Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* 
   3 *    Interfaces to retrieve and set PDC Stable options (firmware)
   4 *
   5 *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
   6 *
   7 *    DEV NOTE: the PDC Procedures reference states that:
   8 *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
   9 *    96 bytes of Stable Storage is optional [...]. Failure to provide the
  10 *    optional locations from 96 to 192 results in the loss of certain
  11 *    functionality during boot."
  12 *
  13 *    Since locations between 96 and 192 are the various paths, most (if not
  14 *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
  15 *    following code can deal with just 96 bytes of Stable Storage, and all
  16 *    sizes between 96 and 192 bytes (provided they are multiple of struct
  17 *    device_path size, eg: 128, 160 and 192) to provide full information.
  18 *    One last word: there's one path we can always count on: the primary path.
  19 *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
  20 *
  21 *    The first OS-dependent area should always be available. Obviously, this is
  22 *    not true for the other one. Also bear in mind that reading/writing from/to
  23 *    osdep2 is much more expensive than from/to osdep1.
  24 *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
  25 *    2 bytes of storage available right after OSID. That's a total of 4 bytes
  26 *    sacrificed: -ETOOLAZY :P
  27 *
  28 *    The current policy wrt file permissions is:
  29 *	- write: root only
  30 *	- read: (reading triggers PDC calls) ? root only : everyone
  31 *    The rationale is that PDC calls could hog (DoS) the machine.
  32 *
  33 *	TODO:
  34 *	- timer/fastsize write calls
  35 */
  36
  37#undef PDCS_DEBUG
  38#ifdef PDCS_DEBUG
  39#define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
  40#else
  41#define DPRINTK(fmt, args...)
  42#endif
  43
  44#include <linux/module.h>
  45#include <linux/init.h>
  46#include <linux/kernel.h>
  47#include <linux/string.h>
  48#include <linux/capability.h>
  49#include <linux/ctype.h>
  50#include <linux/sysfs.h>
  51#include <linux/kobject.h>
  52#include <linux/device.h>
  53#include <linux/errno.h>
  54#include <linux/spinlock.h>
  55
  56#include <asm/pdc.h>
  57#include <asm/page.h>
  58#include <linux/uaccess.h>
  59#include <asm/hardware.h>
  60
  61#define PDCS_VERSION	"0.30"
  62#define PDCS_PREFIX	"PDC Stable Storage"
  63
  64#define PDCS_ADDR_PPRI	0x00
  65#define PDCS_ADDR_OSID	0x40
  66#define PDCS_ADDR_OSD1	0x48
  67#define PDCS_ADDR_DIAG	0x58
  68#define PDCS_ADDR_FSIZ	0x5C
  69#define PDCS_ADDR_PCON	0x60
  70#define PDCS_ADDR_PALT	0x80
  71#define PDCS_ADDR_PKBD	0xA0
  72#define PDCS_ADDR_OSD2	0xE0
  73
  74MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
  75MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
  76MODULE_LICENSE("GPL");
  77MODULE_VERSION(PDCS_VERSION);
  78
  79/* holds Stable Storage size. Initialized once and for all, no lock needed */
  80static unsigned long pdcs_size __read_mostly;
  81
  82/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
  83static u16 pdcs_osid __read_mostly;
  84
  85/* This struct defines what we need to deal with a parisc pdc path entry */
  86struct pdcspath_entry {
  87	rwlock_t rw_lock;		/* to protect path entry access */
  88	short ready;			/* entry record is valid if != 0 */
  89	unsigned long addr;		/* entry address in stable storage */
  90	char *name;			/* entry name */
  91	struct device_path devpath;	/* device path in parisc representation */
  92	struct device *dev;		/* corresponding device */
  93	struct kobject kobj;
  94};
  95
  96struct pdcspath_attribute {
  97	struct attribute attr;
  98	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
  99	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
 100};
 101
 102#define PDCSPATH_ENTRY(_addr, _name) \
 103struct pdcspath_entry pdcspath_entry_##_name = { \
 104	.ready = 0, \
 105	.addr = _addr, \
 106	.name = __stringify(_name), \
 107};
 108
 109#define PDCS_ATTR(_name, _mode, _show, _store) \
 110struct kobj_attribute pdcs_attr_##_name = { \
 111	.attr = {.name = __stringify(_name), .mode = _mode}, \
 112	.show = _show, \
 113	.store = _store, \
 114};
 115
 116#define PATHS_ATTR(_name, _mode, _show, _store) \
 117struct pdcspath_attribute paths_attr_##_name = { \
 118	.attr = {.name = __stringify(_name), .mode = _mode}, \
 119	.show = _show, \
 120	.store = _store, \
 121};
 122
 123#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
 124#define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
 125
 126/**
 127 * pdcspath_fetch - This function populates the path entry structs.
 128 * @entry: A pointer to an allocated pdcspath_entry.
 129 * 
 130 * The general idea is that you don't read from the Stable Storage every time
 131 * you access the files provided by the facilities. We store a copy of the
 132 * content of the stable storage WRT various paths in these structs. We read
 133 * these structs when reading the files, and we will write to these structs when
 134 * writing to the files, and only then write them back to the Stable Storage.
 135 *
 136 * This function expects to be called with @entry->rw_lock write-hold.
 137 */
 138static int
 139pdcspath_fetch(struct pdcspath_entry *entry)
 140{
 141	struct device_path *devpath;
 142
 143	if (!entry)
 144		return -EINVAL;
 145
 146	devpath = &entry->devpath;
 147	
 148	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 149			entry, devpath, entry->addr);
 150
 151	/* addr, devpath and count must be word aligned */
 152	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 153		return -EIO;
 154		
 155	/* Find the matching device.
 156	   NOTE: hardware_path overlays with device_path, so the nice cast can
 157	   be used */
 158	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
 159
 160	entry->ready = 1;
 161	
 162	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 163	
 164	return 0;
 165}
 166
 167/**
 168 * pdcspath_store - This function writes a path to stable storage.
 169 * @entry: A pointer to an allocated pdcspath_entry.
 170 * 
 171 * It can be used in two ways: either by passing it a preset devpath struct
 172 * containing an already computed hardware path, or by passing it a device
 173 * pointer, from which it'll find out the corresponding hardware path.
 174 * For now we do not handle the case where there's an error in writing to the
 175 * Stable Storage area, so you'd better not mess up the data :P
 176 *
 177 * This function expects to be called with @entry->rw_lock write-hold.
 178 */
 179static void
 180pdcspath_store(struct pdcspath_entry *entry)
 181{
 182	struct device_path *devpath;
 183
 184	BUG_ON(!entry);
 185
 186	devpath = &entry->devpath;
 187	
 188	/* We expect the caller to set the ready flag to 0 if the hardware
 189	   path struct provided is invalid, so that we know we have to fill it.
 190	   First case, we don't have a preset hwpath... */
 191	if (!entry->ready) {
 192		/* ...but we have a device, map it */
 193		BUG_ON(!entry->dev);
 194		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
 195	}
 196	/* else, we expect the provided hwpath to be valid. */
 197	
 198	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 199			entry, devpath, entry->addr);
 200
 201	/* addr, devpath and count must be word aligned */
 202	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 203		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
 204				"It is likely that the Stable Storage data has been corrupted.\n"
 205				"Please check it carefully upon next reboot.\n", __func__);
 206		
 207	/* kobject is already registered */
 208	entry->ready = 2;
 209	
 210	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 211}
 212
 213/**
 214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
 215 * @entry: An allocated and populated pdscpath_entry struct.
 216 * @buf: The output buffer to write to.
 217 * 
 218 * We will call this function to format the output of the hwpath attribute file.
 219 */
 220static ssize_t
 221pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
 222{
 223	char *out = buf;
 224	struct device_path *devpath;
 225	short i;
 226
 227	if (!entry || !buf)
 228		return -EINVAL;
 229
 230	read_lock(&entry->rw_lock);
 231	devpath = &entry->devpath;
 232	i = entry->ready;
 233	read_unlock(&entry->rw_lock);
 234
 235	if (!i)	/* entry is not ready */
 236		return -ENODATA;
 237	
 238	for (i = 0; i < 6; i++) {
 239		if (devpath->bc[i] >= 128)
 240			continue;
 241		out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
 242	}
 243	out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
 244	
 245	return out - buf;
 246}
 247
 248/**
 249 * pdcspath_hwpath_write - This function handles hardware path modifying.
