Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_INODE_H
7#define BTRFS_INODE_H
8
9#include <linux/hash.h>
10#include <linux/refcount.h>
11#include "extent_map.h"
12#include "extent_io.h"
13#include "ordered-data.h"
14#include "delayed-inode.h"
15
16/*
17 * ordered_data_close is set by truncate when a file that used
18 * to have good data has been truncated to zero. When it is set
19 * the btrfs file release call will add this inode to the
20 * ordered operations list so that we make sure to flush out any
21 * new data the application may have written before commit.
22 */
23enum {
24 BTRFS_INODE_ORDERED_DATA_CLOSE,
25 BTRFS_INODE_DUMMY,
26 BTRFS_INODE_IN_DEFRAG,
27 BTRFS_INODE_HAS_ASYNC_EXTENT,
28 BTRFS_INODE_NEEDS_FULL_SYNC,
29 BTRFS_INODE_COPY_EVERYTHING,
30 BTRFS_INODE_IN_DELALLOC_LIST,
31 BTRFS_INODE_READDIO_NEED_LOCK,
32 BTRFS_INODE_HAS_PROPS,
33 BTRFS_INODE_SNAPSHOT_FLUSH,
34};
35
36/* in memory btrfs inode */
37struct btrfs_inode {
38 /* which subvolume this inode belongs to */
39 struct btrfs_root *root;
40
41 /* key used to find this inode on disk. This is used by the code
42 * to read in roots of subvolumes
43 */
44 struct btrfs_key location;
45
46 /*
47 * Lock for counters and all fields used to determine if the inode is in
48 * the log or not (last_trans, last_sub_trans, last_log_commit,
49 * logged_trans).
50 */
51 spinlock_t lock;
52
53 /* the extent_tree has caches of all the extent mappings to disk */
54 struct extent_map_tree extent_tree;
55
56 /* the io_tree does range state (DIRTY, LOCKED etc) */
57 struct extent_io_tree io_tree;
58
59 /* special utility tree used to record which mirrors have already been
60 * tried when checksums fail for a given block
61 */
62 struct extent_io_tree io_failure_tree;
63
64 /*
65 * Keep track of where the inode has extent items mapped in order to
66 * make sure the i_size adjustments are accurate
67 */
68 struct extent_io_tree file_extent_tree;
69
70 /* held while logging the inode in tree-log.c */
71 struct mutex log_mutex;
72
73 /* used to order data wrt metadata */
74 struct btrfs_ordered_inode_tree ordered_tree;
75
76 /* list of all the delalloc inodes in the FS. There are times we need
77 * to write all the delalloc pages to disk, and this list is used
78 * to walk them all.
79 */
80 struct list_head delalloc_inodes;
81
82 /* node for the red-black tree that links inodes in subvolume root */
83 struct rb_node rb_node;
84
85 unsigned long runtime_flags;
86
87 /* Keep track of who's O_SYNC/fsyncing currently */
88 atomic_t sync_writers;
89
90 /* full 64 bit generation number, struct vfs_inode doesn't have a big
91 * enough field for this.
92 */
93 u64 generation;
94
95 /*
96 * transid of the trans_handle that last modified this inode
97 */
98 u64 last_trans;
99
100 /*
101 * transid that last logged this inode
102 */
103 u64 logged_trans;
104
105 /*
106 * log transid when this inode was last modified
107 */
108 int last_sub_trans;
109
110 /* a local copy of root's last_log_commit */
111 int last_log_commit;
112
113 /* total number of bytes pending delalloc, used by stat to calc the
114 * real block usage of the file
115 */
116 u64 delalloc_bytes;
117
118 /*
119 * Total number of bytes pending delalloc that fall within a file
120 * range that is either a hole or beyond EOF (and no prealloc extent
121 * exists in the range). This is always <= delalloc_bytes.
122 */
123 u64 new_delalloc_bytes;
124
125 /*
126 * total number of bytes pending defrag, used by stat to check whether
127 * it needs COW.
