Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Interfaces to retrieve and set PDC Stable options (firmware)
4 *
5 * Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
6 *
7 * DEV NOTE: the PDC Procedures reference states that:
8 * "A minimum of 96 bytes of Stable Storage is required. Providing more than
9 * 96 bytes of Stable Storage is optional [...]. Failure to provide the
10 * optional locations from 96 to 192 results in the loss of certain
11 * functionality during boot."
12 *
13 * Since locations between 96 and 192 are the various paths, most (if not
14 * all) PA-RISC machines should have them. Anyway, for safety reasons, the
15 * following code can deal with just 96 bytes of Stable Storage, and all
16 * sizes between 96 and 192 bytes (provided they are multiple of struct
17 * device_path size, eg: 128, 160 and 192) to provide full information.
18 * One last word: there's one path we can always count on: the primary path.
19 * Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
20 *
21 * The first OS-dependent area should always be available. Obviously, this is
22 * not true for the other one. Also bear in mind that reading/writing from/to
23 * osdep2 is much more expensive than from/to osdep1.
24 * NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
25 * 2 bytes of storage available right after OSID. That's a total of 4 bytes
26 * sacrificed: -ETOOLAZY :P
27 *
28 * The current policy wrt file permissions is:
29 * - write: root only
30 * - read: (reading triggers PDC calls) ? root only : everyone
31 * The rationale is that PDC calls could hog (DoS) the machine.
32 *
33 * TODO:
34 * - timer/fastsize write calls
35 */
36
37#undef PDCS_DEBUG
38#ifdef PDCS_DEBUG
39#define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args)
40#else
41#define DPRINTK(fmt, args...)
42#endif
43
44#include <linux/module.h>
45#include <linux/init.h>
46#include <linux/kernel.h>
47#include <linux/string.h>
48#include <linux/capability.h>
49#include <linux/ctype.h>
50#include <linux/sysfs.h>
51#include <linux/kobject.h>
52#include <linux/device.h>
53#include <linux/errno.h>
54#include <linux/spinlock.h>
55
56#include <asm/pdc.h>
57#include <asm/page.h>
58#include <linux/uaccess.h>
59#include <asm/hardware.h>
60
61#define PDCS_VERSION "0.30"
62#define PDCS_PREFIX "PDC Stable Storage"
63
64#define PDCS_ADDR_PPRI 0x00
65#define PDCS_ADDR_OSID 0x40
66#define PDCS_ADDR_OSD1 0x48
67#define PDCS_ADDR_DIAG 0x58
68#define PDCS_ADDR_FSIZ 0x5C
69#define PDCS_ADDR_PCON 0x60
70#define PDCS_ADDR_PALT 0x80
71#define PDCS_ADDR_PKBD 0xA0
72#define PDCS_ADDR_OSD2 0xE0
73
74MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
75MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
76MODULE_LICENSE("GPL");
77MODULE_VERSION(PDCS_VERSION);
78
79/* holds Stable Storage size. Initialized once and for all, no lock needed */
80static unsigned long pdcs_size __read_mostly;
81
82/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
83static u16 pdcs_osid __read_mostly;
84
85/* This struct defines what we need to deal with a parisc pdc path entry */
86struct pdcspath_entry {
87 rwlock_t rw_lock; /* to protect path entry access */
88 short ready; /* entry record is valid if != 0 */
89 unsigned long addr; /* entry address in stable storage */
90 char *name; /* entry name */
91 struct device_path devpath; /* device path in parisc representation */
92 struct device *dev; /* corresponding device */
93 struct kobject kobj;
94};
95
96struct pdcspath_attribute {
97 struct attribute attr;
98 ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
99 ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
100};
101
102#define PDCSPATH_ENTRY(_addr, _name) \
103struct pdcspath_entry pdcspath_entry_##_name = { \
104 .ready = 0, \
105 .addr = _addr, \
106 .name = __stringify(_name), \
107};
108
109#define PDCS_ATTR(_name, _mode, _show, _store) \
110struct kobj_attribute pdcs_attr_##_name = { \
111 .attr = {.name = __stringify(_name), .mode = _mode}, \
112 .show = _show, \
113 .store = _store, \
114};
115
116#define PATHS_ATTR(_name, _mode, _show, _store) \
117struct pdcspath_attribute paths_attr_##_name = { \
118 .attr = {.name = __stringify(_name), .mode = _mode}, \
119 .show = _show, \
120 .store = _store, \
121};
122
123#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
124#define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj)
125
126/**
127 * pdcspath_fetch - This function populates the path entry structs.
128 * @entry: A pointer to an allocated pdcspath_entry.
129 *
130 * The general idea is that you don't read from the Stable Storage every time
131 * you access the files provided by the facilities. We store a copy of the
132 * content of the stable storage WRT various paths in these structs. We read
133 * these structs when reading the files, and we will write to these structs when
134 * writing to the files, and only then write them back to the Stable Storage.
135 *
136 * This function expects to be called with @entry->rw_lock write-hold.
137 */
138static int
139pdcspath_fetch(struct pdcspath_entry *entry)
140{
141 struct device_path *devpath;
142
143 if (!entry)
144 return -EINVAL;
145
146 devpath = &entry->devpath;
147
148 DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
149 entry, devpath, entry->addr);
150
151 /* addr, devpath and count must be word aligned */
152 if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
153 return -EIO;
154
155 /* Find the matching device.
156 NOTE: hardware_path overlays with device_path, so the nice cast can
157 be used */
158 entry->dev = hwpath_to_device((struct hardware_path *)devpath);
159
160 entry->ready = 1;
161
162 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
163
164 return 0;
165}
166
167/**
168 * pdcspath_store - This function writes a path to stable storage.
169 * @entry: A pointer to an allocated pdcspath_entry.
170 *
171 * It can be used in two ways: either by passing it a preset devpath struct
172 * containing an already computed hardware path, or by passing it a device
173 * pointer, from which it'll find out the corresponding hardware path.
174 * For now we do not handle the case where there's an error in writing to the
175 * Stable Storage area, so you'd better not mess up the data :P
176 *
177 * This function expects to be called with @entry->rw_lock write-hold.
178 */
179static void
180pdcspath_store(struct pdcspath_entry *entry)
181{
182 struct device_path *devpath;
183
184 BUG_ON(!entry);
185
186 devpath = &entry->devpath;
187
188 /* We expect the caller to set the ready flag to 0 if the hardware
189 path struct provided is invalid, so that we know we have to fill it.
190 First case, we don't have a preset hwpath... */
191 if (!entry->ready) {
192 /* ...but we have a device, map it */
193 BUG_ON(!entry->dev);
194 device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
195 }
196 /* else, we expect the provided hwpath to be valid. */
197
198 DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
199 entry, devpath, entry->addr);
200
201 /* addr, devpath and count must be word aligned */
202 if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
203 WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
204 "It is likely that the Stable Storage data has been corrupted.\n"
205 "Please check it carefully upon next reboot.\n", __func__);
206
207 /* kobject is already registered */
208 entry->ready = 2;
209
210 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
211}
212
213/**
214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
215 * @entry: An allocated and populated pdscpath_entry struct.
216 * @buf: The output buffer to write to.
217 *
218 * We will call this function to format the output of the hwpath attribute file.
219 */
220static ssize_t
221pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
222{
223 char *out = buf;
224 struct device_path *devpath;
225 short i;
226
227 if (!entry || !buf)
228 return -EINVAL;
229
230 read_lock(&entry->rw_lock);
231 devpath = &entry->devpath;
232 i = entry->ready;
233 read_unlock(&entry->rw_lock);
234
235 if (!i) /* entry is not ready */
236 return -ENODATA;
237
238 for (i = 0; i < 6; i++) {
239 if (devpath->bc[i] >= 128)
240 continue;
241 out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
242 }
243 out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
244
245 return out - buf;
246}
247
248/**
249 * pdcspath_hwpath_write - This function handles hardware path modifying.
