Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/delay.h>
5
6#include "igc_hw.h"
7
8/**
9 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
10 * @hw: pointer to the HW structure
11 *
12 * Acquire the necessary semaphores for exclusive access to the EEPROM.
13 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
14 * Return successful if access grant bit set, else clear the request for
15 * EEPROM access and return -IGC_ERR_NVM (-1).
16 */
17static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
18{
19 return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
20}
21
22/**
23 * igc_release_nvm_i225 - Release exclusive access to EEPROM
24 * @hw: pointer to the HW structure
25 *
26 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
27 * then release the semaphores acquired.
28 */
29static void igc_release_nvm_i225(struct igc_hw *hw)
30{
31 igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
32}
33
34/**
35 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
36 * @hw: pointer to the HW structure
37 *
38 * Acquire the HW semaphore to access the PHY or NVM
39 */
40static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
41{
42 s32 timeout = hw->nvm.word_size + 1;
43 s32 i = 0;
44 u32 swsm;
45
46 /* Get the SW semaphore */
47 while (i < timeout) {
48 swsm = rd32(IGC_SWSM);
49 if (!(swsm & IGC_SWSM_SMBI))
50 break;
51
52 usleep_range(500, 600);
53 i++;
54 }
55
56 if (i == timeout) {
57 /* In rare circumstances, the SW semaphore may already be held
58 * unintentionally. Clear the semaphore once before giving up.
59 */
60 if (hw->dev_spec._base.clear_semaphore_once) {
61 hw->dev_spec._base.clear_semaphore_once = false;
62 igc_put_hw_semaphore(hw);
63 for (i = 0; i < timeout; i++) {
64 swsm = rd32(IGC_SWSM);
65 if (!(swsm & IGC_SWSM_SMBI))
66 break;
67
68 usleep_range(500, 600);
69 }
70 }
71
72 /* If we do not have the semaphore here, we have to give up. */
73 if (i == timeout) {
74 hw_dbg("Driver can't access device - SMBI bit is set.\n");
75 return -IGC_ERR_NVM;
76 }
77 }
78
79 /* Get the FW semaphore. */
80 for (i = 0; i < timeout; i++) {
81 swsm = rd32(IGC_SWSM);
82 wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
83
84 /* Semaphore acquired if bit latched */
85 if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
86 break;
87
88 usleep_range(500, 600);
89 }
90
91 if (i == timeout) {
92 /* Release semaphores */
93 igc_put_hw_semaphore(hw);
94 hw_dbg("Driver can't access the NVM\n");
95 return -IGC_ERR_NVM;
96 }
97
98 return 0;
99}
100
101/**
102 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103 * @hw: pointer to the HW structure
104 * @mask: specifies which semaphore to acquire
105 *
106 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
107 * will also specify which port we're acquiring the lock for.
108 */
109s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110{
111 s32 i = 0, timeout = 200;
112 u32 fwmask = mask << 16;
113 u32 swmask = mask;
114 s32 ret_val = 0;
115 u32 swfw_sync;
116
117 while (i < timeout) {
118 if (igc_get_hw_semaphore_i225(hw)) {
119 ret_val = -IGC_ERR_SWFW_SYNC;
120 goto out;
121 }
122
123 swfw_sync = rd32(IGC_SW_FW_SYNC);
124 if (!(swfw_sync & (fwmask | swmask)))
125 break;
126
127 /* Firmware currently using resource (fwmask) */
128 igc_put_hw_semaphore(hw);
129 mdelay(5);
130 i++;
131 }
132
133 if (i == timeout) {
134 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135 ret_val = -IGC_ERR_SWFW_SYNC;
136 goto out;
137 }
138
139 swfw_sync |= swmask;
140 wr32(IGC_SW_FW_SYNC, swfw_sync);
141
142 igc_put_hw_semaphore(hw);
143out:
144 return ret_val;
145}
146
147/**
148 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149 * @hw: pointer to the HW structure
150 * @mask: specifies which semaphore to acquire
151 *
152 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
153 * will also specify which port we're releasing the lock for.
154 */
155void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156{
157 u32 swfw_sync;
158
159 while (igc_get_hw_semaphore_i225(hw))
160 ; /* Empty */
161
162 swfw_sync = rd32(IGC_SW_FW_SYNC);
163 swfw_sync &= ~mask;
164 wr32(IGC_SW_FW_SYNC, swfw_sync);
165
166 igc_put_hw_semaphore(hw);
167}
168
169/**
170 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
171 * @hw: pointer to the HW structure
172 * @offset: offset of word in the Shadow Ram to read
173 * @words: number of words to read
174 * @data: word read from the Shadow Ram
175 *
176 * Reads a 16 bit word from the Shadow Ram using the EERD register.