128 */
129 u64 defrag_bytes;
130
131 /*
132 * the size of the file stored in the metadata on disk. data=ordered
133 * means the in-memory i_size might be larger than the size on disk
134 * because not all the blocks are written yet.
135 */
136 u64 disk_i_size;
137
138 /*
139 * if this is a directory then index_cnt is the counter for the index
140 * number for new files that are created
141 */
142 u64 index_cnt;
143
144 /* Cache the directory index number to speed the dir/file remove */
145 u64 dir_index;
146
147 /* the fsync log has some corner cases that mean we have to check
148 * directories to see if any unlinks have been done before
149 * the directory was logged. See tree-log.c for all the
150 * details
151 */
152 u64 last_unlink_trans;
153
154 /*
155 * The id/generation of the last transaction where this inode was
156 * either the source or the destination of a clone/dedupe operation.
157 * Used when logging an inode to know if there are shared extents that
158 * need special care when logging checksum items, to avoid duplicate
159 * checksum items in a log (which can lead to a corruption where we end
160 * up with missing checksum ranges after log replay).
161 * Protected by the vfs inode lock.
162 */
163 u64 last_reflink_trans;
164
165 /*
166 * Number of bytes outstanding that are going to need csums. This is
167 * used in ENOSPC accounting.
168 */
169 u64 csum_bytes;
170
171 /* flags field from the on disk inode */
172 u32 flags;
173
174 /*
175 * Counters to keep track of the number of extent item's we may use due
176 * to delalloc and such. outstanding_extents is the number of extent
177 * items we think we'll end up using, and reserved_extents is the number
178 * of extent items we've reserved metadata for.
179 */
180 unsigned outstanding_extents;
181
182 struct btrfs_block_rsv block_rsv;
183
184 /*
185 * Cached values of inode properties
186 */
187 unsigned prop_compress; /* per-file compression algorithm */
188 /*
189 * Force compression on the file using the defrag ioctl, could be
190 * different from prop_compress and takes precedence if set
191 */
192 unsigned defrag_compress;
193
194 struct btrfs_delayed_node *delayed_node;
195
196 /* File creation time. */
197 struct timespec64 i_otime;
198
199 /* Hook into fs_info->delayed_iputs */
200 struct list_head delayed_iput;
201
202 /*
203 * To avoid races between lockless (i_mutex not held) direct IO writes
204 * and concurrent fsync requests. Direct IO writes must acquire read
205 * access on this semaphore for creating an extent map and its
206 * corresponding ordered extent. The fast fsync path must acquire write
207 * access on this semaphore before it collects ordered extents and
208 * extent maps.
209 */
210 struct rw_semaphore dio_sem;
211
212 struct inode vfs_inode;
213};
214
215static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
216{
217 return container_of(inode, struct btrfs_inode, vfs_inode);
218}
219
220static inline unsigned long btrfs_inode_hash(u64 objectid,
221 const struct btrfs_root *root)
222{
223 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
224
225#if BITS_PER_LONG == 32
226 h = (h >> 32) ^ (h & 0xffffffff);
227#endif
228
229 return (unsigned long)h;
230}
231
232static inline void btrfs_insert_inode_hash(struct inode *inode)
233{
234 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
235
236 __insert_inode_hash(inode, h);
237}
238
239static inline u64 btrfs_ino(const struct btrfs_inode *inode)
240{
241 u64 ino = inode->location.objectid;
242
243 /*
244 * !ino: btree_inode
245 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
246 */
247 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
248 ino = inode->vfs_inode.i_ino;
249 return ino;
250}
251
252static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
253{
254 i_size_write(&inode->vfs_inode, size);
255 inode->disk_i_size = size;
256}
257
258static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
259{
260 struct btrfs_root *root = inode->root;
261
262 if (root == root->fs_info->tree_root &&
263 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
264 return true;
265 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
266 return true;
267 return false;
268}
269
270static inline bool is_data_inode(struct inode *inode)
271{
272 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
273}
274
275static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
276 int mod)
277{
278 lockdep_assert_held(&inode->lock);
279 inode->outstanding_extents += mod;
280 if (btrfs_is_free_space_inode(inode))
281 return;
282 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
283 mod);
284}
285
286static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
287{
288 int ret = 0;
289
290 spin_lock(&inode->lock);
291 if (inode->logged_trans == generation &&
292 inode->last_sub_trans <= inode->last_log_commit &&
293 inode->last_sub_trans <= inode->root->last_log_commit) {
294 /*
295 * After a ranged fsync we might have left some extent maps
296 * (that fall outside the fsync's range). So return false
297 * here if the list isn't empty, to make sure btrfs_log_inode()
298 * will be called and process those extent maps.