250 * @entry: An allocated and populated pdscpath_entry struct.
251 * @buf: The input buffer to read from.
252 * @count: The number of bytes to be read.
253 *
254 * We will call this function to change the current hardware path.
255 * Hardware paths are to be given '/'-delimited, without brackets.
256 * We make sure that the provided path actually maps to an existing
257 * device, BUT nothing would prevent some foolish user to set the path to some
258 * PCI bridge or even a CPU...
259 * A better work around would be to make sure we are at the end of a device tree
260 * for instance, but it would be IMHO beyond the simple scope of that driver.
261 * The aim is to provide a facility. Data correctness is left to userland.
262 */
263static ssize_t
264pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
265{
266 struct hardware_path hwpath;
267 unsigned short i;
268 char in[64], *temp;
269 struct device *dev;
270 int ret;
271
272 if (!entry || !buf || !count)
273 return -EINVAL;
274
275 /* We'll use a local copy of buf */
276 count = min_t(size_t, count, sizeof(in)-1);
277 strncpy(in, buf, count);
278 in[count] = '\0';
279
280 /* Let's clean up the target. 0xff is a blank pattern */
281 memset(&hwpath, 0xff, sizeof(hwpath));
282
283 /* First, pick the mod field (the last one of the input string) */
284 if (!(temp = strrchr(in, '/')))
285 return -EINVAL;
286
287 hwpath.mod = simple_strtoul(temp+1, NULL, 10);
288 in[temp-in] = '\0'; /* truncate the remaining string. just precaution */
289 DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
290
291 /* Then, loop for each delimiter, making sure we don't have too many.
292 we write the bc fields in a down-top way. No matter what, we stop
293 before writing the last field. If there are too many fields anyway,
294 then the user is a moron and it'll be caught up later when we'll
295 check the consistency of the given hwpath. */
296 for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
297 hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
298 in[temp-in] = '\0';
299 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
300 }
301
302 /* Store the final field */
303 hwpath.bc[i] = simple_strtoul(in, NULL, 10);
304 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
305
306 /* Now we check that the user isn't trying to lure us */
307 if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
308 printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
309 "hardware path: %s\n", __func__, entry->name, buf);
310 return -EINVAL;
311 }
312
313 /* So far so good, let's get in deep */
314 write_lock(&entry->rw_lock);
315 entry->ready = 0;
316 entry->dev = dev;
317
318 /* Now, dive in. Write back to the hardware */
319 pdcspath_store(entry);
320
321 /* Update the symlink to the real device */
322 sysfs_remove_link(&entry->kobj, "device");
323 write_unlock(&entry->rw_lock);
324
325 ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
326 WARN_ON(ret);
327
328 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
329 entry->name, buf);
330
331 return count;
332}
333
334/**
335 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
336 * @entry: An allocated and populated pdscpath_entry struct.
337 * @buf: The output buffer to write to.
338 *
339 * We will call this function to format the output of the layer attribute file.
340 */
341static ssize_t
342pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
343{
344 char *out = buf;
345 struct device_path *devpath;
346 short i;
347
348 if (!entry || !buf)
349 return -EINVAL;
350
351 read_lock(&entry->rw_lock);
352 devpath = &entry->devpath;
353 i = entry->ready;
354 read_unlock(&entry->rw_lock);
355
356 if (!i) /* entry is not ready */
357 return -ENODATA;
358
359 for (i = 0; i < 6 && devpath->layers[i]; i++)
360 out += sprintf(out, "%u ", devpath->layers[i]);
361
362 out += sprintf(out, "\n");
363
364 return out - buf;
365}
366
367/**
368 * pdcspath_layer_write - This function handles extended layer modifying.
369 * @entry: An allocated and populated pdscpath_entry struct.
370 * @buf: The input buffer to read from.
371 * @count: The number of bytes to be read.
372 *
373 * We will call this function to change the current layer value.
374 * Layers are to be given '.'-delimited, without brackets.
375 * XXX beware we are far less checky WRT input data provided than for hwpath.
376 * Potential harm can be done, since there's no way to check the validity of
377 * the layer fields.
378 */
379static ssize_t
380pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
381{
382 unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
383 unsigned short i;
384 char in[64], *temp;
385
386 if (!entry || !buf || !count)
387 return -EINVAL;
388
389 /* We'll use a local copy of buf */
390 count = min_t(size_t, count, sizeof(in)-1);
391 strncpy(in, buf, count);
392 in[count] = '\0';
393
394 /* Let's clean up the target. 0 is a blank pattern */
395 memset(&layers, 0, sizeof(layers));
396
397 /* First, pick the first layer */
398 if (unlikely(!isdigit(*in)))
399 return -EINVAL;
400 layers[0] = simple_strtoul(in, NULL, 10);
401 DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
402
403 temp = in;
404 for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
405 if (unlikely(!isdigit(*(++temp))))
406 return -EINVAL;
407 layers[i] = simple_strtoul(temp, NULL, 10);
408 DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
409 }
410
411 /* So far so good, let's get in deep */
412 write_lock(&entry->rw_lock);
413
414 /* First, overwrite the current layers with the new ones, not touching
415 the hardware path. */
416 memcpy(&entry->devpath.layers, &layers, sizeof(layers));
417
418 /* Now, dive in. Write back to the hardware */
419 pdcspath_store(entry);
420 write_unlock(&entry->rw_lock);
421
422 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
423 entry->name, buf);
424
425 return count;
426}
427
428/**
429 * pdcspath_attr_show - Generic read function call wrapper.
430 * @kobj: The kobject to get info from.
431 * @attr: The attribute looked upon.
432 * @buf: The output buffer.
433 */
434static ssize_t
435pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
436{
437 struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
438 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
439 ssize_t ret = 0;
440
441 if (pdcs_attr->show)
442 ret = pdcs_attr->show(entry, buf);
443
444 return ret;
445}
446
447/**
448 * pdcspath_attr_store - Generic write function call wrapper.
449 * @kobj: The kobject to write info to.
450 * @attr: The attribute to be modified.
451 * @buf: The input buffer.
452 * @count: The size of the buffer.
453 */
454static ssize_t
455pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
456 const char *buf, size_t count)
457{
458 struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
459 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
460 ssize_t ret = 0;
461
462 if (!capable(CAP_SYS_ADMIN))
463 return -EACCES;
464
465 if (pdcs_attr->store)
466 ret = pdcs_attr->store(entry, buf, count);
467
468 return ret;
469}
470
471static const struct sysfs_ops pdcspath_attr_ops = {
472 .show = pdcspath_attr_show,
473 .store = pdcspath_attr_store,
474};
475
476/* These are the two attributes of any PDC path. */
477static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
478static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
479
480static struct attribute *paths_subsys_attrs[] = {
481 &paths_attr_hwpath.attr,
482 &paths_attr_layer.attr,
483 NULL,
484};
485
486/* Specific kobject type for our PDC paths */
487static struct kobj_type ktype_pdcspath = {
488 .sysfs_ops = &pdcspath_attr_ops,
489 .default_attrs = paths_subsys_attrs,
490};
491
492/* We hard define the 4 types of path we expect to find */
493static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
494static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
495static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
496static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
497
498/* An array containing all PDC paths we will deal with */
499static struct pdcspath_entry *pdcspath_entries[] = {
500 &pdcspath_entry_primary,
501 &pdcspath_entry_alternative,
502 &pdcspath_entry_console,
503 &pdcspath_entry_keyboard,
504 NULL,
505};
506
507
508/* For more insight of what's going on here, refer to PDC Procedures doc,
509 * Section PDC_STABLE */
510
511/**
512 * pdcs_size_read - Stable Storage size output.
513 * @buf: The output buffer to write to.
