocksize = inode->i_sb->s_blocksize;
3908 unsigned max = blocksize - (offset & (blocksize - 1));
3909
3910 /*
3911 * correct length if it does not fall between
3912 * 'from' and the end of the block
3913 */
3914 if (length > max || length < 0)
3915 length = max;
3916
3917 if (IS_DAX(inode)) {
3918 return dax_zero_range(inode, from, length, NULL,
3919 &ext4_iomap_ops);
3920 }
3921 return __ext4_block_zero_page_range(handle, mapping, from, length);
3922}
3923
3924/*
3925 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3926 * up to the end of the block which corresponds to `from'.
3927 * This required during truncate. We need to physically zero the tail end
3928 * of that block so it doesn't yield old data if the file is later grown.
3929 */
3930static int ext4_block_truncate_page(handle_t *handle,
3931 struct address_space *mapping, loff_t from)
3932{
3933 unsigned offset = from & (PAGE_SIZE-1);
3934 unsigned length;
3935 unsigned blocksize;
3936 struct inode *inode = mapping->host;
3937
3938 /* If we are processing an encrypted inode during orphan list handling */
3939 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3940 return 0;
3941
3942 blocksize = inode->i_sb->s_blocksize;
3943 length = blocksize - (offset & (blocksize - 1));
3944
3945 return ext4_block_zero_page_range(handle, mapping, from, length);
3946}
3947
3948int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3949 loff_t lstart, loff_t length)
3950{
3951 struct super_block *sb = inode->i_sb;
3952 struct address_space *mapping = inode->i_mapping;
3953 unsigned partial_start, partial_end;
3954 ext4_fsblk_t start, end;
3955 loff_t byte_end = (lstart + length - 1);
3956 int err = 0;
3957
3958 partial_start = lstart & (sb->s_blocksize - 1);
3959 partial_end = byte_end & (sb->s_blocksize - 1);
3960
3961 start = lstart >> sb->s_blocksize_bits;
3962 end = byte_end >> sb->s_blocksize_bits;
3963
3964 /* Handle partial zero within the single block */
3965 if (start == end &&
3966 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3967 err = ext4_block_zero_page_range(handle, mapping,
3968 lstart, length);
3969 return err;
3970 }
3971 /* Handle partial zero out on the start of the range */
3972 if (partial_start) {
3973 err = ext4_block_zero_page_range(handle, mapping,
3974 lstart, sb->s_blocksize);
3975 if (err)
3976 return err;
3977 }
3978 /* Handle partial zero out on the end of the range */
3979 if (partial_end != sb->s_blocksize - 1)
3980 err = ext4_block_zero_page_range(handle, mapping,
3981 byte_end - partial_end,
3982 partial_end + 1);
3983 return err;
3984}
3985
3986int ext4_can_truncate(struct inode *inode)
3987{
3988 if (S_ISREG(inode->i_mode))
3989 return 1;
3990 if (S_ISDIR(inode->i_mode))
3991 return 1;
3992 if (S_ISLNK(inode->i_mode))
3993 return !ext4_inode_is_fast_symlink(inode);
3994 return 0;
3995}
3996
3997/*
3998 * We have to make sure i_disksize gets properly updated before we truncate
3999 * page cache due to hole punching or zero range. Otherwise i_disksize update
4000 * can get lost as it may have been postponed to submission of writeback but
4001 * that will never happen after we truncate page cache.
4002 */
4003int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4004 loff_t len)
4005{
4006 handle_t *handle;
4007 int ret;
4008
4009 loff_t size = i_size_read(inode);
4010
4011 WARN_ON(!inode_is_locked(inode));
4012 if (offset > size || offset + len < size)
4013 return 0;
4014
4015 if (EXT4_I(inode)->i_disksize >= size)
4016 return 0;
4017
4018 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4019 if (IS_ERR(handle))
4020 return PTR_ERR(handle);
4021 ext4_update_i_disksize(inode, size);
4022 ret = ext4_mark_inode_dirty(handle, inode);
4023 ext4_journal_stop(handle);
4024
4025 return ret;
4026}
4027
4028static void ext4_wait_dax_page(struct inode *inode)
4029{
4030 filemap_invalidate_unlock(inode->i_mapping);
4031 schedule();
4032 filemap_invalidate_lock(inode->i_mapping);
4033}
4034
4035int ext4_break_layouts(struct inode *inode)
4036{
4037 struct page *page;
4038 int error;
4039
4040 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4041 return -EINVAL;
4042
4043 do {
4044 page = dax_layout_busy_page(inode->i_mapping);
4045 if (!page)
4046 return 0;
4047
4048 error = ___wait_var_event(&page->_refcount,
4049 atomic_read(&page->_refcount) == 1,
4050 TASK_INTERRUPTIBLE, 0, 0,
4051 ext4_wait_dax_page(inode));
4052 } while (error == 0);
4053
4054 return error;
4055}
4056
4057/*
4058 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4059 * associated with the given offset and length
4060 *
4061 * @inode: File inode
4062 * @offset: The offset where the hole will begin
4063 * @len: The length of the hole
4064 *
4065 * Returns: 0 on success or negative on failure
4066 */
4067
4068int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4069{
4070 struct inode *inode = file_inode(file);
4071 struct super_block *sb = inode->i_sb;
4072 ext4_lblk_t first_block, stop_block;
4073 struct address_space *mapping = inode->i_mapping;
4074 loff_t first_block_offset, last_block_offset, max_length;
4075 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4076 handle_t *handle;
4077 unsigned int credits;
4078 int ret = 0, ret2 = 0;
4079
4080 trace_ext4_punch_hole(inode, offset, length, 0);
4081
4082 /*
4083 * Write out all dirty pages to avoid race conditions
4084 * Then release them.
4085 */
4086 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4087 ret = filemap_write_and_wait_range(mapping, offset,
4088 offset + length - 1);
4089 if (ret)
4090 return ret;
4091 }
4092
4093 inode_lock(inode);
4094
4095 /* No need to punch hole beyond i_size */
4096 if (offset >= inode->i_size)
4097 goto out_mutex;
4098
4099 /*
4100 * If the hole extends beyond i_size, set the hole
4101 * to end after the page that contains i_size
4102 */
4103 if (offset + length > inode->i_size) {
4104 length = inode->i_size +
4105 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4106 offset;
4107 }
4108
4109 /*
4110 * For punch hole the length + offset needs to be within one block
4111 * before last range. Adjust the length if it goes beyond that limit.
4112 */
4113 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4114 if (offset + length > max_length)
4115 length = max_length - offset;
4116
4117 if (offset & (sb->s_blocksize - 1) ||
4118 (offset + length) & (sb->s_blocksize - 1)) {
4119 /*
4120 * Attach jinode to inode for jbd2 if we do any zeroing of
4121 * partial block
4122 */
4123 ret = ext4_inode_attach_jinode(inode);
4124 if (ret < 0)
4125 goto out_mutex;
4126
4127 }
4128
4129 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4130 inode_dio_wait(inode);
4131
4132 ret = file_modified(file);
4133 if (ret)
4134 goto out_mutex;
4135
4136 /*
4137 * Prevent page faults from reinstantiating pages we have released from
4138 * page cache.
4139 */
4140 filemap_invalidate_lock(mapping);
4141
4142 ret = ext4_break_layouts(inode);
4143 if (ret)
4144 goto out_dio;
4145
4146 first_block_offset = round_up(offset, sb->s_blocksize);
4147 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4148
4149 /* Now release the pages and zero block aligned part of pages*/
4150 if (last_block_offset > first_block_offset) {
4151 ret = ext4_update_disksize_before_punch(inode, offset, length);
4152 if (ret)
4153 goto out_dio;
4154 truncate_pagecache_range(inode, first_block_offset,
4155 last_block_offset);
4156 }
4157
4158 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4159 credits = ext4_writepage_trans_blocks(inode);
4160 else
4161 credits = ext4_blocks_for_truncate(inode);
4162 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4163 if (IS_ERR(handle)) {
4164 ret = PTR_ERR(handle);
4165 ext4_std_error(sb, ret);
4166 goto out_dio;
4167 }
4168
4169 ret = ext4_zero_partial_blocks(handle, inode, offset,
4170 length);
4171 if (ret)
4172 goto out_stop;
4173
4174 first_block = (offset + sb->s_blocksize - 1) >>
4175 EXT4_BLOCK_SIZE_BITS(sb);
4176 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4177
4178 /* If there are blocks to remove, do it */
4179 if (stop_block > first_block) {
4180
4181 down_write(&EXT4_I(inode)->i_data_sem);
4182 ext4_discard_preallocations(inode, 0);
4183
4184 ret = ext4_es_remove_extent(inode, first_block,
4185 stop_block - first_block);
4186 if (ret) {
4187 up_write(&EXT4_I(inode)->i_data_sem);
4188 goto out_stop;
4189 }
4190
4191 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4192 ret = ext4_ext_remove_space(inode, first_block,
4193 stop_block - 1);
4194 else
4195 ret = ext4_ind_remove_space(handle, inode, first_block,
4196 stop_block);
4197
4198 up_write(&EXT4_I(inode)->i_data_sem);
4199 }
4200 ext4_fc_track_range(handle, inode, first_block, stop_block);
4201 if (IS_SYNC(inode))
4202 ext4_handle_sync(handle);
4203
4204 inode->i_mtime = inode->i_ctime = current_time(inode);
4205 ret2 = ext4_mark_inode_dirty(handle, inode);
4206 if (unlikely(ret2))
4207 ret = ret2;
4208 if (ret >= 0)
4209 ext4_update_inode_fsync_trans(handle, inode, 1);
4210out_stop:
4211 ext4_journal_stop(handle);
4212out_dio:
4213 filemap_invalidate_unlock(mapping);
4214out_mutex:
4215 inode_unlock(inode);
4216 return ret;
4217}
4218
4219int ext4_inode_attach_jinode(struct inode *inode)
4220{
4221 struct ext4_inode_info *ei = EXT4_I(inode);
4222 struct jbd2_inode *jinode;
4223
4224 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4225 return 0;
4226
4227 jinode = jbd2_alloc_inode(GFP_KERNEL);
4228 spin_lock(&inode->i_lock);
4229 if (!ei->jinode) {
4230 if (!jinode) {
4231 spin_unlock(&inode->i_lock);
4232 return -ENOMEM;
4233 }
4234 ei->jinode = jinode;
4235 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4236 jinode = NULL;
4237 }
4238 spin_unlock(&inode->i_lock);
4239 if (unlikely(jinode != NULL))
4240 jbd2_free_inode(jinode);
4241 return 0;
4242}
4243
4244/*
4245 * ext4_truncate()
4246 *
4247 * We block out ext4_get_block() block instantiations across the entire
4248 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4249 * simultaneously on behalf of the same inode.