299 */
300 smp_mb();
301 if (list_empty(&inode->extent_tree.modified_extents))
302 ret = 1;
303 }
304 spin_unlock(&inode->lock);
305 return ret;
306}
307
308struct btrfs_dio_private {
309 struct inode *inode;
310 u64 logical_offset;
311 u64 disk_bytenr;
312 u64 bytes;
313
314 /*
315 * References to this structure. There is one reference per in-flight
316 * bio plus one while we're still setting up.
317 */
318 refcount_t refs;
319
320 /* dio_bio came from fs/direct-io.c */
321 struct bio *dio_bio;
322
323 /* Array of checksums */
324 u8 csums[];
325};
326
327/*
328 * Disable DIO read nolock optimization, so new dio readers will be forced
329 * to grab i_mutex. It is used to avoid the endless truncate due to
330 * nonlocked dio read.
331 */
332static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
333{
334 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
335 smp_mb();
336}
337
338static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
339{
340 smp_mb__before_atomic();
341 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
342}
343
344/* Array of bytes with variable length, hexadecimal format 0x1234 */
345#define CSUM_FMT "0x%*phN"
346#define CSUM_FMT_VALUE(size, bytes) size, bytes
347
348static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
349 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
350{
351 struct btrfs_root *root = inode->root;
352 struct btrfs_super_block *sb = root->fs_info->super_copy;
353 const u16 csum_size = btrfs_super_csum_size(sb);
354
355 /* Output minus objectid, which is more meaningful */
356 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
357 btrfs_warn_rl(root->fs_info,
358"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
359 root->root_key.objectid, btrfs_ino(inode),
360 logical_start,
361 CSUM_FMT_VALUE(csum_size, csum),
362 CSUM_FMT_VALUE(csum_size, csum_expected),
363 mirror_num);
364 else
365 btrfs_warn_rl(root->fs_info,
366"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
367 root->root_key.objectid, btrfs_ino(inode),
368 logical_start,
369 CSUM_FMT_VALUE(csum_size, csum),
370 CSUM_FMT_VALUE(csum_size, csum_expected),
371 mirror_num);
372}
373
374#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_INODE_H
7#define BTRFS_INODE_H
8
9#include <linux/hash.h>
10#include <linux/refcount.h>
11#include "extent_map.h"
12#include "extent_io.h"
13#include "ordered-data.h"
14#include "delayed-inode.h"
15
16/*
17 * Since we search a directory based on f_pos (struct dir_context::pos) we have
18 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
19 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
20 */
21#define BTRFS_DIR_START_INDEX 2
22
23/*
24 * ordered_data_close is set by truncate when a file that used
25 * to have good data has been truncated to zero. When it is set
26 * the btrfs file release call will add this inode to the
27 * ordered operations list so that we make sure to flush out any
28 * new data the application may have written before commit.
29 */
30enum {
31 BTRFS_INODE_FLUSH_ON_CLOSE,
32 BTRFS_INODE_DUMMY,
33 BTRFS_INODE_IN_DEFRAG,
34 BTRFS_INODE_HAS_ASYNC_EXTENT,
35 /*
36 * Always set under the VFS' inode lock, otherwise it can cause races
37 * during fsync (we start as a fast fsync and then end up in a full
38 * fsync racing with ordered extent completion).
