Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Xilinx CAN device driver
3 *
4 * Copyright (C) 2012 - 2014 Xilinx, Inc.
5 * Copyright (C) 2009 PetaLogix. All rights reserved.
6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7 *
8 * Description:
9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10 */
11
12#include <linux/clk.h>
13#include <linux/errno.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/netdevice.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/platform_device.h>
23#include <linux/skbuff.h>
24#include <linux/spinlock.h>
25#include <linux/string.h>
26#include <linux/types.h>
27#include <linux/can/dev.h>
28#include <linux/can/error.h>
29#include <linux/can/led.h>
30#include <linux/pm_runtime.h>
31
32#define DRIVER_NAME "xilinx_can"
33
34/* CAN registers set */
35enum xcan_reg {
36 XCAN_SRR_OFFSET = 0x00, /* Software reset */
37 XCAN_MSR_OFFSET = 0x04, /* Mode select */
38 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
39 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
40 XCAN_ECR_OFFSET = 0x10, /* Error counter */
41 XCAN_ESR_OFFSET = 0x14, /* Error status */
42 XCAN_SR_OFFSET = 0x18, /* Status */
43 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
44 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
45 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
46
47 /* not on CAN FD cores */
48 XCAN_TXFIFO_OFFSET = 0x30, /* TX FIFO base */
49 XCAN_RXFIFO_OFFSET = 0x50, /* RX FIFO base */
50 XCAN_AFR_OFFSET = 0x60, /* Acceptance Filter */
51
52 /* only on CAN FD cores */
53 XCAN_F_BRPR_OFFSET = 0x088, /* Data Phase Baud Rate
54 * Prescalar
55 */
56 XCAN_F_BTR_OFFSET = 0x08C, /* Data Phase Bit Timing */
57 XCAN_TRR_OFFSET = 0x0090, /* TX Buffer Ready Request */
58 XCAN_AFR_EXT_OFFSET = 0x00E0, /* Acceptance Filter */
59 XCAN_FSR_OFFSET = 0x00E8, /* RX FIFO Status */
60 XCAN_TXMSG_BASE_OFFSET = 0x0100, /* TX Message Space */
61 XCAN_RXMSG_BASE_OFFSET = 0x1100, /* RX Message Space */
62 XCAN_RXMSG_2_BASE_OFFSET = 0x2100, /* RX Message Space */
63 XCAN_AFR_2_MASK_OFFSET = 0x0A00, /* Acceptance Filter MASK */
64 XCAN_AFR_2_ID_OFFSET = 0x0A04, /* Acceptance Filter ID */
65};
66
67#define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00)
68#define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04)
69#define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08)
70#define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C)
71#define XCANFD_FRAME_DW_OFFSET(frame_base) ((frame_base) + 0x08)
72
73#define XCAN_CANFD_FRAME_SIZE 0x48
74#define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \
75 XCAN_CANFD_FRAME_SIZE * (n))
76#define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \
77 XCAN_CANFD_FRAME_SIZE * (n))
78#define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \
79 XCAN_CANFD_FRAME_SIZE * (n))
80
81/* the single TX mailbox used by this driver on CAN FD HW */
82#define XCAN_TX_MAILBOX_IDX 0
83
84/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
85#define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
86#define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
87#define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
88#define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
89#define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
90#define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
91#define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
92#define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
93#define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */
94#define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */
95#define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */
96#define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
97#define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
98#define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
99#define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
100#define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
101#define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
102#define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
103#define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
104#define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
105#define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
106#define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
107#define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
108#define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
109#define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */
110#define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
111#define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
112#define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
113#define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
114#define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
115#define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
116#define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
117#define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
118#define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
119#define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
120#define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
121#define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
122#define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
123#define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
124#define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
125#define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
126#define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
127#define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */
128#define XCAN_2_FSR_FL_MASK 0x00007F00 /* RX Fill Level */
129#define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */
130#define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */
131#define XCAN_2_FSR_RI_MASK 0x0000003F /* RX Read Index */
132#define XCAN_DLCR_EDL_MASK 0x08000000 /* EDL Mask in DLC */
133#define XCAN_DLCR_BRS_MASK 0x04000000 /* BRS Mask in DLC */
134
135/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
136#define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
137#define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
138#define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */
139#define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */
140#define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
141#define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
142#define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
143#define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
144
145/* CAN frame length constants */
146#define XCAN_FRAME_MAX_DATA_LEN 8
147#define XCANFD_DW_BYTES 4
148#define XCAN_TIMEOUT (1 * HZ)
149
150/* TX-FIFO-empty interrupt available */
151#define XCAN_FLAG_TXFEMP 0x0001
152/* RX Match Not Finished interrupt available */
153#define XCAN_FLAG_RXMNF 0x0002
154/* Extended acceptance filters with control at 0xE0 */
155#define XCAN_FLAG_EXT_FILTERS 0x0004
156/* TX mailboxes instead of TX FIFO */
157#define XCAN_FLAG_TX_MAILBOXES 0x0008
158/* RX FIFO with each buffer in separate registers at 0x1100
159 * instead of the regular FIFO at 0x50
160 */
161#define XCAN_FLAG_RX_FIFO_MULTI 0x0010
162#define XCAN_FLAG_CANFD_2 0x0020
163
164enum xcan_ip_type {
165 XAXI_CAN = 0,
166 XZYNQ_CANPS,
167 XAXI_CANFD,
168 XAXI_CANFD_2_0,
169};
170
171struct xcan_devtype_data {
172 enum xcan_ip_type cantype;
173 unsigned int flags;
174 const struct can_bittiming_const *bittiming_const;
175 const char *bus_clk_name;
176 unsigned int btr_ts2_shift;
177 unsigned int btr_sjw_shift;
178};
179
180/**
181 * struct xcan_priv - This definition define CAN driver instance
182 * @can: CAN private data structure.
183 * @tx_lock: Lock for synchronizing TX interrupt handling
184 * @tx_head: Tx CAN packets ready to send on the queue
185 * @tx_tail: Tx CAN packets successfully sended on the queue
186 * @tx_max: Maximum number packets the driver can send
187 * @napi: NAPI structure
188 * @read_reg: For reading data from CAN registers
189 * @write_reg: For writing data to CAN registers
190 * @dev: Network device data structure
191 * @reg_base: Ioremapped address to registers
192 * @irq_flags: For request_irq()
193 * @bus_clk: Pointer to struct clk
194 * @can_clk: Pointer to struct clk
195 * @devtype: Device type specific constants
196 */
197struct xcan_priv {
198 struct can_priv can;
199 spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
200 unsigned int tx_head;
201 unsigned int tx_tail;
202 unsigned int tx_max;
203 struct napi_struct napi;
204 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
205 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
206 u32 val);
207 struct device *dev;
208 void __iomem *reg_base;
209 unsigned long irq_flags;
210 struct clk *bus_clk;
211 struct clk *can_clk;
212 struct xcan_devtype_data devtype;
213};
214
215/* CAN Bittiming constants as per Xilinx CAN specs */
216static const struct can_bittiming_const xcan_bittiming_const = {
217 .name = DRIVER_NAME,
218 .tseg1_min = 1,
219 .tseg1_max = 16,
220 .tseg2_min = 1,
221 .tseg2_max = 8,
222 .sjw_max = 4,
223 .brp_min = 1,
224 .brp_max = 256,
225 .brp_inc = 1,
226};
227
228/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
229static const struct can_bittiming_const xcan_bittiming_const_canfd = {
230 .name = DRIVER_NAME,
231 .tseg1_min = 1,
232 .tseg1_max = 64,
233 .tseg2_min = 1,
234 .tseg2_max = 16,
235 .sjw_max = 16,
236 .brp_min = 1,
237 .brp_max = 256,
238 .brp_inc = 1,
239};
240
241/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
242static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
243 .name = DRIVER_NAME,
244 .tseg1_min = 1,
245 .tseg1_max = 16,
246 .tseg2_min = 1,
247 .tseg2_max = 8,
248 .sjw_max = 8,
249 .brp_min = 1,
250 .brp_max = 256,
251 .brp_inc = 1,
252};
253
254/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
255static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
256 .name = DRIVER_NAME,
257 .tseg1_min = 1,
258 .tseg1_max = 256,
259 .tseg2_min = 1,
260 .tseg2_max = 128,
261 .sjw_max = 128,
262 .brp_min = 1,
263 .brp_max = 256,
264 .brp_inc = 1,
265};
266
267/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
268static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
269 .name = DRIVER_NAME,
270 .tseg1_min = 1,
271 .tseg1_max = 32,
272 .tseg2_min = 1,
273 .tseg2_max = 16,
274 .sjw_max = 16,
275 .brp_min = 1,
276 .brp_max = 256,
277 .brp_inc = 1,
278};
279
280/**
281 * xcan_write_reg_le - Write a value to the device register little endian
282 * @priv: Driver private data structure
283 * @reg: Register offset
284 * @val: Value to write at the Register offset
285 *
286 * Write data to the paricular CAN register
287 */
288static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
289 u32 val)
290{
291 iowrite32(val, priv->reg_base + reg);
292}
293
294/**
295 * xcan_read_reg_le - Read a value from the device register little endian
296 * @priv: Driver private data structure
297 * @reg: Register offset
298 *
299 * Read data from the particular CAN register
300 * Return: value read from the CAN register
301 */
302static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
303{
304 return ioread32(priv->reg_base + reg);
305}
306
307/**
308 * xcan_write_reg_be - Write a value to the device register big endian
309 * @priv: Driver private data structure
310 * @reg: Register offset
311 * @val: Value to write at the Register offset
312 *
313 * Write data to the paricular CAN register
314 */
315static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
316 u32 val)
317{
318 iowrite32be(val, priv->reg_base + reg);
319}
320
321/**
322 * xcan_read_reg_be - Read a value from the device register big endian
323 * @priv: Driver private data structure
324 * @reg: Register offset
325 *
326 * Read data from the particular CAN register
327 * Return: value read from the CAN register
328 */
329static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
330{
331 return ioread32be(priv->reg_base + reg);
332}
333
334/**
335 * xcan_rx_int_mask - Get the mask for the receive interrupt
336 * @priv: Driver private data structure
337 *
338 * Return: The receive interrupt mask used by the driver on this HW
339 */
340static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
341{
342 /* RXNEMP is better suited for our use case as it cannot be cleared
343 * while the FIFO is non-empty, but CAN FD HW does not have it
344 */
345 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
346 return XCAN_IXR_RXOK_MASK;
347 else
348 return XCAN_IXR_RXNEMP_MASK;
349}
350
351/**
352 * set_reset_mode - Resets the CAN device mode
353 * @ndev: Pointer to net_device structure
354 *
355 * This is the driver reset mode routine.The driver
356 * enters into configuration mode.
357 *
358 * Return: 0 on success and failure value on error
359 */
360static int set_reset_mode(struct net_device *ndev)
361{
362 struct xcan_priv *priv = netdev_priv(ndev);
363 unsigned long timeout;
364
365 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
366
367 timeout = jiffies + XCAN_TIMEOUT;
368 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
369 if (time_after(jiffies, timeout)) {
370 netdev_warn(ndev, "timed out for config mode\n");
371 return -ETIMEDOUT;
372 }
373 usleep_range(500, 10000);
374 }
375
376 /* reset clears FIFOs */
377 priv->tx_head = 0;
378 priv->tx_tail = 0;
379
380 return 0;
381}
382
383/**
384 * xcan_set_bittiming - CAN set bit timing routine
385 * @ndev: Pointer to net_device structure
386 *
387 * This is the driver set bittiming routine.
388 * Return: 0 on success and failure value on error
389 */
390static int xcan_set_bittiming(struct net_device *ndev)
391{
392 struct xcan_priv *priv = netdev_priv(ndev);
393 struct can_bittiming *bt = &priv->can.bittiming;
394 struct can_bittiming *dbt = &priv->can.data_bittiming;
395 u32 btr0, btr1;
396 u32 is_config_mode;
397
398 /* Check whether Xilinx CAN is in configuration mode.
399 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
400 */
401 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
402 XCAN_SR_CONFIG_MASK;
403 if (!is_config_mode) {
404 netdev_alert(ndev,
405 "BUG! Cannot set bittiming - CAN is not in config mode\n");
406 return -EPERM;
407 }
408
409 /* Setting Baud Rate prescalar value in BRPR Register */
410 btr0 = (bt->brp - 1);
411
412 /* Setting Time Segment 1 in BTR Register */
413 btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
414
415 /* Setting Time Segment 2 in BTR Register */
416 btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
417
418 /* Setting Synchronous jump width in BTR Register */
419 btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
420
421 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
422 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
423
424 if (priv->devtype.cantype == XAXI_CANFD ||
425 priv->devtype.cantype == XAXI_CANFD_2_0) {
426 /* Setting Baud Rate prescalar value in F_BRPR Register */
427 btr0 = dbt->brp - 1;
428
429 /* Setting Time Segment 1 in BTR Register */
430 btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
431
432 /* Setting Time Segment 2 in BTR Register */
433 btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
434
435 /* Setting Synchronous jump width in BTR Register */
436 btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
437
438 priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
439 priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
440 }
441
442 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
443 priv->read_reg(priv, XCAN_BRPR_OFFSET),
444 priv->read_reg(priv, XCAN_BTR_OFFSET));
445
446 return 0;
447}
448
449/**
450 * xcan_chip_start - This the drivers start routine
451 * @ndev: Pointer to net_device structure
452 *
453 * This is the drivers start routine.
454 * Based on the State of the CAN device it puts
455 * the CAN device into a proper mode.
456 *
457 * Return: 0 on success and failure value on error
458 */
459static int xcan_chip_start(struct net_device *ndev)
460{
461 struct xcan_priv *priv = netdev_priv(ndev);
462 u32 reg_msr;
463 int err;
464 u32 ier;
465
466 /* Check if it is in reset mode */
467 err = set_reset_mode(ndev);
468 if (err < 0)
469 return err;
470
471 err = xcan_set_bittiming(ndev);
472 if (err < 0)
473 return err;
474
475 /* Enable interrupts
476 *
477 * We enable the ERROR interrupt even with
478 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
479 * dedicated interrupt for a state change to
480 * ERROR_WARNING/ERROR_PASSIVE.