177 * Uses necessary synchronization semaphores.
178 */
179static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
180 u16 *data)
181{
182 s32 status = 0;
183 u16 i, count;
184
185 /* We cannot hold synchronization semaphores for too long,
186 * because of forceful takeover procedure. However it is more efficient
187 * to read in bursts than synchronizing access for each word.
188 */
189 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
190 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
191 IGC_EERD_EEWR_MAX_COUNT : (words - i);
192
193 status = hw->nvm.ops.acquire(hw);
194 if (status)
195 break;
196
197 status = igc_read_nvm_eerd(hw, offset, count, data + i);
198 hw->nvm.ops.release(hw);
199 if (status)
200 break;
201 }
202
203 return status;
204}
205
206/**
207 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
208 * @hw: pointer to the HW structure
209 * @offset: offset within the Shadow Ram to be written to
210 * @words: number of words to write
211 * @data: 16 bit word(s) to be written to the Shadow Ram
212 *
213 * Writes data to Shadow Ram at offset using EEWR register.
214 *
215 * If igc_update_nvm_checksum is not called after this function , the
216 * Shadow Ram will most likely contain an invalid checksum.
217 */
218static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
219 u16 *data)
220{
221 struct igc_nvm_info *nvm = &hw->nvm;
222 u32 attempts = 100000;
223 u32 i, k, eewr = 0;
224 s32 ret_val = 0;
225
226 /* A check for invalid values: offset too large, too many words,
227 * too many words for the offset, and not enough words.
228 */
229 if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
230 words == 0) {
231 hw_dbg("nvm parameter(s) out of bounds\n");
232 ret_val = -IGC_ERR_NVM;
233 goto out;
234 }
235
236 for (i = 0; i < words; i++) {
237 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
238 (data[i] << IGC_NVM_RW_REG_DATA) |
239 IGC_NVM_RW_REG_START;
240
241 wr32(IGC_SRWR, eewr);
242
243 for (k = 0; k < attempts; k++) {
244 if (IGC_NVM_RW_REG_DONE &
245 rd32(IGC_SRWR)) {
246 ret_val = 0;
247 break;
248 }
249 udelay(5);
250 }
251
252 if (ret_val) {
253 hw_dbg("Shadow RAM write EEWR timed out\n");
254 break;
255 }
256 }
257
258out:
259 return ret_val;
260}
261
262/**
263 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
264 * @hw: pointer to the HW structure
265 * @offset: offset within the Shadow RAM to be written to
266 * @words: number of words to write
267 * @data: 16 bit word(s) to be written to the Shadow RAM
268 *
269 * Writes data to Shadow RAM at offset using EEWR register.
270 *
271 * If igc_update_nvm_checksum is not called after this function , the
272 * data will not be committed to FLASH and also Shadow RAM will most likely
273 * contain an invalid checksum.
274 *
275 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
276 * partially written.
277 */
278static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
279 u16 *data)
280{
281 s32 status = 0;
282 u16 i, count;
283
284 /* We cannot hold synchronization semaphores for too long,
285 * because of forceful takeover procedure. However it is more efficient
286 * to write in bursts than synchronizing access for each word.
287 */
288 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
289 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
290 IGC_EERD_EEWR_MAX_COUNT : (words - i);
291
292 status = hw->nvm.ops.acquire(hw);
293 if (status)
294 break;
295
296 status = igc_write_nvm_srwr(hw, offset, count, data + i);
297 hw->nvm.ops.release(hw);
298 if (status)
299 break;
300 }
301
302 return status;
303}
304
305/**
306 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
307 * @hw: pointer to the HW structure
308 *
309 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
310 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
311 */
312static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
313{
314 s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
315 u16 *data);
316 s32 status = 0;
317
318 status = hw->nvm.ops.acquire(hw);
319 if (status)
320 goto out;
321
322 /* Replace the read function with semaphore grabbing with
323 * the one that skips this for a while.
324 * We have semaphore taken already here.