 250 * @entry: An allocated and populated pdscpath_entry struct.
 251 * @buf: The input buffer to read from.
 252 * @count: The number of bytes to be read.
 253 * 
 254 * We will call this function to change the current hardware path.
 255 * Hardware paths are to be given '/'-delimited, without brackets.
 256 * We make sure that the provided path actually maps to an existing
 257 * device, BUT nothing would prevent some foolish user to set the path to some
 258 * PCI bridge or even a CPU...
 259 * A better work around would be to make sure we are at the end of a device tree
 260 * for instance, but it would be IMHO beyond the simple scope of that driver.
 261 * The aim is to provide a facility. Data correctness is left to userland.
 262 */
 263static ssize_t
 264pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 265{
 266	struct hardware_path hwpath;
 267	unsigned short i;
 268	char in[64], *temp;
 269	struct device *dev;
 270	int ret;
 271
 272	if (!entry || !buf || !count)
 273		return -EINVAL;
 274
 275	/* We'll use a local copy of buf */
 276	count = min_t(size_t, count, sizeof(in)-1);
 277	strncpy(in, buf, count);
 278	in[count] = '\0';
 279	
 280	/* Let's clean up the target. 0xff is a blank pattern */
 281	memset(&hwpath, 0xff, sizeof(hwpath));
 282	
 283	/* First, pick the mod field (the last one of the input string) */
 284	if (!(temp = strrchr(in, '/')))
 285		return -EINVAL;
 286			
 287	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
 288	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
 289	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
 290	
 291	/* Then, loop for each delimiter, making sure we don't have too many.
 292	   we write the bc fields in a down-top way. No matter what, we stop
 293	   before writing the last field. If there are too many fields anyway,
 294	   then the user is a moron and it'll be caught up later when we'll
 295	   check the consistency of the given hwpath. */
 296	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
 297		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
 298		in[temp-in] = '\0';
 299		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
 300	}
 301	
 302	/* Store the final field */		
 303	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
 304	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
 305	
 306	/* Now we check that the user isn't trying to lure us */
 307	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
 308		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
 309			"hardware path: %s\n", __func__, entry->name, buf);
 310		return -EINVAL;
 311	}
 312	
 313	/* So far so good, let's get in deep */
 314	write_lock(&entry->rw_lock);
 315	entry->ready = 0;
 316	entry->dev = dev;
 317	
 318	/* Now, dive in. Write back to the hardware */
 319	pdcspath_store(entry);
 320	
 321	/* Update the symlink to the real device */
 322	sysfs_remove_link(&entry->kobj, "device");
 323	write_unlock(&entry->rw_lock);
 324
 325	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
 326	WARN_ON(ret);
 327
 328	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
 329		entry->name, buf);
 330	
 331	return count;
 332}
 333
 334/**
 335 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
 336 * @entry: An allocated and populated pdscpath_entry struct.
 337 * @buf: The output buffer to write to.
 338 * 
 339 * We will call this function to format the output of the layer attribute file.
 340 */
 341static ssize_t
 342pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
 343{
 344	char *out = buf;
 345	struct device_path *devpath;
 346	short i;
 347
 348	if (!entry || !buf)
 349		return -EINVAL;
 350	
 351	read_lock(&entry->rw_lock);
 352	devpath = &entry->devpath;
 353	i = entry->ready;
 354	read_unlock(&entry->rw_lock);
 355
 356	if (!i)	/* entry is not ready */
 357		return -ENODATA;
 358	
 359	for (i = 0; i < 6 && devpath->layers[i]; i++)
 360		out += sprintf(out, "%u ", devpath->layers[i]);
 361
 362	out += sprintf(out, "\n");
 363	
 364	return out - buf;
 365}
 366
 367/**
 368 * pdcspath_layer_write - This function handles extended layer modifying.
 369 * @entry: An allocated and populated pdscpath_entry struct.
 370 * @buf: The input buffer to read from.
 371 * @count: The number of bytes to be read.
 372 * 
 373 * We will call this function to change the current layer value.
 374 * Layers are to be given '.'-delimited, without brackets.
 375 * XXX beware we are far less checky WRT input data provided than for hwpath.
 376 * Potential harm can be done, since there's no way to check the validity of
 377 * the layer fields.
 378 */
 379static ssize_t
 380pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 381{
 382	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
 383	unsigned short i;
 384	char in[64], *temp;
 385
 386	if (!entry || !buf || !count)
 387		return -EINVAL;
 388
 389	/* We'll use a local copy of buf */
 390	count = min_t(size_t, count, sizeof(in)-1);
 391	strncpy(in, buf, count);
 392	in[count] = '\0';
 393	
 394	/* Let's clean up the target. 0 is a blank pattern */
 395	memset(&layers, 0, sizeof(layers));
 396	
 397	/* First, pick the first layer */
 398	if (unlikely(!isdigit(*in)))
 399		return -EINVAL;
 400	layers[0] = simple_strtoul(in, NULL, 10);
 401	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
 402	
 403	temp = in;
 404	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
 405		if (unlikely(!isdigit(*(++temp))))
 406			return -EINVAL;
 407		layers[i] = simple_strtoul(temp, NULL, 10);
 408		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
 409	}
 410		
 411	/* So far so good, let's get in deep */
 412	write_lock(&entry->rw_lock);
 413	
 414	/* First, overwrite the current layers with the new ones, not touching
 415	   the hardware path. */
 416	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
 417	
 418	/* Now, dive in. Write back to the hardware */
 419	pdcspath_store(entry);
 420	write_unlock(&entry->rw_lock);
 421	
 422	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
 423		entry->name, buf);
 424	
 425	return count;
 426}
 427
 428/**
 429 * pdcspath_attr_show - Generic read function call wrapper.
 430 * @kobj: The kobject to get info from.
 431 * @attr: The attribute looked upon.
 432 * @buf: The output buffer.
 433 */
 434static ssize_t
 435pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
 436{
 437	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 438	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 439	ssize_t ret = 0;
 440
 441	if (pdcs_attr->show)
 442		ret = pdcs_attr->show(entry, buf);
 443
 444	return ret;
 445}
 446
 447/**
 448 * pdcspath_attr_store - Generic write function call wrapper.
 449 * @kobj: The kobject to write info to.
 450 * @attr: The attribute to be modified.
 451 * @buf: The input buffer.
 452 * @count: The size of the buffer.
 453 */
 454static ssize_t
 455pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
 456			const char *buf, size_t count)
 457{
 458	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 459	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 460	ssize_t ret = 0;
 461
 462	if (!capable(CAP_SYS_ADMIN))
 463		return -EACCES;
 464
 465	if (pdcs_attr->store)
 466		ret = pdcs_attr->store(entry, buf, count);
 467
 468	return ret;
 469}
 470
 471static const struct sysfs_ops pdcspath_attr_ops = {
 472	.show = pdcspath_attr_show,
 473	.store = pdcspath_attr_store,
 474};
 475
 476/* These are the two attributes of any PDC path. */
 477static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
 478static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
 479
 480static struct attribute *paths_subsys_attrs[] = {
 481	&paths_attr_hwpath.attr,
 482	&paths_attr_layer.attr,
 483	NULL,
 484};
 
 485
 486/* Specific kobject type for our PDC paths */
 487static struct kobj_type ktype_pdcspath = {
 488	.sysfs_ops = &pdcspath_attr_ops,
 489	.default_attrs = paths_subsys_attrs,
 490};
 491
 492/* We hard define the 4 types of path we expect to find */
 493static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
 494static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
 495static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
 496static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
 497
 498/* An array containing all PDC paths we will deal with */
 499static struct pdcspath_entry *pdcspath_entries[] = {
 500	&pdcspath_entry_primary,
 501	&pdcspath_entry_alternative,
 502	&pdcspath_entry_console,
 503	&pdcspath_entry_keyboard,
 504	NULL,
 505};
 506
 507
 508/* For more insight of what's going on here, refer to PDC Procedures doc,
 509 * Section PDC_STABLE */
 510
 511/**
 512 * pdcs_size_read - Stable Storage size output.
 513 * @buf: The output buffer to write to.