481 */
482 ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
483 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
484 XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
485 XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
486
487 if (priv->devtype.flags & XCAN_FLAG_RXMNF)
488 ier |= XCAN_IXR_RXMNF_MASK;
489
490 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
491
492 /* Check whether it is loopback mode or normal mode */
493 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
494 reg_msr = XCAN_MSR_LBACK_MASK;
495 else
496 reg_msr = 0x0;
497
498 /* enable the first extended filter, if any, as cores with extended
499 * filtering default to non-receipt if all filters are disabled
500 */
501 if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
502 priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
503
504 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
505 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
506
507 netdev_dbg(ndev, "status:#x%08x\n",
508 priv->read_reg(priv, XCAN_SR_OFFSET));
509
510 priv->can.state = CAN_STATE_ERROR_ACTIVE;
511 return 0;
512}
513
514/**
515 * xcan_do_set_mode - This sets the mode of the driver
516 * @ndev: Pointer to net_device structure
517 * @mode: Tells the mode of the driver
518 *
519 * This check the drivers state and calls the
520 * the corresponding modes to set.
521 *
522 * Return: 0 on success and failure value on error
523 */
524static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
525{
526 int ret;
527
528 switch (mode) {
529 case CAN_MODE_START:
530 ret = xcan_chip_start(ndev);
531 if (ret < 0) {
532 netdev_err(ndev, "xcan_chip_start failed!\n");
533 return ret;
534 }
535 netif_wake_queue(ndev);
536 break;
537 default:
538 ret = -EOPNOTSUPP;
539 break;
540 }
541
542 return ret;
543}
544
545/**
546 * xcan_write_frame - Write a frame to HW
547 * @ndev: Pointer to net_device structure
548 * @skb: sk_buff pointer that contains data to be Txed
549 * @frame_offset: Register offset to write the frame to
550 */
551static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
552 int frame_offset)
553{
554 u32 id, dlc, data[2] = {0, 0};
555 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
556 u32 ramoff, dwindex = 0, i;
557 struct xcan_priv *priv = netdev_priv(ndev);
558
559 /* Watch carefully on the bit sequence */
560 if (cf->can_id & CAN_EFF_FLAG) {
561 /* Extended CAN ID format */
562 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
563 XCAN_IDR_ID2_MASK;
564 id |= (((cf->can_id & CAN_EFF_MASK) >>
565 (CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
566 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
567
568 /* The substibute remote TX request bit should be "1"
569 * for extended frames as in the Xilinx CAN datasheet
570 */
571 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
572
573 if (cf->can_id & CAN_RTR_FLAG)
574 /* Extended frames remote TX request */
575 id |= XCAN_IDR_RTR_MASK;
576 } else {
577 /* Standard CAN ID format */
578 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
579 XCAN_IDR_ID1_MASK;
580
581 if (cf->can_id & CAN_RTR_FLAG)
582 /* Standard frames remote TX request */
583 id |= XCAN_IDR_SRR_MASK;
584 }
585
586 dlc = can_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
587 if (can_is_canfd_skb(skb)) {
588 if (cf->flags & CANFD_BRS)
589 dlc |= XCAN_DLCR_BRS_MASK;
590 dlc |= XCAN_DLCR_EDL_MASK;
591 }
592
593 if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
594 (priv->devtype.flags & XCAN_FLAG_TXFEMP))
595 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
596 else
597 can_put_echo_skb(skb, ndev, 0);
598
599 priv->tx_head++;
600
601 priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
602 /* If the CAN frame is RTR frame this write triggers transmission
603 * (not on CAN FD)
604 */
605 priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
606 if (priv->devtype.cantype == XAXI_CANFD ||
607 priv->devtype.cantype == XAXI_CANFD_2_0) {
608 for (i = 0; i < cf->len; i += 4) {
609 ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
610 (dwindex * XCANFD_DW_BYTES);
611 priv->write_reg(priv, ramoff,
612 be32_to_cpup((__be32 *)(cf->data + i)));
613 dwindex++;
614 }
615 } else {
616 if (cf->len > 0)
617 data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
618 if (cf->len > 4)
619 data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
620
621 if (!(cf->can_id & CAN_RTR_FLAG)) {
622 priv->write_reg(priv,
623 XCAN_FRAME_DW1_OFFSET(frame_offset),
624 data[0]);
625 /* If the CAN frame is Standard/Extended frame this
626 * write triggers transmission (not on CAN FD)
627 */
628 priv->write_reg(priv,
629 XCAN_FRAME_DW2_OFFSET(frame_offset),
630 data[1]);
631 }
632 }
633}
634
635/**
636 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
637 * @skb: sk_buff pointer that contains data to be Txed
638 * @ndev: Pointer to net_device structure
639 *
640 * Return: 0 on success, -ENOSPC if FIFO is full.
641 */
642static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
643{
644 struct xcan_priv *priv = netdev_priv(ndev);
645 unsigned long flags;
646
647 /* Check if the TX buffer is full */
648 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
649 XCAN_SR_TXFLL_MASK))
650 return -ENOSPC;
651
652 spin_lock_irqsave(&priv->tx_lock, flags);
653
654 xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
655
656 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
657 if (priv->tx_max > 1)
658 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
659
660 /* Check if the TX buffer is full */
661 if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
662 netif_stop_queue(ndev);
663
664 spin_unlock_irqrestore(&priv->tx_lock, flags);
665
666 return 0;
667}
668
669/**
670 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
671 * @skb: sk_buff pointer that contains data to be Txed
672 * @ndev: Pointer to net_device structure
673 *
674 * Return: 0 on success, -ENOSPC if there is no space
675 */
676static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
677{
678 struct xcan_priv *priv = netdev_priv(ndev);
679 unsigned long flags;
680
681 if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
682 BIT(XCAN_TX_MAILBOX_IDX)))
683 return -ENOSPC;
684
685 spin_lock_irqsave(&priv->tx_lock, flags);
686
687 xcan_write_frame(ndev, skb,
688 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
689
690 /* Mark buffer as ready for transmit */
691 priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
692
693 netif_stop_queue(ndev);
694
695 spin_unlock_irqrestore(&priv->tx_lock, flags);
696
697 return 0;
698}
699
700/**
701 * xcan_start_xmit - Starts the transmission
702 * @skb: sk_buff pointer that contains data to be Txed
703 * @ndev: Pointer to net_device structure
704 *
705 * This function is invoked from upper layers to initiate transmission.
706 *
707 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
708 */
709static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
710{
711 struct xcan_priv *priv = netdev_priv(ndev);
712 int ret;
713
714 if (can_dropped_invalid_skb(ndev, skb))
715 return NETDEV_TX_OK;
716
717 if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
718 ret = xcan_start_xmit_mailbox(skb, ndev);
719 else
720 ret = xcan_start_xmit_fifo(skb, ndev);
721
722 if (ret < 0) {
723 netdev_err(ndev, "BUG!, TX full when queue awake!\n");
724 netif_stop_queue(ndev);
725 return NETDEV_TX_BUSY;
726 }
727
728 return NETDEV_TX_OK;
729}
730
731/**
732 * xcan_rx - Is called from CAN isr to complete the received
733 * frame processing
734 * @ndev: Pointer to net_device structure
735 * @frame_base: Register offset to the frame to be read
736 *
737 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
738 * does minimal processing and invokes "netif_receive_skb" to complete further
739 * processing.
740 * Return: 1 on success and 0 on failure.
741 */
742static int xcan_rx(struct net_device *ndev, int frame_base)
743{
744 struct xcan_priv *priv = netdev_priv(ndev);
745 struct net_device_stats *stats = &ndev->stats;
746 struct can_frame *cf;
747 struct sk_buff *skb;
748 u32 id_xcan, dlc, data[2] = {0, 0};
749
750 skb = alloc_can_skb(ndev, &cf);
751 if (unlikely(!skb)) {
752 stats->rx_dropped++;
753 return 0;
754 }
755
756 /* Read a frame from Xilinx zynq CANPS */
757 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
758 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
759 XCAN_DLCR_DLC_SHIFT;
760
761 /* Change Xilinx CAN data length format to socketCAN data format */
762 cf->can_dlc = get_can_dlc(dlc);
763
764 /* Change Xilinx CAN ID format to socketCAN ID format */
765 if (id_xcan & XCAN_IDR_IDE_MASK) {
766 /* The received frame is an Extended format frame */
767 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
768 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
769 XCAN_IDR_ID2_SHIFT;
770 cf->can_id |= CAN_EFF_FLAG;
771 if (id_xcan & XCAN_IDR_RTR_MASK)
772 cf->can_id |= CAN_RTR_FLAG;
773 } else {
774 /* The received frame is a standard format frame */
775 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
776 XCAN_IDR_ID1_SHIFT;
777 if (id_xcan & XCAN_IDR_SRR_MASK)
778 cf->can_id |= CAN_RTR_FLAG;
779 }
780
781 /* DW1/DW2 must always be read to remove message from RXFIFO */
782 data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
783 data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
784
785 if (!(cf->can_id & CAN_RTR_FLAG)) {
786 /* Change Xilinx CAN data format to socketCAN data format */
787 if (cf->can_dlc > 0)
788 *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
789 if (cf->can_dlc > 4)
790 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
791 }
792
793 stats->rx_bytes += cf->can_dlc;
794 stats->rx_packets++;
795 netif_receive_skb(skb);
796
797 return 1;
798}
799
800/**
801 * xcanfd_rx - Is called from CAN isr to complete the received
802 * frame processing
803 * @ndev: Pointer to net_device structure
804 * @frame_base: Register offset to the frame to be read
805 *
806 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
807 * does minimal processing and invokes "netif_receive_skb" to complete further
808 * processing.
809 * Return: 1 on success and 0 on failure.
810 */
811static int xcanfd_rx(struct net_device *ndev, int frame_base)
812{
813 struct xcan_priv *priv = netdev_priv(ndev);
814 struct net_device_stats *stats = &ndev->stats;
815 struct canfd_frame *cf;
816 struct sk_buff *skb;
817 u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
818
819 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
820 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
821 if (dlc & XCAN_DLCR_EDL_MASK)
822 skb = alloc_canfd_skb(ndev, &cf);
823 else
824 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
825
826 if (unlikely(!skb)) {
827 stats->rx_dropped++;
828 return 0;
829 }
830
831 /* Change Xilinx CANFD data length format to socketCAN data
832 * format
833 */
834 if (dlc & XCAN_DLCR_EDL_MASK)
835 cf->len = can_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
836 XCAN_DLCR_DLC_SHIFT);
837 else
838 cf->len = get_can_dlc((dlc & XCAN_DLCR_DLC_MASK) >>
839 XCAN_DLCR_DLC_SHIFT);
840
841 /* Change Xilinx CAN ID format to socketCAN ID format */
842 if (id_xcan & XCAN_IDR_IDE_MASK) {
843 /* The received frame is an Extended format frame */
844 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
845 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
846 XCAN_IDR_ID2_SHIFT;
847 cf->can_id |= CAN_EFF_FLAG;
848 if (id_xcan & XCAN_IDR_RTR_MASK)
849 cf->can_id |= CAN_RTR_FLAG;
850 } else {
851 /* The received frame is a standard format frame */
852 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
853 XCAN_IDR_ID1_SHIFT;
854 if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
855 XCAN_IDR_SRR_MASK))
856 cf->can_id |= CAN_RTR_FLAG;
857 }
858
859 /* Check the frame received is FD or not*/
860 if (dlc & XCAN_DLCR_EDL_MASK) {
861 for (i = 0; i < cf->len; i += 4) {
862 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
863 (dwindex * XCANFD_DW_BYTES);
864 data[0] = priv->read_reg(priv, dw_offset);
865 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
866 dwindex++;
867 }
868 } else {
869 for (i = 0; i < cf->len; i += 4) {
870 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
871 data[0] = priv->read_reg(priv, dw_offset + i);
872 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
873 }
874 }
875 stats->rx_bytes += cf->len;
876 stats->rx_packets++;
877 netif_receive_skb(skb);
878
879 return 1;
880}
881
882/**
883 * xcan_current_error_state - Get current error state from HW
884 * @ndev: Pointer to net_device structure
885 *
886 * Checks the current CAN error state from the HW. Note that this
887 * only checks for ERROR_PASSIVE and ERROR_WARNING.
888 *
889 * Return:
890 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
891 * otherwise.
892 */
893static enum can_state xcan_current_error_state(struct net_device *ndev)
894{
895 struct xcan_priv *priv = netdev_priv(ndev);
896 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
897
898 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
899 return CAN_STATE_ERROR_PASSIVE;
900 else if (status & XCAN_SR_ERRWRN_MASK)
901 return CAN_STATE_ERROR_WARNING;
902 else
903 return CAN_STATE_ERROR_ACTIVE;
904}
905
906/**
907 * xcan_set_error_state - Set new CAN error state
908 * @ndev: Pointer to net_device structure
909 * @new_state: The new CAN state to be set
910 * @cf: Error frame to be populated or NULL
911 *
912 * Set new CAN error state for the device, updating statistics and
913 * populating the error frame if given.
914 */
915static void xcan_set_error_state(struct net_device *ndev,
916 enum can_state new_state,
917 struct can_frame *cf)
918{
919 struct xcan_priv *priv = netdev_priv(ndev);
920 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
921 u32 txerr = ecr & XCAN_ECR_TEC_MASK;
922 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
923 enum can_state tx_state = txerr >= rxerr ? new_state : 0;
924 enum can_state rx_state = txerr <= rxerr ? new_state : 0;
925
926 /* non-ERROR states are handled elsewhere */
927 if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
928 return;
929
930 can_change_state(ndev, cf, tx_state, rx_state);
931
932 if (cf) {
933 cf->data[6] = txerr;
934 cf->data[7] = rxerr;
935 }
936}
937
938/**
939 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
940 * @ndev: Pointer to net_device structure
941 *
942 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
943 * the performed RX/TX has caused it to drop to a lesser state and set
944 * the interface state accordingly.
945 */
946static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
947{
948 struct xcan_priv *priv = netdev_priv(ndev);
949 enum can_state old_state = priv->can.state;
950 enum can_state new_state;
951
952 /* changing error state due to successful frame RX/TX can only
953 * occur from these states
954 */
955 if (old_state != CAN_STATE_ERROR_WARNING &&
956 old_state != CAN_STATE_ERROR_PASSIVE)
957 return;
958
959 new_state = xcan_current_error_state(ndev);
960
961 if (new_state != old_state) {
962 struct sk_buff *skb;
963 struct can_frame *cf;
964
965 skb = alloc_can_err_skb(ndev, &cf);
966
967 xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
968
969 if (skb) {
970 struct net_device_stats *stats = &ndev->stats;
971
972 stats->rx_packets++;
973 stats->rx_bytes += cf->can_dlc;
974 netif_rx(skb);
975 }
976 }
977}
978
979/**
980 * xcan_err_interrupt - error frame Isr
981 * @ndev: net_device pointer
982 * @isr: interrupt status register value
983 *
984 * This is the CAN error interrupt and it will
985 * check the the type of error and forward the error
986 * frame to upper layers.