4250 *
4251 * As we work through the truncate and commit bits of it to the journal there
4252 * is one core, guiding principle: the file's tree must always be consistent on
4253 * disk. We must be able to restart the truncate after a crash.
4254 *
4255 * The file's tree may be transiently inconsistent in memory (although it
4256 * probably isn't), but whenever we close off and commit a journal transaction,
4257 * the contents of (the filesystem + the journal) must be consistent and
4258 * restartable. It's pretty simple, really: bottom up, right to left (although
4259 * left-to-right works OK too).
4260 *
4261 * Note that at recovery time, journal replay occurs *before* the restart of
4262 * truncate against the orphan inode list.
4263 *
4264 * The committed inode has the new, desired i_size (which is the same as
4265 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4266 * that this inode's truncate did not complete and it will again call
4267 * ext4_truncate() to have another go. So there will be instantiated blocks
4268 * to the right of the truncation point in a crashed ext4 filesystem. But
4269 * that's fine - as long as they are linked from the inode, the post-crash
4270 * ext4_truncate() run will find them and release them.
4271 */
4272int ext4_truncate(struct inode *inode)
4273{
4274 struct ext4_inode_info *ei = EXT4_I(inode);
4275 unsigned int credits;
4276 int err = 0, err2;
4277 handle_t *handle;
4278 struct address_space *mapping = inode->i_mapping;
4279
4280 /*
4281 * There is a possibility that we're either freeing the inode
4282 * or it's a completely new inode. In those cases we might not
4283 * have i_rwsem locked because it's not necessary.
4284 */
4285 if (!(inode->i_state & (I_NEW|I_FREEING)))
4286 WARN_ON(!inode_is_locked(inode));
4287 trace_ext4_truncate_enter(inode);
4288
4289 if (!ext4_can_truncate(inode))
4290 goto out_trace;
4291
4292 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4293 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4294
4295 if (ext4_has_inline_data(inode)) {
4296 int has_inline = 1;
4297
4298 err = ext4_inline_data_truncate(inode, &has_inline);
4299 if (err || has_inline)
4300 goto out_trace;
4301 }
4302
4303 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4304 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4305 err = ext4_inode_attach_jinode(inode);
4306 if (err)
4307 goto out_trace;
4308 }
4309
4310 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4311 credits = ext4_writepage_trans_blocks(inode);
4312 else
4313 credits = ext4_blocks_for_truncate(inode);
4314
4315 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4316 if (IS_ERR(handle)) {
4317 err = PTR_ERR(handle);
4318 goto out_trace;
4319 }
4320
4321 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4322 ext4_block_truncate_page(handle, mapping, inode->i_size);
4323
4324 /*
4325 * We add the inode to the orphan list, so that if this
4326 * truncate spans multiple transactions, and we crash, we will
4327 * resume the truncate when the filesystem recovers. It also
4328 * marks the inode dirty, to catch the new size.
4329 *
4330 * Implication: the file must always be in a sane, consistent
4331 * truncatable state while each transaction commits.
4332 */
4333 err = ext4_orphan_add(handle, inode);
4334 if (err)
4335 goto out_stop;
4336
4337 down_write(&EXT4_I(inode)->i_data_sem);
4338
4339 ext4_discard_preallocations(inode, 0);
4340
4341 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4342 err = ext4_ext_truncate(handle, inode);
4343 else
4344 ext4_ind_truncate(handle, inode);
4345
4346 up_write(&ei->i_data_sem);
4347 if (err)
4348 goto out_stop;
4349
4350 if (IS_SYNC(inode))
4351 ext4_handle_sync(handle);
4352
4353out_stop:
4354 /*
4355 * If this was a simple ftruncate() and the file will remain alive,
4356 * then we need to clear up the orphan record which we created above.
4357 * However, if this was a real unlink then we were called by
4358 * ext4_evict_inode(), and we allow that function to clean up the
4359 * orphan info for us.
4360 */
4361 if (inode->i_nlink)
4362 ext4_orphan_del(handle, inode);
4363
4364 inode->i_mtime = inode->i_ctime = current_time(inode);
4365 err2 = ext4_mark_inode_dirty(handle, inode);
4366 if (unlikely(err2 && !err))
4367 err = err2;
4368 ext4_journal_stop(handle);
4369
4370out_trace:
4371 trace_ext4_truncate_exit(inode);
4372 return err;
4373}
4374
4375static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4376{
4377 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4378 return inode_peek_iversion_raw(inode);
4379 else
4380 return inode_peek_iversion(inode);
4381}
4382
4383static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4384 struct ext4_inode_info *ei)
4385{
4386 struct inode *inode = &(ei->vfs_inode);
4387 u64 i_blocks = READ_ONCE(inode->i_blocks);
4388 struct super_block *sb = inode->i_sb;
4389
4390 if (i_blocks <= ~0U) {
4391 /*
4392 * i_blocks can be represented in a 32 bit variable
4393 * as multiple of 512 bytes
4394 */
4395 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4396 raw_inode->i_blocks_high = 0;
4397 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398 return 0;
4399 }
4400
4401 /*
4402 * This should never happen since sb->s_maxbytes should not have
4403 * allowed this, sb->s_maxbytes was set according to the huge_file
4404 * feature in ext4_fill_super().
4405 */
4406 if (!ext4_has_feature_huge_file(sb))
4407 return -EFSCORRUPTED;
4408
4409 if (i_blocks <= 0xffffffffffffULL) {
4410 /*
4411 * i_blocks can be represented in a 48 bit variable
4412 * as multiple of 512 bytes
4413 */
4414 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4415 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4416 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4417 } else {
4418 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4419 /* i_block is stored in file system block size */
4420 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4421 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4422 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4423 }
4424 return 0;
4425}
4426
4427static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4428{
4429 struct ext4_inode_info *ei = EXT4_I(inode);
4430 uid_t i_uid;
4431 gid_t i_gid;
4432 projid_t i_projid;
4433 int block;
4434 int err;
4435
4436 err = ext4_inode_blocks_set(raw_inode, ei);
4437
4438 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4439 i_uid = i_uid_read(inode);
4440 i_gid = i_gid_read(inode);
4441 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4442 if (!(test_opt(inode->i_sb, NO_UID32))) {
4443 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4444 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4445 /*
4446 * Fix up interoperability with old kernels. Otherwise,
4447 * old inodes get re-used with the upper 16 bits of the
4448 * uid/gid intact.
4449 */
4450 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4451 raw_inode->i_uid_high = 0;
4452 raw_inode->i_gid_high = 0;
4453 } else {
4454 raw_inode->i_uid_high =
4455 cpu_to_le16(high_16_bits(i_uid));
4456 raw_inode->i_gid_high =
4457 cpu_to_le16(high_16_bits(i_gid));
4458 }
4459 } else {
4460 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4461 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4462 raw_inode->i_uid_high = 0;
4463 raw_inode->i_gid_high = 0;
4464 }
4465 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4466
4467 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4468 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4469 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4470 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4471
4472 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4473 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4474 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4475 raw_inode->i_file_acl_high =
4476 cpu_to_le16(ei->i_file_acl >> 32);
4477 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4478 ext4_isize_set(raw_inode, ei->i_disksize);
4479
4480 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4481 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4482 if (old_valid_dev(inode->i_rdev)) {
4483 raw_inode->i_block[0] =
4484 cpu_to_le32(old_encode_dev(inode->i_rdev));
4485 raw_inode->i_block[1] = 0;
4486 } else {
4487 raw_inode->i_block[0] = 0;
4488 raw_inode->i_block[1] =
4489 cpu_to_le32(new_encode_dev(inode->i_rdev));
4490 raw_inode->i_block[2] = 0;
4491 }
4492 } else if (!ext4_has_inline_data(inode)) {
4493 for (block = 0; block < EXT4_N_BLOCKS; block++)
4494 raw_inode->i_block[block] = ei->i_data[block];
4495 }
4496
4497 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4498 u64 ivers = ext4_inode_peek_iversion(inode);
4499
4500 raw_inode->i_disk_version = cpu_to_le32(ivers);
4501 if (ei->i_extra_isize) {
4502 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4503 raw_inode->i_version_hi =
4504 cpu_to_le32(ivers >> 32);
4505 raw_inode->i_extra_isize =
4506 cpu_to_le16(ei->i_extra_isize);
4507 }
4508 }
4509
4510 if (i_projid != EXT4_DEF_PROJID &&
4511 !ext4_has_feature_project(inode->i_sb))
4512 err = err ?: -EFSCORRUPTED;
4513
4514 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4515 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4516 raw_inode->i_projid = cpu_to_le32(i_projid);
4517
4518 ext4_inode_csum_set(inode, raw_inode, ei);
4519 return err;
4520}
4521
4522/*
4523 * ext4_get_inode_loc returns with an extra refcount against the inode's
4524 * underlying buffer_head on success. If we pass 'inode' and it does not
4525 * have in-inode xattr, we have all inode data in memory that is needed
4526 * to recreate the on-disk version of this inode.