 514 */
 515static ssize_t pdcs_size_read(struct kobject *kobj,
 516			      struct kobj_attribute *attr,
 517			      char *buf)
 518{
 519	char *out = buf;
 520
 521	if (!buf)
 522		return -EINVAL;
 523
 524	/* show the size of the stable storage */
 525	out += sprintf(out, "%ld\n", pdcs_size);
 526
 527	return out - buf;
 528}
 529
 530/**
 531 * pdcs_auto_read - Stable Storage autoboot/search flag output.
 532 * @buf: The output buffer to write to.
 533 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 534 */
 535static ssize_t pdcs_auto_read(struct kobject *kobj,
 536			      struct kobj_attribute *attr,
 537			      char *buf, int knob)
 538{
 539	char *out = buf;
 540	struct pdcspath_entry *pathentry;
 541
 542	if (!buf)
 543		return -EINVAL;
 544
 545	/* Current flags are stored in primary boot path entry */
 546	pathentry = &pdcspath_entry_primary;
 547
 548	read_lock(&pathentry->rw_lock);
 549	out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
 550					"On" : "Off");
 551	read_unlock(&pathentry->rw_lock);
 552
 553	return out - buf;
 554}
 555
 556/**
 557 * pdcs_autoboot_read - Stable Storage autoboot flag output.
 558 * @buf: The output buffer to write to.
 559 */
 560static ssize_t pdcs_autoboot_read(struct kobject *kobj,
 561				  struct kobj_attribute *attr, char *buf)
 562{
 563	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
 564}
 565
 566/**
 567 * pdcs_autosearch_read - Stable Storage autoboot flag output.
 568 * @buf: The output buffer to write to.
 569 */
 570static ssize_t pdcs_autosearch_read(struct kobject *kobj,
 571				    struct kobj_attribute *attr, char *buf)
 572{
 573	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
 574}
 575
 576/**
 577 * pdcs_timer_read - Stable Storage timer count output (in seconds).
 578 * @buf: The output buffer to write to.
 579 *
 580 * The value of the timer field correponds to a number of seconds in powers of 2.
 581 */
 582static ssize_t pdcs_timer_read(struct kobject *kobj,
 583			       struct kobj_attribute *attr, char *buf)
 584{
 585	char *out = buf;
 586	struct pdcspath_entry *pathentry;
 587
 588	if (!buf)
 589		return -EINVAL;
 590
 591	/* Current flags are stored in primary boot path entry */
 592	pathentry = &pdcspath_entry_primary;
 593
 594	/* print the timer value in seconds */
 595	read_lock(&pathentry->rw_lock);
 596	out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
 597				(1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
 598	read_unlock(&pathentry->rw_lock);
 599
 600	return out - buf;
 601}
 602
 603/**
 604 * pdcs_osid_read - Stable Storage OS ID register output.
 605 * @buf: The output buffer to write to.
 606 */
 607static ssize_t pdcs_osid_read(struct kobject *kobj,
 608			      struct kobj_attribute *attr, char *buf)
 609{
 610	char *out = buf;
 611
 612	if (!buf)
 613		return -EINVAL;
 614
 615	out += sprintf(out, "%s dependent data (0x%.4x)\n",
 616		os_id_to_string(pdcs_osid), pdcs_osid);
 617
 618	return out - buf;
 619}
 620
 621/**
 622 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
 623 * @buf: The output buffer to write to.
 624 *
 625 * This can hold 16 bytes of OS-Dependent data.
 626 */
 627static ssize_t pdcs_osdep1_read(struct kobject *kobj,
 628				struct kobj_attribute *attr, char *buf)
 629{
 630	char *out = buf;
 631	u32 result[4];
 632
 633	if (!buf)
 634		return -EINVAL;
 635
 636	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
 637		return -EIO;
 638
 639	out += sprintf(out, "0x%.8x\n", result[0]);
 640	out += sprintf(out, "0x%.8x\n", result[1]);
 641	out += sprintf(out, "0x%.8x\n", result[2]);
 642	out += sprintf(out, "0x%.8x\n", result[3]);
 643
 644	return out - buf;
 645}
 646
 647/**
 648 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
 649 * @buf: The output buffer to write to.
 650 *
 651 * I have NFC how to interpret the content of that register ;-).
 652 */
 653static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
 654				    struct kobj_attribute *attr, char *buf)
 655{
 656	char *out = buf;
 657	u32 result;
 658
 659	if (!buf)
 660		return -EINVAL;
 661
 662	/* get diagnostic */
 663	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
 664		return -EIO;
 665
 666	out += sprintf(out, "0x%.4x\n", (result >> 16));
 667
 668	return out - buf;
 669}
 670
 671/**
 672 * pdcs_fastsize_read - Stable Storage FastSize register output.
 673 * @buf: The output buffer to write to.
 674 *
 675 * This register holds the amount of system RAM to be tested during boot sequence.
 676 */
 677static ssize_t pdcs_fastsize_read(struct kobject *kobj,
 678				  struct kobj_attribute *attr, char *buf)
 679{
 680	char *out = buf;
 681	u32 result;
 682
 683	if (!buf)
 684		return -EINVAL;
 685
 686	/* get fast-size */
 687	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
 688		return -EIO;
 689
 690	if ((result & 0x0F) < 0x0E)
 691		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
 692	else
 693		out += sprintf(out, "All");
 694	out += sprintf(out, "\n");
 695	
 696	return out - buf;
 697}
 698
 699/**
 700 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
 701 * @buf: The output buffer to write to.
 702 *
 703 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
 704 */
 705static ssize_t pdcs_osdep2_read(struct kobject *kobj,
 706				struct kobj_attribute *attr, char *buf)
 707{
 708	char *out = buf;
 709	unsigned long size;
 710	unsigned short i;
 711	u32 result;
 712
 713	if (unlikely(pdcs_size <= 224))
 714		return -ENODATA;
 715
 716	size = pdcs_size - 224;
 717
 718	if (!buf)
 719		return -EINVAL;
 720
 721	for (i=0; i<size; i+=4) {
 722		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
 723					sizeof(result)) != PDC_OK))
 724			return -EIO;
 725		out += sprintf(out, "0x%.8x\n", result);
 726	}
 727
 728	return out - buf;
 729}
 730
 731/**
 732 * pdcs_auto_write - This function handles autoboot/search flag modifying.
 733 * @buf: The input buffer to read from.
 734 * @count: The number of bytes to be read.
 735 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 736 * 
 737 * We will call this function to change the current autoboot flag.
 738 * We expect a precise syntax:
 739 *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
 740 */
 741static ssize_t pdcs_auto_write(struct kobject *kobj,
 742			       struct kobj_attribute *attr, const char *buf,
 743			       size_t count, int knob)
 744{
 745	struct pdcspath_entry *pathentry;
 746	unsigned char flags;
 747	char in[8], *temp;
 748	char c;
 749
 750	if (!capable(CAP_SYS_ADMIN))
 751		return -EACCES;
 752
 753	if (!buf || !count)
 754		return -EINVAL;
 755
 756	/* We'll use a local copy of buf */
 757	count = min_t(size_t, count, sizeof(in)-1);
 758	strncpy(in, buf, count);
 759	in[count] = '\0';
 760
 761	/* Current flags are stored in primary boot path entry */
 762	pathentry = &pdcspath_entry_primary;
 763	
 764	/* Be nice to the existing flag record */
 765	read_lock(&pathentry->rw_lock);
 766	flags = pathentry->devpath.flags;
 767	read_unlock(&pathentry->rw_lock);
 768	
 769	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
 770
 771	temp = skip_spaces(in);
 772
 773	c = *temp++ - '0';
 774	if ((c != 0) && (c != 1))
 775		goto parse_error;
 776	if (c == 0)
 777		flags &= ~knob;
 778	else
 779		flags |= knob;
 780	
 781	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
 782		
 783	/* So far so good, let's get in deep */
 784	write_lock(&pathentry->rw_lock);
 785	
 786	/* Change the path entry flags first */
 787	pathentry->devpath.flags = flags;
 788		
 789	/* Now, dive in. Write back to the hardware */
 790	pdcspath_store(pathentry);
 791	write_unlock(&pathentry->rw_lock);
 792	
 793	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
 794		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
 795		(flags & knob) ? "On" : "Off");
 796	
 797	return count;
 798
 799parse_error:
 800	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
 801	return -EINVAL;
 802}
 803
 804/**
 805 * pdcs_autoboot_write - This function handles autoboot flag modifying.