987 */
988static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
989{
990 struct xcan_priv *priv = netdev_priv(ndev);
991 struct net_device_stats *stats = &ndev->stats;
992 struct can_frame cf = { };
993 u32 err_status;
994
995 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
996 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
997
998 if (isr & XCAN_IXR_BSOFF_MASK) {
999 priv->can.state = CAN_STATE_BUS_OFF;
1000 priv->can.can_stats.bus_off++;
1001 /* Leave device in Config Mode in bus-off state */
1002 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1003 can_bus_off(ndev);
1004 cf.can_id |= CAN_ERR_BUSOFF;
1005 } else {
1006 enum can_state new_state = xcan_current_error_state(ndev);
1007
1008 if (new_state != priv->can.state)
1009 xcan_set_error_state(ndev, new_state, &cf);
1010 }
1011
1012 /* Check for Arbitration lost interrupt */
1013 if (isr & XCAN_IXR_ARBLST_MASK) {
1014 priv->can.can_stats.arbitration_lost++;
1015 cf.can_id |= CAN_ERR_LOSTARB;
1016 cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1017 }
1018
1019 /* Check for RX FIFO Overflow interrupt */
1020 if (isr & XCAN_IXR_RXOFLW_MASK) {
1021 stats->rx_over_errors++;
1022 stats->rx_errors++;
1023 cf.can_id |= CAN_ERR_CRTL;
1024 cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1025 }
1026
1027 /* Check for RX Match Not Finished interrupt */
1028 if (isr & XCAN_IXR_RXMNF_MASK) {
1029 stats->rx_dropped++;
1030 stats->rx_errors++;
1031 netdev_err(ndev, "RX match not finished, frame discarded\n");
1032 cf.can_id |= CAN_ERR_CRTL;
1033 cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1034 }
1035
1036 /* Check for error interrupt */
1037 if (isr & XCAN_IXR_ERROR_MASK) {
1038 bool berr_reporting = false;
1039
1040 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1041 berr_reporting = true;
1042 cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1043 }
1044
1045 /* Check for Ack error interrupt */
1046 if (err_status & XCAN_ESR_ACKER_MASK) {
1047 stats->tx_errors++;
1048 if (berr_reporting) {
1049 cf.can_id |= CAN_ERR_ACK;
1050 cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1051 }
1052 }
1053
1054 /* Check for Bit error interrupt */
1055 if (err_status & XCAN_ESR_BERR_MASK) {
1056 stats->tx_errors++;
1057 if (berr_reporting) {
1058 cf.can_id |= CAN_ERR_PROT;
1059 cf.data[2] = CAN_ERR_PROT_BIT;
1060 }
1061 }
1062
1063 /* Check for Stuff error interrupt */
1064 if (err_status & XCAN_ESR_STER_MASK) {
1065 stats->rx_errors++;
1066 if (berr_reporting) {
1067 cf.can_id |= CAN_ERR_PROT;
1068 cf.data[2] = CAN_ERR_PROT_STUFF;
1069 }
1070 }
1071
1072 /* Check for Form error interrupt */
1073 if (err_status & XCAN_ESR_FMER_MASK) {
1074 stats->rx_errors++;
1075 if (berr_reporting) {
1076 cf.can_id |= CAN_ERR_PROT;
1077 cf.data[2] = CAN_ERR_PROT_FORM;
1078 }
1079 }
1080
1081 /* Check for CRC error interrupt */
1082 if (err_status & XCAN_ESR_CRCER_MASK) {
1083 stats->rx_errors++;
1084 if (berr_reporting) {
1085 cf.can_id |= CAN_ERR_PROT;
1086 cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1087 }
1088 }
1089 priv->can.can_stats.bus_error++;
1090 }
1091
1092 if (cf.can_id) {
1093 struct can_frame *skb_cf;
1094 struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1095
1096 if (skb) {
1097 skb_cf->can_id |= cf.can_id;
1098 memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1099 stats->rx_packets++;
1100 stats->rx_bytes += CAN_ERR_DLC;
1101 netif_rx(skb);
1102 }
1103 }
1104
1105 netdev_dbg(ndev, "%s: error status register:0x%x\n",
1106 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1107}
1108
1109/**
1110 * xcan_state_interrupt - It will check the state of the CAN device
1111 * @ndev: net_device pointer
1112 * @isr: interrupt status register value
1113 *
1114 * This will checks the state of the CAN device
1115 * and puts the device into appropriate state.
1116 */
1117static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1118{
1119 struct xcan_priv *priv = netdev_priv(ndev);
1120
1121 /* Check for Sleep interrupt if set put CAN device in sleep state */
1122 if (isr & XCAN_IXR_SLP_MASK)
1123 priv->can.state = CAN_STATE_SLEEPING;
1124
1125 /* Check for Wake up interrupt if set put CAN device in Active state */
1126 if (isr & XCAN_IXR_WKUP_MASK)
1127 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1128}
1129
1130/**
1131 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1132 * @priv: Driver private data structure
1133 *
1134 * Return: Register offset of the next frame in RX FIFO.
1135 */
1136static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1137{
1138 int offset;
1139
1140 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1141 u32 fsr, mask;
1142
1143 /* clear RXOK before the is-empty check so that any newly
1144 * received frame will reassert it without a race
1145 */
1146 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1147
1148 fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1149
1150 /* check if RX FIFO is empty */
1151 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1152 mask = XCAN_2_FSR_FL_MASK;
1153 else
1154 mask = XCAN_FSR_FL_MASK;
1155
1156 if (!(fsr & mask))
1157 return -ENOENT;
1158
1159 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1160 offset =
1161 XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1162 else
1163 offset =
1164 XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1165
1166 } else {
1167 /* check if RX FIFO is empty */
1168 if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1169 XCAN_IXR_RXNEMP_MASK))
1170 return -ENOENT;
1171
1172 /* frames are read from a static offset */
1173 offset = XCAN_RXFIFO_OFFSET;
1174 }
1175
1176 return offset;
1177}
1178
1179/**
1180 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1181 * @napi: napi structure pointer
1182 * @quota: Max number of rx packets to be processed.
1183 *
1184 * This is the poll routine for rx part.
1185 * It will process the packets maximux quota value.
1186 *
1187 * Return: number of packets received
1188 */
1189static int xcan_rx_poll(struct napi_struct *napi, int quota)
1190{
1191 struct net_device *ndev = napi->dev;
1192 struct xcan_priv *priv = netdev_priv(ndev);
1193 u32 ier;
1194 int work_done = 0;
1195 int frame_offset;
1196
1197 while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1198 (work_done < quota)) {
1199 if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1200 work_done += xcanfd_rx(ndev, frame_offset);
1201 else
1202 work_done += xcan_rx(ndev, frame_offset);
1203
1204 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1205 /* increment read index */
1206 priv->write_reg(priv, XCAN_FSR_OFFSET,
1207 XCAN_FSR_IRI_MASK);
1208 else
1209 /* clear rx-not-empty (will actually clear only if
1210 * empty)
1211 */
1212 priv->write_reg(priv, XCAN_ICR_OFFSET,
1213 XCAN_IXR_RXNEMP_MASK);
1214 }
1215
1216 if (work_done) {
1217 can_led_event(ndev, CAN_LED_EVENT_RX);
1218 xcan_update_error_state_after_rxtx(ndev);
1219 }
1220
1221 if (work_done < quota) {
1222 napi_complete_done(napi, work_done);
1223 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1224 ier |= xcan_rx_int_mask(priv);
1225 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1226 }
1227 return work_done;
1228}
1229
1230/**
1231 * xcan_tx_interrupt - Tx Done Isr
1232 * @ndev: net_device pointer
1233 * @isr: Interrupt status register value
1234 */
1235static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1236{
1237 struct xcan_priv *priv = netdev_priv(ndev);
1238 struct net_device_stats *stats = &ndev->stats;
1239 unsigned int frames_in_fifo;
1240 int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1241 unsigned long flags;
1242 int retries = 0;
1243
1244 /* Synchronize with xmit as we need to know the exact number
1245 * of frames in the FIFO to stay in sync due to the TXFEMP
1246 * handling.
1247 * This also prevents a race between netif_wake_queue() and
1248 * netif_stop_queue().
1249 */
1250 spin_lock_irqsave(&priv->tx_lock, flags);
1251
1252 frames_in_fifo = priv->tx_head - priv->tx_tail;
1253
1254 if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1255 /* clear TXOK anyway to avoid getting back here */
1256 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1257 spin_unlock_irqrestore(&priv->tx_lock, flags);
1258 return;
1259 }
1260
1261 /* Check if 2 frames were sent (TXOK only means that at least 1
1262 * frame was sent).
1263 */
1264 if (frames_in_fifo > 1) {
1265 WARN_ON(frames_in_fifo > priv->tx_max);
1266
1267 /* Synchronize TXOK and isr so that after the loop:
1268 * (1) isr variable is up-to-date at least up to TXOK clear
1269 * time. This avoids us clearing a TXOK of a second frame
1270 * but not noticing that the FIFO is now empty and thus
1271 * marking only a single frame as sent.
1272 * (2) No TXOK is left. Having one could mean leaving a
1273 * stray TXOK as we might process the associated frame
1274 * via TXFEMP handling as we read TXFEMP *after* TXOK
1275 * clear to satisfy (1).
1276 */
1277 while ((isr & XCAN_IXR_TXOK_MASK) &&
1278 !WARN_ON(++retries == 100)) {
1279 priv->write_reg(priv, XCAN_ICR_OFFSET,
1280 XCAN_IXR_TXOK_MASK);
1281 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1282 }
1283
1284 if (isr & XCAN_IXR_TXFEMP_MASK) {
1285 /* nothing in FIFO anymore */
1286 frames_sent = frames_in_fifo;
1287 }
1288 } else {
1289 /* single frame in fifo, just clear TXOK */
1290 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1291 }
1292
1293 while (frames_sent--) {
1294 stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1295 priv->tx_max);
1296 priv->tx_tail++;
1297 stats->tx_packets++;
1298 }
1299
1300 netif_wake_queue(ndev);
1301
1302 spin_unlock_irqrestore(&priv->tx_lock, flags);
1303
1304 can_led_event(ndev, CAN_LED_EVENT_TX);
1305 xcan_update_error_state_after_rxtx(ndev);
1306}
1307
1308/**
1309 * xcan_interrupt - CAN Isr
1310 * @irq: irq number
1311 * @dev_id: device id poniter
1312 *
1313 * This is the xilinx CAN Isr. It checks for the type of interrupt
1314 * and invokes the corresponding ISR.
1315 *
1316 * Return:
1317 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1318 */
1319static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1320{
1321 struct net_device *ndev = (struct net_device *)dev_id;
1322 struct xcan_priv *priv = netdev_priv(ndev);
1323 u32 isr, ier;
1324 u32 isr_errors;
1325 u32 rx_int_mask = xcan_rx_int_mask(priv);
1326
1327 /* Get the interrupt status from Xilinx CAN */
1328 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1329 if (!isr)
1330 return IRQ_NONE;
1331
1332 /* Check for the type of interrupt and Processing it */
1333 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1334 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1335 XCAN_IXR_WKUP_MASK));
1336 xcan_state_interrupt(ndev, isr);
1337 }
1338
1339 /* Check for Tx interrupt and Processing it */
1340 if (isr & XCAN_IXR_TXOK_MASK)
1341 xcan_tx_interrupt(ndev, isr);
1342
1343 /* Check for the type of error interrupt and Processing it */
1344 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1345 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1346 XCAN_IXR_RXMNF_MASK);
1347 if (isr_errors) {
1348 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1349 xcan_err_interrupt(ndev, isr);
1350 }
1351
1352 /* Check for the type of receive interrupt and Processing it */
1353 if (isr & rx_int_mask) {
1354 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1355 ier &= ~rx_int_mask;
1356 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1357 napi_schedule(&priv->napi);
1358 }
1359 return IRQ_HANDLED;
1360}
1361
1362/**
1363 * xcan_chip_stop - Driver stop routine
1364 * @ndev: Pointer to net_device structure
1365 *
1366 * This is the drivers stop routine. It will disable the
1367 * interrupts and put the device into configuration mode.
1368 */
1369static void xcan_chip_stop(struct net_device *ndev)
1370{
1371 struct xcan_priv *priv = netdev_priv(ndev);
1372
1373 /* Disable interrupts and leave the can in configuration mode */
1374 set_reset_mode(ndev);
1375 priv->can.state = CAN_STATE_STOPPED;
1376}
1377
1378/**
1379 * xcan_open - Driver open routine
1380 * @ndev: Pointer to net_device structure
1381 *
1382 * This is the driver open routine.
1383 * Return: 0 on success and failure value on error
1384 */
1385static int xcan_open(struct net_device *ndev)
1386{
1387 struct xcan_priv *priv = netdev_priv(ndev);
1388 int ret;
1389
1390 ret = pm_runtime_get_sync(priv->dev);
1391 if (ret < 0) {
1392 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1393 __func__, ret);
1394 return ret;
1395 }
1396
1397 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1398 ndev->name, ndev);
1399 if (ret < 0) {
1400 netdev_err(ndev, "irq allocation for CAN failed\n");
1401 goto err;
1402 }
1403
1404 /* Set chip into reset mode */
1405 ret = set_reset_mode(ndev);
1406 if (ret < 0) {
1407 netdev_err(ndev, "mode resetting failed!\n");
1408 goto err_irq;
1409 }
1410
1411 /* Common open */
1412 ret = open_candev(ndev);
1413 if (ret)
1414 goto err_irq;
1415
1416 ret = xcan_chip_start(ndev);
1417 if (ret < 0) {
1418 netdev_err(ndev, "xcan_chip_start failed!\n");
1419 goto err_candev;
1420 }
1421
1422 can_led_event(ndev, CAN_LED_EVENT_OPEN);
1423 napi_enable(&priv->napi);
1424 netif_start_queue(ndev);
1425
1426 return 0;
1427
1428err_candev:
1429 close_candev(ndev);
1430err_irq:
1431 free_irq(ndev->irq, ndev);
1432err:
1433 pm_runtime_put(priv->dev);
1434
1435 return ret;
1436}
1437
1438/**
1439 * xcan_close - Driver close routine
1440 * @ndev: Pointer to net_device structure
1441 *
1442 * Return: 0 always
1443 */
1444static int xcan_close(struct net_device *ndev)
1445{
1446 struct xcan_priv *priv = netdev_priv(ndev);
1447
1448 netif_stop_queue(ndev);
1449 napi_disable(&priv->napi);
1450 xcan_chip_stop(ndev);
1451 free_irq(ndev->irq, ndev);
1452 close_candev(ndev);
1453
1454 can_led_event(ndev, CAN_LED_EVENT_STOP);
1455 pm_runtime_put(priv->dev);
1456
1457 return 0;
1458}
1459
1460/**
1461 * xcan_get_berr_counter - error counter routine
1462 * @ndev: Pointer to net_device structure
1463 * @bec: Pointer to can_berr_counter structure
1464 *
1465 * This is the driver error counter routine.