514 */
515static ssize_t pdcs_size_read(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 char *buf)
518{
519 char *out = buf;
520
521 if (!buf)
522 return -EINVAL;
523
524 /* show the size of the stable storage */
525 out += sprintf(out, "%ld\n", pdcs_size);
526
527 return out - buf;
528}
529
530/**
531 * pdcs_auto_read - Stable Storage autoboot/search flag output.
532 * @buf: The output buffer to write to.
533 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
534 */
535static ssize_t pdcs_auto_read(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf, int knob)
538{
539 char *out = buf;
540 struct pdcspath_entry *pathentry;
541
542 if (!buf)
543 return -EINVAL;
544
545 /* Current flags are stored in primary boot path entry */
546 pathentry = &pdcspath_entry_primary;
547
548 read_lock(&pathentry->rw_lock);
549 out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
550 "On" : "Off");
551 read_unlock(&pathentry->rw_lock);
552
553 return out - buf;
554}
555
556/**
557 * pdcs_autoboot_read - Stable Storage autoboot flag output.
558 * @buf: The output buffer to write to.
559 */
560static ssize_t pdcs_autoboot_read(struct kobject *kobj,
561 struct kobj_attribute *attr, char *buf)
562{
563 return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
564}
565
566/**
567 * pdcs_autosearch_read - Stable Storage autoboot flag output.
568 * @buf: The output buffer to write to.
569 */
570static ssize_t pdcs_autosearch_read(struct kobject *kobj,
571 struct kobj_attribute *attr, char *buf)
572{
573 return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
574}
575
576/**
577 * pdcs_timer_read - Stable Storage timer count output (in seconds).
578 * @buf: The output buffer to write to.
579 *
580 * The value of the timer field correponds to a number of seconds in powers of 2.
581 */
582static ssize_t pdcs_timer_read(struct kobject *kobj,
583 struct kobj_attribute *attr, char *buf)
584{
585 char *out = buf;
586 struct pdcspath_entry *pathentry;
587
588 if (!buf)
589 return -EINVAL;
590
591 /* Current flags are stored in primary boot path entry */
592 pathentry = &pdcspath_entry_primary;
593
594 /* print the timer value in seconds */
595 read_lock(&pathentry->rw_lock);
596 out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
597 (1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
598 read_unlock(&pathentry->rw_lock);
599
600 return out - buf;
601}
602
603/**
604 * pdcs_osid_read - Stable Storage OS ID register output.
605 * @buf: The output buffer to write to.
606 */
607static ssize_t pdcs_osid_read(struct kobject *kobj,
608 struct kobj_attribute *attr, char *buf)
609{
610 char *out = buf;
611
612 if (!buf)
613 return -EINVAL;
614
615 out += sprintf(out, "%s dependent data (0x%.4x)\n",
616 os_id_to_string(pdcs_osid), pdcs_osid);
617
618 return out - buf;
619}
620
621/**
622 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
623 * @buf: The output buffer to write to.
624 *
625 * This can hold 16 bytes of OS-Dependent data.
626 */
627static ssize_t pdcs_osdep1_read(struct kobject *kobj,
628 struct kobj_attribute *attr, char *buf)
629{
630 char *out = buf;
631 u32 result[4];
632
633 if (!buf)
634 return -EINVAL;
635
636 if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
637 return -EIO;
638
639 out += sprintf(out, "0x%.8x\n", result[0]);
640 out += sprintf(out, "0x%.8x\n", result[1]);
641 out += sprintf(out, "0x%.8x\n", result[2]);
642 out += sprintf(out, "0x%.8x\n", result[3]);
643
644 return out - buf;
645}
646
647/**
648 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
649 * @buf: The output buffer to write to.
650 *
651 * I have NFC how to interpret the content of that register ;-).
652 */
653static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
654 struct kobj_attribute *attr, char *buf)
655{
656 char *out = buf;
657 u32 result;
658
659 if (!buf)
660 return -EINVAL;
661
662 /* get diagnostic */
663 if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
664 return -EIO;
665
666 out += sprintf(out, "0x%.4x\n", (result >> 16));
667
668 return out - buf;
669}
670
671/**
672 * pdcs_fastsize_read - Stable Storage FastSize register output.
673 * @buf: The output buffer to write to.
674 *
675 * This register holds the amount of system RAM to be tested during boot sequence.
676 */
677static ssize_t pdcs_fastsize_read(struct kobject *kobj,
678 struct kobj_attribute *attr, char *buf)
679{
680 char *out = buf;
681 u32 result;
682
683 if (!buf)
684 return -EINVAL;
685
686 /* get fast-size */
687 if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
688 return -EIO;
689
690 if ((result & 0x0F) < 0x0E)
691 out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
692 else
693 out += sprintf(out, "All");
694 out += sprintf(out, "\n");
695
696 return out - buf;
697}
698
699/**
700 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
701 * @buf: The output buffer to write to.
702 *
703 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
704 */
705static ssize_t pdcs_osdep2_read(struct kobject *kobj,
706 struct kobj_attribute *attr, char *buf)
707{
708 char *out = buf;
709 unsigned long size;
710 unsigned short i;
711 u32 result;
712
713 if (unlikely(pdcs_size <= 224))
714 return -ENODATA;
715
716 size = pdcs_size - 224;
717
718 if (!buf)
719 return -EINVAL;
720
721 for (i=0; i<size; i+=4) {
722 if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
723 sizeof(result)) != PDC_OK))
724 return -EIO;
725 out += sprintf(out, "0x%.8x\n", result);
726 }
727
728 return out - buf;
729}
730
731/**
732 * pdcs_auto_write - This function handles autoboot/search flag modifying.
733 * @buf: The input buffer to read from.
734 * @count: The number of bytes to be read.
735 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
736 *
737 * We will call this function to change the current autoboot flag.
738 * We expect a precise syntax:
739 * \"n\" (n == 0 or 1) to toggle AutoBoot Off or On
740 */
741static ssize_t pdcs_auto_write(struct kobject *kobj,
742 struct kobj_attribute *attr, const char *buf,
743 size_t count, int knob)
744{
745 struct pdcspath_entry *pathentry;
746 unsigned char flags;
747 char in[8], *temp;
748 char c;
749
750 if (!capable(CAP_SYS_ADMIN))
751 return -EACCES;
752
753 if (!buf || !count)
754 return -EINVAL;
755
756 /* We'll use a local copy of buf */
757 count = min_t(size_t, count, sizeof(in)-1);
758 strncpy(in, buf, count);
759 in[count] = '\0';
760
761 /* Current flags are stored in primary boot path entry */
762 pathentry = &pdcspath_entry_primary;
763
764 /* Be nice to the existing flag record */
765 read_lock(&pathentry->rw_lock);
766 flags = pathentry->devpath.flags;
767 read_unlock(&pathentry->rw_lock);
768
769 DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
770
771 temp = skip_spaces(in);
772
773 c = *temp++ - '0';
774 if ((c != 0) && (c != 1))
775 goto parse_error;
776 if (c == 0)
777 flags &= ~knob;
778 else
779 flags |= knob;
780
781 DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
782
783 /* So far so good, let's get in deep */
784 write_lock(&pathentry->rw_lock);
785
786 /* Change the path entry flags first */
787 pathentry->devpath.flags = flags;
788
789 /* Now, dive in. Write back to the hardware */
790 pdcspath_store(pathentry);
791 write_unlock(&pathentry->rw_lock);
792
793 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
794 (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
795 (flags & knob) ? "On" : "Off");
796
797 return count;
798
799parse_error:
800 printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
801 return -EINVAL;
802}
803
804/**
805 * pdcs_autoboot_write - This function handles autoboot flag modifying.
806 * @buf: The input buffer to read from.
807 * @count: The number of bytes to be read.