 806 * @buf: The input buffer to read from.
 807 * @count: The number of bytes to be read.
 808 *
 809 * We will call this function to change the current boot flags.
 810 * We expect a precise syntax:
 811 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 812 */
 813static ssize_t pdcs_autoboot_write(struct kobject *kobj,
 814				   struct kobj_attribute *attr,
 815				   const char *buf, size_t count)
 816{
 817	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
 818}
 819
 820/**
 821 * pdcs_autosearch_write - This function handles autosearch flag modifying.
 822 * @buf: The input buffer to read from.
 823 * @count: The number of bytes to be read.
 824 *
 825 * We will call this function to change the current boot flags.
 826 * We expect a precise syntax:
 827 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 828 */
 829static ssize_t pdcs_autosearch_write(struct kobject *kobj,
 830				     struct kobj_attribute *attr,
 831				     const char *buf, size_t count)
 832{
 833	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
 834}
 835
 836/**
 837 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
 838 * @buf: The input buffer to read from.
 839 * @count: The number of bytes to be read.
 840 *
 841 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
 842 * write approach. It's up to userspace to deal with it when constructing
 843 * its input buffer.
 844 */
 845static ssize_t pdcs_osdep1_write(struct kobject *kobj,
 846				 struct kobj_attribute *attr,
 847				 const char *buf, size_t count)
 848{
 849	u8 in[16];
 850
 851	if (!capable(CAP_SYS_ADMIN))
 852		return -EACCES;
 853
 854	if (!buf || !count)
 855		return -EINVAL;
 856
 857	if (unlikely(pdcs_osid != OS_ID_LINUX))
 858		return -EPERM;
 859
 860	if (count > 16)
 861		return -EMSGSIZE;
 862
 863	/* We'll use a local copy of buf */
 864	memset(in, 0, 16);
 865	memcpy(in, buf, count);
 866
 867	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
 868		return -EIO;
 869
 870	return count;
 871}
 872
 873/**
 874 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
 875 * @buf: The input buffer to read from.
 876 * @count: The number of bytes to be read.
 877 *
 878 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
 879 * byte-by-byte write approach. It's up to userspace to deal with it when
 880 * constructing its input buffer.
 881 */
 882static ssize_t pdcs_osdep2_write(struct kobject *kobj,
 883				 struct kobj_attribute *attr,
 884				 const char *buf, size_t count)
 885{
 886	unsigned long size;
 887	unsigned short i;
 888	u8 in[4];
 889
 890	if (!capable(CAP_SYS_ADMIN))
 891		return -EACCES;
 892
 893	if (!buf || !count)
 894		return -EINVAL;
 895
 896	if (unlikely(pdcs_size <= 224))
 897		return -ENOSYS;
 898
 899	if (unlikely(pdcs_osid != OS_ID_LINUX))
 900		return -EPERM;
 901
 902	size = pdcs_size - 224;
 903
 904	if (count > size)
 905		return -EMSGSIZE;
 906
 907	/* We'll use a local copy of buf */
 908
 909	for (i=0; i<count; i+=4) {
 910		memset(in, 0, 4);
 911		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
 912		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
 913					sizeof(in)) != PDC_OK))
 914			return -EIO;
 915	}
 916
 917	return count;
 918}
 919
 920/* The remaining attributes. */
 921static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
 922static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
 923static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
 924static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
 925static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
 926static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
 927static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
 928static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
 929static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
 930
 931static struct attribute *pdcs_subsys_attrs[] = {
 932	&pdcs_attr_size.attr,
 933	&pdcs_attr_autoboot.attr,
 934	&pdcs_attr_autosearch.attr,
 935	&pdcs_attr_timer.attr,
 936	&pdcs_attr_osid.attr,
 937	&pdcs_attr_osdep1.attr,
 938	&pdcs_attr_diagnostic.attr,
 939	&pdcs_attr_fastsize.attr,
 940	&pdcs_attr_osdep2.attr,
 941	NULL,
 942};
 943
 944static const struct attribute_group pdcs_attr_group = {
 945	.attrs = pdcs_subsys_attrs,
 946};
 947
 948static struct kobject *stable_kobj;
 949static struct kset *paths_kset;
 950
 951/**
 952 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
 953 * 
 954 * It creates kobjects corresponding to each path entry with nice sysfs
 955 * links to the real device. This is where the magic takes place: when
 956 * registering the subsystem attributes during module init, each kobject hereby
 957 * created will show in the sysfs tree as a folder containing files as defined
 958 * by path_subsys_attr[].
 959 */
 960static inline int __init
 961pdcs_register_pathentries(void)
 962{
 963	unsigned short i;
 964	struct pdcspath_entry *entry;
 965	int err;
 966	
 967	/* Initialize the entries rw_lock before anything else */
 968	for (i = 0; (entry = pdcspath_entries[i]); i++)
 969		rwlock_init(&entry->rw_lock);
 970
 971	for (i = 0; (entry = pdcspath_entries[i]); i++) {
 972		write_lock(&entry->rw_lock);
 973		err = pdcspath_fetch(entry);
 974		write_unlock(&entry->rw_lock);
 975
 976		if (err < 0)
 977			continue;
 978
 979		entry->kobj.kset = paths_kset;
 980		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
 981					   "%s", entry->name);
 982		if (err)
 
 983			return err;
 
 984
 985		/* kobject is now registered */
 986		write_lock(&entry->rw_lock);
 987		entry->ready = 2;
 988		write_unlock(&entry->rw_lock);
 989		
 990		/* Add a nice symlink to the real device */
 991		if (entry->dev) {
 992			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
 993			WARN_ON(err);
 994		}
 995
 996		kobject_uevent(&entry->kobj, KOBJ_ADD);
 997	}
 998	
 999	return 0;
1000}
1001
1002/**
1003 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1004 */
1005static inline void
1006pdcs_unregister_pathentries(void)
1007{
1008	unsigned short i;
1009	struct pdcspath_entry *entry;
1010	
1011	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1012		read_lock(&entry->rw_lock);
1013		if (entry->ready >= 2)
1014			kobject_put(&entry->kobj);
1015		read_unlock(&entry->rw_lock);
1016	}
1017}
1018
1019/*
1020 * For now we register the stable subsystem with the firmware subsystem
1021 * and the paths subsystem with the stable subsystem
1022 */
1023static int __init
1024pdc_stable_init(void)
1025{
1026	int rc = 0, error = 0;
1027	u32 result;
1028
1029	/* find the size of the stable storage */
1030	if (pdc_stable_get_size(&pdcs_size) != PDC_OK) 
1031		return -ENODEV;
1032
1033	/* make sure we have enough data */
1034	if (pdcs_size < 96)
1035		return -ENODATA;
1036
1037	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1038
1039	/* get OSID */
1040	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1041		return -EIO;
1042
1043	/* the actual result is 16 bits away */
1044	pdcs_osid = (u16)(result >> 16);
1045
1046	/* For now we'll register the directory at /sys/firmware/stable */
1047	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1048	if (!stable_kobj) {
1049		rc = -ENOMEM;
1050		goto fail_firmreg;
1051	}
1052
1053	/* Don't forget the root entries */
1054	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1055
1056	/* register the paths kset as a child of the stable kset */
1057	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1058	if (!paths_kset) {
1059		rc = -ENOMEM;
1060		goto fail_ksetreg;
1061	}
1062
1063	/* now we create all "files" for the paths kset */
1064	if ((rc = pdcs_register_pathentries()))
1065		goto fail_pdcsreg;
1066
1067	return rc;
1068	
1069fail_pdcsreg:
1070	pdcs_unregister_pathentries();
1071	kset_unregister(paths_kset);
1072	
1073fail_ksetreg:
1074	kobject_put(stable_kobj);
1075	
1076fail_firmreg:
1077	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1078	return rc;
1079}
1080
1081static void __exit
1082pdc_stable_exit(void)
1083{
1084	pdcs_unregister_pathentries();
1085	kset_unregister(paths_kset);
1086	kobject_put(stable_kobj);
1087}
1088
1089
1090module_init(pdc_stable_init);
1091module_exit(pdc_stable_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* 
   3 *    Interfaces to retrieve and set PDC Stable options (firmware)
   4 *
   5 *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
   6 *
   7 *    DEV NOTE: the PDC Procedures reference states that:
   8 *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
   9 *    96 bytes of Stable Storage is optional [...]. Failure to provide the
  10 *    optional locations from 96 to 192 results in the loss of certain
  11 *    functionality during boot."