1466 * Return: 0 on success and failure value on error
1467 */
1468static int xcan_get_berr_counter(const struct net_device *ndev,
1469 struct can_berr_counter *bec)
1470{
1471 struct xcan_priv *priv = netdev_priv(ndev);
1472 int ret;
1473
1474 ret = pm_runtime_get_sync(priv->dev);
1475 if (ret < 0) {
1476 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1477 __func__, ret);
1478 return ret;
1479 }
1480
1481 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1482 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1483 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1484
1485 pm_runtime_put(priv->dev);
1486
1487 return 0;
1488}
1489
1490static const struct net_device_ops xcan_netdev_ops = {
1491 .ndo_open = xcan_open,
1492 .ndo_stop = xcan_close,
1493 .ndo_start_xmit = xcan_start_xmit,
1494 .ndo_change_mtu = can_change_mtu,
1495};
1496
1497/**
1498 * xcan_suspend - Suspend method for the driver
1499 * @dev: Address of the device structure
1500 *
1501 * Put the driver into low power mode.
1502 * Return: 0 on success and failure value on error
1503 */
1504static int __maybe_unused xcan_suspend(struct device *dev)
1505{
1506 struct net_device *ndev = dev_get_drvdata(dev);
1507
1508 if (netif_running(ndev)) {
1509 netif_stop_queue(ndev);
1510 netif_device_detach(ndev);
1511 xcan_chip_stop(ndev);
1512 }
1513
1514 return pm_runtime_force_suspend(dev);
1515}
1516
1517/**
1518 * xcan_resume - Resume from suspend
1519 * @dev: Address of the device structure
1520 *
1521 * Resume operation after suspend.
1522 * Return: 0 on success and failure value on error
1523 */
1524static int __maybe_unused xcan_resume(struct device *dev)
1525{
1526 struct net_device *ndev = dev_get_drvdata(dev);
1527 int ret;
1528
1529 ret = pm_runtime_force_resume(dev);
1530 if (ret) {
1531 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1532 return ret;
1533 }
1534
1535 if (netif_running(ndev)) {
1536 ret = xcan_chip_start(ndev);
1537 if (ret) {
1538 dev_err(dev, "xcan_chip_start failed on resume\n");
1539 return ret;
1540 }
1541
1542 netif_device_attach(ndev);
1543 netif_start_queue(ndev);
1544 }
1545
1546 return 0;
1547}
1548
1549/**
1550 * xcan_runtime_suspend - Runtime suspend method for the driver
1551 * @dev: Address of the device structure
1552 *
1553 * Put the driver into low power mode.
1554 * Return: 0 always
1555 */
1556static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1557{
1558 struct net_device *ndev = dev_get_drvdata(dev);
1559 struct xcan_priv *priv = netdev_priv(ndev);
1560
1561 clk_disable_unprepare(priv->bus_clk);
1562 clk_disable_unprepare(priv->can_clk);
1563
1564 return 0;
1565}
1566
1567/**
1568 * xcan_runtime_resume - Runtime resume from suspend
1569 * @dev: Address of the device structure
1570 *
1571 * Resume operation after suspend.
1572 * Return: 0 on success and failure value on error
1573 */
1574static int __maybe_unused xcan_runtime_resume(struct device *dev)
1575{
1576 struct net_device *ndev = dev_get_drvdata(dev);
1577 struct xcan_priv *priv = netdev_priv(ndev);
1578 int ret;
1579
1580 ret = clk_prepare_enable(priv->bus_clk);
1581 if (ret) {
1582 dev_err(dev, "Cannot enable clock.\n");
1583 return ret;
1584 }
1585 ret = clk_prepare_enable(priv->can_clk);
1586 if (ret) {
1587 dev_err(dev, "Cannot enable clock.\n");
1588 clk_disable_unprepare(priv->bus_clk);
1589 return ret;
1590 }
1591
1592 return 0;
1593}
1594
1595static const struct dev_pm_ops xcan_dev_pm_ops = {
1596 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1597 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1598};
1599
1600static const struct xcan_devtype_data xcan_zynq_data = {
1601 .cantype = XZYNQ_CANPS,
1602 .flags = XCAN_FLAG_TXFEMP,
1603 .bittiming_const = &xcan_bittiming_const,
1604 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1605 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1606 .bus_clk_name = "pclk",
1607};
1608
1609static const struct xcan_devtype_data xcan_axi_data = {
1610 .cantype = XAXI_CAN,
1611 .bittiming_const = &xcan_bittiming_const,
1612 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1613 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1614 .bus_clk_name = "s_axi_aclk",
1615};
1616
1617static const struct xcan_devtype_data xcan_canfd_data = {
1618 .cantype = XAXI_CANFD,
1619 .flags = XCAN_FLAG_EXT_FILTERS |
1620 XCAN_FLAG_RXMNF |
1621 XCAN_FLAG_TX_MAILBOXES |
1622 XCAN_FLAG_RX_FIFO_MULTI,
1623 .bittiming_const = &xcan_bittiming_const_canfd,
1624 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1625 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1626 .bus_clk_name = "s_axi_aclk",
1627};
1628
1629static const struct xcan_devtype_data xcan_canfd2_data = {
1630 .cantype = XAXI_CANFD_2_0,
1631 .flags = XCAN_FLAG_EXT_FILTERS |
1632 XCAN_FLAG_RXMNF |
1633 XCAN_FLAG_TX_MAILBOXES |
1634 XCAN_FLAG_CANFD_2 |
1635 XCAN_FLAG_RX_FIFO_MULTI,
1636 .bittiming_const = &xcan_bittiming_const_canfd2,
1637 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1638 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1639 .bus_clk_name = "s_axi_aclk",
1640};
1641
1642/* Match table for OF platform binding */
1643static const struct of_device_id xcan_of_match[] = {
1644 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1645 { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1646 { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1647 { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1648 { /* end of list */ },
1649};
1650MODULE_DEVICE_TABLE(of, xcan_of_match);
1651
1652/**
1653 * xcan_probe - Platform registration call
1654 * @pdev: Handle to the platform device structure
1655 *
1656 * This function does all the memory allocation and registration for the CAN
1657 * device.
1658 *
1659 * Return: 0 on success and failure value on error
1660 */
1661static int xcan_probe(struct platform_device *pdev)
1662{
1663 struct net_device *ndev;
1664 struct xcan_priv *priv;
1665 const struct of_device_id *of_id;
1666 const struct xcan_devtype_data *devtype = &xcan_axi_data;
1667 void __iomem *addr;
1668 int ret;
1669 int rx_max, tx_max;
1670 int hw_tx_max, hw_rx_max;
1671 const char *hw_tx_max_property;
1672
1673 /* Get the virtual base address for the device */
1674 addr = devm_platform_ioremap_resource(pdev, 0);
1675 if (IS_ERR(addr)) {
1676 ret = PTR_ERR(addr);
1677 goto err;
1678 }
1679
1680 of_id = of_match_device(xcan_of_match, &pdev->dev);
1681 if (of_id && of_id->data)
1682 devtype = of_id->data;
1683
1684 hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1685 "tx-mailbox-count" : "tx-fifo-depth";
1686
1687 ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1688 &hw_tx_max);
1689 if (ret < 0) {
1690 dev_err(&pdev->dev, "missing %s property\n",
1691 hw_tx_max_property);
1692 goto err;
1693 }
1694
1695 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1696 &hw_rx_max);
1697 if (ret < 0) {
1698 dev_err(&pdev->dev,
1699 "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1700 goto err;
1701 }
1702
1703 /* With TX FIFO:
1704 *
1705 * There is no way to directly figure out how many frames have been
1706 * sent when the TXOK interrupt is processed. If TXFEMP
1707 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1708 * to determine if 1 or 2 frames have been sent.
1709 * Theoretically we should be able to use TXFWMEMP to determine up
1710 * to 3 frames, but it seems that after putting a second frame in the
1711 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1712 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1713 * sent), which is not a sensible state - possibly TXFWMEMP is not
1714 * completely synchronized with the rest of the bits?
1715 *
1716 * With TX mailboxes:
1717 *
1718 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1719 * we submit frames one at a time.
1720 */
1721 if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1722 (devtype->flags & XCAN_FLAG_TXFEMP))
1723 tx_max = min(hw_tx_max, 2);
1724 else
1725 tx_max = 1;
1726
1727 rx_max = hw_rx_max;
1728
1729 /* Create a CAN device instance */
1730 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1731 if (!ndev)
1732 return -ENOMEM;
1733
1734 priv = netdev_priv(ndev);
1735 priv->dev = &pdev->dev;
1736 priv->can.bittiming_const = devtype->bittiming_const;
1737 priv->can.do_set_mode = xcan_do_set_mode;
1738 priv->can.do_get_berr_counter = xcan_get_berr_counter;
1739 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1740 CAN_CTRLMODE_BERR_REPORTING;
1741
1742 if (devtype->cantype == XAXI_CANFD)
1743 priv->can.data_bittiming_const =
1744 &xcan_data_bittiming_const_canfd;
1745
1746 if (devtype->cantype == XAXI_CANFD_2_0)
1747 priv->can.data_bittiming_const =
1748 &xcan_data_bittiming_const_canfd2;
1749
1750 if (devtype->cantype == XAXI_CANFD ||
1751 devtype->cantype == XAXI_CANFD_2_0)
1752 priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1753
1754 priv->reg_base = addr;
1755 priv->tx_max = tx_max;
1756 priv->devtype = *devtype;
1757 spin_lock_init(&priv->tx_lock);
1758
1759 /* Get IRQ for the device */
1760 ndev->irq = platform_get_irq(pdev, 0);
1761 ndev->flags |= IFF_ECHO; /* We support local echo */
1762
1763 platform_set_drvdata(pdev, ndev);
1764 SET_NETDEV_DEV(ndev, &pdev->dev);
1765 ndev->netdev_ops = &xcan_netdev_ops;
1766
1767 /* Getting the CAN can_clk info */
1768 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1769 if (IS_ERR(priv->can_clk)) {
1770 if (PTR_ERR(priv->can_clk) != -EPROBE_DEFER)
1771 dev_err(&pdev->dev, "Device clock not found.\n");
1772 ret = PTR_ERR(priv->can_clk);
1773 goto err_free;
1774 }
1775
1776 priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1777 if (IS_ERR(priv->bus_clk)) {
1778 if (PTR_ERR(priv->bus_clk) != -EPROBE_DEFER)
1779 dev_err(&pdev->dev, "bus clock not found\n");
1780 ret = PTR_ERR(priv->bus_clk);
1781 goto err_free;
1782 }
1783
1784 priv->write_reg = xcan_write_reg_le;
1785 priv->read_reg = xcan_read_reg_le;
1786
1787 pm_runtime_enable(&pdev->dev);
1788 ret = pm_runtime_get_sync(&pdev->dev);
1789 if (ret < 0) {
1790 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1791 __func__, ret);
1792 goto err_pmdisable;
1793 }
1794
1795 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1796 priv->write_reg = xcan_write_reg_be;
1797 priv->read_reg = xcan_read_reg_be;
1798 }
1799
1800 priv->can.clock.freq = clk_get_rate(priv->can_clk);
1801
1802 netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1803
1804 ret = register_candev(ndev);
1805 if (ret) {
1806 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1807 goto err_disableclks;
1808 }
1809
1810 devm_can_led_init(ndev);
1811
1812 pm_runtime_put(&pdev->dev);
1813
1814 if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1815 priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1816 priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1817 }
1818
1819 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1820 priv->reg_base, ndev->irq, priv->can.clock.freq,
1821 hw_tx_max, priv->tx_max);
1822
1823 return 0;
1824
1825err_disableclks:
1826 pm_runtime_put(priv->dev);
1827err_pmdisable:
1828 pm_runtime_disable(&pdev->dev);
1829err_free:
1830 free_candev(ndev);
1831err:
1832 return ret;
1833}
1834
1835/**
1836 * xcan_remove - Unregister the device after releasing the resources
1837 * @pdev: Handle to the platform device structure
1838 *
1839 * This function frees all the resources allocated to the device.
1840 * Return: 0 always
1841 */
1842static int xcan_remove(struct platform_device *pdev)
1843{
1844 struct net_device *ndev = platform_get_drvdata(pdev);
1845 struct xcan_priv *priv = netdev_priv(ndev);
1846
1847 unregister_candev(ndev);
1848 pm_runtime_disable(&pdev->dev);
1849 netif_napi_del(&priv->napi);
1850 free_candev(ndev);
1851
1852 return 0;
1853}
1854
1855static struct platform_driver xcan_driver = {
1856 .probe = xcan_probe,
1857 .remove = xcan_remove,
1858 .driver = {
1859 .name = DRIVER_NAME,
1860 .pm = &xcan_dev_pm_ops,
1861 .of_match_table = xcan_of_match,
1862 },
1863};
1864
1865module_platform_driver(xcan_driver);
1866
1867MODULE_LICENSE("GPL");
1868MODULE_AUTHOR("Xilinx Inc");
1869MODULE_DESCRIPTION("Xilinx CAN interface");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Xilinx CAN device driver
3 *
4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
5 * Copyright (C) 2009 PetaLogix. All rights reserved.