808 *
809 * We will call this function to change the current boot flags.
810 * We expect a precise syntax:
811 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
812 */
813static ssize_t pdcs_autoboot_write(struct kobject *kobj,
814 struct kobj_attribute *attr,
815 const char *buf, size_t count)
816{
817 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
818}
819
820/**
821 * pdcs_autosearch_write - This function handles autosearch flag modifying.
822 * @buf: The input buffer to read from.
823 * @count: The number of bytes to be read.
824 *
825 * We will call this function to change the current boot flags.
826 * We expect a precise syntax:
827 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
828 */
829static ssize_t pdcs_autosearch_write(struct kobject *kobj,
830 struct kobj_attribute *attr,
831 const char *buf, size_t count)
832{
833 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
834}
835
836/**
837 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
838 * @buf: The input buffer to read from.
839 * @count: The number of bytes to be read.
840 *
841 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
842 * write approach. It's up to userspace to deal with it when constructing
843 * its input buffer.
844 */
845static ssize_t pdcs_osdep1_write(struct kobject *kobj,
846 struct kobj_attribute *attr,
847 const char *buf, size_t count)
848{
849 u8 in[16];
850
851 if (!capable(CAP_SYS_ADMIN))
852 return -EACCES;
853
854 if (!buf || !count)
855 return -EINVAL;
856
857 if (unlikely(pdcs_osid != OS_ID_LINUX))
858 return -EPERM;
859
860 if (count > 16)
861 return -EMSGSIZE;
862
863 /* We'll use a local copy of buf */
864 memset(in, 0, 16);
865 memcpy(in, buf, count);
866
867 if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
868 return -EIO;
869
870 return count;
871}
872
873/**
874 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
875 * @buf: The input buffer to read from.
876 * @count: The number of bytes to be read.
877 *
878 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
879 * byte-by-byte write approach. It's up to userspace to deal with it when
880 * constructing its input buffer.
881 */
882static ssize_t pdcs_osdep2_write(struct kobject *kobj,
883 struct kobj_attribute *attr,
884 const char *buf, size_t count)
885{
886 unsigned long size;
887 unsigned short i;
888 u8 in[4];
889
890 if (!capable(CAP_SYS_ADMIN))
891 return -EACCES;
892
893 if (!buf || !count)
894 return -EINVAL;
895
896 if (unlikely(pdcs_size <= 224))
897 return -ENOSYS;
898
899 if (unlikely(pdcs_osid != OS_ID_LINUX))
900 return -EPERM;
901
902 size = pdcs_size - 224;
903
904 if (count > size)
905 return -EMSGSIZE;
906
907 /* We'll use a local copy of buf */
908
909 for (i=0; i<count; i+=4) {
910 memset(in, 0, 4);
911 memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
912 if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
913 sizeof(in)) != PDC_OK))
914 return -EIO;
915 }
916
917 return count;
918}
919
920/* The remaining attributes. */
921static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
922static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
923static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
924static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
925static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
926static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
927static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
928static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
929static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
930
931static struct attribute *pdcs_subsys_attrs[] = {
932 &pdcs_attr_size.attr,
933 &pdcs_attr_autoboot.attr,
934 &pdcs_attr_autosearch.attr,
935 &pdcs_attr_timer.attr,
936 &pdcs_attr_osid.attr,
937 &pdcs_attr_osdep1.attr,
938 &pdcs_attr_diagnostic.attr,
939 &pdcs_attr_fastsize.attr,
940 &pdcs_attr_osdep2.attr,
941 NULL,
942};
943
944static const struct attribute_group pdcs_attr_group = {
945 .attrs = pdcs_subsys_attrs,
946};
947
948static struct kobject *stable_kobj;
949static struct kset *paths_kset;
950
951/**
952 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
953 *
954 * It creates kobjects corresponding to each path entry with nice sysfs
955 * links to the real device. This is where the magic takes place: when
956 * registering the subsystem attributes during module init, each kobject hereby
957 * created will show in the sysfs tree as a folder containing files as defined
958 * by path_subsys_attr[].
959 */
960static inline int __init
961pdcs_register_pathentries(void)
962{
963 unsigned short i;
964 struct pdcspath_entry *entry;
965 int err;
966
967 /* Initialize the entries rw_lock before anything else */
968 for (i = 0; (entry = pdcspath_entries[i]); i++)
969 rwlock_init(&entry->rw_lock);
970
971 for (i = 0; (entry = pdcspath_entries[i]); i++) {
972 write_lock(&entry->rw_lock);
973 err = pdcspath_fetch(entry);
974 write_unlock(&entry->rw_lock);
975
976 if (err < 0)
977 continue;
978
979 entry->kobj.kset = paths_kset;
980 err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
981 "%s", entry->name);
982 if (err)
983 return err;
984
985 /* kobject is now registered */
986 write_lock(&entry->rw_lock);
987 entry->ready = 2;
988 write_unlock(&entry->rw_lock);
989
990 /* Add a nice symlink to the real device */
991 if (entry->dev) {
992 err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
993 WARN_ON(err);
994 }
995
996 kobject_uevent(&entry->kobj, KOBJ_ADD);
997 }
998
999 return 0;
1000}
1001
1002/**
1003 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1004 */
1005static inline void
1006pdcs_unregister_pathentries(void)
1007{
1008 unsigned short i;
1009 struct pdcspath_entry *entry;
1010
1011 for (i = 0; (entry = pdcspath_entries[i]); i++) {
1012 read_lock(&entry->rw_lock);
1013 if (entry->ready >= 2)
1014 kobject_put(&entry->kobj);
1015 read_unlock(&entry->rw_lock);
1016 }
1017}
1018
1019/*
1020 * For now we register the stable subsystem with the firmware subsystem
1021 * and the paths subsystem with the stable subsystem
1022 */
1023static int __init
1024pdc_stable_init(void)
1025{
1026 int rc = 0, error = 0;
1027 u32 result;
1028
1029 /* find the size of the stable storage */
1030 if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1031 return -ENODEV;
1032
1033 /* make sure we have enough data */
1034 if (pdcs_size < 96)
1035 return -ENODATA;
1036
1037 printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1038
1039 /* get OSID */
1040 if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1041 return -EIO;
1042
1043 /* the actual result is 16 bits away */
1044 pdcs_osid = (u16)(result >> 16);
1045
1046 /* For now we'll register the directory at /sys/firmware/stable */
1047 stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1048 if (!stable_kobj) {
1049 rc = -ENOMEM;
1050 goto fail_firmreg;
1051 }
1052
1053 /* Don't forget the root entries */
1054 error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1055
1056 /* register the paths kset as a child of the stable kset */
1057 paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1058 if (!paths_kset) {
1059 rc = -ENOMEM;
1060 goto fail_ksetreg;
1061 }
1062
1063 /* now we create all "files" for the paths kset */
1064 if ((rc = pdcs_register_pathentries()))
1065 goto fail_pdcsreg;
1066
1067 return rc;
1068
1069fail_pdcsreg:
1070 pdcs_unregister_pathentries();
1071 kset_unregister(paths_kset);
1072
1073fail_ksetreg:
1074 kobject_put(stable_kobj);
1075
1076fail_firmreg:
1077 printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1078 return rc;
1079}
1080
1081static void __exit
1082pdc_stable_exit(void)
1083{
1084 pdcs_unregister_pathentries();
1085 kset_unregister(paths_kset);
1086 kobject_put(stable_kobj);
1087}
1088
1089
1090module_init(pdc_stable_init);
1091module_exit(pdc_stable_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Interfaces to retrieve and set PDC Stable options (firmware)
4 *
5 * Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
6 *
7 * DEV NOTE: the PDC Procedures reference states that:
8 * "A minimum of 96 bytes of Stable Storage is required. Providing more than
9 * 96 bytes of Stable Storage is optional [...]. Failure to provide the
10 * optional locations from 96 to 192 results in the loss of certain
11 * functionality during boot."