4527 */
4528static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4529 struct inode *inode, struct ext4_iloc *iloc,
4530 ext4_fsblk_t *ret_block)
4531{
4532 struct ext4_group_desc *gdp;
4533 struct buffer_head *bh;
4534 ext4_fsblk_t block;
4535 struct blk_plug plug;
4536 int inodes_per_block, inode_offset;
4537
4538 iloc->bh = NULL;
4539 if (ino < EXT4_ROOT_INO ||
4540 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4541 return -EFSCORRUPTED;
4542
4543 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4544 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4545 if (!gdp)
4546 return -EIO;
4547
4548 /*
4549 * Figure out the offset within the block group inode table
4550 */
4551 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4552 inode_offset = ((ino - 1) %
4553 EXT4_INODES_PER_GROUP(sb));
4554 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4555
4556 block = ext4_inode_table(sb, gdp);
4557 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4558 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4559 ext4_error(sb, "Invalid inode table block %llu in "
4560 "block_group %u", block, iloc->block_group);
4561 return -EFSCORRUPTED;
4562 }
4563 block += (inode_offset / inodes_per_block);
4564
4565 bh = sb_getblk(sb, block);
4566 if (unlikely(!bh))
4567 return -ENOMEM;
4568 if (ext4_buffer_uptodate(bh))
4569 goto has_buffer;
4570
4571 lock_buffer(bh);
4572 if (ext4_buffer_uptodate(bh)) {
4573 /* Someone brought it uptodate while we waited */
4574 unlock_buffer(bh);
4575 goto has_buffer;
4576 }
4577
4578 /*
4579 * If we have all information of the inode in memory and this
4580 * is the only valid inode in the block, we need not read the
4581 * block.
4582 */
4583 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4584 struct buffer_head *bitmap_bh;
4585 int i, start;
4586
4587 start = inode_offset & ~(inodes_per_block - 1);
4588
4589 /* Is the inode bitmap in cache? */
4590 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4591 if (unlikely(!bitmap_bh))
4592 goto make_io;
4593
4594 /*
4595 * If the inode bitmap isn't in cache then the
4596 * optimisation may end up performing two reads instead
4597 * of one, so skip it.
4598 */
4599 if (!buffer_uptodate(bitmap_bh)) {
4600 brelse(bitmap_bh);
4601 goto make_io;
4602 }
4603 for (i = start; i < start + inodes_per_block; i++) {
4604 if (i == inode_offset)
4605 continue;
4606 if (ext4_test_bit(i, bitmap_bh->b_data))
4607 break;
4608 }
4609 brelse(bitmap_bh);
4610 if (i == start + inodes_per_block) {
4611 struct ext4_inode *raw_inode =
4612 (struct ext4_inode *) (bh->b_data + iloc->offset);
4613
4614 /* all other inodes are free, so skip I/O */
4615 memset(bh->b_data, 0, bh->b_size);
4616 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4617 ext4_fill_raw_inode(inode, raw_inode);
4618 set_buffer_uptodate(bh);
4619 unlock_buffer(bh);
4620 goto has_buffer;
4621 }
4622 }
4623
4624make_io:
4625 /*
4626 * If we need to do any I/O, try to pre-readahead extra
4627 * blocks from the inode table.
4628 */
4629 blk_start_plug(&plug);
4630 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4631 ext4_fsblk_t b, end, table;
4632 unsigned num;
4633 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4634
4635 table = ext4_inode_table(sb, gdp);
4636 /* s_inode_readahead_blks is always a power of 2 */
4637 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4638 if (table > b)
4639 b = table;
4640 end = b + ra_blks;
4641 num = EXT4_INODES_PER_GROUP(sb);
4642 if (ext4_has_group_desc_csum(sb))
4643 num -= ext4_itable_unused_count(sb, gdp);
4644 table += num / inodes_per_block;
4645 if (end > table)
4646 end = table;
4647 while (b <= end)
4648 ext4_sb_breadahead_unmovable(sb, b++);
4649 }
4650
4651 /*
4652 * There are other valid inodes in the buffer, this inode
4653 * has in-inode xattrs, or we don't have this inode in memory.
4654 * Read the block from disk.
4655 */
4656 trace_ext4_load_inode(sb, ino);
4657 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4658 blk_finish_plug(&plug);
4659 wait_on_buffer(bh);
4660 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4661 if (!buffer_uptodate(bh)) {
4662 if (ret_block)
4663 *ret_block = block;
4664 brelse(bh);
4665 return -EIO;
4666 }
4667has_buffer:
4668 iloc->bh = bh;
4669 return 0;
4670}
4671
4672static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4673 struct ext4_iloc *iloc)
4674{
4675 ext4_fsblk_t err_blk = 0;
4676 int ret;
4677
4678 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4679 &err_blk);
4680
4681 if (ret == -EIO)
4682 ext4_error_inode_block(inode, err_blk, EIO,
4683 "unable to read itable block");
4684
4685 return ret;
4686}
4687
4688int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689{
4690 ext4_fsblk_t err_blk = 0;
4691 int ret;
4692
4693 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4694 &err_blk);
4695
4696 if (ret == -EIO)
4697 ext4_error_inode_block(inode, err_blk, EIO,
4698 "unable to read itable block");
4699
4700 return ret;
4701}
4702
4703
4704int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4705 struct ext4_iloc *iloc)
4706{
4707 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4708}
4709
4710static bool ext4_should_enable_dax(struct inode *inode)
4711{
4712 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713
4714 if (test_opt2(inode->i_sb, DAX_NEVER))
4715 return false;
4716 if (!S_ISREG(inode->i_mode))
4717 return false;
4718 if (ext4_should_journal_data(inode))
4719 return false;
4720 if (ext4_has_inline_data(inode))
4721 return false;
4722 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4723 return false;
4724 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4725 return false;
4726 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4727 return false;
4728 if (test_opt(inode->i_sb, DAX_ALWAYS))
4729 return true;
4730
4731 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4732}
4733
4734void ext4_set_inode_flags(struct inode *inode, bool init)
4735{
4736 unsigned int flags = EXT4_I(inode)->i_flags;
4737 unsigned int new_fl = 0;
4738
4739 WARN_ON_ONCE(IS_DAX(inode) && init);
4740
4741 if (flags & EXT4_SYNC_FL)
4742 new_fl |= S_SYNC;
4743 if (flags & EXT4_APPEND_FL)
4744 new_fl |= S_APPEND;
4745 if (flags & EXT4_IMMUTABLE_FL)
4746 new_fl |= S_IMMUTABLE;
4747 if (flags & EXT4_NOATIME_FL)
4748 new_fl |= S_NOATIME;
4749 if (flags & EXT4_DIRSYNC_FL)
4750 new_fl |= S_DIRSYNC;
4751
4752 /* Because of the way inode_set_flags() works we must preserve S_DAX
4753 * here if already set. */
4754 new_fl |= (inode->i_flags & S_DAX);
4755 if (init && ext4_should_enable_dax(inode))
4756 new_fl |= S_DAX;
4757
4758 if (flags & EXT4_ENCRYPT_FL)
4759 new_fl |= S_ENCRYPTED;
4760 if (flags & EXT4_CASEFOLD_FL)
4761 new_fl |= S_CASEFOLD;
4762 if (flags & EXT4_VERITY_FL)
4763 new_fl |= S_VERITY;
4764 inode_set_flags(inode, new_fl,
4765 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4766 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4767}
4768
4769static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4770 struct ext4_inode_info *ei)
4771{
4772 blkcnt_t i_blocks ;
4773 struct inode *inode = &(ei->vfs_inode);
4774 struct super_block *sb = inode->i_sb;
4775
4776 if (ext4_has_feature_huge_file(sb)) {
4777 /* we are using combined 48 bit field */
4778 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4779 le32_to_cpu(raw_inode->i_blocks_lo);
4780 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4781 /* i_blocks represent file system block size */
4782 return i_blocks << (inode->i_blkbits - 9);
4783 } else {
4784 return i_blocks;
4785 }
4786 } else {
4787 return le32_to_cpu(raw_inode->i_blocks_lo);
4788 }
4789}
4790
4791static inline int ext4_iget_extra_inode(struct inode *inode,
4792 struct ext4_inode *raw_inode,
4793 struct ext4_inode_info *ei)
4794{
4795 __le32 *magic = (void *)raw_inode +
4796 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4797
4798 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4799 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4800 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4801 return ext4_find_inline_data_nolock(inode);
4802 } else
4803 EXT4_I(inode)->i_inline_off = 0;
4804 return 0;
4805}
4806
4807int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4808{
4809 if (!ext4_has_feature_project(inode->i_sb))
4810 return -EOPNOTSUPP;
4811 *projid = EXT4_I(inode)->i_projid;
4812 return 0;
4813}
4814
4815/*
4816 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4817 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4818 * set.