  12 *
  13 *    Since locations between 96 and 192 are the various paths, most (if not
  14 *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
  15 *    following code can deal with just 96 bytes of Stable Storage, and all
  16 *    sizes between 96 and 192 bytes (provided they are multiple of struct
  17 *    pdc_module_path size, eg: 128, 160 and 192) to provide full information.
  18 *    One last word: there's one path we can always count on: the primary path.
  19 *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
  20 *
  21 *    The first OS-dependent area should always be available. Obviously, this is
  22 *    not true for the other one. Also bear in mind that reading/writing from/to
  23 *    osdep2 is much more expensive than from/to osdep1.
  24 *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
  25 *    2 bytes of storage available right after OSID. That's a total of 4 bytes
  26 *    sacrificed: -ETOOLAZY :P
  27 *
  28 *    The current policy wrt file permissions is:
  29 *	- write: root only
  30 *	- read: (reading triggers PDC calls) ? root only : everyone
  31 *    The rationale is that PDC calls could hog (DoS) the machine.
  32 *
  33 *	TODO:
  34 *	- timer/fastsize write calls
  35 */
  36
  37#undef PDCS_DEBUG
  38#ifdef PDCS_DEBUG
  39#define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
  40#else
  41#define DPRINTK(fmt, args...)
  42#endif
  43
  44#include <linux/module.h>
  45#include <linux/init.h>
  46#include <linux/kernel.h>
  47#include <linux/string.h>
  48#include <linux/capability.h>
  49#include <linux/ctype.h>
  50#include <linux/sysfs.h>
  51#include <linux/kobject.h>
  52#include <linux/device.h>
  53#include <linux/errno.h>
  54#include <linux/spinlock.h>
  55
  56#include <asm/pdc.h>
  57#include <asm/page.h>
  58#include <linux/uaccess.h>
  59#include <asm/hardware.h>
  60
  61#define PDCS_VERSION	"0.30"
  62#define PDCS_PREFIX	"PDC Stable Storage"
  63
  64#define PDCS_ADDR_PPRI	0x00
  65#define PDCS_ADDR_OSID	0x40
  66#define PDCS_ADDR_OSD1	0x48
  67#define PDCS_ADDR_DIAG	0x58
  68#define PDCS_ADDR_FSIZ	0x5C
  69#define PDCS_ADDR_PCON	0x60
  70#define PDCS_ADDR_PALT	0x80
  71#define PDCS_ADDR_PKBD	0xA0
  72#define PDCS_ADDR_OSD2	0xE0
  73
  74MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
  75MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
  76MODULE_LICENSE("GPL");
  77MODULE_VERSION(PDCS_VERSION);
  78
  79/* holds Stable Storage size. Initialized once and for all, no lock needed */
  80static unsigned long pdcs_size __read_mostly;
  81
  82/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
  83static u16 pdcs_osid __read_mostly;
  84
  85/* This struct defines what we need to deal with a parisc pdc path entry */
  86struct pdcspath_entry {
  87	rwlock_t rw_lock;		/* to protect path entry access */
  88	short ready;			/* entry record is valid if != 0 */
  89	unsigned long addr;		/* entry address in stable storage */
  90	char *name;			/* entry name */
  91	struct pdc_module_path devpath;	/* device path in parisc representation */
  92	struct device *dev;		/* corresponding device */
  93	struct kobject kobj;
  94};
  95
  96struct pdcspath_attribute {
  97	struct attribute attr;
  98	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
  99	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
 100};
 101
 102#define PDCSPATH_ENTRY(_addr, _name) \
 103struct pdcspath_entry pdcspath_entry_##_name = { \
 104	.ready = 0, \
 105	.addr = _addr, \
 106	.name = __stringify(_name), \
 107};
 108
 109#define PDCS_ATTR(_name, _mode, _show, _store) \
 110struct kobj_attribute pdcs_attr_##_name = { \
 111	.attr = {.name = __stringify(_name), .mode = _mode}, \
 112	.show = _show, \
 113	.store = _store, \
 114};
 115
 116#define PATHS_ATTR(_name, _mode, _show, _store) \
 117struct pdcspath_attribute paths_attr_##_name = { \
 118	.attr = {.name = __stringify(_name), .mode = _mode}, \
 119	.show = _show, \
 120	.store = _store, \
 121};
 122
 123#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
 124#define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
 125
 126/**
 127 * pdcspath_fetch - This function populates the path entry structs.
 128 * @entry: A pointer to an allocated pdcspath_entry.
 129 * 
 130 * The general idea is that you don't read from the Stable Storage every time
 131 * you access the files provided by the facilities. We store a copy of the
 132 * content of the stable storage WRT various paths in these structs. We read
 133 * these structs when reading the files, and we will write to these structs when
 134 * writing to the files, and only then write them back to the Stable Storage.
 135 *
 136 * This function expects to be called with @entry->rw_lock write-hold.
 137 */
 138static int
 139pdcspath_fetch(struct pdcspath_entry *entry)
 140{
 141	struct pdc_module_path *devpath;
 142
 143	if (!entry)
 144		return -EINVAL;
 145
 146	devpath = &entry->devpath;
 147	
 148	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 149			entry, devpath, entry->addr);
 150
 151	/* addr, devpath and count must be word aligned */
 152	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 153		return -EIO;
 154		
 155	/* Find the matching device.
 156	   NOTE: hardware_path overlays with pdc_module_path, so the nice cast can
 157	   be used */
 158	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
 159
 160	entry->ready = 1;
 161	
 162	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 163	
 164	return 0;
 165}
 166
 167/**
 168 * pdcspath_store - This function writes a path to stable storage.
 169 * @entry: A pointer to an allocated pdcspath_entry.
 170 * 
 171 * It can be used in two ways: either by passing it a preset devpath struct
 172 * containing an already computed hardware path, or by passing it a device
 173 * pointer, from which it'll find out the corresponding hardware path.
 174 * For now we do not handle the case where there's an error in writing to the
 175 * Stable Storage area, so you'd better not mess up the data :P
 176 *
 177 * This function expects to be called with @entry->rw_lock write-hold.
 178 */
 179static void
 180pdcspath_store(struct pdcspath_entry *entry)
 181{
 182	struct pdc_module_path *devpath;
 183
 184	BUG_ON(!entry);
 185
 186	devpath = &entry->devpath;
 187	
 188	/* We expect the caller to set the ready flag to 0 if the hardware
 189	   path struct provided is invalid, so that we know we have to fill it.
 190	   First case, we don't have a preset hwpath... */
 191	if (!entry->ready) {
 192		/* ...but we have a device, map it */
 193		BUG_ON(!entry->dev);
 194		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
 195	}
 196	/* else, we expect the provided hwpath to be valid. */
 197	
 198	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 199			entry, devpath, entry->addr);
 200
 201	/* addr, devpath and count must be word aligned */
 202	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 203		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
 204				"It is likely that the Stable Storage data has been corrupted.\n"
 205				"Please check it carefully upon next reboot.\n", __func__);
 206		
 207	/* kobject is already registered */
 208	entry->ready = 2;
 209	
 210	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 211}
 212
 213/**
 214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
 215 * @entry: An allocated and populated pdscpath_entry struct.
 216 * @buf: The output buffer to write to.
 217 * 
 218 * We will call this function to format the output of the hwpath attribute file.
 219 */
 220static ssize_t
 221pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
 222{
 223	char *out = buf;
 224	struct pdc_module_path *devpath;
 225	short i;
 226
 227	if (!entry || !buf)
 228		return -EINVAL;
 229
 230	read_lock(&entry->rw_lock);
 231	devpath = &entry->devpath;
 232	i = entry->ready;
 233	read_unlock(&entry->rw_lock);
 234
 235	if (!i)	/* entry is not ready */
 236		return -ENODATA;
 237	
 238	for (i = 0; i < 6; i++) {
 239		if (devpath->path.bc[i] < 0)
 240			continue;
 241		out += sprintf(out, "%d/", devpath->path.bc[i]);
 242	}
 243	out += sprintf(out, "%u\n", (unsigned char)devpath->path.mod);
 244	
 245	return out - buf;
 246}
 247
 248/**
 249 * pdcspath_hwpath_write - This function handles hardware path modifying.