12 *
13 * Since locations between 96 and 192 are the various paths, most (if not
14 * all) PA-RISC machines should have them. Anyway, for safety reasons, the
15 * following code can deal with just 96 bytes of Stable Storage, and all
16 * sizes between 96 and 192 bytes (provided they are multiple of struct
17 * pdc_module_path size, eg: 128, 160 and 192) to provide full information.
18 * One last word: there's one path we can always count on: the primary path.
19 * Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
20 *
21 * The first OS-dependent area should always be available. Obviously, this is
22 * not true for the other one. Also bear in mind that reading/writing from/to
23 * osdep2 is much more expensive than from/to osdep1.
24 * NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
25 * 2 bytes of storage available right after OSID. That's a total of 4 bytes
26 * sacrificed: -ETOOLAZY :P
27 *
28 * The current policy wrt file permissions is:
29 * - write: root only
30 * - read: (reading triggers PDC calls) ? root only : everyone
31 * The rationale is that PDC calls could hog (DoS) the machine.
32 *
33 * TODO:
34 * - timer/fastsize write calls
35 */
36
37#undef PDCS_DEBUG
38#ifdef PDCS_DEBUG
39#define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args)
40#else
41#define DPRINTK(fmt, args...)
42#endif
43
44#include <linux/module.h>
45#include <linux/init.h>
46#include <linux/kernel.h>
47#include <linux/string.h>
48#include <linux/capability.h>
49#include <linux/ctype.h>
50#include <linux/sysfs.h>
51#include <linux/kobject.h>
52#include <linux/device.h>
53#include <linux/errno.h>
54#include <linux/spinlock.h>
55
56#include <asm/pdc.h>
57#include <asm/page.h>
58#include <linux/uaccess.h>
59#include <asm/hardware.h>
60
61#define PDCS_VERSION "0.30"
62#define PDCS_PREFIX "PDC Stable Storage"
63
64#define PDCS_ADDR_PPRI 0x00
65#define PDCS_ADDR_OSID 0x40
66#define PDCS_ADDR_OSD1 0x48
67#define PDCS_ADDR_DIAG 0x58
68#define PDCS_ADDR_FSIZ 0x5C
69#define PDCS_ADDR_PCON 0x60
70#define PDCS_ADDR_PALT 0x80
71#define PDCS_ADDR_PKBD 0xA0
72#define PDCS_ADDR_OSD2 0xE0
73
74MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
75MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
76MODULE_LICENSE("GPL");
77MODULE_VERSION(PDCS_VERSION);
78
79/* holds Stable Storage size. Initialized once and for all, no lock needed */
80static unsigned long pdcs_size __read_mostly;
81
82/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
83static u16 pdcs_osid __read_mostly;
84
85/* This struct defines what we need to deal with a parisc pdc path entry */
86struct pdcspath_entry {
87 rwlock_t rw_lock; /* to protect path entry access */
88 short ready; /* entry record is valid if != 0 */
89 unsigned long addr; /* entry address in stable storage */
90 char *name; /* entry name */
91 struct pdc_module_path devpath; /* device path in parisc representation */
92 struct device *dev; /* corresponding device */
93 struct kobject kobj;
94};
95
96struct pdcspath_attribute {
97 struct attribute attr;
98 ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
99 ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
100};
101
102#define PDCSPATH_ENTRY(_addr, _name) \
103struct pdcspath_entry pdcspath_entry_##_name = { \
104 .ready = 0, \
105 .addr = _addr, \
106 .name = __stringify(_name), \
107};
108
109#define PDCS_ATTR(_name, _mode, _show, _store) \
110struct kobj_attribute pdcs_attr_##_name = { \
111 .attr = {.name = __stringify(_name), .mode = _mode}, \
112 .show = _show, \
113 .store = _store, \
114};
115
116#define PATHS_ATTR(_name, _mode, _show, _store) \
117struct pdcspath_attribute paths_attr_##_name = { \
118 .attr = {.name = __stringify(_name), .mode = _mode}, \
119 .show = _show, \
120 .store = _store, \
121};
122
123#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
124#define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj)
125
126/**
127 * pdcspath_fetch - This function populates the path entry structs.
128 * @entry: A pointer to an allocated pdcspath_entry.
129 *
130 * The general idea is that you don't read from the Stable Storage every time
131 * you access the files provided by the facilities. We store a copy of the
132 * content of the stable storage WRT various paths in these structs. We read
133 * these structs when reading the files, and we will write to these structs when
134 * writing to the files, and only then write them back to the Stable Storage.
135 *
136 * This function expects to be called with @entry->rw_lock write-hold.
137 */
138static int
139pdcspath_fetch(struct pdcspath_entry *entry)
140{
141 struct pdc_module_path *devpath;
142
143 if (!entry)
144 return -EINVAL;
145
146 devpath = &entry->devpath;
147
148 DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
149 entry, devpath, entry->addr);
150
151 /* addr, devpath and count must be word aligned */
152 if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
153 return -EIO;
154
155 /* Find the matching device.
156 NOTE: hardware_path overlays with pdc_module_path, so the nice cast can
157 be used */
158 entry->dev = hwpath_to_device((struct hardware_path *)devpath);
159
160 entry->ready = 1;
161
162 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
163
164 return 0;
165}
166
167/**
168 * pdcspath_store - This function writes a path to stable storage.
169 * @entry: A pointer to an allocated pdcspath_entry.
170 *
171 * It can be used in two ways: either by passing it a preset devpath struct
172 * containing an already computed hardware path, or by passing it a device
173 * pointer, from which it'll find out the corresponding hardware path.
174 * For now we do not handle the case where there's an error in writing to the
175 * Stable Storage area, so you'd better not mess up the data :P
176 *
177 * This function expects to be called with @entry->rw_lock write-hold.
178 */
179static void
180pdcspath_store(struct pdcspath_entry *entry)
181{
182 struct pdc_module_path *devpath;
183
184 BUG_ON(!entry);
185
186 devpath = &entry->devpath;
187
188 /* We expect the caller to set the ready flag to 0 if the hardware
189 path struct provided is invalid, so that we know we have to fill it.
190 First case, we don't have a preset hwpath... */
191 if (!entry->ready) {
192 /* ...but we have a device, map it */
193 BUG_ON(!entry->dev);
194 device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
195 }
196 /* else, we expect the provided hwpath to be valid. */
197
198 DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
199 entry, devpath, entry->addr);
200
201 /* addr, devpath and count must be word aligned */
202 if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
203 WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
204 "It is likely that the Stable Storage data has been corrupted.\n"
205 "Please check it carefully upon next reboot.\n", __func__);
206
207 /* kobject is already registered */
208 entry->ready = 2;
209
210 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
211}
212
213/**
214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
215 * @entry: An allocated and populated pdscpath_entry struct.
216 * @buf: The output buffer to write to.
217 *
218 * We will call this function to format the output of the hwpath attribute file.
219 */
220static ssize_t
221pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
222{
223 char *out = buf;
224 struct pdc_module_path *devpath;
225 short i;
226
227 if (!entry || !buf)
228 return -EINVAL;
229
230 read_lock(&entry->rw_lock);
231 devpath = &entry->devpath;
232 i = entry->ready;
233 read_unlock(&entry->rw_lock);
234
235 if (!i) /* entry is not ready */
236 return -ENODATA;
237
238 for (i = 0; i < 6; i++) {
239 if (devpath->path.bc[i] < 0)
240 continue;
241 out += sprintf(out, "%d/", devpath->path.bc[i]);
242 }
243 out += sprintf(out, "%u\n", (unsigned char)devpath->path.mod);
244
245 return out - buf;
246}
247
248/**
249 * pdcspath_hwpath_write - This function handles hardware path modifying.