4819 */
4820static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4821{
4822 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4823 inode_set_iversion_raw(inode, val);
4824 else
4825 inode_set_iversion_queried(inode, val);
4826}
4827
4828struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4829 ext4_iget_flags flags, const char *function,
4830 unsigned int line)
4831{
4832 struct ext4_iloc iloc;
4833 struct ext4_inode *raw_inode;
4834 struct ext4_inode_info *ei;
4835 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4836 struct inode *inode;
4837 journal_t *journal = EXT4_SB(sb)->s_journal;
4838 long ret;
4839 loff_t size;
4840 int block;
4841 uid_t i_uid;
4842 gid_t i_gid;
4843 projid_t i_projid;
4844
4845 if ((!(flags & EXT4_IGET_SPECIAL) &&
4846 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4847 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4848 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4849 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4850 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4851 (ino < EXT4_ROOT_INO) ||
4852 (ino > le32_to_cpu(es->s_inodes_count))) {
4853 if (flags & EXT4_IGET_HANDLE)
4854 return ERR_PTR(-ESTALE);
4855 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4856 "inode #%lu: comm %s: iget: illegal inode #",
4857 ino, current->comm);
4858 return ERR_PTR(-EFSCORRUPTED);
4859 }
4860
4861 inode = iget_locked(sb, ino);
4862 if (!inode)
4863 return ERR_PTR(-ENOMEM);
4864 if (!(inode->i_state & I_NEW))
4865 return inode;
4866
4867 ei = EXT4_I(inode);
4868 iloc.bh = NULL;
4869
4870 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4871 if (ret < 0)
4872 goto bad_inode;
4873 raw_inode = ext4_raw_inode(&iloc);
4874
4875 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4876 ext4_error_inode(inode, function, line, 0,
4877 "iget: root inode unallocated");
4878 ret = -EFSCORRUPTED;
4879 goto bad_inode;
4880 }
4881
4882 if ((flags & EXT4_IGET_HANDLE) &&
4883 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4884 ret = -ESTALE;
4885 goto bad_inode;
4886 }
4887
4888 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4889 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4890 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4891 EXT4_INODE_SIZE(inode->i_sb) ||
4892 (ei->i_extra_isize & 3)) {
4893 ext4_error_inode(inode, function, line, 0,
4894 "iget: bad extra_isize %u "
4895 "(inode size %u)",
4896 ei->i_extra_isize,
4897 EXT4_INODE_SIZE(inode->i_sb));
4898 ret = -EFSCORRUPTED;
4899 goto bad_inode;
4900 }
4901 } else
4902 ei->i_extra_isize = 0;
4903
4904 /* Precompute checksum seed for inode metadata */
4905 if (ext4_has_metadata_csum(sb)) {
4906 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4907 __u32 csum;
4908 __le32 inum = cpu_to_le32(inode->i_ino);
4909 __le32 gen = raw_inode->i_generation;
4910 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4911 sizeof(inum));
4912 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4913 sizeof(gen));
4914 }
4915
4916 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4917 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4918 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4919 ext4_error_inode_err(inode, function, line, 0,
4920 EFSBADCRC, "iget: checksum invalid");
4921 ret = -EFSBADCRC;
4922 goto bad_inode;
4923 }
4924
4925 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4926 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4927 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4928 if (ext4_has_feature_project(sb) &&
4929 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4930 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4931 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4932 else
4933 i_projid = EXT4_DEF_PROJID;
4934
4935 if (!(test_opt(inode->i_sb, NO_UID32))) {
4936 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4937 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4938 }
4939 i_uid_write(inode, i_uid);
4940 i_gid_write(inode, i_gid);
4941 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4942 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4943
4944 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4945 ei->i_inline_off = 0;
4946 ei->i_dir_start_lookup = 0;
4947 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4948 /* We now have enough fields to check if the inode was active or not.
4949 * This is needed because nfsd might try to access dead inodes
4950 * the test is that same one that e2fsck uses
4951 * NeilBrown 1999oct15
4952 */
4953 if (inode->i_nlink == 0) {
4954 if ((inode->i_mode == 0 ||
4955 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4956 ino != EXT4_BOOT_LOADER_INO) {
4957 /* this inode is deleted */
4958 ret = -ESTALE;
4959 goto bad_inode;
4960 }
4961 /* The only unlinked inodes we let through here have
4962 * valid i_mode and are being read by the orphan
4963 * recovery code: that's fine, we're about to complete
4964 * the process of deleting those.
4965 * OR it is the EXT4_BOOT_LOADER_INO which is
4966 * not initialized on a new filesystem. */
4967 }
4968 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4969 ext4_set_inode_flags(inode, true);
4970 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4971 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4972 if (ext4_has_feature_64bit(sb))
4973 ei->i_file_acl |=
4974 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4975 inode->i_size = ext4_isize(sb, raw_inode);
4976 if ((size = i_size_read(inode)) < 0) {
4977 ext4_error_inode(inode, function, line, 0,
4978 "iget: bad i_size value: %lld", size);
4979 ret = -EFSCORRUPTED;
4980 goto bad_inode;
4981 }
4982 /*
4983 * If dir_index is not enabled but there's dir with INDEX flag set,
4984 * we'd normally treat htree data as empty space. But with metadata
4985 * checksumming that corrupts checksums so forbid that.
4986 */
4987 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4988 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4989 ext4_error_inode(inode, function, line, 0,
4990 "iget: Dir with htree data on filesystem without dir_index feature.");
4991 ret = -EFSCORRUPTED;
4992 goto bad_inode;
4993 }
4994 ei->i_disksize = inode->i_size;
4995#ifdef CONFIG_QUOTA
4996 ei->i_reserved_quota = 0;
4997#endif
4998 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4999 ei->i_block_group = iloc.block_group;
5000 ei->i_last_alloc_group = ~0;
5001 /*
5002 * NOTE! The in-memory inode i_data array is in little-endian order
5003 * even on big-endian machines: we do NOT byteswap the block numbers!
5004 */
5005 for (block = 0; block < EXT4_N_BLOCKS; block++)
5006 ei->i_data[block] = raw_inode->i_block[block];
5007 INIT_LIST_HEAD(&ei->i_orphan);
5008 ext4_fc_init_inode(&ei->vfs_inode);
5009
5010 /*
5011 * Set transaction id's of transactions that have to be committed
5012 * to finish f[data]sync. We set them to currently running transaction
5013 * as we cannot be sure that the inode or some of its metadata isn't
5014 * part of the transaction - the inode could have been reclaimed and
5015 * now it is reread from disk.
5016 */
5017 if (journal) {
5018 transaction_t *transaction;
5019 tid_t tid;
5020
5021 read_lock(&journal->j_state_lock);
5022 if (journal->j_running_transaction)
5023 transaction = journal->j_running_transaction;
5024 else
5025 transaction = journal->j_committing_transaction;
5026 if (transaction)
5027 tid = transaction->t_tid;
5028 else
5029 tid = journal->j_commit_sequence;
5030 read_unlock(&journal->j_state_lock);
5031 ei->i_sync_tid = tid;
5032 ei->i_datasync_tid = tid;
5033 }
5034
5035 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5036 if (ei->i_extra_isize == 0) {
5037 /* The extra space is currently unused. Use it. */
5038 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5039 ei->i_extra_isize = sizeof(struct ext4_inode) -
5040 EXT4_GOOD_OLD_INODE_SIZE;
5041 } else {
5042 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5043 if (ret)
5044 goto bad_inode;
5045 }
5046 }
5047
5048 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5049 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5050 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5051 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5052
5053 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5054 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5055
5056 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5057 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5058 ivers |=
5059 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5060 }
5061 ext4_inode_set_iversion_queried(inode, ivers);
5062 }
5063
5064 ret = 0;
5065 if (ei->i_file_acl &&
5066 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5067 ext4_error_inode(inode, function, line, 0,
5068 "iget: bad extended attribute block %llu",
5069 ei->i_file_acl);
5070 ret = -EFSCORRUPTED;
5071 goto bad_inode;
5072 } else if (!ext4_has_inline_data(inode)) {
5073 /* validate the block references in the inode */
5074 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5075 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5076 (S_ISLNK(inode->i_mode) &&
5077 !ext4_inode_is_fast_symlink(inode)))) {
5078 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5079 ret = ext4_ext_check_inode(inode);
5080 else
5081 ret = ext4_ind_check_inode(inode);
5082 }
5083 }
5084 if (ret)
5085 goto bad_inode;
5086
5087 if (S_ISREG(inode->i_mode)) {
5088 inode->i_op = &ext4_file_inode_operations;
5089 inode->i_fop = &ext4_file_operations;
5090 ext4_set_aops(inode);
5091 } else if (S_ISDIR(inode->i_mode)) {
5092 inode->i_op = &ext4_dir_inode_operations;
5093 inode->i_fop = &ext4_dir_operations;
5094 } else if (S_ISLNK(inode->i_mode)) {
5095 /* VFS does not allow setting these so must be corruption */
5096 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5097 ext4_error_inode(inode, function, line, 0,
5098 "iget: immutable or append flags "
5099 "not allowed on symlinks");
5100 ret = -EFSCORRUPTED;
5101 goto bad_inode;
5102 }
5103 if (IS_ENCRYPTED(inode)) {
5104 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5105 } else if (ext4_inode_is_fast_symlink(inode)) {
5106 inode->i_link = (char *)ei->i_data;
5107 inode->i_op = &ext4_fast_symlink_inode_operations;
5108 nd_terminate_link(ei->i_data, inode->i_size,
5109 sizeof(ei->i_data) - 1);
5110 } else {
5111 inode->i_op = &ext4_symlink_inode_operations;
5112 }
5113 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5114 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5115 inode->i_op = &ext4_special_inode_operations;
5116 if (raw_inode->i_block[0])
5117 init_special_inode(inode, inode->i_mode,
5118 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5119 else
5120 init_special_inode(inode, inode->i_mode,
5121 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5122 } else if (ino == EXT4_BOOT_LOADER_INO) {
5123 make_bad_inode(inode);
5124 } else {
5125 ret = -EFSCORRUPTED;
5126 ext4_error_inode(inode, function, line, 0,
5127 "iget: bogus i_mode (%o)", inode->i_mode);
5128 goto bad_inode;
5129 }
5130 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5131 ext4_error_inode(inode, function, line, 0,
5132 "casefold flag without casefold feature");
5133 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5134 ext4_error_inode(inode, function, line, 0,
5135 "bad inode without EXT4_IGET_BAD flag");
5136 ret = -EUCLEAN;
5137 goto bad_inode;
5138 }
5139
5140 brelse(iloc.bh);
5141 unlock_new_inode(inode);
5142 return inode;
5143
5144bad_inode:
5145 brelse(iloc.bh);
5146 iget_failed(inode);
5147 return ERR_PTR(ret);
5148}
5149
5150static void __ext4_update_other_inode_time(struct super_block *sb,
5151 unsigned long orig_ino,
5152 unsigned long ino,
5153 struct ext4_inode *raw_inode)
5154{
5155 struct inode *inode;
5156
5157 inode = find_inode_by_ino_rcu(sb, ino);
5158 if (!inode)
5159 return;
5160
5161 if (!inode_is_dirtytime_only(inode))
5162 return;
5163
5164 spin_lock(&inode->i_lock);
5165 if (inode_is_dirtytime_only(inode)) {
5166 struct ext4_inode_info *ei = EXT4_I(inode);
5167
5168 inode->i_state &= ~I_DIRTY_TIME;
5169 spin_unlock(&inode->i_lock);
5170
5171 spin_lock(&ei->i_raw_lock);
5172 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5173 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5174 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5175 ext4_inode_csum_set(inode, raw_inode, ei);
5176 spin_unlock(&ei->i_raw_lock);
5177 trace_ext4_other_inode_update_time(inode, orig_ino);
5178 return;
5179 }
5180 spin_unlock(&inode->i_lock);
5181}
5182
5183/*
5184 * Opportunistically update the other time fields for other inodes in
5185 * the same inode table block.