 250 * @entry: An allocated and populated pdscpath_entry struct.
 251 * @buf: The input buffer to read from.
 252 * @count: The number of bytes to be read.
 253 * 
 254 * We will call this function to change the current hardware path.
 255 * Hardware paths are to be given '/'-delimited, without brackets.
 256 * We make sure that the provided path actually maps to an existing
 257 * device, BUT nothing would prevent some foolish user to set the path to some
 258 * PCI bridge or even a CPU...
 259 * A better work around would be to make sure we are at the end of a device tree
 260 * for instance, but it would be IMHO beyond the simple scope of that driver.
 261 * The aim is to provide a facility. Data correctness is left to userland.
 262 */
 263static ssize_t
 264pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 265{
 266	struct hardware_path hwpath;
 267	unsigned short i;
 268	char in[64], *temp;
 269	struct device *dev;
 270	int ret;
 271
 272	if (!entry || !buf || !count)
 273		return -EINVAL;
 274
 275	/* We'll use a local copy of buf */
 276	count = min_t(size_t, count, sizeof(in)-1);
 277	strscpy(in, buf, count + 1);
 
 278	
 279	/* Let's clean up the target. 0xff is a blank pattern */
 280	memset(&hwpath, 0xff, sizeof(hwpath));
 281	
 282	/* First, pick the mod field (the last one of the input string) */
 283	if (!(temp = strrchr(in, '/')))
 284		return -EINVAL;
 285			
 286	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
 287	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
 288	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
 289	
 290	/* Then, loop for each delimiter, making sure we don't have too many.
 291	   we write the bc fields in a down-top way. No matter what, we stop
 292	   before writing the last field. If there are too many fields anyway,
 293	   then the user is a moron and it'll be caught up later when we'll
 294	   check the consistency of the given hwpath. */
 295	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
 296		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
 297		in[temp-in] = '\0';
 298		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
 299	}
 300	
 301	/* Store the final field */		
 302	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
 303	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
 304	
 305	/* Now we check that the user isn't trying to lure us */
 306	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
 307		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
 308			"hardware path: %s\n", __func__, entry->name, buf);
 309		return -EINVAL;
 310	}
 311	
 312	/* So far so good, let's get in deep */
 313	write_lock(&entry->rw_lock);
 314	entry->ready = 0;
 315	entry->dev = dev;
 316	
 317	/* Now, dive in. Write back to the hardware */
 318	pdcspath_store(entry);
 319	
 320	/* Update the symlink to the real device */
 321	sysfs_remove_link(&entry->kobj, "device");
 322	write_unlock(&entry->rw_lock);
 323
 324	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
 325	WARN_ON(ret);
 326
 327	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
 328		entry->name, buf);
 329	
 330	return count;
 331}
 332
 333/**
 334 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
 335 * @entry: An allocated and populated pdscpath_entry struct.
 336 * @buf: The output buffer to write to.
 337 * 
 338 * We will call this function to format the output of the layer attribute file.
 339 */
 340static ssize_t
 341pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
 342{
 343	char *out = buf;
 344	struct pdc_module_path *devpath;
 345	short i;
 346
 347	if (!entry || !buf)
 348		return -EINVAL;
 349	
 350	read_lock(&entry->rw_lock);
 351	devpath = &entry->devpath;
 352	i = entry->ready;
 353	read_unlock(&entry->rw_lock);
 354
 355	if (!i)	/* entry is not ready */
 356		return -ENODATA;
 357	
 358	for (i = 0; i < 6 && devpath->layers[i]; i++)
 359		out += sprintf(out, "%u ", devpath->layers[i]);
 360
 361	out += sprintf(out, "\n");
 362	
 363	return out - buf;
 364}
 365
 366/**
 367 * pdcspath_layer_write - This function handles extended layer modifying.
 368 * @entry: An allocated and populated pdscpath_entry struct.
 369 * @buf: The input buffer to read from.
 370 * @count: The number of bytes to be read.
 371 * 
 372 * We will call this function to change the current layer value.
 373 * Layers are to be given '.'-delimited, without brackets.
 374 * XXX beware we are far less checky WRT input data provided than for hwpath.
 375 * Potential harm can be done, since there's no way to check the validity of
 376 * the layer fields.
 377 */
 378static ssize_t
 379pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 380{
 381	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
 382	unsigned short i;
 383	char in[64], *temp;
 384
 385	if (!entry || !buf || !count)
 386		return -EINVAL;
 387
 388	/* We'll use a local copy of buf */
 389	count = min_t(size_t, count, sizeof(in)-1);
 390	strscpy(in, buf, count + 1);
 
 391	
 392	/* Let's clean up the target. 0 is a blank pattern */
 393	memset(&layers, 0, sizeof(layers));
 394	
 395	/* First, pick the first layer */
 396	if (unlikely(!isdigit(*in)))
 397		return -EINVAL;
 398	layers[0] = simple_strtoul(in, NULL, 10);
 399	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
 400	
 401	temp = in;
 402	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
 403		if (unlikely(!isdigit(*(++temp))))
 404			return -EINVAL;
 405		layers[i] = simple_strtoul(temp, NULL, 10);
 406		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
 407	}
 408		
 409	/* So far so good, let's get in deep */
 410	write_lock(&entry->rw_lock);
 411	
 412	/* First, overwrite the current layers with the new ones, not touching
 413	   the hardware path. */
 414	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
 415	
 416	/* Now, dive in. Write back to the hardware */
 417	pdcspath_store(entry);
 418	write_unlock(&entry->rw_lock);
 419	
 420	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
 421		entry->name, buf);
 422	
 423	return count;
 424}
 425
 426/**
 427 * pdcspath_attr_show - Generic read function call wrapper.
 428 * @kobj: The kobject to get info from.
 429 * @attr: The attribute looked upon.
 430 * @buf: The output buffer.
 431 */
 432static ssize_t
 433pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
 434{
 435	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 436	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 437	ssize_t ret = 0;
 438
 439	if (pdcs_attr->show)
 440		ret = pdcs_attr->show(entry, buf);
 441
 442	return ret;
 443}
 444
 445/**
 446 * pdcspath_attr_store - Generic write function call wrapper.
 447 * @kobj: The kobject to write info to.
 448 * @attr: The attribute to be modified.
 449 * @buf: The input buffer.
 450 * @count: The size of the buffer.
 451 */
 452static ssize_t
 453pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
 454			const char *buf, size_t count)
 455{
 456	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 457	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 458	ssize_t ret = 0;
 459
 460	if (!capable(CAP_SYS_ADMIN))
 461		return -EACCES;
 462
 463	if (pdcs_attr->store)
 464		ret = pdcs_attr->store(entry, buf, count);
 465
 466	return ret;
 467}
 468
 469static const struct sysfs_ops pdcspath_attr_ops = {
 470	.show = pdcspath_attr_show,
 471	.store = pdcspath_attr_store,
 472};
 473
 474/* These are the two attributes of any PDC path. */
 475static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
 476static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
 477
 478static struct attribute *paths_subsys_attrs[] = {
 479	&paths_attr_hwpath.attr,
 480	&paths_attr_layer.attr,
 481	NULL,
 482};
 483ATTRIBUTE_GROUPS(paths_subsys);
 484
 485/* Specific kobject type for our PDC paths */
 486static struct kobj_type ktype_pdcspath = {
 487	.sysfs_ops = &pdcspath_attr_ops,
 488	.default_groups = paths_subsys_groups,
 489};
 490
 491/* We hard define the 4 types of path we expect to find */
 492static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
 493static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
 494static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
 495static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
 496
 497/* An array containing all PDC paths we will deal with */
 498static struct pdcspath_entry *pdcspath_entries[] = {
 499	&pdcspath_entry_primary,
 500	&pdcspath_entry_alternative,
 501	&pdcspath_entry_console,
 502	&pdcspath_entry_keyboard,
 503	NULL,
 504};
 505
 506
 507/* For more insight of what's going on here, refer to PDC Procedures doc,
 508 * Section PDC_STABLE */
 509
 510/**
 511 * pdcs_size_read - Stable Storage size output.
 512 * @buf: The output buffer to write to.