325 */
326 read_op_ptr = hw->nvm.ops.read;
327 hw->nvm.ops.read = igc_read_nvm_eerd;
328
329 status = igc_validate_nvm_checksum(hw);
330
331 /* Revert original read operation. */
332 hw->nvm.ops.read = read_op_ptr;
333
334 hw->nvm.ops.release(hw);
335
336out:
337 return status;
338}
339
340/**
341 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
342 * @hw: pointer to the HW structure
343 */
344static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
345{
346 s32 ret_val = -IGC_ERR_NVM;
347 u32 i, reg;
348
349 for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
350 reg = rd32(IGC_EECD);
351 if (reg & IGC_EECD_FLUDONE_I225) {
352 ret_val = 0;
353 break;
354 }
355 udelay(5);
356 }
357
358 return ret_val;
359}
360
361/**
362 * igc_update_flash_i225 - Commit EEPROM to the flash
363 * @hw: pointer to the HW structure
364 */
365static s32 igc_update_flash_i225(struct igc_hw *hw)
366{
367 s32 ret_val = 0;
368 u32 flup;
369
370 ret_val = igc_pool_flash_update_done_i225(hw);
371 if (ret_val == -IGC_ERR_NVM) {
372 hw_dbg("Flash update time out\n");
373 goto out;
374 }
375
376 flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
377 wr32(IGC_EECD, flup);
378
379 ret_val = igc_pool_flash_update_done_i225(hw);
380 if (ret_val)
381 hw_dbg("Flash update time out\n");
382 else
383 hw_dbg("Flash update complete\n");
384
385out:
386 return ret_val;
387}
388
389/**
390 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
391 * @hw: pointer to the HW structure
392 *
393 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
394 * up to the checksum. Then calculates the EEPROM checksum and writes the
395 * value to the EEPROM. Next commit EEPROM data onto the Flash.
396 */
397static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
398{
399 u16 checksum = 0;
400 s32 ret_val = 0;
401 u16 i, nvm_data;
402
403 /* Read the first word from the EEPROM. If this times out or fails, do
404 * not continue or we could be in for a very long wait while every
405 * EEPROM read fails
406 */
407 ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
408 if (ret_val) {
409 hw_dbg("EEPROM read failed\n");
410 goto out;
411 }
412
413 ret_val = hw->nvm.ops.acquire(hw);
414 if (ret_val)
415 goto out;
416
417 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
418 * because we do not want to take the synchronization
419 * semaphores twice here.
420 */
421
422 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
423 ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
424 if (ret_val) {
425 hw->nvm.ops.release(hw);
426 hw_dbg("NVM Read Error while updating checksum.\n");
427 goto out;
428 }
429 checksum += nvm_data;
430 }
431 checksum = (u16)NVM_SUM - checksum;
432 ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
433 &checksum);
434 if (ret_val) {
435 hw->nvm.ops.release(hw);
436 hw_dbg("NVM Write Error while updating checksum.\n");
437 goto out;
438 }
439
440 hw->nvm.ops.release(hw);
441
442 ret_val = igc_update_flash_i225(hw);
443
444out:
445 return ret_val;
446}
447
448/**
449 * igc_get_flash_presence_i225 - Check if flash device is detected
450 * @hw: pointer to the HW structure
451 */
452bool igc_get_flash_presence_i225(struct igc_hw *hw)
453{
454 bool ret_val = false;
455 u32 eec = 0;
456
457 eec = rd32(IGC_EECD);
458 if (eec & IGC_EECD_FLASH_DETECTED_I225)
459 ret_val = true;
460
461 return ret_val;
462}
463
464/**
465 * igc_init_nvm_params_i225 - Init NVM func ptrs.
466 * @hw: pointer to the HW structure
467 */
468s32 igc_init_nvm_params_i225(struct igc_hw *hw)
469{
470 struct igc_nvm_info *nvm = &hw->nvm;
471
472 nvm->ops.acquire = igc_acquire_nvm_i225;
473 nvm->ops.release = igc_release_nvm_i225;
474
475 /* NVM Function Pointers */
476 if (igc_get_flash_presence_i225(hw)) {
477 hw->nvm.type = igc_nvm_flash_hw;
478 nvm->ops.read = igc_read_nvm_srrd_i225;
479 nvm->ops.write = igc_write_nvm_srwr_i225;
480 nvm->ops.validate = igc_validate_nvm_checksum_i225;
481 nvm->ops.update = igc_update_nvm_checksum_i225;
482 } else {
483 hw->nvm.type = igc_nvm_invm;
484 nvm->ops.read = igc_read_nvm_eerd;
485 nvm->ops.write = NULL;
486 nvm->ops.validate = NULL;
487 nvm->ops.update = NULL;
488 }
489 return 0;
490}
491
492/**
493 * igc_set_eee_i225 - Enable/disable EEE support
494 * @hw: pointer to the HW structure
495 * @adv2p5G: boolean flag enabling 2.5G EEE advertisement
496 * @adv1G: boolean flag enabling 1G EEE advertisement
497 * @adv100M: boolean flag enabling 100M EEE advertisement
498 *
499 * Enable/disable EEE based on setting in dev_spec structure.