5186 */
5187static void ext4_update_other_inodes_time(struct super_block *sb,
5188 unsigned long orig_ino, char *buf)
5189{
5190 unsigned long ino;
5191 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5192 int inode_size = EXT4_INODE_SIZE(sb);
5193
5194 /*
5195 * Calculate the first inode in the inode table block. Inode
5196 * numbers are one-based. That is, the first inode in a block
5197 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5198 */
5199 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5200 rcu_read_lock();
5201 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5202 if (ino == orig_ino)
5203 continue;
5204 __ext4_update_other_inode_time(sb, orig_ino, ino,
5205 (struct ext4_inode *)buf);
5206 }
5207 rcu_read_unlock();
5208}
5209
5210/*
5211 * Post the struct inode info into an on-disk inode location in the
5212 * buffer-cache. This gobbles the caller's reference to the
5213 * buffer_head in the inode location struct.
5214 *
5215 * The caller must have write access to iloc->bh.
5216 */
5217static int ext4_do_update_inode(handle_t *handle,
5218 struct inode *inode,
5219 struct ext4_iloc *iloc)
5220{
5221 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5222 struct ext4_inode_info *ei = EXT4_I(inode);
5223 struct buffer_head *bh = iloc->bh;
5224 struct super_block *sb = inode->i_sb;
5225 int err;
5226 int need_datasync = 0, set_large_file = 0;
5227
5228 spin_lock(&ei->i_raw_lock);
5229
5230 /*
5231 * For fields not tracked in the in-memory inode, initialise them
5232 * to zero for new inodes.
5233 */
5234 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5235 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5236
5237 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5238 need_datasync = 1;
5239 if (ei->i_disksize > 0x7fffffffULL) {
5240 if (!ext4_has_feature_large_file(sb) ||
5241 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5242 set_large_file = 1;
5243 }
5244
5245 err = ext4_fill_raw_inode(inode, raw_inode);
5246 spin_unlock(&ei->i_raw_lock);
5247 if (err) {
5248 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5249 goto out_brelse;
5250 }
5251
5252 if (inode->i_sb->s_flags & SB_LAZYTIME)
5253 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5254 bh->b_data);
5255
5256 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5257 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5258 if (err)
5259 goto out_error;
5260 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5261 if (set_large_file) {
5262 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5263 err = ext4_journal_get_write_access(handle, sb,
5264 EXT4_SB(sb)->s_sbh,
5265 EXT4_JTR_NONE);
5266 if (err)
5267 goto out_error;
5268 lock_buffer(EXT4_SB(sb)->s_sbh);
5269 ext4_set_feature_large_file(sb);
5270 ext4_superblock_csum_set(sb);
5271 unlock_buffer(EXT4_SB(sb)->s_sbh);
5272 ext4_handle_sync(handle);
5273 err = ext4_handle_dirty_metadata(handle, NULL,
5274 EXT4_SB(sb)->s_sbh);
5275 }
5276 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5277out_error:
5278 ext4_std_error(inode->i_sb, err);
5279out_brelse:
5280 brelse(bh);
5281 return err;
5282}
5283
5284/*
5285 * ext4_write_inode()
5286 *
5287 * We are called from a few places:
5288 *
5289 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5290 * Here, there will be no transaction running. We wait for any running
5291 * transaction to commit.
5292 *
5293 * - Within flush work (sys_sync(), kupdate and such).
5294 * We wait on commit, if told to.
5295 *
5296 * - Within iput_final() -> write_inode_now()
5297 * We wait on commit, if told to.
5298 *
5299 * In all cases it is actually safe for us to return without doing anything,
5300 * because the inode has been copied into a raw inode buffer in
5301 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5302 * writeback.
5303 *
5304 * Note that we are absolutely dependent upon all inode dirtiers doing the
5305 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5306 * which we are interested.
5307 *
5308 * It would be a bug for them to not do this. The code:
5309 *
5310 * mark_inode_dirty(inode)
5311 * stuff();
5312 * inode->i_size = expr;
5313 *
5314 * is in error because write_inode() could occur while `stuff()' is running,
5315 * and the new i_size will be lost. Plus the inode will no longer be on the
5316 * superblock's dirty inode list.
5317 */
5318int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5319{
5320 int err;
5321
5322 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5323 sb_rdonly(inode->i_sb))
5324 return 0;
5325
5326 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5327 return -EIO;
5328
5329 if (EXT4_SB(inode->i_sb)->s_journal) {
5330 if (ext4_journal_current_handle()) {
5331 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5332 dump_stack();
5333 return -EIO;
5334 }
5335
5336 /*
5337 * No need to force transaction in WB_SYNC_NONE mode. Also
5338 * ext4_sync_fs() will force the commit after everything is
5339 * written.
5340 */
5341 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5342 return 0;
5343
5344 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5345 EXT4_I(inode)->i_sync_tid);
5346 } else {
5347 struct ext4_iloc iloc;
5348
5349 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5350 if (err)
5351 return err;
5352 /*
5353 * sync(2) will flush the whole buffer cache. No need to do
5354 * it here separately for each inode.
5355 */
5356 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5357 sync_dirty_buffer(iloc.bh);
5358 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5359 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5360 "IO error syncing inode");
5361 err = -EIO;
5362 }
5363 brelse(iloc.bh);
5364 }
5365 return err;
5366}
5367
5368/*
5369 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5370 * buffers that are attached to a folio straddling i_size and are undergoing
5371 * commit. In that case we have to wait for commit to finish and try again.
5372 */
5373static void ext4_wait_for_tail_page_commit(struct inode *inode)
5374{
5375 unsigned offset;
5376 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5377 tid_t commit_tid = 0;
5378 int ret;
5379
5380 offset = inode->i_size & (PAGE_SIZE - 1);
5381 /*
5382 * If the folio is fully truncated, we don't need to wait for any commit
5383 * (and we even should not as __ext4_journalled_invalidate_folio() may
5384 * strip all buffers from the folio but keep the folio dirty which can then
5385 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5386 * buffers). Also we don't need to wait for any commit if all buffers in
5387 * the folio remain valid. This is most beneficial for the common case of
5388 * blocksize == PAGESIZE.
5389 */
5390 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5391 return;
5392 while (1) {
5393 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5394 inode->i_size >> PAGE_SHIFT);
5395 if (!folio)
5396 return;
5397 ret = __ext4_journalled_invalidate_folio(folio, offset,
5398 folio_size(folio) - offset);
5399 folio_unlock(folio);
5400 folio_put(folio);
5401 if (ret != -EBUSY)
5402 return;
5403 commit_tid = 0;
5404 read_lock(&journal->j_state_lock);
5405 if (journal->j_committing_transaction)
5406 commit_tid = journal->j_committing_transaction->t_tid;
5407 read_unlock(&journal->j_state_lock);
5408 if (commit_tid)
5409 jbd2_log_wait_commit(journal, commit_tid);
5410 }
5411}
5412
5413/*
5414 * ext4_setattr()
5415 *
5416 * Called from notify_change.
5417 *
5418 * We want to trap VFS attempts to truncate the file as soon as
5419 * possible. In particular, we want to make sure that when the VFS
5420 * shrinks i_size, we put the inode on the orphan list and modify
5421 * i_disksize immediately, so that during the subsequent flushing of
5422 * dirty pages and freeing of disk blocks, we can guarantee that any
5423 * commit will leave the blocks being flushed in an unused state on
5424 * disk. (On recovery, the inode will get truncated and the blocks will
5425 * be freed, so we have a strong guarantee that no future commit will
5426 * leave these blocks visible to the user.)
5427 *
5428 * Another thing we have to assure is that if we are in ordered mode
5429 * and inode is still attached to the committing transaction, we must
5430 * we start writeout of all the dirty pages which are being truncated.
5431 * This way we are sure that all the data written in the previous
5432 * transaction are already on disk (truncate waits for pages under
5433 * writeback).
5434 *
5435 * Called with inode->i_rwsem down.