6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7 *
8 * Description:
9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10 */
11
12#include <linux/bitfield.h>
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/ethtool.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/platform_device.h>
25#include <linux/skbuff.h>
26#include <linux/spinlock.h>
27#include <linux/string.h>
28#include <linux/types.h>
29#include <linux/can/dev.h>
30#include <linux/can/error.h>
31#include <linux/pm_runtime.h>
32
33#define DRIVER_NAME "xilinx_can"
34
35/* CAN registers set */
36enum xcan_reg {
37 XCAN_SRR_OFFSET = 0x00, /* Software reset */
38 XCAN_MSR_OFFSET = 0x04, /* Mode select */
39 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
40 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
41 XCAN_ECR_OFFSET = 0x10, /* Error counter */
42 XCAN_ESR_OFFSET = 0x14, /* Error status */
43 XCAN_SR_OFFSET = 0x18, /* Status */
44 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
45 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
46 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
47
48 /* not on CAN FD cores */
49 XCAN_TXFIFO_OFFSET = 0x30, /* TX FIFO base */
50 XCAN_RXFIFO_OFFSET = 0x50, /* RX FIFO base */
51 XCAN_AFR_OFFSET = 0x60, /* Acceptance Filter */
52
53 /* only on CAN FD cores */
54 XCAN_F_BRPR_OFFSET = 0x088, /* Data Phase Baud Rate
55 * Prescaler
56 */
57 XCAN_F_BTR_OFFSET = 0x08C, /* Data Phase Bit Timing */
58 XCAN_TRR_OFFSET = 0x0090, /* TX Buffer Ready Request */
59 XCAN_AFR_EXT_OFFSET = 0x00E0, /* Acceptance Filter */
60 XCAN_FSR_OFFSET = 0x00E8, /* RX FIFO Status */
61 XCAN_TXMSG_BASE_OFFSET = 0x0100, /* TX Message Space */
62 XCAN_RXMSG_BASE_OFFSET = 0x1100, /* RX Message Space */
63 XCAN_RXMSG_2_BASE_OFFSET = 0x2100, /* RX Message Space */
64 XCAN_AFR_2_MASK_OFFSET = 0x0A00, /* Acceptance Filter MASK */
65 XCAN_AFR_2_ID_OFFSET = 0x0A04, /* Acceptance Filter ID */
66};
67
68#define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00)
69#define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04)
70#define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08)
71#define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C)
72#define XCANFD_FRAME_DW_OFFSET(frame_base) ((frame_base) + 0x08)
73
74#define XCAN_CANFD_FRAME_SIZE 0x48
75#define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \
76 XCAN_CANFD_FRAME_SIZE * (n))
77#define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \
78 XCAN_CANFD_FRAME_SIZE * (n))
79#define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \
80 XCAN_CANFD_FRAME_SIZE * (n))
81
82/* the single TX mailbox used by this driver on CAN FD HW */
83#define XCAN_TX_MAILBOX_IDX 0
84
85/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
86#define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
87#define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
88#define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
89#define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
90#define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
91#define XCAN_BRPR_TDCO_MASK GENMASK(12, 8) /* TDCO */
92#define XCAN_2_BRPR_TDCO_MASK GENMASK(13, 8) /* TDCO for CANFD 2.0 */
93#define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
94#define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
95#define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
96#define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */
97#define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */
98#define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */
99#define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
100#define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
101#define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
102#define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
103#define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
104#define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
105#define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
106#define XCAN_SR_TDCV_MASK GENMASK(22, 16) /* TDCV Value */
107#define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
108#define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
109#define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
110#define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
111#define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
112#define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
113#define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */
114#define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
115#define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
116#define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
117#define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
118#define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
119#define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
120#define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
121#define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
122#define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
123#define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
124#define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
125#define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
126#define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
127#define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
128#define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
129#define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
130#define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
131#define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */
132#define XCAN_2_FSR_FL_MASK 0x00007F00 /* RX Fill Level */
133#define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */
134#define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */
135#define XCAN_2_FSR_RI_MASK 0x0000003F /* RX Read Index */
136#define XCAN_DLCR_EDL_MASK 0x08000000 /* EDL Mask in DLC */
137#define XCAN_DLCR_BRS_MASK 0x04000000 /* BRS Mask in DLC */
138
139/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
140#define XCAN_BRPR_TDC_ENABLE BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
141#define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
142#define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
143#define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */
144#define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */
145#define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
146#define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
147#define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
148#define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
149
150/* CAN frame length constants */
151#define XCAN_FRAME_MAX_DATA_LEN 8
152#define XCANFD_DW_BYTES 4
153#define XCAN_TIMEOUT (1 * HZ)
154
155/* TX-FIFO-empty interrupt available */
156#define XCAN_FLAG_TXFEMP 0x0001
157/* RX Match Not Finished interrupt available */
158#define XCAN_FLAG_RXMNF 0x0002
159/* Extended acceptance filters with control at 0xE0 */
160#define XCAN_FLAG_EXT_FILTERS 0x0004
161/* TX mailboxes instead of TX FIFO */
162#define XCAN_FLAG_TX_MAILBOXES 0x0008
163/* RX FIFO with each buffer in separate registers at 0x1100
164 * instead of the regular FIFO at 0x50
165 */
166#define XCAN_FLAG_RX_FIFO_MULTI 0x0010
167#define XCAN_FLAG_CANFD_2 0x0020
168
169enum xcan_ip_type {
170 XAXI_CAN = 0,
171 XZYNQ_CANPS,
172 XAXI_CANFD,
173 XAXI_CANFD_2_0,
174};
175
176struct xcan_devtype_data {
177 enum xcan_ip_type cantype;
178 unsigned int flags;
179 const struct can_bittiming_const *bittiming_const;
180 const char *bus_clk_name;
181 unsigned int btr_ts2_shift;
182 unsigned int btr_sjw_shift;
183};
184
185/**
186 * struct xcan_priv - This definition define CAN driver instance
187 * @can: CAN private data structure.
188 * @tx_lock: Lock for synchronizing TX interrupt handling
189 * @tx_head: Tx CAN packets ready to send on the queue
190 * @tx_tail: Tx CAN packets successfully sended on the queue
191 * @tx_max: Maximum number packets the driver can send
192 * @napi: NAPI structure
193 * @read_reg: For reading data from CAN registers
194 * @write_reg: For writing data to CAN registers
195 * @dev: Network device data structure
196 * @reg_base: Ioremapped address to registers
197 * @irq_flags: For request_irq()
198 * @bus_clk: Pointer to struct clk
199 * @can_clk: Pointer to struct clk
200 * @devtype: Device type specific constants
201 */
202struct xcan_priv {
203 struct can_priv can;
204 spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
205 unsigned int tx_head;
206 unsigned int tx_tail;
207 unsigned int tx_max;
208 struct napi_struct napi;
209 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
210 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
211 u32 val);
212 struct device *dev;
213 void __iomem *reg_base;
214 unsigned long irq_flags;
215 struct clk *bus_clk;
216 struct clk *can_clk;
217 struct xcan_devtype_data devtype;
218};
219
220/* CAN Bittiming constants as per Xilinx CAN specs */
221static const struct can_bittiming_const xcan_bittiming_const = {
222 .name = DRIVER_NAME,
223 .tseg1_min = 1,
224 .tseg1_max = 16,
225 .tseg2_min = 1,
226 .tseg2_max = 8,
227 .sjw_max = 4,
228 .brp_min = 1,
229 .brp_max = 256,
230 .brp_inc = 1,
231};
232
233/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
234static const struct can_bittiming_const xcan_bittiming_const_canfd = {
235 .name = DRIVER_NAME,
236 .tseg1_min = 1,
237 .tseg1_max = 64,
238 .tseg2_min = 1,
239 .tseg2_max = 16,
240 .sjw_max = 16,
241 .brp_min = 1,
242 .brp_max = 256,
243 .brp_inc = 1,
244};
245
246/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
247static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
248 .name = DRIVER_NAME,
249 .tseg1_min = 1,
250 .tseg1_max = 16,
251 .tseg2_min = 1,
252 .tseg2_max = 8,
253 .sjw_max = 8,
254 .brp_min = 1,
255 .brp_max = 256,
256 .brp_inc = 1,
257};
258
259/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
260static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
261 .name = DRIVER_NAME,
262 .tseg1_min = 1,
263 .tseg1_max = 256,
264 .tseg2_min = 1,
265 .tseg2_max = 128,
266 .sjw_max = 128,
267 .brp_min = 1,
268 .brp_max = 256,
269 .brp_inc = 1,
270};
271
272/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
273static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
274 .name = DRIVER_NAME,
275 .tseg1_min = 1,
276 .tseg1_max = 32,
277 .tseg2_min = 1,
278 .tseg2_max = 16,
279 .sjw_max = 16,
280 .brp_min = 1,
281 .brp_max = 256,
282 .brp_inc = 1,
283};
284
285/* Transmission Delay Compensation constants for CANFD 1.0 */
286static const struct can_tdc_const xcan_tdc_const_canfd = {
287 .tdcv_min = 0,
288 .tdcv_max = 0, /* Manual mode not supported. */
289 .tdco_min = 0,
290 .tdco_max = 32,
291 .tdcf_min = 0, /* Filter window not supported */
292 .tdcf_max = 0,
293};
294
295/* Transmission Delay Compensation constants for CANFD 2.0 */
296static const struct can_tdc_const xcan_tdc_const_canfd2 = {
297 .tdcv_min = 0,
298 .tdcv_max = 0, /* Manual mode not supported. */
299 .tdco_min = 0,
300 .tdco_max = 64,
301 .tdcf_min = 0, /* Filter window not supported */
302 .tdcf_max = 0,
303};
304
305/**
306 * xcan_write_reg_le - Write a value to the device register little endian
307 * @priv: Driver private data structure
308 * @reg: Register offset
309 * @val: Value to write at the Register offset
310 *
311 * Write data to the paricular CAN register
312 */
313static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
314 u32 val)
315{
316 iowrite32(val, priv->reg_base + reg);
317}
318
319/**
320 * xcan_read_reg_le - Read a value from the device register little endian
321 * @priv: Driver private data structure
322 * @reg: Register offset
323 *
324 * Read data from the particular CAN register
325 * Return: value read from the CAN register
326 */
327static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
328{
329 return ioread32(priv->reg_base + reg);
330}
331
332/**
333 * xcan_write_reg_be - Write a value to the device register big endian
334 * @priv: Driver private data structure
335 * @reg: Register offset
336 * @val: Value to write at the Register offset
337 *
338 * Write data to the paricular CAN register
339 */
340static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
341 u32 val)
342{
343 iowrite32be(val, priv->reg_base + reg);
344}
345
346/**
347 * xcan_read_reg_be - Read a value from the device register big endian
348 * @priv: Driver private data structure
349 * @reg: Register offset
350 *
351 * Read data from the particular CAN register
352 * Return: value read from the CAN register
353 */
354static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
355{
356 return ioread32be(priv->reg_base + reg);
357}
358
359/**
360 * xcan_rx_int_mask - Get the mask for the receive interrupt
361 * @priv: Driver private data structure
362 *
363 * Return: The receive interrupt mask used by the driver on this HW
364 */
365static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
366{
367 /* RXNEMP is better suited for our use case as it cannot be cleared
368 * while the FIFO is non-empty, but CAN FD HW does not have it
369 */
370 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
371 return XCAN_IXR_RXOK_MASK;
372 else
373 return XCAN_IXR_RXNEMP_MASK;
374}
375
376/**
377 * set_reset_mode - Resets the CAN device mode
378 * @ndev: Pointer to net_device structure
379 *
380 * This is the driver reset mode routine.The driver
381 * enters into configuration mode.
382 *
383 * Return: 0 on success and failure value on error
384 */
385static int set_reset_mode(struct net_device *ndev)
386{
387 struct xcan_priv *priv = netdev_priv(ndev);
388 unsigned long timeout;
389
390 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
391
392 timeout = jiffies + XCAN_TIMEOUT;
393 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
394 if (time_after(jiffies, timeout)) {
395 netdev_warn(ndev, "timed out for config mode\n");
396 return -ETIMEDOUT;
397 }
398 usleep_range(500, 10000);
399 }
400
401 /* reset clears FIFOs */
402 priv->tx_head = 0;
403 priv->tx_tail = 0;
404
405 return 0;
406}
407
408/**
409 * xcan_set_bittiming - CAN set bit timing routine
410 * @ndev: Pointer to net_device structure
411 *
412 * This is the driver set bittiming routine.
413 * Return: 0 on success and failure value on error
414 */
415static int xcan_set_bittiming(struct net_device *ndev)
416{
417 struct xcan_priv *priv = netdev_priv(ndev);
418 struct can_bittiming *bt = &priv->can.bittiming;
419 struct can_bittiming *dbt = &priv->can.data_bittiming;
420 u32 btr0, btr1;
421 u32 is_config_mode;
422
423 /* Check whether Xilinx CAN is in configuration mode.
424 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
425 */
426 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
427 XCAN_SR_CONFIG_MASK;
428 if (!is_config_mode) {
429 netdev_alert(ndev,
430 "BUG! Cannot set bittiming - CAN is not in config mode\n");
431 return -EPERM;
432 }
433
434 /* Setting Baud Rate prescaler value in BRPR Register */
435 btr0 = (bt->brp - 1);
436
437 /* Setting Time Segment 1 in BTR Register */
438 btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
439
440 /* Setting Time Segment 2 in BTR Register */
441 btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
442
443 /* Setting Synchronous jump width in BTR Register */
444 btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
445
446 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
447 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
448
449 if (priv->devtype.cantype == XAXI_CANFD ||
450 priv->devtype.cantype == XAXI_CANFD_2_0) {
451 /* Setting Baud Rate prescaler value in F_BRPR Register */
452 btr0 = dbt->brp - 1;
453 if (can_tdc_is_enabled(&priv->can)) {
454 if (priv->devtype.cantype == XAXI_CANFD)
455 btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
456 XCAN_BRPR_TDC_ENABLE;
457 else
458 btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
459 XCAN_BRPR_TDC_ENABLE;
460 }
461
462 /* Setting Time Segment 1 in BTR Register */
463 btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
464
465 /* Setting Time Segment 2 in BTR Register */
466 btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
467
468 /* Setting Synchronous jump width in BTR Register */
469 btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
470
471 priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
472 priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
473 }
474
475 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
476 priv->read_reg(priv, XCAN_BRPR_OFFSET),
477 priv->read_reg(priv, XCAN_BTR_OFFSET));
478
479 return 0;
480}
481
482/**
483 * xcan_chip_start - This the drivers start routine
484 * @ndev: Pointer to net_device structure
485 *
486 * This is the drivers start routine.
487 * Based on the State of the CAN device it puts
488 * the CAN device into a proper mode.