 513 */
 514static ssize_t pdcs_size_read(struct kobject *kobj,
 515			      struct kobj_attribute *attr,
 516			      char *buf)
 517{
 518	char *out = buf;
 519
 520	if (!buf)
 521		return -EINVAL;
 522
 523	/* show the size of the stable storage */
 524	out += sprintf(out, "%ld\n", pdcs_size);
 525
 526	return out - buf;
 527}
 528
 529/**
 530 * pdcs_auto_read - Stable Storage autoboot/search flag output.
 531 * @buf: The output buffer to write to.
 532 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 533 */
 534static ssize_t pdcs_auto_read(struct kobject *kobj,
 535			      struct kobj_attribute *attr,
 536			      char *buf, int knob)
 537{
 538	char *out = buf;
 539	struct pdcspath_entry *pathentry;
 540
 541	if (!buf)
 542		return -EINVAL;
 543
 544	/* Current flags are stored in primary boot path entry */
 545	pathentry = &pdcspath_entry_primary;
 546
 547	read_lock(&pathentry->rw_lock);
 548	out += sprintf(out, "%s\n", (pathentry->devpath.path.flags & knob) ?
 549					"On" : "Off");
 550	read_unlock(&pathentry->rw_lock);
 551
 552	return out - buf;
 553}
 554
 555/**
 556 * pdcs_autoboot_read - Stable Storage autoboot flag output.
 557 * @buf: The output buffer to write to.
 558 */
 559static ssize_t pdcs_autoboot_read(struct kobject *kobj,
 560				  struct kobj_attribute *attr, char *buf)
 561{
 562	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
 563}
 564
 565/**
 566 * pdcs_autosearch_read - Stable Storage autoboot flag output.
 567 * @buf: The output buffer to write to.
 568 */
 569static ssize_t pdcs_autosearch_read(struct kobject *kobj,
 570				    struct kobj_attribute *attr, char *buf)
 571{
 572	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
 573}
 574
 575/**
 576 * pdcs_timer_read - Stable Storage timer count output (in seconds).
 577 * @buf: The output buffer to write to.
 578 *
 579 * The value of the timer field correponds to a number of seconds in powers of 2.
 580 */
 581static ssize_t pdcs_timer_read(struct kobject *kobj,
 582			       struct kobj_attribute *attr, char *buf)
 583{
 584	char *out = buf;
 585	struct pdcspath_entry *pathentry;
 586
 587	if (!buf)
 588		return -EINVAL;
 589
 590	/* Current flags are stored in primary boot path entry */
 591	pathentry = &pdcspath_entry_primary;
 592
 593	/* print the timer value in seconds */
 594	read_lock(&pathentry->rw_lock);
 595	out += sprintf(out, "%u\n", (pathentry->devpath.path.flags & PF_TIMER) ?
 596				(1 << (pathentry->devpath.path.flags & PF_TIMER)) : 0);
 597	read_unlock(&pathentry->rw_lock);
 598
 599	return out - buf;
 600}
 601
 602/**
 603 * pdcs_osid_read - Stable Storage OS ID register output.
 604 * @buf: The output buffer to write to.
 605 */
 606static ssize_t pdcs_osid_read(struct kobject *kobj,
 607			      struct kobj_attribute *attr, char *buf)
 608{
 609	char *out = buf;
 610
 611	if (!buf)
 612		return -EINVAL;
 613
 614	out += sprintf(out, "%s dependent data (0x%.4x)\n",
 615		os_id_to_string(pdcs_osid), pdcs_osid);
 616
 617	return out - buf;
 618}
 619
 620/**
 621 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
 622 * @buf: The output buffer to write to.
 623 *
 624 * This can hold 16 bytes of OS-Dependent data.
 625 */
 626static ssize_t pdcs_osdep1_read(struct kobject *kobj,
 627				struct kobj_attribute *attr, char *buf)
 628{
 629	char *out = buf;
 630	u32 result[4];
 631
 632	if (!buf)
 633		return -EINVAL;
 634
 635	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
 636		return -EIO;
 637
 638	out += sprintf(out, "0x%.8x\n", result[0]);
 639	out += sprintf(out, "0x%.8x\n", result[1]);
 640	out += sprintf(out, "0x%.8x\n", result[2]);
 641	out += sprintf(out, "0x%.8x\n", result[3]);
 642
 643	return out - buf;
 644}
 645
 646/**
 647 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
 648 * @buf: The output buffer to write to.
 649 *
 650 * I have NFC how to interpret the content of that register ;-).
 651 */
 652static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
 653				    struct kobj_attribute *attr, char *buf)
 654{
 655	char *out = buf;
 656	u32 result;
 657
 658	if (!buf)
 659		return -EINVAL;
 660
 661	/* get diagnostic */
 662	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
 663		return -EIO;
 664
 665	out += sprintf(out, "0x%.4x\n", (result >> 16));
 666
 667	return out - buf;
 668}
 669
 670/**
 671 * pdcs_fastsize_read - Stable Storage FastSize register output.
 672 * @buf: The output buffer to write to.
 673 *
 674 * This register holds the amount of system RAM to be tested during boot sequence.
 675 */
 676static ssize_t pdcs_fastsize_read(struct kobject *kobj,
 677				  struct kobj_attribute *attr, char *buf)
 678{
 679	char *out = buf;
 680	u32 result;
 681
 682	if (!buf)
 683		return -EINVAL;
 684
 685	/* get fast-size */
 686	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
 687		return -EIO;
 688
 689	if ((result & 0x0F) < 0x0E)
 690		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
 691	else
 692		out += sprintf(out, "All");
 693	out += sprintf(out, "\n");
 694	
 695	return out - buf;
 696}
 697
 698/**
 699 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
 700 * @buf: The output buffer to write to.
 701 *
 702 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
 703 */
 704static ssize_t pdcs_osdep2_read(struct kobject *kobj,
 705				struct kobj_attribute *attr, char *buf)
 706{
 707	char *out = buf;
 708	unsigned long size;
 709	unsigned short i;
 710	u32 result;
 711
 712	if (unlikely(pdcs_size <= 224))
 713		return -ENODATA;
 714
 715	size = pdcs_size - 224;
 716
 717	if (!buf)
 718		return -EINVAL;
 719
 720	for (i=0; i<size; i+=4) {
 721		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
 722					sizeof(result)) != PDC_OK))
 723			return -EIO;
 724		out += sprintf(out, "0x%.8x\n", result);
 725	}
 726
 727	return out - buf;
 728}
 729
 730/**
 731 * pdcs_auto_write - This function handles autoboot/search flag modifying.
 732 * @buf: The input buffer to read from.
 733 * @count: The number of bytes to be read.
 734 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 735 * 
 736 * We will call this function to change the current autoboot flag.
 737 * We expect a precise syntax:
 738 *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
 739 */
 740static ssize_t pdcs_auto_write(struct kobject *kobj,
 741			       struct kobj_attribute *attr, const char *buf,
 742			       size_t count, int knob)
 743{
 744	struct pdcspath_entry *pathentry;
 745	unsigned char flags;
 746	char in[8], *temp;
 747	char c;
 748
 749	if (!capable(CAP_SYS_ADMIN))
 750		return -EACCES;
 751
 752	if (!buf || !count)
 753		return -EINVAL;
 754
 755	/* We'll use a local copy of buf */
 756	count = min_t(size_t, count, sizeof(in)-1);
 757	strscpy(in, buf, count + 1);
 
 758
 759	/* Current flags are stored in primary boot path entry */
 760	pathentry = &pdcspath_entry_primary;
 761	
 762	/* Be nice to the existing flag record */
 763	read_lock(&pathentry->rw_lock);
 764	flags = pathentry->devpath.path.flags;
 765	read_unlock(&pathentry->rw_lock);
 766	
 767	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
 768
 769	temp = skip_spaces(in);
 770
 771	c = *temp++ - '0';
 772	if ((c != 0) && (c != 1))
 773		goto parse_error;
 774	if (c == 0)
 775		flags &= ~knob;
 776	else
 777		flags |= knob;
 778	
 779	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
 780		
 781	/* So far so good, let's get in deep */
 782	write_lock(&pathentry->rw_lock);
 783	
 784	/* Change the path entry flags first */
 785	pathentry->devpath.path.flags = flags;
 786		
 787	/* Now, dive in. Write back to the hardware */
 788	pdcspath_store(pathentry);
 789	write_unlock(&pathentry->rw_lock);
 790	
 791	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
 792		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
 793		(flags & knob) ? "On" : "Off");
 794	
 795	return count;
 796
 797parse_error:
 798	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
 799	return -EINVAL;
 800}
 801
 802/**
 803 * pdcs_autoboot_write - This function handles autoboot flag modifying.