5436 */
5437int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5438 struct iattr *attr)
5439{
5440 struct inode *inode = d_inode(dentry);
5441 int error, rc = 0;
5442 int orphan = 0;
5443 const unsigned int ia_valid = attr->ia_valid;
5444 bool inc_ivers = true;
5445
5446 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5447 return -EIO;
5448
5449 if (unlikely(IS_IMMUTABLE(inode)))
5450 return -EPERM;
5451
5452 if (unlikely(IS_APPEND(inode) &&
5453 (ia_valid & (ATTR_MODE | ATTR_UID |
5454 ATTR_GID | ATTR_TIMES_SET))))
5455 return -EPERM;
5456
5457 error = setattr_prepare(mnt_userns, dentry, attr);
5458 if (error)
5459 return error;
5460
5461 error = fscrypt_prepare_setattr(dentry, attr);
5462 if (error)
5463 return error;
5464
5465 error = fsverity_prepare_setattr(dentry, attr);
5466 if (error)
5467 return error;
5468
5469 if (is_quota_modification(mnt_userns, inode, attr)) {
5470 error = dquot_initialize(inode);
5471 if (error)
5472 return error;
5473 }
5474
5475 if (i_uid_needs_update(mnt_userns, attr, inode) ||
5476 i_gid_needs_update(mnt_userns, attr, inode)) {
5477 handle_t *handle;
5478
5479 /* (user+group)*(old+new) structure, inode write (sb,
5480 * inode block, ? - but truncate inode update has it) */
5481 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5482 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5483 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5484 if (IS_ERR(handle)) {
5485 error = PTR_ERR(handle);
5486 goto err_out;
5487 }
5488
5489 /* dquot_transfer() calls back ext4_get_inode_usage() which
5490 * counts xattr inode references.
5491 */
5492 down_read(&EXT4_I(inode)->xattr_sem);
5493 error = dquot_transfer(mnt_userns, inode, attr);
5494 up_read(&EXT4_I(inode)->xattr_sem);
5495
5496 if (error) {
5497 ext4_journal_stop(handle);
5498 return error;
5499 }
5500 /* Update corresponding info in inode so that everything is in
5501 * one transaction */
5502 i_uid_update(mnt_userns, attr, inode);
5503 i_gid_update(mnt_userns, attr, inode);
5504 error = ext4_mark_inode_dirty(handle, inode);
5505 ext4_journal_stop(handle);
5506 if (unlikely(error)) {
5507 return error;
5508 }
5509 }
5510
5511 if (attr->ia_valid & ATTR_SIZE) {
5512 handle_t *handle;
5513 loff_t oldsize = inode->i_size;
5514 loff_t old_disksize;
5515 int shrink = (attr->ia_size < inode->i_size);
5516
5517 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5519
5520 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5521 return -EFBIG;
5522 }
5523 }
5524 if (!S_ISREG(inode->i_mode)) {
5525 return -EINVAL;
5526 }
5527
5528 if (attr->ia_size == inode->i_size)
5529 inc_ivers = false;
5530
5531 if (shrink) {
5532 if (ext4_should_order_data(inode)) {
5533 error = ext4_begin_ordered_truncate(inode,
5534 attr->ia_size);
5535 if (error)
5536 goto err_out;
5537 }
5538 /*
5539 * Blocks are going to be removed from the inode. Wait
5540 * for dio in flight.
5541 */
5542 inode_dio_wait(inode);
5543 }
5544
5545 filemap_invalidate_lock(inode->i_mapping);
5546
5547 rc = ext4_break_layouts(inode);
5548 if (rc) {
5549 filemap_invalidate_unlock(inode->i_mapping);
5550 goto err_out;
5551 }
5552
5553 if (attr->ia_size != inode->i_size) {
5554 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5555 if (IS_ERR(handle)) {
5556 error = PTR_ERR(handle);
5557 goto out_mmap_sem;
5558 }
5559 if (ext4_handle_valid(handle) && shrink) {
5560 error = ext4_orphan_add(handle, inode);
5561 orphan = 1;
5562 }
5563 /*
5564 * Update c/mtime on truncate up, ext4_truncate() will
5565 * update c/mtime in shrink case below
5566 */
5567 if (!shrink) {
5568 inode->i_mtime = current_time(inode);
5569 inode->i_ctime = inode->i_mtime;
5570 }
5571
5572 if (shrink)
5573 ext4_fc_track_range(handle, inode,
5574 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5575 inode->i_sb->s_blocksize_bits,
5576 EXT_MAX_BLOCKS - 1);
5577 else
5578 ext4_fc_track_range(
5579 handle, inode,
5580 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5581 inode->i_sb->s_blocksize_bits,
5582 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5583 inode->i_sb->s_blocksize_bits);
5584
5585 down_write(&EXT4_I(inode)->i_data_sem);
5586 old_disksize = EXT4_I(inode)->i_disksize;
5587 EXT4_I(inode)->i_disksize = attr->ia_size;
5588 rc = ext4_mark_inode_dirty(handle, inode);
5589 if (!error)
5590 error = rc;
5591 /*
5592 * We have to update i_size under i_data_sem together
5593 * with i_disksize to avoid races with writeback code
5594 * running ext4_wb_update_i_disksize().
5595 */
5596 if (!error)
5597 i_size_write(inode, attr->ia_size);
5598 else
5599 EXT4_I(inode)->i_disksize = old_disksize;
5600 up_write(&EXT4_I(inode)->i_data_sem);
5601 ext4_journal_stop(handle);
5602 if (error)
5603 goto out_mmap_sem;
5604 if (!shrink) {
5605 pagecache_isize_extended(inode, oldsize,
5606 inode->i_size);
5607 } else if (ext4_should_journal_data(inode)) {
5608 ext4_wait_for_tail_page_commit(inode);
5609 }
5610 }
5611
5612 /*
5613 * Truncate pagecache after we've waited for commit
5614 * in data=journal mode to make pages freeable.
5615 */
5616 truncate_pagecache(inode, inode->i_size);
5617 /*
5618 * Call ext4_truncate() even if i_size didn't change to
5619 * truncate possible preallocated blocks.
5620 */
5621 if (attr->ia_size <= oldsize) {
5622 rc = ext4_truncate(inode);
5623 if (rc)
5624 error = rc;
5625 }
5626out_mmap_sem:
5627 filemap_invalidate_unlock(inode->i_mapping);
5628 }
5629
5630 if (!error) {
5631 if (inc_ivers)
5632 inode_inc_iversion(inode);
5633 setattr_copy(mnt_userns, inode, attr);
5634 mark_inode_dirty(inode);
5635 }
5636
5637 /*
5638 * If the call to ext4_truncate failed to get a transaction handle at
5639 * all, we need to clean up the in-core orphan list manually.
5640 */
5641 if (orphan && inode->i_nlink)
5642 ext4_orphan_del(NULL, inode);
5643
5644 if (!error && (ia_valid & ATTR_MODE))
5645 rc = posix_acl_chmod(mnt_userns, dentry, inode->i_mode);
5646
5647err_out:
5648 if (error)
5649 ext4_std_error(inode->i_sb, error);
5650 if (!error)
5651 error = rc;
5652 return error;
5653}
5654
5655u32 ext4_dio_alignment(struct inode *inode)
5656{
5657 if (fsverity_active(inode))
5658 return 0;
5659 if (ext4_should_journal_data(inode))
5660 return 0;
5661 if (ext4_has_inline_data(inode))
5662 return 0;
5663 if (IS_ENCRYPTED(inode)) {
5664 if (!fscrypt_dio_supported(inode))
5665 return 0;
5666 return i_blocksize(inode);
5667 }
5668 return 1; /* use the iomap defaults */
5669}
5670
5671int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5672 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5673{
5674 struct inode *inode = d_inode(path->dentry);
5675 struct ext4_inode *raw_inode;
5676 struct ext4_inode_info *ei = EXT4_I(inode);
5677 unsigned int flags;
5678
5679 if ((request_mask & STATX_BTIME) &&
5680 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5681 stat->result_mask |= STATX_BTIME;
5682 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5683 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5684 }
5685
5686 /*
5687 * Return the DIO alignment restrictions if requested. We only return
5688 * this information when requested, since on encrypted files it might
5689 * take a fair bit of work to get if the file wasn't opened recently.
5690 */
5691 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5692 u32 dio_align = ext4_dio_alignment(inode);
5693
5694 stat->result_mask |= STATX_DIOALIGN;
5695 if (dio_align == 1) {
5696 struct block_device *bdev = inode->i_sb->s_bdev;
5697
5698 /* iomap defaults */
5699 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5700 stat->dio_offset_align = bdev_logical_block_size(bdev);
5701 } else {
5702 stat->dio_mem_align = dio_align;
5703 stat->dio_offset_align = dio_align;
5704 }
5705 }
5706
5707 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5708 if (flags & EXT4_APPEND_FL)
5709 stat->attributes |= STATX_ATTR_APPEND;
5710 if (flags & EXT4_COMPR_FL)
5711 stat->attributes |= STATX_ATTR_COMPRESSED;
5712 if (flags & EXT4_ENCRYPT_FL)
5713 stat->attributes |= STATX_ATTR_ENCRYPTED;
5714 if (flags & EXT4_IMMUTABLE_FL)
5715 stat->attributes |= STATX_ATTR_IMMUTABLE;
5716 if (flags & EXT4_NODUMP_FL)
5717 stat->attributes |= STATX_ATTR_NODUMP;
5718 if (flags & EXT4_VERITY_FL)
5719 stat->attributes |= STATX_ATTR_VERITY;
5720
5721 stat->attributes_mask |= (STATX_ATTR_APPEND |
5722 STATX_ATTR_COMPRESSED |
5723 STATX_ATTR_ENCRYPTED |
5724 STATX_ATTR_IMMUTABLE |
5725 STATX_ATTR_NODUMP |
5726 STATX_ATTR_VERITY);
5727
5728 generic_fillattr(mnt_userns, inode, stat);
5729 return 0;
5730}
5731
5732int ext4_file_getattr(struct user_namespace *mnt_userns,
5733 const struct path *path, struct kstat *stat,
5734 u32 request_mask, unsigned int query_flags)
5735{
5736 struct inode *inode = d_inode(path->dentry);
5737 u64 delalloc_blocks;
5738
5739 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5740
5741 /*
5742 * If there is inline data in the inode, the inode will normally not
5743 * have data blocks allocated (it may have an external xattr block).