39 */
40 BTRFS_INODE_NEEDS_FULL_SYNC,
41 BTRFS_INODE_COPY_EVERYTHING,
42 BTRFS_INODE_IN_DELALLOC_LIST,
43 BTRFS_INODE_HAS_PROPS,
44 BTRFS_INODE_SNAPSHOT_FLUSH,
45 /*
46 * Set and used when logging an inode and it serves to signal that an
47 * inode does not have xattrs, so subsequent fsyncs can avoid searching
48 * for xattrs to log. This bit must be cleared whenever a xattr is added
49 * to an inode.
50 */
51 BTRFS_INODE_NO_XATTRS,
52 /*
53 * Set when we are in a context where we need to start a transaction and
54 * have dirty pages with the respective file range locked. This is to
55 * ensure that when reserving space for the transaction, if we are low
56 * on available space and need to flush delalloc, we will not flush
57 * delalloc for this inode, because that could result in a deadlock (on
58 * the file range, inode's io_tree).
59 */
60 BTRFS_INODE_NO_DELALLOC_FLUSH,
61 /*
62 * Set when we are working on enabling verity for a file. Computing and
63 * writing the whole Merkle tree can take a while so we want to prevent
64 * races where two separate tasks attempt to simultaneously start verity
65 * on the same file.
66 */
67 BTRFS_INODE_VERITY_IN_PROGRESS,
68 /* Set when this inode is a free space inode. */
69 BTRFS_INODE_FREE_SPACE_INODE,
70};
71
72/* in memory btrfs inode */
73struct btrfs_inode {
74 /* which subvolume this inode belongs to */
75 struct btrfs_root *root;
76
77 /* key used to find this inode on disk. This is used by the code
78 * to read in roots of subvolumes
79 */
80 struct btrfs_key location;
81
82 /*
83 * Lock for counters and all fields used to determine if the inode is in
84 * the log or not (last_trans, last_sub_trans, last_log_commit,
85 * logged_trans), to access/update new_delalloc_bytes and to update the
86 * VFS' inode number of bytes used.
87 */
88 spinlock_t lock;
89
90 /* the extent_tree has caches of all the extent mappings to disk */
91 struct extent_map_tree extent_tree;
92
93 /* the io_tree does range state (DIRTY, LOCKED etc) */
94 struct extent_io_tree io_tree;
95
96 /* special utility tree used to record which mirrors have already been
97 * tried when checksums fail for a given block
98 */
99 struct rb_root io_failure_tree;
100 spinlock_t io_failure_lock;
101
102 /*
103 * Keep track of where the inode has extent items mapped in order to
104 * make sure the i_size adjustments are accurate
105 */
106 struct extent_io_tree file_extent_tree;
107
108 /* held while logging the inode in tree-log.c */
109 struct mutex log_mutex;
110
111 /* used to order data wrt metadata */
112 struct btrfs_ordered_inode_tree ordered_tree;
113
114 /* list of all the delalloc inodes in the FS. There are times we need
115 * to write all the delalloc pages to disk, and this list is used
116 * to walk them all.
117 */
118 struct list_head delalloc_inodes;
119
120 /* node for the red-black tree that links inodes in subvolume root */
121 struct rb_node rb_node;
122
123 unsigned long runtime_flags;
124
125 /* Keep track of who's O_SYNC/fsyncing currently */
126 atomic_t sync_writers;
127
128 /* full 64 bit generation number, struct vfs_inode doesn't have a big
129 * enough field for this.
130 */
131 u64 generation;
132
133 /*
134 * transid of the trans_handle that last modified this inode
135 */
136 u64 last_trans;
137
138 /*
139 * transid that last logged this inode
140 */
141 u64 logged_trans;
142
143 /*
144 * log transid when this inode was last modified
145 */
146 int last_sub_trans;
147
148 /* a local copy of root's last_log_commit */
149 int last_log_commit;
150
151 /*
152 * Total number of bytes pending delalloc, used by stat to calculate the
153 * real block usage of the file. This is used only for files.
154 */
155 u64 delalloc_bytes;
156
157 union {
158 /*
159 * Total number of bytes pending delalloc that fall within a file
160 * range that is either a hole or beyond EOF (and no prealloc extent
161 * exists in the range). This is always <= delalloc_bytes and this
162 * is used only for files.