500 **/
501s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
502 bool adv100M)
503{
504 u32 ipcnfg, eeer;
505
506 ipcnfg = rd32(IGC_IPCNFG);
507 eeer = rd32(IGC_EEER);
508
509 /* enable or disable per user setting */
510 if (hw->dev_spec._base.eee_enable) {
511 u32 eee_su = rd32(IGC_EEE_SU);
512
513 if (adv100M)
514 ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
515 else
516 ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
517
518 if (adv1G)
519 ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
520 else
521 ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
522
523 if (adv2p5G)
524 ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
525 else
526 ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
527
528 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
529 IGC_EEER_LPI_FC);
530
531 /* This bit should not be set in normal operation. */
532 if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
533 hw_dbg("LPI Clock Stop Bit should not be set!\n");
534 } else {
535 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
536 IGC_IPCNFG_EEE_100M_AN);
537 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
538 IGC_EEER_LPI_FC);
539 }
540 wr32(IGC_IPCNFG, ipcnfg);
541 wr32(IGC_EEER, eeer);
542 rd32(IGC_IPCNFG);
543 rd32(IGC_EEER);
544
545 return IGC_SUCCESS;
546}
547
548/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
549 * @hw: pointer to the HW structure
550 * @link: bool indicating link status
551 *
552 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
553 * settings, otherwise specify that there is no LTR requirement.
554 */
555s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
556{
557 u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
558 u16 speed, duplex;
559 s32 size;
560
561 /* If we do not have link, LTR thresholds are zero. */
562 if (link) {
563 hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
564
565 /* Check if using copper interface with EEE enabled or if the
566 * link speed is 10 Mbps.
567 */
568 if (hw->dev_spec._base.eee_enable &&
569 speed != SPEED_10) {
570 /* EEE enabled, so send LTRMAX threshold. */
571 ltrc = rd32(IGC_LTRC) |
572 IGC_LTRC_EEEMS_EN;
573 wr32(IGC_LTRC, ltrc);
574
575 /* Calculate tw_system (nsec). */
576 if (speed == SPEED_100) {
577 tw_system = ((rd32(IGC_EEE_SU) &
578 IGC_TW_SYSTEM_100_MASK) >>
579 IGC_TW_SYSTEM_100_SHIFT) * 500;
580 } else {
581 tw_system = (rd32(IGC_EEE_SU) &
582 IGC_TW_SYSTEM_1000_MASK) * 500;
583 }
584 } else {
585 tw_system = 0;
586 }
587
588 /* Get the Rx packet buffer size. */
589 size = rd32(IGC_RXPBS) &
590 IGC_RXPBS_SIZE_I225_MASK;
591
592 /* Calculations vary based on DMAC settings. */
593 if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
594 size -= (rd32(IGC_DMACR) &
595 IGC_DMACR_DMACTHR_MASK) >>
596 IGC_DMACR_DMACTHR_SHIFT;
597 /* Convert size to bits. */
598 size *= 1024 * 8;
599 } else {
600 /* Convert size to bytes, subtract the MTU, and then
601 * convert the size to bits.
602 */
603 size *= 1024;
604 size *= 8;
605 }
606
607 if (size < 0) {
608 hw_dbg("Invalid effective Rx buffer size %d\n",
609 size);
610 return -IGC_ERR_CONFIG;
611 }
612
613 /* Calculate the thresholds. Since speed is in Mbps, simplify
614 * the calculation by multiplying size/speed by 1000 for result
615 * to be in nsec before dividing by the scale in nsec. Set the
616 * scale such that the LTR threshold fits in the register.
617 */
618 ltr_min = (1000 * size) / speed;
619 ltr_max = ltr_min + tw_system;
620 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
621 IGC_LTRMINV_SCALE_32768;
622 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
623 IGC_LTRMAXV_SCALE_32768;
624 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
625 ltr_min -= 1;
626 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
627 ltr_max -= 1;
628
629 /* Only write the LTR thresholds if they differ from before. */
630 ltrv = rd32(IGC_LTRMINV);
631 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
632 ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
633 (scale_min << IGC_LTRMINV_SCALE_SHIFT);
634 wr32(IGC_LTRMINV, ltrv);
635 }
636
637 ltrv = rd32(IGC_LTRMAXV);
638 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
639 ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
640 (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
641 wr32(IGC_LTRMAXV, ltrv);
642 }
643 }
644
645 return IGC_SUCCESS;
646}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/delay.h>
5
6#include "igc_hw.h"
7
8/**
9 * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
10 * @hw: pointer to the HW structure
11 *
12 * Acquire the necessary semaphores for exclusive access to the EEPROM.