250 * @entry: An allocated and populated pdscpath_entry struct.
251 * @buf: The input buffer to read from.
252 * @count: The number of bytes to be read.
253 *
254 * We will call this function to change the current hardware path.
255 * Hardware paths are to be given '/'-delimited, without brackets.
256 * We make sure that the provided path actually maps to an existing
257 * device, BUT nothing would prevent some foolish user to set the path to some
258 * PCI bridge or even a CPU...
259 * A better work around would be to make sure we are at the end of a device tree
260 * for instance, but it would be IMHO beyond the simple scope of that driver.
261 * The aim is to provide a facility. Data correctness is left to userland.
262 */
263static ssize_t
264pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
265{
266 struct hardware_path hwpath;
267 unsigned short i;
268 char in[64], *temp;
269 struct device *dev;
270 int ret;
271
272 if (!entry || !buf || !count)
273 return -EINVAL;
274
275 /* We'll use a local copy of buf */
276 count = min_t(size_t, count, sizeof(in)-1);
277 strscpy(in, buf, count + 1);
278
279 /* Let's clean up the target. 0xff is a blank pattern */
280 memset(&hwpath, 0xff, sizeof(hwpath));
281
282 /* First, pick the mod field (the last one of the input string) */
283 if (!(temp = strrchr(in, '/')))
284 return -EINVAL;
285
286 hwpath.mod = simple_strtoul(temp+1, NULL, 10);
287 in[temp-in] = '\0'; /* truncate the remaining string. just precaution */
288 DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
289
290 /* Then, loop for each delimiter, making sure we don't have too many.
291 we write the bc fields in a down-top way. No matter what, we stop
292 before writing the last field. If there are too many fields anyway,
293 then the user is a moron and it'll be caught up later when we'll
294 check the consistency of the given hwpath. */
295 for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
296 hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
297 in[temp-in] = '\0';
298 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
299 }
300
301 /* Store the final field */
302 hwpath.bc[i] = simple_strtoul(in, NULL, 10);
303 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
304
305 /* Now we check that the user isn't trying to lure us */
306 if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
307 printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
308 "hardware path: %s\n", __func__, entry->name, buf);
309 return -EINVAL;
310 }
311
312 /* So far so good, let's get in deep */
313 write_lock(&entry->rw_lock);
314 entry->ready = 0;
315 entry->dev = dev;
316
317 /* Now, dive in. Write back to the hardware */
318 pdcspath_store(entry);
319
320 /* Update the symlink to the real device */
321 sysfs_remove_link(&entry->kobj, "device");
322 write_unlock(&entry->rw_lock);
323
324 ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
325 WARN_ON(ret);
326
327 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
328 entry->name, buf);
329
330 return count;
331}
332
333/**
334 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
335 * @entry: An allocated and populated pdscpath_entry struct.
336 * @buf: The output buffer to write to.
337 *
338 * We will call this function to format the output of the layer attribute file.
339 */
340static ssize_t
341pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
342{
343 char *out = buf;
344 struct pdc_module_path *devpath;
345 short i;
346
347 if (!entry || !buf)
348 return -EINVAL;
349
350 read_lock(&entry->rw_lock);
351 devpath = &entry->devpath;
352 i = entry->ready;
353 read_unlock(&entry->rw_lock);
354
355 if (!i) /* entry is not ready */
356 return -ENODATA;
357
358 for (i = 0; i < 6 && devpath->layers[i]; i++)
359 out += sprintf(out, "%u ", devpath->layers[i]);
360
361 out += sprintf(out, "\n");
362
363 return out - buf;
364}
365
366/**
367 * pdcspath_layer_write - This function handles extended layer modifying.
368 * @entry: An allocated and populated pdscpath_entry struct.
369 * @buf: The input buffer to read from.
370 * @count: The number of bytes to be read.
371 *
372 * We will call this function to change the current layer value.
373 * Layers are to be given '.'-delimited, without brackets.
374 * XXX beware we are far less checky WRT input data provided than for hwpath.
375 * Potential harm can be done, since there's no way to check the validity of
376 * the layer fields.
377 */
378static ssize_t
379pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
380{
381 unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
382 unsigned short i;
383 char in[64], *temp;
384
385 if (!entry || !buf || !count)
386 return -EINVAL;
387
388 /* We'll use a local copy of buf */
389 count = min_t(size_t, count, sizeof(in)-1);
390 strscpy(in, buf, count + 1);
391
392 /* Let's clean up the target. 0 is a blank pattern */
393 memset(&layers, 0, sizeof(layers));
394
395 /* First, pick the first layer */
396 if (unlikely(!isdigit(*in)))
397 return -EINVAL;
398 layers[0] = simple_strtoul(in, NULL, 10);
399 DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
400
401 temp = in;
402 for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
403 if (unlikely(!isdigit(*(++temp))))
404 return -EINVAL;
405 layers[i] = simple_strtoul(temp, NULL, 10);
406 DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
407 }
408
409 /* So far so good, let's get in deep */
410 write_lock(&entry->rw_lock);
411
412 /* First, overwrite the current layers with the new ones, not touching
413 the hardware path. */
414 memcpy(&entry->devpath.layers, &layers, sizeof(layers));
415
416 /* Now, dive in. Write back to the hardware */
417 pdcspath_store(entry);
418 write_unlock(&entry->rw_lock);
419
420 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
421 entry->name, buf);
422
423 return count;
424}
425
426/**
427 * pdcspath_attr_show - Generic read function call wrapper.
428 * @kobj: The kobject to get info from.
429 * @attr: The attribute looked upon.
430 * @buf: The output buffer.
431 */
432static ssize_t
433pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
434{
435 struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
436 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
437 ssize_t ret = 0;
438
439 if (pdcs_attr->show)
440 ret = pdcs_attr->show(entry, buf);
441
442 return ret;
443}
444
445/**
446 * pdcspath_attr_store - Generic write function call wrapper.
447 * @kobj: The kobject to write info to.
448 * @attr: The attribute to be modified.
449 * @buf: The input buffer.
450 * @count: The size of the buffer.
451 */
452static ssize_t
453pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
454 const char *buf, size_t count)
455{
456 struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
457 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
458 ssize_t ret = 0;
459
460 if (!capable(CAP_SYS_ADMIN))
461 return -EACCES;
462
463 if (pdcs_attr->store)
464 ret = pdcs_attr->store(entry, buf, count);
465
466 return ret;
467}
468
469static const struct sysfs_ops pdcspath_attr_ops = {
470 .show = pdcspath_attr_show,
471 .store = pdcspath_attr_store,
472};
473
474/* These are the two attributes of any PDC path. */
475static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
476static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
477
478static struct attribute *paths_subsys_attrs[] = {
479 &paths_attr_hwpath.attr,
480 &paths_attr_layer.attr,
481 NULL,
482};
483ATTRIBUTE_GROUPS(paths_subsys);
484
485/* Specific kobject type for our PDC paths */
486static struct kobj_type ktype_pdcspath = {
487 .sysfs_ops = &pdcspath_attr_ops,
488 .default_groups = paths_subsys_groups,
489};
490
491/* We hard define the 4 types of path we expect to find */
492static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
493static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
494static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
495static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
496
497/* An array containing all PDC paths we will deal with */
498static struct pdcspath_entry *pdcspath_entries[] = {
499 &pdcspath_entry_primary,
500 &pdcspath_entry_alternative,
501 &pdcspath_entry_console,
502 &pdcspath_entry_keyboard,
503 NULL,
504};
505
506
507/* For more insight of what's going on here, refer to PDC Procedures doc,
508 * Section PDC_STABLE */
509
510/**
511 * pdcs_size_read - Stable Storage size output.
512 * @buf: The output buffer to write to.