163 */
164 u64 new_delalloc_bytes;
165 /*
166 * The offset of the last dir index key that was logged.
167 * This is used only for directories.
168 */
169 u64 last_dir_index_offset;
170 };
171
172 /*
173 * total number of bytes pending defrag, used by stat to check whether
174 * it needs COW.
175 */
176 u64 defrag_bytes;
177
178 /*
179 * the size of the file stored in the metadata on disk. data=ordered
180 * means the in-memory i_size might be larger than the size on disk
181 * because not all the blocks are written yet.
182 */
183 u64 disk_i_size;
184
185 /*
186 * If this is a directory then index_cnt is the counter for the index
187 * number for new files that are created. For an empty directory, this
188 * must be initialized to BTRFS_DIR_START_INDEX.
189 */
190 u64 index_cnt;
191
192 /* Cache the directory index number to speed the dir/file remove */
193 u64 dir_index;
194
195 /* the fsync log has some corner cases that mean we have to check
196 * directories to see if any unlinks have been done before
197 * the directory was logged. See tree-log.c for all the
198 * details
199 */
200 u64 last_unlink_trans;
201
202 /*
203 * The id/generation of the last transaction where this inode was
204 * either the source or the destination of a clone/dedupe operation.
205 * Used when logging an inode to know if there are shared extents that
206 * need special care when logging checksum items, to avoid duplicate
207 * checksum items in a log (which can lead to a corruption where we end
208 * up with missing checksum ranges after log replay).
209 * Protected by the vfs inode lock.
210 */
211 u64 last_reflink_trans;
212
213 /*
214 * Number of bytes outstanding that are going to need csums. This is
215 * used in ENOSPC accounting.
216 */
217 u64 csum_bytes;
218
219 /* Backwards incompatible flags, lower half of inode_item::flags */
220 u32 flags;
221 /* Read-only compatibility flags, upper half of inode_item::flags */
222 u32 ro_flags;
223
224 /*
225 * Counters to keep track of the number of extent item's we may use due
226 * to delalloc and such. outstanding_extents is the number of extent
227 * items we think we'll end up using, and reserved_extents is the number
228 * of extent items we've reserved metadata for.
229 */
230 unsigned outstanding_extents;
231
232 struct btrfs_block_rsv block_rsv;
233
234 /*
235 * Cached values of inode properties
236 */
237 unsigned prop_compress; /* per-file compression algorithm */
238 /*
239 * Force compression on the file using the defrag ioctl, could be
240 * different from prop_compress and takes precedence if set
241 */
242 unsigned defrag_compress;
243
244 struct btrfs_delayed_node *delayed_node;
245
246 /* File creation time. */
247 struct timespec64 i_otime;
248
249 /* Hook into fs_info->delayed_iputs */
250 struct list_head delayed_iput;
251
252 struct rw_semaphore i_mmap_lock;
253 struct inode vfs_inode;
254};
255
256static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
257{
258 return container_of(inode, struct btrfs_inode, vfs_inode);
259}
260
261static inline unsigned long btrfs_inode_hash(u64 objectid,
262 const struct btrfs_root *root)
263{
264 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
265
266#if BITS_PER_LONG == 32
267 h = (h >> 32) ^ (h & 0xffffffff);
268#endif
269
270 return (unsigned long)h;
271}
272
273#if BITS_PER_LONG == 32
274
275/*
276 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so
277 * we use the inode's location objectid which is a u64 to avoid truncation.
278 */
279static inline u64 btrfs_ino(const struct btrfs_inode *inode)
280{
281 u64 ino = inode->location.objectid;
282
283 /* type == BTRFS_ROOT_ITEM_KEY: subvol dir */
284 if (inode->location.type == BTRFS_ROOT_ITEM_KEY)
285 ino = inode->vfs_inode.i_ino;
286 return ino;
287}
288
289#else
290
291static inline u64 btrfs_ino(const struct btrfs_inode *inode)
292{
293 return inode->vfs_inode.i_ino;
294}
295
296#endif
297
298static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
299{
300 i_size_write(&inode->vfs_inode, size);
301 inode->disk_i_size = size;
302}
303
304static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
305{
306 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags);
307}
308
309static inline bool is_data_inode(struct inode *inode)
310{
311 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
312}
313
314static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
315 int mod)
316{
317 lockdep_assert_held(&inode->lock);
318 inode->outstanding_extents += mod;
319 if (btrfs_is_free_space_inode(inode))
320 return;
321 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
322 mod);
323}
324
325/*
326 * Called every time after doing a buffered, direct IO or memory mapped write.