5744 * Report at least one sector for such files, so tools like tar, rsync,
5745 * others don't incorrectly think the file is completely sparse.
5746 */
5747 if (unlikely(ext4_has_inline_data(inode)))
5748 stat->blocks += (stat->size + 511) >> 9;
5749
5750 /*
5751 * We can't update i_blocks if the block allocation is delayed
5752 * otherwise in the case of system crash before the real block
5753 * allocation is done, we will have i_blocks inconsistent with
5754 * on-disk file blocks.
5755 * We always keep i_blocks updated together with real
5756 * allocation. But to not confuse with user, stat
5757 * will return the blocks that include the delayed allocation
5758 * blocks for this file.
5759 */
5760 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5761 EXT4_I(inode)->i_reserved_data_blocks);
5762 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5763 return 0;
5764}
5765
5766static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5767 int pextents)
5768{
5769 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5770 return ext4_ind_trans_blocks(inode, lblocks);
5771 return ext4_ext_index_trans_blocks(inode, pextents);
5772}
5773
5774/*
5775 * Account for index blocks, block groups bitmaps and block group
5776 * descriptor blocks if modify datablocks and index blocks
5777 * worse case, the indexs blocks spread over different block groups
5778 *
5779 * If datablocks are discontiguous, they are possible to spread over
5780 * different block groups too. If they are contiguous, with flexbg,
5781 * they could still across block group boundary.
5782 *
5783 * Also account for superblock, inode, quota and xattr blocks
5784 */
5785static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5786 int pextents)
5787{
5788 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5789 int gdpblocks;
5790 int idxblocks;
5791 int ret = 0;
5792
5793 /*
5794 * How many index blocks need to touch to map @lblocks logical blocks
5795 * to @pextents physical extents?
5796 */
5797 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5798
5799 ret = idxblocks;
5800
5801 /*
5802 * Now let's see how many group bitmaps and group descriptors need
5803 * to account
5804 */
5805 groups = idxblocks + pextents;
5806 gdpblocks = groups;
5807 if (groups > ngroups)
5808 groups = ngroups;
5809 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5810 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5811
5812 /* bitmaps and block group descriptor blocks */
5813 ret += groups + gdpblocks;
5814
5815 /* Blocks for super block, inode, quota and xattr blocks */
5816 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5817
5818 return ret;
5819}
5820
5821/*
5822 * Calculate the total number of credits to reserve to fit
5823 * the modification of a single pages into a single transaction,
5824 * which may include multiple chunks of block allocations.
5825 *
5826 * This could be called via ext4_write_begin()
5827 *
5828 * We need to consider the worse case, when
5829 * one new block per extent.
5830 */
5831int ext4_writepage_trans_blocks(struct inode *inode)
5832{
5833 int bpp = ext4_journal_blocks_per_page(inode);
5834 int ret;
5835
5836 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5837
5838 /* Account for data blocks for journalled mode */
5839 if (ext4_should_journal_data(inode))
5840 ret += bpp;
5841 return ret;
5842}
5843
5844/*
5845 * Calculate the journal credits for a chunk of data modification.
5846 *
5847 * This is called from DIO, fallocate or whoever calling
5848 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5849 *
5850 * journal buffers for data blocks are not included here, as DIO
5851 * and fallocate do no need to journal data buffers.
5852 */
5853int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5854{
5855 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5856}
5857
5858/*
5859 * The caller must have previously called ext4_reserve_inode_write().
5860 * Give this, we know that the caller already has write access to iloc->bh.
5861 */
5862int ext4_mark_iloc_dirty(handle_t *handle,
5863 struct inode *inode, struct ext4_iloc *iloc)
5864{
5865 int err = 0;
5866
5867 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5868 put_bh(iloc->bh);
5869 return -EIO;
5870 }
5871 ext4_fc_track_inode(handle, inode);
5872
5873 /* the do_update_inode consumes one bh->b_count */
5874 get_bh(iloc->bh);
5875
5876 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5877 err = ext4_do_update_inode(handle, inode, iloc);
5878 put_bh(iloc->bh);
5879 return err;
5880}
5881
5882/*
5883 * On success, We end up with an outstanding reference count against
5884 * iloc->bh. This _must_ be cleaned up later.
5885 */
5886
5887int
5888ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5889 struct ext4_iloc *iloc)
5890{
5891 int err;
5892
5893 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5894 return -EIO;
5895
5896 err = ext4_get_inode_loc(inode, iloc);
5897 if (!err) {
5898 BUFFER_TRACE(iloc->bh, "get_write_access");
5899 err = ext4_journal_get_write_access(handle, inode->i_sb,
5900 iloc->bh, EXT4_JTR_NONE);
5901 if (err) {
5902 brelse(iloc->bh);
5903 iloc->bh = NULL;
5904 }
5905 }
5906 ext4_std_error(inode->i_sb, err);
5907 return err;
5908}
5909
5910static int __ext4_expand_extra_isize(struct inode *inode,
5911 unsigned int new_extra_isize,
5912 struct ext4_iloc *iloc,
5913 handle_t *handle, int *no_expand)
5914{
5915 struct ext4_inode *raw_inode;
5916 struct ext4_xattr_ibody_header *header;
5917 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5918 struct ext4_inode_info *ei = EXT4_I(inode);
5919 int error;
5920
5921 /* this was checked at iget time, but double check for good measure */
5922 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5923 (ei->i_extra_isize & 3)) {
5924 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5925 ei->i_extra_isize,
5926 EXT4_INODE_SIZE(inode->i_sb));
5927 return -EFSCORRUPTED;
5928 }
5929 if ((new_extra_isize < ei->i_extra_isize) ||
5930 (new_extra_isize < 4) ||
5931 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5932 return -EINVAL; /* Should never happen */
5933
5934 raw_inode = ext4_raw_inode(iloc);
5935
5936 header = IHDR(inode, raw_inode);
5937
5938 /* No extended attributes present */
5939 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5940 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5941 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5942 EXT4_I(inode)->i_extra_isize, 0,
5943 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5944 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5945 return 0;
5946 }
5947
5948 /*
5949 * We may need to allocate external xattr block so we need quotas
5950 * initialized. Here we can be called with various locks held so we
5951 * cannot affort to initialize quotas ourselves. So just bail.
5952 */
5953 if (dquot_initialize_needed(inode))
5954 return -EAGAIN;
5955
5956 /* try to expand with EAs present */
5957 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5958 raw_inode, handle);
5959 if (error) {
5960 /*
5961 * Inode size expansion failed; don't try again
5962 */
5963 *no_expand = 1;
5964 }
5965
5966 return error;
5967}
5968
5969/*
5970 * Expand an inode by new_extra_isize bytes.
5971 * Returns 0 on success or negative error number on failure.
5972 */
5973static int ext4_try_to_expand_extra_isize(struct inode *inode,
5974 unsigned int new_extra_isize,
5975 struct ext4_iloc iloc,
5976 handle_t *handle)
5977{
5978 int no_expand;
5979 int error;
5980
5981 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5982 return -EOVERFLOW;
5983
5984 /*
5985 * In nojournal mode, we can immediately attempt to expand
5986 * the inode. When journaled, we first need to obtain extra
5987 * buffer credits since we may write into the EA block
5988 * with this same handle. If journal_extend fails, then it will
5989 * only result in a minor loss of functionality for that inode.
5990 * If this is felt to be critical, then e2fsck should be run to
5991 * force a large enough s_min_extra_isize.
5992 */
5993 if (ext4_journal_extend(handle,
5994 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5995 return -ENOSPC;
5996
5997 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5998 return -EBUSY;
5999
6000 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6001 handle, &no_expand);
6002 ext4_write_unlock_xattr(inode, &no_expand);
6003
6004 return error;
6005}
6006
6007int ext4_expand_extra_isize(struct inode *inode,
6008 unsigned int new_extra_isize,
6009 struct ext4_iloc *iloc)
6010{
6011 handle_t *handle;
6012 int no_expand;
6013 int error, rc;
6014
6015 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6016 brelse(iloc->bh);
6017 return -EOVERFLOW;
6018 }
6019
6020 handle = ext4_journal_start(inode, EXT4_HT_INODE,
6021 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6022 if (IS_ERR(handle)) {
6023 error = PTR_ERR(handle);
6024 brelse(iloc->bh);
6025 return error;
6026 }
6027
6028 ext4_write_lock_xattr(inode, &no_expand);
6029
6030 BUFFER_TRACE(iloc->bh, "get_write_access");
6031 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6032 EXT4_JTR_NONE);
6033 if (error) {
6034 brelse(iloc->bh);
6035 goto out_unlock;
6036 }
6037
6038 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6039 handle, &no_expand);
6040
6041 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6042 if (!error)
6043 error = rc;
6044
6045out_unlock:
6046 ext4_write_unlock_xattr(inode, &no_expand);
6047 ext4_journal_stop(handle);
6048 return error;
6049}
6050
6051/*
6052 * What we do here is to mark the in-core inode as clean with respect to inode
6053 * dirtiness (it may still be data-dirty).
6054 * This means that the in-core inode may be reaped by prune_icache
6055 * without having to perform any I/O. This is a very good thing,
6056 * because *any* task may call prune_icache - even ones which
6057 * have a transaction open against a different journal.
6058 *
6059 * Is this cheating? Not really. Sure, we haven't written the
6060 * inode out, but prune_icache isn't a user-visible syncing function.