513 */
514static ssize_t pdcs_size_read(struct kobject *kobj,
515 struct kobj_attribute *attr,
516 char *buf)
517{
518 char *out = buf;
519
520 if (!buf)
521 return -EINVAL;
522
523 /* show the size of the stable storage */
524 out += sprintf(out, "%ld\n", pdcs_size);
525
526 return out - buf;
527}
528
529/**
530 * pdcs_auto_read - Stable Storage autoboot/search flag output.
531 * @buf: The output buffer to write to.
532 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
533 */
534static ssize_t pdcs_auto_read(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 char *buf, int knob)
537{
538 char *out = buf;
539 struct pdcspath_entry *pathentry;
540
541 if (!buf)
542 return -EINVAL;
543
544 /* Current flags are stored in primary boot path entry */
545 pathentry = &pdcspath_entry_primary;
546
547 read_lock(&pathentry->rw_lock);
548 out += sprintf(out, "%s\n", (pathentry->devpath.path.flags & knob) ?
549 "On" : "Off");
550 read_unlock(&pathentry->rw_lock);
551
552 return out - buf;
553}
554
555/**
556 * pdcs_autoboot_read - Stable Storage autoboot flag output.
557 * @buf: The output buffer to write to.
558 */
559static ssize_t pdcs_autoboot_read(struct kobject *kobj,
560 struct kobj_attribute *attr, char *buf)
561{
562 return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
563}
564
565/**
566 * pdcs_autosearch_read - Stable Storage autoboot flag output.
567 * @buf: The output buffer to write to.
568 */
569static ssize_t pdcs_autosearch_read(struct kobject *kobj,
570 struct kobj_attribute *attr, char *buf)
571{
572 return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
573}
574
575/**
576 * pdcs_timer_read - Stable Storage timer count output (in seconds).
577 * @buf: The output buffer to write to.
578 *
579 * The value of the timer field correponds to a number of seconds in powers of 2.
580 */
581static ssize_t pdcs_timer_read(struct kobject *kobj,
582 struct kobj_attribute *attr, char *buf)
583{
584 char *out = buf;
585 struct pdcspath_entry *pathentry;
586
587 if (!buf)
588 return -EINVAL;
589
590 /* Current flags are stored in primary boot path entry */
591 pathentry = &pdcspath_entry_primary;
592
593 /* print the timer value in seconds */
594 read_lock(&pathentry->rw_lock);
595 out += sprintf(out, "%u\n", (pathentry->devpath.path.flags & PF_TIMER) ?
596 (1 << (pathentry->devpath.path.flags & PF_TIMER)) : 0);
597 read_unlock(&pathentry->rw_lock);
598
599 return out - buf;
600}
601
602/**
603 * pdcs_osid_read - Stable Storage OS ID register output.
604 * @buf: The output buffer to write to.
605 */
606static ssize_t pdcs_osid_read(struct kobject *kobj,
607 struct kobj_attribute *attr, char *buf)
608{
609 char *out = buf;
610
611 if (!buf)
612 return -EINVAL;
613
614 out += sprintf(out, "%s dependent data (0x%.4x)\n",
615 os_id_to_string(pdcs_osid), pdcs_osid);
616
617 return out - buf;
618}
619
620/**
621 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
622 * @buf: The output buffer to write to.
623 *
624 * This can hold 16 bytes of OS-Dependent data.
625 */
626static ssize_t pdcs_osdep1_read(struct kobject *kobj,
627 struct kobj_attribute *attr, char *buf)
628{
629 char *out = buf;
630 u32 result[4];
631
632 if (!buf)
633 return -EINVAL;
634
635 if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
636 return -EIO;
637
638 out += sprintf(out, "0x%.8x\n", result[0]);
639 out += sprintf(out, "0x%.8x\n", result[1]);
640 out += sprintf(out, "0x%.8x\n", result[2]);
641 out += sprintf(out, "0x%.8x\n", result[3]);
642
643 return out - buf;
644}
645
646/**
647 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
648 * @buf: The output buffer to write to.
649 *
650 * I have NFC how to interpret the content of that register ;-).
651 */
652static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
653 struct kobj_attribute *attr, char *buf)
654{
655 char *out = buf;
656 u32 result;
657
658 if (!buf)
659 return -EINVAL;
660
661 /* get diagnostic */
662 if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
663 return -EIO;
664
665 out += sprintf(out, "0x%.4x\n", (result >> 16));
666
667 return out - buf;
668}
669
670/**
671 * pdcs_fastsize_read - Stable Storage FastSize register output.
672 * @buf: The output buffer to write to.
673 *
674 * This register holds the amount of system RAM to be tested during boot sequence.
675 */
676static ssize_t pdcs_fastsize_read(struct kobject *kobj,
677 struct kobj_attribute *attr, char *buf)
678{
679 char *out = buf;
680 u32 result;
681
682 if (!buf)
683 return -EINVAL;
684
685 /* get fast-size */
686 if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
687 return -EIO;
688
689 if ((result & 0x0F) < 0x0E)
690 out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
691 else
692 out += sprintf(out, "All");
693 out += sprintf(out, "\n");
694
695 return out - buf;
696}
697
698/**
699 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
700 * @buf: The output buffer to write to.
701 *
702 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
703 */
704static ssize_t pdcs_osdep2_read(struct kobject *kobj,
705 struct kobj_attribute *attr, char *buf)
706{
707 char *out = buf;
708 unsigned long size;
709 unsigned short i;
710 u32 result;
711
712 if (unlikely(pdcs_size <= 224))
713 return -ENODATA;
714
715 size = pdcs_size - 224;
716
717 if (!buf)
718 return -EINVAL;
719
720 for (i=0; i<size; i+=4) {
721 if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
722 sizeof(result)) != PDC_OK))
723 return -EIO;
724 out += sprintf(out, "0x%.8x\n", result);
725 }
726
727 return out - buf;
728}
729
730/**
731 * pdcs_auto_write - This function handles autoboot/search flag modifying.
732 * @buf: The input buffer to read from.
733 * @count: The number of bytes to be read.
734 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
735 *
736 * We will call this function to change the current autoboot flag.
737 * We expect a precise syntax:
738 * \"n\" (n == 0 or 1) to toggle AutoBoot Off or On
739 */
740static ssize_t pdcs_auto_write(struct kobject *kobj,
741 struct kobj_attribute *attr, const char *buf,
742 size_t count, int knob)
743{
744 struct pdcspath_entry *pathentry;
745 unsigned char flags;
746 char in[8], *temp;
747 char c;
748
749 if (!capable(CAP_SYS_ADMIN))
750 return -EACCES;
751
752 if (!buf || !count)
753 return -EINVAL;
754
755 /* We'll use a local copy of buf */
756 count = min_t(size_t, count, sizeof(in)-1);
757 strscpy(in, buf, count + 1);
758
759 /* Current flags are stored in primary boot path entry */
760 pathentry = &pdcspath_entry_primary;
761
762 /* Be nice to the existing flag record */
763 read_lock(&pathentry->rw_lock);
764 flags = pathentry->devpath.path.flags;
765 read_unlock(&pathentry->rw_lock);
766
767 DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
768
769 temp = skip_spaces(in);
770
771 c = *temp++ - '0';
772 if ((c != 0) && (c != 1))
773 goto parse_error;
774 if (c == 0)
775 flags &= ~knob;
776 else
777 flags |= knob;
778
779 DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
780
781 /* So far so good, let's get in deep */
782 write_lock(&pathentry->rw_lock);
783
784 /* Change the path entry flags first */
785 pathentry->devpath.path.flags = flags;
786
787 /* Now, dive in. Write back to the hardware */
788 pdcspath_store(pathentry);
789 write_unlock(&pathentry->rw_lock);
790
791 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
792 (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
793 (flags & knob) ? "On" : "Off");
794
795 return count;
796
797parse_error:
798 printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
799 return -EINVAL;
800}
801
802/**
803 * pdcs_autoboot_write - This function handles autoboot flag modifying.