327 *
328 * This is to ensure that if we write to a file that was previously fsynced in
329 * the current transaction, then try to fsync it again in the same transaction,
330 * we will know that there were changes in the file and that it needs to be
331 * logged.
332 */
333static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
334{
335 spin_lock(&inode->lock);
336 inode->last_sub_trans = inode->root->log_transid;
337 spin_unlock(&inode->lock);
338}
339
340/*
341 * Should be called while holding the inode's VFS lock in exclusive mode or in a
342 * context where no one else can access the inode concurrently (during inode
343 * creation or when loading an inode from disk).
344 */
345static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode)
346{
347 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
348 /*
349 * The inode may have been part of a reflink operation in the last
350 * transaction that modified it, and then a fsync has reset the
351 * last_reflink_trans to avoid subsequent fsyncs in the same
352 * transaction to do unnecessary work. So update last_reflink_trans
353 * to the last_trans value (we have to be pessimistic and assume a
354 * reflink happened).
355 *
356 * The ->last_trans is protected by the inode's spinlock and we can
357 * have a concurrent ordered extent completion update it. Also set
358 * last_reflink_trans to ->last_trans only if the former is less than
359 * the later, because we can be called in a context where
360 * last_reflink_trans was set to the current transaction generation
361 * while ->last_trans was not yet updated in the current transaction,
362 * and therefore has a lower value.
363 */
364 spin_lock(&inode->lock);
365 if (inode->last_reflink_trans < inode->last_trans)
366 inode->last_reflink_trans = inode->last_trans;
367 spin_unlock(&inode->lock);
368}
369
370static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
371{
372 bool ret = false;
373
374 spin_lock(&inode->lock);
375 if (inode->logged_trans == generation &&
376 inode->last_sub_trans <= inode->last_log_commit &&
377 inode->last_sub_trans <= inode->root->last_log_commit)
378 ret = true;
379 spin_unlock(&inode->lock);
380 return ret;
381}
382
383/*
384 * Check if the inode has flags compatible with compression
385 */
386static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode)
387{
388 if (inode->flags & BTRFS_INODE_NODATACOW ||
389 inode->flags & BTRFS_INODE_NODATASUM)
390 return false;
391 return true;
392}
393
394/*
395 * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two
396 * separate u32s. These two functions convert between the two representations.
397 */
398static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags)
399{
400 return (flags | ((u64)ro_flags << 32));
401}
402
403static inline void btrfs_inode_split_flags(u64 inode_item_flags,
404 u32 *flags, u32 *ro_flags)
405{
406 *flags = (u32)inode_item_flags;
407 *ro_flags = (u32)(inode_item_flags >> 32);
408}
409
410/* Array of bytes with variable length, hexadecimal format 0x1234 */
411#define CSUM_FMT "0x%*phN"
412#define CSUM_FMT_VALUE(size, bytes) size, bytes
413
414void btrfs_submit_data_write_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num);
415void btrfs_submit_data_read_bio(struct btrfs_inode *inode, struct bio *bio,
416 int mirror_num, enum btrfs_compression_type compress_type);
417void btrfs_submit_dio_repair_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num);
418blk_status_t btrfs_submit_bio_start(struct btrfs_inode *inode, struct bio *bio);
419blk_status_t btrfs_submit_bio_start_direct_io(struct btrfs_inode *inode,
420 struct bio *bio,
421 u64 dio_file_offset);
422int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
423 u32 pgoff, u8 *csum, const u8 * const csum_expected);
424int btrfs_check_data_csum(struct btrfs_inode *inode, struct btrfs_bio *bbio,
425 u32 bio_offset, struct page *page, u32 pgoff);
426unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
427 u32 bio_offset, struct page *page,
428 u64 start, u64 end);
429noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
430 u64 *orig_start, u64 *orig_block_len,
431 u64 *ram_bytes, bool nowait, bool strict);
432
433void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode);
434struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
435int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
436int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
437 struct btrfs_inode *dir, struct btrfs_inode *inode,
438 const struct fscrypt_str *name);
439int btrfs_add_link(struct btrfs_trans_handle *trans,
440 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
441 const struct fscrypt_str *name, int add_backref, u64 index);