489 *
490 * Return: 0 on success and failure value on error
491 */
492static int xcan_chip_start(struct net_device *ndev)
493{
494 struct xcan_priv *priv = netdev_priv(ndev);
495 u32 reg_msr;
496 int err;
497 u32 ier;
498
499 /* Check if it is in reset mode */
500 err = set_reset_mode(ndev);
501 if (err < 0)
502 return err;
503
504 err = xcan_set_bittiming(ndev);
505 if (err < 0)
506 return err;
507
508 /* Enable interrupts
509 *
510 * We enable the ERROR interrupt even with
511 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
512 * dedicated interrupt for a state change to
513 * ERROR_WARNING/ERROR_PASSIVE.
514 */
515 ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
516 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
517 XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
518 XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
519
520 if (priv->devtype.flags & XCAN_FLAG_RXMNF)
521 ier |= XCAN_IXR_RXMNF_MASK;
522
523 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
524
525 /* Check whether it is loopback mode or normal mode */
526 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
527 reg_msr = XCAN_MSR_LBACK_MASK;
528 else
529 reg_msr = 0x0;
530
531 /* enable the first extended filter, if any, as cores with extended
532 * filtering default to non-receipt if all filters are disabled
533 */
534 if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
535 priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
536
537 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
538 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
539
540 netdev_dbg(ndev, "status:#x%08x\n",
541 priv->read_reg(priv, XCAN_SR_OFFSET));
542
543 priv->can.state = CAN_STATE_ERROR_ACTIVE;
544 return 0;
545}
546
547/**
548 * xcan_do_set_mode - This sets the mode of the driver
549 * @ndev: Pointer to net_device structure
550 * @mode: Tells the mode of the driver
551 *
552 * This check the drivers state and calls the corresponding modes to set.
553 *
554 * Return: 0 on success and failure value on error
555 */
556static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
557{
558 int ret;
559
560 switch (mode) {
561 case CAN_MODE_START:
562 ret = xcan_chip_start(ndev);
563 if (ret < 0) {
564 netdev_err(ndev, "xcan_chip_start failed!\n");
565 return ret;
566 }
567 netif_wake_queue(ndev);
568 break;
569 default:
570 ret = -EOPNOTSUPP;
571 break;
572 }
573
574 return ret;
575}
576
577/**
578 * xcan_write_frame - Write a frame to HW
579 * @ndev: Pointer to net_device structure
580 * @skb: sk_buff pointer that contains data to be Txed
581 * @frame_offset: Register offset to write the frame to
582 */
583static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
584 int frame_offset)
585{
586 u32 id, dlc, data[2] = {0, 0};
587 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
588 u32 ramoff, dwindex = 0, i;
589 struct xcan_priv *priv = netdev_priv(ndev);
590
591 /* Watch carefully on the bit sequence */
592 if (cf->can_id & CAN_EFF_FLAG) {
593 /* Extended CAN ID format */
594 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
595 XCAN_IDR_ID2_MASK;
596 id |= (((cf->can_id & CAN_EFF_MASK) >>
597 (CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
598 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
599
600 /* The substibute remote TX request bit should be "1"
601 * for extended frames as in the Xilinx CAN datasheet
602 */
603 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
604
605 if (cf->can_id & CAN_RTR_FLAG)
606 /* Extended frames remote TX request */
607 id |= XCAN_IDR_RTR_MASK;
608 } else {
609 /* Standard CAN ID format */
610 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
611 XCAN_IDR_ID1_MASK;
612
613 if (cf->can_id & CAN_RTR_FLAG)
614 /* Standard frames remote TX request */
615 id |= XCAN_IDR_SRR_MASK;
616 }
617
618 dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
619 if (can_is_canfd_skb(skb)) {
620 if (cf->flags & CANFD_BRS)
621 dlc |= XCAN_DLCR_BRS_MASK;
622 dlc |= XCAN_DLCR_EDL_MASK;
623 }
624
625 if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
626 (priv->devtype.flags & XCAN_FLAG_TXFEMP))
627 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
628 else
629 can_put_echo_skb(skb, ndev, 0, 0);
630
631 priv->tx_head++;
632
633 priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
634 /* If the CAN frame is RTR frame this write triggers transmission
635 * (not on CAN FD)
636 */
637 priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
638 if (priv->devtype.cantype == XAXI_CANFD ||
639 priv->devtype.cantype == XAXI_CANFD_2_0) {
640 for (i = 0; i < cf->len; i += 4) {
641 ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
642 (dwindex * XCANFD_DW_BYTES);
643 priv->write_reg(priv, ramoff,
644 be32_to_cpup((__be32 *)(cf->data + i)));
645 dwindex++;
646 }
647 } else {
648 if (cf->len > 0)
649 data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
650 if (cf->len > 4)
651 data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
652
653 if (!(cf->can_id & CAN_RTR_FLAG)) {
654 priv->write_reg(priv,
655 XCAN_FRAME_DW1_OFFSET(frame_offset),
656 data[0]);
657 /* If the CAN frame is Standard/Extended frame this
658 * write triggers transmission (not on CAN FD)
659 */
660 priv->write_reg(priv,
661 XCAN_FRAME_DW2_OFFSET(frame_offset),
662 data[1]);
663 }
664 }
665}
666
667/**
668 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
669 * @skb: sk_buff pointer that contains data to be Txed
670 * @ndev: Pointer to net_device structure
671 *
672 * Return: 0 on success, -ENOSPC if FIFO is full.
673 */
674static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
675{
676 struct xcan_priv *priv = netdev_priv(ndev);
677 unsigned long flags;
678
679 /* Check if the TX buffer is full */
680 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
681 XCAN_SR_TXFLL_MASK))
682 return -ENOSPC;
683
684 spin_lock_irqsave(&priv->tx_lock, flags);
685
686 xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
687
688 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
689 if (priv->tx_max > 1)
690 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
691
692 /* Check if the TX buffer is full */
693 if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
694 netif_stop_queue(ndev);
695
696 spin_unlock_irqrestore(&priv->tx_lock, flags);
697
698 return 0;
699}
700
701/**
702 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
703 * @skb: sk_buff pointer that contains data to be Txed
704 * @ndev: Pointer to net_device structure
705 *
706 * Return: 0 on success, -ENOSPC if there is no space
707 */
708static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
709{
710 struct xcan_priv *priv = netdev_priv(ndev);
711 unsigned long flags;
712
713 if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
714 BIT(XCAN_TX_MAILBOX_IDX)))
715 return -ENOSPC;
716
717 spin_lock_irqsave(&priv->tx_lock, flags);
718
719 xcan_write_frame(ndev, skb,
720 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
721
722 /* Mark buffer as ready for transmit */
723 priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
724
725 netif_stop_queue(ndev);
726
727 spin_unlock_irqrestore(&priv->tx_lock, flags);
728
729 return 0;
730}
731
732/**
733 * xcan_start_xmit - Starts the transmission
734 * @skb: sk_buff pointer that contains data to be Txed
735 * @ndev: Pointer to net_device structure
736 *
737 * This function is invoked from upper layers to initiate transmission.
738 *
739 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
740 */
741static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
742{
743 struct xcan_priv *priv = netdev_priv(ndev);
744 int ret;
745
746 if (can_dev_dropped_skb(ndev, skb))
747 return NETDEV_TX_OK;
748
749 if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
750 ret = xcan_start_xmit_mailbox(skb, ndev);
751 else
752 ret = xcan_start_xmit_fifo(skb, ndev);
753
754 if (ret < 0) {
755 netdev_err(ndev, "BUG!, TX full when queue awake!\n");
756 netif_stop_queue(ndev);
757 return NETDEV_TX_BUSY;
758 }
759
760 return NETDEV_TX_OK;
761}
762
763/**
764 * xcan_rx - Is called from CAN isr to complete the received
765 * frame processing
766 * @ndev: Pointer to net_device structure
767 * @frame_base: Register offset to the frame to be read
768 *
769 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
770 * does minimal processing and invokes "netif_receive_skb" to complete further
771 * processing.
772 * Return: 1 on success and 0 on failure.
773 */
774static int xcan_rx(struct net_device *ndev, int frame_base)
775{
776 struct xcan_priv *priv = netdev_priv(ndev);
777 struct net_device_stats *stats = &ndev->stats;
778 struct can_frame *cf;
779 struct sk_buff *skb;
780 u32 id_xcan, dlc, data[2] = {0, 0};
781
782 skb = alloc_can_skb(ndev, &cf);
783 if (unlikely(!skb)) {
784 stats->rx_dropped++;
785 return 0;
786 }
787
788 /* Read a frame from Xilinx zynq CANPS */
789 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
790 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
791 XCAN_DLCR_DLC_SHIFT;
792
793 /* Change Xilinx CAN data length format to socketCAN data format */
794 cf->len = can_cc_dlc2len(dlc);
795
796 /* Change Xilinx CAN ID format to socketCAN ID format */
797 if (id_xcan & XCAN_IDR_IDE_MASK) {
798 /* The received frame is an Extended format frame */
799 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
800 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
801 XCAN_IDR_ID2_SHIFT;
802 cf->can_id |= CAN_EFF_FLAG;
803 if (id_xcan & XCAN_IDR_RTR_MASK)
804 cf->can_id |= CAN_RTR_FLAG;
805 } else {
806 /* The received frame is a standard format frame */
807 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
808 XCAN_IDR_ID1_SHIFT;
809 if (id_xcan & XCAN_IDR_SRR_MASK)
810 cf->can_id |= CAN_RTR_FLAG;
811 }
812
813 /* DW1/DW2 must always be read to remove message from RXFIFO */
814 data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
815 data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
816
817 if (!(cf->can_id & CAN_RTR_FLAG)) {
818 /* Change Xilinx CAN data format to socketCAN data format */
819 if (cf->len > 0)
820 *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
821 if (cf->len > 4)
822 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
823
824 stats->rx_bytes += cf->len;
825 }
826 stats->rx_packets++;
827
828 netif_receive_skb(skb);
829
830 return 1;
831}
832
833/**
834 * xcanfd_rx - Is called from CAN isr to complete the received
835 * frame processing
836 * @ndev: Pointer to net_device structure
837 * @frame_base: Register offset to the frame to be read
838 *
839 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
840 * does minimal processing and invokes "netif_receive_skb" to complete further
841 * processing.
842 * Return: 1 on success and 0 on failure.
843 */
844static int xcanfd_rx(struct net_device *ndev, int frame_base)
845{
846 struct xcan_priv *priv = netdev_priv(ndev);
847 struct net_device_stats *stats = &ndev->stats;
848 struct canfd_frame *cf;
849 struct sk_buff *skb;
850 u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
851
852 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
853 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
854 if (dlc & XCAN_DLCR_EDL_MASK)
855 skb = alloc_canfd_skb(ndev, &cf);
856 else
857 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
858
859 if (unlikely(!skb)) {
860 stats->rx_dropped++;
861 return 0;
862 }
863
864 /* Change Xilinx CANFD data length format to socketCAN data
865 * format
866 */
867 if (dlc & XCAN_DLCR_EDL_MASK)
868 cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
869 XCAN_DLCR_DLC_SHIFT);
870 else
871 cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
872 XCAN_DLCR_DLC_SHIFT);
873
874 /* Change Xilinx CAN ID format to socketCAN ID format */
875 if (id_xcan & XCAN_IDR_IDE_MASK) {
876 /* The received frame is an Extended format frame */
877 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
878 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
879 XCAN_IDR_ID2_SHIFT;
880 cf->can_id |= CAN_EFF_FLAG;
881 if (id_xcan & XCAN_IDR_RTR_MASK)
882 cf->can_id |= CAN_RTR_FLAG;
883 } else {
884 /* The received frame is a standard format frame */
885 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
886 XCAN_IDR_ID1_SHIFT;
887 if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
888 XCAN_IDR_SRR_MASK))
889 cf->can_id |= CAN_RTR_FLAG;
890 }
891
892 /* Check the frame received is FD or not*/
893 if (dlc & XCAN_DLCR_EDL_MASK) {
894 for (i = 0; i < cf->len; i += 4) {
895 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
896 (dwindex * XCANFD_DW_BYTES);
897 data[0] = priv->read_reg(priv, dw_offset);
898 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
899 dwindex++;
900 }
901 } else {
902 for (i = 0; i < cf->len; i += 4) {
903 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
904 data[0] = priv->read_reg(priv, dw_offset + i);
905 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
906 }
907 }
908
909 if (!(cf->can_id & CAN_RTR_FLAG))
910 stats->rx_bytes += cf->len;
911 stats->rx_packets++;
912
913 netif_receive_skb(skb);
914
915 return 1;
916}
917
918/**
919 * xcan_current_error_state - Get current error state from HW
920 * @ndev: Pointer to net_device structure
921 *
922 * Checks the current CAN error state from the HW. Note that this
923 * only checks for ERROR_PASSIVE and ERROR_WARNING.
924 *
925 * Return:
926 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
927 * otherwise.
928 */
929static enum can_state xcan_current_error_state(struct net_device *ndev)
930{
931 struct xcan_priv *priv = netdev_priv(ndev);
932 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
933
934 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
935 return CAN_STATE_ERROR_PASSIVE;
936 else if (status & XCAN_SR_ERRWRN_MASK)
937 return CAN_STATE_ERROR_WARNING;
938 else
939 return CAN_STATE_ERROR_ACTIVE;
940}
941
942/**
943 * xcan_set_error_state - Set new CAN error state
944 * @ndev: Pointer to net_device structure
945 * @new_state: The new CAN state to be set
946 * @cf: Error frame to be populated or NULL
947 *
948 * Set new CAN error state for the device, updating statistics and
949 * populating the error frame if given.
950 */
951static void xcan_set_error_state(struct net_device *ndev,
952 enum can_state new_state,
953 struct can_frame *cf)
954{
955 struct xcan_priv *priv = netdev_priv(ndev);
956 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
957 u32 txerr = ecr & XCAN_ECR_TEC_MASK;
958 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
959 enum can_state tx_state = txerr >= rxerr ? new_state : 0;
960 enum can_state rx_state = txerr <= rxerr ? new_state : 0;
961
962 /* non-ERROR states are handled elsewhere */
963 if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
964 return;
965
966 can_change_state(ndev, cf, tx_state, rx_state);
967
968 if (cf) {
969 cf->can_id |= CAN_ERR_CNT;
970 cf->data[6] = txerr;
971 cf->data[7] = rxerr;
972 }
973}
974
975/**
976 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
977 * @ndev: Pointer to net_device structure
978 *
979 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
980 * the performed RX/TX has caused it to drop to a lesser state and set
981 * the interface state accordingly.