 804 * @buf: The input buffer to read from.
 805 * @count: The number of bytes to be read.
 806 *
 807 * We will call this function to change the current boot flags.
 808 * We expect a precise syntax:
 809 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 810 */
 811static ssize_t pdcs_autoboot_write(struct kobject *kobj,
 812				   struct kobj_attribute *attr,
 813				   const char *buf, size_t count)
 814{
 815	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
 816}
 817
 818/**
 819 * pdcs_autosearch_write - This function handles autosearch flag modifying.
 820 * @buf: The input buffer to read from.
 821 * @count: The number of bytes to be read.
 822 *
 823 * We will call this function to change the current boot flags.
 824 * We expect a precise syntax:
 825 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 826 */
 827static ssize_t pdcs_autosearch_write(struct kobject *kobj,
 828				     struct kobj_attribute *attr,
 829				     const char *buf, size_t count)
 830{
 831	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
 832}
 833
 834/**
 835 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
 836 * @buf: The input buffer to read from.
 837 * @count: The number of bytes to be read.
 838 *
 839 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
 840 * write approach. It's up to userspace to deal with it when constructing
 841 * its input buffer.
 842 */
 843static ssize_t pdcs_osdep1_write(struct kobject *kobj,
 844				 struct kobj_attribute *attr,
 845				 const char *buf, size_t count)
 846{
 847	u8 in[16];
 848
 849	if (!capable(CAP_SYS_ADMIN))
 850		return -EACCES;
 851
 852	if (!buf || !count)
 853		return -EINVAL;
 854
 855	if (unlikely(pdcs_osid != OS_ID_LINUX))
 856		return -EPERM;
 857
 858	if (count > 16)
 859		return -EMSGSIZE;
 860
 861	/* We'll use a local copy of buf */
 862	memset(in, 0, 16);
 863	memcpy(in, buf, count);
 864
 865	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
 866		return -EIO;
 867
 868	return count;
 869}
 870
 871/**
 872 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
 873 * @buf: The input buffer to read from.
 874 * @count: The number of bytes to be read.
 875 *
 876 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
 877 * byte-by-byte write approach. It's up to userspace to deal with it when
 878 * constructing its input buffer.
 879 */
 880static ssize_t pdcs_osdep2_write(struct kobject *kobj,
 881				 struct kobj_attribute *attr,
 882				 const char *buf, size_t count)
 883{
 884	unsigned long size;
 885	unsigned short i;
 886	u8 in[4];
 887
 888	if (!capable(CAP_SYS_ADMIN))
 889		return -EACCES;
 890
 891	if (!buf || !count)
 892		return -EINVAL;
 893
 894	if (unlikely(pdcs_size <= 224))
 895		return -ENOSYS;
 896
 897	if (unlikely(pdcs_osid != OS_ID_LINUX))
 898		return -EPERM;
 899
 900	size = pdcs_size - 224;
 901
 902	if (count > size)
 903		return -EMSGSIZE;
 904
 905	/* We'll use a local copy of buf */
 906
 907	for (i=0; i<count; i+=4) {
 908		memset(in, 0, 4);
 909		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
 910		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
 911					sizeof(in)) != PDC_OK))
 912			return -EIO;
 913	}
 914
 915	return count;
 916}
 917
 918/* The remaining attributes. */
 919static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
 920static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
 921static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
 922static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
 923static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
 924static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
 925static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
 926static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
 927static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
 928
 929static struct attribute *pdcs_subsys_attrs[] = {
 930	&pdcs_attr_size.attr,
 931	&pdcs_attr_autoboot.attr,
 932	&pdcs_attr_autosearch.attr,
 933	&pdcs_attr_timer.attr,
 934	&pdcs_attr_osid.attr,
 935	&pdcs_attr_osdep1.attr,
 936	&pdcs_attr_diagnostic.attr,
 937	&pdcs_attr_fastsize.attr,
 938	&pdcs_attr_osdep2.attr,
 939	NULL,
 940};
 941
 942static const struct attribute_group pdcs_attr_group = {
 943	.attrs = pdcs_subsys_attrs,
 944};
 945
 946static struct kobject *stable_kobj;
 947static struct kset *paths_kset;
 948
 949/**
 950 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
 951 * 
 952 * It creates kobjects corresponding to each path entry with nice sysfs
 953 * links to the real device. This is where the magic takes place: when
 954 * registering the subsystem attributes during module init, each kobject hereby
 955 * created will show in the sysfs tree as a folder containing files as defined
 956 * by path_subsys_attr[].
 957 */
 958static inline int __init
 959pdcs_register_pathentries(void)
 960{
 961	unsigned short i;
 962	struct pdcspath_entry *entry;
 963	int err;
 964	
 965	/* Initialize the entries rw_lock before anything else */
 966	for (i = 0; (entry = pdcspath_entries[i]); i++)
 967		rwlock_init(&entry->rw_lock);
 968
 969	for (i = 0; (entry = pdcspath_entries[i]); i++) {
 970		write_lock(&entry->rw_lock);
 971		err = pdcspath_fetch(entry);
 972		write_unlock(&entry->rw_lock);
 973
 974		if (err < 0)
 975			continue;
 976
 977		entry->kobj.kset = paths_kset;
 978		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
 979					   "%s", entry->name);
 980		if (err) {
 981			kobject_put(&entry->kobj);
 982			return err;
 983		}
 984
 985		/* kobject is now registered */
 986		write_lock(&entry->rw_lock);
 987		entry->ready = 2;
 988		write_unlock(&entry->rw_lock);
 989		
 990		/* Add a nice symlink to the real device */
 991		if (entry->dev) {
 992			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
 993			WARN_ON(err);
 994		}
 995
 996		kobject_uevent(&entry->kobj, KOBJ_ADD);
 997	}
 998	
 999	return 0;
1000}
1001
1002/**
1003 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1004 */
1005static inline void
1006pdcs_unregister_pathentries(void)
1007{
1008	unsigned short i;
1009	struct pdcspath_entry *entry;
1010	
1011	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1012		read_lock(&entry->rw_lock);
1013		if (entry->ready >= 2)
1014			kobject_put(&entry->kobj);
1015		read_unlock(&entry->rw_lock);
1016	}
1017}
1018
1019/*
1020 * For now we register the stable subsystem with the firmware subsystem
1021 * and the paths subsystem with the stable subsystem
1022 */
1023static int __init
1024pdc_stable_init(void)
1025{
1026	int rc = 0, error = 0;
1027	u32 result;
1028
1029	/* find the size of the stable storage */
1030	if (pdc_stable_get_size(&pdcs_size) != PDC_OK) 
1031		return -ENODEV;
1032
1033	/* make sure we have enough data */
1034	if (pdcs_size < 96)
1035		return -ENODATA;
1036
1037	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1038
1039	/* get OSID */
1040	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1041		return -EIO;
1042
1043	/* the actual result is 16 bits away */
1044	pdcs_osid = (u16)(result >> 16);
1045
1046	/* For now we'll register the directory at /sys/firmware/stable */
1047	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1048	if (!stable_kobj) {
1049		rc = -ENOMEM;
1050		goto fail_firmreg;
1051	}
1052
1053	/* Don't forget the root entries */
1054	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1055
1056	/* register the paths kset as a child of the stable kset */
1057	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1058	if (!paths_kset) {
1059		rc = -ENOMEM;
1060		goto fail_ksetreg;
1061	}
1062
1063	/* now we create all "files" for the paths kset */
1064	if ((rc = pdcs_register_pathentries()))
1065		goto fail_pdcsreg;
1066
1067	return rc;
1068	
1069fail_pdcsreg:
1070	pdcs_unregister_pathentries();
1071	kset_unregister(paths_kset);
1072	
1073fail_ksetreg:
1074	kobject_put(stable_kobj);
1075	
1076fail_firmreg:
1077	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1078	return rc;
1079}
1080
1081static void __exit
1082pdc_stable_exit(void)
1083{
1084	pdcs_unregister_pathentries();
1085	kset_unregister(paths_kset);
1086	kobject_put(stable_kobj);
1087}
1088
1089
1090module_init(pdc_stable_init);
1091module_exit(pdc_stable_exit);