442int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry);
443int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
444 int front);
445
446int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
447int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
448 bool in_reclaim_context);
449int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
450 unsigned int extra_bits,
451 struct extent_state **cached_state);
452
453struct btrfs_new_inode_args {
454 /* Input */
455 struct inode *dir;
456 struct dentry *dentry;
457 struct inode *inode;
458 bool orphan;
459 bool subvol;
460
461 /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */
462 struct posix_acl *default_acl;
463 struct posix_acl *acl;
464 struct fscrypt_name fname;
465};
466
467int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
468 unsigned int *trans_num_items);
469int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
470 struct btrfs_new_inode_args *args);
471void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
472struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
473 struct inode *dir);
474 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
475 u32 bits);
476void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
477 struct extent_state *state, u32 bits);
478void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
479 struct extent_state *other);
480void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
481 struct extent_state *orig, u64 split);
482void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
483vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
484void btrfs_evict_inode(struct inode *inode);
485struct inode *btrfs_alloc_inode(struct super_block *sb);
486void btrfs_destroy_inode(struct inode *inode);
487void btrfs_free_inode(struct inode *inode);
488int btrfs_drop_inode(struct inode *inode);
489int __init btrfs_init_cachep(void);
490void __cold btrfs_destroy_cachep(void);
491struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
492 struct btrfs_root *root, struct btrfs_path *path);
493struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
494struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
495 struct page *page, size_t pg_offset,
496 u64 start, u64 end);
497int btrfs_update_inode(struct btrfs_trans_handle *trans,
498 struct btrfs_root *root, struct btrfs_inode *inode);
499int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
500 struct btrfs_root *root, struct btrfs_inode *inode);
501int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode);
502int btrfs_orphan_cleanup(struct btrfs_root *root);
503int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
504void btrfs_add_delayed_iput(struct btrfs_inode *inode);
505void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
506int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
507int btrfs_prealloc_file_range(struct inode *inode, int mode,
508 u64 start, u64 num_bytes, u64 min_size,
509 loff_t actual_len, u64 *alloc_hint);
510int btrfs_prealloc_file_range_trans(struct inode *inode,
511 struct btrfs_trans_handle *trans, int mode,
512 u64 start, u64 num_bytes, u64 min_size,
513 loff_t actual_len, u64 *alloc_hint);
514int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
515 u64 start, u64 end, int *page_started,
516 unsigned long *nr_written, struct writeback_control *wbc);
517int btrfs_writepage_cow_fixup(struct page *page);
518void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
519 struct page *page, u64 start,
520 u64 end, bool uptodate);
521int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
522 int compress_type);
523int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
524 u64 file_offset, u64 disk_bytenr,
525 u64 disk_io_size,
526 struct page **pages);
527ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
528 struct btrfs_ioctl_encoded_io_args *encoded);
529ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
530 const struct btrfs_ioctl_encoded_io_args *encoded);
531
532ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
533 size_t done_before);
534struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
535 size_t done_before);
536
537extern const struct dentry_operations btrfs_dentry_operations;
538
539/* Inode locking type flags, by default the exclusive lock is taken. */
540enum btrfs_ilock_type {
541 ENUM_BIT(BTRFS_ILOCK_SHARED),
542 ENUM_BIT(BTRFS_ILOCK_TRY),
543 ENUM_BIT(BTRFS_ILOCK_MMAP),
544};
545
546int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags);
547void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags);
548void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes,
549 const u64 del_bytes);
550void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
551
552#endif