982 */
983static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
984{
985 struct xcan_priv *priv = netdev_priv(ndev);
986 enum can_state old_state = priv->can.state;
987 enum can_state new_state;
988
989 /* changing error state due to successful frame RX/TX can only
990 * occur from these states
991 */
992 if (old_state != CAN_STATE_ERROR_WARNING &&
993 old_state != CAN_STATE_ERROR_PASSIVE)
994 return;
995
996 new_state = xcan_current_error_state(ndev);
997
998 if (new_state != old_state) {
999 struct sk_buff *skb;
1000 struct can_frame *cf;
1001
1002 skb = alloc_can_err_skb(ndev, &cf);
1003
1004 xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1005
1006 if (skb)
1007 netif_rx(skb);
1008 }
1009}
1010
1011/**
1012 * xcan_err_interrupt - error frame Isr
1013 * @ndev: net_device pointer
1014 * @isr: interrupt status register value
1015 *
1016 * This is the CAN error interrupt and it will
1017 * check the type of error and forward the error
1018 * frame to upper layers.
1019 */
1020static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1021{
1022 struct xcan_priv *priv = netdev_priv(ndev);
1023 struct net_device_stats *stats = &ndev->stats;
1024 struct can_frame cf = { };
1025 u32 err_status;
1026
1027 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1028 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1029
1030 if (isr & XCAN_IXR_BSOFF_MASK) {
1031 priv->can.state = CAN_STATE_BUS_OFF;
1032 priv->can.can_stats.bus_off++;
1033 /* Leave device in Config Mode in bus-off state */
1034 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1035 can_bus_off(ndev);
1036 cf.can_id |= CAN_ERR_BUSOFF;
1037 } else {
1038 enum can_state new_state = xcan_current_error_state(ndev);
1039
1040 if (new_state != priv->can.state)
1041 xcan_set_error_state(ndev, new_state, &cf);
1042 }
1043
1044 /* Check for Arbitration lost interrupt */
1045 if (isr & XCAN_IXR_ARBLST_MASK) {
1046 priv->can.can_stats.arbitration_lost++;
1047 cf.can_id |= CAN_ERR_LOSTARB;
1048 cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1049 }
1050
1051 /* Check for RX FIFO Overflow interrupt */
1052 if (isr & XCAN_IXR_RXOFLW_MASK) {
1053 stats->rx_over_errors++;
1054 stats->rx_errors++;
1055 cf.can_id |= CAN_ERR_CRTL;
1056 cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1057 }
1058
1059 /* Check for RX Match Not Finished interrupt */
1060 if (isr & XCAN_IXR_RXMNF_MASK) {
1061 stats->rx_dropped++;
1062 stats->rx_errors++;
1063 netdev_err(ndev, "RX match not finished, frame discarded\n");
1064 cf.can_id |= CAN_ERR_CRTL;
1065 cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1066 }
1067
1068 /* Check for error interrupt */
1069 if (isr & XCAN_IXR_ERROR_MASK) {
1070 bool berr_reporting = false;
1071
1072 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1073 berr_reporting = true;
1074 cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1075 }
1076
1077 /* Check for Ack error interrupt */
1078 if (err_status & XCAN_ESR_ACKER_MASK) {
1079 stats->tx_errors++;
1080 if (berr_reporting) {
1081 cf.can_id |= CAN_ERR_ACK;
1082 cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1083 }
1084 }
1085
1086 /* Check for Bit error interrupt */
1087 if (err_status & XCAN_ESR_BERR_MASK) {
1088 stats->tx_errors++;
1089 if (berr_reporting) {
1090 cf.can_id |= CAN_ERR_PROT;
1091 cf.data[2] = CAN_ERR_PROT_BIT;
1092 }
1093 }
1094
1095 /* Check for Stuff error interrupt */
1096 if (err_status & XCAN_ESR_STER_MASK) {
1097 stats->rx_errors++;
1098 if (berr_reporting) {
1099 cf.can_id |= CAN_ERR_PROT;
1100 cf.data[2] = CAN_ERR_PROT_STUFF;
1101 }
1102 }
1103
1104 /* Check for Form error interrupt */
1105 if (err_status & XCAN_ESR_FMER_MASK) {
1106 stats->rx_errors++;
1107 if (berr_reporting) {
1108 cf.can_id |= CAN_ERR_PROT;
1109 cf.data[2] = CAN_ERR_PROT_FORM;
1110 }
1111 }
1112
1113 /* Check for CRC error interrupt */
1114 if (err_status & XCAN_ESR_CRCER_MASK) {
1115 stats->rx_errors++;
1116 if (berr_reporting) {
1117 cf.can_id |= CAN_ERR_PROT;
1118 cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1119 }
1120 }
1121 priv->can.can_stats.bus_error++;
1122 }
1123
1124 if (cf.can_id) {
1125 struct can_frame *skb_cf;
1126 struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1127
1128 if (skb) {
1129 skb_cf->can_id |= cf.can_id;
1130 memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1131 netif_rx(skb);
1132 }
1133 }
1134
1135 netdev_dbg(ndev, "%s: error status register:0x%x\n",
1136 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1137}
1138
1139/**
1140 * xcan_state_interrupt - It will check the state of the CAN device
1141 * @ndev: net_device pointer
1142 * @isr: interrupt status register value
1143 *
1144 * This will checks the state of the CAN device
1145 * and puts the device into appropriate state.
1146 */
1147static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1148{
1149 struct xcan_priv *priv = netdev_priv(ndev);
1150
1151 /* Check for Sleep interrupt if set put CAN device in sleep state */
1152 if (isr & XCAN_IXR_SLP_MASK)
1153 priv->can.state = CAN_STATE_SLEEPING;
1154
1155 /* Check for Wake up interrupt if set put CAN device in Active state */
1156 if (isr & XCAN_IXR_WKUP_MASK)
1157 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1158}
1159
1160/**
1161 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1162 * @priv: Driver private data structure
1163 *
1164 * Return: Register offset of the next frame in RX FIFO.
1165 */
1166static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1167{
1168 int offset;
1169
1170 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1171 u32 fsr, mask;
1172
1173 /* clear RXOK before the is-empty check so that any newly
1174 * received frame will reassert it without a race
1175 */
1176 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1177
1178 fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1179
1180 /* check if RX FIFO is empty */
1181 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1182 mask = XCAN_2_FSR_FL_MASK;
1183 else
1184 mask = XCAN_FSR_FL_MASK;
1185
1186 if (!(fsr & mask))
1187 return -ENOENT;
1188
1189 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1190 offset =
1191 XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1192 else
1193 offset =
1194 XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1195
1196 } else {
1197 /* check if RX FIFO is empty */
1198 if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1199 XCAN_IXR_RXNEMP_MASK))
1200 return -ENOENT;
1201
1202 /* frames are read from a static offset */
1203 offset = XCAN_RXFIFO_OFFSET;
1204 }
1205
1206 return offset;
1207}
1208
1209/**
1210 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1211 * @napi: napi structure pointer
1212 * @quota: Max number of rx packets to be processed.
1213 *
1214 * This is the poll routine for rx part.
1215 * It will process the packets maximux quota value.
1216 *
1217 * Return: number of packets received
1218 */
1219static int xcan_rx_poll(struct napi_struct *napi, int quota)
1220{
1221 struct net_device *ndev = napi->dev;
1222 struct xcan_priv *priv = netdev_priv(ndev);
1223 u32 ier;
1224 int work_done = 0;
1225 int frame_offset;
1226
1227 while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1228 (work_done < quota)) {
1229 if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1230 work_done += xcanfd_rx(ndev, frame_offset);
1231 else
1232 work_done += xcan_rx(ndev, frame_offset);
1233
1234 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1235 /* increment read index */
1236 priv->write_reg(priv, XCAN_FSR_OFFSET,
1237 XCAN_FSR_IRI_MASK);
1238 else
1239 /* clear rx-not-empty (will actually clear only if
1240 * empty)
1241 */
1242 priv->write_reg(priv, XCAN_ICR_OFFSET,
1243 XCAN_IXR_RXNEMP_MASK);
1244 }
1245
1246 if (work_done)
1247 xcan_update_error_state_after_rxtx(ndev);
1248
1249 if (work_done < quota) {
1250 if (napi_complete_done(napi, work_done)) {
1251 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1252 ier |= xcan_rx_int_mask(priv);
1253 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1254 }
1255 }
1256 return work_done;
1257}
1258
1259/**
1260 * xcan_tx_interrupt - Tx Done Isr
1261 * @ndev: net_device pointer
1262 * @isr: Interrupt status register value
1263 */
1264static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1265{
1266 struct xcan_priv *priv = netdev_priv(ndev);
1267 struct net_device_stats *stats = &ndev->stats;
1268 unsigned int frames_in_fifo;
1269 int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1270 unsigned long flags;
1271 int retries = 0;
1272
1273 /* Synchronize with xmit as we need to know the exact number
1274 * of frames in the FIFO to stay in sync due to the TXFEMP
1275 * handling.
1276 * This also prevents a race between netif_wake_queue() and
1277 * netif_stop_queue().
1278 */
1279 spin_lock_irqsave(&priv->tx_lock, flags);
1280
1281 frames_in_fifo = priv->tx_head - priv->tx_tail;
1282
1283 if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1284 /* clear TXOK anyway to avoid getting back here */
1285 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1286 spin_unlock_irqrestore(&priv->tx_lock, flags);
1287 return;
1288 }
1289
1290 /* Check if 2 frames were sent (TXOK only means that at least 1
1291 * frame was sent).
1292 */
1293 if (frames_in_fifo > 1) {
1294 WARN_ON(frames_in_fifo > priv->tx_max);
1295
1296 /* Synchronize TXOK and isr so that after the loop:
1297 * (1) isr variable is up-to-date at least up to TXOK clear
1298 * time. This avoids us clearing a TXOK of a second frame
1299 * but not noticing that the FIFO is now empty and thus
1300 * marking only a single frame as sent.
1301 * (2) No TXOK is left. Having one could mean leaving a
1302 * stray TXOK as we might process the associated frame
1303 * via TXFEMP handling as we read TXFEMP *after* TXOK
1304 * clear to satisfy (1).
1305 */
1306 while ((isr & XCAN_IXR_TXOK_MASK) &&
1307 !WARN_ON(++retries == 100)) {
1308 priv->write_reg(priv, XCAN_ICR_OFFSET,
1309 XCAN_IXR_TXOK_MASK);
1310 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1311 }
1312
1313 if (isr & XCAN_IXR_TXFEMP_MASK) {
1314 /* nothing in FIFO anymore */
1315 frames_sent = frames_in_fifo;
1316 }
1317 } else {
1318 /* single frame in fifo, just clear TXOK */
1319 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1320 }
1321
1322 while (frames_sent--) {
1323 stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1324 priv->tx_max, NULL);
1325 priv->tx_tail++;
1326 stats->tx_packets++;
1327 }
1328
1329 netif_wake_queue(ndev);
1330
1331 spin_unlock_irqrestore(&priv->tx_lock, flags);
1332
1333 xcan_update_error_state_after_rxtx(ndev);
1334}
1335
1336/**
1337 * xcan_interrupt - CAN Isr
1338 * @irq: irq number
1339 * @dev_id: device id pointer
1340 *
1341 * This is the xilinx CAN Isr. It checks for the type of interrupt
1342 * and invokes the corresponding ISR.
1343 *
1344 * Return:
1345 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1346 */
1347static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1348{
1349 struct net_device *ndev = (struct net_device *)dev_id;
1350 struct xcan_priv *priv = netdev_priv(ndev);
1351 u32 isr, ier;
1352 u32 isr_errors;
1353 u32 rx_int_mask = xcan_rx_int_mask(priv);
1354
1355 /* Get the interrupt status from Xilinx CAN */
1356 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1357 if (!isr)
1358 return IRQ_NONE;
1359
1360 /* Check for the type of interrupt and Processing it */
1361 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1362 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1363 XCAN_IXR_WKUP_MASK));
1364 xcan_state_interrupt(ndev, isr);
1365 }
1366
1367 /* Check for Tx interrupt and Processing it */
1368 if (isr & XCAN_IXR_TXOK_MASK)
1369 xcan_tx_interrupt(ndev, isr);
1370
1371 /* Check for the type of error interrupt and Processing it */
1372 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1373 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1374 XCAN_IXR_RXMNF_MASK);
1375 if (isr_errors) {
1376 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1377 xcan_err_interrupt(ndev, isr);
1378 }
1379
1380 /* Check for the type of receive interrupt and Processing it */
1381 if (isr & rx_int_mask) {
1382 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1383 ier &= ~rx_int_mask;
1384 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1385 napi_schedule(&priv->napi);
1386 }
1387 return IRQ_HANDLED;
1388}
1389
1390/**
1391 * xcan_chip_stop - Driver stop routine
1392 * @ndev: Pointer to net_device structure
1393 *
1394 * This is the drivers stop routine. It will disable the
1395 * interrupts and put the device into configuration mode.
1396 */
1397static void xcan_chip_stop(struct net_device *ndev)
1398{
1399 struct xcan_priv *priv = netdev_priv(ndev);
1400 int ret;
1401
1402 /* Disable interrupts and leave the can in configuration mode */
1403 ret = set_reset_mode(ndev);
1404 if (ret < 0)
1405 netdev_dbg(ndev, "set_reset_mode() Failed\n");
1406
1407 priv->can.state = CAN_STATE_STOPPED;
1408}
1409
1410/**
1411 * xcan_open - Driver open routine
1412 * @ndev: Pointer to net_device structure
1413 *
1414 * This is the driver open routine.
1415 * Return: 0 on success and failure value on error
1416 */
1417static int xcan_open(struct net_device *ndev)
1418{
1419 struct xcan_priv *priv = netdev_priv(ndev);
1420 int ret;
1421
1422 ret = pm_runtime_get_sync(priv->dev);
1423 if (ret < 0) {
1424 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1425 __func__, ret);
1426 goto err;
1427 }
1428
1429 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1430 ndev->name, ndev);
1431 if (ret < 0) {
1432 netdev_err(ndev, "irq allocation for CAN failed\n");
1433 goto err;
1434 }
1435
1436 /* Set chip into reset mode */
1437 ret = set_reset_mode(ndev);
1438 if (ret < 0) {
1439 netdev_err(ndev, "mode resetting failed!\n");
1440 goto err_irq;
1441 }
1442
1443 /* Common open */
1444 ret = open_candev(ndev);
1445 if (ret)
1446 goto err_irq;
1447
1448 ret = xcan_chip_start(ndev);
1449 if (ret < 0) {
1450 netdev_err(ndev, "xcan_chip_start failed!\n");
1451 goto err_candev;
1452 }
1453
1454 napi_enable(&priv->napi);
1455 netif_start_queue(ndev);
1456
1457 return 0;
1458
1459err_candev:
1460 close_candev(ndev);
1461err_irq:
1462 free_irq(ndev->irq, ndev);
1463err:
1464 pm_runtime_put(priv->dev);
1465
1466 return ret;
1467}
1468
1469/**
1470 * xcan_close - Driver close routine
1471 * @ndev: Pointer to net_device structure
1472 *
1473 * Return: 0 always
1474 */
1475static int xcan_close(struct net_device *ndev)
1476{
1477 struct xcan_priv *priv = netdev_priv(ndev);
1478
1479 netif_stop_queue(ndev);
1480 napi_disable(&priv->napi);
1481 xcan_chip_stop(ndev);
1482 free_irq(ndev->irq, ndev);
1483 close_candev(ndev);
1484
1485 pm_runtime_put(priv->dev);
1486
1487 return 0;
1488}
1489
1490/**
1491 * xcan_get_berr_counter - error counter routine
1492 * @ndev: Pointer to net_device structure
1493 * @bec: Pointer to can_berr_counter structure
1494 *
1495 * This is the driver error counter routine.