13 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
14 * Return successful if access grant bit set, else clear the request for
15 * EEPROM access and return -IGC_ERR_NVM (-1).
16 */
17static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
18{
19 return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
20}
21
22/**
23 * igc_release_nvm_i225 - Release exclusive access to EEPROM
24 * @hw: pointer to the HW structure
25 *
26 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
27 * then release the semaphores acquired.
28 */
29static void igc_release_nvm_i225(struct igc_hw *hw)
30{
31 igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
32}
33
34/**
35 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
36 * @hw: pointer to the HW structure
37 *
38 * Acquire the HW semaphore to access the PHY or NVM
39 */
40static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
41{
42 s32 timeout = hw->nvm.word_size + 1;
43 s32 i = 0;
44 u32 swsm;
45
46 /* Get the SW semaphore */
47 while (i < timeout) {
48 swsm = rd32(IGC_SWSM);
49 if (!(swsm & IGC_SWSM_SMBI))
50 break;
51
52 usleep_range(500, 600);
53 i++;
54 }
55
56 if (i == timeout) {
57 /* In rare circumstances, the SW semaphore may already be held
58 * unintentionally. Clear the semaphore once before giving up.
59 */
60 if (hw->dev_spec._base.clear_semaphore_once) {
61 hw->dev_spec._base.clear_semaphore_once = false;
62 igc_put_hw_semaphore(hw);
63 for (i = 0; i < timeout; i++) {
64 swsm = rd32(IGC_SWSM);
65 if (!(swsm & IGC_SWSM_SMBI))
66 break;
67
68 usleep_range(500, 600);
69 }
70 }
71
72 /* If we do not have the semaphore here, we have to give up. */
73 if (i == timeout) {
74 hw_dbg("Driver can't access device - SMBI bit is set.\n");
75 return -IGC_ERR_NVM;
76 }
77 }
78
79 /* Get the FW semaphore. */
80 for (i = 0; i < timeout; i++) {
81 swsm = rd32(IGC_SWSM);
82 wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
83
84 /* Semaphore acquired if bit latched */
85 if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
86 break;
87
88 usleep_range(500, 600);
89 }
90
91 if (i == timeout) {
92 /* Release semaphores */
93 igc_put_hw_semaphore(hw);
94 hw_dbg("Driver can't access the NVM\n");
95 return -IGC_ERR_NVM;
96 }
97
98 return 0;
99}
100
101/**
102 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103 * @hw: pointer to the HW structure
104 * @mask: specifies which semaphore to acquire
105 *
106 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
107 * will also specify which port we're acquiring the lock for.
108 */
109s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110{
111 s32 i = 0, timeout = 200;
112 u32 fwmask = mask << 16;
113 u32 swmask = mask;
114 s32 ret_val = 0;
115 u32 swfw_sync;
116
117 while (i < timeout) {
118 if (igc_get_hw_semaphore_i225(hw)) {
119 ret_val = -IGC_ERR_SWFW_SYNC;
120 goto out;
121 }
122
123 swfw_sync = rd32(IGC_SW_FW_SYNC);
124 if (!(swfw_sync & (fwmask | swmask)))
125 break;
126
127 /* Firmware currently using resource (fwmask) */
128 igc_put_hw_semaphore(hw);
129 mdelay(5);
130 i++;
131 }
132
133 if (i == timeout) {
134 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135 ret_val = -IGC_ERR_SWFW_SYNC;
136 goto out;
137 }
138
139 swfw_sync |= swmask;
140 wr32(IGC_SW_FW_SYNC, swfw_sync);
141
142 igc_put_hw_semaphore(hw);
143out:
144 return ret_val;
145}
146
147/**
148 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149 * @hw: pointer to the HW structure
150 * @mask: specifies which semaphore to acquire
151 *
152 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
153 * will also specify which port we're releasing the lock for.
154 */
155void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156{
157 u32 swfw_sync;
158
159 /* Releasing the resource requires first getting the HW semaphore.
160 * If we fail to get the semaphore, there is nothing we can do,
161 * except log an error and quit. We are not allowed to hang here
162 * indefinitely, as it may cause denial of service or system crash.
163 */
164 if (igc_get_hw_semaphore_i225(hw)) {
165 hw_dbg("Failed to release SW_FW_SYNC.\n");
166 return;
167 }
168
169 swfw_sync = rd32(IGC_SW_FW_SYNC);
170 swfw_sync &= ~mask;
171 wr32(IGC_SW_FW_SYNC, swfw_sync);
172
173 igc_put_hw_semaphore(hw);
174}
175
176/**
177 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
178 * @hw: pointer to the HW structure
179 * @offset: offset of word in the Shadow Ram to read
180 * @words: number of words to read
181 * @data: word read from the Shadow Ram
182 *
183 * Reads a 16 bit word from the Shadow Ram using the EERD register.