6061 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6062 * we start and wait on commits.
6063 */
6064int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6065 const char *func, unsigned int line)
6066{
6067 struct ext4_iloc iloc;
6068 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6069 int err;
6070
6071 might_sleep();
6072 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6073 err = ext4_reserve_inode_write(handle, inode, &iloc);
6074 if (err)
6075 goto out;
6076
6077 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6078 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6079 iloc, handle);
6080
6081 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6082out:
6083 if (unlikely(err))
6084 ext4_error_inode_err(inode, func, line, 0, err,
6085 "mark_inode_dirty error");
6086 return err;
6087}
6088
6089/*
6090 * ext4_dirty_inode() is called from __mark_inode_dirty()
6091 *
6092 * We're really interested in the case where a file is being extended.
6093 * i_size has been changed by generic_commit_write() and we thus need
6094 * to include the updated inode in the current transaction.
6095 *
6096 * Also, dquot_alloc_block() will always dirty the inode when blocks
6097 * are allocated to the file.
6098 *
6099 * If the inode is marked synchronous, we don't honour that here - doing
6100 * so would cause a commit on atime updates, which we don't bother doing.
6101 * We handle synchronous inodes at the highest possible level.
6102 */
6103void ext4_dirty_inode(struct inode *inode, int flags)
6104{
6105 handle_t *handle;
6106
6107 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6108 if (IS_ERR(handle))
6109 return;
6110 ext4_mark_inode_dirty(handle, inode);
6111 ext4_journal_stop(handle);
6112}
6113
6114int ext4_change_inode_journal_flag(struct inode *inode, int val)
6115{
6116 journal_t *journal;
6117 handle_t *handle;
6118 int err;
6119 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6120
6121 /*
6122 * We have to be very careful here: changing a data block's
6123 * journaling status dynamically is dangerous. If we write a
6124 * data block to the journal, change the status and then delete
6125 * that block, we risk forgetting to revoke the old log record
6126 * from the journal and so a subsequent replay can corrupt data.
6127 * So, first we make sure that the journal is empty and that
6128 * nobody is changing anything.
6129 */
6130
6131 journal = EXT4_JOURNAL(inode);
6132 if (!journal)
6133 return 0;
6134 if (is_journal_aborted(journal))
6135 return -EROFS;
6136
6137 /* Wait for all existing dio workers */
6138 inode_dio_wait(inode);
6139
6140 /*
6141 * Before flushing the journal and switching inode's aops, we have
6142 * to flush all dirty data the inode has. There can be outstanding
6143 * delayed allocations, there can be unwritten extents created by
6144 * fallocate or buffered writes in dioread_nolock mode covered by
6145 * dirty data which can be converted only after flushing the dirty
6146 * data (and journalled aops don't know how to handle these cases).
6147 */
6148 if (val) {
6149 filemap_invalidate_lock(inode->i_mapping);
6150 err = filemap_write_and_wait(inode->i_mapping);
6151 if (err < 0) {
6152 filemap_invalidate_unlock(inode->i_mapping);
6153 return err;
6154 }
6155 }
6156
6157 percpu_down_write(&sbi->s_writepages_rwsem);
6158 jbd2_journal_lock_updates(journal);
6159
6160 /*
6161 * OK, there are no updates running now, and all cached data is
6162 * synced to disk. We are now in a completely consistent state
6163 * which doesn't have anything in the journal, and we know that
6164 * no filesystem updates are running, so it is safe to modify
6165 * the inode's in-core data-journaling state flag now.
6166 */
6167
6168 if (val)
6169 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6170 else {
6171 err = jbd2_journal_flush(journal, 0);
6172 if (err < 0) {
6173 jbd2_journal_unlock_updates(journal);
6174 percpu_up_write(&sbi->s_writepages_rwsem);
6175 return err;
6176 }
6177 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6178 }
6179 ext4_set_aops(inode);
6180
6181 jbd2_journal_unlock_updates(journal);
6182 percpu_up_write(&sbi->s_writepages_rwsem);
6183
6184 if (val)
6185 filemap_invalidate_unlock(inode->i_mapping);
6186
6187 /* Finally we can mark the inode as dirty. */
6188
6189 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6190 if (IS_ERR(handle))
6191 return PTR_ERR(handle);
6192
6193 ext4_fc_mark_ineligible(inode->i_sb,
6194 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6195 err = ext4_mark_inode_dirty(handle, inode);
6196 ext4_handle_sync(handle);
6197 ext4_journal_stop(handle);
6198 ext4_std_error(inode->i_sb, err);
6199
6200 return err;
6201}
6202
6203static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6204 struct buffer_head *bh)
6205{
6206 return !buffer_mapped(bh);
6207}
6208
6209vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6210{
6211 struct vm_area_struct *vma = vmf->vma;
6212 struct page *page = vmf->page;
6213 loff_t size;
6214 unsigned long len;
6215 int err;
6216 vm_fault_t ret;
6217 struct file *file = vma->vm_file;
6218 struct inode *inode = file_inode(file);
6219 struct address_space *mapping = inode->i_mapping;
6220 handle_t *handle;
6221 get_block_t *get_block;
6222 int retries = 0;
6223
6224 if (unlikely(IS_IMMUTABLE(inode)))
6225 return VM_FAULT_SIGBUS;
6226
6227 sb_start_pagefault(inode->i_sb);
6228 file_update_time(vma->vm_file);
6229
6230 filemap_invalidate_lock_shared(mapping);
6231
6232 err = ext4_convert_inline_data(inode);
6233 if (err)
6234 goto out_ret;
6235
6236 /*
6237 * On data journalling we skip straight to the transaction handle:
6238 * there's no delalloc; page truncated will be checked later; the
6239 * early return w/ all buffers mapped (calculates size/len) can't
6240 * be used; and there's no dioread_nolock, so only ext4_get_block.
6241 */
6242 if (ext4_should_journal_data(inode))
6243 goto retry_alloc;
6244
6245 /* Delalloc case is easy... */
6246 if (test_opt(inode->i_sb, DELALLOC) &&
6247 !ext4_nonda_switch(inode->i_sb)) {
6248 do {
6249 err = block_page_mkwrite(vma, vmf,
6250 ext4_da_get_block_prep);
6251 } while (err == -ENOSPC &&
6252 ext4_should_retry_alloc(inode->i_sb, &retries));
6253 goto out_ret;
6254 }
6255
6256 lock_page(page);
6257 size = i_size_read(inode);
6258 /* Page got truncated from under us? */
6259 if (page->mapping != mapping || page_offset(page) > size) {
6260 unlock_page(page);
6261 ret = VM_FAULT_NOPAGE;
6262 goto out;
6263 }
6264
6265 if (page->index == size >> PAGE_SHIFT)
6266 len = size & ~PAGE_MASK;
6267 else
6268 len = PAGE_SIZE;
6269 /*
6270 * Return if we have all the buffers mapped. This avoids the need to do
6271 * journal_start/journal_stop which can block and take a long time
6272 *
6273 * This cannot be done for data journalling, as we have to add the
6274 * inode to the transaction's list to writeprotect pages on commit.
6275 */
6276 if (page_has_buffers(page)) {
6277 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6278 0, len, NULL,
6279 ext4_bh_unmapped)) {
6280 /* Wait so that we don't change page under IO */
6281 wait_for_stable_page(page);
6282 ret = VM_FAULT_LOCKED;
6283 goto out;
6284 }
6285 }
6286 unlock_page(page);
6287 /* OK, we need to fill the hole... */
6288 if (ext4_should_dioread_nolock(inode))
6289 get_block = ext4_get_block_unwritten;
6290 else
6291 get_block = ext4_get_block;
6292retry_alloc:
6293 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6294 ext4_writepage_trans_blocks(inode));
6295 if (IS_ERR(handle)) {
6296 ret = VM_FAULT_SIGBUS;
6297 goto out;
6298 }
6299 /*
6300 * Data journalling can't use block_page_mkwrite() because it
6301 * will set_buffer_dirty() before do_journal_get_write_access()
6302 * thus might hit warning messages for dirty metadata buffers.
6303 */
6304 if (!ext4_should_journal_data(inode)) {
6305 err = block_page_mkwrite(vma, vmf, get_block);
6306 } else {
6307 lock_page(page);
6308 size = i_size_read(inode);
6309 /* Page got truncated from under us? */
6310 if (page->mapping != mapping || page_offset(page) > size) {
6311 ret = VM_FAULT_NOPAGE;
6312 goto out_error;
6313 }
6314
6315 if (page->index == size >> PAGE_SHIFT)
6316 len = size & ~PAGE_MASK;
6317 else
6318 len = PAGE_SIZE;
6319
6320 err = __block_write_begin(page, 0, len, ext4_get_block);
6321 if (!err) {
6322 ret = VM_FAULT_SIGBUS;
6323 if (ext4_walk_page_buffers(handle, inode,
6324 page_buffers(page), 0, len, NULL,
6325 do_journal_get_write_access))
6326 goto out_error;
6327 if (ext4_walk_page_buffers(handle, inode,
6328 page_buffers(page), 0, len, NULL,
6329 write_end_fn))
6330 goto out_error;
6331 if (ext4_jbd2_inode_add_write(handle, inode,
6332 page_offset(page), len))
6333 goto out_error;
6334 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6335 } else {
6336 unlock_page(page);
6337 }
6338 }
6339 ext4_journal_stop(handle);
6340 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6341 goto retry_alloc;
6342out_ret:
6343 ret = block_page_mkwrite_return(err);
6344out:
6345 filemap_invalidate_unlock_shared(mapping);
6346 sb_end_pagefault(inode->i_sb);
6347 return ret;
6348out_error:
6349 unlock_page(page);
6350 ext4_journal_stop(handle);
6351 goto out;
6352}