1496 * Return: 0 on success and failure value on error
1497 */
1498static int xcan_get_berr_counter(const struct net_device *ndev,
1499 struct can_berr_counter *bec)
1500{
1501 struct xcan_priv *priv = netdev_priv(ndev);
1502 int ret;
1503
1504 ret = pm_runtime_get_sync(priv->dev);
1505 if (ret < 0) {
1506 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1507 __func__, ret);
1508 pm_runtime_put(priv->dev);
1509 return ret;
1510 }
1511
1512 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1513 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1514 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1515
1516 pm_runtime_put(priv->dev);
1517
1518 return 0;
1519}
1520
1521/**
1522 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1523 * @ndev: Pointer to net_device structure
1524 * @tdcv: Pointer to TDCV value
1525 *
1526 * Return: 0 on success
1527 */
1528static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1529{
1530 struct xcan_priv *priv = netdev_priv(ndev);
1531
1532 *tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1533
1534 return 0;
1535}
1536
1537static const struct net_device_ops xcan_netdev_ops = {
1538 .ndo_open = xcan_open,
1539 .ndo_stop = xcan_close,
1540 .ndo_start_xmit = xcan_start_xmit,
1541 .ndo_change_mtu = can_change_mtu,
1542};
1543
1544static const struct ethtool_ops xcan_ethtool_ops = {
1545 .get_ts_info = ethtool_op_get_ts_info,
1546};
1547
1548/**
1549 * xcan_suspend - Suspend method for the driver
1550 * @dev: Address of the device structure
1551 *
1552 * Put the driver into low power mode.
1553 * Return: 0 on success and failure value on error
1554 */
1555static int __maybe_unused xcan_suspend(struct device *dev)
1556{
1557 struct net_device *ndev = dev_get_drvdata(dev);
1558
1559 if (netif_running(ndev)) {
1560 netif_stop_queue(ndev);
1561 netif_device_detach(ndev);
1562 xcan_chip_stop(ndev);
1563 }
1564
1565 return pm_runtime_force_suspend(dev);
1566}
1567
1568/**
1569 * xcan_resume - Resume from suspend
1570 * @dev: Address of the device structure
1571 *
1572 * Resume operation after suspend.
1573 * Return: 0 on success and failure value on error
1574 */
1575static int __maybe_unused xcan_resume(struct device *dev)
1576{
1577 struct net_device *ndev = dev_get_drvdata(dev);
1578 int ret;
1579
1580 ret = pm_runtime_force_resume(dev);
1581 if (ret) {
1582 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1583 return ret;
1584 }
1585
1586 if (netif_running(ndev)) {
1587 ret = xcan_chip_start(ndev);
1588 if (ret) {
1589 dev_err(dev, "xcan_chip_start failed on resume\n");
1590 return ret;
1591 }
1592
1593 netif_device_attach(ndev);
1594 netif_start_queue(ndev);
1595 }
1596
1597 return 0;
1598}
1599
1600/**
1601 * xcan_runtime_suspend - Runtime suspend method for the driver
1602 * @dev: Address of the device structure
1603 *
1604 * Put the driver into low power mode.
1605 * Return: 0 always
1606 */
1607static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1608{
1609 struct net_device *ndev = dev_get_drvdata(dev);
1610 struct xcan_priv *priv = netdev_priv(ndev);
1611
1612 clk_disable_unprepare(priv->bus_clk);
1613 clk_disable_unprepare(priv->can_clk);
1614
1615 return 0;
1616}
1617
1618/**
1619 * xcan_runtime_resume - Runtime resume from suspend
1620 * @dev: Address of the device structure
1621 *
1622 * Resume operation after suspend.
1623 * Return: 0 on success and failure value on error
1624 */
1625static int __maybe_unused xcan_runtime_resume(struct device *dev)
1626{
1627 struct net_device *ndev = dev_get_drvdata(dev);
1628 struct xcan_priv *priv = netdev_priv(ndev);
1629 int ret;
1630
1631 ret = clk_prepare_enable(priv->bus_clk);
1632 if (ret) {
1633 dev_err(dev, "Cannot enable clock.\n");
1634 return ret;
1635 }
1636 ret = clk_prepare_enable(priv->can_clk);
1637 if (ret) {
1638 dev_err(dev, "Cannot enable clock.\n");
1639 clk_disable_unprepare(priv->bus_clk);
1640 return ret;
1641 }
1642
1643 return 0;
1644}
1645
1646static const struct dev_pm_ops xcan_dev_pm_ops = {
1647 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1648 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1649};
1650
1651static const struct xcan_devtype_data xcan_zynq_data = {
1652 .cantype = XZYNQ_CANPS,
1653 .flags = XCAN_FLAG_TXFEMP,
1654 .bittiming_const = &xcan_bittiming_const,
1655 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1656 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1657 .bus_clk_name = "pclk",
1658};
1659
1660static const struct xcan_devtype_data xcan_axi_data = {
1661 .cantype = XAXI_CAN,
1662 .bittiming_const = &xcan_bittiming_const,
1663 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1664 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1665 .bus_clk_name = "s_axi_aclk",
1666};
1667
1668static const struct xcan_devtype_data xcan_canfd_data = {
1669 .cantype = XAXI_CANFD,
1670 .flags = XCAN_FLAG_EXT_FILTERS |
1671 XCAN_FLAG_RXMNF |
1672 XCAN_FLAG_TX_MAILBOXES |
1673 XCAN_FLAG_RX_FIFO_MULTI,
1674 .bittiming_const = &xcan_bittiming_const_canfd,
1675 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1676 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1677 .bus_clk_name = "s_axi_aclk",
1678};
1679
1680static const struct xcan_devtype_data xcan_canfd2_data = {
1681 .cantype = XAXI_CANFD_2_0,
1682 .flags = XCAN_FLAG_EXT_FILTERS |
1683 XCAN_FLAG_RXMNF |
1684 XCAN_FLAG_TX_MAILBOXES |
1685 XCAN_FLAG_CANFD_2 |
1686 XCAN_FLAG_RX_FIFO_MULTI,
1687 .bittiming_const = &xcan_bittiming_const_canfd2,
1688 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1689 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1690 .bus_clk_name = "s_axi_aclk",
1691};
1692
1693/* Match table for OF platform binding */
1694static const struct of_device_id xcan_of_match[] = {
1695 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1696 { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1697 { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1698 { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1699 { /* end of list */ },
1700};
1701MODULE_DEVICE_TABLE(of, xcan_of_match);
1702
1703/**
1704 * xcan_probe - Platform registration call
1705 * @pdev: Handle to the platform device structure
1706 *
1707 * This function does all the memory allocation and registration for the CAN
1708 * device.
1709 *
1710 * Return: 0 on success and failure value on error
1711 */
1712static int xcan_probe(struct platform_device *pdev)
1713{
1714 struct net_device *ndev;
1715 struct xcan_priv *priv;
1716 const struct of_device_id *of_id;
1717 const struct xcan_devtype_data *devtype = &xcan_axi_data;
1718 void __iomem *addr;
1719 int ret;
1720 int rx_max, tx_max;
1721 u32 hw_tx_max = 0, hw_rx_max = 0;
1722 const char *hw_tx_max_property;
1723
1724 /* Get the virtual base address for the device */
1725 addr = devm_platform_ioremap_resource(pdev, 0);
1726 if (IS_ERR(addr)) {
1727 ret = PTR_ERR(addr);
1728 goto err;
1729 }
1730
1731 of_id = of_match_device(xcan_of_match, &pdev->dev);
1732 if (of_id && of_id->data)
1733 devtype = of_id->data;
1734
1735 hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1736 "tx-mailbox-count" : "tx-fifo-depth";
1737
1738 ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1739 &hw_tx_max);
1740 if (ret < 0) {
1741 dev_err(&pdev->dev, "missing %s property\n",
1742 hw_tx_max_property);
1743 goto err;
1744 }
1745
1746 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1747 &hw_rx_max);
1748 if (ret < 0) {
1749 dev_err(&pdev->dev,
1750 "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1751 goto err;
1752 }
1753
1754 /* With TX FIFO:
1755 *
1756 * There is no way to directly figure out how many frames have been
1757 * sent when the TXOK interrupt is processed. If TXFEMP
1758 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1759 * to determine if 1 or 2 frames have been sent.
1760 * Theoretically we should be able to use TXFWMEMP to determine up
1761 * to 3 frames, but it seems that after putting a second frame in the
1762 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1763 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1764 * sent), which is not a sensible state - possibly TXFWMEMP is not
1765 * completely synchronized with the rest of the bits?
1766 *
1767 * With TX mailboxes:
1768 *
1769 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1770 * we submit frames one at a time.
1771 */
1772 if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1773 (devtype->flags & XCAN_FLAG_TXFEMP))
1774 tx_max = min(hw_tx_max, 2U);
1775 else
1776 tx_max = 1;
1777
1778 rx_max = hw_rx_max;
1779
1780 /* Create a CAN device instance */
1781 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1782 if (!ndev)
1783 return -ENOMEM;
1784
1785 priv = netdev_priv(ndev);
1786 priv->dev = &pdev->dev;
1787 priv->can.bittiming_const = devtype->bittiming_const;
1788 priv->can.do_set_mode = xcan_do_set_mode;
1789 priv->can.do_get_berr_counter = xcan_get_berr_counter;
1790 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1791 CAN_CTRLMODE_BERR_REPORTING;
1792
1793 if (devtype->cantype == XAXI_CANFD) {
1794 priv->can.data_bittiming_const =
1795 &xcan_data_bittiming_const_canfd;
1796 priv->can.tdc_const = &xcan_tdc_const_canfd;
1797 }
1798
1799 if (devtype->cantype == XAXI_CANFD_2_0) {
1800 priv->can.data_bittiming_const =
1801 &xcan_data_bittiming_const_canfd2;
1802 priv->can.tdc_const = &xcan_tdc_const_canfd2;
1803 }
1804
1805 if (devtype->cantype == XAXI_CANFD ||
1806 devtype->cantype == XAXI_CANFD_2_0) {
1807 priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1808 CAN_CTRLMODE_TDC_AUTO;
1809 priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1810 }
1811
1812 priv->reg_base = addr;
1813 priv->tx_max = tx_max;
1814 priv->devtype = *devtype;
1815 spin_lock_init(&priv->tx_lock);
1816
1817 /* Get IRQ for the device */
1818 ret = platform_get_irq(pdev, 0);
1819 if (ret < 0)
1820 goto err_free;
1821
1822 ndev->irq = ret;
1823
1824 ndev->flags |= IFF_ECHO; /* We support local echo */
1825
1826 platform_set_drvdata(pdev, ndev);
1827 SET_NETDEV_DEV(ndev, &pdev->dev);
1828 ndev->netdev_ops = &xcan_netdev_ops;
1829 ndev->ethtool_ops = &xcan_ethtool_ops;
1830
1831 /* Getting the CAN can_clk info */
1832 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1833 if (IS_ERR(priv->can_clk)) {
1834 ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1835 "device clock not found\n");
1836 goto err_free;
1837 }
1838
1839 priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1840 if (IS_ERR(priv->bus_clk)) {
1841 ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1842 "bus clock not found\n");
1843 goto err_free;
1844 }
1845
1846 priv->write_reg = xcan_write_reg_le;
1847 priv->read_reg = xcan_read_reg_le;
1848
1849 pm_runtime_enable(&pdev->dev);
1850 ret = pm_runtime_get_sync(&pdev->dev);
1851 if (ret < 0) {
1852 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1853 __func__, ret);
1854 goto err_disableclks;
1855 }
1856
1857 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1858 priv->write_reg = xcan_write_reg_be;
1859 priv->read_reg = xcan_read_reg_be;
1860 }
1861
1862 priv->can.clock.freq = clk_get_rate(priv->can_clk);
1863
1864 netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1865
1866 ret = register_candev(ndev);
1867 if (ret) {
1868 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1869 goto err_disableclks;
1870 }
1871
1872 pm_runtime_put(&pdev->dev);
1873
1874 if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1875 priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1876 priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1877 }
1878
1879 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1880 priv->reg_base, ndev->irq, priv->can.clock.freq,
1881 hw_tx_max, priv->tx_max);
1882
1883 return 0;
1884
1885err_disableclks:
1886 pm_runtime_put(priv->dev);
1887 pm_runtime_disable(&pdev->dev);
1888err_free:
1889 free_candev(ndev);
1890err:
1891 return ret;
1892}
1893
1894/**
1895 * xcan_remove - Unregister the device after releasing the resources
1896 * @pdev: Handle to the platform device structure
1897 *
1898 * This function frees all the resources allocated to the device.
1899 * Return: 0 always
1900 */
1901static int xcan_remove(struct platform_device *pdev)
1902{
1903 struct net_device *ndev = platform_get_drvdata(pdev);
1904
1905 unregister_candev(ndev);
1906 pm_runtime_disable(&pdev->dev);
1907 free_candev(ndev);
1908
1909 return 0;
1910}
1911
1912static struct platform_driver xcan_driver = {
1913 .probe = xcan_probe,
1914 .remove = xcan_remove,
1915 .driver = {
1916 .name = DRIVER_NAME,
1917 .pm = &xcan_dev_pm_ops,
1918 .of_match_table = xcan_of_match,
1919 },
1920};
1921
1922module_platform_driver(xcan_driver);
1923
1924MODULE_LICENSE("GPL");
1925MODULE_AUTHOR("Xilinx Inc");
1926MODULE_DESCRIPTION("Xilinx CAN interface");