184 * Uses necessary synchronization semaphores.
185 */
186static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
187 u16 *data)
188{
189 s32 status = 0;
190 u16 i, count;
191
192 /* We cannot hold synchronization semaphores for too long,
193 * because of forceful takeover procedure. However it is more efficient
194 * to read in bursts than synchronizing access for each word.
195 */
196 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
197 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
198 IGC_EERD_EEWR_MAX_COUNT : (words - i);
199
200 status = hw->nvm.ops.acquire(hw);
201 if (status)
202 break;
203
204 status = igc_read_nvm_eerd(hw, offset, count, data + i);
205 hw->nvm.ops.release(hw);
206 if (status)
207 break;
208 }
209
210 return status;
211}
212
213/**
214 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
215 * @hw: pointer to the HW structure
216 * @offset: offset within the Shadow Ram to be written to
217 * @words: number of words to write
218 * @data: 16 bit word(s) to be written to the Shadow Ram
219 *
220 * Writes data to Shadow Ram at offset using EEWR register.
221 *
222 * If igc_update_nvm_checksum is not called after this function , the
223 * Shadow Ram will most likely contain an invalid checksum.
224 */
225static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
226 u16 *data)
227{
228 struct igc_nvm_info *nvm = &hw->nvm;
229 s32 ret_val = -IGC_ERR_NVM;
230 u32 attempts = 100000;
231 u32 i, k, eewr = 0;
232
233 /* A check for invalid values: offset too large, too many words,
234 * too many words for the offset, and not enough words.
235 */
236 if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
237 words == 0) {
238 hw_dbg("nvm parameter(s) out of bounds\n");
239 return ret_val;
240 }
241
242 for (i = 0; i < words; i++) {
243 ret_val = -IGC_ERR_NVM;
244 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
245 (data[i] << IGC_NVM_RW_REG_DATA) |
246 IGC_NVM_RW_REG_START;
247
248 wr32(IGC_SRWR, eewr);
249
250 for (k = 0; k < attempts; k++) {
251 if (IGC_NVM_RW_REG_DONE &
252 rd32(IGC_SRWR)) {
253 ret_val = 0;
254 break;
255 }
256 udelay(5);
257 }
258
259 if (ret_val) {
260 hw_dbg("Shadow RAM write EEWR timed out\n");
261 break;
262 }
263 }
264
265 return ret_val;
266}
267
268/**
269 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
270 * @hw: pointer to the HW structure
271 * @offset: offset within the Shadow RAM to be written to
272 * @words: number of words to write
273 * @data: 16 bit word(s) to be written to the Shadow RAM
274 *
275 * Writes data to Shadow RAM at offset using EEWR register.
276 *
277 * If igc_update_nvm_checksum is not called after this function , the
278 * data will not be committed to FLASH and also Shadow RAM will most likely
279 * contain an invalid checksum.
280 *
281 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
282 * partially written.
283 */
284static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
285 u16 *data)
286{
287 s32 status = 0;
288 u16 i, count;
289
290 /* We cannot hold synchronization semaphores for too long,
291 * because of forceful takeover procedure. However it is more efficient
292 * to write in bursts than synchronizing access for each word.
293 */
294 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
295 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
296 IGC_EERD_EEWR_MAX_COUNT : (words - i);
297
298 status = hw->nvm.ops.acquire(hw);
299 if (status)
300 break;
301
302 status = igc_write_nvm_srwr(hw, offset, count, data + i);
303 hw->nvm.ops.release(hw);
304 if (status)
305 break;
306 }
307
308 return status;
309}
310
311/**
312 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
313 * @hw: pointer to the HW structure
314 *
315 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
316 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
317 */
318static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
319{
320 s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
321 u16 *data);
322 s32 status = 0;
323
324 status = hw->nvm.ops.acquire(hw);
325 if (status)
326 goto out;
327
328 /* Replace the read function with semaphore grabbing with
329 * the one that skips this for a while.
330 * We have semaphore taken already here.