804 * @buf: The input buffer to read from.
805 * @count: The number of bytes to be read.
806 *
807 * We will call this function to change the current boot flags.
808 * We expect a precise syntax:
809 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
810 */
811static ssize_t pdcs_autoboot_write(struct kobject *kobj,
812 struct kobj_attribute *attr,
813 const char *buf, size_t count)
814{
815 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
816}
817
818/**
819 * pdcs_autosearch_write - This function handles autosearch flag modifying.
820 * @buf: The input buffer to read from.
821 * @count: The number of bytes to be read.
822 *
823 * We will call this function to change the current boot flags.
824 * We expect a precise syntax:
825 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
826 */
827static ssize_t pdcs_autosearch_write(struct kobject *kobj,
828 struct kobj_attribute *attr,
829 const char *buf, size_t count)
830{
831 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
832}
833
834/**
835 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
836 * @buf: The input buffer to read from.
837 * @count: The number of bytes to be read.
838 *
839 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
840 * write approach. It's up to userspace to deal with it when constructing
841 * its input buffer.
842 */
843static ssize_t pdcs_osdep1_write(struct kobject *kobj,
844 struct kobj_attribute *attr,
845 const char *buf, size_t count)
846{
847 u8 in[16];
848
849 if (!capable(CAP_SYS_ADMIN))
850 return -EACCES;
851
852 if (!buf || !count)
853 return -EINVAL;
854
855 if (unlikely(pdcs_osid != OS_ID_LINUX))
856 return -EPERM;
857
858 if (count > 16)
859 return -EMSGSIZE;
860
861 /* We'll use a local copy of buf */
862 memset(in, 0, 16);
863 memcpy(in, buf, count);
864
865 if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
866 return -EIO;
867
868 return count;
869}
870
871/**
872 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
873 * @buf: The input buffer to read from.
874 * @count: The number of bytes to be read.
875 *
876 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
877 * byte-by-byte write approach. It's up to userspace to deal with it when
878 * constructing its input buffer.
879 */
880static ssize_t pdcs_osdep2_write(struct kobject *kobj,
881 struct kobj_attribute *attr,
882 const char *buf, size_t count)
883{
884 unsigned long size;
885 unsigned short i;
886 u8 in[4];
887
888 if (!capable(CAP_SYS_ADMIN))
889 return -EACCES;
890
891 if (!buf || !count)
892 return -EINVAL;
893
894 if (unlikely(pdcs_size <= 224))
895 return -ENOSYS;
896
897 if (unlikely(pdcs_osid != OS_ID_LINUX))
898 return -EPERM;
899
900 size = pdcs_size - 224;
901
902 if (count > size)
903 return -EMSGSIZE;
904
905 /* We'll use a local copy of buf */
906
907 for (i=0; i<count; i+=4) {
908 memset(in, 0, 4);
909 memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
910 if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
911 sizeof(in)) != PDC_OK))
912 return -EIO;
913 }
914
915 return count;
916}
917
918/* The remaining attributes. */
919static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
920static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
921static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
922static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
923static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
924static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
925static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
926static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
927static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
928
929static struct attribute *pdcs_subsys_attrs[] = {
930 &pdcs_attr_size.attr,
931 &pdcs_attr_autoboot.attr,
932 &pdcs_attr_autosearch.attr,
933 &pdcs_attr_timer.attr,
934 &pdcs_attr_osid.attr,
935 &pdcs_attr_osdep1.attr,
936 &pdcs_attr_diagnostic.attr,
937 &pdcs_attr_fastsize.attr,
938 &pdcs_attr_osdep2.attr,
939 NULL,
940};
941
942static const struct attribute_group pdcs_attr_group = {
943 .attrs = pdcs_subsys_attrs,
944};
945
946static struct kobject *stable_kobj;
947static struct kset *paths_kset;
948
949/**
950 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
951 *
952 * It creates kobjects corresponding to each path entry with nice sysfs
953 * links to the real device. This is where the magic takes place: when
954 * registering the subsystem attributes during module init, each kobject hereby
955 * created will show in the sysfs tree as a folder containing files as defined
956 * by path_subsys_attr[].
957 */
958static inline int __init
959pdcs_register_pathentries(void)
960{
961 unsigned short i;
962 struct pdcspath_entry *entry;
963 int err;
964
965 /* Initialize the entries rw_lock before anything else */
966 for (i = 0; (entry = pdcspath_entries[i]); i++)
967 rwlock_init(&entry->rw_lock);
968
969 for (i = 0; (entry = pdcspath_entries[i]); i++) {
970 write_lock(&entry->rw_lock);
971 err = pdcspath_fetch(entry);
972 write_unlock(&entry->rw_lock);
973
974 if (err < 0)
975 continue;
976
977 entry->kobj.kset = paths_kset;
978 err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
979 "%s", entry->name);
980 if (err) {
981 kobject_put(&entry->kobj);
982 return err;
983 }
984
985 /* kobject is now registered */
986 write_lock(&entry->rw_lock);
987 entry->ready = 2;
988 write_unlock(&entry->rw_lock);
989
990 /* Add a nice symlink to the real device */
991 if (entry->dev) {
992 err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
993 WARN_ON(err);
994 }
995
996 kobject_uevent(&entry->kobj, KOBJ_ADD);
997 }
998
999 return 0;
1000}
1001
1002/**
1003 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1004 */
1005static inline void
1006pdcs_unregister_pathentries(void)
1007{
1008 unsigned short i;
1009 struct pdcspath_entry *entry;
1010
1011 for (i = 0; (entry = pdcspath_entries[i]); i++) {
1012 read_lock(&entry->rw_lock);
1013 if (entry->ready >= 2)
1014 kobject_put(&entry->kobj);
1015 read_unlock(&entry->rw_lock);
1016 }
1017}
1018
1019/*
1020 * For now we register the stable subsystem with the firmware subsystem
1021 * and the paths subsystem with the stable subsystem
1022 */
1023static int __init
1024pdc_stable_init(void)
1025{
1026 int rc = 0, error = 0;
1027 u32 result;
1028
1029 /* find the size of the stable storage */
1030 if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1031 return -ENODEV;
1032
1033 /* make sure we have enough data */
1034 if (pdcs_size < 96)
1035 return -ENODATA;
1036
1037 printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1038
1039 /* get OSID */
1040 if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1041 return -EIO;
1042
1043 /* the actual result is 16 bits away */
1044 pdcs_osid = (u16)(result >> 16);
1045
1046 /* For now we'll register the directory at /sys/firmware/stable */
1047 stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1048 if (!stable_kobj) {
1049 rc = -ENOMEM;
1050 goto fail_firmreg;
1051 }
1052
1053 /* Don't forget the root entries */
1054 error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1055
1056 /* register the paths kset as a child of the stable kset */
1057 paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1058 if (!paths_kset) {
1059 rc = -ENOMEM;
1060 goto fail_ksetreg;
1061 }
1062
1063 /* now we create all "files" for the paths kset */
1064 if ((rc = pdcs_register_pathentries()))
1065 goto fail_pdcsreg;
1066
1067 return rc;
1068
1069fail_pdcsreg:
1070 pdcs_unregister_pathentries();
1071 kset_unregister(paths_kset);
1072
1073fail_ksetreg:
1074 kobject_put(stable_kobj);
1075
1076fail_firmreg:
1077 printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1078 return rc;
1079}
1080
1081static void __exit
1082pdc_stable_exit(void)
1083{
1084 pdcs_unregister_pathentries();
1085 kset_unregister(paths_kset);
1086 kobject_put(stable_kobj);
1087}
1088
1089
1090module_init(pdc_stable_init);
1091module_exit(pdc_stable_exit);