331 */
332 read_op_ptr = hw->nvm.ops.read;
333 hw->nvm.ops.read = igc_read_nvm_eerd;
334
335 status = igc_validate_nvm_checksum(hw);
336
337 /* Revert original read operation. */
338 hw->nvm.ops.read = read_op_ptr;
339
340 hw->nvm.ops.release(hw);
341
342out:
343 return status;
344}
345
346/**
347 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
348 * @hw: pointer to the HW structure
349 */
350static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
351{
352 s32 ret_val = -IGC_ERR_NVM;
353 u32 i, reg;
354
355 for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
356 reg = rd32(IGC_EECD);
357 if (reg & IGC_EECD_FLUDONE_I225) {
358 ret_val = 0;
359 break;
360 }
361 udelay(5);
362 }
363
364 return ret_val;
365}
366
367/**
368 * igc_update_flash_i225 - Commit EEPROM to the flash
369 * @hw: pointer to the HW structure
370 */
371static s32 igc_update_flash_i225(struct igc_hw *hw)
372{
373 s32 ret_val = 0;
374 u32 flup;
375
376 ret_val = igc_pool_flash_update_done_i225(hw);
377 if (ret_val == -IGC_ERR_NVM) {
378 hw_dbg("Flash update time out\n");
379 goto out;
380 }
381
382 flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
383 wr32(IGC_EECD, flup);
384
385 ret_val = igc_pool_flash_update_done_i225(hw);
386 if (ret_val)
387 hw_dbg("Flash update time out\n");
388 else
389 hw_dbg("Flash update complete\n");
390
391out:
392 return ret_val;
393}
394
395/**
396 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
397 * @hw: pointer to the HW structure
398 *
399 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
400 * up to the checksum. Then calculates the EEPROM checksum and writes the
401 * value to the EEPROM. Next commit EEPROM data onto the Flash.
402 */
403static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
404{
405 u16 checksum = 0;
406 s32 ret_val = 0;
407 u16 i, nvm_data;
408
409 /* Read the first word from the EEPROM. If this times out or fails, do
410 * not continue or we could be in for a very long wait while every
411 * EEPROM read fails
412 */
413 ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
414 if (ret_val) {
415 hw_dbg("EEPROM read failed\n");
416 goto out;
417 }
418
419 ret_val = hw->nvm.ops.acquire(hw);
420 if (ret_val)
421 goto out;
422
423 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
424 * because we do not want to take the synchronization
425 * semaphores twice here.
426 */
427
428 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
429 ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
430 if (ret_val) {
431 hw->nvm.ops.release(hw);
432 hw_dbg("NVM Read Error while updating checksum.\n");
433 goto out;
434 }
435 checksum += nvm_data;
436 }
437 checksum = (u16)NVM_SUM - checksum;
438 ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
439 &checksum);
440 if (ret_val) {
441 hw->nvm.ops.release(hw);
442 hw_dbg("NVM Write Error while updating checksum.\n");
443 goto out;
444 }
445
446 hw->nvm.ops.release(hw);
447
448 ret_val = igc_update_flash_i225(hw);
449
450out:
451 return ret_val;
452}
453
454/**
455 * igc_get_flash_presence_i225 - Check if flash device is detected
456 * @hw: pointer to the HW structure
457 */
458bool igc_get_flash_presence_i225(struct igc_hw *hw)
459{
460 bool ret_val = false;
461 u32 eec = 0;
462
463 eec = rd32(IGC_EECD);
464 if (eec & IGC_EECD_FLASH_DETECTED_I225)
465 ret_val = true;
466
467 return ret_val;
468}
469
470/**
471 * igc_init_nvm_params_i225 - Init NVM func ptrs.
472 * @hw: pointer to the HW structure
473 */
474s32 igc_init_nvm_params_i225(struct igc_hw *hw)
475{
476 struct igc_nvm_info *nvm = &hw->nvm;
477
478 nvm->ops.acquire = igc_acquire_nvm_i225;
479 nvm->ops.release = igc_release_nvm_i225;
480
481 /* NVM Function Pointers */
482 if (igc_get_flash_presence_i225(hw)) {
483 nvm->ops.read = igc_read_nvm_srrd_i225;
484 nvm->ops.write = igc_write_nvm_srwr_i225;
485 nvm->ops.validate = igc_validate_nvm_checksum_i225;
486 nvm->ops.update = igc_update_nvm_checksum_i225;
487 } else {
488 nvm->ops.read = igc_read_nvm_eerd;
489 nvm->ops.write = NULL;
490 nvm->ops.validate = NULL;
491 nvm->ops.update = NULL;
492 }
493 return 0;
494}
495
496/**
497 * igc_set_eee_i225 - Enable/disable EEE support
498 * @hw: pointer to the HW structure
499 * @adv2p5G: boolean flag enabling 2.5G EEE advertisement
500 * @adv1G: boolean flag enabling 1G EEE advertisement
501 * @adv100M: boolean flag enabling 100M EEE advertisement
502 *
503 * Enable/disable EEE based on setting in dev_spec structure.
504 **/
505s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
506 bool adv100M)
507{
508 u32 ipcnfg, eeer;
509
510 ipcnfg = rd32(IGC_IPCNFG);
511 eeer = rd32(IGC_EEER);
512
513 /* enable or disable per user setting */
514 if (hw->dev_spec._base.eee_enable) {
515 u32 eee_su = rd32(IGC_EEE_SU);
516
517 if (adv100M)
518 ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
519 else
520 ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
521
522 if (adv1G)
523 ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
524 else
525 ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
526
527 if (adv2p5G)
528 ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
529 else
530 ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
531
532 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
533 IGC_EEER_LPI_FC);
534
535 /* This bit should not be set in normal operation. */
536 if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
537 hw_dbg("LPI Clock Stop Bit should not be set!\n");
538 } else {
539 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
540 IGC_IPCNFG_EEE_100M_AN);
541 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
542 IGC_EEER_LPI_FC);
543 }
544 wr32(IGC_IPCNFG, ipcnfg);
545 wr32(IGC_EEER, eeer);
546 rd32(IGC_IPCNFG);
547 rd32(IGC_EEER);
548
549 return IGC_SUCCESS;
550}
551
552/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
553 * @hw: pointer to the HW structure
554 * @link: bool indicating link status
555 *
556 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
557 * settings, otherwise specify that there is no LTR requirement.
558 */
559s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
560{
561 u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
562 u16 speed, duplex;
563 s32 size;
564
565 /* If we do not have link, LTR thresholds are zero. */
566 if (link) {
567 hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
568
569 /* Check if using copper interface with EEE enabled or if the
570 * link speed is 10 Mbps.
571 */
572 if (hw->dev_spec._base.eee_enable &&
573 speed != SPEED_10) {
574 /* EEE enabled, so send LTRMAX threshold. */
575 ltrc = rd32(IGC_LTRC) |
576 IGC_LTRC_EEEMS_EN;
577 wr32(IGC_LTRC, ltrc);
578
579 /* Calculate tw_system (nsec). */
580 if (speed == SPEED_100) {
581 tw_system = ((rd32(IGC_EEE_SU) &
582 IGC_TW_SYSTEM_100_MASK) >>
583 IGC_TW_SYSTEM_100_SHIFT) * 500;
584 } else {
585 tw_system = (rd32(IGC_EEE_SU) &
586 IGC_TW_SYSTEM_1000_MASK) * 500;
587 }
588 } else {
589 tw_system = 0;
590 }
591
592 /* Get the Rx packet buffer size. */
593 size = rd32(IGC_RXPBS) &
594 IGC_RXPBS_SIZE_I225_MASK;
595
596 /* Calculations vary based on DMAC settings. */
597 if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
598 size -= (rd32(IGC_DMACR) &
599 IGC_DMACR_DMACTHR_MASK) >>
600 IGC_DMACR_DMACTHR_SHIFT;
601 /* Convert size to bits. */
602 size *= 1024 * 8;
603 } else {
604 /* Convert size to bytes, subtract the MTU, and then
605 * convert the size to bits.
606 */
607 size *= 1024;
608 size *= 8;
609 }
610
611 if (size < 0) {
612 hw_dbg("Invalid effective Rx buffer size %d\n",
613 size);
614 return -IGC_ERR_CONFIG;
615 }
616
617 /* Calculate the thresholds. Since speed is in Mbps, simplify
618 * the calculation by multiplying size/speed by 1000 for result
619 * to be in nsec before dividing by the scale in nsec. Set the
620 * scale such that the LTR threshold fits in the register.
621 */
622 ltr_min = (1000 * size) / speed;
623 ltr_max = ltr_min + tw_system;
624 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
625 IGC_LTRMINV_SCALE_32768;
626 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
627 IGC_LTRMAXV_SCALE_32768;
628 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
629 ltr_min -= 1;
630 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
631 ltr_max -= 1;
632
633 /* Only write the LTR thresholds if they differ from before. */
634 ltrv = rd32(IGC_LTRMINV);
635 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
636 ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
637 (scale_min << IGC_LTRMINV_SCALE_SHIFT);
638 wr32(IGC_LTRMINV, ltrv);
639 }
640
641 ltrv = rd32(IGC_LTRMAXV);
642 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
643 ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
644 (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
645 wr32(IGC_LTRMAXV, ltrv);
646 }
647 }
648
649 return IGC_SUCCESS;
650}